WO2011042243A1 - Battery system and method for balancing the battery cells in a battery system - Google Patents

Battery system and method for balancing the battery cells in a battery system Download PDF

Info

Publication number
WO2011042243A1
WO2011042243A1 PCT/EP2010/062005 EP2010062005W WO2011042243A1 WO 2011042243 A1 WO2011042243 A1 WO 2011042243A1 EP 2010062005 W EP2010062005 W EP 2010062005W WO 2011042243 A1 WO2011042243 A1 WO 2011042243A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery element
resistor
electric potential
electrical potential
Prior art date
Application number
PCT/EP2010/062005
Other languages
German (de)
French (fr)
Inventor
Stefan Butzmann
Original Assignee
Sb Limotive Company Ltd.
Sb Limotive Germany Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sb Limotive Company Ltd., Sb Limotive Germany Gmbh filed Critical Sb Limotive Company Ltd.
Publication of WO2011042243A1 publication Critical patent/WO2011042243A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a battery system and a method for balancing the battery cells of a battery system according to the preambles of claims 1 and 10.
  • Fig. 1 shows a schematic diagram of a battery system according to the prior art.
  • a charging and disconnecting device 14 Between the positive terminal 10 and the negative terminal 12 of the battery system, a charging and disconnecting device 14, a plurality of battery cells Zi, Z n and optionally another separator 16 are connected in series.
  • the charging and disconnecting device 14 comprises a disconnecting switch 18, a charging switch 20 and a charging resistor 22.
  • the optional disconnecting device 16 comprises a disconnecting switch 24.
  • a plurality of battery cells Zi, Z n be connected in series; It is also known to connect battery cells or series-connected groups of battery cells in parallel.
  • a problem with the use of many individual series-connected battery cells is that the battery cells are not perfectly equal, which can lead to unequal cell voltages, especially over extended periods of the life of the battery. Since, in particular, lithium
  • Ion batteries overcharging or over-discharging of individual cells leads to irreversible damage to the battery, so-called cell balancing must be carried out at regular intervals.
  • the individual cells are charged or discharged by external wiring measures so that they again have the same cell voltage.
  • Fig. 2 shows a schematic diagram of a battery system according to this principle.
  • Row connected battery cells Zi, Z n are loaded via the switches Si, S n with the resistors R a1 , R on .
  • the cell Zi is discharged via the resistors R a i and R a 2 when the switch Si is turned on.
  • first all cell voltages are measured, the voltages of the individual cells compared with each other and a central
  • Control software switches on the switches until the cells to be discharged are discharged to the desired level.
  • Fig. 3 shows a further embodiment of a battery system according to this principle.
  • the series-connected cells Zi, Z 2 are each resistors R b i,
  • the cell Zi is discharged via the resistor R b i when the switch Si is turned on.
  • the balancing of battery cells according to the prior art has the disadvantage that the cell voltages must be measured and the discharge of the cells must be controlled by a control device according to the measured cell voltages.
  • the battery system comprises at least a first battery element and a second battery element, wherein the positive pole of the first battery element is conductively connected to the negative pole of the second battery element, and discharging means for partially discharging the first and second battery elements.
  • the battery system further includes a voltage divider configured to generate, based on the negative pole electrical potential of the first battery element and the positive pole electrical potential of the second battery element, a first electrical potential corresponding to the desired electric potential value at the first positive pole of the first battery element and the negative pole of the second battery element, and comparing means for comparing the first electric potential with a second electric potential applied to the positive pole of the first battery element and the negative pole of the second battery element.
  • the discharge means are designed to discharge the first battery element when the second electrical potential deviates in the positive direction from the first electrical potential and to discharge the second battery element when the second electrical potential deviates in the negative direction from the first electrical potential , It is thereby achieved that the balancing of the battery elements takes place directly due to the properties of the passive components and no active measurement or control is required.
  • the discharge means and the comparison means are preferably formed by a negative feedback operational amplifier.
  • the voltage divider preferably comprises a first resistor and a second resistor, wherein the electrical resistance of the first resistor and the electrical resistance of the second resistor are in the same ratio as the desired voltage of the first battery element and the
  • a first terminal of the first resistor is conductively connected to the negative pole of the first battery element
  • a second terminal of the first resistor is conductively connected to a first terminal of the second resistor
  • a second terminal of the second resistor is conductively connected to the positive pole of the second battery element.
  • the second terminal of the first resistor and the first terminal of the second resistor are connected to the non-inverting input of the first resistor
  • Operational amplifier conductively connected, the second terminal of the second resistor and the positive pole of the second battery element conductively connected to the positive supply voltage input of the operational amplifier, the first terminal of the first resistor and the negative pole of the first battery element to the negative supply voltage input of the operational amplifier conductively connected and the positive Pol of the first battery element and the negative pole of the second battery element conductively connected to the inverting input and the output of the operational amplifier.
  • the desired voltage of the first battery element and the desired voltage of the second battery element may be the same.
  • the invention provides a battery system having a plurality of series connected battery elements, each pair of battery elements conductively connected to each other being balanced as described above. This ensures that all battery elements are balanced with a particularly simple and regular arrangement of components. At least one of the battery elements may be a lithium-ion battery cell.
  • At least one of the battery elements may in turn be a battery system according to the invention.
  • This recursive construction ensures that all battery elements are balanced with one another with a particularly simple and structured arrangement of components.
