WO2011044766A1 - 外加电源提供电场效应的薄膜光伏电池 - Google Patents

外加电源提供电场效应的薄膜光伏电池 Download PDF

Info

Publication number
WO2011044766A1
WO2011044766A1 PCT/CN2010/071680 CN2010071680W WO2011044766A1 WO 2011044766 A1 WO2011044766 A1 WO 2011044766A1 CN 2010071680 W CN2010071680 W CN 2010071680W WO 2011044766 A1 WO2011044766 A1 WO 2011044766A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
photovoltaic cell
thin film
electrode
film photovoltaic
Prior art date
Application number
PCT/CN2010/071680
Other languages
English (en)
French (fr)
Inventor
郭建国
毛星原
Original Assignee
Guo Jianguo
Mao Xingyuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guo Jianguo, Mao Xingyuan filed Critical Guo Jianguo
Publication of WO2011044766A1 publication Critical patent/WO2011044766A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • FIG. 1-A Copper Indium Gallium Selenide (CIGS) thin film photovoltaic cells are composed of: transparent conductive film 1.1, cadmium sulfide (CdS) 1.2, copper indium gallium selenide (CIGS) 1.3, back electrode layer 1.4, substrate 1.5.
  • the transparent conductive film 1.1 is made of zinc oxide (ZnO) and indium tin oxide (IT0)
  • the back electrode layer 1.4 is made of molybdenum (Mo)
  • the substrate 1.5 is made of glass, plastic or metal.
  • is the photovoltaic cell output current.
  • the present invention provides a thin film photovoltaic cell with an external electric field to provide an electric field effect, which is a thin film photovoltaic cell structure provided by an external power source to a thin film photovoltaic cell to form an electric field effect, thereby promoting an enhanced and stable battery.
  • the self-built electric field E np improves the open circuit voltage and the maximum output power of the thin film photovoltaic cell, and forms an electric field effect thin film photovoltaic cell structure with high conversion efficiency.
  • the invention is based on the invention patent application 200910182141.
  • No. 9 of the invention "additional electric field type photovoltaic cell", through the external power source, the amorphous silicon base, the compound semiconductor copper indium gallium selenide (CIGS), the bismuth in the thin film photovoltaic cell system cadmium (CdTe) and doped polymeric material, a photovoltaic cell, a battery to provide electric field control, the field-effect thin film photovoltaic cell may be enhanced pn junction region self field carrier diffusion, increase the maximum output power of the photovoltaic cell ⁇ ⁇ , A thin film photovoltaic cell that forms an additional electric field effect function.
  • the positive electrode of the applied voltage source VI is connected to the n-type semiconductor of the electric field effect thin film photovoltaic cell, and the negative electrode is connected to the electric field effect electrode of the P-type semiconductor of the electric field effect thin film photovoltaic cell. That is, the positive electrode of the applied voltage source VI is connected to the electric field effect copper indium gallium selenide thin film photovoltaic cell (CIGS), the cadmium telluride thin film photovoltaic cell (CdTe) electric field surface layer electrode (transparent conductive film), and the applied voltage source a negative electrode, the copper indium gallium selenide thin film photovoltaic cell (CIGS), a cadmium telluride thin film photovoltaic cell (CdTe) electric field bottom electrode; the positive electrode of the applied voltage source VI, the amorphous silicon thin film photovoltaic cell connected to the electric field effect The electric field bottom electrode, the negative electrode of the applied voltage source, and the electric field surface electrode formed by the transparent conductive film of the electric field effect a
  • the structure of the power supply device with the applied electric field is as follows: Referring to FIG. 5, a small-power thin film photovoltaic cell 1 and a thin film photovoltaic cell 2 are connected in series to form an electric field power supply, and the independent electric field power supply positive and negative electrodes are respectively connected to the electric field. Effect of thin film photovoltaic cell 3 The electric field surface electrode and the electric field bottom electrode of the transparent conductive film. Referring to Figures 2, 3, 4, the electric field source VI can also be an external voltage source isolated from the field effect thin film photovoltaic cell.
  • the present invention is an access by an external power field-effect thin film photovoltaic cell surface electrode and a bottom electrode electric field, an electric field is formed within a reinforcement and self stabilize the battery ⁇ " ⁇ field, increase the open-circuit voltage of the photovoltaic cell and the maximum output power P max, is formed conversion More efficient field effect thin film photovoltaic cells.
  • FIG. 2 is a schematic structural view of a field effect CIGS thin film photovoltaic cell of the present invention
  • FIG. 3 is a schematic structural view of a field effect CdTe thin film photovoltaic cell of the present invention.
  • FIG. 5-B is a connection diagram of a thin film photovoltaic CdTe electric field power source and an electric field effect thin film photovoltaic cell
  • FIG. 5-C is a schematic diagram of an external electric field power supply of an amorphous silicon electric field effect thin film photovoltaic cell
  • Fig. 6-A is a voltage-current comparison curve of a compound electric field effect thin film photovoltaic cell and a compound thin film photovoltaic cell.
  • Fig. 6-B is a voltage-current comparison curve of an amorphous silicon electric field effect thin film photovoltaic cell and an amorphous silicon thin film photovoltaic cell.
  • the compound semiconductor CIGS field effect thin film photovoltaic cell structure is composed of: transparent conductive film 1. 1-1, CdS layer 1. 2-2, CIGS layer 1. 3-3 1. 4-4, substrate 1. 5-5, insulating film 1. 6-6, electric field underlying electrode 1. 7-7, electric field power supply VI 1. 8-8, load resistor R.
  • the 1-1 and the back electrode 1. 4-4 is the negative electrode and the positive electrode of the photovoltaic cell output, and the transparent conductive film 1. 1-1 and the electric field underlying electrode 1. 7-7 ⁇ The electric field of the electric field of the electric field of the electric field of the electric field of the electric field of the electric field of the electric field of the electric field of the electric field of the electric field of the electric field.
  • the electric field underlying electrode 1. 7-7 is through the insulating film 1. 6-6 and the back electrode
  • FIG. 5-C is a schematic diagram of an external electric field power supply for an amorphous silicon field effect thin film photovoltaic cell.
  • the low-power thin film photovoltaic cell 1 and the thin film photovoltaic cell 2 are connected in series to form an electric field power source, and the electric field power supply negative and positive electrodes are respectively connected to the transparent conductive film electric field surface electrode and the electric field bottom electrode of the electric field effect thin film photovoltaic cell 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Description

