WO2011042422A1 - Fügeverfahren und fügeverbindung für mikrofluidische bauteile - Google Patents

Fügeverfahren und fügeverbindung für mikrofluidische bauteile Download PDF

Info

Publication number
WO2011042422A1
WO2011042422A1 PCT/EP2010/064808 EP2010064808W WO2011042422A1 WO 2011042422 A1 WO2011042422 A1 WO 2011042422A1 EP 2010064808 W EP2010064808 W EP 2010064808W WO 2011042422 A1 WO2011042422 A1 WO 2011042422A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
film
substrate
plate
shaped
Prior art date
Application number
PCT/EP2010/064808
Other languages
English (en)
French (fr)
Inventor
Christian Schoen
Thorsten Joedicke
Dirk Kurowski
Original Assignee
Boehringer Ingelheim Microparts Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim Microparts Gmbh filed Critical Boehringer Ingelheim Microparts Gmbh
Priority to EP10760703A priority Critical patent/EP2485841A1/de
Priority to US13/500,139 priority patent/US9333707B2/en
Priority to JP2012532567A priority patent/JP2013506855A/ja
Publication of WO2011042422A1 publication Critical patent/WO2011042422A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/60Riveting or staking
    • B29C65/606Riveting or staking the rivets being integral with one of the parts to be joined, i.e. staking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • B29C66/1246Tongue and groove joints characterised by the female part, i.e. the part comprising the groove
    • B29C66/12461Tongue and groove joints characterised by the female part, i.e. the part comprising the groove being rounded, i.e. U-shaped or C-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2422Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being circular, oval or elliptical
    • B29C66/24221Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being circular, oval or elliptical being circular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/541Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles a substantially flat extra element being placed between and clamped by the joined hollow-preforms
    • B29C66/5412Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles a substantially flat extra element being placed between and clamped by the joined hollow-preforms said substantially flat extra element being flexible, e.g. a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/542Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining hollow covers or hollow bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81421General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave
    • B29C66/81422General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave being convex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91943Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined higher than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81415General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled
    • B29C66/81417General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled being V-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91421Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the joining tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91933Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined higher than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/058Microfluidics not provided for in B81B2201/051 - B81B2201/054
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/032Gluing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/05Aligning components to be assembled
    • B81C2203/051Active alignment, e.g. using internal or external actuators, magnets, sensors, marks or marks detectors