  • the invention further provides a method for balancing the battery elements of a battery system, wherein the battery system comprises at least a first battery element and a second battery element, wherein the positive pole of the first battery element is conductively connected to the negative pole of the second battery element and wherein the method comprises the following method steps comprising: generating a first electrical potential that corresponds to the desired value of the electrical potential at the positive pole of the first battery element and the negative pole of the second battery element, based on the electrical potential of the negative pole of the first battery element and the electrical potential of the positive pole of the second battery element, comparing the first electric potential with a second electric potential applied to the positive pole of the first battery element and the negative pole of the second battery element, discharging the first battery rieelements when the second electrical potential in the positive direction deviates from the first electrical potential, and discharging the second battery element, when the second electrical potential in the negative direction deviates from the first electrical potential.
  • FIG. 1 is a schematic diagram of a battery system having a plurality of battery cells according to the prior art
  • FIG. 2 is a schematic diagram of a first battery system in which the battery cells are balanced according to the prior art
  • Fig. 3 is a schematic diagram of a second battery system in which the battery cells are balanced according to the prior art
  • FIG. 4 shows a first embodiment of a battery system according to the invention.
  • Fig. 5 shows a second embodiment of a battery system according to the invention.
  • FIG. 4 shows a first embodiment of a battery system according to the invention.
  • Two battery cells Z- 1 and Z 2 are connected in series.
  • the positive pole of the battery cell Z-1 is connected to the negative pole of the battery cell Z 2 .
  • Series connected resistors R c i and R C 2 are parallel to the battery cells Zi and Z 2 .
  • a first terminal of the resistor R c i is connected to the negative pole of the battery cell Zi; a second terminal of the resistor R c i is connected to a first terminal of the resistor R C 2, and a second terminal of the resistor R C 2 is connected to the positive terminal of the battery cell Z 2 .
  • the resistance values of the resistors R c i and R C 2 are in the same proportion to each other as the target voltages of the battery cells Zi and Z 2 .
  • the resistors R c i and R C 2 have the same resistance value when the battery cells Zi and Z 2 are to be charged to the same voltage.
  • the resistors R c i and R C 2 form a voltage divider, at the inner node 26, the potential is applied, which is to rest on the node 28 between the battery cells Zi and Z 2 .
  • the battery system further comprises an operational amplifier 30.
  • the non-inverting input of the operational amplifier 30 is connected to the node 26.
  • the inverting input of the operational amplifier 30 is connected to the node 28.
  • the positive supply voltage input of the operational amplifier 30 is connected to the positive pole of the battery cell Z 2 .
  • the negative supply voltage input of the operational amplifier 30 is connected to the negative pole of the battery cell Zi.
  • the operational amplifier 30 is negative-feedback, ie the output is connected to the inverting input.
  • the battery cell Zi is discharged deeper than the battery cell Z 2 , the potential at the inverting input of the operational amplifier 30 is lower than the potential at the non-inverting input of the operational amplifier. As a result, the operational amplifier 30 attempts to pull its output towards its positive supply voltage. This results in a current flow from the positive pole of the battery cell Z 2 via the positive supply voltage input of the operational amplifier 30 to the output of the operational amplifier 30. The battery cell Z 2 is thus discharged, which corresponds to the desired behavior. Accordingly, in the case that the battery cell Z 2 is discharged deeper than the battery cell Zi, the battery cell Z- ⁇ discharged via the negative supply voltage input of the operational amplifier 30.
  • the discharging process continues until the ratio between the voltage across the battery cell 7 ⁇ and the voltage across the battery cell Z 2 has reached its desired value.
  • the discharging process continues until the voltage across the battery cell Zi equals the voltage across the battery cell Z 2 . Thereafter, only the rest supply current of the operational amplifier 30 and the cross-flow through the resistors R c i and R c2 flow from the cells. Both currents can be kept very small by suitable dimensioning and selection of the circuit components.
  • FIG. 4 The principle illustrated in FIG. 4 can be applied directly to battery systems with more than two battery cells by balancing two adjacent battery cells in the manner shown.
  • FIG. 5 shows a second embodiment of a battery system according to the invention, in which the principle of the first embodiment shown in FIG. 4 is applied recursively.
  • the battery system in this case comprises four battery cells Zi, Z 2 , Z 3 and Z 4 .
  • Each two battery cells form a group and are balanced according to the principle shown in Fig. 4 with each other.
  • the battery cells Zi and Z 2 are balanced by the resistors R d i and R d2 and the operational amplifier 32.
  • the two groups of two battery cells are then balanced again according to the same principle.
  • the resistors R d 5 and R d 6 form between the negative pole of the battery cell Zi and the positive pole of the battery cell Z 4 a voltage divider, at its inner node 34, the potential takes the target value of the potential at the node 36.
  • the non-inverting input of the operational amplifier 38 is connected to the node 34, and the inverting input of the operational amplifier 38 is connected to the node 36.
  • the positive supply voltage input of the operational amplifier 38 is connected to the positive pole of the battery cell Z 4 .
  • the negative supply voltage input of the operational amplifier 38 is connected to the negative pole of the battery cell. ⁇ .
  • the operational amplifier 38 is negative-feedback, ie the output is connected to the inverting input.
  • the group consisting of the battery cells Z- 1 and Z 2 is discharged more deeply than the group consisting of the battery cells Z 3 and Z 4 , then the potential at the inverting input of the operational amplifier 38 is lower than the potential at the non-inverting input of the operational amplifier 38. As a result, the operational amplifier 38 attempts to pull its output towards its positive supply voltage. This results in a current flow from the positive pole of the battery cell Z 4 via the positive supply voltage input of the operational amplifier 38 to the output of the operational amplifier 38. The group consisting of the battery cells Z 3 and Z 4 is thus discharged, which corresponds to the desired behavior. Accordingly, in the case that is discharged from the battery cells Z 3 and Z 4 existing group deeper than those of the battery cells Z- ⁇ and Z 2 existing group consisting of the battery cells 7 ⁇ and Z 2 group to the negative Supply voltage input of the operational amplifier 38 discharged.
  • the principle illustrated in FIG. 5 can be applied to battery systems with any number of battery cells.
  • the battery cells are divided into two groups, which are balanced with each other by means of a voltage divider and an operational amplifier, and the same principle is recursively applied to both groups of battery cells until they each consist only of individual battery cells.
  • two battery elements are balanced by means of a voltage divider and an operational amplifier, wherein the battery elements may each be groups of battery cells or individual battery cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