外加电源提供电场效应的薄膜光伏电池 技术领域
本发明涉及一种光伏电池, 具体涉及一种外加电源提供电场效应的薄膜光伏电池。 背景技术
当前薄膜光伏电池的体系包括: 硅基、 铜铟镓硒 (CIGS)、 碲化镉 (CdTe) 以及掺杂 聚合物材料的光伏电池。 这些光伏电池的基本结构, 都是采用 P型半导体层、 n型半导体层 所组成具有 pn叠层特征, 以及非晶/?- -«叠层特征的薄膜光伏电池, 参看附图 1-A、 附图 1-B、 附图 1-C 所示。
图 1-A: 铜铟镓硒 (CIGS) 薄膜光伏电池是由: 透明导电膜 1.1、 硫化镉 (CdS ) 1.2、 铜铟镓硒 (CIGS) 1.3、 背面电极层 1.4、 基板 1.5 所组成。 其中透明导电膜 1.1采用氧化 鋅 (ZnO) 及氧化铟锡 (IT0) ,背面电极层 1.4采用钼 (Mo) , 基板 1.5采用玻璃、 塑料或 金属材料。
图 1-B: 碲化镉 (CdTe) 薄膜光伏电池是由: 透明导电膜 2.1、 硫化镉 (CdS ) 2.2、 碲 化镉 (CdTe) 2.3、 背面电极层 2.4、 基板 2.5 所组成。 其中透明导电膜 2.1采用氧化铟锡 (IT0) 及二氧化锡 (Sn02) ,背面电极层 2.4采用碲化锌(ZnTe)或铜 (Cu) , 基板 2.5采用 玻璃。
图 1-C: 非晶硅薄膜光伏电池是由: 透明导电膜 3.1、 /?- -«叠层结构3.2、 背面电 极层 3.3、 基板 3.4所组成。 其中透明导电膜 3.1采用氧化铟锡(IT0)及二氧化锡(Sn02) , /?- !'_«叠层结构 3.2采用非晶硅及微晶硅形成的 a-Si/ c-Si叠层或是堆栈三层形成的 a-Si/a-SiGe/a-SiGe, 基板 3.4采用玻璃。
附图 1-A、 附图 1-B、 附图 1-C 中 „ρ是薄膜光伏电池内 pn结与非晶硅薄膜光伏电池
- - «结构自建电场, ^是光伏电池输出电流。
n型半导体是在本征半导体材料中, 掺入杂质使自由电子浓度大大增加, 称为 n型(电 子型) 半导体。 P型半导体在本征半导体中, 掺入杂质使空穴浓度大大增加, 称为 P型 (空 穴型) 半导体。
薄膜光伏电池的 n型半导体与 p型半导体的接触面形成 pn结,并在耗尽区载流子扩散形 成自建电场 Ε„ρ。 非晶光伏电池的 Ρ型半导体膜层与 η型半导体膜层之间加有 i本征半导体, 形成 《结构, 并在 «膜层之间内自建电场 , 电场方向从 n区指向 p区。 当入射光子进入薄膜光伏电池 pn结耗尽区或非晶光伏电池的 i本征半导体区,并光子能 量大于 pn结耗尽区或 i本征半导体区能隙时, 光子能量会被吸收, 产生高势能的电子和空 穴对。 电子和空穴对会分别受到自建电场 £ ^的影响, 通过负载 R而产生光电流 /p
薄膜光伏电池的基本结构中, pn结区载流子扩散自建电场与 结构自建电场 „p的大小与稳定, 是光伏电池发电效率的重要参数。 薄膜光伏电池内自建电场 Ε„ρ是电池本身半导体材料及电池结构的特征参数。 所以, 影响薄膜光伏电池自建电场 Ε ^的强弱与稳定, 主要有以下三个主要方面影响:
1、 晶粒间界处存在势垒, 阻断载流子的通过。
2、 晶粒间界作为一种晶体缺陷, 起着有效复合正负载流子对中心作用。
3、 在形成 pn结的工艺过程中, 掺杂的原子会沿着晶粒间界向下择优扩散, 形成导电 分流路径, 增大漏电流。