Definitions

  • the present invention relates to joining techniques for connecting microfluidic components, in particular plastic, to a microfluidic cartridge.
  • microfluidic cartridges are used, for example, in point of care hand analyzers or medical diagnostic devices in laboratories or hospitals.
  • the field of the invention is, in particular, joining techniques for the production of lateral flow cartridges, in which the components to be joined have length and width measurements of a few millimeters to centimeters.
  • the field of the invention thus relates to a microfluidic cartridge according to claim 1 and a method for producing such a device according to claim 20.
  • Microfluidic cartridges are widely used in the form of Einmaltests.
  • a cartridge to be tested with a biosensor is supplied with an analysis fluid (e.g., blood, urine, saliva) to be tested.
  • the sample is added to the cartridge before or after inserting the cartridge into the analyzer.
  • the addition of the analyte takes place in an opening of the cartridge, wherein the liquid is then supplied through microchannels corresponding sample preparation chambers and sample examination chambers.
  • micro means that the channels and / or chambers, at least in a geometric expansion direction, have a dimension on the micrometer scale, that is to say that the dimensions in at least one dimension are less than one millimeter.
  • microfluidic cartridge is understood to mean a device consisting of several components for the distribution of liquids, which has such microchannels and microcomponents.
  • microfluidic means that a pressure-induced and / or capillary fluid flow takes place through and in the microchannels and / or microcompartments.
  • the cartridge typically consists of a plurality of mutually joined plate-shaped substrates made of plastic in particular, ie, components which have a thickness dimension which is a lot smaller than their length and width dimensions.
  • recesses and / or openings are introduced into a predominantly flat plate-shaped substrate, which are covered with a further plate-shaped substrate.
  • the plate-shaped substrate may be a foil.
  • Reagents can be applied to the plate-shaped substrate or in the microcompartments / microchannels.
  • the plate-shaped substrate can serve as a carrier for a biosensor and in particular comprise electrical components such as printed circuit traces or optical components such as optical surfaces, mirror surfaces and optical waveguides.
  • attachments for joining, for guiding or for handling the component and / or the cartridge can be attached to one of the plate-shaped substrates.
  • the plate-shaped substrates may be at least partially covered by a glued or laminated film which sealingly seals the molded-in microfluidic channels.
  • a glued or laminated film which sealingly seals the molded-in microfluidic channels.
  • the ultrasonic welding, the thermal bonding or diffusion bonding, the laser welding and the bonding of the components for example by adhesive layers or by lamination are well known.
  • Another suitable connection technique is the use of double-sided adhesive films.
  • a disadvantage of the use of adhesive methods or adhesive films may be the hydrophobic properties of these adhesives, which can prevent a wetting of flow channels.
  • liquid adhesives there is a risk of the closure of fluid-conducting structures by inflowing adhesive.
  • a disadvantage of ultrasonic welding techniques is the not inconsiderable vibration loads in the joining process in many applications.
  • the filtering of the blood plasma is accomplished by a welded or clamped filter membrane glued into a cartridge component.
  • a pinching of the membrane can be done for example by elastic seals or by a resiliently held ring.
  • This membrane can be damaged by the mechanical vibrations during ultrasonic welding, in particular tear.
  • a disadvantage may also be that some plastics have a poor adhesive behavior and welding behavior, which occurs in particular when different plastic materials are to be welded or glued.
  • a disadvantage of the use of adhesive films is also the additional cost of materials and the cost of processing the adhesive film (for example, the punching or cutting of openings and channels), which causes additional costs.
  • the object is to provide a joining method and a joint connection for such a device, which eliminates the disadvantages mentioned above.
  • the object is to provide a joining method and a joint connection, which ensures a cost-effective, solid and material-saving connection between the components of a microfluidic cartridge.
  • the object is to provide a method and a joint connection, which avoid mechanical stress on the components during the joining process, and allow a secure component mounting. Furthermore, the object is to provide a method and a joint for joining, which does not affect the fluid properties of the cartridge.
  • the invention relates in particular to fluidic test devices, cartridges, in which a plate-shaped fluid-conducting component is covered with a film.
  • the film covers in this case in one or in both sides of the plate molded channel and / or chamber structures, whereby a microfluidic channel system with feature widths and structure heights of several 10 microns to several millimeters is formed.
  • the film covers the plate-shaped component partially or completely.
  • the material of the plate and the material of the film consists essentially of an amorphous or semi-crystalline plastic selected from polystyrene (PS), polymethyl methacrylate (PMMA), polycarbonate (PC), olefin polymers and olefin copolymers such as cycloolefin polymer and Cylcoolefincopolymer (COC and COP ), Polyamide (PA), polypropylene (PP), polyethylene (PE) or polyethyletherketone (PEEK).
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • olefin polymers and olefin copolymers such as cycloolefin polymer and Cylcoolefincopolymer (COC and COP ), Polyamide (PA), polypropylene (PP), polyethylene (PE) or polyethyletherketone (PEEK).
  • PA polyamide
  • PP polypropylene
  • PE polyethylene
  • the film can be multi-layered.
  • the film may be provided on one or both sides with an adhesive layer for attachment to the plate-shaped substrate.
  • the adhesive layer is preferably a low-melting laminating layer or sealing layer of ethylene-vinyl acetate copolymer (EVA).
  • EVA ethylene-vinyl acetate copolymer
  • the surface and / or the channel structures may have been subjected to surface treatment and / or surface coating over the entire area or part of the area.
  • a surface treatment / surface activation e.g. a plasma irradiation / plasma etching to improve the surface adhesion should be done.
  • a hydrophilization of the channel regions for improved fluid conduction of aqueous fluids is conceivable as surface coatings.
  • the film can also have an additional sealing layer, which is welded onto the surface of the substrate in a hot laminating process.
  • the film can be laminated directly, that is, it is created without the melting of a sealing layer by pressure and heat a cohesive connection between the film and the substrate.
  • the film is flat.
  • it can also be provided to mold the film locally, for example to form deformable chambers, or to mold in order to form pressure- or vacuum-controlled valves and microactuators.
  • a second film may be arranged on the plate-shaped substrate and / or the first film.
  • the second film may have further microfluidic structures such as channels, chambers and / or openings.
  • the second film preferably comprises structures for a biosensor, in particular measuring means such as electrical contacts and electrical potential surfaces or optical structures such as optical light guides or optical mirror surfaces.
  • the analyte such as blood, saliva, urine
  • the microfluidic biosensor is usually delivered to the microfluidic biosensor via one or more inlet channels that branch off from a filling area.
  • the filling area is fed through a filling opening with the analyte, wherein the filling opening is a bore in a plate-shaped substrate.
  • the term bore is understood to mean an opening or indentation in one of the plate-shaped substrates.
  • the shape of the opening may be cylindrical in the usual way, as in the case of bores, or may be oval in cross-section or square-shaped or triangular in cross-section. Three-dimensional forms such as a tear drop structure are also conceivable as a bore shape.
  • At least one of the plate-shaped substrates advantageously has a sealing lip in the region of the filling opening.
  • This sealing lip fulfills the function of fluidically sealing the filling area, that is to say the filling opening.
  • the sealing lip should therefore particularly advantageously surround the filling opening throughout.
  • a sealing lip is provided in particular when no adhesive bond is created between at least one side of the film and a substrate.
  • the sealing lip is preferably designed as a cutting edge projecting from a substrate surface.
  • the cutting edge is then pressed into the Film and seals any gaps between the film and the substrate.
  • the cutting edge is preferably wedge-shaped, but may also have a circular segment shape, a quadrangular shape or a triangular shape.
  • the sealing lip may also be a seal, in particular a ring seal of elastic material such as silicone, which is squeezed during the joining process and thereby creates a sealing connection to the film and to the substrate.
  • the sealing ring can be inserted into a recess running around the filling opening in the substrate.
  • a sealing ring can also be provided to use an elastic sealing material as a circumferential sealing lip, wherein the sealing lip is formed by a bead of elastic sealant, which was then applied before joining the region of the filling opening.
  • Adhesive or adhesive films can also be used as sealing materials.
  • a correspondingly arranged bore can also be mounted in the and / or the films.
  • the filling opening is arranged in a second plate-shaped substrate, in particular a cover element.
  • This cover element is particularly preferably provided with a filter element, in particular a membrane, for filtering particles from the sample liquid.
  • the membrane is advantageously glued or welded into a recess or recess of the substrate and then forms a component with the cover element. Since the membrane should be exposed to as little mechanical stress as possible in order to avoid tearing of the membrane part, but on the other hand a firm and secure connection of the cover element to the cartridge is necessary, contrary to the conventional ultrasonic welding, a method according to the invention for joining the cover element or in general a platinum. tenförmiges substrate used.
  • the cover element and / or the fluid-carrying substrate with this component integrally connected pins.
  • the term "pin” is understood to mean all holding means which have a significantly smaller extent than the lid element and / or in at least one dimension, that is to say in the width or in the longitudinal direction of the lid element and / or the plate-shaped substrate substrate. In particular, this is understood to mean holding means which are cylindrical and have a cylinder diameter of a few millimeters.
  • the shape of the pins can also be triangular, square, rectangular or polygonal.
  • the pins can also be designed as ribs, that is to say have a shape which is extended in a width direction several millimeters and in a longitudinal direction a few millimeters. Such ribs are advantageously arranged in a circle around the filling opening.
  • the arrangement of the pins and associated holes in the associated component is selected such that they engage in the positioning in one another.
  • the shape of the bore is advantageously similar to the pin shape, so that the pins fit precisely into the hole.
  • the pins preferably have a slightly bevelled, in particular conical shape, which allows easier positioning of the components relative to one another during handling. Due to the wider base of the pins, which corresponds in diameter approximately to the bore diameter, a self-positioning is then achieved in the stacking position of the components.
  • corresponding pin diameters or pin widths are selected, with average diameters or widths selected from 0.2 millimeters to 5 millimeters, in particular 0.5 millimeters to 2 millimeters become.
  • a single joint after manufacture to ensure a holding force of one kg or 10 Newton.
  • a cover element withstands at least one vertical acting breaking force per joint of 10 Newtons. If a plurality of identical joint connections created, so the holding force increases against tearing.
  • the components are positioned on a support and a suitable pressure tool, in particular a thermode, is pressed in a heated state onto the ends of the pins at a pressure of 0.5 bar to 5 bar.
  • a suitable pressure tool in particular a thermode
  • cold forming can also take place.
  • the listed 0.5 bar to 5 bar the pressure acting on the mechanics of the pressure tool.
  • the pressure generation can be carried out pneumatically, hydraulically or servo-electrically.
  • thermode preferably has at the attachment point a conical end which acts centrally on the pin end.
  • the end of the thermode can also be flat, or have a negative shell shape, in particular negative mushroom shape.
  • the negative mold can have a mandrel in the middle, which presses into the end of the pin during forming and displaces the pin material to the outside.
  • thermode exerts a force of 25 Newton to 250 Newton on a joint in the forming process.
  • a welding time greater than 0.5 seconds, in particular 1.5 seconds to 5 seconds, guarantees sufficient heat flow from the tip of the thermistor into the pen material, the material being heated above its glass transition temperature or softening temperature.
  • PS 100 ° C to 180 ° C, especially 130 ° C to 150 ° C
  • PMMA 100 ° C to 180 ° C , in particular 130 ° C to 150 ° C
  • PC 140 ° C to 230 ° C, especially 160 ° C to 190 ° C
  • PE 80 ° C to 170 ° C, especially 100 ° C to 140 ° C
  • PP 90 ° C to 200 ° C, especially 120 ° C to 170 ° C
  • COP and COC 150 ° C to 240 ° C, especially 170 ° C to 210 ° C
  • PEEK 160 ° C to 250 ° C, in particular 180 ° C to 210 ° C.
  • the plastic material is caused to flow from the center by the pressure tool, so that a head is formed and material is pressed under pressure against the wall of the bore.
  • This material pressing creates a frictional connection between the deformed pin and the bore, so that the components are joined both by frictional connection and by positive engagement of the trained head.
  • the thermode is lifted off the joint or the thermo mode is left on the joint for a further time interval, the holding time t H.
  • the hold time t H is chosen so that a solidification of the joint takes place during this time.
  • the heat input of the thermode is interrupted for the hold time and / or the thermode passively and / or actively cooled.
  • the cooling can be done for example by a connected cooling system, by blowing the joint (air cooling) or by passive cooling (heat sink).
  • the components can also be fixed to each other by a clamping mechanism or holding mechanism during the holding time t H.
  • the thermode is completely lifted from the joint, with advantageous cooling steps support the solidification of the joint.
  • the holding time t H is preferably 0.2 to 5 seconds, in particular 0.5 to 2.5 seconds.
  • the tensile strength of the joint compound produced in this way is at least 25% of the tensile strength of the substrate material.
  • the invention finds a reaction according to the following embodiments: It shows
  • Fig. 1 a plate-shaped substrate with microfluidic channel structures
  • Fig. 2a a lid member from the top
  • Fig. 2b the lid member from the bottom
  • Fig. 2c a lid foil with inlet opening
  • Fig. 2d a cover element with pins and circumferential sealing lips
  • Fig. 2e a similar cover element with holes
  • FIGS. 4 and 5 attached cartridges
  • Fig. 6 a microsection of a joint
  • Fig. 8 a schematic load test
  • FIG. 10 and FIG. 11 Statistical diagrams for parameters of the joint connection
  • Fig. 12 a joint with an internal positive fit
  • Figures 1, 2 a, 2 b and 2 c are schematic representations of the components of a cartridge according to the invention (20).
  • This consists of a first plate-shaped substrate (1), in particular a plastic plate of a few centimeters long and a few centimeters wide and a few millimeters high.
  • Microfluidic structures such as a channel (4), an inlet chamber (17) with a ventilation trench (18) surrounding the inlet chamber (17), ventilation channels (19) and an analysis chamber (21) are formed in the plastic plate.
  • a liquid is introduced into the inlet chamber (17) and fed via the channel (4) to an analysis chamber.
  • a biosensor Arranged in the analysis chamber is a biosensor which measures a biological or chemical component of the fluid, such as a hormone concentration in the blood plasma.
  • the fluidic network shown here is shown in greatly simplified form; the cartridge (20) can comprise further microfluidic components as well as reagents for sample treatment, for sample preparation and for detection.
  • a film (3) is glued or laminated onto the first plate-shaped substrate (1).
  • the film (3) has on its underside an adhesive layer or sealing layer (16), which establishes the connection between substrate (1) and film (3).
  • the film (3) can be shaped by laser cutting or punching, wherein holes (7) for pins (6) and a filling opening (5) for filling the inlet chamber (17) are recessed.
  • the film may also be provided on both sides with an adhesive and / or sealing layer in order to provide both a joint connection / adhesive bond to the first substrate (1) and to the second substrate (2).
  • the holes (7) in the film (3) correspond in diameter to the diameter of the pins (6) or have a slightly smaller diameter, so that the film bears sealingly against the pins. This is particularly advantageous when fluid-carrying structures in the substrate (1) or the film (3) are arranged near the pin and there is a risk that capillary forces an undesired fluid drainage occurs in cavities of the joint.
  • the diameter of the passage that is, the bore diameter of the filling opening (5) in the film (3) is smaller than the bore diameter of the filling opening (5) in the second plate-shaped substrate (2) and / or smaller than the diameter of the bottom of the inlet chamber (17).
  • the second plate-shaped substrate (2) which in the present exemplary embodiment according to FIGS. 2a and 2b is a cover element (2), has an approximately centric opening (5) into which the fluid to be analyzed is introduced.
  • the opening of the passage bore is equipped so that the opening width is 5 to 15mm.
  • the side surfaces of the bore form a funnel which opens to the surface and which is matched in its geometry and shape to the size and shape of a fingertip.
  • Figure 2a shows the lid member (2) from the top.
  • four holes (7) are arranged in the corner regions of the cover element (2), which extend to a blind hole (10) at the top of the lid.
  • the blind hole (10) has the function of accommodating the rivet head (9) forming during the joining process so that it does not project beyond the surface of the cover (2).
  • FIG. 2b shows a representation of the cover element (2) from the underside.
  • the opening (5) which is widened in the periphery to the underside of the lid member so that a recess is formed around the opening (5) having a circumferential mounting surface (22).
  • a membrane (14) is inserted and glued or welded to the mounting surface (22).
  • the distance of the attachment surface to the surface of the cover element ie the depth of the recess in the direction of the cover thickness corresponds approximately to the membrane thickness. This ensures that the underside of the membrane (14) and the underside of the cover element (2) form a planar surface and the membrane at the opening (5) in the film (3) of Figure 2 after joining the components to the cartridge ( 20) is applied.
  • FIGS. 2d and 2e show cover elements (2) analogous to the cover element (2) shown in FIGS. 2a and 2b. Here, in each case that side is shown, which rests in the cartridge (20) on the film (3).
  • the circumferential and molded fastening surface (22) initially adjoins, in which the membrane (14) is arranged.
  • annular circumferential sealing lips (1 1) can be seen. As can be seen on the left-hand section of FIG. 2d, the sealing lip protrudes out of the substrate surface of the cover element (2) and is integrally connected to the substrate.
  • the tip of the sealing lip forms a cutting edge, which presses into the film (3) after joining of the components, as shown in the figure.
  • the cutting edge means any wedge-shaped, cut-shaped, annular or rounded shape in the substrate which is suitable for at least partially indenting the film (3) used.
  • FIGS. 3, 4, 5 and 7 the positioning and joining of the cartridge components in the area of the joints is shown schematically.
  • the first plate-shaped substrate (1) has a channel structure (4) in cross-section, which is covered by a foil (3) and the lid element (2) is pressed onto a support (13 ) stacked on each other.
  • the plate-shaped substrate (1), in particular bottom element (1) has conical pins (6) which protrude from the surface of the substrate (1) and are integrally connected thereto.
  • the pins can be easily injected into the injection molding process of the polystyrene substrate plate (1).
  • the conical shape of the pins (6), in which the pin base corresponds in diameter approximately to the diameter of the bore (7) in the lid (2), has the advantage that a self-centering of the lid (2) and bottom plate (1) occurs to each other ,
  • FIG. 7 shows the forming process of the cone end of the pin (6) after the positioning step. It can be seen that the film (3) is provided at least in the vicinity of the joint with an adhesive layer (16) which creates an adhesive force and a sealing connection between the film (3) and the lid (2).
  • a pressure tool (12) is placed centrically on the pin end with a predetermined pressure P.
  • the pin diameter at the base is 1 millimeter and at the cone apex 0.7 millimeters, with the pin material being polystyrene (PS).
  • PS polystyrene
  • the pressure tool (12) is heated and has a tool temperature of 130 ° C to 150 ° C in the present embodiment for forming PS. For other plastics or tool geometries, the mold temperature will be adjusted accordingly.
  • the pressure tool, the thermode (12) is pin-shaped, the head is tapered or pyramidal tapered.
  • thermode is placed on the pin end with a tool pressure p of 1.5 bar to 5 bar.
  • the tool pressure is the pressure applied to the hold-down mechanism of the tool.
  • the hold-down mechanism will be a pneumatic cylinder with a punch area of about 2000 mm 2 .
  • thermode (12) a range of 100 Newton up to 1 kilonewton, this force is divided on the thermistor tips.
  • thermoforming of 4 joints results in a force of 25 Newton to 250 Newton with the effect of the thermode tip on the pin (6) and this transforms.
  • thermode displaces the material of the pin from the center to the periphery, forming a head (9).
  • an embodiment according to FIG. 12 can also be carried out.
  • one or more annular recesses in the cover element (2) are deformed by the thermo-plastic deformation Filled pencil material, so that additional positive connection elements ensure the grip between the bottom part (1) and cover (2) of the cartridge.
  • these formations (29) are annular, but other forms, such as helical, wedge-shaped or also forms with an undercut, can also be used.
  • thermodes when using higher temperatures or flat ends thermodes also a predominantly positive connection can be made. In this case, a flow of the pin material occurs predominantly only for the formation of the head, wherein further lying in the bore areas are hardly deformed.
  • the components for another holding time t H are fixed to each other, in particular clamped.
  • the positioning can be effected by maintaining the Thermodenan horrkraft and or by external clamping of the components.
  • the thermode is pressed onto the joint during the holding time and the thermal heating is interrupted during this time and / or active cooling is carried out.
  • a resilient holddown (not shown) may be attached to the thermode so that the thermal tip can be lifted a first distance from the joint and the spring force of the holddown continues to compress the components during the hold time t H.
  • a separate holding device (not shown) may also be arranged on the joining device, which positions the components and compresses them during the welding time t s and the holding time t H.
  • the welding time t s and the holding time t H are preferably separately adjustable and controllable.
  • the holding time t H is preferably 0.2 to 5 seconds, in particular 0.5 to 2.5 seconds.
  • the compression or clamping of the components suppresses the relaxation of the plastic components until solidification of the joint.
  • FIG. 6 shows a cross section of the manufactured joint in section. To clarify and differentiate the components, these were hatched and the edge areas highlighted graphically.
  • the micrograph shows a cartridge in the region of a joint, wherein the PS bottom plate (1), a film (3) and a cover element (2) are connected to each other via the plastic rivet joint thus formed.
  • the pin material As a result of the thermal pressure joining process, the pin material, as can clearly be seen, has been pressed against the edge of the hole, where it forms a frictional connection with the cover element (2). Furthermore, it can be seen that the material of the cover (2) is also plastically deformed in the region of the joint, so that the molded pin head (9) rests positively on the bottom of the blind hole, and rests positively on the side of the plastically deformed lid material and / or Cover material is enclosed. At sufficiently high mold temperatures and / or high welding times t s , the pin head (9) and the cover (2) can be locally connected to one another in a materially cohesive manner.
  • the lid (2) and bottom element (1) for a cohesive connection of the same plastic or interconnectable plastics with similar softening temperature should exist.
  • the tool temperature and the welding time t s essentially determine the strength of the joint, as shown by the following stress tests.
  • FIG. 8 shows such a load test schematically.
  • the bottom member (1), the foil (3) and the lid (2) are connected by a single pin (6) head (9) joint.
  • the aim was to obtain statistical information on the average load capacity of a riveting point and on influencing parameters for the strength and stability of such a joint connection.
  • cone-shaped pins (6) were used with a diameter at the base of 1 millimeter and at the apex of 0.7 millimeters, and a height of 1, 5 millimeters. These were provided by the described heat forming with a rivet head (9).
  • the pen height is about 0.8 millimeters including the head height (9).
  • FIG. 6 shows, at least 50% of the pin material is formed during the joining process.
  • the joined cartridge (20) is inserted by means of the clamping angle (23) in a tractor ZWICK brand and carried out a tensile test.
  • the decisive criterion in the choice of the parameter settings was the aim to cover an area in which an influence of the process parameters on the strength of the riveted joint is recognizable.
  • central trial points (center points) were determined.
  • the parameter settings take in each case the mean value of the test room. In this way, it is possible to verify whether all influencing factors exert an approximately linear influence on the result; moreover, by repeated repetitions of the central point, the scattering at the test points can be estimated.
  • Given the criteria to be met low number of experiments, expected linearity and three predictors), a 2 3 full-factorial design with a 3-point center point was performed.
  • the joining pressure in the described rivet connection, the selected conical thermode (12) and the polystyrene plastic pins used (6) at least 1, 8 bar to achieve a secure head training and a maximum of 2.6 bar may be used to prevent damage to the components during the joining process.
  • the table shows the elongation or elongation of the joint L and the force F max acting perpendicular to the substrates, that is to say on the rivet, at the time of the failure of the joint connection.
  • the vertical line in the diagrams according to FIGS. 10 and 11 is the 95% signing line of the Pareto diagram. If a factor exceeds this line (e.g., the temperature in the graph for strength), this factor has a 95% probability of having a significant impact on the target of interest.
  • the strength of the connection increases by about 27 percent.
  • an average force of 13.95N (1 rivet) could be applied to the riveted joint before disengaging.
  • a pressure of more than 2.6 bar or the equivalent of a joining force of more than 500 N per joint leads to damage of the cover element (2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

