WO2011040225A1 - Diffraction element and optical pickup device - Google Patents

Diffraction element and optical pickup device Download PDF

Info

Publication number
WO2011040225A1
WO2011040225A1 PCT/JP2010/065797 JP2010065797W WO2011040225A1 WO 2011040225 A1 WO2011040225 A1 WO 2011040225A1 JP 2010065797 W JP2010065797 W JP 2010065797W WO 2011040225 A1 WO2011040225 A1 WO 2011040225A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
step surface
length
optical
wavelength
Prior art date
Application number
PCT/JP2010/065797
Other languages
French (fr)
Japanese (ja)
Inventor
徹 木村
健太郎 中村
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011534179A priority Critical patent/JPWO2011040225A1/en
Publication of WO2011040225A1 publication Critical patent/WO2011040225A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1367Stepped phase plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • the present invention relates to a diffraction element for an optical pickup device that records and / or reproduces information (also referred to as recording / reproduction in the present specification) interchangeably with respect to different types of optical disks, and uses the same.
  • the present invention relates to an optical pickup device.
  • a high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm.
  • an optical disc for recording / reproducing information with specifications of NA 0.85 and light source wavelength 405 nm, so-called Blu-ray Disc (hereinafter referred to as BD), DVD (NA 0.6, light source wavelength 650 nm, storage capacity 4. It is possible to record 25 GB of information per layer on an optical disk having a diameter of 12 cm, which is the same size as 7 GB).
  • optical disks that use blue-violet laser light sources are collectively referred to as “high-density optical disks”.
  • the value as a product of an optical disc player / recorder cannot be said to be sufficient simply by saying that information can be appropriately recorded / reproduced on such a high-density optical disc.
  • DVDs and CDs compact discs
  • making it possible to appropriately record / reproduce information on DVDs and CDs leads to an increase in commercial value as an optical disc player / recorder for high-density optical discs.
  • an optical pickup device mounted on an optical disc player / recorder for high density optical discs can appropriately receive information while maintaining compatibility with both high density optical discs, DVDs, and even CDs. It is desired to have a performance capable of recording / reproducing.
  • a condensing optical system for high-density optical discs and a DVD or CD It is possible to selectively switch the light collecting optical system according to the recording density of the optical disk for recording / reproducing information.
  • a plurality of light collecting optical systems are required, which is disadvantageous for downsizing. Cost increases.
  • a condensing optical system for high-density optical discs and a condensing optical system for DVDs and CDs It is preferable to reduce the number of optical components constituting the optical pickup device as much as possible.
  • a diffractive element having a diffractive structure having a wavelength dependency of spherical aberration is disposed in the condensing optical system.
  • Patent Document 1 describes an objective optical system that has a diffractive structure and can be used in common with, for example, high-density optical discs and conventional DVDs and CDs, and an optical pickup device equipped with the objective optical system. .
  • Patent Document 1 the first diffraction surface that does not diffract the light beam having the first wavelength ⁇ 1 and the light beam having the third wavelength ⁇ 3 but diffracts the light beam having the second wavelength ⁇ 2, and the first Three different types using a diffractive optical element having a second diffractive surface that does not diffract the light beam having the wavelength ⁇ 1 and the light beam having the second wavelength ⁇ 2 and diffracts the light beam having the third wavelength ⁇ 3.
  • Information is recorded / reproduced so as to be compatible with an optical disc of the above type.
  • information is recorded / reproduced to be compatible with three different types of optical disks by using a diffraction structure that generates three different orders of diffracted light when light beams of three different wavelengths are incident.
  • Technology is also being developed. As an example, as shown in Table 1 and FIG. 1, when a blue-violet laser beam is incident, ⁇ 1st order diffracted light is generated, and when a red laser beam is incident, + 2nd order diffracted light is generated. When an infrared laser beam is incident, a diffractive structure that generates + third-order diffracted light is formed, thereby forming an appropriate focused spot on the information recording surface of a high-density optical disc, DVD, or CD.
  • This aspect is a preferable aspect that is easy to manufacture because it is not necessary to form a plurality of types of diffraction structures for compatibility.
  • the information recording surface of the BD is only one layer, no significant problem occurs even if unnecessary light having a diffraction order different from that of the main light is generated.
  • a two-layer type BD having a two-layer information recording surface has also been developed and already on the market, and it has been found that problems arise when such a two-layer type BD is used. More specifically, since the distance between the information recording surfaces of the two-layer type BD is relatively close to 25 ⁇ m, the first-order diffracted light is converted into the first diffracted light using the objective lens OBJ having the diffractive structure described above. When the light is condensed on the information recording surface L1 of the layer, the ⁇ 2nd order diffracted light is just condensed on the information recording surface L2 of the second layer, which may cause an error signal.
  • the present invention has been made in view of the problems of the prior art, and includes a BD having a plurality of information recording surfaces stacked in the thickness direction and / or a plurality of information recording surfaces stacked in the thickness direction.
  • An object of the present invention is to provide a diffractive element for an optical pickup device and an optical pickup device using the same that can increase the light use efficiency when using a CD while suppressing the generation of an error signal when the DVD is used. .
  • the diffractive element according to claim 1 includes a first light source that emits a first light flux having a wavelength ⁇ 1, a second light source that emits a second light flux having a wavelength ⁇ 2 ( ⁇ 1 ⁇ 2), and a wavelength ⁇ 3 ( ⁇ 2 ⁇ 3).
  • a third light source that emits a third light beam, an objective optical system, a light detector, and an optical path between the light source and the light detector, are disposed in the first light beam, the second light beam, and the first light beam.
  • a diffraction element through which three light beams pass in common, and the light beam from the first light source is condensed on the information recording surface of the first optical disk by the diffraction element and the objective optical system.
  • a diffraction element used in an optical pickup device for recording and / or reproducing information on an optical disc The first optical disc and / or the second optical disc has a plurality of information recording surfaces stacked in a thickness direction,
  • the diffractive element has a diffractive structure for correcting spherical aberration generated due to the thickness of a protective layer of the first optical disc, the second optical disc, and the third optical disc,
  • the diffractive structure has seven step surfaces extending substantially parallel to the optical axis of the diffractive element and seven terrace surfaces intersecting the step surface, and the adjacent terrace surface is light of the diffractive element.
  • the present inventor made the fourth to seventh or fifth to seventh terrace surfaces counted from the end of the step unit in the direction of the optical axis based on a seven-step staircase structure having a ring shape.
  • shifting it is possible to reduce the diffraction efficiency of the ⁇ 2nd order diffracted light, which is unnecessary light generated when a light beam with wavelength ⁇ 1 is incident, so the first information recording surface and the second information recording surface of the first optical disc
  • the information recording surface of the third optical disc can be appropriately recorded / reproduced, and the diffraction efficiency of the + third-order diffracted light, which is the main light when the light beam having the wavelength ⁇ 3 is incident, can be increased. It was also found that information can be recorded / reproduced appropriately.
  • the “fourth to seventh or fifth to seventh terrace surfaces” means the optical axis of the objective lens that is the most in one step unit in which seven adjacent terrace surfaces are gradually shifted in the optical axis direction. May be counted from a terrace surface that is closest to the optical axis of the objective lens, or may be counted from a terrace surface other than the end of one step unit.
  • the diffractive element according to a second aspect is the same as the diffractive element according to the first aspect, in the step periodic structure, along the optical axis direction by a predetermined amount of the fourth to seventh or fifth to seventh terrace surfaces.
  • is an optical path difference of wavelength ⁇ 1 ( ⁇ m) generated by the shift amount ⁇ .
  • ⁇ ⁇ ( ⁇ / ⁇ 1) ⁇ (n1-1) n1: The refractive index of the diffraction element at the wavelength ⁇ 1.
  • the diffractive element according to claim 3 includes a first light source that emits a first light flux having a wavelength ⁇ 1, a second light source that emits a second light flux having a wavelength ⁇ 2 ( ⁇ 1 ⁇ 2), and a wavelength ⁇ 3 ( ⁇ 2 ⁇ 3).
  • a third light source that emits the third light beam, an objective optical system, a photodetector, and a light path between the light source and the light detector, the first light beam, the second light beam, and the A diffraction element through which the third light beam passes in common, and the light beam from the first light source is condensed on the information recording surface of the first optical disk by the diffraction element and the objective optical system.
  • Information is recorded and / or reproduced on the first optical disk based on a signal from the photodetector that forms a spot and receives the reflected light, and a light beam from the second light source is diffracted.
  • the light is condensed on the information recording surface of the second optical disk by the element and the objective optical system.
  • information is recorded and / or reproduced on the second optical disk, and the light beam from the third light source is reflected.
  • a spot is formed by condensing the diffraction element and the objective optical system on an information recording surface of the third optical disk, and the reflected light is received on the basis of a signal from the photodetector.
  • a diffraction element used in an optical pickup device for recording and / or reproducing information with respect to an optical disc The first optical disc and / or the second optical disc has a plurality of information recording surfaces stacked in a thickness direction
  • the diffractive element has a diffractive structure for correcting spherical aberration generated due to the thickness of a protective layer of the first optical disc, the second optical disc, and the third optical disc
  • the diffractive structure has seven step surfaces extending substantially parallel to the optical axis of the diffractive element and seven terrace surfaces intersecting the step surface, and the adjacent terrace surface is light of the diffractive element.
  • a step periodic structure in which a plurality of stepped structures sequentially shifted in the axial direction are arranged along a direction intersecting the optical axis of the diffraction element, Of the diffracted light generated when the first light beam is incident on the diffractive structure, the -1st order diffracted light has the largest amount of diffracted light, and the diffracted light generated when the second light beam is incident on the diffractive structure + 2nd order diffracted light has the maximum amount of diffracted light, and among the diffracted light generated when the third light beam is incident on the diffractive structure, + 3rd order diffracted light has the maximum amount of diffracted light,
  • the step surfaces present in the step periodic structure are classified into three types: a step surface L having a maximum length, a step surface S having a minimum length, and a step surface M having an intermediate length. There are two or three step surfaces S having the minimum length between the step surface L having the maximum length and the step surface M having the intermediate length.
  • the present inventor has found that in a step periodic structure in which a plurality of 7-step staircase structures are arranged, the step surface existing in the step periodic structure has a step surface L having the maximum length and a length of the step surface.
  • the length is classified into three types, that is, the minimum step surface S and the intermediate step surface M, and the length is between the maximum step surface L and the intermediate step surface M. 2 or 3 can reduce the diffraction efficiency of the ⁇ 2nd order diffracted light, which is unnecessary light generated when a light beam having the wavelength ⁇ 1 is incident.
  • Information can be appropriately recorded / reproduced on both the first information recording surface and the second information recording surface of the optical disc, and the diffraction efficiency of the + third-order diffracted light, which is the main light when a light beam with wavelength ⁇ 3 is incident, is increased.
  • Information recording on the third optical disc It was found that information can be recorded / reproduced appropriately on the recording surface.
  • the length of the step surface refers to the length in the optical axis direction.
  • the diffraction element according to claim 4 is the invention according to any one of claims 1 to 3, wherein the step surface existing in the step periodic structure has a step surface L having a maximum length and a minimum length.
  • the stepped surface S and the stepped surface M having an intermediate length are classified into three types, and the three types of stepped surfaces and the wavelength ⁇ 1 satisfy the following expressions.
  • ⁇ L is the phase difference of the wavelength ⁇ 1 generated by the step surface L having the maximum length
  • ⁇ S is the phase difference of the wavelength ⁇ 1 generated by the step surface S having the minimum length
  • ⁇ M is the long Is the phase difference of the wavelength ⁇ 1 generated by the intermediate stepped surface M.
  • ⁇ S ⁇ S -ROUND ( ⁇ S )
  • ⁇ S (d S / ⁇ 1) ⁇ (n1-1)
  • ⁇ M ⁇ M -ROUND ( ⁇ M )
  • ⁇ M (d M / ⁇ 1) ⁇ (n1-1) Refractive index of the diffraction element at the wavelength ⁇ 1 ( ⁇ m): n1
  • the step surface existing in the step periodic structure has a step surface L having a maximum length and a minimum length.
  • the refractive index n1 of the diffractive element at the wavelength ⁇ 1 and the three types of stepped surfaces are classified into the following formulas: 6.00 ⁇
  • the diffractive element according to claim 6 is the invention according to any one of claims 1 to 3, wherein the step surface existing in the step periodic structure has a step surface L having a maximum length and a minimum length.
  • the refractive index n1 of the diffractive element at the wavelength ⁇ 1 and the three types of stepped surfaces are classified into the following formulas: 6.40 ⁇
  • the diffractive element according to claim 7 is the diffractive element according to any one of claims 1 to 6, wherein the step surface existing in the step periodic structure has a step surface L having a maximum length and a minimum length.
  • the step surface S and the step surface M having an intermediate length the number of the step surfaces L having the maximum length, the number of the step surfaces S having the minimum length, and the length
  • the ratio of the number of intermediate step surfaces M is approximately 1: 5: 1.
  • the diffractive element according to an eighth aspect is the invention according to any one of the first to seventh aspects, wherein the step surface existing in the step periodic structure has a step surface L having a maximum length and a minimum length.
  • the step surface S and the step surface M having an intermediate length are classified into three types, and the step surface S having the smallest length and the step surface M having the intermediate length have the same sign of length.
  • the step surface L having the maximum length and the step surface S having the minimum length are characterized by having different length signs. Note that “the signs of the lengths are different from each other” means that one of the step surfaces to be compared faces the optical axis and the other faces the opposite of the optical axis.
  • a diffraction element is characterized in that, in the invention according to any one of the first to eighth aspects, the following expression is satisfied.
  • 1
  • 2
  • 3
  • a diffractive element according to claim 10 is characterized in that, in the invention according to any one of claims 1 to 9, the diffractive element is integrated with the objective optical system. “Integrated” means when the diffractive element and the objective optical system are integrated via another member such as a lens frame, or when the diffractive structure is formed on a single objective optical system (objective lens) Including.
  • An optical pickup device includes the diffractive element according to any one of the first to tenth aspects.
  • the optical pickup device includes at least a first light source, a second light source, and a third light source. Furthermore, the optical pickup device of the present invention condenses the first light flux on the information recording surface of the first optical disc, condenses the second light flux on the information recording surface of the second optical disc, and causes the third light flux to be third. It has a condensing optical system for condensing on the information recording surface of the optical disc.
  • the optical pickup device of the present invention includes a light receiving element that receives reflected light from the information recording surfaces of the first optical disc, the second optical disc, and the third optical disc.
  • the first optical disc has a protective substrate having a thickness of t1 and a first information recording surface, and preferably the protective substrate having a thickness of t1 ′ (t1 ⁇ t1 ′) and the second information recording surface are arranged in the thickness direction. And laminated.
  • the second optical disc has a protective substrate having a thickness of t2 (t1, t1 ′ ⁇ t2) and an information recording surface, and preferably has a thickness of t2 ′ (t1, t1 ′ ⁇ t2 ′ ⁇ t2).
  • a substrate and a second information recording surface are stacked in the thickness direction.
  • the third optical disc has a protective substrate having a thickness t3 (t2 ⁇ t3) and an information recording surface.
  • the first optical disk is preferably a high density optical disk
  • the second optical disk is a DVD
  • the third optical disk is preferably a CD, but is not limited thereto.
  • the first optical disc, the second optical disc, or the third optical disc may be a multi-layer optical disc having a plurality of information recording surfaces.
  • BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm.
  • BD series optical disc of about 125 mm, and includes a BD having only a single information recording layer, a BD having two or more information recording layers, and the like.
  • a DVD is a DVD series optical disc in which information is recorded / reproduced by an objective optical system having an NA of about 0.60 to 0.67, and a protective substrate has a thickness of about 0.6 mm.
  • a CD is a CD series optical disc in which information is recorded / reproduced by an objective optical system having an NA of about 0.45 to 0.51 and a protective substrate has a thickness of about 1.2 mm. It is a generic term and includes CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like. As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
  • the present invention is not limited to this.
  • the first light source, the second light source, and the third light source are preferably laser light sources.
  • the laser light source a semiconductor laser, a silicon laser, or the like can be preferably used.
  • the wavelength ⁇ 3 ( ⁇ 3> ⁇ 2) is defined by the following conditional expressions (5), (6), 1.5 ⁇ ⁇ 1 ⁇ 2 ⁇ 1.7 ⁇ ⁇ 1 (5) 1.9 ⁇ ⁇ 1 ⁇ 3 ⁇ 2.1 ⁇ ⁇ 1 (6) It is preferable to satisfy.
  • the first wavelength ⁇ 1 of the first light source is 390 nm or more and 420 nm or less.
  • the second wavelength ⁇ 2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less, and the third wavelength ⁇ 3 of the third light source is preferably 750 nm or more and 880 nm or less, and more Preferably, it is 760 nm or more and 820 nm or less.
  • the first light source, the second light source, and the third light source may be unitized.
  • the unitization means that the first light source and the second light source are fixedly housed in one package, for example. However, the unitization is not limited to this, and the two light sources are fixed so that the aberration cannot be corrected. Is widely included.
  • a light receiving element to be described later may be packaged.
  • a photodetector such as a photodiode is preferably used.
  • Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal.
  • it detects the change in the light amount due to the change in the shape and position of the spot on the light receiving element, performs focus detection and track detection, and moves the objective optical system for focusing and tracking based on this detection I can do it.
  • the light receiving element may comprise a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element.
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
  • the optical pickup device has a monitoring means for monitoring the intensity of the light beam before the light beam emitted from the light source enters the objective optical system.
  • a monitor means can detect the intensity of the light beam emitted from the light source, but does not detect the intensity of the light beam after passing through the objective optical system. It cannot be detected. Therefore, the effect of the present invention becomes more remarkable in the optical pickup device having such a monitoring means.
  • the condensing optical system of the optical pickup device includes an objective optical system.
  • the condensing optical system may include only the objective optical system, but may include a coupling lens such as a collimator lens in addition to the objective optical system.
  • the coupling lens is a single lens or a lens group that is disposed between the objective optical system and the light source and changes the divergence angle of the light beam.
  • the collimating lens is a kind of coupling lens, and is a lens that emits light incident on the collimating lens as parallel light.
  • the condensing optical system has an optical element such as a diffractive optical element that divides the light beam emitted from the light source into a main light beam used for recording and reproducing information and two sub light beams used for tracking and the like.
  • the objective optical system refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk.
  • the objective optical system is an optical system which is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing a light beam emitted from the light source on the information recording surface of the optical disk, and further includes an actuator
  • An optical system that can be integrally displaced at least in the optical axis direction.
  • the objective optical system may be composed of two or more plural lenses or may be a single lens, but is preferably a single lens.
  • the objective optical system When the objective optical system has a plurality of lenses, it may be a combination of a flat optical element having a diffractive structure and an aspheric lens (which may or may not have a diffractive structure).
  • the refractive surface is preferably an aspherical surface.
  • the base surface on which the diffractive structure is provided is preferably an aspherical surface.
  • the objective optical system is preferably a plastic lens.
  • the resin material it is preferable to use a cyclic olefin-based resin material, and among the cyclic olefin-based materials, the refractive index at a temperature of 25 ° C. with respect to a wavelength of 405 nm is in the range of 1.53 to 1.60, The refractive index change rate dN / dT (° C. ⁇ 1 ) with respect to a wavelength of 405 nm accompanying a temperature change within a temperature range of 5 ° C. to 70 ° C.
  • the coupling lens is preferably a plastic lens.
  • a resin material are Apel manufactured by Mitsui Chemicals, Inc. and ZEONEX manufactured by ZEON Corporation, which are preferable because they are excellent in resistance to light in the wavelength region near 405 nm.
  • At least one optical surface of the objective optical system has a central region and a peripheral region around the central region. More preferably, at least one optical surface of the objective optical system has an outermost peripheral region around the peripheral region. By providing the outermost peripheral region, it becomes possible to perform recording and / or reproduction with respect to the high-density optical disc more appropriately.
  • the central region is preferably a region including the optical axis of the objective optical system, but may be a region not including the optical axis. It is preferable that the central region, the peripheral region, and the most peripheral region are provided on the same optical surface.
  • the central region, the peripheral region, and the most peripheral region are preferably provided concentrically around the optical axis on the same optical surface.
  • a diffractive structure is provided in the central region and the peripheral region of the objective optical system.
  • the outermost peripheral region may be a refractive surface, or a diffractive structure may be provided in the outermost peripheral region.
  • the central region, the peripheral region, and the outermost peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
  • the diffractive structure referred to in this specification is a general term for structures that add an optical path difference and / or a phase difference to an incident light beam.
  • the diffractive structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux.
  • the optical path difference added by the diffractive structure may be an integral multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam.
  • the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the diffractive structure can have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shape including the optical axis is roughly classified into a blazed structure and a staircase structure.
  • the blazed structure is a sawtooth-shaped cross section including the optical axis of the objective optical system having a diffraction groove.
  • the optical pickup device includes a plurality of step surfaces ST extending along a substantially optical axis direction (vertical direction in the drawing) of the optical pickup device, and a slope CP connecting adjacent step surfaces.
  • the upper side is the light source side and the lower side is the photodetector side, and a diffraction groove is formed on a parallel plate.
  • the length of one blazed unit in the direction perpendicular to the optical axis is referred to as a pitch P (see FIGS. 2A and 2B).
  • the length in the optical axis direction of the step surface parallel to the optical axis of the blaze is referred to as a step amount B (or sometimes referred to as a blaze height h) (see FIG. 2A).
  • the staircase structure is a structure in which the cross-sectional shape including the optical axis of an optical element having a diffraction groove is a small step (referred to as a step unit). More specifically, it has a plurality of step surfaces ST extending substantially along the optical axis direction of the optical pickup device, and a plurality of terrace surfaces TR intersecting with the step surfaces.
  • the stepped structure shown in FIG. 2C has three or more (seven in the figure) step surfaces ST and three or more (seven in the figure) terrace surfaces TR, and adjacent terrace surfaces TR.
  • the step periodic structure is formed by arranging a plurality of step units, which are sequentially shifted in the optical axis direction of the optical pickup device, along the direction intersecting the optical axis of the optical pickup device (left-right direction in the figure). It will be. That is, in particular, the staircase structure with three or more terrace surfaces TR has a small step surface ST and a large step surface LST. In this specification, when there are three terrace surfaces, it is referred to as a three-step structure, and when there are seven terrace surfaces, it is referred to as a seven-step structure.
  • the diffractive structure shown in FIG. 2D is a configuration in which the terrace surfaces TR sandwiched between the end portions of adjacent step surfaces ST and ST extending substantially in the optical axis direction are connected to each other.
  • the terrace surfaces TR and TR are parallel to each other and shifted in the optical axis direction.
  • a structure in which one or more terraces TR are shifted in the direction of lowering by an equal amount from the highest side is also a staircase structure.
  • the length of one staircase unit in the direction perpendicular to the optical axis is referred to as pitch P (see FIGS. 2C and 2D).
  • the lengths of the step surfaces LST and ST along the optical axis direction are referred to as step amounts B1 and B2.
  • a large step amount B1 (kth step amount) and a small step amount B2 exist (see FIG. 2C). At least one of the quantities B2 is changed.
  • B1 B2.
  • the diffractive structure is preferably a structure in which a certain unit shape is periodically repeated.
  • unit shape is periodically repeated” naturally includes shapes in which the same shape is repeated in the same cycle.
  • the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”.
  • the sawtooth shape as a unit shape is repeated. As shown in FIG. 2 (a), the same sawtooth shape may be repeated.
  • the diffractive structure has a stepped structure
  • the diffractive structure preferably has a plurality of concentric annular zones around the optical axis. Each annular zone is preferably separated by a step. Further, the diffractive structure is preferably a type of structure in which a step-like pattern having a cross-sectional shape including the optical axis is repeated. A plurality of diffraction structures may be superimposed on the same region. “Superimposition” means literally overlapping. In this specification, when a diffractive structure and another diffractive structure are provided on different optical surfaces, or even if a diffractive structure and another diffractive structure are on the same optical surface, different regions are used. In the case where there is no overlapping region, it is not superposition in this specification.
  • At least a first diffractive structure is provided in the central region of the objective optical system. Further, it is preferable that at least the second diffractive structure is provided in the peripheral region of the objective optical system.
  • the diffraction order of the diffracted light having the maximum diffracted light quantity is M
  • the first diffraction Of the diffracted light generated when the second light flux of wavelength ⁇ 2 from the second light source is incident on the structure is N
  • the first diffractive structure is Of the diffracted light generated when the third light flux of wavelength ⁇ 3 is incident, when the diffraction order of the diffracted light having the maximum diffracted light amount is O, at least one of M, N, and O is positive, And at least one of M, N, and O is negative.
  • the first diffractive structure is preferably a compatible structure for different optical disks.
  • Examples of preferable combinations of M, N, and O include the following.
  • the first diffractive structure is the diffractive structure according to the present invention.
  • the diffraction order of the diffracted light having the maximum diffracted light quantity is P
  • the second diffraction Of the diffracted light generated when the second light flux of wavelength ⁇ 2 from the second light source is incident on the structure it is preferable that P ⁇ Q, where Q is the diffraction order of the diffracted light having the maximum diffracted light quantity.
  • This second optical path difference providing structure is also preferably a structure for compatibility with different optical disks.
  • the objective optical system has a diffractive structure for temperature characteristic correction that corrects an aberration caused by a temperature change of the objective optical system.
  • the “diffractive structure for correcting temperature characteristics” refers to a diffractive structure that corrects aberrations that occur when a temperature change occurs. For example, the temperature of the first light source, the second light source, and the third light source increases when the temperature rises. This is a diffractive structure having a function of making the spherical aberration in the direction of insufficient correction when is extended.
  • this diffractive structure for temperature characteristic correction is provided so as to overlap with the first diffractive structure in the central region, it is preferable that this is the third diffractive structure.
  • the diffractive structure for temperature characteristic correction is provided so as to overlap the second diffractive structure in the peripheral region, it is preferable that this is the fourth diffractive structure.
  • the objective optical system has a most peripheral region as described later and a diffractive structure for temperature characteristic correction is provided in the most peripheral region, this is preferably the fifth diffractive structure.
  • the diffraction order of the diffracted light having the maximum diffracted light amount is R, and the second light beam is incident on the third diffractive structure.
  • the diffraction order of the diffracted light having the maximum diffracted light amount is S, and the diffracted light having the maximum diffracted light amount among the diffracted light generated when the third light beam enters the third diffractive structure is diffracted.
  • the diffraction order of the diffracted light having the maximum diffracted light quantity is V
  • the second light flux is incident on the fourth diffractive structure.
  • the diffraction order of the diffracted light having the maximum amount of diffracted light is denoted by W.
  • (V, W) (+ 10, +6), (+5, +3) or (+2, +1).
  • the diffractive structure provided in the central region of the objective optical system and the diffractive structure provided in the peripheral region of the objective optical system may be provided on different optical surfaces of the objective optical system. It is preferable to be provided on the surface. Providing them on the same optical surface is preferable because it makes it possible to reduce eccentricity errors during manufacturing.
  • the diffractive structure is preferably provided on the light source side surface of the objective optical system rather than the surface of the objective optical system on the optical disc side.
  • the objective optical system may further include a diffractive structure for flare out of the third light flux in the peripheral region.
  • the diffractive structure for flare out the diffraction order of the diffracted light having the maximum diffracted light amount among the diffracted light generated when the first light beam with the wavelength ⁇ 1 from the first light source is incident on the diffractive structure is denoted by A.
  • the diffraction order of the diffracted light having the maximum diffracted light amount is B, and the wavelength ⁇ 3 from the third light source is applied to the diffractive structure.
  • the third light flux that has passed through the flaring diffraction structure does not converge on the information recording surface of the third optical disk.
  • the objective optical system condenses the first light beam, the second light beam, and the third light beam that pass through the central region of the objective optical system so as to form a condensing spot. Further, when the thicknesses t1 and t1 ′ of the protective substrate of the first optical disc are different from the thickness t2 of the protective substrate of the second optical disc, the first diffractive structure has the first light flux and the second light flux that have passed through the first diffractive structure. On the other hand, due to the spherical aberration generated due to the difference between the thickness t1, t1 ′ of the protective substrate of the first optical disc and the thickness t2 of the protective substrate of the second optical disc, and / or the difference between the wavelengths of the first light flux and the second light flux.
  • the first diffractive structure has a thickness t1, t1 ′ of the protective substrate of the first optical disc and a thickness t3 of the protective substrate of the third optical disc with respect to the first light flux and the third light flux that have passed through the first diffractive structure. It is preferable to correct spherical aberration caused by the difference between the first and third light fluxes and / or spherical aberration caused by the difference between the first light flux and the third light flux.
  • the objective optical system condenses the first light flux and the second light flux that pass through the peripheral area of the objective optical system so as to form a condensed spot.
  • the second diffractive structure has the first light flux and the second light flux that have passed through the second diffractive structure.
  • the spherical aberration generated due to the difference between the thickness t1, t1 ′ of the protective substrate of the first optical disc and the thickness t2 of the protective substrate of the second optical disc and / or the difference between the wavelengths of the first light flux and the second light flux. It is preferable to correct the generated spherical aberration.
  • the third light flux that has passed through the peripheral region having the diffractive structure for flare out is not used for recording and / or reproduction of the third optical disc. It is preferable that the third light flux that has passed through the peripheral region does not contribute to the formation of a focused spot on the information recording surface of the third optical disc. That is, the third light flux that passes through the peripheral area of the objective lens preferably forms a flare on the information recording surface of the third optical disc. In the spot formed on the information recording surface of the third optical disc by the third light flux that has passed through the objective lens, the spot center portion having a high light amount density and the light amount density in order from the optical axis side (or the spot center portion) to the outside.
  • the spot middle part lower than the spot center part and a spot peripheral part whose light intensity is higher than the spot middle part and lower than the spot center part.
  • the center portion of the spot is used for recording and / or reproducing information on the optical disc, and the spot intermediate portion and the spot peripheral portion are not used for recording and / or reproducing information on the optical disc.
  • this spot peripheral part is called flare. That is, the third light flux that has passed through the peripheral area of the objective optical system forms a spot peripheral portion on the information recording surface of the third optical disc.
  • the spot formed on the information recording surface of the second optical disc has a spot central portion, a spot intermediate portion, and a spot peripheral portion.
  • a third diffractive structure for correcting an aberration caused by a temperature change of the objective diffractive structure is superimposed on the first diffractive structure, and the objective optic is applied to the second diffractive structure.
  • a diffractive structure may be provided so that the third light flux that has passed through the peripheral region does not form a flare on the information recording surface of the third optical disc.
  • the objective optical system When the objective optical system has the outermost peripheral area, the objective optical system can record and / or reproduce information on the information recording surface of the first optical disc by using the first light flux passing through the outermost peripheral area of the objective optical system. Condensed to Further, it is preferable that the spherical aberration of the first light flux that has passed through the most peripheral area is corrected during recording and / or reproduction of the first optical disk.
  • the second light flux that has passed through the outermost peripheral area is not used for recording and / or reproduction of the second optical disk, and the third light flux that has passed through the outermost peripheral area is recorded and / or recorded on the third optical disk.
  • An embodiment that is not used for reproduction is included. It is preferable that the second light flux and the third light flux that have passed through the outermost peripheral region do not contribute to the formation of a condensed spot on the information recording surfaces of the second optical disc and the third optical disc, respectively. That is, when the objective optical system has the outermost peripheral region, it is preferable that the third light flux passing through the outermost peripheral region of the objective optical system forms a flare on the information recording surface of the third optical disc.
  • the third light flux that has passed through the outermost peripheral region of the objective optical system forms a spot peripheral portion on the information recording surface of the third optical disc.
  • the second light flux that passes through the most peripheral area of the objective optical system preferably forms a flare on the information recording surface of the second optical disc.
  • the second light flux that has passed through the outermost peripheral region of the objective optical system preferably forms a spot peripheral portion on the information recording surface of the second optical disc.
  • the second light flux and the third light flux that have passed through the most peripheral area may not form flare on the information recording surfaces of the second optical disk and the third optical disk.
  • an annular zone with a small pitch width may occur.
  • the pitch width refers to the width in the direction orthogonal to the optical axis of the optical element having an annular structure and an optical path difference providing structure.
  • this ring width is less than 5 ⁇ m, even if this ring zone is cut or filled, the optical performance is not greatly affected.
  • the ring zone width is less than 5 ⁇ m, even if the ring zone with this small ring zone width is cut, the optical performance is not greatly affected.
  • the pitch width of the step is not too small. Therefore, when an annular zone having a pitch width of less than 5 ⁇ m is generated when the diffractive structure is designed, it is preferable to obtain a final diffractive structure by removing the annular zone having a zone width of less than 5 ⁇ m. . If the ring zone with a ring width less than 5 ⁇ m is convex, it can be removed by cutting the ring zone. If the ring zone with a ring width less than 5 ⁇ m is concave, fill the ring zone. Just remove it.
  • the ring width of the optical system is 5 ⁇ m or more.
  • the value of (step amount / ring zone width) is 1 or less in all ring zones of the diffractive structure. It is 8 or less. More preferably, the value of (level difference / ring zone width) is preferably 1 or less, and more preferably 0.8 or less, in all the annular zones of all diffractive structures.
  • An objective lens necessary for reproducing and / or recording information on the second optical disk is set to NA1 on the image side numerical aperture of the objective optical system necessary for reproducing and / or recording information on the first optical disk.
  • Is NA2 (NA1 ⁇ NA2), and the image side numerical aperture of the objective optical system necessary for reproducing and / or recording information on the third optical disk is NA3 (NA2> NA3).
  • NA1 is preferably 0.8 or more and 0.9 or less, or preferably 0.55 or more and 0.7 or less.
  • NA1 is preferably 0.85.
  • NA2 is preferably 0.55 or more and 0.7 or less.
  • NA2 is preferably 0.60.
  • NA3 is preferably 0.4 or more and 0.55 or less.
  • NA3 is preferably 0.45 or 0.53.
  • the boundary between the central region and the peripheral region of the objective optical system is 0.9 ⁇ NA 3 or more and 1.2 ⁇ NA 3 or less (more preferably 0.95 ⁇ NA 3 or more, 1.15 ⁇ It is preferably formed in a portion corresponding to the range of NA3 or less. More preferably, the boundary between the central region and the peripheral region of the objective lens is formed in a portion corresponding to NA3. Further, the boundary between the peripheral area and the most peripheral area of the objective optical system is 0.9 ⁇ NA 2 or more and 1.2 ⁇ NA 2 or less (more preferably 0.95 ⁇ NA 2 or more, 1) when the second light flux is used. .15 ⁇ NA2 or less) is preferable.
  • the boundary between the peripheral region and the most peripheral region of the objective lens is formed in a portion corresponding to NA2.
  • the outer boundary of the outermost peripheral region of the objective optical system is 0.9 ⁇ NA1 or more and 1.2NA1 or less (more preferably 0.95 ⁇ NA1 or more and 1.15 ⁇ NA1 or less) when the first light beam is used. ) Is preferably formed in a portion corresponding to the range. More preferably, the outer boundary of the outermost peripheral region of the objective optical system is formed in a portion corresponding to NA1.
  • the spherical aberration has at least one discontinuous portion.
  • the discontinuous portion has a range of 0.9 ⁇ NA 3 or more and 1.2 ⁇ NA 3 or less (more preferably 0.95 ⁇ NA 3 or more and 1.15 ⁇ NA 3 or less) when the third light flux is used. It is preferable that it exists in.
  • the spherical aberration has at least one discontinuous portion.
  • the discontinuous portion is in a range of 0.9 ⁇ NA 2 or more and 1.2 ⁇ NA 2 or less (more preferably 0.95 ⁇ NA 2 or more and 1.1 ⁇ NA 2 or less) when the second light flux is used. It is preferable that it exists in.
  • NA2 it is preferable that the absolute value of the longitudinal spherical aberration is 0.03 ⁇ m or more, and in NA3, the absolute value of the longitudinal spherical aberration is 0.02 ⁇ m or less. More preferably, in NA2, the absolute value of longitudinal spherical aberration is 0.08 ⁇ m or more, and in NA3, the absolute value of longitudinal spherical aberration is 0.01 ⁇ m or less.
  • NA1 when the second light flux that has passed through the objective lens is condensed on the information recording surface of the second optical disc, NA1 has an absolute value of longitudinal spherical aberration of 0.03 ⁇ m or more, and NA2 exhibits longitudinal spherical aberration.
  • the absolute value is preferably 0.005 ⁇ m or less.
  • An optical disk drive device having the above-described optical pickup device can be incorporated in the optical information recording / reproducing device.
  • the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out and a system in which the optical disk drive apparatus main body in which the optical pickup device or the like is stored is taken out.
  • the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
  • the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • generation of an error signal is suppressed when using a BD having a plurality of information recording surfaces stacked in the thickness direction and / or when using a DVD having a plurality of information recording surfaces stacked in the thickness direction.
  • an objective lens for an optical pickup device capable of increasing the light utilization efficiency when using a CD, and an optical pickup device using the objective lens.
  • FIG. 1 is a cross-sectional view showing a stepped structure of Example 1.
  • FIG. 1 shows the state of the wave front when the light beam of wavelength (lambda) 1 is entered into the objective optical system of Example 1.
  • FIG. It is a figure which shows the state of the wave front when the light beam of wavelength (lambda) 2 is entered into the objective optical system of Example 1.
  • FIG. It is sectional drawing which shows the step type structure of Example 2.
  • FIG. 3 schematically shows a configuration of the optical pickup apparatus PU1 of the present embodiment that can appropriately record and / or reproduce information on a two-layer type BD, DVD, and CD, which are different optical disks.
  • FIG. 3 Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device.
  • the first optical disc is a BD
  • the second optical disc is a DVD
  • the third optical disc is a CD.
  • the present invention is not limited to the present embodiment.
  • the optical pickup device PU1 emits a laser beam (first beam) of 405 nm that is emitted when recording / reproducing information with respect to the objective optical system OBJ, aperture ST, collimator lens CL, dichroic prism PPS, and BD.
  • 1 semiconductor laser LD1 (1st light source), 1st light receiving element PD1 which receives the reflected light beam from the information recording surface RL1 of BD, laser module LM, etc.
  • the laser module LM also emits a 658 nm laser beam (second beam) when recording / reproducing information on a DVD and emits a 658 nm laser beam (second beam), and a CD.
  • a third semiconductor laser EP2 (third light source) that emits a 785 nm laser beam (third beam) when recording / reproducing information and a second beam that receives a reflected beam from the information recording surface RL2 of the DVD.
  • the objective optical system OBJ of the present embodiment is a single lens made of polyolefin plastic, and according to the type of light beam passing therethrough, as shown in FIG. 4, a central region CN including the optical axis and its surroundings Can be divided into a peripheral region MD of the second peripheral region MD and a peripheral region OT around the peripheral region MD.
  • a first diffractive structure is formed in the central region of the optical surface on the light source side (or on the optical disc side).
  • the first diffractive structure has seven step surfaces extending substantially parallel to the optical axis of the objective optical system OBJ and seven terrace surfaces intersecting the step surface, and adjacent terrace surfaces of the objective lens OBJ.
  • a predetermined amount of light is emitted from the fourth to seventh or fifth to seventh terrace surfaces counted from the terrace surface closest to the center of the objective optical system OBJ. It includes a step periodic structure in which a plurality of step units shifted to the center side of the objective optical system OBJ along the axial direction are arranged along the direction intersecting the optical axis of the objective lens OBJ.
  • the diffraction order of the diffracted light having the maximum diffracted light amount is M
  • the first Of the diffracted light generated when the second light beam having the wavelength ⁇ 2 from the laser module LM is incident on the optical path difference providing structure the diffraction order of the diffracted light having the maximum diffracted light quantity is N
  • the first optical path difference providing structure is provided.
  • the second diffraction structure and the fourth diffraction structure are superimposed.
  • the diffraction order of the diffracted light having the maximum diffracted light amount is P
  • the second light flux having the wavelength ⁇ 2 is input to the second diffractive structure.
  • the diffraction order of the diffracted light having the maximum diffracted light amount is V
  • the fourth diffractive structure has the second wavelength ⁇ 2.
  • W is the diffraction order of the diffracted light having the maximum amount of diffracted light.
  • the diffraction order of the diffracted light having the maximum diffracted light amount is set to 0.
  • the diffracted light generated when the second light flux having the wavelength ⁇ 2 from the laser module LM is incident on the diffractive structure is set to 0.
  • the diffraction order of the diffracted light having the maximum diffracted light quantity is set to 0.
  • the diffracted light generated when the third light flux having the wavelength ⁇ 3 is incident is ⁇ 1.
  • the divergent light beam passes through the dichroic prism PPS and is made into a weak finite convergent light beam or a parallel light beam by the collimating lens CL, and then the diameter of the light beam is regulated by the stop ST, and the objective optical system OBJ has a thickness of 0.05 mm. It becomes a spot formed on the information recording surface RL1 of the BD via the substrate PL1.
  • the reflected light beam modulated by the information pits on the information recording surface RL1 is transmitted again through the objective optical system OBJ and the aperture stop ST, then converged by the collimating lens CL, transmitted through the dichroic prism PPS, and then the first light receiving light. It converges on the light receiving surface of the element PD1. Then, using the output signal of the first light receiving element PD1, the information recorded on the BD can be read by causing the objective optical system OBJ to be focused or tracked by the biaxial actuator AC.
  • the collimating lens CL When recording / reproducing information on the second information recording surface RL1 ′ of the BD, the collimating lens CL is displaced to a second optical axis direction position different from the first optical axis direction position, and the blue-violet semiconductor laser LD1
  • the reflected light beam modulated by the information pits on the information recording surface RL1 ′ is again transmitted through the objective optical system OBJ and the aperture stop ST, then is converged by the collimating lens CL, and is transmitted through the dichroic prism PPS. It converges on the light receiving surface of the light receiving element PD1. Then, using the output signal of the first light receiving element PD1, the information recorded on the BD can be read by causing the objective optical system OBJ to be focused or tracked by the biaxial actuator AC.
  • the collimating lens CL When recording / reproducing information on the information recording surface RL2 of the DVD, the collimating lens CL is displaced to the first optical axis direction position or the second optical axis direction position, and the second light beam emitted from the red semiconductor laser EP1.
  • the light beam condensed by the central region and the peripheral region of the objective optical system OBJ (the light beam that has passed through the most peripheral region is flared and forms a spot peripheral part) is a protective substrate PL2 having a thickness of 0.6 mm.
  • the reflected light beam modulated by the information pits on the information recording surface RL2 is transmitted again through the objective optical system OBJ and the aperture stop ST, then converged by the collimating lens CL, reflected by the dichroic prism PPS, and then the prism. After being reflected twice in the PS, it converges on the second light receiving element DS1.
  • the information recorded on the DVD can be read using the output signal of the second light receiving element DS1.
  • the collimating lens CL When recording / reproducing information on the information recording surface RL3 of the CD, the collimating lens CL is displaced to the first optical axis direction position or the second optical axis direction position, and the third laser beam emitted from the infrared semiconductor laser EP2 is used.
  • the light beam collected by the central region of the objective optical system OBJ becomes a spot formed on the information recording surface RL3 of the CD via the protective substrate PL3 having a thickness of 1.2 mm.
  • the light beam outside the central region is shielded by a dichroic filter (not shown) arranged in front of the objective optical system OBJ and does not enter the peripheral region and the most peripheral region of the objective lens OBJ.
  • the reflected light beam modulated by the information pits on the information recording surface RL3 again passes through the objective optical system OBJ and the aperture stop ST, then becomes a convergent light beam by the collimating lens CL, is reflected by the dichroic prism PPS, and then is reflected by the prism. And then converges to the third light receiving element DS2.
  • the information recorded on the CD can be read using the output signal of the third light receiving element DS2.
  • the objective optical system described here is an example in which the diffraction element of the present invention and the objective optical system are integrated. Note that, in the cross-sectional views of the comparative example and the example, the sign of the diffraction order is defined as “+” when the light beam incident along the horizontal optical axis approaches the optical axis, and “ ⁇ ” when separated from the optical axis.
  • the step amount di is defined as + in the direction toward the right side (side away from the center of the objective optical system) from the terrace surface adjacent to the upper side (the optical axis direction outer side),
  • the direction toward the left side (side closer to the center of the objective optical system) from the upper adjacent terrace surface is defined as ⁇ .
  • the sign of the blaze height h is + for the direction toward the right side from the upper adjacent slope, and ⁇ for the direction toward the left side from the upper adjacent slope.
  • the reference numerals described after the numerical values of the step amount di and the blaze height h represent the step amount di and the sign of the blaze height h as described above.
  • the step-like structures of the following comparative examples and examples are shown as being formed on a parallel plate for easy understanding, but when formed on a single objective optical system, the aspheric shape is used. Accordingly, the terrace surface is shifted in the optical axis direction.
  • the comparative example is an objective optical system having an annular diffraction groove in the center region, which is formed by periodically repeating a seven-step stepped structure having seven terrace surfaces as one step unit.
  • FIG. 5 is a sectional view in the optical axis direction of the objective optical system of the comparative example.
  • the length of the first to sixth step surfaces 0.839 ⁇ m
  • the length of the seventh step surface ⁇ 5.032 ⁇ m.
  • the diffraction efficiency of the ⁇ 1st order diffracted light that is the main light of the first light flux is 89.2%
  • the diffraction efficiency of the ⁇ 2nd order diffracted light that is unnecessary light is 1.4%
  • the + 2nd order diffracted light of the second light flux is The diffraction efficiency is 67.3%
  • the diffraction efficiency of the + 3rd order diffracted light of the third light beam is 52.4%. Therefore, the light intensity of unnecessary light is relatively high, and an error signal may be generated when information is recorded / reproduced on the first information recording surface of the BD.
  • Example 1 Similar to the comparative example, Example 1 is based on a seven-step staircase structure with seven terrace surfaces, and the fourth to seventh terrace surfaces counted from the terrace surface TRO closest to the center of the objective optical system.
  • Table 2 shows the shape data of the objective optical system provided in the central region.
  • FIG. 6 is a cross-sectional view of the objective lens of Example 1 in the optical axis direction.
  • the length of the first and second step surfaces is 0.832 ⁇ m
  • the length of the third step surface is ⁇ 6.399 ⁇ m
  • the fourth to sixth steps The length of the step surface is 0.832 ⁇ m
  • the length of the seventh step surface is 2.241 ⁇ m.
  • there are two step surfaces (long) between the step surface d 3 having the maximum length among the step surfaces between adjacent terrace surfaces and the step surface d 7 having the second largest length. D 1 , d 2 ) are arranged.
  • the step periodic structure of the first embodiment (same as the second embodiment described later) also has a step cycle that is periodically repeated with a seven-step staircase structure extending over adjacent step units as one unit. It can also be called a structure.
  • step Since the wavefronts of the light beams that have passed through the first terrace surface in the unit and the first terrace surface in the adjacent step unit are shifted by ⁇ 1 ⁇ ⁇ 1 wavelength ( ⁇ 1j ⁇ 1)
  • the diffraction order of the first light beam that has passed through the staircase structure is ⁇ 1.
  • the order is + 2nd order.
  • step surfaces existing in the step periodic structure are classified into three types, that is, the step surface L having the maximum length, the step surface S having the minimum length, and the step surface M having the intermediate length.
  • the three types of step surfaces and the wavelength ⁇ 1 satisfy the following expression.
  • ⁇ L is the phase difference of the wavelength ⁇ 1 generated by the step surface L having the maximum length
  • ⁇ S is the phase difference of the wavelength ⁇ 1 generated by the step surface S having the minimum length
  • ⁇ M is the long Is the phase difference of the wavelength ⁇ 1 generated by the intermediate stepped surface M.
  • ⁇ S ⁇ S -ROUND ( ⁇ S )
  • ⁇ S (d S / ⁇ 1) ⁇ (n1-1)
  • ⁇ M ⁇ M -ROUND ( ⁇ M )
  • ⁇ M (d M / ⁇ 1) ⁇ (n1-1) Refractive index of the diffraction element at the wavelength ⁇ 1 ( ⁇ m): n1
  • the shift amount ⁇ ⁇ 7.230 ⁇ m
  • the step surface L having the maximum step amount between the third terrace surface and the fourth terrace surface is 1
  • the second terrace surface is a step surface M having an intermediate step amount
  • the other step surface S has the smallest step amount
  • d L ⁇ 6.399 ⁇ m
  • d S 0.832 ⁇ m
  • d M 2.241 ⁇ m
  • n1 1.56,
  • a 10
  • the ratio of the number of the step surfaces L having the maximum length, the number of the step surfaces S having the minimum length, and the number of the step surfaces M having the intermediate length is 1: 5: 1.
  • the step surface S having the smallest length and the step surface M having the middle length have the same sign (+ and +), and the step surface L having the largest length and the smallest length.
  • the step surfaces S have different length signs (-and +).
  • Example 1 the diffraction efficiency of the ⁇ 1st order diffracted light that is the main light of the first light flux is 92.7%, the diffraction efficiency of the ⁇ 2nd order diffracted light that is unnecessary light is 0.2%, and the + 2nd order diffracted light of the second light flux. Has a diffraction efficiency of 71.6%, and the diffraction efficiency of the + 3rd-order diffracted light of the third light beam is 51.5%.
  • the light intensity of the unnecessary light of the first light flux is reduced, it is possible to suppress the generation of an error signal when recording / reproducing information on the first information recording surface of the BD.
  • the light intensity of the second light beam used when recording / reproducing information on / from the information recording surface of the DVD can be increased.
  • the light intensity of the third light beam used when recording / reproducing information on / from the information recording surface of the CD hardly changes.
  • the fifth to seventh terraces are counted from the terrace surface TRO closest to the center of the objective optical surface based on a seven-step staircase structure having seven terrace surfaces.
  • This is an objective optical system having a groove in the central region, and its shape data is shown in Table 3.
  • FIG. 9 is a sectional view in the optical axis direction of the objective optical system according to the second embodiment.
  • the length of the first to third step surfaces 0.832 ⁇ m
  • the length of the fourth step surface ⁇ 6.399 ⁇ m
  • the length of the step surface is 0.832 ⁇ m
  • the length of the seventh step surface is 2.241 ⁇ m.
  • Example 2 the diffraction efficiency of the ⁇ 1st order diffracted light that is the main light of the first light beam is 92.7%, the diffraction efficiency of the ⁇ 2nd order diffracted light that is unnecessary light is 0.2%, and the second light beam is +2 next time.
  • the diffraction efficiency of the folded light is 71.6%, and the diffraction efficiency of the + 3rd order diffracted light of the third light beam is 51.5%.
  • step surfaces existing in the step periodic structure are classified into three types, that is, the step surface L having the maximum length, the step surface S having the minimum length, and the step surface M having the intermediate length.
  • the three types of step surfaces and the wavelength ⁇ 1 satisfy the following expression.
  • ⁇ L is the phase difference of the wavelength ⁇ 1 generated by the step surface L having the maximum length
  • ⁇ S is the phase difference of the wavelength ⁇ 1 generated by the step surface S having the minimum length
  • ⁇ M is the long Is the phase difference of the wavelength ⁇ 1 generated by the intermediate stepped surface M.
  • ⁇ S ⁇ S -ROUND ( ⁇ S )
  • ⁇ S (d S / ⁇ 1) ⁇ (n1-1)
  • ⁇ M ⁇ M -ROUND ( ⁇ M )
  • ⁇ M (d M / ⁇ 1) ⁇ (n1-1) Refractive index of the diffraction element at the wavelength ⁇ 1 ( ⁇ m): n1
  • the shift amount ⁇ ⁇ 7.230 ⁇ m
  • the step surface L having the maximum step amount between the fourth terrace surface and the fifth terrace surface is 1
  • the other step surface S has the smallest step amount
  • d L ⁇ 6.399 ⁇ m
  • d S 0.832 ⁇ m
  • d M 2.241 ⁇ m
  • n1 1.56,
  • a 10
  • the ratio of the number of the step surfaces L having the maximum length, the number of the step surfaces S having the minimum length, and the number of the step surfaces M having the intermediate length is 1: 5: 1.
  • the step surface S having the smallest length and the step surface M having the middle length have the same sign (+ and +), and the step surface L having the largest length and the smallest length.
  • the step surfaces S have different length signs (-and +).