而非晶硅薄膜光伏电池是 结构, 非晶硅薄膜光伏电池内光生载流子主要产生 于未掺杂的 i本征吸收层, 与化合物半导体薄膜光伏能电池中载流子主要由 pn结扩散区移 动不同, 在非晶硅薄膜光伏电池中, 光生载流子主要依靠电池内 n层 -P层之间电场 „ρ作用 做漂移运动,使光生载流子产生后立即被吸引到 η侧和 ρ侧。 但是非晶硅 ρ区与 η区膜材料中, 还包含有大量的悬挂键、 空位等缺陷, 因而其有很高的缺陷态密度, 它们提供了电子和空 穴复合的场所。另外由于非晶硅电池在经过长时间光照后,其光电导和暗电导都显著减小, 这一现象被称为 Staebler-Wronski 效应, 简称 S_W效应。 由于 S_W效应使非晶硅膜中缺陷 态密度增加, 导致电池内的光生电子和空穴复合几率增加, 电池的转换效率下降。
发明内容
为了提高薄膜光伏电池转换效率,本发明提供一种外加电源提供电场效应的薄膜光伏 电池, 是一种由外加电源提供给薄膜光伏电池, 形成电场效应的薄膜光伏电池结构, 促成 一个增强与稳定电池内自建电场 Enp,提高薄膜光伏电池的开路电压与最大输出功率 , 形成转换效率较高的电场效应薄膜光伏电池结构。
本发明是在中国 200910182141. 9号发明专利申请: "外加电场型光伏电池"的基础上, 通过外部电源为薄膜光伏电池体系中非晶硅基、 化合物半导体铜铟镓硒 (CIGS)、 碲化镉 (CdTe) 以及掺杂聚合物材料的光伏电池, 提供一个调控电池内电场, 该电场效应可以增 强薄膜光伏电池 pn 结区载流子扩散自建电场, 提高光伏电池的最大输出功率 ^χ, 形成 附加电场效应功能的薄膜光伏电池。 实现本发明目的技术方案是: 一种外加电源提供电场效应的薄膜光伏电池, 所述的薄 膜光伏电池包括: 硅基薄膜光伏电池、 铜铟镓硒薄膜光伏电池 (CuInl-XGaXSe2, 简写为 CIGS)、 碲化镉薄膜光伏电池 (CdTe ) 以及掺杂聚合物材料的薄膜光伏电池, 该薄膜光伏 电池设有透明导电膜及背面电极层, 所述的透明导电膜与背面电极层为薄膜光伏电池的输 出电极(电源输出回路电极); 其特征在于, 在所述的背面电极层下面设有电场底层电极, 该电场底层电极与薄膜光伏电池本体中背面电极层之间设有绝缘层, 该绝缘层形成电场表 层电极、 薄膜光伏电池本体中背面电极与电场底层电极电隔离; 在电场底层电极与所述透 明导电膜构成的电场表层电极之间设有外加电压源 VI, 而透明导电膜作为电场表层电极与 电场底层电极是构成绝缘电场效应的输入电极。
该薄膜光伏电池本体上面的透明导电膜同时作为薄膜光伏电池的输出电极,也作为外 加电场的表层电极。
该外加电压源 VI的正极相对应电场效应薄膜光伏电池的 n型半导体, 负极相对应电场 效应薄膜光伏电池的 P型半导体的电场效应电极连接。 即, 该外加电压源 VI的正极, 接所 述电场效应的铜铟镓硒薄膜光伏电池 (CIGS )、 碲化镉薄膜光伏电池 (CdTe ) 电场表层电 极 (透明导电膜) , 该外加电压源的负极, 接所述的铜铟镓硒薄膜光伏电池 (CIGS)、 碲 化镉薄膜光伏电池 (CdTe) 电场底层电极; 该外加电压源 VI的正极, 接所述电场效应的非 晶硅薄膜光伏电池的电场底层电极, 该外加电压源的负极, 接所述电场效应的非晶硅薄膜 光伏电池的透明导电膜构成的电场表层电极。
本发明通过外部电源 VI接入电场效应薄膜光伏电池,当单组光伏电池输出开路电压为 V。c, 外加电源 VI的电压范围为 Vl VQe; 现有的单组 (非电场型) 薄膜光伏电池标准输出开 路电压 V。e, 化合物半导体薄膜光伏电池在0. 6¥ ¥ 1. (^, 非晶硅叠层薄膜光伏电池在 0. 8V^Voc^ l. 4V; 其中电源电压 VI的大小与电场底层电极与背面电极层之间的绝缘层厚度 有关, 厚度越大, 电压越高, 一般绝缘层总厚度要求在 10微米以下。