Die Erfindung behandelt das Fügen von Kunststoffbauteilen zu einer mikrofluidischen Cartridge (20). Die Erfindung betrifft insbesondere Cartridges (20) für diagnostische Analysevorrichtungen. Die Cartridge (20) umfasst ein fluidisch leitendes Bodenelement (1), einen Deckel (2) und eine Folie (3), welche zwischen den Elementen (1, 2) angeordnet ist. Der Deckel (2) oder das Bodenelement (1) und die Folie (3) weisen eine Einfüllöffnung (5) zur Befüllung von mikrofluidischen Kanälen (4) in einem der Elemente mit Probenflüssigkeit auf. Einstückig mit einem der plattenförmigen Elemente (1, 2) verbundene Stifte (6) greifen in zugeordnete Bohrungen (7) in der Folie (3) und dem jeweiligen zugeordneten Element (1, 2) ein. Durch Umformen eines Stiftes (6) wird ein Reibschluss zwischen einem umgeformten Stift und der Wand einer Bohrung hergestellt sowie ein formschlüssig am zugeordneten Substrat anliegender Kopf (9) gebildet. Beim Fügeprozess wird ein Druckwerkzeug (12) mit einem vorgegebenen Druck P auf ein Kopfende (9) eines Stifts (6) aufgesetzt und während einer Schweißzeit ts erfolgt ein Wärmeeintrag in den Stift (6). Hierbei wird das Stiftmaterial über seine Glasübergangstemperatur und/oder Schmelztemperatur gebracht und durch ein Fließen des Stiftmaterials in der Bohrung (7) erfolgt ein Reibschluss zwischen dem Stift (6) und dem Wand der Bohrung (7).

