WO2011040137A1 - Movement mechanism - Google Patents

Movement mechanism Download PDF

Info

Publication number
WO2011040137A1
WO2011040137A1 PCT/JP2010/063864 JP2010063864W WO2011040137A1 WO 2011040137 A1 WO2011040137 A1 WO 2011040137A1 JP 2010063864 W JP2010063864 W JP 2010063864W WO 2011040137 A1 WO2011040137 A1 WO 2011040137A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving mechanism
housing
outer peripheral
peripheral surface
elastic ring
Prior art date
Application number
PCT/JP2010/063864
Other languages
French (fr)
Japanese (ja)
Inventor
和田 滋
雅之 上山
勝一 浦谷
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Publication of WO2011040137A1 publication Critical patent/WO2011040137A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00156Holding or positioning arrangements using self propulsion

Definitions

  • the present invention relates to a moving mechanism, and more particularly, to a moving mechanism that enables climbing even on a slope having a large inclination by an attachment element using van der Waals force.
  • a typical example of a conventional moving mechanism is a wheel that obtains thrust by friction. Although the wheel can be moved efficiently by one actuator, the frictional force is determined by the cosine of the inclination, so that when the inclination increases, the slope cannot be fully climbed and the movable range is limited.
  • Van der Waals force is a general term for cohesive force that mainly works between neutral atoms and molecules without charge, and its potential energy is inversely proportional to the sixth power of distance. That is, the reach of the force is short and very weak.
  • Adsorption by van der Waals force is called van der Waals adsorption, and it is said that geckos can walk on walls and ceilings with their limbs because of the unique structure in their limbs due to van der Waals adsorption.
  • Patent Document 1 discloses a four-legged robot that floats by the buoyancy of gas accumulated in a cyst and attaches to a ceiling or a side wall surface by van der Waals force due to a sticking element on a leg tip.
  • Patent Document 2 a method of generating a dipole by accumulating electric charges at the long end of the cantilever structure and generating an adsorption force between the adsorption surface adsorbent by van der Waals force, A multi-leg insect type robot using the same is disclosed.
  • the present invention has been made in view of the above circumstances, and aims to provide a moving mechanism that is small, easy to control, energy efficient, can be smoothly attached and detached, and has high runnability. To do.
  • the object of the present invention can be achieved by the following configuration.
  • An attachment element composed of fine hair is formed on the outer peripheral surface, and includes a cylindrical member supported by the housing, A moving mechanism that adheres to the contacted surface by van der Waals force generated by contact between the fine hair of the attachment element and the contacted surface, and travels on the contacted surface by driving the fine hair.
  • the housing includes a cylindrical member that is formed on the outer peripheral surface of the attachment element composed of fine hairs and is supported by the housing, and the contact between the fine hair of the attachment element and the contacted surface. It adheres to the contacted surface by the generated van der Waals force, and it can travel on the contacted surface by driving the fine hairs, so it can travel on the contacted surface, so it is small and easy to control Thus, it is possible to provide a moving mechanism that is highly energy efficient, can be smoothly attached and detached, and has high running performance.
  • FIG. 1 is a schematic diagram for explaining the configuration of the first embodiment of the moving mechanism
  • FIG. 1A is a side view of a medical microrobot equipped with the first embodiment of the moving mechanism
  • FIG. 1B is a top view of the medical microrobot equipped with the first embodiment of the moving mechanism
  • FIG. 1C is a partial cross-sectional view of the wheel of the first embodiment of the moving mechanism.
  • the medical microrobot 1 has a capsule-shaped outer shape similar to, for example, a pharmaceutical product, and is easy to swallow.
  • a cylindrical wheel 10 and a drive source 15 such as a motor or a gear that is fixed to the housing of the medical microrobot 1 and rotates the wheel 10 around the drive shaft 151. And are installed.
  • functions necessary for fulfilling functions as a medical robot such as a camera, a power supply, a control circuit, and a communication circuit are mounted.
  • the wheel 10 has at least a part thereof, for example, a part in contact with the traveling path 9 such as a stomach wall or an intestinal wall protruding from the housing of the medical microrobot 1 to the outside.
  • the traveling path 9 such as a stomach wall or an intestinal wall protruding from the housing of the medical microrobot 1 to the outside.
  • a unicycle type configuration is shown here, a plurality of wheels 10 may be provided. Moreover, you may change the position of the wheel 10 according to a use.
  • the wheel 10 has an attachment element 13 composed of a large number of fine hairs 131 on the outer peripheral surface 11 thereof.