其电场效应薄膜光伏电池特征是,电场效应薄膜光伏电池中化合物半导体薄膜光伏电 池的透明导电膜与电场底层电极, 分别连接直流电源 VI的正极与负极, 并形成电场 1, 电 场 1方向与自建电场 Ε„ρ相同。 电场效应薄膜光伏电池中非晶硅薄膜光伏电池的透明导电 膜与电场底层电极, 分别连接直流电源 VI的负极与正极, 电场底层电极与透明导电膜之间 /?- ζ' - «叠层结构形成电场 1, 电场 1方向与自建电场 Ε„ρ相同。 在电场效应薄膜光伏电池结构中, 由于电场 1方向与光伏电池的 ρη结区电场 。方向 一致, „p加强与稳定, 增强正负载流子的分离度, 减少了正负载流子的复合作用。 电场
+ 同时降低了 pn结反向饱和电流, 能够提高电池的开路电压 V^。 另外, 电场 1对 ρ区少子 -电子有阻挡和反射作用, 既减少了背表面之复合作用, 同 时电场 1能调整多晶体晶粒间界势垒方向,提高载流子迁移, 降低晶粒间界复合正负载流 子, 又提高了 pn结对光生少子的收集几率。 所以也就能提高光伏电池的短路电流与开路电 压, 提高光伏电池最大输出功率 ^χ
P max = FF Vn OrCI S,rC
^为光伏电池的填充因子。
本发明的优化方案有:
所述外加电场的电源装置的结构是: 参照附图 5, 采用小功率的薄膜光伏电池 1与薄膜 光伏电池 2串联形成电场电源, 该独立的电场电源正、 负电极分别相应的连接到, 电场效 应薄膜光伏电池 3透明导电膜的电场表层电极与电场底层电极。 参照附图 2、 3、 4, 电场电 源 VI也可以是与电场效应薄膜光伏电池相隔离的外接电压源。
本发明通过外部电源接入电场效应薄膜光伏电池的电场表层电极与底层电极, 形成一 个增强与稳定电池内自建电场 Ε„ρ电场, 提高光伏电池的开路电压与最大输出功率 Pmax, 形成转换效率较高的电场效应薄膜光伏电池。
本发明通过外部电源接入电场效应薄膜光伏电池, 而外部电源所形成的外部电场在 l = 2 „p时, 电场效应薄膜光伏电池电压-电流曲线及转化功率 ^χ, 参看附图 6-Α和附 图 6-Β所示。
附图说明
图 1-A为现有化合物半导体 CIGS薄膜光伏电池结构原理图;
图 1-B为现有化合物半导体 CdTe薄膜光伏电池结构原理图;
图 l-c为现有非晶硅叠层薄膜光伏电池结构原理图;
图 2为本发明电场效应 CIGS薄膜光伏电池结构原理图;
图 3为本发明电场效应 CdTe薄膜光伏电池结构原理图;
图 4为本发明电场效应非晶硅叠层光伏电池结构原理图;
图 5- A为本发明电场效应 CIGS薄膜光伏电池外接电场电源原理图;
图 5- B为本发明薄膜光伏 CdTe电场电源与电场效应薄膜光伏电池连接图; 图 5-C是非晶硅电场效应薄膜光伏电池外接电场电源原理图; 图 6-A为化合物电场效应薄膜光伏电池与化合物薄膜光伏电池电压-电流对比曲线图 图 6-B 为非晶硅电场效应薄膜光伏电池与非晶硅薄膜光伏电池电压-电流对比曲线 图。
具体实施方式
实施例 1, 参照附图 2所示, 化合物半导体 CIGS电场效应薄膜光伏电池结构是由: 透明 导电膜 1. 1-1、 CdS层 1. 2-2、 CIGS层 1. 3-3、 背面电极 1. 4-4、 基板 1. 5-5、 绝缘膜 1. 6-6、 电场底层电极 1. 7-7、 电场电源 VI 1. 8-8、 负载电阻 R所组成。 电场效应薄膜光伏电池结构 中, 透明导电膜 1. 1-1与背面电极 1. 4-4是光伏电池输出的负电极与正电极, 而透明导电膜 1. 1-1与电场底层电极 1. 7-7连接电场电源 VI的正极与负极, 使透明导电膜 1. 1-1与电场底 层电极 1. 7-7之间形成电场 £1。 其中电场底层电极 1. 7-7是通过绝缘膜 1. 6-6与背面电极