Description

Fügeverfahren und Fügeverbindung für mikrofluidische Bauteile
Die vorliegende Erfindung betrifft Fügetechniken zum Verbinden mikrofluidischer Bauteile aus insbesondere Kunststoff, zu einer mikrofluidischen Cartridge.
Diese mikrofluidischen Cartridges werden beispielsweise in Point of Care Handanalysegeräten oder medizinischen Diagnosegeräten in Laboren oder Krankenhäusern eingesetzt. Das Gebiet der Erfindung sind insbesondere Fügetechniken für die Herstellung von lateral flow Cartridges, bei denen die zu fügende Bauteile Längen- und Breitenmessungen aufweisen, die einige Millimeter bis Zentimeter betragen.
Das Gebiet der Erfindung betrifft somit eine mikrofluidische Cartridge nach Patentanspruch 1 und ein Verfahren zur Herstellung einer derartigen Vorrichtung nach Anspruch 20.
Mikrofluidische Cartridges werden vielfältig in Form von Einmaltests eingesetzt.
Dazu wird einer mit einem Biosensor versehenen Cartridge eine zu testende Analyseflüssigkeit (z.B. Blut, Urin, Speichel) zugeführt. Die Probenzugabe zur Cartridge erfolgt vor oder nach einem Einsetzen der Cartridge in das Analysegerät.
Die Zugabe des Analyten erfolgt in eine Öffnung der Cartridge, wobei die Flüssigkeit dann durch Mikrokanäle entsprechenden Probeaufbereitungskammern und Probeuntersuchungskammern zugeführt wird.
Die Begriffsverwendung Mikro bedeutet, dass die Kanäle und/oder Kammern zumindest in einer geometrischen Ausdehnungsrichtung eine Dimension im Mikrometermaßstab aufweisen, dass heißt die Abmaße in mindestens einer Dimension weniger als einen Millimeter betragen.
Unter dem Begriff mikofluidische Cartridge wird eine aus mehreren Bauteilen bestehende Vorrichtung für die Verteilung von Flüssigkeiten verstanden, welche derartige Mikrokanäle und Mikrokomponenten aufweist.
Unter dem Begriff mikrofluidisch wird verstanden, dass ein druckinduzierter und/oder kapillarer Flüssigkeitsfluss durch und in den Mikrokanälen und/oder Mikrokammern erfolgt. Die Cartridge besteht typischerweise aus mehreren aneinander gefügten plattenförmigen Substraten aus insbesondere Kunststoff, d.h. Bauteilen die eine Dickenabmessung aufweisen, die um ein Mehrzahliges geringer ist als ihre Längen- und Breitenabmessung. Zur Ausbildung der fluidischen Komponenten werden in ein vorwiegend flaches plattenförmi- ges Substrat Einformungen und/oder Durchbrechungen eingebracht, die mit einem weiteren plattenförmigen Substrat abgedeckt werden.
Das plattenförmige Substrat kann eine Folie sein.
Auf das plattenförmige Substrat oder in den Mikrokammern/Mikrokanälen können Reagenzien aufgebracht sein.
Das plattenförmige Substrat kann als Träger für einen Biosensor dienen und insbesondere elektrische Komponenten wie aufgedruckte Leiterbahnen oder optische Komponenten wie optische Flächen, Spiegelflächen und optische Wellenleiter umfassen.
Weiterhin können an einem der plattenförmigen Substrate Anformungen zum Fügen, zur Führung oder zum Handling des Bauteils und/oder der Cartridge angebracht sein.
Typisch können die plattenförmigen Substrate von einer aufgeklebten oder auflaminierten Folie zumindest teilweise bedeckt sein, welche die eingeformten mikrofluidischen Kanäle dichtend abschließt. Als Fügetechniken für mikrofluidische Bauteile der beschriebenen Art, sind das Ultraschallschweißen, das thermische Bonden oder Diffusionsbonden, das Laserschweißen und das Verkleben der Bauteile, z.B. durch Klebeschichten oder durch ein Laminieren allgemein bekannt. Eine weitere geeignete Verbindungstechnik ist die Verwendung von doppelseitigen Klebefolien. Nachteilig bei der Verwendung von Klebeverfahren oder Klebefolien können die hydrophoben Eigenschaften dieser Klebestoffe sein, die eine Benetzung von Fließkanälen verhindern können. Bei der Verwendung von flüssigen Klebstoffen besteht die Gefahr des Verschlusses von fluidleitenden Strukturen durch einfließenden Kleber. Nachteilig an Ultraschallschweißtechniken sind in vielen Anwendungsfällen die nicht unerheblichen Schwingbelastungen im Fügeprozess.
Diese können zu einem Schaden und zu einer späteren Fehlfunktion des Biosensors führen, wenn beispielsweise Reagenzien oder Partikel in Kammern oder auf Oberflächen aufge- trocknet sind und durch die Erschütterungen beim Ultraschallschweißen gelöst werden, so dass der Reaktionsablauf im Biosensor gestört wird.
Bei einigen Nachweisreaktionen, insbesondere immunochemischen Assays zum Nachweis von Blutbestandteilen ist es nötig, die Flüssigkeit zu filtern.
Bei dieser Blutseparation wird das Filtern des Blutplasmas durch eine in einem Cartridgebau- teil eingeklebte, eingeschweißte oder eingeklemmte Filtermembran bewerkstelligt. Ein Einklemmen der Membran kann beispielsweise durch elastische Dichtungen oder durch einen federnd gehaltenen Ring erfolgen.
Diese Membran kann durch die mechanischen Erschütterungen beim Ultraschallschweißen beschädigt werden, insbesondere reißen.
Nachteilig kann auch sein, dass einige Kunststoffe ein schlechtes Klebeverhalten und Schweißverhalten aufweisen, was insbesondere dann auftritt, wenn unterschiedliche Kunststoffmaterialien verschweißt oder verklebt werden sollen.
Nachteilig bei der Verwendung von Klebefolien ist auch der zusätzliche Materialaufwand sowie der Aufwand zur Bearbeitung der Klebefolie (z.B. das Ausstanzen oder Ausschneiden von Öffnungen und Kanälen), der Mehrkosten verursacht.
Vor diesem Hintergrund stellt sich die Aufgabe, ein Fügeverfahren und eine Fügeverbindung für eine derartige Vorrichtung anzugeben, welches die oben genannten Nachteile ausräumt. Insbesondere stellt sich die Aufgabe, ein Fügeverfahren und eine Fügeverbindung anzugeben, das eine kostengünstige, feste und materialeinsparende Verbindung zwischen den Bauteilen einer mikrofluidischen Cartridge sicherstellt.
Des weiteren stellt sich die Aufgabe, ein Verfahren und eine Fügeverbindung anzugeben, die eine mechanische Belastung der Bauteile während des Fügeprozesses vermeiden, sowie eine sichere Bauteilbefestigung erlauben. Weiterhin stellt sich die Aufgabe, ein Verfahren und eine Verbindung zum Fügen bereitzustellen, die die fluidischen Eigenschaften der Cartridge nicht beeinträchtigt.
Diese Aufgaben werden durch eine Vorrichtung gemäß Patentanspruch 1 und ein Verfahren gemäß Patentanspruch 20 gelöst.
Die Erfindung betrifft insbesondere fluidische Testvorrichtungen, Cartridges, bei welchen ein plattenförmiges fluidleitendes Bauteil mit einer Folie gedeckelt wird. Die Folie überdeckt dabei in eine oder in beide Seiten der Platte eingeformte Kanal- und/oder Kammerstrukturen, wodurch ein mikrofluidisches Kanalsystem mit Strukturbreiten und Strukturhöhen von einigen 10 Mikrometer bis zu einigen Millimeter gebildet wird. Die Folie deckt das plattenförmige Bauteil partiell oder vollflächig ab. Bevorzugt besteht der Werkstoff der Platte und der Werkstoff der Folie im wesentlichen aus einem amorphen oder teilkristallinen Kunststoff, ausgewählt aus Polystyrol (PS), Poly- methylmethacrylat (PMMA), Polycarbonat (PC), Olefinpolymeren und Olefincopolymeren wie Cycloolefinpolymer und Cylcoolefincopolymer (COC und COP), Polyamid (PA), Polypropylen (PP), Polyethylen (PE) oder Polyethyletherketon (PEEK).
Die Folie kann mehrschichtig aufgebaut sein. Insbesondere kann die Folie ein- oder beidseitig mit einer Klebeschicht zur Befestigung am plattenförmigen Substrat versehen sein.
Die Klebeschicht ist bevorzugt eine niedrig schmelzende Laminierschicht oder Siegelschicht aus Ethylen-Vinylacetat-Copolymer (EVA).
Die Oberfläche und/oder die Kanalstrukturen können vollflächig oder teilflächig einer Oberflächenbehandlung und/oder Oberflächenbeschichtung unterzogen worden sein.
Als Oberflächenbehandlung/Oberflächenaktivierung kann z.B. eine Plasmabestrahlung/Plasmaätzung zur Verbesserung der Oberflächenhaftung erfolgt sein.
Als Oberflächenbeschichtungen ist beispielsweise eine Hydrophilisierung der Kanalbereiche zur verbesserten Fluidleitung wässriger Flüssigkeiten denkbar.
Alternativ kann die Folie auch eine zusätzliche Siegelschicht aufweisen, die bei einem Heiß- laminierprozess auf die Oberfläche des Substrates aufgeschweißt wird.
Weiterhin kann die Folie direkt auflaminiert sein, dass heißt, es wird ohne das Aufschmelzen einer Siegelschicht durch Druck- und Hitzeeinwirkung eine stoffschlüssige Verbindung zwischen Folie und Substrat geschaffen. Bevorzugt ist die Folie eben. Es kann aber auch vorgesehen sein, die Folie lokal auszuformen, um beispielsweise deformierbare Kammern zu bilden, oder einzuformen, um druck- oder vakuumgesteuerte Ventile und Mikroaktoren zu bilden.
Hierzu wird auf die Schriften mit den Anmeldenummern PCT/EP2009003908 und
PCT/EP2009003907 verweisen, die vollumfänglich bezüglich ihres Umfanges mit in die vorliegende Offenbarung aufgenommen werden.
Zusätzlich zu einer ersten Folie kann eine zweite Folie am plattenformigen Substrat und/oder der ersten Folie angeordnet sein. Die zweite Folie kann weitere mikrofluidische Strukturen wie Kanäle, Kammern und/oder Durchbrechungen aufweisen. Bevorzugt umfasst die zweite Folie Strukturen für einen Biosensor, insbesondere Messmittel wie elektrische Kontakte und elektrische Potentialflächen oder optische Strukturen wie optische Lichtleiter oder optische Spiegelflächen. Bei mikrofluidischen Tests wird das zu messende Analyt (wie z.B. Blut, Speichel, Urin) dem mikrofluidischen Biosensor meist über einen oder mehrere Einlasskanäle zugeführt, die von einem Einfüllbereich abzweigen.
Der Einfüllbereich wird durch eine Einfüllöffnung mit dem Analyten gespeist, wobei die Einfüllöffnung eine Bohrung in einem plattenformigen Substrat ist.
Unter dem Begriff Bohrung wird im Rahmen der vorliegenden Offenbarung eine Öffnung oder Einformung in einem der plattenformigen Substrate verstanden. Hierbei kann die Form der Öffnung wie bei Bohrungen üblich zylinderförmig rund sein oder auch im Querschnitt oval oder im Querschnitt quaderförmig eckig oder dreieckig ausgeführt sein. Auch dreidimensio- nale Formen wie eine Tear Drop Struktur sind als Bohrungsgestalt denkbar.
Vorteilhaft weist mindestens eines der plattenformigen Substrate im Bereich der Einfüllöffnung eine Dichtlippe auf. Diese Dichtlippe erfüllt die Funktion, den Einfüllbereich, das heißt die Einfüllöffnung fluidisch abzudichten.
Besonders vorteilhaft sollte daher die Dichtlippe die Einfüllöffnung durchgehend umschließen.
Eine Dichtlippe ist insbesondere dann vorgesehen, wenn zwischen mindestens einer Folien- seite und einem Substrat keine Klebeverbindung geschaffen wird.
Bevorzugt ist die Dichtlippe in diesem Fall als eine aus einer Substratoberfläche hervorstehenden Schneide ausgeführt. Beim Fügen der Bauteile drückt sich die Schneide dann in die Folie und dichtet etwaige Spalten zwischen der Folie und dem Substrat. Die Schneide ist bevorzugt keilförmig, kann aber auch eine Kreissegmentform, eine Viereckform oder eine Dreieckform aufweisen. Alternativ kann die Dichtlippe auch eine Dichtung, insbesondere Ringdichtung aus elastischem Material wie Silikon sein, die beim Fügeprozess gequetscht wird und dadurch eine dichtende Verbindung zur Folie und zum Substrat schafft. Der Dichtring kann in eine um die Einfüllöffnung umlaufende Vertiefung im Substrat eingelegt sein. Alternativ zu einem Dichtring kann auch vorgesehen sein, ein elastisches Dichtmaterial als umlaufende Dichtlippe einzusetzen, wobei die Dichtlippe durch einen Wulst elastischer Dichtmasse gebildet wird, die vor dem Fügen den Bereich der Einfüllöffnung dann aufgetragen wurde.
Als Dichtmaterialien sind auch Kleber oder Klebefilme einsetzbar.
Eine entsprechend angeordnete Bohrung kann auch in die und/oder den Folien angebracht sein.
Bevorzugt ist die Einfüllöffnung in einem zweiten plattenförmigen Substrat, insbesondere einem Deckelelement angeordnet.
Dieses Deckelelement wird besonders bevorzugt mit einem Filterelement, insbesondere einer Membran, zur Filterung von Partikeln aus der Probenflüssigkeit versehen.
Insbesondere bei blutbasierten diagnostischen Tests ist es in der Regel erforderlich, das Blut zu filtern, um eine möglichst störungsfreie Messung am Blutplasma vornehmen zu können.
Die Membran wird vorteilhaft in eine Ausnehmung oder Aussparung des Substrates eingeklebt oder eingeschweißt und bildet mit dem Deckelelement dann ein Bauteil. Da die Membran möglichst geringen mechanischen Belastungen ausgesetzt werden sollte, um ein Reißen des Membranteils zu vermeiden, andererseits aber eine feste und sichere Verbindung des Deckelements zur Cartridge nötig ist, wird entgegen dem üblichen Ultraschallverschweißen ein erfindungsgemäßes Verfahren zum Fügen des Deckelements oder allgemein eines plat- tenförmiges Substrat eingesetzt.
Hierzu weist das Deckelement und/oder das fluidführende Substrat mit diesem Bauteil ein- stückig verbundene Stifte auf. Unter dem Begriff Stift im Sinne der vorliegenden Offenbarung werden alle Haltemittel verstanden, die in zumindest einer Dimension, dass heißt in der Breiten- oder in der Längsrichtung der Deckelelementes und/oder des plattenformigen Substrates eine deutlich geringere Ausdehnung aufweisen als das Deckelelement und/oder das Substrat. Insbesondere werden hierunter Haltemittel verstanden, die zylinderförmig sind und Zylinderdurchmesser von wenigen Millimetern aufweisen.
Die Form der Stifte kann aber auch dreieckig, quadratisch, rechteckig oder vieleckig sein. Insbesondere können die Stifte auch als Rippen ausgestaltet sein, dass heißt eine Form aufweisen die in einer Breitenrichtung mehrere Millimeter und in einer Längsrichtung wenige Millimeter ausgedehnt ist. Derartige Rippen werden vorteilhaft kreisförmig um die Einfüllöffnung herum angeordnet.
Diese Stifte, die aus der Fluidplatte und/oder dem Deckelement herausragen, werden insbesondere bei der Spritzgussherstellung des jeweiligen Bauteils mit angespritzt, was eine kos- tengünstige Herstellung erlaubt.