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

Provided is a diffraction element for an optical pickup device capable of increasing the use efficiency of light when using a CD while suppressing the occurrence of an error signal when using a BD having a plurality of information recording surfaces stacked in the thickness direction and/or a DVD having a plurality of information recording surfaces stacked in the thickness direction, and also provided is an optical pickup device. Based on an orbicular zone-shaped step structure having seven steps, the 4th to 7th or the 5th to 7th terrace surfaces counted from an end of a step unit are shifted in an optical axis direction. This makes it possible to reduce the diffraction efficiency of the minus second-order diffraction light that is an unnecessary light occurring when a light flux having a wavelength of λ1 is incident, thereby enabling information to be appropriately recorded on/reproduced from either the first or second information recording surface of a first optical disc. Furthermore, this makes it possible to increase the diffraction efficiency of the plus third-order diffraction light that is a main light when a light flux having a wavelength of λ3 is incident, thereby enabling information to be also appropriately recorded on/reproduced from an information recording surface of a third optical disc.

Description

回折素子及び光ピックアップ装置Diffraction element and optical pickup device
 本発明は、異なる種類の光ディスクに対して、互換可能に情報の記録及び/又は再生(本明細書では記録/再生と記載することもある)を行う光ピックアップ装置用の回折素子及びそれを用いた光ピックアップ装置に関する。 The present invention relates to a diffraction element for an optical pickup device that records and / or reproduces information (also referred to as recording / reproduction in the present specification) interchangeably with respect to different types of optical disks, and uses the same. The present invention relates to an optical pickup device.
 波長400nm程度の青紫色半導体レーザを用いて、情報の記録及び/又は再生(以下、「記録及び/又は再生」を「記録/再生」と記載する)を行える高密度光ディスクシステムが知られており、その一例であるNA0.85、光源波長405nmの仕様で情報記録/再生を行う光ディスク、いわゆるBlu-ray Disc(以下、BDという)では、DVD(NA0.6、光源波長650nm、記憶容量4.7GB)と同じ大きさである直径12cmの光ディスクに対して、1層あたり25GBの情報の記録が可能である。以下、本明細書では、青紫色レーザ光源を使用する光ディスクを総称して「高密度光ディスク」という。 There is known a high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm. As an example, an optical disc for recording / reproducing information with specifications of NA 0.85 and light source wavelength 405 nm, so-called Blu-ray Disc (hereinafter referred to as BD), DVD (NA 0.6, light source wavelength 650 nm, storage capacity 4. It is possible to record 25 GB of information per layer on an optical disk having a diameter of 12 cm, which is the same size as 7 GB). Hereinafter, in this specification, optical disks that use blue-violet laser light sources are collectively referred to as “high-density optical disks”.
 ところで、かかるタイプの高密度光ディスクに対して適切に情報の記録/再生ができると言うだけでは、光ディスクプレーヤ/レコーダ(光情報記録再生装置)の製品としての価値は十分なものとはいえない。現在において、多種多様な情報を記録したDVDやCD(コンパクトディスク)が販売されている現実をふまえると、高密度光ディスクに対して情報の記録/再生ができるだけでは足らず、例えばユーザが所有しているDVDやCDに対しても同様に適切に情報の記録/再生ができるようにすることが、高密度光ディスク用の光ディスクプレーヤ/レコーダとしての商品価値を高めることに通じるのである。このような背景から、高密度光ディスク用の光ディスクプレーヤ/レコーダに搭載される光ピックアップ装置は、高密度光ディスクとDVD、更にはCDとの何れに対しても互換性を維持しながら適切に情報を記録/再生できる性能を有することが望まれる。 By the way, the value as a product of an optical disc player / recorder (optical information recording / reproducing device) cannot be said to be sufficient simply by saying that information can be appropriately recorded / reproduced on such a high-density optical disc. In light of the reality that DVDs and CDs (compact discs) on which a wide variety of information is recorded are currently being sold, it is not possible to record / reproduce information on high-density optical discs. Similarly, making it possible to appropriately record / reproduce information on DVDs and CDs leads to an increase in commercial value as an optical disc player / recorder for high-density optical discs. From such a background, an optical pickup device mounted on an optical disc player / recorder for high density optical discs can appropriately receive information while maintaining compatibility with both high density optical discs, DVDs, and even CDs. It is desired to have a performance capable of recording / reproducing.
 高密度光ディスクとDVD、更にはCDとの何れに対しても互換性を維持しながら適切に情報を記録/再生できるようにする方法として、高密度光ディスク用の集光光学系とDVDやCD用の集光光学系とを情報を記録/再生する光ディスクの記録密度に応じて選択的に切り替える方法が考えられるが、複数の集光光学系が必要となるので、小型化に不利であり、またコストが増大する。 As a method for appropriately recording / reproducing information while maintaining compatibility with both high-density optical discs and DVDs, and even CDs, a condensing optical system for high-density optical discs and a DVD or CD It is possible to selectively switch the light collecting optical system according to the recording density of the optical disk for recording / reproducing information. However, a plurality of light collecting optical systems are required, which is disadvantageous for downsizing. Cost increases.
 従って、光ピックアップ装置の構成を簡素化し、低コスト化を図るためには、互換性を有する光ピックアップ装置においても、高密度光ディスク用の集光光学系とDVDやCD用の集光光学系とを共通化して、光ピックアップ装置を構成する光学部品点数を極力減らすのが好ましい。そして、光ディスクに対向して配置される対物光学系を共通化することが光ピックアップ装置の構成の簡素化、低コスト化に最も有利となる。尚、記録/再生波長が互いに異なる複数種類の光ディスクに対して共通な対物光学系を得るためには、球面収差の波長依存性を有する回折構造を形成した回折素子を集光光学系内に配置する必要がある。 Therefore, in order to simplify the configuration of the optical pickup device and reduce the cost, even in a compatible optical pickup device, a condensing optical system for high-density optical discs and a condensing optical system for DVDs and CDs It is preferable to reduce the number of optical components constituting the optical pickup device as much as possible. In addition, it is most advantageous for simplifying the configuration of the optical pickup device and reducing the cost to make the objective optical system arranged opposite to the optical disk in common. In order to obtain a common objective optical system for a plurality of types of optical disks having different recording / reproducing wavelengths, a diffractive element having a diffractive structure having a wavelength dependency of spherical aberration is disposed in the condensing optical system. There is a need to.
 特許文献1には、回折構造を有し、例えば高密度光ディスクと従来のDVD及びCDに対して共通に使用可能な対物光学系、及びこの対物光学系を搭載した光ピックアップ装置が記載されている。 Patent Document 1 describes an objective optical system that has a diffractive structure and can be used in common with, for example, high-density optical discs and conventional DVDs and CDs, and an optical pickup device equipped with the objective optical system. .
特開2005-158217号公報JP 2005-158217 A
 ここで、特許文献1では、第1の波長λ1の光ビームと第3の波長λ3の光ビームを回折せず、第2の波長λ2の光ビームを回折する第1の回折面と、第1の波長λ1の光ビームと第2の波長λ2の光ビームを回折せず、第3の波長λ3の光ビームを回折する第2の回折面と、を有する回折光学素子を用いて、異なる3種類の光ディスクに対して互換可能に情報の記録/再生を行うようになっている。 Here, in Patent Document 1, the first diffraction surface that does not diffract the light beam having the first wavelength λ1 and the light beam having the third wavelength λ3 but diffracts the light beam having the second wavelength λ2, and the first Three different types using a diffractive optical element having a second diffractive surface that does not diffract the light beam having the wavelength λ1 and the light beam having the second wavelength λ2 and diffracts the light beam having the third wavelength λ3. Information is recorded / reproduced so as to be compatible with an optical disc of the above type.
 これに対し、異なる3つの波長の光束が入射したときにそれぞれ異なる3つの次数の回折光を発生させる回折構造を用いて、異なる3種類の光ディスクに対して互換可能に情報の記録/再生を行う技術も開発されている。その一例としては、表1、及び、図1に示したように、青紫色レーザ光束が入射したときは-1次回折光を発生させ、赤色レーザ光束が入射したときは+2次回折光を発生させ、赤外レーザ光束が入射したときは+3次回折光を発生させる回折構造を形成することで、高密度光ディスク、DVD、CDの情報記録面上にそれぞれ適切な集光スポットを形成するというものがある。この態様は、互換のために複数種類の回折構造を形成する必要がないという点で、製造しやすく好ましい態様である。 On the other hand, information is recorded / reproduced to be compatible with three different types of optical disks by using a diffraction structure that generates three different orders of diffracted light when light beams of three different wavelengths are incident. Technology is also being developed. As an example, as shown in Table 1 and FIG. 1, when a blue-violet laser beam is incident, −1st order diffracted light is generated, and when a red laser beam is incident, + 2nd order diffracted light is generated. When an infrared laser beam is incident, a diffractive structure that generates + third-order diffracted light is formed, thereby forming an appropriate focused spot on the information recording surface of a high-density optical disc, DVD, or CD. This aspect is a preferable aspect that is easy to manufacture because it is not necessary to form a plurality of types of diffraction structures for compatibility.
 ところで、上述の回折構造に光束が入射したときに、情報の記録/再生に用いる回折次数の回折光(メイン光という)以外にも、それより光量は低下するが別の回折次数の回折光(不要光という)も発生する。例えば、表1に示したように、青紫色レーザ光束が入射したときに、回折効率が89%の-1次回折光(メイン光)を発生させた場合、回折効率が1.4%の-2次回折光(不要光)と回折効率が1.2%の0次回折光(不要光)が同時に発生する。 By the way, when a light beam is incident on the diffractive structure described above, in addition to the diffracted light of the diffraction order used for recording / reproducing information (referred to as main light), the amount of light is further reduced, but diffracted light of another diffraction order ( Unnecessary light) is also generated. For example, as shown in Table 1, when -1st order diffracted light (main light) with a diffraction efficiency of 89% is generated when a blue-violet laser beam is incident, -2 with a diffraction efficiency of 1.4%. Next-order diffracted light (unnecessary light) and zero-order diffracted light (unnecessary light) having a diffraction efficiency of 1.2% are generated simultaneously.
 BDの情報記録面が1層のみである場合には、メイン光とは別の回折次数の不要光が発生しても大きな問題は生じない。ところが、2層の情報記録面を有する2層タイプのBDも開発され既に市販されているところ、かかる2層タイプのBDを使用した場合に問題が生じることが判明した。より具体的には、2層タイプのBDは、情報記録面間の距離が25μmと比較的近接しているため、上述した回折構造を有する対物レンズOBJを用いて、-1次回折光を第1層の情報記録面L1に集光させると、-2次回折光が第2層の情報記録面L2に丁度集光してしまい、これによりエラー信号が発生する恐れがある。 When the information recording surface of the BD is only one layer, no significant problem occurs even if unnecessary light having a diffraction order different from that of the main light is generated. However, a two-layer type BD having a two-layer information recording surface has also been developed and already on the market, and it has been found that problems arise when such a two-layer type BD is used. More specifically, since the distance between the information recording surfaces of the two-layer type BD is relatively close to 25 μm, the first-order diffracted light is converted into the first diffracted light using the objective lens OBJ having the diffractive structure described above. When the light is condensed on the information recording surface L1 of the layer, the −2nd order diffracted light is just condensed on the information recording surface L2 of the second layer, which may cause an error signal.
 尚、図1に示した回折構造では、赤色レーザ光束が入射したときに、回折効率が67%の+2次回折光(メイン光)を発生させた場合、回折効率が2.7%の+3次回折光(不要光)と回折効率が2.4%の+1次回折光(不要光)が同時に発生する。従って、2層タイプのBDと同様の問題が、2層タイプのDVDでも発生する恐れがある。 In the diffractive structure shown in FIG. 1, when + second order diffracted light (main light) having a diffraction efficiency of 67% is generated when a red laser beam is incident, + 3rd order diffracted light having a diffraction efficiency of 2.7%. (Unnecessary light) and + 1st order diffracted light (unnecessary light) having a diffraction efficiency of 2.4% are generated simultaneously. Therefore, a problem similar to that of the double-layer type BD may occur in the double-layer type DVD.
 これに対し、回折構造におけるステップ周期構造のテラス面の幅の比(デューティ比)を変更するなどして不要光の回折効率を低下させる試みもあるが、その代わりCD使用時の回折効率が低下してしまうという新たな問題が発生する。 On the other hand, there is an attempt to reduce the diffraction efficiency of unnecessary light by changing the ratio (duty ratio) of the terrace surface width of the step periodic structure in the diffraction structure, but instead, the diffraction efficiency when using the CD is lowered. A new problem occurs.
 本発明は、かかる従来技術の問題点に鑑みてなされたものであり、厚み方向に積層された複数の情報記録面を有するBD、及び/又は、厚み方向に積層された複数の情報記録面を有するDVD使用時におけるエラー信号の発生を抑制しつつ、CD使用時の光の利用効率を高めることができる光ピックアップ装置用の回折素子及びそれを用いた光ピックアップ装置を提供することを目的とする。 The present invention has been made in view of the problems of the prior art, and includes a BD having a plurality of information recording surfaces stacked in the thickness direction and / or a plurality of information recording surfaces stacked in the thickness direction. An object of the present invention is to provide a diffractive element for an optical pickup device and an optical pickup device using the same that can increase the light use efficiency when using a CD while suppressing the generation of an error signal when the DVD is used. .
 請求項1記載の回折素子は、波長λ1の第1光束を出射する第1光源と、波長λ2(λ1<λ2)の第2光束を出射する第2光源と、波長λ3(λ2<λ3)の第3光束を出射する第3光源と、対物光学系と、光検出器と、前記光源と前記光検出器との間の光路内に配置され、前記第1光束と前記第2光束と前記第3光束が共通して通過する回折素子とを有し、前記第1光源からの光束を、前記回折素子、及び、前記対物光学系により第1光ディスクの情報記録面上に集光させることでスポットを形成し、その反射光を受光した前記光検出器からの信号に基づいて、前記第1光ディスクに対して情報の記録及び/又は再生を行い、前記第2光源からの光束を、前記回折素子、及び、前記対物光学系により第2光ディスクの情報記録面上に集光させることでスポットを形成し、その反射光を受光した前記光検出器からの信号に基づいて、前記第2光ディスクに対して情報の記録及び/又は再生を行い、前記第3光源からの光束を、前記回折素子、及び、前記対物光学系により第3光ディスクの情報記録面上に集光させることでスポットを形成し、その反射光を受光した前記光検出器からの信号に基づいて、前記第3光ディスクに対して情報の記録及び/又は再生を行う光ピックアップ装置に用いる回折素子であって、
 前記第1光ディスク、及び/又は、前記第2光ディスクは、厚み方向に積層された複数の情報記録面を有し、
 前記回折素子は、前記第1光ディスク、前記第2光ディスク及び前記第3光ディスクの保護層の厚みに起因して発生する球面収差を補正するための回折構造を有し、
 前記回折構造は、前記回折素子の光軸に略平行に延在する7つの段差面と、前記段差面と交差する7つのテラス面とを有すると共に、隣接する前記テラス面が前記回折素子の光軸方向に順次シフトしてなる階段状構造を元にして、4番目から7番目又は5番目から7番目のテラス面を所定量だけ光軸方向に沿ってシフトしてなるステップ単位を、前記回折素子の光軸に交差する方向に沿って複数個配置したステップ周期構造であって、
 前記回折構造に前記第1光束が入射した場合に発生する回折光のうち、-1次回折光が最大の回折光量を有し、前記回折構造に前記第2光束が入射した場合に発生する回折光のうち、+2次回折光が最大の回折光量を有し、前記回折構造に前記第3光束が入射した場合に発生する回折光のうち、+3次回折光が最大の回折光量を有することを特徴とする。
The diffractive element according to claim 1 includes a first light source that emits a first light flux having a wavelength λ1, a second light source that emits a second light flux having a wavelength λ2 (λ1 <λ2), and a wavelength λ3 (λ2 <λ3). A third light source that emits a third light beam, an objective optical system, a light detector, and an optical path between the light source and the light detector, are disposed in the first light beam, the second light beam, and the first light beam. A diffraction element through which three light beams pass in common, and the light beam from the first light source is condensed on the information recording surface of the first optical disk by the diffraction element and the objective optical system. And recording and / or reproducing information on the first optical disc based on a signal from the photodetector that has received the reflected light, and a light beam from the second light source is converted into the diffraction element. And focusing on the information recording surface of the second optical disk by the objective optical system. In this way, a spot is formed, and information is recorded and / or reproduced on the second optical disk based on a signal from the photodetector that receives the reflected light, and a light beam from the third light source is A spot is formed by condensing on the information recording surface of the third optical disk by the diffraction element and the objective optical system, and the third light is generated based on the signal from the photodetector that receives the reflected light. A diffraction element used in an optical pickup device for recording and / or reproducing information on an optical disc,
The first optical disc and / or the second optical disc has a plurality of information recording surfaces stacked in a thickness direction,
The diffractive element has a diffractive structure for correcting spherical aberration generated due to the thickness of a protective layer of the first optical disc, the second optical disc, and the third optical disc,
The diffractive structure has seven step surfaces extending substantially parallel to the optical axis of the diffractive element and seven terrace surfaces intersecting the step surface, and the adjacent terrace surface is light of the diffractive element. A step unit formed by shifting the fourth to seventh or fifth to seventh terraces by a predetermined amount along the optical axis direction based on a step-like structure that is sequentially shifted in the axial direction. A step periodic structure in which a plurality are arranged along the direction intersecting the optical axis of the element,
Of the diffracted light generated when the first light beam is incident on the diffractive structure, the -1st order diffracted light has the largest amount of diffracted light, and the diffracted light generated when the second light beam is incident on the diffractive structure Of these, + 2nd order diffracted light has the maximum amount of diffracted light, and among the diffracted light generated when the third light beam enters the diffractive structure, the + 3rd order diffracted light has the maximum amount of diffracted light. .
 本発明者は鋭意研究の結果、輪帯状である7ステップの階段状構造を元にして、ステップ単位の端から数えて4番目から7番目又は5番目から7番目のテラス面を光軸方向にシフトすることによって、波長λ1の光束が入射した場合に発生する不要光である-2次回折光の回折効率を低下させることができるので、第1光ディスクの第1情報記録面と第2情報記録面のいずれにも適切に情報の記録/再生が可能となり、しかも波長λ3の光束が入射した場合におけるメイン光である+3次回折光の回折効率を増大させることができるので、第3光ディスクの情報記録面にも適切に情報の記録/再生が可能となることを見出したのである。「4番目から7番目又は5番目から7番目のテラス面」とは、隣接するテラス面が7つ漸次光軸方向にシフトしてなる1つのステップ単位の中で、最も前記対物レンズの光軸に近いテラス面から数えてもよいし、最も前記対物レンズの光軸から遠いテラス面から数えてもよいが、1つのステップ単位の端以外のテラス面からは数えない。 As a result of diligent research, the present inventor made the fourth to seventh or fifth to seventh terrace surfaces counted from the end of the step unit in the direction of the optical axis based on a seven-step staircase structure having a ring shape. By shifting, it is possible to reduce the diffraction efficiency of the −2nd order diffracted light, which is unnecessary light generated when a light beam with wavelength λ1 is incident, so the first information recording surface and the second information recording surface of the first optical disc The information recording surface of the third optical disc can be appropriately recorded / reproduced, and the diffraction efficiency of the + third-order diffracted light, which is the main light when the light beam having the wavelength λ3 is incident, can be increased. It was also found that information can be recorded / reproduced appropriately. The “fourth to seventh or fifth to seventh terrace surfaces” means the optical axis of the objective lens that is the most in one step unit in which seven adjacent terrace surfaces are gradually shifted in the optical axis direction. May be counted from a terrace surface that is closest to the optical axis of the objective lens, or may be counted from a terrace surface other than the end of one step unit.
 請求項2に記載の回折素子は、請求項1に記載の発明に対し、前記ステップ周期構造において、4番目から7番目又は5番目から7番目のテラス面の所定量だけ光軸方向に沿ってシフトした際のシフト量をΔ(μm)としたとき、以下の式を満たすことを特徴とする。
9.8<|φΔ|<10.2
但し、φΔはシフト量Δにより発生する波長λ1(μm)の光路差である。
ここで、
φΔ=(Δ/λ1)×(n1-1)
n1:前記波長λ1における前記回折素子の屈折率
である。
The diffractive element according to a second aspect is the same as the diffractive element according to the first aspect, in the step periodic structure, along the optical axis direction by a predetermined amount of the fourth to seventh or fifth to seventh terrace surfaces. When the shift amount at the time of the shift is Δ (μm), the following expression is satisfied.
9.8 <| φ Δ | <10.2
However, φΔ is an optical path difference of wavelength λ1 (μm) generated by the shift amount Δ.
here,
φ Δ = (Δ / λ1) × (n1-1)
n1: The refractive index of the diffraction element at the wavelength λ1.
 請求項3に記載の回折素子は、波長λ1の第1光束を出射する第1光源と、波長λ2(λ1<λ2)の第2光束を出射する第2光源と、波長λ3(λ2<λ3)の第3光束を出射する第3光源と、対物光学系と、光検出器と、前記光源と前記光検出器との間の光路内に配置され、前記第1光束と前記第2光束と前記第3光束が共通して通過する回折素子とを有し、前記第1光源からの光束を、前記回折素子、及び、前記対物光学系により第1光ディスクの情報記録面上に集光させることでスポットを形成し、その反射光を受光した前記光検出器からの信号に基づいて、前記第1光ディスクに対して情報の記録及び/又は再生を行い、前記第2光源からの光束を、前記回折素子、及び、前記対物光学系により第2光ディスクの情報記録面上に集光させることでスポットを形成し、その反射光を受光した前記光検出器からの信号に基づいて、前記第2光ディスクに対して情報の記録及び/又は再生を行い、前記第3光源からの光束を、前記回折素子、及び、前記対物光学系により第3光ディスクの情報記録面上に集光させることでスポットを形成し、その反射光を受光した前記光検出器からの信号に基づいて、前記第3光ディスクに対して情報の記録及び/又は再生を行う光ピックアップ装置に用いる回折素子であって、
 前記第1光ディスク、及び/又は、前記第2光ディスクは、厚み方向に積層された複数の情報記録面を有し、
 前記回折素子は、前記第1光ディスク、前記第2光ディスク及び前記第3光ディスクの保護層の厚みに起因して発生する球面収差を補正するための回折構造を有し、
 前記回折構造は、前記回折素子の光軸に略平行に延在する7つの段差面と、前記段差面と交差する7つのテラス面とを有すると共に、隣接する前記テラス面が前記回折素子の光軸方向に順次シフトしてなる階段状構造を、前記回折素子の光軸に交差する方向に沿って複数個配置したステップ周期構造であって、
 前記回折構造に前記第1光束が入射した場合に発生する回折光のうち、-1次回折光が最大の回折光量を有し、前記回折構造に前記第2光束が入射した場合に発生する回折光のうち、+2次回折光が最大の回折光量を有し、前記回折構造に前記第3光束が入射した場合に発生する回折光のうち、+3次回折光が最大の回折光量を有し、
 前記ステップ周期構造内に存在する段差面は、長さが最大の段差面Lと、長さが最小の段差面Sと、長さが中間の段差面M、の3種類に分類され、前記長さが最大の段差面Lと、前記長さが中間の段差面Mの間に、前記長さが最小の段差面Sが2つ、又は、3つ存在することを特徴とする。
The diffractive element according to claim 3 includes a first light source that emits a first light flux having a wavelength λ1, a second light source that emits a second light flux having a wavelength λ2 (λ1 <λ2), and a wavelength λ3 (λ2 <λ3). A third light source that emits the third light beam, an objective optical system, a photodetector, and a light path between the light source and the light detector, the first light beam, the second light beam, and the A diffraction element through which the third light beam passes in common, and the light beam from the first light source is condensed on the information recording surface of the first optical disk by the diffraction element and the objective optical system. Information is recorded and / or reproduced on the first optical disk based on a signal from the photodetector that forms a spot and receives the reflected light, and a light beam from the second light source is diffracted. The light is condensed on the information recording surface of the second optical disk by the element and the objective optical system. Based on the signal from the photodetector that has received the reflected light, information is recorded and / or reproduced on the second optical disk, and the light beam from the third light source is reflected. A spot is formed by condensing the diffraction element and the objective optical system on an information recording surface of the third optical disk, and the reflected light is received on the basis of a signal from the photodetector. 3 A diffraction element used in an optical pickup device for recording and / or reproducing information with respect to an optical disc,
The first optical disc and / or the second optical disc has a plurality of information recording surfaces stacked in a thickness direction,
The diffractive element has a diffractive structure for correcting spherical aberration generated due to the thickness of a protective layer of the first optical disc, the second optical disc, and the third optical disc,
The diffractive structure has seven step surfaces extending substantially parallel to the optical axis of the diffractive element and seven terrace surfaces intersecting the step surface, and the adjacent terrace surface is light of the diffractive element. A step periodic structure in which a plurality of stepped structures sequentially shifted in the axial direction are arranged along a direction intersecting the optical axis of the diffraction element,
Of the diffracted light generated when the first light beam is incident on the diffractive structure, the -1st order diffracted light has the largest amount of diffracted light, and the diffracted light generated when the second light beam is incident on the diffractive structure + 2nd order diffracted light has the maximum amount of diffracted light, and among the diffracted light generated when the third light beam is incident on the diffractive structure, + 3rd order diffracted light has the maximum amount of diffracted light,
The step surfaces present in the step periodic structure are classified into three types: a step surface L having a maximum length, a step surface S having a minimum length, and a step surface M having an intermediate length. There are two or three step surfaces S having the minimum length between the step surface L having the maximum length and the step surface M having the intermediate length.