1. 4-4进行电隔离。 而电场电源 VI与电场效应薄膜光伏电池也是相互独立的电源。
实施例 2
参照附图 3所示, 化合物半导体 CdTe电场效应薄膜光伏电池结构是由: 透明导电膜 2. 1-1、 CdS层 2. 2-2、 CdTe层 2. 3-3、 背面电极 2. 4-4、 基板 2· 5- 5、 绝缘膜 2. 6-6、 电场底 层电极 2. 7-7、 电场电源 VI 2. 8-8、 负载电阻 R所组成。 电场效应薄膜光伏电池结构中, 透 明导电膜 2. 1-1与背面电极 2. 4-4是光伏电池输出的负电极与正电极, 而透明导电膜 2. 1-1 与电场底层电极 2. 7-7连接电场电源 VI的正极与负极, 使透明导电膜 2. 1-1与电场底层电极
2. 7-7之间形成电场 £1。其中电场底层电极 2. 7-7是通过绝缘膜 2. 6_6与背面电极 2. 4_4进行 电隔离。 而电场电源 VI与电场效应薄膜光伏电池也是相互独立的电源。
实施例 3
参照附图 4所示,电场效应非晶硅薄膜光伏电池结构是由:透明导电膜 3. 1-1、 p - i - n 叠层结构 3. 2-2、 背面电极 3. 3-3、 基板 3. 4-4、 绝缘层 3. 5_5、 电场底层电极 3. 6_6、 电场 电源 VI 3. 7-7、 负载电阻 R所组成。 其中电场电源 VI的正、 负极连接电场底层电极 3. 6-6与 透明导电膜 3. 1-1,并在/ «叠层结构 3. 2-2内部形成电场51, 电场 E1与自建电场 „ρ方 向相同。 而且电场底层电极 3. 6-6与非晶光伏电池背面电极 3. 3-3电隔离。
实施例 4
参照附图 5-Α、 附图 5-Β所示, 电场效应薄膜光伏电池中电场电源 VI与电场效应薄膜光 伏电池是相互独立的电源。 本实施例使用独立的薄膜光伏电池作为电场电源 VI。 图 5-Α是 (CIGS ) 电场效应薄膜光伏电池外接电场电源原理图。 小功率的薄膜光伏电池 1与薄膜光 伏电池 2串联形成电场电源, 电场电源正负电极分别连接电场效应薄膜光伏电池 3的透明导 电膜电场表层电极与电场底层电极。 应为电场电源输出电流很小, 薄膜光伏电池 1与薄膜 光伏电池 2串联形成电场电源开路电压 El=2VQe, 开路电压 2VQe=l. 2V-2. 0V。
图 5-B是 (CdTe) 电场效应薄膜光伏电池外接电场电源原理图。 小功率的薄膜光伏电 池 1与薄膜光伏电池 2串联形成电场电源, 电场电源正负电极分别连接电场效应薄膜光伏电 池 3的透明导电膜电场表层电极与电场底层电极。 应为电场电源输出电流很小, 薄膜光伏 电池 1与薄膜光伏电池 2串联形成电场电源开路电压 El=2VQe, 开路电压 2VQe=l. 2V-2. 0V。
图 5-C是非晶硅电场效应薄膜光伏电池外接电场电源原理图。小功率的薄膜光伏电池 1 与薄膜光伏电池 2串联形成电场电源, 电场电源负、 正电极分别连接电场效应薄膜光伏电 池 3的透明导电膜电场表层电极与电场底层电极。 应为电场电源输出电流很小, 薄膜光伏 电池 1与薄膜光伏电池 2串联形成电场电源开路电压 El=2VQe, 开路电压 2VQe=l. 6V-2. 8V。