Die Anordnung der Stifte und zugeordneter Bohrungen im zugehörigen Bauteil wird derart ausgewählt, dass diese bei der Positionierung ineinander greifen. Die Form der Bohrung ist vorteilhaft gleichartig zur Stiftform, so dass die Stifte passgenau in die Bohrung eingreifen.
Um die Positionierung und das Handling bei der Herstellung der Cartridge zu erleichtern, haben die Stifte bevorzugt eine leicht angeschrägte, insbesondere kegelförmige Form, was eine einfachere Positionierung der Bauteile zueinander beim Handling gestattet. Durch die breitere Basis der Stifte, die in ihrem Durchmesser in etwa dem Bohrungsdurchmesser entspricht, wird dann in der Stapelposition der Bauteile eine Selbstpositionierung erreicht.
Da die Bauteile der mikrofluidischen Cartridge oft eine Längen- und Breitenabmessung von nur einigen Millimetern bis Zentimetern aufweisen, werden entsprechende Stiftdurchmesser oder Stiftbreiten gewählt, wobei mittlere Durchmesser oder Breiten von 0,2 Millimeter bis 5 Millimeter, insbesondere 0,5 Millimeter bis 2 Millimeter gewählt werden.
Vorteilhaft soll eine einzelne Fügestelle nach der Herstellung eine Haltekraft von einem kg bzw. 10 Newton gewährleisten. Dies bedeutet, dass ein Deckelelement mindestens einer senkrechten einwirkenden Abreißkraft pro Fügestelle von 10 Newton standhält. Wird eine Mehrzahl von gleichartigen Fügeverbindungen geschaffen, so erhöht sich die Haltekraft gegen Abreißen.
Zum Fügen werden die Bauteile auf eine Auflage positioniert und ein geeignetes Druckwerk- zeug, insbesondere eine Thermode, wird in erhitztem Zustand auf die Enden der Stifte mit einem Druck von 0,5 bar bis 5 bar aufgedrückt. Alternativ kann mittels eines geeigneten Druckwerkzeuges bei entsprechender Druckaufbringung und Fließfähigkeit des Kunststoffmaterials auch eine Kaltumformung erfolgen. Hierbei sind die aufgeführten 0,5 bar bis 5 bar der Druck der an der Mechanik des Druckwerkzeuges wirkt. Die Druckerzeugung kann pneumatisch, hydraulisch oder auch servo- elektrisch ausgeführt werden.
Die Thermode weist bevorzugt am Aufsatzpunkt ein kegelförmiges Ende auf, das zentral auf das Stiftende einwirkt.
Alternativ kann das Ende der Thermode auch eben sein, oder eine negative Schalenform, insbesondere negative Pilzform aufweisen. Ergänzend kann die Negativform in der Mitte einen Dorn aufweisen, der sich beim Umformen in das Stiftende eindrückt und das Stiftmaterial nach Außen verdrängt.
Die Thermode übt auf eine Fügestelle im Umformprozess eine Kraft von 25 Newton bis 250 Newton aus.
Eine Schweißzeit größer 0,5 Sekunden, insbesondere 1 ,5 Sekunden bis 5 Sekunden garan- tiert einen ausreichenden Wärmefluss von der Thermodenspitze in den Stiftwerkstoff, wobei das Material über seine Glastemperatur, respektive Erweichungstemperatur erhitzt wird.
Dabei werden für die Kunststoffe PS, PMMA, PC, PE PP und PEEK die Werkzeug und Prozesstemperaturen von: PS (100°C bis 180°C, insbesondere 130°C bis 150°C), PMMA (100°C bis 180°C, insbesondere 130°C bis 150°C), PC (140°C bis 230°C, insbesondere 160°C bis 190°C), PE (80°C bis 170°C, insbesondere 100°C bis 140°C), PP (90°C bis 200°C, insbesondere 120°C bis 170°C), COP und COC (150°C bis 240°C, insbesondere 170°C bis 210°C) und PEEK (160°C bis 250°C, insbesondere 180°C bis 210°C) ausgewählt. Bei der Erweichung wird das Kunststoffmaterial vom Druckwerkzeug von der Mitte ausgehend zum Fließen gebracht, so dass sich ein Kopf ausbildet und Material unter Druck an die Wand der Bohrung gepresst wird. Durch diese Materialpressung entsteht ein Reibschluss zwischen dem umgeformten Stift und der Bohrung, so dass die Bauteile sowohl durch Reib- schluss auch durch Formschluss des ausgebildeten Kopfes gefügt sind.
Nach der Schweißzeit ts wird die Thermode von der Fügestelle abgehoben oder die Ther- mode für ein weiteres Zeitintervall, die Haltezeit tH auf der Fügestelle belassen. Die Haltezeit tH wird so gewählt, dass eine Verfestigung der Fügeverbindung während dieser Zeit stattfindet. Beispielsweise wird die Wärmezufuhr der Thermode für die Haltezeit unterbrochen und/oder die Thermode passiv und/oder aktiv gekühlt. Das Kühlen kann beispielsweise durch ein angeschlossenes Kühlsystem, durch Anblasen der Fügestelle (Luftkühlung) oder durch passive Kühlung (Kühlkörper) erfolgen.
Alternativ können die Bauteile auch durch einen Klemmmechanismus oder Haltemechanismus während der Haltezeit tH zueinander fixiert werden. In diesem Fall wird die Thermode vollständig von der Fügestelle abgehoben, wobei vorteilhaft entsprechende Kühlschritte die Verfestigung der Fügestelle unterstützen.
Bevorzugt beträgt die Haltezeit tH 0,2 bis 5 Sekunden, insbesondere 0,5 bis 2,5 Sekunden.
Die realisierbaren kurzen Schweiß- (ts) und Haltezeiten (tH) garantieren wirtschaftliche Zykluszeiten für das Fügeverfahren.
Vorteilhaft beträgt die Zugfestigkeit der derart hergestellten Fügeverbindung mindestens 25% der Zugfestigkeit des Substratmaterials.
Besonders bevorzugt sind die Bohrungen in den plattenförmigen Substraten, insbesondere im Deckelement auf der Oberseite, an den ein Kopf ausgebildet wird, mit einem Sackloch versehen, in welches der Kopf eingeformt wird, so dass eine vorwiegend plane, ebene Oberfläche des plattenförmigen Substrates erhalten bleibt.
Die Erfindung findet eine Umsetzung gemäß der nachfolgenden Ausführungsbeispiele: Dabei zeigt
Fig. 1 : ein plattenförmiges Substrat mit mikrofluidischen Kanalstrukturen Fig. 2a: ein Deckelelement von der Oberseite
Fig. 2b: das Deckelelement von der Unterseite Fig. 2c: eine Deckelfolie mit Einlassöffnung
Fig. 2d: ein Deckelelement mit Stiften und umlaufenden Dichtlippen Fig. 2e: ein gleichartiges Deckelelement mit Bohrungen
Fig. 3: einen Cartridgeausschnitt im Herstellprozess nach dem Positionieren und vor dem Fügeschritt Fig. 4 und Fig. 5: gefügte Cartridges
Fig. 6: ein Schliffbild einer Fügestelle
Fig. 7: das Fügen mittels Thermode
Fig. 8: einen schematischen Belastungsversuch
Fig. 9: Diagramme zur Festigkeit der Fügeverbindung Fig. 10 und Fig. 1 1 : statistische Diagramme zu Parametern der Fügeverbindung
Fig. 12: eine Fügestelle mit einem inneren konstruktiven Formschluss
Die Figuren 1 , 2 a, 2 b und 2 c stellen schematische Darstellungen der Bauteile einer erfin- dungsgemäßen Cartridge (20) dar. Diese besteht aus einem ersten plattenformigen Substrat (1 ), insbesondere einer Kunststoffplatte von einigen Zentimetern Länge und einigen Zentimetern Breite und einigen Millimetern Höhe.
In die Kunststoffplatte sind mikrofluidische Strukturen wie ein Kanal (4), eine Einlasskammer (17) mit einem um die Einlasskammer (17) umgebenden Entlüftungsgraben (18), Entlüftungskanäle (19) und eine Analysekammer (21 ) eingeformt.
Zur Durchführung einer Analyse mittels der Cartridge (20) wird eine Flüssigkeit in die Einlasskammer (17) eingebracht und über den Kanal (4) einer Analysekammer zugeführt.
In der Analysekammer ist ein Biosensor angeordnet, der eine biologische oder chemische Komponente der Flüssigkeit misst, wie beispielsweise eine Hormonkonzentration im Blutplasma. Das hier dargestellte fluidische Netzwerk ist stark vereinfacht dargestellt, die Cartridge (20) kann weitere mikrofluidische Komponenten, sowie Reagenzien zur Probenbehandlung, zur Probenaufbereitung und zur Detektion umfassen.
Bei der Herstellung einer Cartridge (20) nach dem Ausführungsbeispiel gemäß den Figuren 1 bis 2b wird auf das erste plattenförmige Substrat (1 ) eine Folie (3) aufgeklebt oder auflaminiert. Die Folie (3) weist dazu auf ihrer Unterseite eine Klebeschicht oder Siegelschicht (16) auf, die die Verbindung zwischen Substrat (1 ) und Folie (3) herstellt. Die Folie (3) kann durch Laserschneiden oder Ausstanzen in Form gebracht werden, wobei Bohrungen (7) für Stifte (6) und eine Einfüllöffnung (5) zur Befüllung der Einlasskammer (17) ausgespart sind. Alternativ kann die Folie auch beidseitig mit einer Klebe- und /oder Siegelschicht versehen sein, um sowohl eine Fügeverbindung/Klebeverbindung zum ersten Substrat (1 ) als auch zum zweiten Substrat (2) zu schaffen.
Durch das Aufkleben und/oder Auflaminieren der Folie (3) auf die mikrofluidischen Strukturen entsteht ein außer an der Einfüllöffnung (5) und an den Öffnungen der Entlüftungskanäle (19) allseitig abgeschlossenes fluidisches Netzwerk.
Vorteilhaft kann vorgesehen sein, dass die Bohrungen (7) in der Folie (3) in ihrem Durchmesser dem Durchmesser der Stifte (6) entsprechen oder einen etwas geringeren Durchmesser haben, so dass die Folie dichtend an den Stiften anliegt. Dies ist insbesondere dann vorteilhaft, wenn fluidführende Strukturen im Substrat (1 ) oder der Folie (3) in Stiftnähe angeordnet sind und die Gefahr besteht, dass durch Kapillarkräfte ein ungewollter Fluidabfluss in Hohlräume der Fügestelle auftritt.
Vorteilhaft kann weiterhin vorgesehen sein, dass der Durchmesser des Durchlasses, das heißt der Bohrungsdurchmesser der Einfüllöffnung (5) in der Folie (3) geringer ist als der Bohrungsdurchmesser der Einfüllöffnung (5) im zweiten plattenförmigen Substrat (2) und/oder kleiner ist als der Durchmesser des Bodens der Einlasskammer (17).
Da die Folie meist hydrophob ist, bilden die Kante und die Seitenflächen der Folie einen Flu- idstop für wässrige Flüssigkeiten. Durch den verringerten Durchmesser der Folienöffnung (5) wird somit vermieden, dass ein Flüssigkeitsfluss von der Membran (14) im Deckelelement (2) in etwaige Spalte zwischen Folie und Deckelement (2) erfolgt. Das zweite plattenförmige Substrat (2), das im vorliegenden Ausführungsbeispiel nach den Figuren 2a und 2b ein Deckelelement (2) ist, hat eine in etwa zentrische Öffnung (5), in welche das zu analysierende Fluid eingefüllt wird.
Vorteilhaft ist die Öffnung der Durchlassbohrung so ausgestattet, dass die Öffnungsweite 5 bis 15mm beträgt.
Besonders bevorzugt bilden die Seitenflächen der Bohrung einen sich zum Oberfläche öffnenden Trichter, der in seiner Geometrie und Form auf die Größe und Form eine Fingerkuppe abgestimmt ist.
Figur 2a zeigt das Deckelelement (2) von der Oberseite. Zusätzlich zur zentrischen Öffnung sind in den Eckenbereichen des Deckelelements (2) vier Bohrungen (7) angeordnet, die sich zu einem Sackloch (10) an der Oberseite des Deckels erweitern. Das Sackloch (10) hat die Funktion, den sich beim Fügeprozess bildenden Nietkopf (9) aufzunehmen, so dass dieser nicht über die Oberfläche des Deckels (2) übersteht.
Figur 2b zeigt eine Darstellung des Deckelelements (2) von der Unterseite. Gut zu erkennen ist die Öffnung (5), die zur Unterseite des Deckelelements im Umfang erweitert ist, so dass eine Aussparung um die Öffnung (5) gebildet wird, die eine umlaufende Befestigungsfläche (22) aufweist. In die Aussparung wird eine Membran (14) eingelegt und mit der Befestigungsfläche (22) verklebt oder verschweißt.
Der Abstand der Befestigungsfläche zur Oberfläche des Deckelelements, also die Tiefe der Aussparung in Richtung der Deckeldicke entspricht in etwa der Membrandicke. Hierdurch ist gewährleistet, dass die Unterseite der Membran (14) und die Unterseite des Deckelelements (2)eine plane Fläche bilden und die Membran an der Öffnung (5) in der Folie (3) nach Figur 2 nach dem Fügen der Bauteile zur Cartridge (20) anliegt.
Die Figuren 2d und 2e zeigen Deckelelemente (2) analog dem in den Figuren 2a und 2b dargestellten Deckelelement (2). Hierbei wird jeweils diejenige Seite dargestellt, die in der Cartridge (20) an der Folie (3) anliegt.
An den Bereichen der Einfüllöffnung (5) schließt sich zunächst die umlaufende und eingeformte Befestigungsfläche (22) an, in welcher die Membran (14) angeordnet ist.
Weiterhin sind jeweils zwei ringförmig umlaufende Dichtlippen (1 1 ) erkennbar. Wie auf dem linken Ausschnitt von Figur 2d entnehmbar ist, ragt die Dichtlippe aus der Substratoberfläche des Deckelelementes (2) heraus und ist einstückig mit dem Substrat verbunden.
Die Spitze der Dichtlippe bildet eine Schneide, die sich nach dem Fügen der Bauteile, wie eine Abbildung zeigt, in die Folie (3) eindrückt.
Unter der Schneide, im Sinne der vorliegenden Anmeldung, wird jede keilförmige, schnei- denförmige, ringförmige oder gerundete Ausformung im Substrat verstanden, welche geeignet ist, sich in die verwendete Folie (3) zumindest teilweise einzudrücken.
In den Figuren 3, 4, 5 und 7 wird das Positionieren und Fügen der Cartridgebauteile im Bereich der Fügestellen schematisch dargestellt.
Hierzu werden in einem ersten Ausführungsbeispiel gemäß Figur 3 und Figur 7 das erste plattenförmige Substrat (1 ), welches im Querschnitt eine Kanalstruktur (4) aufweist, die von einer Folie (3) überdeckt ist und das Deckelelement (2) auf einer Auflage (13) aufeinander gestapelt.
Das plattenförmige Substrat (1 ), insbesondere Bodenelement (1 ) weist kegelförmige Stifte (6) auf, die aus der Oberfläche des Substrates (1 ) herausragen und mit diesem einstückig verbunden sind. Die Stifte können in einfacher Weise im Spritzgussherstellungsprozess der aus Polystyrol bestehenden Substratplatte (1 ) mit eingespritzt werden.
Die Kegelform der Stifte (6), bei der die Stiftbasis in ihrem Durchmesser in etwa dem Durchmesser der Bohrung (7) im Deckel (2) entspricht, hat den Vorteil, das eine Selbstzentrierung von Deckel (2) und Bodenplatte (1 ) zueinander eintritt.
Figur 7 zeigt den Umformungsprozess des Kegelendes des Stiftes (6) nach dem Positionierungsschritt. Erkennbar ist, dass die Folie (3) zumindest in der Umgebung der Fügestelle mit einer Klebeschicht (16) versehen ist, die eine Klebekraft und eine dichtende Verbindung zwischen Folie (3) und dem Deckel (2) erzeugt.
Zum Fügen des Stiftes (6) in der Bohrung (7) wird ein Druckwerkzeug (12) mit einem vorge- gebenen Druck P zentrisch auf das Stiftende aufgesetzt. Bei der vorliegenden Ausführungsform beträgt der Stiftdurchmesser an der Basis 1 Millimeter und an der Kegelspitze 0,7 Millimeter, wobei das Stiftmaterial Polystyrol (PS) ist. Das Druckwerkzeug (12) wird erwärmt und hat in dem vorliegenden Ausführungsbeispiel zum Umformen von PS eine Werkzeugtemperatur von 130°C bis 150°C. Für andere Kunststoffe oder Werkzeuggeometrien wird die Werkzeugtemperatur entsprechend angepasst.