The battery system according to the invention comprises at least a first battery element and a second battery element, wherein the positive terminal of the first battery element is conductively connected to the negative terminal of the second battery element, and discharge means for partially discharging the first and second battery elements. In addition, the battery system comprises a voltage divider, which is designed to generate a first electrical potential, starting from the electrical potential of the negative terminal of the first battery element and the electrical potential of the positive terminal of the second battery element, said first electrical potential corresponding to the setpoint value of the electrical potential at the positive terminal of the first battery element and the negative terminal of the second battery element, and comparison means for comparing the first electrical potential with a second electrical potential, which is present at the positive terminal of the first battery element and the negative terminal of the second battery element. The discharge means are designed to discharge the first battery element when the second electrical potential in a positive direction differs from the first electrical potential, and to discharge the second battery element when the second electrical potential in the negative direction differs from the first electrical potential. In the battery system according to the invention, the battery elements are balanced directly on the basis of the properties of the passive components, and no active measurement or control is required.

Description

Beschreibung  description
Batteriesystem und Verfahren zum Balancieren der Batteriezellen eines Batteriesystems Battery system and method for balancing the battery cells of a battery system
Die Erfindung betrifft ein Batteriesystem und ein Verfahren zum Balancieren der Batteriezellen eines Batteriesystems gemäß den Oberbegriffen der Ansprüche 1 und 10. The invention relates to a battery system and a method for balancing the battery cells of a battery system according to the preambles of claims 1 and 10.
Stand der Technik State of the art
Es zeichnet sich ab, dass in Zukunft sowohl bei stationären Anwendungen (z.B. bei Windkraftanlagen) als auch in Fahrzeugen (z.B. in Hybrid- und Elektrofahr- zeugen) vermehrt neue Batteriesysteme zum Einsatz kommen werden, an die sehr hohe Anforderungen bezüglich Zuverlässigkeit gestellt werden. Hintergrund für diese hohen Anforderungen ist, dass ein Ausfall der Batterie zu einem Ausfall des Gesamtsystems führen kann (z.B. ein Ausfall der Traktionsbatterie bei einem Elektrofahrzeug) oder sogar zu einem sicherheitsrelevanten Problem führen kann (bei Windkraftanlagen werden z.B. Batterien eingesetzt, um bei starkem Wind die Anlage durch eine Rotorblattverstellung vor unzulässigen Betriebszuständen zu schützen). It is becoming apparent that in the future both in stationary applications (for example in wind turbines) and in vehicles (for example in hybrid and electric vehicles), new battery systems will increasingly be used, which are subject to very high reliability requirements. The background to these high requirements is that a failure of the battery can lead to a failure of the entire system (eg a failure of the traction battery in an electric vehicle) or even lead to a safety-relevant problem (in wind turbines are used, for example, batteries in strong winds System to be protected against impermissible operating conditions by a rotor blade adjustment).
Fig. 1 zeigt ein Prinzipschaltbild eines Batteriesystems gemäß dem Stand der Technik. Zwischen dem Pluspol 10 und dem Minuspol 12 des Batteriesystems sind eine Lade- und Trenneinrichtung 14, eine Vielzahl von Batteriezellen Z-i , Zn sowie optional eine weitere Trenneinrichtung 16 in Reihe geschaltet. Die Lade- und Trenneinrichtung 14 umfasst einen Trennschalter 18, einen Ladeschalter 20 sowie einen Ladewiderstand 22. Die optionale Trenneinrichtung 16 umfasst einen Trennschalter 24. Um die Anforderungen an die Leistungs- und Energiedaten mit dem Batteriesystem zu erfüllen, werden eine Vielzahl von Batteriezellen Z-i , Zn in Reihe geschaltet werden; es ist auch bekannt, Batteriezellen oder in Reihe geschaltete Gruppen von Batteriezellen parallel zu schalten. Ein Problem beim Einsatz vieler einzelner in Reihe geschalteter Batteriezellen besteht darin, dass die Batteriezellen nicht perfekt gleich sind, was zu ungleichen Zellspannungen führen kann, insbesondere über längere Zeitspannen von der Größenordnung der Lebensdauer der Batterie. Da insbesondere bei Lithium-Fig. 1 shows a schematic diagram of a battery system according to the prior art. Between the positive terminal 10 and the negative terminal 12 of the battery system, a charging and disconnecting device 14, a plurality of battery cells Zi, Z n and optionally another separator 16 are connected in series. The charging and disconnecting device 14 comprises a disconnecting switch 18, a charging switch 20 and a charging resistor 22. The optional disconnecting device 16 comprises a disconnecting switch 24. In order to meet the requirements for the power and energy data with the battery system, a plurality of battery cells Zi, Z n be connected in series; It is also known to connect battery cells or series-connected groups of battery cells in parallel. A problem with the use of many individual series-connected battery cells is that the battery cells are not perfectly equal, which can lead to unequal cell voltages, especially over extended periods of the life of the battery. Since, in particular, lithium
Ionen-Batterien das Überladen oder das Tiefentladen einzelner Zellen zu einer irreversiblen Schädigung der Batterie führt, muss in regelmäßigen Zeitabständen ein sogenanntes Zell-Balancing durchgeführt werden. Zu diesem Zweck werden die einzelnen Zellen durch externe Beschaltungsmaßnahmen so ge- oder entla- den, dass sie wieder gleiche Zellspannung besitzen. Ion batteries overcharging or over-discharging of individual cells leads to irreversible damage to the battery, so-called cell balancing must be carried out at regular intervals. For this purpose, the individual cells are charged or discharged by external wiring measures so that they again have the same cell voltage.
Stand der Technik ist dabei das sogenannte Widerstandsbalancing, bei dem ein Widerstand oder eine Widerstandskombination über Schalter einzelne Zellen so lange belastet, bis alle Zellen das gleiche Spannungsniveau erreicht haben. Fig. 2 zeigt ein Prinzipschaltbild eines Batteriesystems nach diesem Prinzip. Die inThe state of the art in this case is the so-called resistance balancing, in which a resistor or a combination of resistors loads individual cells via switches until all cells have reached the same voltage level. Fig. 2 shows a schematic diagram of a battery system according to this principle. In the
Reihe geschalteten Batteriezellen Z-i, Zn werden über die Schalter Si, Sn mit den Widerständen Ra1, Ran belastet. Beispielsweise wird die Zelle Z-i über die Widerstände Rai und Ra2 entladen, wenn der Schalter Si eingeschaltet ist. Bei diesem Verfahren werden zunächst alle Zellspannungen gemessen, die Spannungen der einzelnen Zellen miteinander verglichen und über eine zentraleRow connected battery cells Zi, Z n are loaded via the switches Si, S n with the resistors R a1 , R on . For example, the cell Zi is discharged via the resistors R a i and R a 2 when the switch Si is turned on. In this method, first all cell voltages are measured, the voltages of the individual cells compared with each other and a central
Steuersoftware die Schalter so lange eingeschaltet, bis die zu entladenden Zellen auf das gewünschte Niveau entladen sind. Control software switches on the switches until the cells to be discharged are discharged to the desired level.
Fig. 3 zeigt eine weitere Ausführungsform eines Batteriesystems nach diesem Prinzip. Den in Reihe geschalteten Zellen Z-i, Z2 sind jeweils Widerstände Rbi,Fig. 3 shows a further embodiment of a battery system according to this principle. The series-connected cells Zi, Z 2 are each resistors R b i,
Rb2 und Schalter Si, S2 zugeordnet. Beispielsweise wird die Zelle Z-i über den Widerstand Rbi entladen, wenn der Schalter Si eingeschaltet ist. R b 2 and switches Si, S 2 assigned. For example, the cell Zi is discharged via the resistor R b i when the switch Si is turned on.
Das Balancieren von Batteriezellen nach dem Stand der Technik hat den Nach- teil, dass die Zellspannungen gemessen und die Entladung der Zellen gemäß den gemessenen Zellspannungen von einer Steuereinrichtung gesteuert werden muss. The balancing of battery cells according to the prior art has the disadvantage that the cell voltages must be measured and the discharge of the cells must be controlled by a control device according to the measured cell voltages.