Claims

权 利 要 求
1、 一种外加电源提供电场效应的薄膜光伏电池, 所述的薄膜光伏电池包括: 硅基薄 膜光伏电池、 铜铟镓硒薄膜光伏电池、 碲化镉薄膜光伏电池以及掺杂聚合物材料的薄膜光 伏电池, 该薄膜光伏电池设有透明导电膜及背面电极层, 所述的透明导电膜与背面电极层 为薄膜光伏电池的输出电极; 其特征在于, 在所述的背面电极层下面设有电场底层电极, 该电场底层电极与薄膜光伏电池本体中背面电极层之间设有绝缘层, 该绝缘层形成电场表 层电极、 薄膜光伏电池本体中背面电极与电场底层电极电隔离; 在该电场底层电极与所述 透明导电膜构成的电场表层电极之间设有外加电压源 VI。
2、 根据权利要求 1所述的外加电源提供电场效应的薄膜光伏电池, 其特征在于, 所述 外加电压源 VI的正极与相对应电场效应薄膜光伏电池的 n型半导体连接; 外加电压源 VI的 负极与相对应电场效应薄膜光伏电池的 P型半导体的电场效应电极连接。
3、 根据权利要求 1所述的外加电源提供电场效应的薄膜光伏电池, 其特征在于, 在单 组光伏电池外加电源 VI的电压范围为 VI ^Voc, 其中 VQe是单组非电场型薄膜光伏电池标准输 出开路电压。
4、 根据权利要求 1所述的外加电源提供电场效应的薄膜光伏电池, 其特征在于, 所述 电场底层电极与背面电极层之间的绝缘层的总厚度在 10微米以下。
5、 根据权利要求 1 所述的外加电源提供电场效应的薄膜光伏电池, 其特征在于, 所 述电场底层电极的结构是:
所述背面电极底面复合一层绝缘层, 绝缘层另一面复合一层导电膜, 导电膜通过绝缘 层与背面电极电隔离; 或者是, 所述背面电极底面复合一层绝缘层, 在绝缘层中间夹有该 电场底层电极。
6、根据权利要求广 5之一所述的外加电源提供电场效应的薄膜光伏电池,其特征在于, 所述化合物半导体 CIGS电场效应薄膜光伏电池的具体结构如下:
由透明导电膜 ( 1. 1-1 ) 、 CdS层 ( 1. 2-2) 、 CIGS层 ( 1. 3-3) 、 背面电极 ( 1. 4-4) 、 基板 (1. 5-5) 、 绝缘膜 (1. 6-6)、 电场底层电极 (1. 7-7)、 电场电源 VI ( 1. 8-8), 负载 电阻 R所组成。 其中透明导电膜 (1. 1-1 ) 采用氧化鋅及氧化铟锡,背面电极层 (1. 4-4) 采 用钼, 基板 (1. 5-5) 采用玻璃、 塑料或金属材料; 电场效应薄膜光伏电池结构中, 透明 导电膜 (1. 1-1 ) 与背面电极 (1. 4-4) 是光伏电池输出的负电极与正电极, 而透明导电膜 ( 1. 1-1 )与电场底层电极(1. 7-7)连接电场电源 VI的正极与负极,使透明导电膜(1. 1-1 ) 与电场底层电极 (1. 7-7) 之间形成电场 1 ; 其中电场底层电极 (1. 7-7) 是通过绝缘膜 (1.6-6) 与背面电极 (1.4-4) 进行电隔离; 而电场电源 VI与电场效应薄膜光伏电池也是 相互独立的电源;
所述化合物半导体 CdTe电场效应薄膜光伏电池的具体结构如下:
由透明导电膜 (2.1-1) 、 CdS层 (2.2-2) 、 CdTe层 (2.3-3) 、 背面电极 (2.4-4) 、 基板 (2.5-5) 、 绝缘膜 (2.6-6)、 电场底层电极 (2.7-7)、 电场电源 VI (2.8-8), 负载 电阻 R所组成; 其中透明导电膜 (2.1-1) 采用氧化铟锡及二氧化锡,背面电极层 (2.4-4) 采用碲化锌或铜, 基板 (2.5-5) 采用玻璃; 电场效应薄膜光伏电池结构中, 透明导电膜