Das Druckwerkzeug, die Thermode (12) ist stiftförmig, wobei der Kopf kegel- oder pyramidenförmig zulaufend ist.
Die Thermode wird mit einem Werkzeugdruck p von 1 ,5 bar bis 5 bar auf das Stiftende auf- gesetzt.
Der Werkzeugdruck ist derjenige Druck, der an der Niederhaltemechanik des Werkzeuges anliegt.
Die Niederhaltemechanik wird ein Pneumatikzylinder mit einer Stempelfläche von etwa 2000 mm2 sein.
Umgerechnet ergibt sich somit für die Aufsetzkraft der Thermode (12) ein Wertebereich von 100 Newton bis zu 1 Kilonewton, wobei sich diese Kraft auf die Thermodenspitzen aufteilt. Bei gleichzeitiger thermatischer Formung von 4 Fügestellen ergibt sich eine Kraft von 25 Newton bis 250 Newton mit der die Thermodenspitze auf den Stift (6) einwirkt und diesen umformt.
Während einer Schweißzeit von ts von 1 ,5 Sekunden bis 5 Sekunden erfolgt eine Wärmeübertragung in das Stiftende, wobei das Stiftmaterial über seine Glasübergangstemperatur erhitzt wird und zu fließen beginnt. Dabei wird es durch den Stempeldruck des Werkzeuges an die Bohrungswand gedrückt, so dass sich eine reibschlüssige Verbindung zwischen dem Stift (6) und der Wand der Bohrung (7) ausbildet.
Wie Figur 7 zeigt, verdrängt die kegelförmige Spitze der Thermode das Material des Stiftes von der Mitte ausgehend zum Umfang, wobei sich ein Kopf (9) ausbildet.
Hierbei kann es auch zu einer plastischen Verformung des Deckelmaterials im Bereich der Deckelbohrungen (7) kommen, wie die Figuren 6 und 7 zeigen.
Alternativ oder ergänzend zu der Ausführung nach den Figuren 6 und 7 kann auch eine Ausführung nach der Figur 12 erfolgen.
Hierbei werden zusätzlich oder alternativ zum Ausformen des Kopfes (9) eine oder mehrere ringförmige Vertiefungen im Deckelelement (2) durch das thermisch-plastisch verformte Stiftmaterial ausgefüllt, so dass zusätzliche formschlüssige Verbindungselemente den Halt zwischen Bodenteil (1 ) und Deckel (2) der Cartridge sicherstellen.
Im Ausführungsbeispiel 12 sind diese Ausformungen (29) ringförmig, es sind aber auch an- dere Formen, wie eine schraubenförmige, keilförmige oder auch Formen mit Hinterschnitt anwendbar.
Es ist auch denkbar, statt des Kopfes alleinig eine derartige Fügeverbindung (29) in der Bohrung (7) einzusetzen.
Alternativ kann bei Verwendung höherer Temperaturen oder flacher Thermodenenden auch eine vorwiegend formschlüssige Verbindung hergestellt werden. Hierbei tritt ein Fließen des Stiftmaterials überwiegend nur zur Ausformung des Kopfes auf, wobei weiter in der Bohrung liegende Bereiche kaum verformt werden.
Um sicherzustellen, dass die Bauteile fest aneinander gefügt werden, werden die Bauteile für eine weitere Haltezeit tH fest zueinander positioniert, insbesondere geklemmt. Vorteilhaft kann die Positionierung durch Aufrechterhalten der Thermodenandruckkraft und oder durch äußere Klemmung der Bauteile bewirkt werden. Im ersten Fall wird die Thermode während der Haltezeit auf die Fügestelle aufgedrückt und die thermische Erwärmung während dieser Zeit unterbrochen und/oder aktiv eine Kühlung vorgenommen.
Alternativ kann an der Thermode ein federnder Niederhalter (nicht gezeigt) angebracht sein, so dass die Thermodenspitze eine erste Distanz von der Fügestelle abgehoben werden kann und wobei die Federkraft des Niederhalters die Bauteile während der Haltezeit tH weiterhin zusammenpresst.
Alternativ kann auch eine gesonderte Halteeinrichtung (nicht gezeigt) an der Fügevorrichtung angeordnet sein, welche die Bauteile positioniert und diese während der Schweißzeit ts und der Haltezeit tH zusammenpresst.
Bevorzugt sind die Schweißzeit ts und die Haltezeit tH getrennt einstellbar und steuerbar. Die Haltezeit tH beträgt vorzugsweise 0,2 bis 5 Sekunden, insbesondere 0,5 bis 2,5 Sekunden. Das Zusammenpressen oder Klemmen der Bauteile unterdrückt die Relaxation der Kunststoffbauteile bis zur Verfestigung der Fügestelle. Figur 6 zeigt ein Schliffbild der gefertigten Fügestelle im Schnitt. Zur Verdeutlichung und Unterscheidbarkeit der Bauteile wurden diese schraffiert und die Randflächen grafisch hervorgehoben. Das Schliffbild zeigt eine Cartridge im Bereich einer Fügestelle, wobei die PS-Bodenplatte (1 ), eine Folie (3) und ein Deckelelement (2) über die so gebildete Kunststoff-Nietverbindung miteinander verbunden sind.
Gut erkennbar ist die Wand einer Bohrung (7), in die der Stift (6) eintaucht. Eine Ecke eines Sackloches (10) ist in der linken oberen Ecke erhalten geblieben.
Durch den thermischen Druck- Fügeprozess ist das Stiftmaterial, wie deutlich erkennbar, an den Bohrungsrand gepresst worden und bildet dort einen Reibschluss mit dem Deckelelement (2). Weiterhin ist ersichtlich, dass das Material des Deckels (2) im Bereich der Fügestelle ebenfalls plastisch verformt ist, so dass der ausgeformte Stiftkopf (9) formschlüssig auf dem Boden des Sackloches aufliegt, sowie formschlüssig im Seitenbereich am plastisch verformten Deckelmaterial anliegt und/oder vom Deckelmaterial umschlossen ist. Bei ausreichend hohen Werkzeugtemperaturen und/oder hohen Schweißzeiten ts können der Stiftkopf (9) und der Deckel (2) lokal stoffschlüssig miteinander verbunden sein.
Bevorzugt sollten das Deckel- (2) und Bodenelement (1 ) für eine stoffschlüssige Verbindung aus dem gleichem Kunststoff oder aus miteinander verbindbaren Kunststoffen mit ähnlicher Erweichungstemperatur bestehen.
Die Werkzeugtemperatur und die Schweißzeit ts bestimmen im Wesentlichen die Festigkeit der Fügeverbindung wie durch die folgenden Belastungstests gezeigt werden kann.
Figur 8 zeigt einen solchen Belastungstest schematisch.
Zur Durchführung des Belastungstests werden das Bodenbauteil (1 ), die Folie (3) und der Deckel (2) durch einen einzelnen Stift (6)-Kopf (9) Fügestelle verbunden.
Bei diesem Test der Fügestelle besteht zwischen Folie (3) und Deckelelement (2) keine wei- tere Fügeverbindung, so dass das Deckelelement (2) nur über die Nietverbindung gehalten wird. Die über die Stiftverbindung gefügten Bauteile Bodenelement (1 ) und Deckelelement (2) werden mit Haltemitteln (23) verbunden. Im Test waren dies Spannwinkel, die mit einer Seitenfläche großflächig mit den Bauteilen (1 ,2) verklebt wurden. In den nachfolgend beschriebenen Versuchen wurden verschiedene Nietverbindungen unter mechanischer Einwirkung auf ihre Belastbarkeit getestet.
Ziel war es, statistische Aussagen über die mittlere Belastbarkeit einer Nietstelle und über Einflussparameter für die Festigkeit und Haltesicherheit einer solchen Fügeverbindung zu gewinnen.
Im Versuch wurden kegelförmige Stifte (6) mit einem Durchmesser an der Basis von 1 Millimeter und an der Kegelspitze von 0,7 Millimeter, sowie einer Höhe von 1 ,5 Millimeter verwendet. Diese wurden durch das beschriebene Wärmeumformen mit einem Nietkopf (9) ver- sehen.
Nach dem Vernieten beträgt die Stifthöhe etwa 0,8 Millimeter inklusive der Kopfhöhe (9).
Wie Figur 6 zeigt, werden mindestens 50% des Stiftmaterials beim Fügeprozess umgeformt. Nach dem Fügen und dem Befestigen der Spannwinkel (23) wird die gefügte Cartridge (20) mittels der Spannwinkel (23) in eine Zugmaschine der Marke ZWICK eingesetzt und ein Zugversuch durchgeführt.
Um eine Statistik zu erhalten, wurden Tests an 42 genieteten Cartridges durchgeführt, wobei jeweils eine einzelne Nietverbindung dem Zugtest unterworfen wurde und wobei unterschiedliche Nietparameter abgeprüft wurden.
Bei der Planung der Versuche wurde die Methode der statistischen Versuchsplanung, auch „Design of Experiments" (DoE) verwendet, um die Anzahl der Versuche zu reduzieren, trotz- dem aber eine hohe Genauigkeit und Zuverlässigkeit der Ergebnisse sicherzustellen. Bei dieser Methodik wird das Parameterfeld nicht in diskreten Schritten komplett untersucht, sondern nur wenige Punkte experimentell geprüft. Mithilfe statistischer Methoden können die fehlenden Messpunkte interpoliert werden. So ist es möglich die Anzahl der erforderlichen Versuche, die der Ermittlung der Haupteinflussgrößen (im folgenden Parameter oder Ein- flussfaktor genannt) und deren optimaler Einstellung für die Festigkeit der Nietverbindung beim Prozess des Heißnietens dienen, von xy (x sind die Anzahl der Stufen bzw. Anzahl der diskreten Schritte und y die Anzahl der Faktoren) zu verringern. Ein DoE-Versuchsplan vari- iert die Werte für ermittelte Einflussfaktoren gleichzeitig auf mehreren Stufen (Werte). Bei erfolgreicher Versuchsdurchführung kann ein mathematisches Modell des Prozesses innerhalb des Versuchsraums erstellt werden. Auf diese Weise können signifikante Einflüsse und Wechselwirkungen zwischen den Parametern erkannt werden.
Entscheidendes Kriterium bei der Wahl der Parametereinstellungen war das Ziel, einen Bereich abzudecken, in dem ein Einfluss der Prozessparameter auf die Festigkeit der Nietverbindung erkennbar ist. Zusätzlich wurden zentrale Versuchspunkte (Center Points) bestimmt. An einem solchen Zentralpunkt nehmen die Parametereinstellungen jeweils den mittleren Wert des Versuchsraumes ein. Auf diese Weise lässt sich verifizieren, ob alle Einfluss- faktoren einen annähernd linearen Einfluss auf das Ergebnis ausüben, zudem kann durch mehrfache Wiederholungen des Zentralpunktes die Streuung an den Versuchspunkten abgeschätzt werden. In Anbetracht der zu erfüllenden Kriterien (geringe Versuchsanzahl, vermutete Linearität und drei Einflussvariablen) wurde ein 23-vollfaktorieller Versuchsplan mit einem 3-fach realisierten Center Point durchgeführt.
Getestet wurden die drei Faktoren Druck p (in bar), Temperatur T (in °C) und Zeit t (in Sekunden).
Durch die Versuche wurde festgestellt, dass der Fügedruck bei der beschriebenen Nietver- bindung, der gewählten kegelförmigen Thermode (12) und dem verwendeten Polystyrol- Kunststoff stifte (6) mindestens 1 ,8 bar zum Erreichen einer sicheren Kopfausbildung und maximal 2,6 bar betragen darf, um eine Beschädigung der Bauteile durch den Fügeprozess zu verhindern.
Für die Schweißzeit ergaben sich aus diesen Randbedingungen eine minimale Schweißzeit ts von 1 ,8 Sekunden und eine maximalen zulässigen Schweißzeit ts von 2,6 Sekunden.
Unter Berücksichtigung dieser Randbedingungen wurden die folgenden Parametersätze gewählt:
Versuchsnr. Temperatur (°C) Druck (bar) Schweißzeit (s)
1 130 1 ,8 1 ,8
2 140 2,2 2,2
3 150 1 ,8 2,6
4 130 2,6 2,6
5 150 2,6 1 ,8
6 150 2,6 2,6
7 130 1 ,8 2,6
8 130 2,6 1 ,8
9 150 1 ,8 1 ,8
10 140 2,2 2,2 11 140 2,2 2,2
Um eine Zuverlässigkeit der Ergebnisse zu gewährleisten, wurden die 1 1 festgelegten Teilversuche mehrmals durchgeführt. Dabei ergaben sich die folgenden Ergebnisse:
Figure imgf000021_0001
In der Tabelle sind als Messgrößen die Dehnung oder Längung der Fügestelle L und die senkrecht auf die Substrate, das heißt auf den Niet wirkende Kraft Fmax zum Zeitpunkt des Versagens der Fügeverbindung aufgeführt. Mittels der beschriebenen statistischen Auswertung kann nun bestimmt werden, welche Fügeparameter einen Effekt auf die Festigkeit der Fügestelle ausüben und welche Längung L im Versagensfall auftritt.
Hierzu liefert das standardisierte Pareto-Diagramm Aussagen, das aus den Messwerten erstellt wurde.
Die senkrechte Linie in den Diagrammen nach den Figuren 10 und 1 1 ist die 95% Signifi- kanzlinie des Pareto-Diagramms. Überschreitet ein Faktor diese Linie (z.B. die Temperatur in dem Diagramm für die Festigkeit), so hat dieser Faktor mit 95%-iger Wahrscheinlichkeit einen signifikanten Einfluss auf die betrachtete Zielgröße.
Aus Figur 1 1 kann entnommen werden, dass die Temperatur den größten Einfluss auf die Festigkeit der Nietverbindung hat. Je höher die Temperatur, desto größer ist die Festigkeit. Der Effekt der Schweißzeit ist ebenfalls mit 95%-iger Wahrscheinlichkeit abgesichert. Demnach hat eine auch Erhöhung der Schweißzeit eine Zunahme der Festigkeit zur Folge. Der Druck und die Wechselwirkungen zwischen den Einflussgrößen Druck P, Schweißzeit ts und der Temperatur T haben in dem betrachteten Versuchsraum keinen signifikanten Einfluss.
Aus Figur 9 kann entnommen werden, dass die Festigkeit der Fügestelle im Temperaturintervall von 130°C bis 150°C ansteigt, wobei ein Festigkeitsanstieg von etwa 36 Prozent zu beobachten ist.
Wird die Schweißzeit bei einer vorgegebenen Temperatur von 1 ,8 Sekunden auf 2,6 Sekun- den erhöht, so steigt die Festigkeit der Verbindung um etwa 27 Prozent.
Aus Figur 10 ist ersichtlich, dass die Längung L der Fügestelle beim Versagen der Fügeverbindung, also bei der maximalen Zugkraft Fmax im wesentlichen durch die Schweißzeit ts bestimmt ist, die einen signifikanten Einfluss auf L zeigt.
Die Versuche haben gezeigt, dass T=150°C, p=1 ,8bar und t=2,6s (Versuch 3) die optimalen Herstellungsparameter für die gewählte Geometrie der Stiftverbindung und das gewählte thermische Druckwerkzeug sowie den gewählten PS-Kunststoff sind. Hier konnte eine durchschnittliche Kraft von 13,95N (1 Niete) auf die Nietverbindung ausgeübt werden, bevor sie sich löste. Versuche mit diesen Parameterwerten für die Temperatur und die Schweißzeit zeigen, dass beim dargestellten Ausführungsbeispiel ein Druck von mehr als 2,6 bar oder umgerechnet eine Fügekraft von mehr als 500 N pro Fügestelle zur Beschädigung des Deckelelements (2) führt.
In weiteren Versuchen wurde die Festigkeit von Fügeverbindungen mit zwei oder mehr Nieten getestet. Hieraus ergab sich, dass die Festigkeit, dass heißt die Haltekraft der Bauteile zueinander mit der Zahl der Nietverbindungen wächst, dieser Anstieg aber keiner Verdopplung der Festigkeit bei doppelter Stiftanzahl entspricht.
Bezugszeichenliste
1 - erstes plattenförmiges Substrat
2- zweites plattenförmiges Substrat
3- Folie
4- Kanal
5- Einfüllöffnung
6- Stift
7- Bohrung
8- Reibschluss
9- Kopf
10- Sackloch
1 1 - Dichtlippe
12- Thermode
13- Auflage
14- Membran
15- Folie
16- Klebeschicht/Siegelschicht
17- Einlasskammer
18- Entlüftungsgraben
19- Entlüftungskanal
20- Cartridge
21 - Analysekammer
22- Befestigungsfläche
23- Haltemittel
24- Zugkraft
29- Ausformung