Es ist Aufgabe der vorliegenden Erfindung, diesen Nachteil zu überwinden und ein Batteriesystem und ein Verfahren zum Balancieren der Batteriezellen einesIt is an object of the present invention to overcome this disadvantage and a battery system and a method for balancing the battery cells of a
Batteriesystems anzugeben, durch die das Balancieren der Batteriezellen direkt und autonom ohne Einsatz einer Zellspannungsmessung oder Steuereinrichtung erfolgt. Mit der erfindungsgemäßen Batteriesystem und dem erfindungsgemäßen Verfahren kann ein passives Balancieren von Batteriezellen mit nur wenigen preiswerten Komponenten direkt und mit hoher Genauigkeit durchgeführt wer- den, ohne dass dabei die Zellspannungen zunächst eingelesen und in einer Software ausgewertet werden müssen. Specify battery system, by balancing the battery cells directly and autonomously without the use of a cell voltage measurement or control device. With the battery system according to the invention and the method according to the invention, a passive balancing of battery cells with only a few inexpensive components can be carried out directly and with high accuracy, without the cell voltages first having to be read in and evaluated in a software.
Erfindungsgemäß wird diese Aufgabe mittels eines Batteriesystems mit den im Anspruch 1 genannten Merkmalen und eines Verfahren mit den im Anspruch 10 genannten Merkmalen gelöst. According to the invention this object is achieved by means of a battery system with the features mentioned in claim 1 and a method having the features mentioned in claim 10.
Das erfindungsgemäße Batteriesystem umfasst mindestens ein erstes Batterieelement und ein zweites Batterieelement, wobei der positive Pol des ersten Batterieelements mit dem negativen Pol des zweiten Batterieelements leitend verbunden ist, sowie Entlademittel zum partiellen Entladen der ersten und zweiten Batterieelemente. Das Batteriesystem umfasst ferner einen Spannungsteiler, der dazu ausgelegt ist, ausgehend von dem elektrischen Potenzial des negativen Pols des ersten Batterieelements und dem elektrischen Potenzial des positiven Pols des zweiten Batterieelements ein erstes elektrisches Potenzial zu erzeugen, das dem Soll-Wert des elektrischen Potenzials an dem positiven Pol des ersten Batterieelements und dem negativen Pol des zweiten Batterieelements entspricht, sowie Vergleichsmittel zum Vergleichen des ersten elektrischen Potenzials mit einem zweiten elektrischen Potenzial, das an dem positiven Pol des ersten Batterieelements und dem negativen Pol des zweiten Batterieelements anliegt. Die Entlademittel sind dazu ausgelegt, das erste Batterieelement zu entladen, wenn das zweite elektrische Potenzial in positiver Richtung von dem ersten elektrischen Potenzial abweicht, und das zweite Batterieelement zu entladen, wenn das zweite elektrische Potenzial in negativer Richtung von dem ersten e- lektrischen Potenzial abweicht. Dadurch wird erreicht, dass das Balancieren der Batterieelemente unmittelbar aufgrund der Eigenschaften der passiven Komponenten erfolgt und keine aktive Messung oder Steuerung erforderlich ist. The battery system according to the invention comprises at least a first battery element and a second battery element, wherein the positive pole of the first battery element is conductively connected to the negative pole of the second battery element, and discharging means for partially discharging the first and second battery elements. The battery system further includes a voltage divider configured to generate, based on the negative pole electrical potential of the first battery element and the positive pole electrical potential of the second battery element, a first electrical potential corresponding to the desired electric potential value at the first positive pole of the first battery element and the negative pole of the second battery element, and comparing means for comparing the first electric potential with a second electric potential applied to the positive pole of the first battery element and the negative pole of the second battery element. The discharge means are designed to discharge the first battery element when the second electrical potential deviates in the positive direction from the first electrical potential and to discharge the second battery element when the second electrical potential deviates in the negative direction from the first electrical potential , It is thereby achieved that the balancing of the battery elements takes place directly due to the properties of the passive components and no active measurement or control is required.
Die Entlademittel und die Vergleichsmittel sind vorzugsweise durch einen gegengekoppelten Operationsverstärker gebildet. Dadurch werden die Funktionen des Entladens und Vergleichens besonders vorteilhaft durch eine einzige Komponente realisiert. Der Spannungsteiler umfasst vorzugsweise einen ersten Widerstand und einen zweiten Widerstand, wobei der elektrische Widerstand des ersten Widerstands und der elektrische Widerstand des zweiten Widerstands im gleichen Verhältnis zueinander stehen wie die Soll-Spannung des ersten Batterieelements und dieThe discharge means and the comparison means are preferably formed by a negative feedback operational amplifier. As a result, the functions of unloading and comparing are realized particularly advantageously by a single component. The voltage divider preferably comprises a first resistor and a second resistor, wherein the electrical resistance of the first resistor and the electrical resistance of the second resistor are in the same ratio as the desired voltage of the first battery element and the
Soll-Spannung des zweiten Batterieelements. Target voltage of the second battery element.
Vorzugsweise ist ein erster Anschluss des ersten Widerstands mit dem negativen Pol des ersten Batterieelements leitend verbunden, ein zweiter Anschluss des ersten Widerstands mit einem ersten Anschluss des zweiten Widerstands leitend verbunden und ein zweiter Anschluss des zweiten Widerstands mit dem positiven Pol des zweiten Batterieelements leitend verbunden. Preferably, a first terminal of the first resistor is conductively connected to the negative pole of the first battery element, a second terminal of the first resistor is conductively connected to a first terminal of the second resistor, and a second terminal of the second resistor is conductively connected to the positive pole of the second battery element.
Vorzugsweise sind der zweite Anschluss des ersten Widerstands und der erste Anschluss des zweiten Widerstands mit dem nicht invertierenden Eingang desPreferably, the second terminal of the first resistor and the first terminal of the second resistor are connected to the non-inverting input of the first resistor
Operationsverstärkers leitend verbunden, der zweite Anschluss des zweiten Widerstands und der positive Pol des zweiten Batterieelements mit dem positiven Versorgungsspannungseingang des Operationsverstärkers leitend verbunden, der erste Anschluss des ersten Widerstands und der negative Pol des ersten Batterieelements mit dem negativen Versorgungsspannungseingang des Operationsverstärkers leitend verbunden und der positive Pol des ersten Batterieelements und der negative Pol des zweiten Batterieelements mit dem invertierenden Eingang und dem Ausgang des Operationsverstärkers leitend verbunden. Die Soll-Spannung des ersten Batterieelements und die Soll-Spannung des zweiten Batterieelements können gleich sein. Dadurch kann ein besonders einfaches Batteriesystem mit mehreren baugleichen Komponenten bereitgestellt werden. Operational amplifier conductively connected, the second terminal of the second resistor and the positive pole of the second battery element conductively connected to the positive supply voltage input of the operational amplifier, the first terminal of the first resistor and the negative pole of the first battery element to the negative supply voltage input of the operational amplifier conductively connected and the positive Pol of the first battery element and the negative pole of the second battery element conductively connected to the inverting input and the output of the operational amplifier. The desired voltage of the first battery element and the desired voltage of the second battery element may be the same. As a result, a particularly simple battery system with several identical components can be provided.
In einer bevorzugten Ausführungsform stellt die Erfindung ein Batteriesystem mit einer Vielzahl in Reihe geschalteter Batterieelemente bereit, wobei jedes Paar miteinander leitend verbundener Batterieelemente wie oben beschrieben balanciert ist. Dadurch wird erreicht, dass mit einer besonders einfachen und regelmäßigen Anordnung von Komponenten sämtliche Batterieelemente miteinander balanciert werden. Mindestens eines der Batterieelemente kann eine Lithium-Ionen-Batteriezelle sein. In a preferred embodiment, the invention provides a battery system having a plurality of series connected battery elements, each pair of battery elements conductively connected to each other being balanced as described above. This ensures that all battery elements are balanced with a particularly simple and regular arrangement of components. At least one of the battery elements may be a lithium-ion battery cell.