  • the wheel 10 and the fine hair 131 are made of an elastic polymer material. Each material may be the same or different as long as it is an elastic polymer material.
  • the fine hair 131 is formed of a polymer material having a relatively low elastic modulus, has a substantially circular or substantially regular polygonal cross section with substantially the same aspect ratio, has a cross-sectional area of 25 nm 2 or more and 10,000 ⁇ m 2 or less, and has a length of The diameter of the circle having a cross-sectional area equal to that of the fine hair 131 is approximately equal to or more than five times the diameter.
  • the van der Waals force is considered to be at least proportional to the length and density of the fine hair 131 and inversely proportional to the radius of the cross section. Accordingly, if the fine hair 131 is theoretically infinitely thin, infinitely long, and infinitely high in density, it can exhibit a large van der Waals force.
  • the cross-sectional area of the fine hair 131 falls below the lower limit value described above, for example, the cross-sectional area becomes narrower than that of a single-walled carbon nanotube, and the manufacturing becomes substantially difficult.
  • the cross-sectional area of the fine hair 131 exceeds the above-described upper limit value, the effect of van der Waals force becomes small and the adhesive force becomes weak.
  • the fine hairs 131 are arranged side by side in a direction perpendicular to the outer peripheral surface 11 at a density of 10% or more and 50% or less in terms of the ratio of the cross-sectional area to the surface area of the outer peripheral surface 11.
  • the density of the fine hairs 131 falls below the lower limit value described above, the contact area between the fine hairs 131 and the travel path 9 is reduced, and the adhesion is weakened. Conversely, if the density of the fine hairs 131 exceeds the above-described upper limit value, the fine hairs 131 cannot be spaced apart from each other, and when bent, they cannot interfere with each other and contribute to adhesion. Moreover, since the space
  • FIG. 2 is a schematic diagram for explaining the operation of the moving mechanism according to the first embodiment during movement.
  • FIG. 2A is a diagram illustrating how the wheel 10 according to the first embodiment of the moving mechanism is traveled by the traveling path 9.
  • FIG. 2B is a partial development view of the outer peripheral surface 11 of the wheel 10 when the wheel 10 moves on the traveling path 9.
  • the fine hairs 131 in the region A3 behind the traveling direction of the region A2 are gradually lifted from the lying state as the wheel 10 advances, so that the adhesive force is reduced and the straight hair 131 is separated from the traveling path 9 while returning to a straight shape. I will do it.
  • the wheel 10, that is, the medical microrobot 1 advances in the direction of the arrow F.
  • the fine hairs 131 are overlapped when the fine hairs 131 bend and lie down and come into contact with the traveling path 9. Or protruding sideways and not interfering with each other, and almost all the fine hairs 131 can contribute to adhesion by van der Waals force.
  • the drive source 15 may be rotated in the opposite direction (here, counterclockwise).
  • the travel path 9 is an inclined surface, as described above, the fine hair 131 in contact with the travel path 9 is pressed against the travel path 9 by the rotation of the wheel 10, so that the contact area increases and adheres strongly. Even if the inclination increases, the slope can be climbed without sliding down as in normal frictional force. The same is true even if the surface condition of the travel path 9 is different (for example, even if there are undulations or irregularities, the friction coefficient is high or low).
  • the attachment element having fine hair on the outer peripheral surface by providing the attachment element having fine hair on the outer peripheral surface, and the drive source that is fixed to the housing and rotates the wheel,
  • the van der Waals force generated by contact with the road can be attached to the road and run, so it is small, easy to control, energy efficient, and smoothly attaches and detaches.
  • a high movement mechanism can be provided.
  • FIG. 3 is a schematic view for explaining the configuration of the second embodiment of the moving mechanism
  • FIG. 3A is an external perspective view of a medical microrobot equipped with the second embodiment of the moving mechanism
  • FIG. 3B is a cross-sectional view of the second embodiment of the moving mechanism.
  • the medical microrobot 1 has a cylindrical appearance that is easy to swallow, and is provided with annular elastic rings 20 on both side surfaces of the cylindrical casing 2.
  • the cylindrical housing 2 has functions necessary for fulfilling functions as a medical robot such as a camera, a power supply, a control circuit, and a communication circuit.
  • the elastic ring 20 has a slightly smaller radius than the housing 2 and is fixed to the housing 2 at a portion in contact with the side surface of the housing 2.
  • the side surface 22 of the elastic ring 20 is sealed to realize a waterproof structure in which water or the like does not enter the elastic ring 20.