Claims

Boehringer Ingelheim microParts GmbH
Patentansprüche . Mikrofluidische Cartridge für diagnostische Analysevorrichtungen umfassend ein erstes plattenförmiges Substrat (1), ein zweites plattenförmiges Substrat (2) und eine Folie (3), welche zwischen den plattenförmigen Substraten (1,2) angeordnet ist, wobei durch Einformungen in einem der Substrate (1 ,2) oder der Folie Kanäle (4) gebildet werden und wobei ein plattenförmiges Substrat (1,2) eine Einfüllöffnung (5) für eine Befüllung der Kanäle mit Probenflüssigkeit aufweist, dadurch gekennzeichnet, dass einstückig mit einem der plattenförmigen Substrate (1,2) verbundene Stifte (6) in zugeordnete Bohrungen (7) in der Folie (3) und dem jeweiligen zugeordneten Substrat (1 ,2) eintauchen und wobei durch Umformen des Stiftes eine formschlüssig am zugeordneten Substrat (1,2), anliegende Ausformung, insbesondere ein am Substrat anliegender Kopf (9) gebildet wird.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass der Stift (6) die Bohrung nach der Umformung zumindest teilweise (6) füllt, so dass die Stiftumfangsfläche und die Wand der Bohrung (7) lokal einen Reibschluss (8) bilden.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Festigkeit der reibschlüssigen und formschlüssigen Verbindung einer Fügestelle eines Stiftes (6) mindestens 10 %, insbesondere mindestens 25% der Zugfestigkeit des Substratmaterials beträgt.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass eine Fügestelle im Mittel mindestens einer Belastung von 5N, insbesondere 10 N gegenüber Zugbeanspruchung standhält.
5. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Stifte (6) kegelförmig sind.
6. Vorrichtung nach Anspruch 1 oder 5, dadurch gekennzeichnet, dass der Durchmesser der einem Stift (6) zugeordneten Bohrung (7) dem 1 bis 2 fachen des Stiftdruckmessers an seiner Basis entspricht.
7. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass am Kopfende des Stiftes die Bohrung (7) in Form eines Sackloches (10) im Durchmesser erweitert ist, in welches der Kopf (9) eingeformt wird.
ifloiv 26 10 20100903.51 - 28.10.201009.04.58. TBERICHTlCTES BLATT (REGEL 91) ISA/ EP6
Received aUhe EPO on Oct 28, 201009*»::». nage i οτ » Boehringer Ingelheim microParts GmbH
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Stift einem Durchmesser von 0,2 mm bis 5mm aufweist, insbesondere einem Durchmesser von 0.5 mm bis 1 ,5 mm.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Folie (3) an eines der plattenformigen Substrate (1,2) dichtend gefügt, insbesondere mittels einer Adhäsivschicht ( 6) auflaminiert ist.
10. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Adhäsivschicht ( 6) eine Klebeschicht oder Siegelschicht ist.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Adhäsivschicht (16) eine doppelseitige Klebefolie (16) ist.
12. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Substratmaterial ein Kunststoff ausgewählt aus der Gruppe: PS, PMMA, PC, COC, COP, PP, PE oder PEEK ist.
13. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Mehrzahl von Stiften aus der Oberfläche des ersten plattenformigen Substrates (1) herausragen und in Bohrungen (7) des zweiten plattenformigen Substrates (2) insbesondere Deckelelementes (2) eingreifen.
14. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Mehrzahl von Stiften aus dem zweiten plattenformigen Substrat (2), insbesondere Deckelelement (2) herausragen und in Bohrungen (7) des ersten plattenformigen Substrates (1) eingreifen.
15. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der mittlere Durchmesser eines Stiftes 0,2 mm bis 5 mm, insbesondere 0,5 mm bis 2 mm beträgt.
16. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Folie (3) dichtend an einem Stift (7) anliegt. Boehringer Ingelheim microParts GmbH
17. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eines der Substrate im Bereich der Einfüllöffnung mindestens eine Dichtlippe (1 ) aufweist.
18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass die Dichtlippe (11 ) die Bnfüllöffnung (5) durchgehend umschließt.
19. Vorrichtung nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass die Dichtlippe ( 1 ) einstückig mit dem Substrat (1,2) verbunden ist und keilförmig, schneidenförmig oder ringförmig zulaufend aus der Substratoberfläche herausragt und die so gebildete Schneide der Dichtlippe (11 ) sich nach dem Fügen formschlüssig dichtend in die Folie eindrückt.
20. Vorrichtung nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass die Dichtlippe (11 ) eine umlaufende elastische Dichtung ist.
21. Verfahren zur Herstellung einer Vorrichtung (20) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einem ersten Schritt die plattenförmigen Substrate (1 ,2) und die dazwischen angeordnete Folie (3) auf einer Auflage (13) gestapelt werden, in einem weiteren Schritt, ein Druckwerkzeug mit einem vorgegebenen Druck P auf das Kopfende eines Stiftes (6) aufgesetzt wird und während einer Schweißzeit ts ein Wärmeeintrag in den Stift (6) erfolgt, so dass das Stiftmaterial über seine Glasübergangstemperatur und/oder Schmelztemperatur gebracht wird und ein Fließen des Stiftmaterials in der Bohrung (7) derart erfolgt, dass ein Reibschluss zwischen dem Stift (6) und der Wand der Bohrung (7) hergestellt wird und wobei während einer Haltezeit tH , während der die Fügeverbindung sich verfestigt, die Substrate (1 ,2) und die Folie (3) zusammengepresst bleiben.
22. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass als Druckwerkzeug eine oder mehrere stiftförmige Thermoden (12) mit einer kegelförmigen Spitze eingesetzt werden, wobei die kegelförmige Spitze im Zentrum des zu verformenden Materials aufgesetzt wird und durch die von der Berührungsstelle ausgehende Wärme ein plastisches Fließen und Aufdrücken des Stiftmaterials erfolgt.
23. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass in Abhängigkeit eines gewählten Substratmaterials die Temperatur des Druckwerkzeuges bei
"stion 28 10 2010 09 03:51 - 28.10.2010 09:04:58. TßERICHTIGTES BLATT (REGEL 91) ISA/EP^
Recefvei I A the EPO on Oct 28, 2010 09:u4:t>ö. age 4 οτ y Boehringer Ingelheim microParts GmbH
PS 100ÖC bis 180°C, insbesondere 130"C bis 150°C
PMMA 1004C bis 180eC, insbesondere 130eC bis 150°C PC 1409C bis 230°C, insbesondere 160eC bis 190'C
COP und COC 100"C bis 240*C, insbesondere 170°C bis 210eC PE 809C bis 170'C, insbesondere 100"C bis 140eC
P 90ÖC bis 200eC, insbesondere 1 0°C bis 70eC und PEEK 160°C bis 250°C, insbesondere 180"C bis 210°C beträgt.
24. Verfahren nach einem der Ansprüche 20 bis 22, dadurch gekennzeichnet, dass eine Schweißzeit ts größer 0,5 s, insbesondere von 1,5 bis 5 s eingesetzt wird.
25. Verfahren nach einem der Ansprüche 20 bis 23, dadurch gekennzeichnet, dass das Druckwerkzeug mit einem Druck von 0,5 bar bis 5 bar, insbesondere 1,5 bar bis 3 bar, oder respektive die stiftförmigen Thermoden (12) mit einer Kraft von 25 Newton bis einem Kilonewton beim Fügeprozess auf die Vorrichtung (20) beim Fügeprozess einwirkt.
PCT/EP2010/064808 2009-10-05 2010-10-05 Fügeverfahren und fügeverbindung für mikrofluidische bauteile WO2011042422A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10760703A EP2485841A1 (de) 2009-10-05 2010-10-05 Fügeverfahren und fügeverbindung für mikrofluidische bauteile
US13/500,139 US9333707B2 (en) 2009-10-05 2010-10-05 Joining method and joint for microfluidic components
JP2012532567A JP2013506855A (ja) 2009-10-05 2010-10-05 マイクロフルイディック部品の接合方法及び接合部