 本発明者は鋭意研究の結果、7ステップの階段状構造を複数個配置したステップ周期構造において、前記ステップ周期構造内に存在する段差面が、長さが最大の段差面Lと、長さが最小の段差面Sと、長さが中間の段差面M、の3種類に分類され、前記長さが最大の段差面Lと、前記長さが中間の段差面Mの間に、前記長さが最小の段差面Sが2つ、又は、3つ存在することによって、波長λ1の光束が入射した場合に発生する不要光である-2次回折光の回折効率を低下させることができ、第1光ディスクの第1情報記録面と第2情報記録面のいずれにも適切に情報の記録/再生が可能となり、しかも波長λ3の光束が入射した場合におけるメイン光である+3次回折光の回折効率を増大させることができるので、第3光ディスクの情報記録面にも適切に情報の記録/再生が可能となることを見出したのである。段差面の長さとは、光軸方向の長さをいう。 As a result of intensive studies, the present inventor has found that in a step periodic structure in which a plurality of 7-step staircase structures are arranged, the step surface existing in the step periodic structure has a step surface L having the maximum length and a length of the step surface. The length is classified into three types, that is, the minimum step surface S and the intermediate step surface M, and the length is between the maximum step surface L and the intermediate step surface M. 2 or 3 can reduce the diffraction efficiency of the −2nd order diffracted light, which is unnecessary light generated when a light beam having the wavelength λ1 is incident. Information can be appropriately recorded / reproduced on both the first information recording surface and the second information recording surface of the optical disc, and the diffraction efficiency of the + third-order diffracted light, which is the main light when a light beam with wavelength λ3 is incident, is increased. Information recording on the third optical disc. It was found that information can be recorded / reproduced appropriately on the recording surface. The length of the step surface refers to the length in the optical axis direction.
 請求項4に記載の回折素子は、請求項1~3のいずれかに記載の発明において、前記ステップ周期構造内に存在する段差面は、長さが最大の段差面Lと、長さが最小の段差面Sと、長さが中間の段差面M、の3種類に分類され、前記3種類の段差面、及び、前記波長λ1は以下の式を満たすことを特徴とする。
0.13≦|Φ|≦0.17
0.13≦|Φ|≦0.17
0.07≦|Φ|≦0.13
390nm<λ1<420nm
但し、Φは長さが最大の段差面Lにより発生する波長λ1の位相差であり、Φは長さが最小の段差面Sにより発生する波長λ1の位相差であり、Φは長さが中間の段差面Mにより発生する波長λ1の位相差である。
ここで、
Φ=φ-ROUND(φ
φ=(d/λ1)×(n1-1)
Φ=φ-ROUND(φ
φ=(d/λ1)×(n1-1)
Φ=φ-ROUND(φ
φ=(d/λ1)×(n1-1)
前記波長λ1(μm)における前記回折素子の屈折率:n1
段差量が最大の段差面Lの長さ:d(μm)
段差量が最小の段差面Sの長さ:d(μm)
段差量が中間の段差面Mの長さ:d(μm)
任意の実数Aの小数点以下第一位を四捨五入して得られる整数:ROUND(A)
である。
The diffraction element according to claim 4 is the invention according to any one of claims 1 to 3, wherein the step surface existing in the step periodic structure has a step surface L having a maximum length and a minimum length. The stepped surface S and the stepped surface M having an intermediate length are classified into three types, and the three types of stepped surfaces and the wavelength λ1 satisfy the following expressions.
0.13 ≦ | Φ L | ≦ 0.17
0.13 ≦ | Φ S | ≦ 0.17
0.07 ≦ | Φ M | ≦ 0.13
390 nm <λ1 <420 nm
Where Φ L is the phase difference of the wavelength λ1 generated by the step surface L having the maximum length, Φ S is the phase difference of the wavelength λ1 generated by the step surface S having the minimum length, and Φ M is the long Is the phase difference of the wavelength λ1 generated by the intermediate stepped surface M.
here,
Φ L = φ L -ROUND (φ L )
φ L = (d L / λ1) × (n1-1)
Φ S = φ S -ROUND (φ S )
φ S = (d S / λ1) × (n1-1)
Φ M = φ M -ROUND (φ M )
φ M = (d M / λ1) × (n1-1)
Refractive index of the diffraction element at the wavelength λ1 (μm): n1
The length of the step surface L with the largest step amount: d L (μm)
Length of step surface S with the smallest step amount: d S (μm)
The length of the step surface M having an intermediate level difference: d M (μm)
Integer obtained by rounding the first decimal place of any real number A: ROUND (A)
It is.
 請求項5に記載の回折素子は、請求項1~3のいずれかに記載の発明において、前記ステップ周期構造内に存在する段差面は、長さが最大の段差面Lと、長さが最小の段差面Sと、長さが中間の段差面M、の3種類に分類され、前記3種類の段差面、及び、前記波長λ1における前記回折素子の屈折率n1が以下の式、
6.00<|d|<6.80
0.73<|d|<0.93
2.00<|d|<2.40
1.54<n1<1.58
を満たすことを特徴とする。
According to a fifth aspect of the present invention, in the invention according to any one of the first to third aspects, the step surface existing in the step periodic structure has a step surface L having a maximum length and a minimum length. The refractive index n1 of the diffractive element at the wavelength λ1 and the three types of stepped surfaces are classified into the following formulas:
6.00 <| d L | <6.80
0.73 <| d S | <0.93
2.00 <| d M | <2.40
1.54 <n1 <1.58
It is characterized by satisfying.
 請求項6に記載の回折素子は、請求項1~3のいずれかに記載の発明において、前記ステップ周期構造内に存在する段差面は、長さが最大の段差面Lと、長さが最小の段差面Sと、長さが中間の段差面M、の3種類に分類され、前記3種類の段差面、及び、前記波長λ1における前記回折素子の屈折率n1が以下の式、
6.40<|d|<7.20
0.79<|d|<0.99
2.20<|d|<2.60
1.50<n1<1.54
を満たすことを特徴とする。
The diffractive element according to claim 6 is the invention according to any one of claims 1 to 3, wherein the step surface existing in the step periodic structure has a step surface L having a maximum length and a minimum length. The refractive index n1 of the diffractive element at the wavelength λ1 and the three types of stepped surfaces are classified into the following formulas:
6.40 <| d L | <7.20
0.79 <| d S | <0.99
2.20 <| d M | <2.60
1.50 <n1 <1.54
It is characterized by satisfying.
 請求項7に記載の回折素子は、請求項1~6のいずれかに記載の発明において、前記ステップ周期構造内に存在する段差面は、長さが最大の段差面Lと、長さが最小の段差面Sと、長さが中間の段差面M、の3種類に分類され、前記長さが最大の段差面Lの数と、前記長さが最小の段差面Sの数と、前記長さが中間の段差面Mの数の比は、略1:5:1であることを特徴とする。 The diffractive element according to claim 7 is the diffractive element according to any one of claims 1 to 6, wherein the step surface existing in the step periodic structure has a step surface L having a maximum length and a minimum length. Of the step surface S and the step surface M having an intermediate length, the number of the step surfaces L having the maximum length, the number of the step surfaces S having the minimum length, and the length The ratio of the number of intermediate step surfaces M is approximately 1: 5: 1.
 請求項8に記載の回折素子は、請求項1~7のいずれかに記載の発明において、前記ステップ周期構造内に存在する段差面は、長さが最大の段差面Lと、長さが最小の段差面Sと、長さが中間の段差面M、の3種類に分類され、前記長さが最小の段差面Sと前記長さが中間の段差面Mは、長さの符号が互いに同じであり、記長さが最大の段差面Lと前記長さが最小の段差面Sは、長さの符号が互いに異なることを特徴とする。尚、「長さの符号が互いに異なる」とは、比較する段差面の一方が光軸を向いており、他方が光軸とは逆を向いている場合をいう。 The diffractive element according to an eighth aspect is the invention according to any one of the first to seventh aspects, wherein the step surface existing in the step periodic structure has a step surface L having a maximum length and a minimum length. The step surface S and the step surface M having an intermediate length are classified into three types, and the step surface S having the smallest length and the step surface M having the intermediate length have the same sign of length. The step surface L having the maximum length and the step surface S having the minimum length are characterized by having different length signs. Note that “the signs of the lengths are different from each other” means that one of the step surfaces to be compared faces the optical axis and the other faces the opposite of the optical axis.
 請求項9に記載の回折素子は、請求項1~8のいずれかに記載の発明において、以下の式を満たすことを特徴とする。
|ΣΦ1j|=1
|ΣΦ2j|=2
|ΣΦ3j|=3
但し、Φij(i=1、2、3)は、1つのステップ周期構造内に存在する段差面の長さを、第1段差面d1、第2段差面d2、第3段差面d3、・・・・、第j段差面dj(但しj=7)としたとき、各段差面により発生する波長λi(μm)(i=1、2、3)の位相差である。
ここで、
Φij=φij-ROUND(φi)
φij=(dj/λi)×(ni-1)
ΣΦij=Φi1+Φi2+・・・+Φij-1+Φij
波長λiにおける回折素子の屈折率:ni
第j段差面:dj(μm)
任意の実数Aの小数点以下第一位を四捨五入して得られる整数:ROUND(A)
である。
A diffraction element according to a ninth aspect is characterized in that, in the invention according to any one of the first to eighth aspects, the following expression is satisfied.
| ΣΦ1j | = 1
| ΣΦ2j | = 2
| ΣΦ3j | = 3
However, Φij (i = 1, 2, 3) is the length of the step surface existing in one step periodic structure, the first step surface d1, the second step surface d2, the third step surface d3,. ... Phase difference of wavelength λi (μm) (i = 1, 2, 3) generated by each step surface when jth step surface dj (j = 7) is assumed.
here,
Φij = φij−ROUND (φi)
φij = (dj / λi) × (ni−1)
ΣΦij = Φi1 + Φi2 + ... + Φij-1 + Φij
Refractive index of diffraction element at wavelength λi: ni
Jth step surface: dj (μm)
Integer obtained by rounding the first decimal place of any real number A: ROUND (A)
It is.
 請求項10に記載の回折素子は、請求項1~9のいずれかに記載の発明において、前記回折素子は前記対物光学系と一体化されていることを特徴とする。「一体化」とは、鏡枠等の別部材を介して回折素子と対物光学系とが一体化されている場合の他、回折構造を単玉の対物光学系(対物レンズ)に形成した場合も含む。 A diffractive element according to claim 10 is characterized in that, in the invention according to any one of claims 1 to 9, the diffractive element is integrated with the objective optical system. “Integrated” means when the diffractive element and the objective optical system are integrated via another member such as a lens frame, or when the diffractive structure is formed on a single objective optical system (objective lens) Including.
 請求項11に記載の光ピックアップ装置は、請求項1~10のいずれかに記載の回折素子を有することを特徴とする。 An optical pickup device according to an eleventh aspect includes the diffractive element according to any one of the first to tenth aspects.
 本発明に係る光ピックアップ装置は、少なくとも第1光源、第2光源及び第3光源を有する。さらに、本発明の光ピックアップ装置は、第1光束を第1光ディスクの情報記録面上に集光させ、第2光束を第2光ディスクの情報記録面上に集光させ、第3光束を第3光ディスクの情報記録面上に集光させるための集光光学系を有する。また、本発明の光ピックアップ装置は、第1光ディスク、第2光ディスク及び第3光ディスクの情報記録面からの反射光を受光する受光素子を有する。 The optical pickup device according to the present invention includes at least a first light source, a second light source, and a third light source. Furthermore, the optical pickup device of the present invention condenses the first light flux on the information recording surface of the first optical disc, condenses the second light flux on the information recording surface of the second optical disc, and causes the third light flux to be third. It has a condensing optical system for condensing on the information recording surface of the optical disc. The optical pickup device of the present invention includes a light receiving element that receives reflected light from the information recording surfaces of the first optical disc, the second optical disc, and the third optical disc.
 第1光ディスクは、厚さがt1の保護基板と第1情報記録面とを有し、好ましくは、厚さがt1’(t1≠t1’)の保護基板と第2情報記録面とを厚み方向に積層して有する。第2光ディスクは、厚さがt2(t1、t1’≦t2)の保護基板と情報記録面とを有し、好ましくは、厚さがt2’(t1、t1’≦t2’≠t2)の保護基板と第2情報記録面とを厚み方向に積層して有する。第3光ディスクは、厚さがt3(t2<t3)の保護基板と情報記録面とを有する。第1光ディスクが高密度光ディスクであり、第2光ディスクが、DVDであり、第3光ディスクがCDであることが好ましいが、これに限られるものではない。なお、第1光ディスク、第2光ディスク又は第3光ディスクは、複数の情報記録面を有する複数層の光ディスクでもよい。 The first optical disc has a protective substrate having a thickness of t1 and a first information recording surface, and preferably the protective substrate having a thickness of t1 ′ (t1 ≠ t1 ′) and the second information recording surface are arranged in the thickness direction. And laminated. The second optical disc has a protective substrate having a thickness of t2 (t1, t1 ′ ≦ t2) and an information recording surface, and preferably has a thickness of t2 ′ (t1, t1 ′ ≦ t2 ′ ≠ t2). A substrate and a second information recording surface are stacked in the thickness direction. The third optical disc has a protective substrate having a thickness t3 (t2 <t3) and an information recording surface. The first optical disk is preferably a high density optical disk, the second optical disk is a DVD, and the third optical disk is preferably a CD, but is not limited thereto. The first optical disc, the second optical disc, or the third optical disc may be a multi-layer optical disc having a plurality of information recording surfaces.
 本明細書において、BDとは、波長390~415nm程度の光束、NA0.8~0.9程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.05~0.125mm程度であるBD系列光ディスクの総称であり、単一の情報記録層のみ有するBDや、2層以上の情報記録層を有するBD等を含むものである。更に、本明細書においては、DVDとは、NA0.60~0.67程度の対物光学系により情報の記録/再生が行われ、保護基板の厚さが0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD-Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、NA0.45~0.51程度の対物光学系により情報の記録/再生が行われ、保護基板の厚さが1.2mm程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。 In this specification, BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm. It is a generic term for a BD series optical disc of about 125 mm, and includes a BD having only a single information recording layer, a BD having two or more information recording layers, and the like. Further, in this specification, a DVD is a DVD series optical disc in which information is recorded / reproduced by an objective optical system having an NA of about 0.60 to 0.67, and a protective substrate has a thickness of about 0.6 mm. It is a generic term and includes DVD-ROM, DVD-Video, DVD-Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, and the like. Further, in this specification, a CD is a CD series optical disc in which information is recorded / reproduced by an objective optical system having an NA of about 0.45 to 0.51 and a protective substrate has a thickness of about 1.2 mm. It is a generic term and includes CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like. As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
 なお、保護基板の厚さt1、t1’、t2、t3に関しては、以下の条件式(1)、(2)、(3)、(4)、
 0.03mm≦t1≦0.075mm   (1)
 0.05mm≦t1’≦0.125mm  (2)
 0.5mm≦t2≦0.7mm      (3)
 1.0mm≦t3≦1.3mm      (4)
を満たすことが好ましいが、これに限られない。
In addition, regarding the thicknesses t1, t1 ′, t2, and t3 of the protective substrate, the following conditional expressions (1), (2), (3), (4),
0.03 mm ≦ t1 ≦ 0.075 mm (1)
0.05 mm ≦ t1 ′ ≦ 0.125 mm (2)
0.5mm ≦ t2 ≦ 0.7mm (3)
1.0mm ≦ t3 ≦ 1.3mm (4)
However, the present invention is not limited to this.
 本明細書において、第1光源、第2光源、第3光源は、好ましくはレーザ光源である。レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出来る。第1光源から出射される第1光束の第1波長λ1、第2光源から出射される第2光束の第2波長λ2(λ2>λ1)、第3光源から出射される第3光束の第3波長λ3(λ3>λ2)は以下の条件式(5)、(6)、
 1.5×λ1<λ2<1.7×λ1   (5)
 1.9×λ1<λ3<2.1×λ1   (6)
を満たすことが好ましい。
In the present specification, the first light source, the second light source, and the third light source are preferably laser light sources. As the laser light source, a semiconductor laser, a silicon laser, or the like can be preferably used. The first wavelength λ1 of the first light beam emitted from the first light source, the second wavelength λ2 (λ2> λ1) of the second light beam emitted from the second light source, and the third of the third light beam emitted from the third light source. The wavelength λ3 (λ3> λ2) is defined by the following conditional expressions (5), (6),
1.5 × λ1 <λ2 <1.7 × λ1 (5)
1.9 × λ1 <λ3 <2.1 × λ1 (6)
It is preferable to satisfy.
 また、第1光ディスク、第2光ディスク、第3光ディスクとして、それぞれ、BD、DVD及びCDが用いられる場合、第1光源の第1波長λ1は、390nm以上、420nm以下である。また、第2光源の第2波長λ2は好ましくは570nm以上、680nm以下、より好ましくは630nm以上、670nm以下であって、第3光源の第3波長λ3は好ましくは、750nm以上、880nm以下、より好ましくは、760nm以上、820nm以下である。 Further, when BD, DVD, and CD are used as the first optical disc, the second optical disc, and the third optical disc, respectively, the first wavelength λ1 of the first light source is 390 nm or more and 420 nm or less. The second wavelength λ2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less, and the third wavelength λ3 of the third light source is preferably 750 nm or more and 880 nm or less, and more Preferably, it is 760 nm or more and 820 nm or less.
 また、第1光源、第2光源、第3光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいうが、これに限られず、2つの光源が収差補正不能なように固定されている状態を広く含むものである。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。 Also, at least two of the first light source, the second light source, and the third light source may be unitized. The unitization means that the first light source and the second light source are fixedly housed in one package, for example. However, the unitization is not limited to this, and the two light sources are fixed so that the aberration cannot be corrected. Is widely included. In addition to the light source, a light receiving element to be described later may be packaged.
 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物光学系を移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。 As the light receiving element, a photodetector such as a photodiode is preferably used. Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. In addition, it detects the change in the light amount due to the change in the shape and position of the spot on the light receiving element, performs focus detection and track detection, and moves the objective optical system for focusing and tracking based on this detection I can do it. The light receiving element may comprise a plurality of photodetectors. The light receiving element may have a main photodetector and a sub photodetector. For example, two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element. The light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
 また、光ピックアップ装置は、光源から出射された光束が対物光学系に入射する前に、光束の強度をモニターするモニター手段を有することが好ましい。このようなモニター手段は、光源から出射された光束の強度を検出できるが、対物光学系を通過した後の光束の強度を検出しないため、基礎構造などの光路差付与構造における回折効率の変動を検知できない。従って、このようなモニター手段を有する光ピックアップ装置において、本発明の効果がより顕著になる。 Further, it is preferable that the optical pickup device has a monitoring means for monitoring the intensity of the light beam before the light beam emitted from the light source enters the objective optical system. Such a monitor means can detect the intensity of the light beam emitted from the light source, but does not detect the intensity of the light beam after passing through the objective optical system. It cannot be detected. Therefore, the effect of the present invention becomes more remarkable in the optical pickup device having such a monitoring means.
 光ピックアップ装置の集光光学系は、対物光学系を含む。集光光学系は、対物光学系のみを有していても良いが、対物光学系の他にコリメートレンズ等のカップリングレンズを有していてもよい。カップリングレンズとは、対物光学系と光源の間に配置され、光束の発散角を変える単レンズ又はレンズ群のことをいう。コリメートレンズは、カップリングレンズの一種で、コリメートレンズに入射した光を平行光にして出射するレンズである。更に集光光学系は、光源から射出された光束を、情報の記録再生に用いられるメイン光束と、トラッキング等に用いられる二つのサブ光束とに分割する回折光学素子などの光学素子を有していてもよい。本明細書において、対物光学系とは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。好ましくは、対物光学系は、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系であって、更に、アクチュエータにより少なくとも光軸方向に一体的に変位可能とされた光学系を指す。対物光学系は、二つ以上の複数のレンズから構成されていてもよいし、単玉のレンズのみでもよいが、好ましくは単玉のレンズである。尚、対物光学系が複数のレンズを有する場合、回折構造を有する平板光学素子と非球面レンズ(回折構造を有していてもいなくてもよい)の組み合わせであってもよい。また、対物光学系は、屈折面が非球面であることが好ましい。また、対物光学系は、回折構造が設けられるベース面が非球面であることが好ましい。 The condensing optical system of the optical pickup device includes an objective optical system. The condensing optical system may include only the objective optical system, but may include a coupling lens such as a collimator lens in addition to the objective optical system. The coupling lens is a single lens or a lens group that is disposed between the objective optical system and the light source and changes the divergence angle of the light beam. The collimating lens is a kind of coupling lens, and is a lens that emits light incident on the collimating lens as parallel light. Further, the condensing optical system has an optical element such as a diffractive optical element that divides the light beam emitted from the light source into a main light beam used for recording and reproducing information and two sub light beams used for tracking and the like. May be. In this specification, the objective optical system refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk. Preferably, the objective optical system is an optical system which is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing a light beam emitted from the light source on the information recording surface of the optical disk, and further includes an actuator An optical system that can be integrally displaced at least in the optical axis direction. The objective optical system may be composed of two or more plural lenses or may be a single lens, but is preferably a single lens. When the objective optical system has a plurality of lenses, it may be a combination of a flat optical element having a diffractive structure and an aspheric lens (which may or may not have a diffractive structure). In the objective optical system, the refractive surface is preferably an aspherical surface. In the objective optical system, the base surface on which the diffractive structure is provided is preferably an aspherical surface.
 また、対物光学系はプラスチックレンズであることが好ましい。樹脂材料としては、環状オレフィン系の樹脂材料を使用するのが好ましく、環状オレフィン系の中でも、波長405nmに対する温度25℃での屈折率が1.53乃至1.60の範囲内であって、-5℃から70℃の温度範囲内での温度変化に伴う波長405nmに対する屈折率変化率dN/dT(℃-1)が-20×10-5乃至-5×10-5(より好ましくは、-10×10-5乃至-8×10-5)の範囲内である樹脂材料を使用するのがより好ましい。また、対物光学系をプラスチックレンズとする場合、カップリングレンズもプラスチックレンズとすることが好ましい。かかる樹脂材料の具体例は、三井化学株式会社製のアペルや日本ゼオン株式会社製のゼオネックスであり、これらは、405nm近傍の波長領域の光に対する耐性に優れるので好ましい。 The objective optical system is preferably a plastic lens. As the resin material, it is preferable to use a cyclic olefin-based resin material, and among the cyclic olefin-based materials, the refractive index at a temperature of 25 ° C. with respect to a wavelength of 405 nm is in the range of 1.53 to 1.60, The refractive index change rate dN / dT (° C. −1 ) with respect to a wavelength of 405 nm accompanying a temperature change within a temperature range of 5 ° C. to 70 ° C. is −20 × 10 −5 to −5 × 10 −5 (more preferably − It is more preferable to use a resin material in the range of 10 × 10 −5 to −8 × 10 −5 ). When the objective optical system is a plastic lens, the coupling lens is preferably a plastic lens. Specific examples of such a resin material are Apel manufactured by Mitsui Chemicals, Inc. and ZEONEX manufactured by ZEON Corporation, which are preferable because they are excellent in resistance to light in the wavelength region near 405 nm.
 対物光学系について、以下に説明する。尚、ここで説明する対物光学系は、本発明の回折素子と対物光学系が一体となった例である。対物光学系の少なくとも一つの光学面が、中央領域と、中央領域の周りの周辺領域とを有する。更に好ましくは、対物光学系の少なくとも一つの光学面が、周辺領域の周りに最周辺領域を有する。最周辺領域を設けることにより、高密度光ディスクに対する記録及び/又は再生をより適切に行うことが可能となる。中央領域は、対物光学系の光軸を含む領域であることが好ましいが、含まない領域であってもよい。中央領域、周辺領域、及び最周辺領域は同一の光学面上に設けられていることが好ましい。中央領域、周辺領域、最周辺領域は、同一の光学面上に、光軸を中心とする同心円状に設けられていることが好ましい。また、対物光学系の中央領域、周辺領域には回折構造が設けられていると好ましい。最周辺領域を有する場合、最周辺領域は屈折面であってもよいし、最周辺領域に回折構造が設けられていてもよい。中央領域、周辺領域、最周辺領域はそれぞれ隣接していることが好ましいが、間に僅かに隙間があっても良い。 The objective optical system will be described below. The objective optical system described here is an example in which the diffraction element of the present invention and the objective optical system are integrated. At least one optical surface of the objective optical system has a central region and a peripheral region around the central region. More preferably, at least one optical surface of the objective optical system has an outermost peripheral region around the peripheral region. By providing the outermost peripheral region, it becomes possible to perform recording and / or reproduction with respect to the high-density optical disc more appropriately. The central region is preferably a region including the optical axis of the objective optical system, but may be a region not including the optical axis. It is preferable that the central region, the peripheral region, and the most peripheral region are provided on the same optical surface. The central region, the peripheral region, and the most peripheral region are preferably provided concentrically around the optical axis on the same optical surface. In addition, it is preferable that a diffractive structure is provided in the central region and the peripheral region of the objective optical system. When the outermost peripheral region is provided, the outermost peripheral region may be a refractive surface, or a diffractive structure may be provided in the outermost peripheral region. The central region, the peripheral region, and the outermost peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
 なお、本明細書でいう回折構造とは、入射光束に対して光路差及び/又は位相差を付加する構造の総称である。回折構造は、段差を有し、好ましくは段差を複数有する。この段差により入射光束に光路差及び/又は位相差が付加される。回折構造により付加される光路差は、入射光束の波長の整数倍であっても良いし、入射光束の波長の非整数倍であっても良い。段差は、光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。回折構造は、一般に、様々な断面形状(光軸を含む面での断面形状)をとり得、光軸を含む断面形状がブレーズ型構造と階段型構造とに大別される。 The diffractive structure referred to in this specification is a general term for structures that add an optical path difference and / or a phase difference to an incident light beam. The diffractive structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux. The optical path difference added by the diffractive structure may be an integral multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam. The steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. In general, the diffractive structure can have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shape including the optical axis is roughly classified into a blazed structure and a staircase structure.