  • the outer peripheral surface 21 of the elastic ring 20 has an attachment element 13 composed of a large number of fine hairs 131.
  • the elastic ring 20 and the fine hair 131 are made of an elastic polymer material. Each material may be the same or different as long as it is an elastic polymer material. Since the fine hair 131 is the same as that of the first embodiment, the description thereof is omitted.
  • a drive source 25 such as a motor or gear having a drive shaft 251 that is fixed to the housing 2 and is substantially coaxial with the central axis of the housing 2, and around the drive shaft 251 by the drive source 25.
  • a planetary mechanism 27 including a rotating sun roller 271 and a planetary roller 273 that revolves around the drive shaft 251 while rotating following the sun roller 271 is provided.
  • the planetary roller 273 is in pressure contact with the outer peripheral back surface 23 from the inside of the elastic ring 20 and deforms the elastic ring 20 as shown in FIG.
  • a protruding portion 211 is formed by protruding outward.
  • the sun roller 271 functions as a solar member in the present embodiment
  • the planetary roller 273 functions as a planetary member in the present embodiment
  • the planetary mechanism 27 functions as traveling wave generating means in the present embodiment.
  • the projecting portion 211 advances clockwise on the outer peripheral surface 21 of the elastic ring 20 by the revolution of the planetary roller 273. That is, a clockwise traveling wave is generated on the outer peripheral surface 21 of the elastic ring 20.
  • the protruding portion 211 functions as a wave front of the traveling wave in the present embodiment.
  • an attachment element 13 composed of a large number of fine hairs 131 is formed on the outer peripheral surface 21 of the elastic ring 20, an attachment element 13 composed of a large number of fine hairs 131 is formed. 2, the outer peripheral surface 21 of the elastic ring 20 adheres to the traveling path 9 due to the van der Waals force generated between the fine hair 131 of the protruding portion 211 and the traveling path 9, and the planetary roller. According to the revolution of 273, the elastic ring 20 and the housing 2, that is, the medical microrobot 1 advance in the direction of arrow F while rotating.
  • the traveling path 9 is a slope, it is the same as described in the first embodiment.
  • the drive source 15 may be rotated in the reverse direction (here, counterclockwise).
  • the sun roller 271 and the planetary roller 273 generate a traveling wave on the outer peripheral surface 21 of the elastic ring 20, but the present invention is not limited to this.
  • the sun gear and the planetary gear are used.
  • a traveling wave may be generated by a roller coaxially coupled to the planetary gear.
  • an elastic ring having a radius smaller than that of the casing, which is formed on the outer peripheral surface of the cylindrical casing and the attachment elements fixed to the casing and having fine hairs.
  • a traveling wave generating means for generating a traveling wave in which the wave front protrudes from the housing and rotates on the outer peripheral surface of the elastic ring, so that the traveling path is generated by van der Waals force generated by the contact between the fine hairs and the traveling path. Therefore, it is possible to provide a moving mechanism that is small, easy to control, energy efficient, can be smoothly attached and detached, and has high runnability.
  • FIG. 4 is a side cross-sectional view for explaining the configuration of the third embodiment of the moving mechanism.
  • the third embodiment is one of the modifications of the second embodiment.
  • the number of planetary rollers 273 that generate traveling waves is not one, but a plurality (four in this case, 273a, 273b, 273c, and 273d) are provided. Others are the same as those in the second embodiment, and thus description thereof is omitted.
  • any one of the four protrusions 211a to 211d can be in contact with the travel path 9 wherever the travel path 9 is. Therefore, the medical microrobot 1 can run regardless of the state.
  • the four projecting portions 211a can be used regardless of the location or orientation of the medical micro robot 1.
  • To 211d can be in contact with the travel path 9 and can travel in any state.
  • FIG. 5 is a side sectional view for explaining the configuration of the fourth embodiment of the moving mechanism.
  • the fourth embodiment is also one of the modifications of the second embodiment.
  • a bending actuator 29 disposed inside the outer peripheral back surface 23 of the elastic ring 20 is used instead of the planetary mechanism 27 as means for generating a traveling wave.
  • the bending actuator 29 is, for example, a sheet-like actuator such as a conductive ion polymer or a bimorph type piezoelectric element.
  • a large number of small actuators 291 are arranged inside the outer peripheral back surface 23 of the elastic ring 20 along the circumferential direction of the elastic ring 20. Are arranged side by side.
  • the small actuator 291 to which the electric field E is applied bends and pushes the elastic ring 20 from the inside.