Mindestens eines der Batterieelemente kann seinerseits ein erfindungsgemäßes Batteriesystem sein. Durch diesen rekursiven Aufbau wird erreicht, dass mit einer besonders einfachen und strukturierten Anordnung von Komponenten sämtliche Batterieelemente miteinander balanciert werden. At least one of the battery elements may in turn be a battery system according to the invention. This recursive construction ensures that all battery elements are balanced with one another with a particularly simple and structured arrangement of components.
Die Erfindung stellt ferner ein Verfahren zum Balancieren der Batterieelemente eines Batteriesystems bereit, wobei das Batteriesystem mindestens ein erstes Batterieelement und ein zweites Batterieelement umfasst, wobei der positive Pol des ersten Batterieelements mit dem negativen Pol des zweiten Batterieelements leitend verbunden ist und wobei das Verfahren folgende Verfahrensschritte umfasst: Erzeugen eines ersten elektrischen Potenzials, das dem Soll-Wert des e- lektrischen Potenzials an dem positiven Pol des ersten Batterieelements und dem negativen Pol des zweiten Batterieelements entspricht, ausgehend von dem elektrischen Potenzial des negativen Pols des ersten Batterieelements und dem elektrischen Potenzial des positiven Pols des zweiten Batterieelements, Vergleichen des ersten elektrischen Potenzials mit einem zweiten elektrischen Potenzial, das an dem positiven Pol des ersten Batterieelements und dem negativen Pol des zweiten Batterieelements anliegt, Entladen des ersten Batterieelements, wenn das zweite elektrische Potenzial in positiver Richtung von dem ersten elektrischen Potenzial abweicht, und Entladen des zweiten Batterieelements, wenn das zweite elektrische Potenzial in negativer Richtung von dem ersten elektrischen Potenzial abweicht. The invention further provides a method for balancing the battery elements of a battery system, wherein the battery system comprises at least a first battery element and a second battery element, wherein the positive pole of the first battery element is conductively connected to the negative pole of the second battery element and wherein the method comprises the following method steps comprising: generating a first electrical potential that corresponds to the desired value of the electrical potential at the positive pole of the first battery element and the negative pole of the second battery element, based on the electrical potential of the negative pole of the first battery element and the electrical potential of the positive pole of the second battery element, comparing the first electric potential with a second electric potential applied to the positive pole of the first battery element and the negative pole of the second battery element, discharging the first battery rieelements when the second electrical potential in the positive direction deviates from the first electrical potential, and discharging the second battery element, when the second electrical potential in the negative direction deviates from the first electrical potential.
Offenbarung der Erfindung Disclosure of the invention
Die Erfindung wird im Folgenden mit Bezug auf die Zeichnungen anhand von Ausführungsbeispielen näher erläutert. Es zeigen: The invention is explained in more detail below with reference to the drawings with reference to embodiments. Show it:
Fig. 1 ein Prinzipschaltbild eines Batteriesystems mit einer Vielzahl von Batteriezellen gemäß dem Stand der Technik; 1 is a schematic diagram of a battery system having a plurality of battery cells according to the prior art;
Fig. 2 ein Prinzipschaltbild eines ersten Batteriesystems, in dem die Batterie- zellen gemäß dem Stand der Technik balanciert werden; Fig. 3 ein Prinzipschaltbild eines zweiten Batteriesystems, in dem die Batteriezellen gemäß dem Stand der Technik balanciert werden; 2 is a schematic diagram of a first battery system in which the battery cells are balanced according to the prior art; Fig. 3 is a schematic diagram of a second battery system in which the battery cells are balanced according to the prior art;
Fig. 4 eine erste Ausführungsform eines erfindungsgemäßen Batteriesystems; und 4 shows a first embodiment of a battery system according to the invention; and
Fig. 5 eine zweite Ausführungsform eines erfindungsgemäßen Batteriesystems. Fig. 5 shows a second embodiment of a battery system according to the invention.
Fig. 4 zeigt eine erste Ausführungsform eines erfindungsgemäßen Batteriesystems. Zwei Batteriezellen Z-ι und Z2 sind in Reihe geschaltet. Der positive Pol der Batteriezelle Z-ι ist mit dem negativen Pol der Batteriezelle Z2 verbunden. Zwei in4 shows a first embodiment of a battery system according to the invention. Two battery cells Z- 1 and Z 2 are connected in series. The positive pole of the battery cell Z-1 is connected to the negative pole of the battery cell Z 2 . Two in
Reihe geschaltete Widerstände Rci und RC2 liegen parallel zu den Batteriezellen Z-i und Z2. Ein erster Anschluss des Widerstands Rci ist mit dem negativen Pol der Batteriezelle Z-i verbunden; ein zweiter Anschluss des Widerstands Rci ist mit einem ersten Anschluss des Widerstands RC2 verbunden, und ein zweiter An- schluss des Widerstands RC2 ist mit dem positiven Pol der Batteriezelle Z2 verbunden. Die Widerstandswerte der Widerstände Rci und RC2 stehen im gleichen Verhältnis zueinander wie die Soll-Spannungen der Batteriezellen Z-i und Z2. Insbesondere weisen die Widerstände Rci und RC2 den gleichen Widerstandswert auf, wenn die Batteriezellen Z-i und Z2 auf dieselbe Spannung geladen werden sollen. Somit bilden die Widerstände Rci und RC2 einen Spannungsteiler, an dessen innerem Knoten 26 das Potenzial anliegt, das an dem Knoten 28 zwischen den Batteriezellen Z-i und Z2 anliegen soll. Series connected resistors R c i and R C 2 are parallel to the battery cells Zi and Z 2 . A first terminal of the resistor R c i is connected to the negative pole of the battery cell Zi; a second terminal of the resistor R c i is connected to a first terminal of the resistor R C 2, and a second terminal of the resistor R C 2 is connected to the positive terminal of the battery cell Z 2 . The resistance values of the resistors R c i and R C 2 are in the same proportion to each other as the target voltages of the battery cells Zi and Z 2 . In particular, the resistors R c i and R C 2 have the same resistance value when the battery cells Zi and Z 2 are to be charged to the same voltage. Thus, the resistors R c i and R C 2 form a voltage divider, at the inner node 26, the potential is applied, which is to rest on the node 28 between the battery cells Zi and Z 2 .
Das Batteriesystem umfasst ferner einen Operationsverstärker 30. Der nicht in- vertierende Eingang des Operationsverstärkers 30 ist mit dem Knoten 26 verbunden. Der invertierende Eingang des Operationsverstärkers 30 ist mit dem Knoten 28 verbunden. Der positive Versorgungsspannungseingang des Operationsverstärkers 30 ist mit dem positiven Pol der Batteriezelle Z2 verbunden. Der negative Versorgungsspannungseingang des Operationsverstärkers 30 ist mit dem negativen Pol der Batteriezelle Z-i verbunden. Der Operationsverstärker 30 ist gegengekoppelt, d.h. der Ausgang ist mit dem invertierenden Eingang verbunden. The battery system further comprises an operational amplifier 30. The non-inverting input of the operational amplifier 30 is connected to the node 26. The inverting input of the operational amplifier 30 is connected to the node 28. The positive supply voltage input of the operational amplifier 30 is connected to the positive pole of the battery cell Z 2 . The negative supply voltage input of the operational amplifier 30 is connected to the negative pole of the battery cell Zi. The operational amplifier 30 is negative-feedback, ie the output is connected to the inverting input.