 ブレーズ型構造とは、図2(a)、(b)に示されるように、回折溝を有する対物光学系の光軸を含む断面形状が、鋸歯状の形状ということであり、具体的には、光ピックアップ装置の略光軸方向(図で上下方向)に沿って延在する複数の段差面STと、隣接する段差面同士を連結する斜面CPとを有する。尚、図2の例においては、上方が光源側、下方が光検出器側であって、平行平板上に回折溝が形成されているものとする。ブレーズ型構造において、1つのブレーズ単位の光軸垂直方向の長さをピッチPという(図2(a)、(b)参照)。また、ブレーズの光軸に平行方向の段差面の光軸方向長さを段差量B(又はブレーズ高さhと称することもある)という(図2(a)参照)。 As shown in FIGS. 2 (a) and 2 (b), the blazed structure is a sawtooth-shaped cross section including the optical axis of the objective optical system having a diffraction groove. The optical pickup device includes a plurality of step surfaces ST extending along a substantially optical axis direction (vertical direction in the drawing) of the optical pickup device, and a slope CP connecting adjacent step surfaces. In the example of FIG. 2, it is assumed that the upper side is the light source side and the lower side is the photodetector side, and a diffraction groove is formed on a parallel plate. In the blazed structure, the length of one blazed unit in the direction perpendicular to the optical axis is referred to as a pitch P (see FIGS. 2A and 2B). The length in the optical axis direction of the step surface parallel to the optical axis of the blaze is referred to as a step amount B (or sometimes referred to as a blaze height h) (see FIG. 2A).
 また、階段型構造とは、図2(c)、(d)に示されるように、回折溝を有する光学素子の光軸を含む断面形状が、小階段状のもの(ステップ単位と称する)を複数有するということであり、具体的には、光ピックアップ装置の略光軸方向に沿って延在する複数の段差面STと、前記段差面と交差する複数のテラス面TRとを有する。 In addition, as shown in FIGS. 2 (c) and 2 (d), the staircase structure is a structure in which the cross-sectional shape including the optical axis of an optical element having a diffraction groove is a small step (referred to as a step unit). More specifically, it has a plurality of step surfaces ST extending substantially along the optical axis direction of the optical pickup device, and a plurality of terrace surfaces TR intersecting with the step surfaces.
 図2(c)に示す階段型構造は、3つ以上(図では7つ)の段差面STと、3つ以上(図では7つ)のテラス面TRとを有し、隣接するテラス面TRが光ピックアップ装置の光軸方向に順次シフトしてなるステップ単位を、光ピックアップ装置の光軸に交差する方向(図で左右方向)に沿って複数個配置することによって、ステップ周期構造を形成してなるものである。即ち、特にテラス面TRが3つ以上の階段型構造は、小さい段差面STと大きい段差面LSTとを有することになる。本明細書では、テラス面が3つの場合、3ステップ構造といい、7つの場合、7ステップ構造という。 The stepped structure shown in FIG. 2C has three or more (seven in the figure) step surfaces ST and three or more (seven in the figure) terrace surfaces TR, and adjacent terrace surfaces TR. The step periodic structure is formed by arranging a plurality of step units, which are sequentially shifted in the optical axis direction of the optical pickup device, along the direction intersecting the optical axis of the optical pickup device (left-right direction in the figure). It will be. That is, in particular, the staircase structure with three or more terrace surfaces TR has a small step surface ST and a large step surface LST. In this specification, when there are three terrace surfaces, it is referred to as a three-step structure, and when there are seven terrace surfaces, it is referred to as a seven-step structure.
 図2(d)に示す回折構造は、略光軸方向に延在する隣接する段差面ST、STの端部同士により、間に挟まれたテラス面TRを連結する構成であって、隣接するテラス面TR、TR同士は平行で光軸方向にシフトしている。本明細書では、テラス面が2つの場合、2ステップ構造という。尚、図2(e)に示すように、最も高い側から1又は2以上のテラスTRを等量だけ低める方向にシフトしてなる構造も、階段型構造とする。 The diffractive structure shown in FIG. 2D is a configuration in which the terrace surfaces TR sandwiched between the end portions of adjacent step surfaces ST and ST extending substantially in the optical axis direction are connected to each other. The terrace surfaces TR and TR are parallel to each other and shifted in the optical axis direction. In this specification, when there are two terrace surfaces, it is called a two-step structure. As shown in FIG. 2 (e), a structure in which one or more terraces TR are shifted in the direction of lowering by an equal amount from the highest side is also a staircase structure.
 また、階段型構造において、1つの階段単位の光軸垂直方向の長さをピッチPという(図2(c)、(d)参照)。また、光軸方向に沿った段差面LST、STの長さを段差量B1,B2という。3レベル以上の階段型構造の場合、大段差量B1(第k段差量)と小段差量B2とが存在することになる(図2(c)参照)が、特に本発明においては、小段差量B2の少なくとも1つを変更している。一方、2ステップ構造の場合、基本的にB1=B2である。 Also, in the staircase structure, the length of one staircase unit in the direction perpendicular to the optical axis is referred to as pitch P (see FIGS. 2C and 2D). The lengths of the step surfaces LST and ST along the optical axis direction are referred to as step amounts B1 and B2. In the case of a three-level or higher staircase structure, a large step amount B1 (kth step amount) and a small step amount B2 exist (see FIG. 2C). At least one of the quantities B2 is changed. On the other hand, in the case of the two-step structure, basically B1 = B2.
 尚、回折構造は、ある単位形状が周期的に繰り返されている構造であることが好ましい。ここでいう「単位形状が周期的に繰り返されている」とは、同一の形状が同一の周期で繰り返されている形状は当然含む。さらに、周期の1単位となる単位形状が、規則性を持って、周期が徐々に長くなったり、徐々に短くなったりする形状も、「単位形状が周期的に繰り返されている」ものに含まれているとする。 The diffractive structure is preferably a structure in which a certain unit shape is periodically repeated. As used herein, “unit shape is periodically repeated” naturally includes shapes in which the same shape is repeated in the same cycle. In addition, the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”. Suppose that
 回折構造が、ブレーズ型構造を有する場合、単位形状である鋸歯状の形状が繰り返された形状となる。図2(a)に示されるように、同一の鋸歯状形状が繰り返されてもよい。 When the diffractive structure has a blaze structure, the sawtooth shape as a unit shape is repeated. As shown in FIG. 2 (a), the same sawtooth shape may be repeated.
 回折構造が、階段型構造を有する場合、図2(c)で示されるようなステップ単位が、繰り返されるような形状等があり得る。 When the diffractive structure has a stepped structure, there may be a shape in which the step unit as shown in FIG. 2C is repeated.
 回折構造は、光軸を中心とする同心円状の複数の輪帯を有することが好ましい。各輪帯は段差で区切られていることが好ましい。また、回折構造は、光軸を含む断面形状が階段状のパターンが繰り返されるタイプの構造であることが好ましい。また、複数の回折構造を同一領域に重畳した構造としてもよい。「重畳」とは、文字通り重ね合わせるという意味である。本明細書において、ある回折構造と別の回折構造がそれぞれ他の光学面に設けられている場合や、ある回折構造と別の回折構造とが同一の光学面にあったとしても、それぞれ異なる領域に設けられており、重なる領域が一切ない場合は、本明細書における重畳ではない。 The diffractive structure preferably has a plurality of concentric annular zones around the optical axis. Each annular zone is preferably separated by a step. Further, the diffractive structure is preferably a type of structure in which a step-like pattern having a cross-sectional shape including the optical axis is repeated. A plurality of diffraction structures may be superimposed on the same region. “Superimposition” means literally overlapping. In this specification, when a diffractive structure and another diffractive structure are provided on different optical surfaces, or even if a diffractive structure and another diffractive structure are on the same optical surface, different regions are used. In the case where there is no overlapping region, it is not superposition in this specification.
 対物光学系の中央領域には少なくとも第1回折構造が設けられている。また、対物光学系の周辺領域には少なくとも第2回折構造が設けられていると好ましい。 At least a first diffractive structure is provided in the central region of the objective optical system. Further, it is preferable that at least the second diffractive structure is provided in the peripheral region of the objective optical system.
 対物光学系の第1回折構造に第1光源からの波長λ1の第1光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をMとし、第1回折構造に第2光源からの波長λ2の第2光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をNとし、第1回折構造に第3光源からの波長λ3の第3光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をOとしたときに、M,N,Oの少なくとも1つは正であり、且つM,N,Oの少なくとも1つは負である。この第1回折構造は、異なる光ディスクの互換用の構造であることが好ましい。 Of the diffracted light generated when the first light flux of wavelength λ1 from the first light source is incident on the first diffractive structure of the objective optical system, the diffraction order of the diffracted light having the maximum diffracted light quantity is M, and the first diffraction Of the diffracted light generated when the second light flux of wavelength λ2 from the second light source is incident on the structure, the diffraction order of the diffracted light having the maximum diffracted light amount is N, and the first diffractive structure is Of the diffracted light generated when the third light flux of wavelength λ3 is incident, when the diffraction order of the diffracted light having the maximum diffracted light amount is O, at least one of M, N, and O is positive, And at least one of M, N, and O is negative. The first diffractive structure is preferably a compatible structure for different optical disks.
 M,N,Oの好ましい組み合わせの例としては、以下が挙げられる。 Examples of preferable combinations of M, N, and O include the following.
 (M,N,O)=(-1、+2、+3)
 即ち、第1回折構造が、本発明にかかる回折構造となる。
(M, N, O) = (-1, +2, +3)
That is, the first diffractive structure is the diffractive structure according to the present invention.
 対物光学系の第2回折構造に第1光源からの波長λ1の第1光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をPとし、第2回折構造に第2光源からの波長λ2の第2光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をQとしたときに、P≠Qであると好ましい。この第2光路差付与構造も、異なる光ディスクの互換用の構造であることが好ましい。 Of the diffracted light generated when the first light flux of wavelength λ1 from the first light source is incident on the second diffractive structure of the objective optical system, the diffraction order of the diffracted light having the maximum diffracted light quantity is P, and the second diffraction Of the diffracted light generated when the second light flux of wavelength λ2 from the second light source is incident on the structure, it is preferable that P ≠ Q, where Q is the diffraction order of the diffracted light having the maximum diffracted light quantity. . This second optical path difference providing structure is also preferably a structure for compatibility with different optical disks.
 また、このとき、P=M、Q=Nである事がより好ましい。 At this time, it is more preferable that P = M and Q = N.
 また、対物光学系は対物光学系の温度変化に起因して発生する収差を補正する温特補正用の回折構造を有すると好ましい。「温特補正用の回折構造」とは、温度変化が生じたときに発生する収差を補正する回折構造をいい、例えば、温度が上昇し、第1光源、第2光源及び第3光源の波長が伸びた際に、球面収差を補正不足方向にする機能を有する回折構造である。これによって、温度上昇時のプラスチックの屈折率低下に伴う、球面収差の補正過剰方向への変化を補償することが出来、良好な球面収差を得ることが可能となる。この温特補正用の回折構造を、中央領域の第1回折構造に重畳して設ける場合は、これを第3回折構造とすると好ましい。温特補正用の回折構造を、周辺領域の第2回折構造に重畳して設ける場合は、これを第4回折構造とすると好ましい。さらに、対物光学系が後述する様に最周辺領域を有し、温特補正用の回折構造を最周辺領域に設ける場合は、これを第5回折構造とすると好ましい。 Further, it is preferable that the objective optical system has a diffractive structure for temperature characteristic correction that corrects an aberration caused by a temperature change of the objective optical system. The “diffractive structure for correcting temperature characteristics” refers to a diffractive structure that corrects aberrations that occur when a temperature change occurs. For example, the temperature of the first light source, the second light source, and the third light source increases when the temperature rises. This is a diffractive structure having a function of making the spherical aberration in the direction of insufficient correction when is extended. As a result, it is possible to compensate for a change in spherical aberration in the overcorrected direction due to a decrease in the refractive index of the plastic when the temperature rises, and it becomes possible to obtain a good spherical aberration. When this diffractive structure for temperature characteristic correction is provided so as to overlap with the first diffractive structure in the central region, it is preferable that this is the third diffractive structure. When the diffractive structure for temperature characteristic correction is provided so as to overlap the second diffractive structure in the peripheral region, it is preferable that this is the fourth diffractive structure. Furthermore, when the objective optical system has a most peripheral region as described later and a diffractive structure for temperature characteristic correction is provided in the most peripheral region, this is preferably the fifth diffractive structure.
 第3回折構造に第1光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をRとし、第3回折構造に第2光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をSとし、第3回折構造に第3光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をTとする。このとき、(R,S,T)=(+10、+6、+5)または(+2、+1、+1)であることが好ましい。 Of the diffracted light generated when the first light beam is incident on the third diffractive structure, the diffraction order of the diffracted light having the maximum diffracted light amount is R, and the second light beam is incident on the third diffractive structure. Of the diffracted light, the diffraction order of the diffracted light having the maximum diffracted light amount is S, and the diffracted light having the maximum diffracted light amount among the diffracted light generated when the third light beam enters the third diffractive structure is diffracted. Let T be the order. At this time, it is preferable that (R, S, T) = (+ 10, +6, +5) or (+2, +1, +1).
 また、第4回折構造に第1光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をVとし、第4回折構造に第2光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をWとする。このとき、(V,W)=(+10、+6)、(+5、+3)または(+2、+1)であることが好ましい。 Further, among the diffracted lights generated when the first light flux is incident on the fourth diffractive structure, the diffraction order of the diffracted light having the maximum diffracted light quantity is V, and the second light flux is incident on the fourth diffractive structure. Of the generated diffracted light, the diffraction order of the diffracted light having the maximum amount of diffracted light is denoted by W. At this time, it is preferable that (V, W) = (+ 10, +6), (+5, +3) or (+2, +1).
 第5回折構造については、回折次数について特に限定はない。 There is no particular limitation on the diffraction order of the fifth diffractive structure.
 また、対物光学系の中央領域に設けられる回折構造と、対物光学系の周辺領域に設けられる回折構造とを設ける場合、対物光学系の異なる光学面に設けられていてもよいが、同一の光学面に設けられることが好ましい。同一の光学面に設けられることにより、製造時の偏芯誤差を少なくすることが可能となるため好ましい。また、回折構造は、対物光学系の光ディスク側の面よりも、対物光学系の光源側の面に設けられることが好ましい。 Further, when the diffractive structure provided in the central region of the objective optical system and the diffractive structure provided in the peripheral region of the objective optical system are provided, they may be provided on different optical surfaces of the objective optical system. It is preferable to be provided on the surface. Providing them on the same optical surface is preferable because it makes it possible to reduce eccentricity errors during manufacturing. The diffractive structure is preferably provided on the light source side surface of the objective optical system rather than the surface of the objective optical system on the optical disc side.
 対物光学系は、さらに第3光束のフレア出し用の回折構造を、周辺領域に有していてもよい。フレア出し用の回折構造は、回折構造に第1光源からの波長λ1の第1光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をAとし、回折構造に第2光源からの波長λ2の第2光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をBとし、回折構造に第3光源からの波長λ3の第3光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をCとしたときに、A=0,B=0,C=±1であることが好ましい。フレア出し用の回折構造を通過した第3光束は、第3光ディスクの情報記録面上に集光しない。 The objective optical system may further include a diffractive structure for flare out of the third light flux in the peripheral region. In the diffractive structure for flare out, the diffraction order of the diffracted light having the maximum diffracted light amount among the diffracted light generated when the first light beam with the wavelength λ1 from the first light source is incident on the diffractive structure is denoted by A. Of the diffracted light generated when the second light beam having the wavelength λ2 from the second light source is incident on the structure, the diffraction order of the diffracted light having the maximum diffracted light amount is B, and the wavelength λ3 from the third light source is applied to the diffractive structure. Of the diffracted light having the maximum diffracted light quantity among the diffracted lights generated when the third light beam is incident, A = 0, B = 0, C = ± 1. preferable. The third light flux that has passed through the flaring diffraction structure does not converge on the information recording surface of the third optical disk.
 対物光学系は、対物光学系の中央領域を通過する第1光束、第2光束及び第3光束を、それぞれ集光スポットを形成するように集光する。また、第1光ディスクの保護基板の厚さt1、t1’と第2光ディスクの保護基板の厚さt2が異なる場合、第1回折構造は、第1回折構造を通過した第1光束及び第2光束に対して、第1光ディスクの保護基板の厚さt1、t1’と第2光ディスクの保護基板の厚さt2の違いにより発生する球面収差及び/又は第1光束と第2光束の波長の違いにより発生する球面収差を補正することが好ましい。さらに、第1回折構造は、第1回折構造を通過した第1光束及び第3光束に対して、第1光ディスクの保護基板の厚さt1、t1’と第3光ディスクの保護基板の厚さt3との違いにより発生する球面収差及び/又は第1光束と第3光束の波長の違いにより発生する球面収差を補正することが好ましい。 The objective optical system condenses the first light beam, the second light beam, and the third light beam that pass through the central region of the objective optical system so as to form a condensing spot. Further, when the thicknesses t1 and t1 ′ of the protective substrate of the first optical disc are different from the thickness t2 of the protective substrate of the second optical disc, the first diffractive structure has the first light flux and the second light flux that have passed through the first diffractive structure. On the other hand, due to the spherical aberration generated due to the difference between the thickness t1, t1 ′ of the protective substrate of the first optical disc and the thickness t2 of the protective substrate of the second optical disc, and / or the difference between the wavelengths of the first light flux and the second light flux. It is preferable to correct the generated spherical aberration. Further, the first diffractive structure has a thickness t1, t1 ′ of the protective substrate of the first optical disc and a thickness t3 of the protective substrate of the third optical disc with respect to the first light flux and the third light flux that have passed through the first diffractive structure. It is preferable to correct spherical aberration caused by the difference between the first and third light fluxes and / or spherical aberration caused by the difference between the first light flux and the third light flux.
 また、対物光学系は、対物光学系の周辺領域を通過する第1光束及び第2光束を、それぞれ集光スポットを形成するように集光すると好ましい。また、第1光ディスクの保護基板の厚さt1、t1’と第2光ディスクの保護基板の厚さt2が異なる場合、第2回折構造は、第2回折構造を通過した第1光束及び第2光束に対して、第1光ディスクの保護基板の厚さt1、t1’と第2光ディスクの保護基板の厚さt2の違いにより発生する球面収差及び/又は第1光束と第2光束の波長の違いにより発生する球面収差を補正することが好ましい。 Further, it is preferable that the objective optical system condenses the first light flux and the second light flux that pass through the peripheral area of the objective optical system so as to form a condensed spot. Further, when the thicknesses t1 and t1 ′ of the protective substrate of the first optical disc are different from the thickness t2 of the protective substrate of the second optical disc, the second diffractive structure has the first light flux and the second light flux that have passed through the second diffractive structure. On the other hand, due to the spherical aberration generated due to the difference between the thickness t1, t1 ′ of the protective substrate of the first optical disc and the thickness t2 of the protective substrate of the second optical disc, and / or the difference between the wavelengths of the first light flux and the second light flux. It is preferable to correct the generated spherical aberration.
 また、好ましい態様として、フレア出し用の回折構造を有する周辺領域を通過した第3光束は、第3光ディスクの記録及び/又は再生に用いられない態様が挙げられる。周辺領域を通過した第3光束が、第3光ディスクの情報記録面上で集光スポットの形成に寄与しないようにすることが好ましい。つまり、対物レンズの周辺領域を通過する第3光束は、第3光ディスクの情報記録面上でフレアを形成することが好ましい。対物レンズを通過した第3光束が第3光ディスクの情報記録面上で形成するスポットにおいて、光軸側(又はスポット中心部)から外側へ向かう順番で、光量密度が高いスポット中心部、光量密度がスポット中心部より低いスポット中間部、光量密度がスポット中間部よりも高くスポット中心部よりも低いスポット周辺部を有する。スポット中心部が、光ディスクの情報の記録及び/又は再生に用いられ、スポット中間部及びスポット周辺部は、光ディスクの情報の記録及び/又は再生には用いられない。上記において、このスポット周辺部をフレアと言っている。つまり、対物光学系の周辺領域を通過した第3光束は、第3光ディスクの情報記録面上でスポット周辺部を形成する。また、対物レンズを通過した第2光束においても、第2光ディスクの情報記録面上で形成するスポットが、スポット中心部、スポット中間部、スポット周辺部を有することが好ましい。 Also, as a preferred mode, there is a mode in which the third light flux that has passed through the peripheral region having the diffractive structure for flare out is not used for recording and / or reproduction of the third optical disc. It is preferable that the third light flux that has passed through the peripheral region does not contribute to the formation of a focused spot on the information recording surface of the third optical disc. That is, the third light flux that passes through the peripheral area of the objective lens preferably forms a flare on the information recording surface of the third optical disc. In the spot formed on the information recording surface of the third optical disc by the third light flux that has passed through the objective lens, the spot center portion having a high light amount density and the light amount density in order from the optical axis side (or the spot center portion) to the outside. It has a spot middle part lower than the spot center part and a spot peripheral part whose light intensity is higher than the spot middle part and lower than the spot center part. The center portion of the spot is used for recording and / or reproducing information on the optical disc, and the spot intermediate portion and the spot peripheral portion are not used for recording and / or reproducing information on the optical disc. In the above, this spot peripheral part is called flare. That is, the third light flux that has passed through the peripheral area of the objective optical system forms a spot peripheral portion on the information recording surface of the third optical disc. In the second light flux that has passed through the objective lens, it is preferable that the spot formed on the information recording surface of the second optical disc has a spot central portion, a spot intermediate portion, and a spot peripheral portion.
 好ましい一態様としては、第1回折構造に対して、対物回折構造の温度変化に起因して発生する収差を補正する第3回折構造を重畳させており、第2回折構造に対して、対物光学系の温度変化に起因して発生する収差を補正する第4回折構造を重畳させた態様である。 As a preferred embodiment, a third diffractive structure for correcting an aberration caused by a temperature change of the objective diffractive structure is superimposed on the first diffractive structure, and the objective optic is applied to the second diffractive structure. This is a mode in which a fourth diffractive structure that corrects an aberration caused by a temperature change of the system is superimposed.
 周辺領域を通過した第3光束が、第3光ディスクの情報記録面上でフレアを形成しないような回折構造を設けてもよい。この場合、開口制限を行うためにダイクロイックフィルターなどを用いる事が好ましい。 A diffractive structure may be provided so that the third light flux that has passed through the peripheral region does not form a flare on the information recording surface of the third optical disc. In this case, it is preferable to use a dichroic filter or the like in order to limit the opening.
 対物光学系が最周辺領域を有する場合、対物光学系は、対物光学系の最周辺領域を通過する第1光束を、第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光する。また、最周辺領域を通過した第1光束において、第1光ディスクの記録及び/又は再生時にその球面収差が補正されていることが好ましい。 When the objective optical system has the outermost peripheral area, the objective optical system can record and / or reproduce information on the information recording surface of the first optical disc by using the first light flux passing through the outermost peripheral area of the objective optical system. Condensed to Further, it is preferable that the spherical aberration of the first light flux that has passed through the most peripheral area is corrected during recording and / or reproduction of the first optical disk.
 また、好ましい態様として、最周辺領域を通過した第2光束は、第2光ディスクの記録及び/又は再生に用いられず、最周辺領域を通過した第3光束は、第3光ディスクの記録及び/又は再生に用いられない態様が挙げられる。最周辺領域を通過した第2光束及び第3光束が、それぞれ第2光ディスク及び第3光ディスクの情報記録面上での集光スポットの形成に寄与しないようにすることが好ましい。つまり、対物光学系が最周辺領域を有する場合、対物光学系の最周辺領域を通過する第3光束は、第3光ディスクの情報記録面上でフレアを形成することが好ましい。言い換えると、対物光学系の最周辺領域を通過した第3光束は、第3光ディスクの情報記録面上でスポット周辺部を形成することが好ましい。また、対物光学系が最周辺領域を有する場合、対物光学系の最周辺領域を通過する第2光束は、第2光ディスクの情報記録面上でフレアを形成することが好ましい。言い換えると、対物光学系の最周辺領域を通過した第2光束は、第2光ディスクの情報記録面上でスポット周辺部を形成することが好ましい。 In a preferred embodiment, the second light flux that has passed through the outermost peripheral area is not used for recording and / or reproduction of the second optical disk, and the third light flux that has passed through the outermost peripheral area is recorded and / or recorded on the third optical disk. An embodiment that is not used for reproduction is included. It is preferable that the second light flux and the third light flux that have passed through the outermost peripheral region do not contribute to the formation of a condensed spot on the information recording surfaces of the second optical disc and the third optical disc, respectively. That is, when the objective optical system has the outermost peripheral region, it is preferable that the third light flux passing through the outermost peripheral region of the objective optical system forms a flare on the information recording surface of the third optical disc. In other words, it is preferable that the third light flux that has passed through the outermost peripheral region of the objective optical system forms a spot peripheral portion on the information recording surface of the third optical disc. When the objective optical system has the most peripheral area, the second light flux that passes through the most peripheral area of the objective optical system preferably forms a flare on the information recording surface of the second optical disc. In other words, the second light flux that has passed through the outermost peripheral region of the objective optical system preferably forms a spot peripheral portion on the information recording surface of the second optical disc.