  • the protrusion 211 is formed on the elastic ring 20, and a traveling wave is generated on the outer peripheral surface of the elastic ring 20 as the electric field E is applied.
  • the electric field E may be applied counterclockwise.
  • a housing and a cylindrical member formed on the outer peripheral surface of the attachment element composed of fine hairs and supported by the housing are provided. Because it adheres to the contacted surface by the van der Waals force generated by the contact with the contacted surface and travels on the contacted surface by driving the fine hair, it can travel on the contacted surface. Therefore, it is possible to provide a moving mechanism that is small, easy to control, has high energy efficiency, can smoothly attach and detach, and has high runnability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

A movement mechanism provided with a housing and a tubular member which has an adhesion element comprising minute hairs formed on the outer peripheral surface thereof and is supported by the housing. Van der Waals' forces generated by the contact between the minute hairs of the adhesion element and the surface with which the minute hairs are in contact cause the movement mechanism to adhere to the surface, and the drive of the minute hairs causes the movement mechanism to travel on the surface. This means that the movement mechanism is able to travel while adhering to the surface, and as a result, the movement mechanism is compact, can be controlled simply, has good energy efficiency, can smoothly perform the adhesion and separation, and has high traveling ability.

Description

移動機構Movement mechanism
 本発明は、移動機構に関し、特にファンデルワールス力を利用した付着要素によって大きな斜度の斜面でも登坂可能とした移動機構に関する。 The present invention relates to a moving mechanism, and more particularly, to a moving mechanism that enables climbing even on a slope having a large inclination by an attachment element using van der Waals force.
 近年、医療用マイクロロボットが盛んに研究されている。ただ、現時点では、医療用マイクロロボットの活躍できる領域は、例えばカプセル型内視鏡のように、大腸や小腸に限られている。このため、胃の検査を含めて、ファイバスコープの牙城を崩すに至っていない。その要因の一つは、医療用マイクロロボットの移動が、大腸や小腸の蠕動運動に依存しているため、思い通りの検査が行えないためである。 In recent years, medical microrobots have been actively researched. However, at present, the area in which the medical microrobot can play an active role is limited to the large intestine and the small intestine, such as a capsule endoscope. For this reason, the scope of the fiberscope has not been destroyed, including the examination of the stomach. One of the reasons is that the movement of the medical microrobot depends on the peristaltic movement of the large and small intestines, so that the desired test cannot be performed.
 そのため、体内を自由に移動できる医療用マイクロロボットの開発が急務となっており、ロボットの移動機構として様々な方式が研究されている。従来からある移動機構の代表としては、摩擦によって推力を得る車輪がある。車輪は1つのアクチュエータで効率よく移動可能であるが、摩擦力が斜度のコサインで決まるため、斜度が大きくなると斜面を登りきれず、移動可能な範囲が限定される。 Therefore, the development of medical microrobots that can move freely inside the body is an urgent task, and various methods have been studied as robot movement mechanisms. A typical example of a conventional moving mechanism is a wheel that obtains thrust by friction. Although the wheel can be moved efficiently by one actuator, the frictional force is determined by the cosine of the inclination, so that when the inclination increases, the slope cannot be fully climbed and the movable range is limited.
 そこで、近年研究されているロボットの移動機構は、摩擦に頼る欠点を補うために、付着要素を追加したものが多い。例えば尺取り虫タイプ、多脚昆虫タイプ等様々な方式が考えられている。 Therefore, many robot movement mechanisms that have been studied in recent years have added adhesion elements to make up for the drawbacks of relying on friction. For example, various methods such as a scale insect type and a multi-leg insect type are considered.
 しかし、従来からあるパッシブな付着要素は、例えば粘着テープ等のように、汚染に対して弱く、耐久性に問題があり、ロボットの付着要素としては採用が不可能であった。そのため、付着要素として、ポンプを用いた吸盤等のような制御性の良いもの、即ちアクティブな付着要素が選択される場合も多かった。 However, conventional passive adhesion elements, such as adhesive tape, are vulnerable to contamination and have problems with durability, and cannot be used as adhesion elements for robots. For this reason, an attachment element having a good controllability such as a suction cup using a pump, that is, an active attachment element is often selected.
 ところが、近年になり、ヤモリの足毛の構造を真似て、ファンデルワールス力によって付着する耐久性の高い付着要素が開発されつつあり、ロボットへの応用が考えられつつある。 However, in recent years, a highly durable attachment element that imitates the structure of gecko's toes and adheres by van der Waals force is being developed, and its application to robots is being considered.