Ist nun beispielsweise die Batteriezelle Z-i tiefer entladen als die Batteriezelle Z2, so ist das Potential am invertierenden Eingang des Operationsverstärkers 30 niedriger als das Potential am nicht invertierenden Eingang des Operationsver- stärkers 30. Der Operationsverstärker 30 versucht infolgedessen, seinen Ausgang zu seiner positiven Versorgungsspannung hin zu ziehen. Dies hat einen Stromfluss vom positiven Pol der Batteriezelle Z2 über den positiven Versor- gungsspannungseingang des Operationsverstärkers 30 zum Ausgang des Operationsverstärkers 30 zur Folge. Die Batteriezelle Z2 wird somit entladen, was dem gewünschten Verhalten entspricht. Entsprechend wird in dem Fall, dass die Batteriezelle Z2 tiefer entladen ist als die Batteriezelle Z-i , die Batteriezelle Z-ι über den negativen Versorgungsspannungseingang des Operationsverstärkers 30 entladen. If, for example, the battery cell Zi is discharged deeper than the battery cell Z 2 , the potential at the inverting input of the operational amplifier 30 is lower than the potential at the non-inverting input of the operational amplifier. As a result, the operational amplifier 30 attempts to pull its output towards its positive supply voltage. This results in a current flow from the positive pole of the battery cell Z 2 via the positive supply voltage input of the operational amplifier 30 to the output of the operational amplifier 30. The battery cell Z 2 is thus discharged, which corresponds to the desired behavior. Accordingly, in the case that the battery cell Z 2 is discharged deeper than the battery cell Zi, the battery cell Z-ι discharged via the negative supply voltage input of the operational amplifier 30.
Der Entladevorgang setzt sich so lange fort, bis das Verhältnis zwischen der Spannung über die Batteriezelle 7.^ und der Spannung über der Batteriezelle Z2 seinen Soll-Wert erreicht hat. Insbesondere setzt sich der Entladevorgang in dem Fall, dass die Widerstände Rci und Rc2 gleiche Widerstandswerte aufweisen, so lange fort, bis die Spannung über der Batteriezelle Z-i gleich der Spannung über der Batteriezelle Z2 ist. Danach fließen nur noch der Ruheversorgungsstrom des Operationsverstärkers 30 und der Querstrom über die Widerstände Rci und Rc2 aus den Zellen. Beide Ströme können durch geeignete Dimensionierung und Auswahl der Schaltungskomponenten sehr klein gehalten werden. The discharging process continues until the ratio between the voltage across the battery cell 7 ^ and the voltage across the battery cell Z 2 has reached its desired value. In particular, in the case that the resistors R c i and R c2 have equal resistance values, the discharging process continues until the voltage across the battery cell Zi equals the voltage across the battery cell Z 2 . Thereafter, only the rest supply current of the operational amplifier 30 and the cross-flow through the resistors R c i and R c2 flow from the cells. Both currents can be kept very small by suitable dimensioning and selection of the circuit components.
Das in Fig. 4 dargestellte Prinzip lässt sich unmittelbar auf Batteriesysteme mit mehr als zwei Batteriezellen anwenden, indem je zwei benachbarte Batteriezellen auf die dargestellte Weise balanciert werden. The principle illustrated in FIG. 4 can be applied directly to battery systems with more than two battery cells by balancing two adjacent battery cells in the manner shown.
Fig. 5 zeigt eine zweite Ausführungsform eines erfindungsgemäßen Batteriesystems, in der das Prinzip der in Fig. 4 gezeigten ersten Ausführungsform rekursiv angewandt ist. Das Batteriesystem umfasst in diesem Fall vier Batteriezellen Z-i , Z2, Z3 und Z4. Je zwei Batteriezellen bilden eine Gruppe und werden nach dem in Fig. 4 dargestellten Prinzip miteinander balanciert. Beispielsweise werden die Batteriezellen Z-i und Z2 durch die Widerstände Rdi und Rd2 und den Operationsverstärker 32 balanciert. 5 shows a second embodiment of a battery system according to the invention, in which the principle of the first embodiment shown in FIG. 4 is applied recursively. The battery system in this case comprises four battery cells Zi, Z 2 , Z 3 and Z 4 . Each two battery cells form a group and are balanced according to the principle shown in Fig. 4 with each other. For example, the battery cells Zi and Z 2 are balanced by the resistors R d i and R d2 and the operational amplifier 32.
Die beiden Gruppen von je zwei Batteriezellen werden dann wiederum nach demselben Prinzip miteinander balanciert. Die Widerstände Rd5 und Rd6 bilden zwischen dem negativen Pol der Batteriezelle Z-i und dem positiven Pol der Batteriezelle Z4 einen Spannungsteiler, an dessen innerem Knoten 34 das Potenzial den Soll-Wert des Potenzials an dem Knoten 36 annimmt. Der nicht invertierende Eingang des Operationsverstärkers 38 ist mit dem Knoten 34 verbunden, und der invertierende Eingang des Operationsverstärkers 38 ist mit dem Knoten 36 verbunden. Der positive Versorgungsspannungseingang des Operationsverstärkers 38 ist mit dem positiven Pol der Batteriezelle Z4 verbunden. Der negative Versorgungsspannungseingang des Operationsverstärkers 38 ist mit dem negativen Pol der Batteriezelle .^ verbunden. Der Operationsverstärker 38 ist gegengekoppelt, d.h. der Ausgang ist mit dem invertierenden Eingang verbunden. The two groups of two battery cells are then balanced again according to the same principle. The resistors R d 5 and R d 6 form between the negative pole of the battery cell Zi and the positive pole of the battery cell Z 4 a voltage divider, at its inner node 34, the potential takes the target value of the potential at the node 36. The non-inverting input of the operational amplifier 38 is connected to the node 34, and the inverting input of the operational amplifier 38 is connected to the node 36. The positive supply voltage input of the operational amplifier 38 is connected to the positive pole of the battery cell Z 4 . The negative supply voltage input of the operational amplifier 38 is connected to the negative pole of the battery cell. ^. The operational amplifier 38 is negative-feedback, ie the output is connected to the inverting input.
Ist nun beispielsweise die aus den Batteriezellen Z-ι und Z2 bestehende Gruppe tiefer entladen als die aus den Batteriezellen Z3 und Z4 bestehende Gruppe, so ist das Potential am invertierenden Eingang des Operationsverstärkers 38 niedriger als das Potential am nicht invertierenden Eingang des Operationsverstärkers 38. Der Operationsverstärker 38 versucht infolgedessen, seinen Ausgang zu seiner positiven Versorgungsspannung hin zu ziehen. Dies hat einen Stromfluss vom positiven Pol der Batteriezelle Z4 über den positiven Versorgungsspannungseingang des Operationsverstärkers 38 zum Ausgang des Operationsverstärkers 38 zur Folge. Die aus den Batteriezellen Z3 und Z4 bestehende Gruppe wird somit entladen, was dem gewünschten Verhalten entspricht. Entsprechend wird in dem Fall, dass die aus den Batteriezellen Z3 und Z4 bestehende Gruppe tiefer entladen ist als die aus den Batteriezellen Z-ι und Z2 bestehende Gruppe, die aus den Batteriezellen 7.^ und Z2 bestehende Gruppe über den negativen Versorgungsspannungseingang des Operationsverstärkers 38 entladen. If, for example, the group consisting of the battery cells Z- 1 and Z 2 is discharged more deeply than the group consisting of the battery cells Z 3 and Z 4 , then the potential at the inverting input of the operational amplifier 38 is lower than the potential at the non-inverting input of the operational amplifier 38. As a result, the operational amplifier 38 attempts to pull its output towards its positive supply voltage. This results in a current flow from the positive pole of the battery cell Z 4 via the positive supply voltage input of the operational amplifier 38 to the output of the operational amplifier 38. The group consisting of the battery cells Z 3 and Z 4 is thus discharged, which corresponds to the desired behavior. Accordingly, in the case that is discharged from the battery cells Z 3 and Z 4 existing group deeper than those of the battery cells Z-ι and Z 2 existing group consisting of the battery cells 7 ^ and Z 2 group to the negative Supply voltage input of the operational amplifier 38 discharged.
Das in Fig. 5 dargestellte Prinzip lässt sich auf Batteriesysteme mit einer beliebigen Anzahl von Batteriezellen anwenden. Dazu werden die Batteriezellen in zwei Gruppen eingeteilt, die mittels eines Spannungsteilers und eines Operationsverstärkers miteinander balanciert werden, und dasselbe Prinzip wird rekursiv auf beide Gruppen von Batteriezellen angewandt, bis diese jeweils nur noch aus einzelnen Batteriezellen bestehen. Auf jeder Stufe werden mittels eines Spannungsteilers und eines Operationsverstärkers zwei Batterieelemente miteinander balanciert, wobei die Batterieelemente jeweils Gruppen von Batteriezellen oder einzelne Batteriezellen sein können. The principle illustrated in FIG. 5 can be applied to battery systems with any number of battery cells. For this purpose, the battery cells are divided into two groups, which are balanced with each other by means of a voltage divider and an operational amplifier, and the same principle is recursively applied to both groups of battery cells until they each consist only of individual battery cells. At each stage, two battery elements are balanced by means of a voltage divider and an operational amplifier, wherein the battery elements may each be groups of battery cells or individual battery cells.