 尚、最周辺領域を通過した第2光束及び第3光束が、第2光ディスクおよび第3光ディスクの情報記録面上でフレアを形成しないような態様でもよい。この場合、開口制限を行うためにダイクロイックフィルターなどを用いる事が好ましい。 It should be noted that the second light flux and the third light flux that have passed through the most peripheral area may not form flare on the information recording surfaces of the second optical disk and the third optical disk. In this case, it is preferable to use a dichroic filter or the like in order to limit the opening.
 また、本発明に係る回折素子を設計する場合、ピッチ幅が小さな輪帯が発生する可能性がある。尚、ピッチ幅とは、輪帯構造の、光路差付与構造の光学素子の光軸と直交方向の幅をいう。 Also, when designing the diffractive element according to the present invention, an annular zone with a small pitch width may occur. The pitch width refers to the width in the direction orthogonal to the optical axis of the optical element having an annular structure and an optical path difference providing structure.
 本発明者は、鋭意研究の結果、このピッチ幅が5μm未満の輪帯であれば、この輪帯を削ったり、埋めてしまっても、光学性能に大きな影響を及ぼさないことを見出した。つまり、輪帯幅が5μm未満である場合、この小さな輪帯幅の輪帯を削っても、光学性能に大きな影響を及ぼすことはない。 As a result of diligent research, the present inventor has found that if this ring width is less than 5 μm, even if this ring zone is cut or filled, the optical performance is not greatly affected. In other words, when the ring zone width is less than 5 μm, even if the ring zone with this small ring zone width is cut, the optical performance is not greatly affected.
 また、金型の製造を容易にしたり、金型の転写性を良好にする観点からは、段差のピッチ幅は小さすぎない方が好ましい。従って、回折構造を設計した際に、ピッチ幅が5μm未満の輪帯が発生する場合、そのような輪帯幅が5μm未満の輪帯を除去して、最終的な回折構造を得る事が好ましい。輪帯幅が5μm未満の輪帯が凸状である場合は、輪帯を削る事により除去すればよく、輪帯幅が5μm未満の輪帯が凹状である場合は、輪帯を埋める事により除去すればよい。 Further, from the viewpoint of facilitating the manufacture of the mold and improving the transferability of the mold, it is preferable that the pitch width of the step is not too small. Therefore, when an annular zone having a pitch width of less than 5 μm is generated when the diffractive structure is designed, it is preferable to obtain a final diffractive structure by removing the annular zone having a zone width of less than 5 μm. . If the ring zone with a ring width less than 5 μm is convex, it can be removed by cutting the ring zone. If the ring zone with a ring width less than 5 μm is concave, fill the ring zone. Just remove it.
 従って、光学系の輪帯幅は全て5μm以上である事が好ましい。 Therefore, it is preferable that the ring width of the optical system is 5 μm or more.
 また、細長い輪帯が少ない方が製造上好ましいという観点から、回折構造の全ての輪帯において、(段差量/輪帯幅)の値が、1以下である事が好ましく、更に好ましくは0.8以下である事である。更に好ましくは、全ての回折構造の全ての輪帯において、(段差量/輪帯幅)の値が、1以下である事が好ましく、更に好ましくは0.8以下である事である。 Further, from the viewpoint that it is preferable from the viewpoint of manufacturing that the number of elongated ring zones is small, it is preferable that the value of (step amount / ring zone width) is 1 or less in all ring zones of the diffractive structure. It is 8 or less. More preferably, the value of (level difference / ring zone width) is preferably 1 or less, and more preferably 0.8 or less, in all the annular zones of all diffractive structures.
 第1光ディスクに対して情報を再生及び/又は記録するために必要な対物光学系の像側開口数をNA1とし、第2光ディスクに対して情報を再生及び/又は記録するために必要な対物レンズの像側開口数をNA2(NA1≧NA2)とし、第3光ディスクに対して情報を再生及び/又は記録するために必要な対物光学系の像側開口数をNA3(NA2>NA3)とする。NA1は、0.8以上、0.9以下であることか、又は、0.55以上、0.7以下であることが好ましい。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60であることが好ましい。また、NA3は、0.4以上、0.55以下であることが好ましい。特にNA3は0.45又は0.53であることが好ましい。 An objective lens necessary for reproducing and / or recording information on the second optical disk is set to NA1 on the image side numerical aperture of the objective optical system necessary for reproducing and / or recording information on the first optical disk. Is NA2 (NA1 ≧ NA2), and the image side numerical aperture of the objective optical system necessary for reproducing and / or recording information on the third optical disk is NA3 (NA2> NA3). NA1 is preferably 0.8 or more and 0.9 or less, or preferably 0.55 or more and 0.7 or less. In particular, NA1 is preferably 0.85. NA2 is preferably 0.55 or more and 0.7 or less. In particular, NA2 is preferably 0.60. NA3 is preferably 0.4 or more and 0.55 or less. In particular, NA3 is preferably 0.45 or 0.53.
 対物光学系の中央領域と周辺領域の境界は、第3光束の使用時において、0.9・NA3以上、1.2・NA3以下(より好ましくは、0.95・NA3以上、1.15・NA3以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物レンズの中央領域と周辺領域の境界が、NA3に相当する部分に形成されていることである。また、対物光学系の周辺領域と最周辺領域の境界は、第2光束の使用時において、0.9・NA2以上、1.2・NA2以下(より好ましくは、0.95・NA2以上、1.15・NA2以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物レンズの周辺領域と最周辺領域の境界が、NA2に相当する部分に形成されていることである。対物光学系の最周辺領域の外側の境界は、第1光束の使用時において、0.9・NA1以上、1.2NA1以下(より好ましくは、0.95・NA1以上、1.15・NA1以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物光学系の最周辺領域の外側の境界が、NA1に相当する部分に形成されていることである。 The boundary between the central region and the peripheral region of the objective optical system is 0.9 · NA 3 or more and 1.2 · NA 3 or less (more preferably 0.95 · NA 3 or more, 1.15 · It is preferably formed in a portion corresponding to the range of NA3 or less. More preferably, the boundary between the central region and the peripheral region of the objective lens is formed in a portion corresponding to NA3. Further, the boundary between the peripheral area and the most peripheral area of the objective optical system is 0.9 · NA 2 or more and 1.2 · NA 2 or less (more preferably 0.95 · NA 2 or more, 1) when the second light flux is used. .15 · NA2 or less) is preferable. More preferably, the boundary between the peripheral region and the most peripheral region of the objective lens is formed in a portion corresponding to NA2. The outer boundary of the outermost peripheral region of the objective optical system is 0.9 · NA1 or more and 1.2NA1 or less (more preferably 0.95 · NA1 or more and 1.15 · NA1 or less) when the first light beam is used. ) Is preferably formed in a portion corresponding to the range. More preferably, the outer boundary of the outermost peripheral region of the objective optical system is formed in a portion corresponding to NA1.
 対物光学系を通過した第3光束を第3光ディスクの情報記録面上に集光する場合に、球面収差が少なくとも1箇所の不連続部を有することが好ましい。その場合、不連続部は、第3光束の使用時において、0.9・NA3以上、1.2・NA3以下(より好ましくは、0.95・NA3以上、1.15・NA3以下)の範囲に存在することが好ましい。また、対物光学系を通過した第2光束を第2光ディスクの情報記録面上に集光する場合にも、球面収差が少なくとも一箇所の不連続部を有することが好ましい。その場合、不連続部は、第2光束の使用時において、0.9・NA2以上、1.2・NA2以下(より好ましくは、0.95・NA2以上、1.1・NA2以下)の範囲に存在することが好ましい。 When the third light flux that has passed through the objective optical system is condensed on the information recording surface of the third optical disc, it is preferable that the spherical aberration has at least one discontinuous portion. In that case, the discontinuous portion has a range of 0.9 · NA 3 or more and 1.2 · NA 3 or less (more preferably 0.95 · NA 3 or more and 1.15 · NA 3 or less) when the third light flux is used. It is preferable that it exists in. Also, when the second light flux that has passed through the objective optical system is condensed on the information recording surface of the second optical disc, it is preferable that the spherical aberration has at least one discontinuous portion. In that case, the discontinuous portion is in a range of 0.9 · NA 2 or more and 1.2 · NA 2 or less (more preferably 0.95 · NA 2 or more and 1.1 · NA 2 or less) when the second light flux is used. It is preferable that it exists in.
 また、球面収差が連続していて、不連続部を有さない場合であって、対物光学系を通過した第3光束を第3光ディスクの情報記録面上に集光する場合に、NA2では、縦球面収差の絶対値が0.03μm以上であって、NA3では縦球面収差の絶対値が0.02μm以下であることが好ましい。より好ましくは、NA2では、縦球面収差の絶対値が0.08μm以上であって、NA3では縦球面収差の絶対値が0.01μm以下である。また、対物レンズを通過した第2光束を第2光ディスクの情報記録面上に集光する場合に、NA1では、縦球面収差の絶対値が0.03μm以上であって、NA2では縦球面収差の絶対値が0.005μm以下であることが好ましい。 Further, when spherical aberration is continuous and does not have a discontinuous portion, and the third light flux that has passed through the objective optical system is condensed on the information recording surface of the third optical disc, NA2 It is preferable that the absolute value of the longitudinal spherical aberration is 0.03 μm or more, and in NA3, the absolute value of the longitudinal spherical aberration is 0.02 μm or less. More preferably, in NA2, the absolute value of longitudinal spherical aberration is 0.08 μm or more, and in NA3, the absolute value of longitudinal spherical aberration is 0.01 μm or less. Further, when the second light flux that has passed through the objective lens is condensed on the information recording surface of the second optical disc, NA1 has an absolute value of longitudinal spherical aberration of 0.03 μm or more, and NA2 exhibits longitudinal spherical aberration. The absolute value is preferably 0.005 μm or less.
 光情報記録再生装置に、上述の光ピックアップ装置を有する光ディスクドライブ装置を組み込むことができる。 An optical disk drive device having the above-described optical pickup device can be incorporated in the optical information recording / reproducing device.
 ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体毎、外部に取り出される方式とがある。 Here, the optical disk drive apparatus provided in the optical information recording / reproducing apparatus will be described. The optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out and a system in which the optical disk drive apparatus main body in which the optical pickup device or the like is stored is taken out.
 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。 The optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto. An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc These include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。 In addition to these components, the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
 本発明によれば、厚み方向に積層された複数の情報記録面を有するBD使用時、及び/又は、厚み方向に積層された複数の情報記録面を有するDVD使用時におけるエラー信号の発生を抑制しつつ、CD使用時の光の利用効率を高めることができる光ピックアップ装置用の対物レンズ及びそれを用いた光ピックアップ装置を提供することが可能になる。 According to the present invention, generation of an error signal is suppressed when using a BD having a plurality of information recording surfaces stacked in the thickness direction and / or when using a DVD having a plurality of information recording surfaces stacked in the thickness direction. On the other hand, it is possible to provide an objective lens for an optical pickup device capable of increasing the light utilization efficiency when using a CD, and an optical pickup device using the objective lens.
2層タイプのBD使用時における対物光学系で集光されるメイン光と不要光とを示す断面図である。It is sectional drawing which shows the main light and unnecessary light which are condensed with the objective optical system at the time of BD use of 2 layer type. 回折構造を示す概略断面図である。It is a schematic sectional drawing which shows a diffraction structure. 光ピックアップ装置の構成を概略的に示す図である。It is a figure which shows the structure of an optical pick-up apparatus roughly. 対物光学系の概略断面図である。It is a schematic sectional drawing of an objective optical system. 比較例の階段型構造を示す断面図である。It is sectional drawing which shows the step type structure of a comparative example. 実施例1の階段型構造を示す断面図である。1 is a cross-sectional view showing a stepped structure of Example 1. FIG. 実施例1の対物光学系に波長λ1の光束を入射させたときの波面の状態を示す図である。It is a figure which shows the state of the wave front when the light beam of wavelength (lambda) 1 is entered into the objective optical system of Example 1. FIG. 実施例1の対物光学系に波長λ2の光束を入射させたときの波面の状態を示す図である。It is a figure which shows the state of the wave front when the light beam of wavelength (lambda) 2 is entered into the objective optical system of Example 1. FIG. 実施例2の階段型構造を示す断面図である。It is sectional drawing which shows the step type structure of Example 2. FIG.
 以下、本発明の実施の形態を、図面を参照して説明する。図3は、異なる光ディスクである2層タイプのBDとDVDとCDに対して適切に情報の記録及び/又は再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。かかる光ピックアップ装置PU1は、光情報記録再生装置に搭載できる。ここでは、第1光ディスクをBDとし、第2光ディスクをDVDとし、第3光ディスクをCDとする。なお、本発明は、本実施の形態に限られるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 3 schematically shows a configuration of the optical pickup apparatus PU1 of the present embodiment that can appropriately record and / or reproduce information on a two-layer type BD, DVD, and CD, which are different optical disks. FIG. Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device. Here, the first optical disc is a BD, the second optical disc is a DVD, and the third optical disc is a CD. The present invention is not limited to the present embodiment.
 光ピックアップ装置PU1は、対物光学系OBJ、絞りST、コリメートレンズCL、ダイクロイックプリズムPPS、BDに対して情報の記録/再生を行う場合に発光され405nmのレーザ光束(第1光束)を射出する第1半導体レーザLD1(第1光源)と、BDの情報記録面RL1からの反射光束を受光する第1の受光素子PD1と、レーザモジュールLM等を有する。 The optical pickup device PU1 emits a laser beam (first beam) of 405 nm that is emitted when recording / reproducing information with respect to the objective optical system OBJ, aperture ST, collimator lens CL, dichroic prism PPS, and BD. 1 semiconductor laser LD1 (1st light source), 1st light receiving element PD1 which receives the reflected light beam from the information recording surface RL1 of BD, laser module LM, etc.
 また、レーザモジュールLMは、DVDに対して情報の記録/再生を行う場合に発光され658nmのレーザ光束(第2光束)を射出する第2半導体レーザEP1(第2光源)と、CDに対して情報の記録/再生を行う場合に発光され785nmのレーザ光束(第3光束)を射出する第3半導体レーザEP2(第3光源)と、DVDの情報記録面RL2からの反射光束を受光する第2の受光素子DS1と、CDの情報記録面RL3からの反射光束を受光する第3の受光素子DS2と、プリズムPSと、を有している。 The laser module LM also emits a 658 nm laser beam (second beam) when recording / reproducing information on a DVD and emits a 658 nm laser beam (second beam), and a CD. A third semiconductor laser EP2 (third light source) that emits a 785 nm laser beam (third beam) when recording / reproducing information and a second beam that receives a reflected beam from the information recording surface RL2 of the DVD. Light receiving element DS1, a third light receiving element DS2 that receives a reflected light beam from the information recording surface RL3 of the CD, and a prism PS.
 本実施の形態の対物光学系OBJはポリオレフィン系のプラスチック製の単玉レンズであって、通過する光束の種類に応じて、図4に示すように、光軸を含む中央領域CNと、その周囲の周辺領域MDと、更にその周囲の最周辺領域OTとに分けることができる。光源側(光ディスク側でも良い)の光学面の中央領域には、第1回折構造が形成されている。第1回折構造は、対物光学系OBJの光軸に略平行に延在する7つの段差面と、前記段差面と交差する7つのテラス面とを有すると共に、隣接するテラス面が対物レンズOBJの光軸方向に順次シフトしてなる階段状構造を元にして、最も対物光学系OBJの中心に近いテラス面から数えて4番目から7番目又は5番目から7番目のテラス面を所定量だけ光軸方向に沿って対物光学系OBJの中心側にシフトしてなるステップ単位を、対物レンズOBJの光軸に交差する方向に沿って複数個配置したステップ周期構造を含む。第1光路差付与構造に、青紫色半導体レーザLD1からの波長λ1の第1光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をMとし、第1光路差付与構造にレーザモジュールLMからの波長λ2の第2光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をNとし、第1光路差付与構造にレーザモジュールLMからの波長λ3の第3光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をOとしたときに、(M,N,O)=(-1,+2,+3)である。 The objective optical system OBJ of the present embodiment is a single lens made of polyolefin plastic, and according to the type of light beam passing therethrough, as shown in FIG. 4, a central region CN including the optical axis and its surroundings Can be divided into a peripheral region MD of the second peripheral region MD and a peripheral region OT around the peripheral region MD. A first diffractive structure is formed in the central region of the optical surface on the light source side (or on the optical disc side). The first diffractive structure has seven step surfaces extending substantially parallel to the optical axis of the objective optical system OBJ and seven terrace surfaces intersecting the step surface, and adjacent terrace surfaces of the objective lens OBJ. Based on a step-like structure that is sequentially shifted in the optical axis direction, a predetermined amount of light is emitted from the fourth to seventh or fifth to seventh terrace surfaces counted from the terrace surface closest to the center of the objective optical system OBJ. It includes a step periodic structure in which a plurality of step units shifted to the center side of the objective optical system OBJ along the axial direction are arranged along the direction intersecting the optical axis of the objective lens OBJ. Of the diffracted light generated when the first light flux of wavelength λ1 from the blue-violet semiconductor laser LD1 is incident on the first optical path difference providing structure, the diffraction order of the diffracted light having the maximum diffracted light amount is M, and the first Of the diffracted light generated when the second light beam having the wavelength λ2 from the laser module LM is incident on the optical path difference providing structure, the diffraction order of the diffracted light having the maximum diffracted light quantity is N, and the first optical path difference providing structure is provided. Of the diffracted light generated when the third light flux of wavelength λ3 from the laser module LM is incident, assuming that the diffraction order of the diffracted light having the maximum diffracted light amount is O, (M, N, O) = ( -1, +2, +3).
 又、周辺領域MDには、第2回折構造と第4回折構造が重畳されて形成されている。第2回折構造に、波長λ1の第1光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をPとし、第2回折構造に波長λ2の第2光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をQとしたときに、P=+1,Q=-1である。又、第4回折構造に、波長λ1の第1光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をVとし、第4回折構造に波長λ2の第2光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数をWとしたときに、(V,W)=(+10,+6)である。さらに、周辺領域には、第2回折構造及び第4光路差付与構造に加えて、第3の光束のフレア出し用の回折構造が重畳されている。このフレア出し用の回折構造に、青紫色半導体レーザLD1からの波長λ1の第1光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数を0とし、この回折構造にレーザモジュールLMからの波長λ2の第2光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数を0とし、この回折構造にレーザモジュールLMからの波長λ3の第3光束が入射した場合に発生する回折光のうち、最大の回折光量を有する回折光の回折次数を±1とする。 In the peripheral region MD, the second diffraction structure and the fourth diffraction structure are superimposed. Of the diffracted light generated when the first light flux having the wavelength λ1 is incident on the second diffractive structure, the diffraction order of the diffracted light having the maximum diffracted light amount is P, and the second light flux having the wavelength λ2 is input to the second diffractive structure. P = + 1, Q = −1, where Q is the diffraction order of the diffracted light having the maximum amount of diffracted light among the diffracted light generated when. Further, of the diffracted light generated when the first light flux having the wavelength λ1 is incident on the fourth diffractive structure, the diffraction order of the diffracted light having the maximum diffracted light amount is V, and the fourth diffractive structure has the second wavelength λ2. Of the diffracted light generated when two light beams are incident, (V, W) = (+ 10, +6), where W is the diffraction order of the diffracted light having the maximum amount of diffracted light. Furthermore, in addition to the second diffractive structure and the fourth optical path difference providing structure, a diffractive structure for flare out of the third light beam is superimposed on the peripheral region. Of the diffracted light generated when the first light flux of wavelength λ1 from the blue-violet semiconductor laser LD1 is incident on this flaring diffractive structure, the diffraction order of the diffracted light having the maximum diffracted light amount is set to 0. Of the diffracted light generated when the second light flux having the wavelength λ2 from the laser module LM is incident on the diffractive structure, the diffraction order of the diffracted light having the maximum diffracted light quantity is set to 0. Of the diffracted light generated when the third light flux having the wavelength λ3 is incident, the diffraction order of the diffracted light having the maximum amount of diffracted light is ± 1.
 BDの第1情報記録面RL1に情報の記録/再生を行う場合、コリメートレンズCLを第1の光軸方向位置に変位させ、青紫色半導体レーザLD1から射出された第1光束(λ1=405nm)の発散光束は、ダイクロイックプリズムPPSを透過し、コリメートレンズCLにより弱有限収束光束又は平行光束とされた後、絞りSTによりその光束径が規制され、対物光学系OBJによって厚さ0.05mmの保護基板PL1を介して、BDの情報記録面RL1上に形成されるスポットとなる。 When recording / reproducing information on the first information recording surface RL1 of the BD, the collimating lens CL is displaced to the first optical axis direction position, and the first light beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD1. The divergent light beam passes through the dichroic prism PPS and is made into a weak finite convergent light beam or a parallel light beam by the collimating lens CL, and then the diameter of the light beam is regulated by the stop ST, and the objective optical system OBJ has a thickness of 0.05 mm. It becomes a spot formed on the information recording surface RL1 of the BD via the substrate PL1.
 情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物光学系OBJ、絞りSTを透過した後、コリメートレンズCLにより収斂光束とされ、ダイクロイックプリズムPPSを透過した後、第1の受光素子PD1の受光面上に収束する。そして、第1の受光素子PD1の出力信号を用いて、2軸アクチュエータACにより対物光学系OBJをフォーカシングやトラッキングさせることで、BDに記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL1 is transmitted again through the objective optical system OBJ and the aperture stop ST, then converged by the collimating lens CL, transmitted through the dichroic prism PPS, and then the first light receiving light. It converges on the light receiving surface of the element PD1. Then, using the output signal of the first light receiving element PD1, the information recorded on the BD can be read by causing the objective optical system OBJ to be focused or tracked by the biaxial actuator AC.
 BDの第2情報記録面RL1’に情報の記録/再生を行う場合、コリメートレンズCLを第1の光軸方向位置とは異なる第2の光軸方向位置に変位させ、青紫色半導体レーザLD1から射出された第1光束(λ1=405nm)の発散光束は、ダイクロイックプリズムPPSを透過し、コリメートレンズCLにより平行光束又は弱有限発散光束とされた後、絞りSTによりその光束径が規制され、対物光学系OBJによって厚さ0.1mmの保護基板PL1’を介して、BDの情報記録面RL1’上に形成されるスポットとなる。 When recording / reproducing information on the second information recording surface RL1 ′ of the BD, the collimating lens CL is displaced to a second optical axis direction position different from the first optical axis direction position, and the blue-violet semiconductor laser LD1 The divergent light beam of the emitted first light beam (λ1 = 405 nm) is transmitted through the dichroic prism PPS and converted into a parallel light beam or a weak finite divergent light beam by the collimator lens CL, and then the light beam diameter is regulated by the stop ST. It becomes a spot formed on the information recording surface RL1 ′ of the BD via the protective substrate PL1 ′ having a thickness of 0.1 mm by the optical system OBJ.
 情報記録面RL1’上で情報ピットにより変調された反射光束は、再び対物光学系OBJ、絞りSTを透過した後、コリメートレンズCLにより収斂光束とされ、ダイクロイックプリズムPPSを透過した後、第1の受光素子PD1の受光面上に収束する。そして、第1の受光素子PD1の出力信号を用いて、2軸アクチュエータACにより対物光学系OBJをフォーカシングやトラッキングさせることで、BDに記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL1 ′ is again transmitted through the objective optical system OBJ and the aperture stop ST, then is converged by the collimating lens CL, and is transmitted through the dichroic prism PPS. It converges on the light receiving surface of the light receiving element PD1. Then, using the output signal of the first light receiving element PD1, the information recorded on the BD can be read by causing the objective optical system OBJ to be focused or tracked by the biaxial actuator AC.
 DVDの情報記録面RL2に情報の記録/再生を行う場合、コリメートレンズCLを第1の光軸方向位置又は第2の光軸方向位置に変位させ、赤色半導体レーザEP1から射出された第2光束(λ2=658nm)の発散光束は、プリズムPSで反射された後、ダイクロイックプリズムPPSにより反射され、コリメートレンズCLにより有限発散光束とされた後、対物光学系OBJに入射する。ここで、対物光学系OBJの中央領域と周辺領域により集光された(最周辺領域を通過した光束はフレア化され、スポット周辺部を形成する)光束は、厚さ0.6mmの保護基板PL2を介して、DVDの情報記録面RL2に形成されるスポットとなり、スポット中心部を形成する。 When recording / reproducing information on the information recording surface RL2 of the DVD, the collimating lens CL is displaced to the first optical axis direction position or the second optical axis direction position, and the second light beam emitted from the red semiconductor laser EP1. The divergent light beam of (λ2 = 658 nm) is reflected by the prism PS, then reflected by the dichroic prism PPS, converted to a finite divergent light beam by the collimating lens CL, and then enters the objective optical system OBJ. Here, the light beam condensed by the central region and the peripheral region of the objective optical system OBJ (the light beam that has passed through the most peripheral region is flared and forms a spot peripheral part) is a protective substrate PL2 having a thickness of 0.6 mm. And the spot formed on the information recording surface RL2 of the DVD, forming the center of the spot.