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09012564 2009-10-05
EP09012564.2 2009-10-05

Publications (1)

Publication Number Publication Date
WO2011042422A1 true WO2011042422A1 (de) 2011-04-14

Family

ID=43416217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/064808 WO2011042422A1 (de) 2009-10-05 2010-10-05 Fügeverfahren und fügeverbindung für mikrofluidische bauteile

Country Status (4)

Country Link
US (1) US9333707B2 (de)
EP (1) EP2485841A1 (de)
JP (1) JP2013506855A (de)
WO (1) WO2011042422A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2796200A2 (de) 2013-04-26 2014-10-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Herstellen einer mikrofluidischen Analysekartusche
WO2021175525A1 (de) * 2020-03-04 2021-09-10 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Herstellung eines verbunds aus polymersubstraten und gesiegelte mikrofluidische kartusche
CN113492536A (zh) * 2020-04-08 2021-10-12 普瑞有限公司 在制造改进的热压配合铆钉连接情况下的接合方法
FR3114092A1 (fr) * 2020-09-17 2022-03-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d'un dispositif micro-fluidique et dispositif fabriqué par ledit procédé

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101678356B (zh) 2007-04-06 2014-04-16 加利福尼亚技术学院 微流体装置
DE102011078976A1 (de) * 2011-07-11 2013-01-17 Robert Bosch Gmbh Mikrofluidische Vorrichtung sowie Verfahren zur Herstellung einer mikrofluidischen Vorrichtung
JP5715969B2 (ja) * 2012-01-24 2015-05-13 株式会社堀場エステック 流体抵抗デバイス
US20140170678A1 (en) 2012-12-17 2014-06-19 Leukodx Ltd. Kits, compositions and methods for detecting a biological condition
JP6298474B2 (ja) 2012-12-17 2018-03-20 レウコドゥックス,リミテッド 生物学的状態を検出するシステムおよび方法
US10610861B2 (en) 2012-12-17 2020-04-07 Accellix Ltd. Systems, compositions and methods for detecting a biological condition
US9226412B2 (en) * 2013-08-02 2015-12-29 Lear Corporation Housing with air chamber for battery monitor system and method for manufacturing same
USD849265S1 (en) * 2017-04-21 2019-05-21 Precision Nanosystems Inc Microfluidic chip

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026796A1 (en) * 1994-04-01 1995-10-12 Integrated Chemical Synthesizers, Inc. Integrated chemical synthesizers
WO2001009598A1 (en) * 1999-07-28 2001-02-08 University Of Washington Fluidic interconnect, interconnect manifold and microfluidic devices for internal delivery of gases and application of vacuum
WO2005016529A1 (de) * 2003-08-11 2005-02-24 Thinxxs Microtechnology Ag Flusszelle aus schichten mit verbindungsmittel
US20050230767A1 (en) * 2003-12-05 2005-10-20 Park Jung J Fabrication and integration of polymeric bioMEMS
EP1712342A1 (de) * 2004-02-03 2006-10-18 NHK Spring Co., Ltd. Ultraschallschweisskonstruktion und ultraschallschweissverfahren

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023A (en) * 1847-03-20 Stocking-loom
US4633559A (en) * 1985-03-18 1987-01-06 Michael Ladney Apparatus for staking
JPH0626021B2 (ja) 1985-09-20 1994-04-06 松下電器産業株式会社 磁気記録媒体の製造方法
JPS6267728U (de) * 1985-10-18 1987-04-27
US4767298A (en) * 1986-12-22 1988-08-30 Amp Incorporated Heat staking apparatus
US5227173A (en) * 1991-07-29 1993-07-13 Sherwood Robert D Staking apparatus
US5580202A (en) * 1995-04-13 1996-12-03 Allfast Fastening Systems, Inc. Crowned solid rivet
US6171038B1 (en) * 1998-11-12 2001-01-09 Textron Inc. Tapered shank rivet
US6296470B1 (en) * 2000-03-20 2001-10-02 Mark Lanser Heat staking head with radiant heat source
DE10038158C5 (de) * 2000-08-04 2007-09-20 Kiefel Ag Verfahren und Vorrichtung zum Verbinden von Gegenständen mittels plastisch verformbarer Verbindungskörper
JP2002067159A (ja) * 2000-08-24 2002-03-05 Seidensha Electronics Co Ltd 樹脂製品のかしめ方法およびその装置
US6939451B2 (en) * 2000-09-19 2005-09-06 Aclara Biosciences, Inc. Microfluidic chip having integrated electrodes
US20050272142A1 (en) 2004-04-14 2005-12-08 Hitachi Maxwell, Ltd. Fluid vessel
JP2006030160A (ja) * 2004-04-14 2006-02-02 Hitachi Maxell Ltd 反応容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026796A1 (en) * 1994-04-01 1995-10-12 Integrated Chemical Synthesizers, Inc. Integrated chemical synthesizers
WO2001009598A1 (en) * 1999-07-28 2001-02-08 University Of Washington Fluidic interconnect, interconnect manifold and microfluidic devices for internal delivery of gases and application of vacuum
WO2005016529A1 (de) * 2003-08-11 2005-02-24 Thinxxs Microtechnology Ag Flusszelle aus schichten mit verbindungsmittel
US20050230767A1 (en) * 2003-12-05 2005-10-20 Park Jung J Fabrication and integration of polymeric bioMEMS
EP1712342A1 (de) * 2004-02-03 2006-10-18 NHK Spring Co., Ltd. Ultraschallschweisskonstruktion und ultraschallschweissverfahren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2485841A1

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2796200A2 (de) 2013-04-26 2014-10-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Herstellen einer mikrofluidischen Analysekartusche
DE102013207683A1 (de) 2013-04-26 2014-11-13 Robert Bosch Gmbh Verfahren und Vorrichtung zum Herstellen einer mikrofluidischen Analysekartusche
EP2796200A3 (de) * 2013-04-26 2014-11-19 Robert Bosch Gmbh Verfahren und Vorrichtung zum Herstellen einer mikrofluidischen Analysekartusche
US10295441B2 (en) 2013-04-26 2019-05-21 Robert Bosch Gmbh Method and device for producing a microfluidic analysis cartridge
WO2021175525A1 (de) * 2020-03-04 2021-09-10 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Herstellung eines verbunds aus polymersubstraten und gesiegelte mikrofluidische kartusche
CN113492536A (zh) * 2020-04-08 2021-10-12 普瑞有限公司 在制造改进的热压配合铆钉连接情况下的接合方法
DE102020109908A1 (de) 2020-04-08 2021-10-14 Preh Gmbh Fügeverfahren unter Herstellung einer verbesserten heißverstemmten Nietverbindung
US11919252B2 (en) 2020-04-08 2024-03-05 Preh Gmbh Joining method while producing an improved heat-staked rivet connection
FR3114092A1 (fr) * 2020-09-17 2022-03-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d'un dispositif micro-fluidique et dispositif fabriqué par ledit procédé
EP3971133A1 (de) 2020-09-17 2022-03-23 Commissariat à l'énergie atomique et aux énergies alternatives Verfahren zur herstellung einer mikrofluid-vorrichtung und mithilfe dieses verfahrens erhaltene vorrichtung

Also Published As

Publication number Publication date
EP2485841A1 (de) 2012-08-15
US9333707B2 (en) 2016-05-10
JP2013506855A (ja) 2013-02-28
US20120275972A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
WO2011042422A1 (de) Fügeverfahren und fügeverbindung für mikrofluidische bauteile
EP2268405B1 (de) Vorrichtung zur plasmaseparation
EP2576065B1 (de) Flusszelle mit hohlraum und diaphragma
DE102013100865B4 (de) Ventilstecker
EP0949002B1 (de) Verfahren zur Herstellung von analytischen Hilfsmitteln
EP2560756B1 (de) Vorrichtung zur plasmaseparation mittels einer zentralen kanalstruktur
EP2796200B1 (de) Mikrofluidische analysekartusche und verfahren zu ihrer herstellung
EP3164212B1 (de) Reagenzspeicher für fluide
DE102015107859A1 (de) System und Verfahren zur spannvorrichtungslosen Bauteillagebestimmung bei der Zusammensetzung von Bauteilen
WO2012110159A1 (de) Vorrichtung zur hermetisch abgeschlossenen bevorratung von flüssigkeiten für ein mikrofluidisches system
EP2547618B1 (de) Verfahren zur herstellung einer mikrofluidischen vorrichtung
DE102009023430A1 (de) Vorrichtung und Verfahren zum Steuern von Fluidströmen in Lab-on-a-Chip-Systemen sowie Verfahren zum Herstellen der Vorrichtung
EP3049186B1 (de) Analyseeinheit zum durchführen einer polymerasekettenreaktion, verfahren zum betreiben einer solchen analyseeinheit und verfahren zum herstellen einer solchen analyseeinheit
DE602004009775T2 (de) Vorrichtung zur zuverlässige Analyse
EP3781312B1 (de) Vorrichtung zum ankoppeln einer kartusche für ein chiplabor-analysegerät, chiplabor-analysegerät und verfahren zum ankoppeln einer kartusche für ein chiplabor-analysegerät
EP3382238A1 (de) Membran und verfahren zur herstellung der membran
EP2303551B1 (de) Verfahren zur verbindung zweier komponenten
DE102020210276A1 (de) Mikrofluidische Vorrichtung und Verfahren zu ihrer Herstellung
WO2010031559A1 (de) Mikrofluidisches ventil, mikrofluidische pumpe, mikrofluidisches system und ein herstellungsverfahren
EP2730336B1 (de) Ventilanordnung in einem mikrofluidiksystem
DE102010051978B3 (de) Vorrichtung zur Bestimmung von Niederhaltekräften
DE102014205893A1 (de) Rastelement, Aufnahmeelement, Rastsystem, Verfahren zum Herstellen eines Rastsystems und Laserdurchstrahlschweißverfahren
DE102016214506A1 (de) Verfahren zum Verbinden wenigstens zweier Bauteile, Gegenhalter, Stanznietvorrichtung und Fertigungseinrichtung
DE102021203636A1 (de) Mikrofluidische Duo-Kartusche, mikrofluidische Analysevorrichtung, Verfahren zum Herstellen einer Duo-Kartusche und einer Analysevorrichtung und Verfahren zum Verwenden einer mikrofluidischen Analysevorrichtung
DE102020207021A1 (de) Prägeeinrichtung zum Herstellen eines Trägerelements für eine Analyseeinrichtung und Verfahren zum Herstellen eines Trägerelements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10760703

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012532567

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010760703

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13500139

Country of ref document: US