Claims

Ansprüche claims
1 . Batteriesystem, umfassend 1 . Battery system comprising
mindestens ein erstes Batterieelement (Z-i) und ein zweites Batterieelement (Z2), wobei der positive Pol des ersten Batterieelements (Z-i) mit dem negativen Pol des zweiten Batterieelements (Z2) leitend verbunden ist; und at least a first battery element (Zi) and a second battery element (Z 2 ), wherein the positive pole of the first battery element (Zi) is conductively connected to the negative pole of the second battery element (Z 2 ); and
Entlademittel (30) zum partiellen Entladen der ersten und zweiten Batterieelemente {Z-\ , Z2), Discharge means (30) for partially discharging the first and second battery elements {Z- \ , Z 2 ),
gekennzeichnet durch  marked by
einen Spannungsteiler (Rc1 , Rc2), der dazu ausgelegt ist, ausgehend von dem elektrischen Potenzial des negativen Pols des ersten Batterieelements (Z-i) und dem elektrischen Potenzial des positiven Pols des zweiten Batterieelements (Z2) ein erstes elektrisches Potenzial zu erzeugen, das dem Soll-Wert des elektrischen Potenzials an dem positiven Pol des ersten Batterieelements (Z-i) und dem negativen Pol des zweiten Batterieelements (Z2) entspricht; und a voltage divider (R c1 , R c2 ) configured to generate a first electric potential based on the electric potential of the negative pole of the first battery element (Zi) and the electric potential of the positive pole of the second battery element (Z 2 ); corresponding to the target value of the electric potential at the positive pole of the first battery element (Zi) and the negative pole of the second battery element (Z 2 ); and
Vergleichsmittel (30) zum Vergleichen des ersten elektrischen Potenzials mit einem zweiten elektrischen Potenzial, das an dem positiven Pol des ersten Batterieelements (Z-i) und dem negativen Pol des zweiten Batterieelements (Z2) anliegt, Comparing means (30) for comparing the first electric potential with a second electric potential applied to the positive pole of the first battery element (Zi) and the negative pole of the second battery element (Z 2 ),
wobei die Entlademittel (30) dazu ausgelegt sind, das erste Batterieelement (Z-i) zu entladen, wenn das zweite elektrische Potenzial in positiver Richtung von dem ersten elektrischen Potenzial abweicht, und das zweite Batterieelement (Z2) zu entladen, wenn das zweite elektrische Potenzial in negativer Richtung von dem ersten elektrischen Potenzial abweicht. wherein the discharging means (30) is configured to discharge the first battery element (Zi) when the second electric potential deviates in the positive direction from the first electric potential, and to discharge the second battery element (Z 2 ) when the second electric potential deviates in a negative direction from the first electrical potential.
2. Batteriesystem nach Anspruch 1 , wobei die Entlademittel (30) und die Vergleichsmittel (30) durch einen gegengekoppelten Operationsverstärker (30) gebildet sind. 2. Battery system according to claim 1, wherein the discharge means (30) and the comparison means (30) by a negative feedback operational amplifier (30) are formed.
3. Batteriesystem nach einem der Ansprüche 1 oder 2, wobei der Spannungsteiler (Rc1 , Rc2) einen ersten Widerstand (Rci) und einen zweiten Widerstand (Rc2) umfasst, wobei der elektrische Widerstand des ersten Widerstands (Rd) und der elektrische Widerstand des zweiten Widerstands (Rc2) im gleichen Verhältnis zueinander stehen wie die Soll-Spannung des ersten Batterieelements (Z^ und die Soll-Spannung des zweiten Batterieelements (Z2). 3. The battery system of any of claims 1 or 2, wherein the voltage divider (R c1, R c2) comprising a first resistor (R c i) and a second resistor (R c2), wherein the electrical resistance of the first resistor (R d) and the electrical resistance of the second resistor (R c2 ) are in the same ratio as the target voltage of the first battery element (Z ^ and the target voltage of the second battery element (Z 2 ).
4. Batteriesystem nach Anspruch 3, wobei ein erster Anschluss des ersten Widerstands (Rci) mit dem negativen Pol des ersten Batterieelements (Z-i) leitend verbunden ist, ein zweiter Anschluss des ersten Widerstands (Rci) mit einem ersten Anschluss des zweiten Widerstands (RC2) leitend verbunden ist und ein zweiter Anschluss des zweiten Widerstands (RC2) mit dem positiven Pol des zweiten Batterieelements (Z2) leitend verbunden ist. 4. The battery system according to claim 3, wherein a first terminal of the first resistor (R c i) is conductively connected to the negative pole of the first battery element (Zi), a second terminal of the first resistor (R c i) to a first terminal of the second Resistor (R C 2) is conductively connected and a second terminal of the second resistor (R C 2 ) is conductively connected to the positive pole of the second battery element (Z 2 ).
5. Batteriesystem nach Anspruch 2 und Anspruch 3 oder 4, wobei der zweite Anschluss des ersten Widerstands (Rci) und der erste Anschluss des zweiten Widerstands (RC2) mit dem nicht invertierenden Eingang des Operationsverstärkers (30) leitend verbunden sind, der zweite Anschluss des zweiten Widerstands (RC2) und der positive Pol des zweiten Batterieelements (Z2) mit dem positiven Versorgungsspannungseingang des Operationsverstärkers (30) leitend verbunden sind, der erste Anschluss des ersten Widerstands (Rci) und der negative Pol des ersten Batterieelements (Z-i) mit dem negativen Versorgungsspannungseingang des Operationsverstärkers (30) leitend verbunden sind und der positive Pol des ersten Batterieelements (Z-i) und der negative Pol des zweiten Batterieelements (Z2) mit dem invertierenden Eingang und dem Ausgang des Operationsverstärkers (30) leitend verbunden sind. 5. Battery system according to claim 2 and claim 3 or 4, wherein the second terminal of the first resistor (R c i) and the first terminal of the second resistor (R C 2) are conductively connected to the non-inverting input of the operational amplifier (30), the second terminal of the second resistor (R C 2) and the positive pole of the second battery element (Z 2 ) are conductively connected to the positive supply voltage input of the operational amplifier (30), the first terminal of the first resistor (R c i) and the negative pole of the first battery element (Zi) are conductively connected to the negative supply voltage input of the operational amplifier (30) and the positive pole of the first battery element (Zi) and the negative pole of the second battery element (Z 2 ) to the inverting input and the output of the operational amplifier (30 ) are conductively connected.
6. Batteriesystem nach einem der vorhergehenden Ansprüche, wobei die Soll-Spannung des ersten Batterieelements (Z-i) und die Soll-Spannung des zweiten Batterieelements (Z2) gleich sind. 6. Battery system according to one of the preceding claims, wherein the target voltage of the first battery element (Zi) and the target voltage of the second battery element (Z 2 ) are the same.
7. Batteriesystem mit einer Vielzahl in Reihe geschalteter Batterieelemente, welches zu jedem Paar miteinander leitend verbundener Batterieelemente ein Batteriesystem nach einem der vorhergehenden Ansprüche enthält. 7. Battery system having a plurality of battery elements connected in series, which includes a battery system according to any one of the preceding claims for each pair of conductive interconnected battery elements.
8. Batteriesystem nach einem der vorhergehenden Ansprüche, wobei mindestens eines der Batterieelemente (Z-i, Z2) eine Lithium-Ionen-Batteriezelle ist. 8. Battery system according to one of the preceding claims, wherein at least one of the battery elements (Zi, Z 2 ) is a lithium-ion battery cell.
9. Batteriesystem nach einem der vorhergehenden Ansprüche, wobei mindestens eines der Batterieelemente ein Batteriesystem nach einem der vorhergehenden Ansprüche ist. 9. Battery system according to one of the preceding claims, wherein at least one of the battery elements is a battery system according to one of the preceding claims.
10. Verfahren zum Balancieren der Batterieelemente (Z-i, Z2) eines Batteriesystems, wobei das Batteriesystem mindestens ein erstes Batterieelement (Z-i) und ein zweites Batterieelement (Z2) umfasst, wobei der positive Pol des ersten Batterieelements (Z-i) mit dem negativen Pol des zweiten Batterieelements (Z2) leitend verbunden ist und wobei das Verfahren folgende Verfahrensschritte umfasst: 10. A method for balancing the battery elements (Zi, Z 2 ) of a battery system, wherein the battery system comprises at least a first battery element (Zi) and a second battery element (Z 2 ), wherein the positive pole of the first battery element (Zi) to the negative pole the second battery element (Z 2 ) is conductively connected and wherein the method comprises the following method steps:
Erzeugen eines ersten elektrischen Potenzials, das dem Soll-Wert des elektrischen Potenzials an dem positiven Pol des ersten Batterieelements (Z-i) und dem negativen Pol des zweiten Batterieelements (Z2) entspricht, ausgehend von dem elektrischen Potenzial des negativen Pols des ersten Batterieelements (Z-i) und dem elektrischen Potenzial des positiven Pols des zweiten Batterieelements (Z2); Generating a first electrical potential corresponding to the desired value of the electric potential at the positive pole of the first battery element (Zi) and the negative pole of the second battery element (Z 2 ), based on the electric potential of the negative pole of the first battery element (Zi ) and the electric potential of the positive pole of the second battery element (Z 2 );
Vergleichen des ersten elektrischen Potenzials mit einem zweiten elektrischen Potenzial, das an dem positiven Pol des ersten Batterieelements (Z-i) und dem negativen Pol des zweiten Batterieelements (Z2) anliegt; Comparing the first electrical potential with a second electrical potential applied to the positive pole of the first battery element (Zi) and the negative pole of the second battery element (Z 2 );
Entladen des ersten Batterieelements (Z-i), wenn das zweite elektrische Potenzial in positiver Richtung von dem ersten elektrischen Potenzial abweicht; und  Discharging the first battery element (Z-i) when the second electric potential deviates in the positive direction from the first electric potential; and
Entladen des zweiten Batterieelements (Z2), wenn das zweite elektrische Potenzial in negativer Richtung von dem ersten elektrischen Potenzial abweicht. Discharging the second battery element (Z 2 ) when the second electrical potential deviates in a negative direction from the first electrical potential.
PCT/EP2010/062005 2009-10-09 2010-08-18 Battery system and method for balancing the battery cells in a battery system WO2011042243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009045519A DE102009045519A1 (en) 2009-10-09 2009-10-09 Battery system and method for balancing the battery cells of a battery system
DE102009045519.1 2009-10-09