(2.1-1)与背面电极(2.4-4)是光伏电池输出的负电极与正电极, 而透明导电膜(2.1-1) 与电场底层电极 (2.7-7) 连接电场电源 VI的正极与负极, 使透明导电膜 (2.1-1) 与电场 底层电极(2.7-7)之间形成电场 1; 其中电场底层电极(2.7-7)是通过绝缘膜(2.6-6) 与背面电极 (2.4-4) 进行电隔离; 而电场电源 VI与电场效应薄膜光伏电池也是相互独立 的电源;
所述电场效应非晶硅薄膜光伏电池的具体结构如下:
是由透明导电膜 (3.1-1)、 /?— — «叠层结构(3.2-2)、 背面电极 (3.3-3)、 基板 (3.4-4)、 绝缘层 (3.5-5)、 电场底层电极 (3.6-6)、 电场电源 VI (3.7-7)、 负载电阻 R 所组成;其中透明导电膜 (3.1-1) 采用氧化铟锡及二氧化锡, /?_ _«叠层结构 (3.2-2) 采用非晶硅及微晶硅形成的 a-Si/ μ c-Si叠层或是堆栈三层形成的 a-Si/a-SiGe/a-SiGe, 基板 3.4-4采用玻璃; 电场效应非晶硅薄膜光伏电池结构中, 透明导电膜 (3.1-1) 与背面 电极 (3.3-3) 是光伏电池输出的正电极与负电极, 电场电源 VI的正、 负极, 连接电场底 层电极 (3.6-6) 与透明导电膜 (3.1-1), 并在 «叠层结构 (3.2-2) 内部形成电场
El, 电场 El与自建电场 „ρ方向相同; 而且电场底层电极(3.6-6)与非晶硅光伏电池背面 电极 (3.3-3) 通过绝缘层 (3.5-5) 电隔离。
7、 根据权利要求 6所述的外加电源提供电场效应的薄膜光伏电池, 其特征在于, 所述 外加电场的电源装置的结构是: 采用小功率的薄膜光伏电池与薄膜光伏电池串联形成电场 电源, 电场电源输出电极分别对应连接电场效应薄膜光伏电池的透明导电膜电场表层电极 与电场底层电极。
8、 根据权利要求 6所述的外加电源提供电场效应的薄膜光伏电池, 其特征在于, 所述 外加电场电源 VI是与电场效应薄膜光伏电池相隔离的外接电压源。
9、 根据权利要求 6所述的外加电源提供电场效应的薄膜光伏电池, 其特征在于, 所述 的光伏辐射面是采用非玻璃的透明聚合物, 形成电场效应薄膜有机半导体光伏电池。
PCT/CN2010/071680 2009-10-14 2010-04-10 外加电源提供电场效应的薄膜光伏电池 WO2011044766A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910035923.X 2009-10-14
CN 200910035923 CN101699632A (zh) 2009-10-14 2009-10-14 外加电源提供电场效应的薄膜光伏电池

Publications (1)

Publication Number Publication Date
WO2011044766A1 true WO2011044766A1 (zh) 2011-04-21

Family

ID=42148085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071680 WO2011044766A1 (zh) 2009-10-14 2010-04-10 外加电源提供电场效应的薄膜光伏电池

Country Status (2)

Country Link
CN (2) CN101699632A (zh)
WO (1) WO2011044766A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498448A (en) * 2012-01-16 2013-07-17 Bell Stephen W PV array with external field applied across solar cells.