 情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物光学系OBJ、絞りSTを透過した後、コリメートレンズCLにより収斂光束とされ、ダイクロイックプリズムPPSにより反射された後、その後、プリズムPS内で2回反射された後、第2の受光素子DS1に収束する。そして、第2の受光素子DS1の出力信号を用いてDVDに記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL2 is transmitted again through the objective optical system OBJ and the aperture stop ST, then converged by the collimating lens CL, reflected by the dichroic prism PPS, and then the prism. After being reflected twice in the PS, it converges on the second light receiving element DS1. The information recorded on the DVD can be read using the output signal of the second light receiving element DS1.
 CDの情報記録面RL3に情報の記録/再生を行う場合、コリメートレンズCLを第1の光軸方向位置又は第2の光軸方向位置に変位させ、赤外半導体レーザEP2から射出された第3光束(λ3=785nm)の発散光束は、プリズムPSで反射された後、ダイクロイックプリズムPPSにより反射され、コリメートレンズCLにより有限発散光束とされた後、対物レンズOBJに入射する。ここで、対物光学系OBJの中央領域により集光された光束は、厚さ1.2mmの保護基板PL3を介して、CDの情報記録面RL3上に形成されるスポットとなる。なお、中央領域の外側の光束は、対物光学系OBJの手前に配置されているダイクロイックフィルター(図示せず)によって遮光され、対物レンズOBJの周辺領域及び最周辺領域には入射しない。 When recording / reproducing information on the information recording surface RL3 of the CD, the collimating lens CL is displaced to the first optical axis direction position or the second optical axis direction position, and the third laser beam emitted from the infrared semiconductor laser EP2 is used. The divergent light beam (λ3 = 785 nm) is reflected by the prism PS, then reflected by the dichroic prism PPS, converted to a finite divergent light beam by the collimator lens CL, and then enters the objective lens OBJ. Here, the light beam collected by the central region of the objective optical system OBJ becomes a spot formed on the information recording surface RL3 of the CD via the protective substrate PL3 having a thickness of 1.2 mm. The light beam outside the central region is shielded by a dichroic filter (not shown) arranged in front of the objective optical system OBJ and does not enter the peripheral region and the most peripheral region of the objective lens OBJ.
 情報記録面RL3上で情報ピットにより変調された反射光束は、再び対物光学系OBJ、絞りSTを透過した後、コリメートレンズCLにより収斂光束とされ、ダイクロイックプリズムPPSにより反射された後、その後、プリズム内で2回反射された後、第3の受光素子DS2に収束する。そして、第3の受光素子DS2の出力信号を用いてCDに記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL3 again passes through the objective optical system OBJ and the aperture stop ST, then becomes a convergent light beam by the collimating lens CL, is reflected by the dichroic prism PPS, and then is reflected by the prism. And then converges to the third light receiving element DS2. The information recorded on the CD can be read using the output signal of the third light receiving element DS2.
 以下、上述した実施の形態に用いることができる対物光学系の実施例を、比較例と対比して説明する。ここで説明する対物光学系は、本発明の回折素子と対物光学系が一体となった例である。尚、回折次数の符号は、比較例と実施例の断面図において、水平な光軸に沿って入射した光束が、光軸に近づく場合を+とし、光軸から離れる場合を-とする。また、段差量diの符号は、比較例と実施例の断面図において、上方(光軸方向外側)に隣接するテラス面より右側(対物光学系の中心から離れる側)に向かう方向を+とし、上方に隣接するテラス面より左側(対物光学系の中心に近づく側)に向かう方向を-とする。また、ブレーズ高さhの符号は、比較例と実施例の断面図において、上方に隣接する斜面より右側に向かう方向を+とし、上方に隣接する斜面より左側に向かう方向を-とする。実施例の断面図において、段差量di、及び、ブレーズ高さhの数値の後ろに記載されている符号は、上述したように段差量di、及び、ブレーズ高さhの符号を表す。尚、以下の比較例と実施例の階段状構造は、理解しやすいように平行平板上に形成されたものとして示しているが、単玉の対物光学系に形成する場合、その非球面形状に応じてテラス面が光軸方向にシフトすることとなる。 Hereinafter, examples of the objective optical system that can be used in the above-described embodiments will be described in comparison with comparative examples. The objective optical system described here is an example in which the diffraction element of the present invention and the objective optical system are integrated. Note that, in the cross-sectional views of the comparative example and the example, the sign of the diffraction order is defined as “+” when the light beam incident along the horizontal optical axis approaches the optical axis, and “−” when separated from the optical axis. In addition, in the cross-sectional views of the comparative example and the example, the step amount di is defined as + in the direction toward the right side (side away from the center of the objective optical system) from the terrace surface adjacent to the upper side (the optical axis direction outer side), The direction toward the left side (side closer to the center of the objective optical system) from the upper adjacent terrace surface is defined as −. In addition, in the cross-sectional views of the comparative example and the example, the sign of the blaze height h is + for the direction toward the right side from the upper adjacent slope, and − for the direction toward the left side from the upper adjacent slope. In the cross-sectional view of the embodiment, the reference numerals described after the numerical values of the step amount di and the blaze height h represent the step amount di and the sign of the blaze height h as described above. In addition, the step-like structures of the following comparative examples and examples are shown as being formed on a parallel plate for easy understanding, but when formed on a single objective optical system, the aspheric shape is used. Accordingly, the terrace surface is shifted in the optical axis direction.
 (比較例)
 比較例は、テラス面が7つある7ステップの階段型構造を1ステップ単位として周期的に繰り返してなる輪帯回折溝を中央領域に備えた対物光学系であり、その形状データを表1に示す。図5は、比較例の対物光学系の光軸方向断面図である。比較例における階段型構造は、第1~6番目の段差面の長さ=0.839μmであり、第7番目の段差面の長さ=-5.032μmである。比較例では、第1光束のメイン光である-1次回折光の回折効率は89.2%、不要光である-2次回折光の回折効率は1.4%、第2光束の+2次回折光の回折効率は67.3%、第3光束の+3次回折光の回折効率は52.4%である。従って、不要光の光強度が比較的高く、BDの第1情報記録面に対して情報の記録/再生を行う際にエラー信号を発生させる恐れがある。
(Comparative example)
The comparative example is an objective optical system having an annular diffraction groove in the center region, which is formed by periodically repeating a seven-step stepped structure having seven terrace surfaces as one step unit. Show. FIG. 5 is a sectional view in the optical axis direction of the objective optical system of the comparative example. In the stepped structure in the comparative example, the length of the first to sixth step surfaces = 0.839 μm, and the length of the seventh step surface = −5.032 μm. In the comparative example, the diffraction efficiency of the −1st order diffracted light that is the main light of the first light flux is 89.2%, the diffraction efficiency of the −2nd order diffracted light that is unnecessary light is 1.4%, and the + 2nd order diffracted light of the second light flux is The diffraction efficiency is 67.3%, and the diffraction efficiency of the + 3rd order diffracted light of the third light beam is 52.4%. Therefore, the light intensity of unnecessary light is relatively high, and an error signal may be generated when information is recorded / reproduced on the first information recording surface of the BD.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例1)
 実施例1は、比較例に類似してテラス面が7つある7ステップの階段型構造を元にして、最も対物光学系の中心に近いテラス面TROから数えて4番目から7番目のテラス面(図6に点線で示す)をシフト量Δ=7.230μmだけ光軸方向に沿って対物レンズの中心側にシフトしてなる構造を1ステップ単位として周期的に繰り返してなる輪帯回折溝を中央領域に備えた対物光学系であり、その形状データを表2に示す。図6は、実施例1の対物レンズの光軸方向断面図である。実施例1の階段型構造は、第1、2番目の段差面の長さ=0.832μmであり、第3番目の段差面の長さ=-6.399μmであり、第4~6番目の段差面の長さ=0.832μmであり、第7番目の段差面の長さ=2.241μmである。明らかであるが、隣接するテラス面同士の段差面のうち最大の長さを有する段差面dと、2番目に大きな長さを有する段差面dとの間に、2つの段差面(長さd、d)が配置されている。尚、実施例1(後述する実施例2も同様)のステップ周期構造も、見方を変えれば、隣接するステップ単位にまたがる7ステップの階段型構造を1単位として、周期的に繰り返してなるステップ周期構造ということもできる。
Example 1
Similar to the comparative example, Example 1 is based on a seven-step staircase structure with seven terrace surfaces, and the fourth to seventh terrace surfaces counted from the terrace surface TRO closest to the center of the objective optical system. An annular diffraction groove formed by periodically repeating a structure formed by shifting a shift amount Δ = 7.230 μm toward the center side of the objective lens along the optical axis direction as one step unit (indicated by a dotted line in FIG. 6). Table 2 shows the shape data of the objective optical system provided in the central region. FIG. 6 is a cross-sectional view of the objective lens of Example 1 in the optical axis direction. In the staircase structure of Example 1, the length of the first and second step surfaces is 0.832 μm, the length of the third step surface is −6.399 μm, and the fourth to sixth steps. The length of the step surface is 0.832 μm, and the length of the seventh step surface is 2.241 μm. Obviously, there are two step surfaces (long) between the step surface d 3 having the maximum length among the step surfaces between adjacent terrace surfaces and the step surface d 7 having the second largest length. D 1 , d 2 ) are arranged. In addition, the step periodic structure of the first embodiment (same as the second embodiment described later) also has a step cycle that is periodically repeated with a seven-step staircase structure extending over adjacent step units as one unit. It can also be called a structure.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ここで、階段型構造を通過した光束の波面について説明する。図7に示すように、階段型構造を通過した波長λ1=405nmの第1光束の平均波面の進行方向は、図7の太線で示すように、入射光の進行方向に対して変化することとなる。このとき、段差面の長さ=0.832μmで光軸に沿ってシフトした隣接するテラス面を通過した波面は、それぞれ-0.15λ1波長ずつずれてゆき(最後は-0.10λ1)、ステップ単位内の第1番目のテラス面と、それに隣接するステップ単位内の第1番目のテラス面を通過した光束の波面同士では、-1×λ1波長ずれることとなるため(ΣΦ1j=-1)、階段型構造を通過した第1光束の回折次数は-1次となる。 Here, the wavefront of the light beam that has passed through the staircase structure will be described. As shown in FIG. 7, the traveling direction of the average wavefront of the first light flux having the wavelength λ1 = 405 nm that has passed through the staircase structure changes with respect to the traveling direction of the incident light, as indicated by the bold line in FIG. Become. At this time, the wavefronts passing through the adjacent terrace surfaces shifted along the optical axis with the length of the stepped surface = 0.833 μm are shifted by −0.15λ1 wavelength (the last is −0.10λ1), step Since the wavefronts of the light beams that have passed through the first terrace surface in the unit and the first terrace surface in the adjacent step unit are shifted by −1 × λ1 wavelength (ΣΦ1j = −1), The diffraction order of the first light beam that has passed through the staircase structure is −1.
 一方、図8に示すように、階段型構造を通過した波長λ2=655nmの第2光束の平均波面の進行方向は、入射光の進行方向に対して変化することとなる。このとき、段差面の長さ=0.832μmで光軸に沿ってシフトした隣接するテラス面を通過した波面は、それぞれ0.319λ2波長ずつずれてゆき、ステップ単位内の第1番目のテラス面と、それに隣接するステップ単位内の第1番目のテラス面を通過した光束の波面同士では、+2×λ2波長ずれることとなるため(ΣΦ2j=+2)、階段型構造を通過した第2光束の回折次数は+2次となる。同様に、階段型構造を通過した第3光束の回折次数は+3次となる(ΣΦ3j=+3)。 On the other hand, as shown in FIG. 8, the traveling direction of the average wavefront of the second light flux having the wavelength λ2 = 655 nm that has passed through the stepped structure changes with respect to the traveling direction of the incident light. At this time, the wavefront that has passed through the adjacent terrace surface shifted along the optical axis with the length of the stepped surface = 0.832 μm is shifted by 0.319λ2 wavelengths, and the first terrace surface in the step unit. And the wavefronts of the light beams that have passed through the first terrace surface in the adjacent step unit are shifted by + 2 × λ2 wavelength (ΣΦ2j = + 2), so that the diffraction of the second light beam that has passed through the staircase structure The order is + 2nd order. Similarly, the diffraction order of the third light beam that has passed through the stepped structure is + 3rd order (ΣΦ3j = + 3).
 実施例1の階段型構造において、以下の式を満たす。
|ΣΦ1j|=1
|ΣΦ2j|=2
|ΣΦ3j|=3
但し、Φij(i=1、2、3)は、1つのステップ周期構造内に存在する段差面の長さを、第1段差面d1、第2段差面d2、第3段差面d3、・・・・、第j段差面dj(但しj=7)としたとき、各段差面により発生する波長λi(μm)(i=1、2、3)の位相差である。
ここで、
Φij=φij-ROUND(φi)
φij=(dj/λi)×(ni-1)
ΣΦij=Φi1+Φi2+・・・+Φij-1+Φij
波長λiにおける回折素子の屈折率:ni
第j段差面:dj(μm)
任意の実数Aの小数点以下第一位を四捨五入して得られる整数:ROUND(A)
である。
In the staircase structure of Example 1, the following expression is satisfied.
| ΣΦ1j | = 1
| ΣΦ2j | = 2
| ΣΦ3j | = 3
However, Φij (i = 1, 2, 3) is the length of the step surface existing in one step periodic structure, the first step surface d1, the second step surface d2, the third step surface d3,. ... Phase difference of wavelength λi (μm) (i = 1, 2, 3) generated by each step surface when jth step surface dj (j = 7) is assumed.
here,
Φij = φij−ROUND (φi)
φij = (dj / λi) × (ni−1)
ΣΦij = Φi1 + Φi2 + ... + Φij-1 + Φij
Refractive index of diffraction element at wavelength λi: ni
Jth step surface: dj (μm)
Integer obtained by rounding the first decimal place of any real number A: ROUND (A)
It is.
 又、ステップ周期構造内に存在する段差面は、長さが最大の段差面Lと、長さが最小の段差面Sと、長さが中間の段差面M、の3種類に分類され、前記3種類の段差面、及び、前記波長λ1は以下の式を満たす。
0.13≦|Φ|≦0.17
0.13≦|Φ|≦0.17
0.07≦|Φ|≦0.13
390nm<λ1<420nm
但し、Φは長さが最大の段差面Lにより発生する波長λ1の位相差であり、Φは長さが最小の段差面Sにより発生する波長λ1の位相差であり、Φは長さが中間の段差面Mにより発生する波長λ1の位相差である。
ここで、
Φ=φ-ROUND(φ
φ=(d/λ1)×(n1-1)
Φ=φ-ROUND(φ
φ=(d/λ1)×(n1-1)
Φ=φ-ROUND(φ
φ=(d/λ1)×(n1-1)
前記波長λ1(μm)における前記回折素子の屈折率:n1
段差量が最大の段差面Lの長さ:d(μm)
段差量が最小の段差面Sの長さ:d(μm)
段差量が中間の段差面Mの長さ:d(μm)
任意の実数Aの小数点以下第一位を四捨五入して得られる整数:ROUND(A)
である。
Further, the step surfaces existing in the step periodic structure are classified into three types, that is, the step surface L having the maximum length, the step surface S having the minimum length, and the step surface M having the intermediate length. The three types of step surfaces and the wavelength λ1 satisfy the following expression.
0.13 ≦ | Φ L | ≦ 0.17
0.13 ≦ | Φ S | ≦ 0.17
0.07 ≦ | Φ M | ≦ 0.13
390 nm <λ1 <420 nm
Where Φ L is the phase difference of the wavelength λ1 generated by the step surface L having the maximum length, Φ S is the phase difference of the wavelength λ1 generated by the step surface S having the minimum length, and Φ M is the long Is the phase difference of the wavelength λ1 generated by the intermediate stepped surface M.
here,
Φ L = φ L -ROUND (φ L )
φ L = (d L / λ1) × (n1-1)
Φ S = φ S -ROUND (φ S )
φ S = (d S / λ1) × (n1-1)
Φ M = φ M -ROUND (φ M )
φ M = (d M / λ1) × (n1-1)
Refractive index of the diffraction element at the wavelength λ1 (μm): n1
The length of the step surface L with the largest step amount: d L (μm)
Length of step surface S with the smallest step amount: d S (μm)
The length of the step surface M having an intermediate level difference: d M (μm)
Integer obtained by rounding the first decimal place of any real number A: ROUND (A)
It is.
 実施例1では、シフト量Δ=-7.230μmであり、3番目のテラス面と4番目のテラス面との間が、段差量が最大の段差面Lであり、7番目のテラス面と1番目のテラス面との間が、段差量が中間の段差面Mであり、それ以外は段差量が最小の段差面Sであり、d=-6.399μm、d=0.832μm、d=2.241μm、n1=1.56、|φΔ|=10である。又、長さが最大の段差面Lの数と、長さが最小の段差面Sの数と、長さが中間の段差面Mの数の比は、1:5:1である。更に、長さが最小の段差面Sと長さが中間の段差面Mは、長さの符号が互いに同じ(+と+)であり、長さが最大の段差面Lと長さが最小の段差面Sは、長さの符号が互いに異なる(-と+)。 In the first embodiment, the shift amount Δ = −7.230 μm, the step surface L having the maximum step amount between the third terrace surface and the fourth terrace surface is 1 Between the second terrace surface is a step surface M having an intermediate step amount, and the other step surface S has the smallest step amount, d L = −6.399 μm, d S = 0.832 μm, d M = 2.241μm, n1 = 1.56, | a = 10 | φ Δ. Further, the ratio of the number of the step surfaces L having the maximum length, the number of the step surfaces S having the minimum length, and the number of the step surfaces M having the intermediate length is 1: 5: 1. Further, the step surface S having the smallest length and the step surface M having the middle length have the same sign (+ and +), and the step surface L having the largest length and the smallest length. The step surfaces S have different length signs (-and +).
 実施例1では、第1光束のメイン光である-1次回折光の回折効率は92.7%、不要光である-2次回折光の回折効率は0.2%、第2光束の+2次回折光の回折効率は71.6%、第3光束の+3次回折光の回折効率は51.5%である。比較例と比較すると、第1光束の不要光の光強度が低下するので、BDの第1情報記録面に対して情報の記録/再生を行う際にエラー信号の発生を抑制できる。加えて、DVDの情報記録面に対して情報の記録/再生を行う際に用いる第2光束の光強度を増大できる。一方、CDの情報記録面に対して情報の記録/再生を行う際に用いる第3光束の光強度は殆ど変わらない。 In Example 1, the diffraction efficiency of the −1st order diffracted light that is the main light of the first light flux is 92.7%, the diffraction efficiency of the −2nd order diffracted light that is unnecessary light is 0.2%, and the + 2nd order diffracted light of the second light flux. Has a diffraction efficiency of 71.6%, and the diffraction efficiency of the + 3rd-order diffracted light of the third light beam is 51.5%. Compared with the comparative example, since the light intensity of the unnecessary light of the first light flux is reduced, it is possible to suppress the generation of an error signal when recording / reproducing information on the first information recording surface of the BD. In addition, the light intensity of the second light beam used when recording / reproducing information on / from the information recording surface of the DVD can be increased. On the other hand, the light intensity of the third light beam used when recording / reproducing information on / from the information recording surface of the CD hardly changes.
 (実施例2)
 実施例2は、実施例1と同様に、テラス面が7つある7ステップの階段型構造を元にして、最も対物光学面の中心に近いテラス面TROから数えて5番目から7番目のテラス面(図9に点線で示す)をシフト量Δ=7.230μmだけ光軸方向に沿って対物光学面の中心側にシフトしてなる構造を1ステップ単位として周期的に繰り返してなる輪帯回折溝を中央領域に備えた対物光学系であり、その形状データを表3に示す。図9は、実施例2の対物光学系の光軸方向断面図である。実施例2の階段型構造は、第1~3番目の段差面の長さ=0.832μmであり、第4番目の段差面の長さ=-6.399μmであり、第5、6番目の段差面の長さ=0.832μmであり、第7番目の段差面の長さ=2.241μmである。明らかであるが、隣接するテラス面同士の段差面のうち最大の長さを有する段差面dの段差面と、2番目に大きな長さを有する段差面dとの間に、2つの段差面(長さd,d)が配置されている。
(Example 2)
In the second embodiment, as in the first embodiment, the fifth to seventh terraces are counted from the terrace surface TRO closest to the center of the objective optical surface based on a seven-step staircase structure having seven terrace surfaces. Annular diffraction in which the surface (indicated by the dotted line in FIG. 9) is shifted cyclically by a shift amount Δ = 7.230 μm toward the center of the objective optical surface along the optical axis direction as a unit of steps. This is an objective optical system having a groove in the central region, and its shape data is shown in Table 3. FIG. 9 is a sectional view in the optical axis direction of the objective optical system according to the second embodiment. In the stepped structure of Example 2, the length of the first to third step surfaces = 0.832 μm, the length of the fourth step surface = −6.399 μm, and the fifth and sixth steps. The length of the step surface is 0.832 μm, and the length of the seventh step surface is 2.241 μm. As it will be apparent, between the step surface of the stepped surface d 4 with a maximum length of the stepped surface of the terrace faces adjacent a stepped surface d 7 having a length greater in the second, two steps Surfaces (lengths d 5 and d 6 ) are arranged.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例2においても、第1光束のメイン光である-1次回折光の回折効率は92.7%、不要光である-2次回折光の回折効率は0.2%、第2光束の+2次回折光の回折効率は71.6%、第3光束の+3次回折光の回折効率は51.5%である。 Also in Example 2, the diffraction efficiency of the −1st order diffracted light that is the main light of the first light beam is 92.7%, the diffraction efficiency of the −2nd order diffracted light that is unnecessary light is 0.2%, and the second light beam is +2 next time. The diffraction efficiency of the folded light is 71.6%, and the diffraction efficiency of the + 3rd order diffracted light of the third light beam is 51.5%.
 実施例2の階段型構造において、以下の式を満たす。
|ΣΦ1j|=1
|ΣΦ2j|=2
|ΣΦ3j|=3
但し、Φij(i=1、2、3)は、1つのステップ周期構造内に存在する段差面の長さを、第1段差面d1、第2段差面d2、第3段差面d3、・・・・、第j段差面dj(但しj=7)としたとき、各段差面により発生する波長λi(μm)(i=1、2、3)の位相差である。
ここで、
Φij=φij-ROUND(φi)
φij=(dj/λi)×(ni-1)
ΣΦij=Φi1+Φi2+・・・+Φij-1+Φij
波長λiにおける回折素子の屈折率:ni
第j段差面:dj(μm)
任意の実数Aの小数点以下第一位を四捨五入して得られる整数:ROUND(A)
である。
In the staircase structure of Example 2, the following expression is satisfied.
| ΣΦ1j | = 1
| ΣΦ2j | = 2
| ΣΦ3j | = 3
However, Φij (i = 1, 2, 3) is the length of the step surface existing in one step periodic structure, the first step surface d1, the second step surface d2, the third step surface d3,. ... Phase difference of wavelength λi (μm) (i = 1, 2, 3) generated by each step surface when jth step surface dj (j = 7) is assumed.
here,
Φij = φij−ROUND (φi)
φij = (dj / λi) × (ni−1)
ΣΦij = Φi1 + Φi2 + ... + Φij-1 + Φij
Refractive index of diffraction element at wavelength λi: ni
Jth step surface: dj (μm)
Integer obtained by rounding the first decimal place of any real number A: ROUND (A)
It is.
 又、ステップ周期構造内に存在する段差面は、長さが最大の段差面Lと、長さが最小の段差面Sと、長さが中間の段差面M、の3種類に分類され、前記3種類の段差面、及び、前記波長λ1は以下の式を満たす。
0.13≦|Φ|≦0.17
0.13≦|Φ|≦0.17
0.07≦|Φ|≦0.13
390nm<λ1<420nm
但し、Φは長さが最大の段差面Lにより発生する波長λ1の位相差であり、Φは長さが最小の段差面Sにより発生する波長λ1の位相差であり、Φは長さが中間の段差面Mにより発生する波長λ1の位相差である。
ここで、
Φ=φ-ROUND(φ
φ=(d/λ1)×(n1-1)
Φ=φ-ROUND(φ
φ=(d/λ1)×(n1-1)
Φ=φ-ROUND(φ
φ=(d/λ1)×(n1-1)
前記波長λ1(μm)における前記回折素子の屈折率:n1
段差量が最大の段差面Lの長さ:d(μm)
段差量が最小の段差面Sの長さ:d(μm)
段差量が中間の段差面Mの長さ:d(μm)
任意の実数Aの小数点以下第一位を四捨五入して得られる整数:ROUND(A)
である。
Further, the step surfaces existing in the step periodic structure are classified into three types, that is, the step surface L having the maximum length, the step surface S having the minimum length, and the step surface M having the intermediate length. The three types of step surfaces and the wavelength λ1 satisfy the following expression.
0.13 ≦ | Φ L | ≦ 0.17
0.13 ≦ | Φ S | ≦ 0.17
0.07 ≦ | Φ M | ≦ 0.13
390 nm <λ1 <420 nm
Where Φ L is the phase difference of the wavelength λ1 generated by the step surface L having the maximum length, Φ S is the phase difference of the wavelength λ1 generated by the step surface S having the minimum length, and Φ M is the long Is the phase difference of the wavelength λ1 generated by the intermediate stepped surface M.
here,
Φ L = φ L -ROUND (φ L )
φ L = (d L / λ1) × (n1-1)
Φ S = φ S -ROUND (φ S )
φ S = (d S / λ1) × (n1-1)
Φ M = φ M -ROUND (φ M )
φ M = (d M / λ1) × (n1-1)
Refractive index of the diffraction element at the wavelength λ1 (μm): n1
The length of the step surface L with the largest step amount: d L (μm)
Length of step surface S with the smallest step amount: d S (μm)
The length of the step surface M having an intermediate level difference: d M (μm)
Integer obtained by rounding the first decimal place of any real number A: ROUND (A)
It is.
 実施例2では、シフト量Δ=-7.230μmであり、4番目のテラス面と5番目のテラス面との間が、段差量が最大の段差面Lであり、7番目のテラス面と1番目のテラス面との間が、段差量が中間の段差面Mであり、それ以外は段差量が最小の段差面Sであり、d=-6.399μm、d=0.832μm、d=2.241μm、n1=1.56、|φΔ|=10である。又、長さが最大の段差面Lの数と、長さが最小の段差面Sの数と、長さが中間の段差面Mの数の比は、1:5:1である。更に、長さが最小の段差面Sと長さが中間の段差面Mは、長さの符号が互いに同じ(+と+)であり、長さが最大の段差面Lと長さが最小の段差面Sは、長さの符号が互いに異なる(-と+)。 In the second embodiment, the shift amount Δ = −7.230 μm, the step surface L having the maximum step amount between the fourth terrace surface and the fifth terrace surface is 1 Between the second terrace surface is a step surface M having an intermediate step amount, and the other step surface S has the smallest step amount, d L = −6.399 μm, d S = 0.832 μm, d M = 2.241μm, n1 = 1.56, | a = 10 | φ Δ. Further, the ratio of the number of the step surfaces L having the maximum length, the number of the step surfaces S having the minimum length, and the number of the step surfaces M having the intermediate length is 1: 5: 1. Further, the step surface S having the smallest length and the step surface M having the middle length have the same sign (+ and +), and the step surface L having the largest length and the smallest length. The step surfaces S have different length signs (-and +).
 AC 二軸アクチュエータ
 PPS ダイクロイックプリズム
 CL コリメートレンズ
 LD1 青紫色半導体レーザ
 LM レーザモジュール
 OBJ 対物光学系
 PL1、PL1’ 第1光ディスクの保護基板
 PL2 第2光ディスクの保護基板
 PL3 第3光ディスクの保護基板
 PU1 光ピックアップ装置
 RL1、RL1’ 第1光ディスクの情報記録面
 RL2 第2光ディスクの情報記録面
 RL3 第3光ディスクの情報記録面
AC biaxial actuator PPS dichroic prism CL collimating lens LD1 blue-violet semiconductor laser LM laser module OBJ objective optical system PL1, PL1 ′ first optical disk protective substrate PL2 second optical disk protective substrate PL3 third optical disk protective substrate PU1 optical pickup device RL1, RL1 ′ Information recording surface of the first optical disk RL2 Information recording surface of the second optical disk RL3 Information recording surface of the third optical disk