Publications (1)

Publication Number Publication Date
WO2011042243A1 true WO2011042243A1 (en) 2011-04-14

Family

ID=43216782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/062005 WO2011042243A1 (en) 2009-10-09 2010-08-18 Battery system and method for balancing the battery cells in a battery system

Country Status (2)

Country Link
DE (1) DE102009045519A1 (en)
WO (1) WO2011042243A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011053853A1 (en) * 2011-09-22 2013-03-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for operating e.g. traction battery in e.g. electric vehicle, involves operating electrical energy storage device in long-term charge mode when stationary phase of motor vehicle exceeds defined period
DE102012201332A1 (en) * 2012-01-31 2013-08-01 Robert Bosch Gmbh Method for charge equalization of battery elements, battery system and motor vehicle with such a battery system
DE102012201359A1 (en) 2012-01-31 2013-08-01 Robert Bosch Gmbh Lithium ion battery system for use in e.g. electric car, has charge equalization module for autonomously balancing charge of adjacent battery cells, and comprising potential dividers for producing electrical potential
DE102012109062A1 (en) * 2012-09-26 2014-03-27 Hella Kgaa Hueck & Co. Battery arrangement for use in commercial vehicle i.e. ship, has battery units connected in series, power supply for charging arrangement, and circuit arrangement increasing charging voltage of one of units and comprising switching elements
DE102013204885A1 (en) 2013-03-20 2014-09-25 Robert Bosch Gmbh Method for reducing the total charge loss of batteries
DE102013215410A1 (en) * 2013-08-06 2015-02-12 Robert Bosch Gmbh Method and circuit arrangement for cell balancing an electrical energy store
DE102016207555A1 (en) * 2016-05-02 2017-11-02 Bayerische Motoren Werke Aktiengesellschaft Accumulator arrangement with improved balancing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773159A (en) * 1995-07-18 1998-06-30 Beard; Paul Multicell configuration for lithium cells or the like
US20030210016A1 (en) * 2002-05-13 2003-11-13 Thorne Richard E. Method and apparatus for correcting and maintaining voltage balance in multiple cell battery configurations
EP1603212A2 (en) * 2004-06-05 2005-12-07 Motorola, Inc. Cell Balancing circuit
US20090167247A1 (en) * 2007-12-29 2009-07-02 Byd Company Limited Voltage balance circuit for rechargeable batteries

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3146141A1 (en) * 1981-11-21 1983-06-01 Brown, Boveri & Cie Ag, 6800 Mannheim MONITORING DEVICE FOR A BATTERY
AT404526B (en) * 1994-07-18 1998-12-28 Pfaffelmoser Peter DEVICE FOR SELECTIVELY DISCHARGING SINGLE CELLS OF A RECHARGEABLE BATTERY
JP3870577B2 (en) * 1998-09-14 2007-01-17 株式会社デンソー Variation determination method for battery pack and battery device
US6417646B1 (en) * 2001-05-22 2002-07-09 Honeywell International Inc. Circuit for monitoring cells of a multi-cell battery during charge
DE102005014285A1 (en) * 2005-03-24 2006-10-05 Siemens Ag Apparatus and method for charge equalization of arranged in series individual cells of an energy storage
JP4707638B2 (en) * 2006-09-30 2011-06-22 三洋電機株式会社 Power supply for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773159A (en) * 1995-07-18 1998-06-30 Beard; Paul Multicell configuration for lithium cells or the like
US20030210016A1 (en) * 2002-05-13 2003-11-13 Thorne Richard E. Method and apparatus for correcting and maintaining voltage balance in multiple cell battery configurations
EP1603212A2 (en) * 2004-06-05 2005-12-07 Motorola, Inc. Cell Balancing circuit
US20090167247A1 (en) * 2007-12-29 2009-07-02 Byd Company Limited Voltage balance circuit for rechargeable batteries

Also Published As

Publication number Publication date
DE102009045519A1 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
EP2394328B1 (en) Traction battery with increased availability
EP2394327B1 (en) Traction battery with increased reliability
WO2011042243A1 (en) Battery system and method for balancing the battery cells in a battery system
DE102011079292A1 (en) Battery management system and associated method for determining a state of charge of a battery, battery with battery management system and motor vehicle with battery management system
EP2619844A1 (en) Battery system and method for determining battery module voltages
DE102013218081A1 (en) Battery module device and method for determining a complex impedance of a battery module arranged in a battery module
WO2010084073A1 (en) Detecting the voltage in battery cells
EP2865068B1 (en) Batterymanagementsystem with improved robustness against negative voltages
DE102012201359A1 (en) Lithium ion battery system for use in e.g. electric car, has charge equalization module for autonomously balancing charge of adjacent battery cells, and comprising potential dividers for producing electrical potential
WO2013113585A2 (en) Charge equalization method for battery elements, battery system and motor vehicle having said battery system
WO2008092756A2 (en) Battery comprising a zener diode voltage clamp circuit
DE102012207674A1 (en) Method and device for adjusting the states of charge of a battery
EP3573864A1 (en) Battery unit and method for operating a battery unit
EP2486641B1 (en) Battery system and method for balancing the battery cells of a battery system
WO2013010834A1 (en) Device and method for measuring a maximum cell voltage
WO2012069388A2 (en) Method for charging a battery
DE102011084688B4 (en) battery system
DE102015120285A1 (en) Battery, vehicle with such a battery and use of such a battery
WO2011060821A1 (en) Balancing electrical voltages of electrical accumulator units
DE102013009991A1 (en) Externally launchable integration of a battery in a motor vehicle electrical system
DE102012204966A1 (en) Battery system used in e.g. electric car, has PTC resistor which is located in close proximity to resistor to switch ON transistor to increase resistance value of PTC resistor while decreasing voltage value by heat action of resistor
DE102020132936B4 (en) Control unit, energy store and method for controlling the energy store
DE102010030747A1 (en) battery system
DE102008054532A1 (en) battery module
EP3035066B1 (en) Monitoring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743149

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10743149

Country of ref document: EP

Kind code of ref document: A1