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101699632A (zh) * 2009-10-14 2010-04-28 郭建国 外加电源提供电场效应的薄膜光伏电池
WO2012027919A1 (zh) * 2010-09-03 2012-03-08 Guo Jianguo 外加电场效应薄膜光伏电池及与电场源集成的光伏电池板
CN102223110B (zh) * 2011-06-17 2013-07-10 郭建国 一种等效场效应硅光伏电源组件
CN102231395B (zh) * 2011-06-17 2013-11-13 郭建国 绝缘栅型硅光伏电源组件
CN102683443B (zh) * 2012-04-17 2014-12-10 郭建国 场效应型薄膜电池与微电源一体化集成的光伏电池板组件
CN102646727B (zh) * 2012-04-19 2014-11-26 郭建国 场效应薄膜光伏电池板组件与集热器组合的热电联供装置
CN103000701A (zh) * 2012-12-05 2013-03-27 中山联合光电科技有限公司 一种新型太阳能电池
CN103199131B (zh) * 2013-04-11 2016-03-02 中国石油大学(华东) 一种电场增强型肖特基结太阳能电池结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321365A (ja) * 1994-05-27 1995-12-08 Fuji Electric Corp Res & Dev Ltd 薄膜太陽電池
DE19602313A1 (de) * 1996-01-23 1997-07-24 Siemens Ag Solarzelle
JP2003298088A (ja) * 2002-04-02 2003-10-17 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置
JP2009140941A (ja) * 2007-12-03 2009-06-25 Mitsubishi Electric Corp 光起電力装置及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9907023A (pt) * 1998-01-22 2000-10-17 Citizen Watch Co Ltd "dispositivo de célula solar e método de fabricação do mesmo"
CN101246930A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 薄膜太阳能电池的超白反射层
CN201081816Y (zh) * 2007-07-24 2008-07-02 王金忠 一种太阳能电池
CN101699632A (zh) * 2009-10-14 2010-04-28 郭建国 外加电源提供电场效应的薄膜光伏电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321365A (ja) * 1994-05-27 1995-12-08 Fuji Electric Corp Res & Dev Ltd 薄膜太陽電池
DE19602313A1 (de) * 1996-01-23 1997-07-24 Siemens Ag Solarzelle
JP2003298088A (ja) * 2002-04-02 2003-10-17 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置
JP2009140941A (ja) * 2007-12-03 2009-06-25 Mitsubishi Electric Corp 光起電力装置及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498448A (en) * 2012-01-16 2013-07-17 Bell Stephen W PV array with external field applied across solar cells.
GB2498448B (en) * 2012-01-16 2016-11-30 Bell Stephen W Apparatus for generating electricity from solar energy

Also Published As

Publication number Publication date
CN101699632A (zh) 2010-04-28
CN102064213A (zh) 2011-05-18

Similar Documents

Publication Publication Date Title
WO2011044766A1 (zh) 外加电源提供电场效应的薄膜光伏电池
JP6689456B2 (ja) 透明トンネル接合を有する光起電力デバイス
US20170271622A1 (en) High efficiency thin film tandem solar cells and other semiconductor devices
WO2008157637A9 (en) Single p-n junction tandem photovoltaic device
EP2999008A2 (en) Multi-junction solar cell
US20120192923A1 (en) Photovoltaic device
US20100200059A1 (en) Dual-side light-absorbing thin film solar cell
US20130087190A1 (en) Photovoltaic devices and methods of forming the same
US20150295099A1 (en) High work-function buffer layers for silicon-based photovoltaic devices
CN101826566A (zh) 外加电场型光伏电池
US20240006543A1 (en) Photovoltaic cell, method for preparing same, and photovoltaic module
US20120266933A1 (en) Solar cell
CN219628267U (zh) 一种太阳能叠层电池、电池组件和光伏***
US8062920B2 (en) Method of manufacturing a photovoltaic device
JPH11150282A (ja) 光起電力素子及びその製造方法
KR101411996B1 (ko) 고효율 태양전지
WO2019184576A1 (zh) 一种太阳能电池
Mykytyuk et al. Limitations on thickness of absorber layer in CdS/CdTe solar cells
JP2012038783A (ja) 光電変換素子
US20120180855A1 (en) Photovoltaic devices and methods of forming the same
Boccard et al. Paths for maximal light incoupling and excellent electrical performances in silicon heterojunction solar cells
WO2020158023A1 (ja) 太陽電池セルおよびその製造方法並びに太陽電池モジュール
Sabbar et al. A fabricated solar cell from ZnO/a-Si/polymers
CN219679160U (zh) 光伏电池
CN219352270U (zh) 一种太阳能叠层电池、电池组件和光伏***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10822998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10822998

Country of ref document: EP

Kind code of ref document: A1