Claims (11)

  1.  波長λ1の第1光束を出射する第1光源と、波長λ2(λ1<λ2)の第2光束を出射する第2光源と、波長λ3(λ2<λ3)の第3光束を出射する第3光源と、対物光学系と、光検出器と、前記光源と前記光検出器との間の光路内に配置され、前記第1光束と前記第2光束と前記第3光束が共通して通過する回折素子とを有し、前記第1光源からの光束を、前記回折素子、及び、前記対物光学系により第1光ディスクの情報記録面上に集光させることでスポットを形成し、その反射光を受光した前記光検出器からの信号に基づいて、前記第1光ディスクに対して情報の記録及び/又は再生を行い、前記第2光源からの光束を、前記回折素子、及び、前記対物光学系により第2光ディスクの情報記録面上に集光させることでスポットを形成し、その反射光を受光した前記光検出器からの信号に基づいて、前記第2光ディスクに対して情報の記録及び/又は再生を行い、前記第3光源からの光束を、前記回折素子、及び、前記対物光学系により第3光ディスクの情報記録面上に集光させることでスポットを形成し、その反射光を受光した前記光検出器からの信号に基づいて、前記第3光ディスクに対して情報の記録及び/又は再生を行う光ピックアップ装置に用いる回折素子であって、
     前記第1光ディスク、及び/又は、前記第2光ディスクは、厚み方向に積層された複数の情報記録面を有し、
     前記回折素子は、前記第1光ディスク、前記第2光ディスク及び前記第3光ディスクの保護層の厚みに起因して発生する球面収差を補正するための回折構造を有し、
     前記回折構造は、前記回折素子の光軸に略平行に延在する7つの段差面と、前記段差面と交差する7つのテラス面とを有すると共に、隣接する前記テラス面が前記回折素子の光軸方向に順次シフトしてなる階段状構造を元にして、4番目から7番目又は5番目から7番目のテラス面を所定量だけ光軸方向に沿ってシフトしてなるステップ単位を、前記回折素子の光軸に交差する方向に沿って複数個配置したステップ周期構造であって、
     前記回折構造に前記第1光束が入射した場合に発生する回折光のうち、-1次回折光が最大の回折光量を有し、前記回折構造に前記第2光束が入射した場合に発生する回折光のうち、+2次回折光が最大の回折光量を有し、前記回折構造に前記第3光束が入射した場合に発生する回折光のうち、+3次回折光が最大の回折光量を有することを特徴とする回折素子。
    A first light source that emits a first light beam having a wavelength λ1, a second light source that emits a second light beam having a wavelength λ2 (λ1 <λ2), and a third light source that emits a third light beam having a wavelength λ3 (λ2 <λ3) And an objective optical system, a photodetector, and a diffraction that is disposed in an optical path between the light source and the photodetector and through which the first light beam, the second light beam, and the third light beam pass in common. A spot is formed by condensing the light beam from the first light source on the information recording surface of the first optical disk by the diffraction element and the objective optical system, and receiving the reflected light. Based on the signal from the photodetector, information is recorded on and / or reproduced from the first optical disk, and a light beam from the second light source is generated by the diffraction element and the objective optical system. 2 A spot is formed by focusing on the information recording surface of the optical disc, Recording and / or reproducing information with respect to the second optical disk based on a signal from the photodetector that has received the reflected light of the light, and the light beam from the third light source is changed to the diffraction element, and A spot is formed by condensing on the information recording surface of the third optical disk by the objective optical system, and information is recorded on the third optical disk based on a signal from the photodetector that receives the reflected light. And / or a diffraction element for use in an optical pickup device that performs reproduction,
    The first optical disc and / or the second optical disc has a plurality of information recording surfaces stacked in a thickness direction,
    The diffractive element has a diffractive structure for correcting spherical aberration generated due to the thickness of a protective layer of the first optical disc, the second optical disc, and the third optical disc,
    The diffractive structure has seven step surfaces extending substantially parallel to the optical axis of the diffractive element and seven terrace surfaces intersecting the step surface, and the adjacent terrace surface is light of the diffractive element. A step unit formed by shifting the fourth to seventh or fifth to seventh terraces by a predetermined amount along the optical axis direction based on a step-like structure that is sequentially shifted in the axial direction. A step periodic structure in which a plurality is arranged along a direction intersecting the optical axis of the element,
    Of the diffracted light generated when the first light beam is incident on the diffractive structure, the -1st order diffracted light has the largest amount of diffracted light, and the diffracted light generated when the second light beam is incident on the diffractive structure Of these, + 2nd order diffracted light has the maximum amount of diffracted light, and among the diffracted light generated when the third light beam enters the diffractive structure, the + 3rd order diffracted light has the maximum amount of diffracted light. Diffraction element.
  2.  前記ステップ周期構造において、4番目から7番目又は5番目から7番目のテラス面の所定量だけ光軸方向に沿ってシフトした際のシフト量をΔ(μm)としたとき、以下の式を満たすことを特徴とする請求項1に記載の回折素子。
    9.8<|φΔ|<10.2
    但し、φΔはシフト量Δにより発生する波長λ1(μm)の光路差である。
    ここで、
    φΔ=(Δ/λ1)×(n1-1)
    n1:前記波長λ1における前記回折素子の屈折率
    In the step periodic structure, when the shift amount when shifting along the optical axis direction by a predetermined amount on the fourth to seventh or fifth to seventh terrace surfaces is Δ (μm), the following equation is satisfied. The diffraction element according to claim 1.
    9.8 <| φ Δ | <10.2
    However, φΔ is an optical path difference of wavelength λ1 (μm) generated by the shift amount Δ.
    here,
    φ Δ = (Δ / λ1) × (n1-1)
    n1: Refractive index of the diffraction element at the wavelength λ1
  3.  波長λ1の第1光束を出射する第1光源と、波長λ2(λ1<λ2)の第2光束を出射する第2光源と、波長λ3(λ2<λ3)の第3光束を出射する第3光源と、対物光学系と、光検出器と、前記光源と前記光検出器との間の光路内に配置され、前記第1光束と前記第2光束と前記第3光束が共通して通過する回折素子とを有し、前記第1光源からの光束を、前記回折素子、及び、前記対物光学系により第1光ディスクの情報記録面上に集光させることでスポットを形成し、その反射光を受光した前記光検出器からの信号に基づいて、前記第1光ディスクに対して情報の記録及び/又は再生を行い、前記第2光源からの光束を、前記回折素子、及び、前記対物光学系により第2光ディスクの情報記録面上に集光させることでスポットを形成し、その反射光を受光した前記光検出器からの信号に基づいて、前記第2光ディスクに対して情報の記録及び/又は再生を行い、前記第3光源からの光束を、前記回折素子、及び、前記対物光学系により第3光ディスクの情報記録面上に集光させることでスポットを形成し、その反射光を受光した前記光検出器からの信号に基づいて、前記第3光ディスクに対して情報の記録及び/又は再生を行う光ピックアップ装置に用いる回折素子であって、
     前記第1光ディスク、及び/又は、前記第2光ディスクは、厚み方向に積層された複数の情報記録面を有し、
     前記回折素子は、前記第1光ディスク、前記第2光ディスク及び前記第3光ディスクの保護層の厚みに起因して発生する球面収差を補正するための回折構造を有し、
     前記回折構造は、前記回折素子の光軸に略平行に延在する7つの段差面と、前記段差面と交差する7つのテラス面とを有すると共に、隣接する前記テラス面が前記回折素子の光軸方向に順次シフトしてなる階段状構造を、前記回折素子の光軸に交差する方向に沿って複数個配置したステップ周期構造であって、
     前記回折構造に前記第1光束が入射した場合に発生する回折光のうち、-1次回折光が最大の回折光量を有し、前記回折構造に前記第2光束が入射した場合に発生する回折光のうち、+2次回折光が最大の回折光量を有し、前記回折構造に前記第3光束が入射した場合に発生する回折光のうち、+3次回折光が最大の回折光量を有し、
     前記ステップ周期構造内に存在する段差面は、長さが最大の段差面Lと、長さが最小の段差面Sと、長さが中間の段差面M、の3種類に分類され、前記長さが最大の段差面Lと、前記長さが中間の段差面Mの間に、前記長さが最小の段差面Sが2つ、又は、3つ存在することを特徴とする回折素子。
    A first light source that emits a first light flux with wavelength λ1, a second light source that emits a second light flux with wavelength λ2 (λ1 <λ2), and a third light source that emits a third light flux with wavelength λ3 (λ2 <λ3) And an objective optical system, a photodetector, and a diffraction that is disposed in an optical path between the light source and the photodetector and through which the first light beam, the second light beam, and the third light beam pass in common. A spot is formed by condensing the light beam from the first light source on the information recording surface of the first optical disk by the diffraction element and the objective optical system, and receiving the reflected light. Based on the signal from the photodetector, information is recorded on and / or reproduced from the first optical disk, and a light beam from the second light source is generated by the diffraction element and the objective optical system. 2 A spot is formed by focusing on the information recording surface of the optical disc, Recording and / or reproducing information with respect to the second optical disk based on a signal from the photodetector that has received the reflected light of the light, and the light beam from the third light source is changed to the diffraction element, and A spot is formed by condensing on the information recording surface of the third optical disk by the objective optical system, and information is recorded on the third optical disk based on a signal from the photodetector that receives the reflected light. And / or a diffraction element for use in an optical pickup device that performs reproduction,
    The first optical disc and / or the second optical disc has a plurality of information recording surfaces stacked in a thickness direction,
    The diffractive element has a diffractive structure for correcting spherical aberration generated due to the thickness of a protective layer of the first optical disc, the second optical disc, and the third optical disc,
    The diffractive structure has seven step surfaces extending substantially parallel to the optical axis of the diffractive element and seven terrace surfaces intersecting the step surface, and the adjacent terrace surface is light of the diffractive element. A step periodic structure in which a plurality of stepped structures sequentially shifted in the axial direction are arranged along a direction intersecting the optical axis of the diffraction element,
    Of the diffracted light generated when the first light beam is incident on the diffractive structure, the -1st order diffracted light has the largest amount of diffracted light, and the diffracted light generated when the second light beam is incident on the diffractive structure + 2nd order diffracted light has the maximum amount of diffracted light, and among the diffracted light generated when the third light beam is incident on the diffractive structure, + 3rd order diffracted light has the maximum amount of diffracted light,
    The step surfaces present in the step periodic structure are classified into three types: a step surface L having a maximum length, a step surface S having a minimum length, and a step surface M having an intermediate length. A diffraction element, wherein there are two or three step surfaces S having a minimum length between a step surface L having a maximum length and a step surface M having a medium length.
  4.  前記ステップ周期構造内に存在する段差面は、長さが最大の段差面Lと、長さが最小の段差面Sと、長さが中間の段差面M、の3種類に分類され、前記3種類の段差面、及び、前記波長λ1は以下の式を満たすことを特徴とする請求項1~3のいずれかに記載の回折素子。
    0.13≦|Φ|≦0.17
    0.13≦|Φ|≦0.17
    0.07≦|Φ|≦0.13
    390nm<λ1<420nm
    但し、Φは長さが最大の段差面Lにより発生する波長λ1の位相差であり、Φは長さが最小の段差面Sにより発生する波長λ1の位相差であり、Φは長さが中間の段差面Mにより発生する波長λ1の位相差である。
    ここで、
    Φ=φ-ROUND(φ
    φ=(d/λ1)×(n1-1)
    Φ=φ-ROUND(φ
    φ=(d/λ1)×(n1-1)
    Φ=φ-ROUND(φ
    φ=(d/λ1)×(n1-1)
    前記波長λ1(μm)における前記回折素子の屈折率:n1
    段差量が最大の段差面Lの長さ:d(μm)
    段差量が最小の段差面Sの長さ:d(μm)
    段差量が中間の段差面Mの長さ:d(μm)
    任意の実数Aの小数点以下第一位を四捨五入して得られる整数:ROUND(A)
    The step surfaces present in the step periodic structure are classified into three types: a step surface L having the maximum length, a step surface S having the minimum length, and a step surface M having an intermediate length. The diffractive element according to any one of claims 1 to 3, wherein the stepped surface of the kind and the wavelength λ1 satisfy the following expression.
    0.13 ≦ | Φ L | ≦ 0.17
    0.13 ≦ | Φ S | ≦ 0.17
    0.07 ≦ | Φ M | ≦ 0.13
    390 nm <λ1 <420 nm
    Where Φ L is the phase difference of the wavelength λ1 generated by the step surface L having the maximum length, Φ S is the phase difference of the wavelength λ1 generated by the step surface S having the minimum length, and Φ M is the long Is the phase difference of the wavelength λ1 generated by the intermediate stepped surface M.
    here,
    Φ L = φ L -ROUND (φ L )
    φ L = (d L / λ1) × (n1-1)
    Φ S = φ S -ROUND (φ S )
    φ S = (d S / λ1) × (n1-1)
    Φ M = φ M -ROUND (φ M )
    φ M = (d M / λ1) × (n1-1)
    Refractive index of the diffraction element at the wavelength λ1 (μm): n1
    The length of the step surface L with the largest step amount: d L (μm)
    Length of step surface S with the smallest step amount: d S (μm)
    The length of the step surface M having an intermediate level difference: d M (μm)
    Integer obtained by rounding the first decimal place of any real number A: ROUND (A)
  5.  前記ステップ周期構造内に存在する段差面は、長さが最大の段差面Lと、長さが最小の段差面Sと、長さが中間の段差面M、の3種類に分類され、前記3種類の段差面、及び、前記波長λ1における前記回折素子の屈折率n1が以下の式を満たすことを特徴とする請求項1~3のいずれかに記載の回折素子。
    6.00<|d|<6.80
    0.73<|d|<0.93
    2.00<|d|<2.40
    1.54<n1<1.58
    The step surfaces present in the step periodic structure are classified into three types: a step surface L having the maximum length, a step surface S having the minimum length, and a step surface M having an intermediate length. The diffractive element according to any one of claims 1 to 3, wherein the step surface of the kind and the refractive index n1 of the diffractive element at the wavelength λ1 satisfy the following expression.
    6.00 <| d L | <6.80
    0.73 <| d S | <0.93
    2.00 <| d M | <2.40
    1.54 <n1 <1.58
  6.  前記ステップ周期構造内に存在する段差面は、長さが最大の段差面Lと、長さが最小の段差面Sと、長さが中間の段差面M、の3種類に分類され、前記3種類の段差面、及び、前記波長λ1における前記回折素子の屈折率n1が以下の式を満たすことを特徴とする請求項1~3のいずれかに記載の回折素子。
    6.40<|d|<7.20
    0.79<|d|<0.99
    2.20<|d|<2.60
    1.50<n1<1.54
    The step surfaces present in the step periodic structure are classified into three types: a step surface L having the maximum length, a step surface S having the minimum length, and a step surface M having an intermediate length. The diffractive element according to any one of claims 1 to 3, wherein the step surface of the kind and the refractive index n1 of the diffractive element at the wavelength λ1 satisfy the following expression.
    6.40 <| d L | <7.20
    0.79 <| d S | <0.99
    2.20 <| d M | <2.60
    1.50 <n1 <1.54
  7.  前記ステップ周期構造内に存在する段差面は、長さが最大の段差面Lと、長さが最小の段差面Sと、長さが中間の段差面M、の3種類に分類され、前記長さが最大の段差面Lの数と、前記長さが最小の段差面Sの数と、前記長さが中間の段差面Mの数の比は、略1:5:1であることを特徴とする請求項1~6のいずれかに記載の回折素子。 The step surfaces existing in the step periodic structure are classified into three types, that is, a step surface L having a maximum length, a step surface S having a minimum length, and a step surface M having an intermediate length. A ratio of the number of step surfaces L having the largest length, the number of step surfaces S having the smallest length, and the number of step surfaces M having the middle length is approximately 1: 5: 1. The diffraction element according to any one of claims 1 to 6.
  8.  前記ステップ周期構造内に存在する段差面は、長さが最大の段差面Lと、長さが最小の段差面Sと、長さが中間の段差面M、の3種類に分類され、前記長さが最小の段差面Sと前記長さが中間の段差面Mは、長さの符号が互いに同じであり、前記長さが最大の段差面Lと前記長さが最小の段差面Sは、長さの符号が互いに異なることを特徴とする請求項1~7のいずれかに記載の回折素子。 The step surfaces existing in the step periodic structure are classified into three types, that is, a step surface L having a maximum length, a step surface S having a minimum length, and a step surface M having an intermediate length. The step surface S having the smallest length and the step surface M having the middle length have the same sign of the length, and the step surface L having the largest length and the step surface S having the smallest length are The diffractive element according to any one of claims 1 to 7, wherein signs of lengths are different from each other.
  9.  以下の式を満たすことを特徴とする請求項1~8のいずれかに記載の回折素子。
    |ΣΦ1j|=1
    |ΣΦ2j|=2
    |ΣΦ3j|=3
    但し、Φij(i=1、2、3)は、1つのステップ周期構造内に存在する段差面の長さを、第1段差面d1、第2段差面d2、第3段差面d3、・・・・、第j段差面dj(但しj=7)としたとき、各段差面により発生する波長λi(μm)(i=1、2、3)の位相差である。
    ここで、
    Φij=φij-ROUND(φi)
    φij=(dj/λi)×(ni-1)
    ΣΦij=Φi1+Φi2+・・・+Φij-1+Φij
    波長λiにおける回折素子の屈折率:ni
    第j段差面:dj(μm)
    任意の実数Aの小数点以下第一位を四捨五入して得られる整数:ROUND(A)
    The diffraction element according to any one of claims 1 to 8, wherein the following expression is satisfied.
    | ΣΦ1j | = 1
    | ΣΦ2j | = 2
    | ΣΦ3j | = 3
    However, Φij (i = 1, 2, 3) is the length of the step surface existing in one step periodic structure, the first step surface d1, the second step surface d2, the third step surface d3,. ... Phase difference of wavelength λi (μm) (i = 1, 2, 3) generated by each step surface when jth step surface dj (j = 7) is assumed.
    here,
    Φij = φij−ROUND (φi)
    φij = (dj / λi) × (ni−1)
    ΣΦij = Φi1 + Φi2 + ... + Φij-1 + Φij
    Refractive index of diffraction element at wavelength λi: ni
    Jth step surface: dj (μm)
    Integer obtained by rounding the first decimal place of any real number A: ROUND (A)
  10.  前記回折素子は前記対物光学系と一体化されていることを特徴とする請求項1~9のいずれかに記載の回折素子。 The diffraction element according to any one of claims 1 to 9, wherein the diffraction element is integrated with the objective optical system.
  11.  請求項1~10のいずれかに記載の回折素子を有することを特徴とする光ピックアップ装置。 An optical pickup device comprising the diffraction element according to any one of claims 1 to 10.
PCT/JP2010/065797 2009-09-29 2010-09-14 Diffraction element and optical pickup device WO2011040225A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011534179A JPWO2011040225A1 (en) 2009-09-29 2010-09-14 Diffraction element and optical pickup device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-225048 2009-09-29
JP2009225048 2009-09-29

Publications (1)

Publication Number Publication Date
WO2011040225A1 true WO2011040225A1 (en) 2011-04-07

Family

ID=43826051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065797 WO2011040225A1 (en) 2009-09-29 2010-09-14 Diffraction element and optical pickup device

Country Status (2)

Country Link
JP (1) JPWO2011040225A1 (en)
WO (1) WO2011040225A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013099201A1 (en) * 2011-12-28 2015-04-30 パナソニックIpマネジメント株式会社 Optical element and optical head device including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071134A (en) * 2002-06-10 2004-03-04 Matsushita Electric Ind Co Ltd Compound objective lens, optical head device, optical information device, computer, optical disk player, car navigation system, optical disk recorder, optical disk server
JP2005515579A (en) * 2002-01-17 2005-05-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical scanning device
JP2010040136A (en) * 2008-08-07 2010-02-18 Panasonic Corp Composite objective lens, optical head device, optical information apparatus and optical disc system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515579A (en) * 2002-01-17 2005-05-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical scanning device
JP2004071134A (en) * 2002-06-10 2004-03-04 Matsushita Electric Ind Co Ltd Compound objective lens, optical head device, optical information device, computer, optical disk player, car navigation system, optical disk recorder, optical disk server
JP2010040136A (en) * 2008-08-07 2010-02-18 Panasonic Corp Composite objective lens, optical head device, optical information apparatus and optical disc system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013099201A1 (en) * 2011-12-28 2015-04-30 パナソニックIpマネジメント株式会社 Optical element and optical head device including the same

Also Published As

Publication number Publication date
JPWO2011040225A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP5136810B2 (en) Optical pickup device
WO2010013616A1 (en) Objective lens and optical pickup device
JP5071883B2 (en) Optical pickup device and objective optical element
WO2007145202A1 (en) Optical element designing method, optical element and optical pickup device
JP4502079B2 (en) Objective lens and optical pickup device
WO2009116385A1 (en) Objective lens and optical pickup device
JP4453785B2 (en) Objective lens for optical pickup device and optical pickup device
JPWO2007123112A1 (en) Optical pickup device, optical element, optical information recording / reproducing apparatus, and optical element design method
JP2009110591A (en) Objective lens and optical pickup device
JP2009129515A (en) Objective optical element and optical pickup device
JPWO2008044475A1 (en) Objective optical element unit and optical pickup device
WO2009128445A1 (en) Objective lens and optical pickup device
JP2010055683A (en) Objective optical element and optical pickup device
WO2011040225A1 (en) Diffraction element and optical pickup device
JP2009037717A (en) Objective optical element and optical pickup device
JP2010055732A (en) Objective optical element and optical pickup device
JP5408549B2 (en) Objective lens for optical pickup device and optical pickup device
JPWO2008146675A1 (en) Objective optical element for optical pickup device and optical pickup device
WO2009147942A1 (en) Objective lens and optical pickup device
WO2011114895A1 (en) Objective lens, optical pickup device, and optical information recording/ reproducing device
JPWO2009057415A1 (en) Objective lens and optical pickup device
WO2010067733A1 (en) Objective and optical pickup device
JPWO2009051019A1 (en) Optical pickup device, objective optical element for optical pickup device, and optical information recording / reproducing device
JP2009181645A (en) Objective optical element and optical pickup device
WO2010116852A1 (en) Objective lens, coupling element, and optical pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820344

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534179

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820344

Country of ref document: EP

Kind code of ref document: A1