 ファンデルワールス力とは、電荷を持たない中性の原子、分子間などで主となって働く凝集力の総称で、そのポテンシャルエネルギーは距離の6乗に反比例する。すなわち力の到達距離は短く且つ非常に弱い。そして、ファンデルワールス力による吸着をファンデルワールス吸着と呼び、ヤモリが四肢で壁や天井を歩けるのは、その四肢にある独特の構造がファンデルワールス吸着によるものではないかと言われている。 Van der Waals force is a general term for cohesive force that mainly works between neutral atoms and molecules without charge, and its potential energy is inversely proportional to the sixth power of distance. That is, the reach of the force is short and very weak. Adsorption by van der Waals force is called van der Waals adsorption, and it is said that geckos can walk on walls and ceilings with their limbs because of the unique structure in their limbs due to van der Waals adsorption.
 例えば特許文献1には、嚢胞に蓄えた気体の浮力で浮揚し、脚先の付着要素によるファンデルワールス力によって天井や側壁面に取り付く4本脚のロボットが開示されている。 For example, Patent Document 1 discloses a four-legged robot that floats by the buoyancy of gas accumulated in a cyst and attaches to a ceiling or a side wall surface by van der Waals force due to a sticking element on a leg tip.
 また、例えば特許文献2には、片持ち梁構造の長手の先端に電荷を蓄積することでダイポールを発生させ、ファンデルワールス力によって吸着面吸着体との間に吸着力を発生させる方法と、それを用いた多脚昆虫タイプのロボットとが開示されている。 Further, for example, in Patent Document 2, a method of generating a dipole by accumulating electric charges at the long end of the cantilever structure and generating an adsorption force between the adsorption surface adsorbent by van der Waals force, A multi-leg insect type robot using the same is disclosed.
特開2005-349517号公報JP 2005-349517 A 特開2007-236174号公報JP 2007-236174 A
 特許文献1および2に示されたロボットの共通点は、移動のために付着要素付きの脚を浮かせている間、他の脚で体を支えるということを繰り返すことである。そのために、付着要素を用いた走破性の高いロボットは、多脚タイプになっている。 The common points of the robots shown in Patent Documents 1 and 2 are that while the leg with the attachment element is lifted for movement, the body is supported by another leg. For this reason, robots with high runnability using attachment elements are multi-legged.
 ロボットが多脚タイプになることで、ロボットの大きさが大きくなるとともに、多脚を複雑に動かして移動するために制御要素が増え、制御システムが非常に複雑になる。 ロ ボ ッ ト As robots become multi-legged, the size of the robot increases and the number of control elements increases because the multi-legs move and move in a complex manner, making the control system very complex.
 また、特許文献1に示されたロボットの付着要素付きの脚は、ファンデルワールス力によって付着するとは記載されているが、離反する場合についての記述がなく、ファンデルワールス力によって付着した脚を離反させる場合にどのような力や動作が必要なのかが不明である。 In addition, although the leg with the attachment element of the robot shown in Patent Document 1 is described as adhering by van der Waals force, there is no description about the case of separation, and the leg adhering by van der Waals force is used. It is unclear what force or action is required for separation.
 本発明は、上記の事情に鑑みてなされたもので、小型で、制御が簡単で、エネルギー効率が良く、スムーズに付着と離反とができて走破性の高い移動機構を提供することを目的とする。 The present invention has been made in view of the above circumstances, and aims to provide a moving mechanism that is small, easy to control, energy efficient, can be smoothly attached and detached, and has high runnability. To do.
 本発明の目的は、下記構成により達成することができる。 The object of the present invention can be achieved by the following configuration.
 筐体と、
 細毛で構成された付着要素が外周表面に形成され、前記筐体に支持された円筒状の部材とを備え、
 前記付着要素の細毛と被接触面との接触によって発生するファンデルワールス力によって被接触面に付着するとともに、前記細毛の駆動によって前記被接触面上を走行することを特徴とする移動機構。
A housing,
An attachment element composed of fine hair is formed on the outer peripheral surface, and includes a cylindrical member supported by the housing,
A moving mechanism that adheres to the contacted surface by van der Waals force generated by contact between the fine hair of the attachment element and the contacted surface, and travels on the contacted surface by driving the fine hair.
 本発明によれば、筐体と、細毛で構成された付着要素が外周表面に形成され、筐体に支持された円筒状の部材とを備え、付着要素の細毛と被接触面との接触によって発生するフアンデルワールス力によって被接触面に付着するとともに、細毛の駆動によって被接触面上を走行することで、被接触面上に付着して走行することができるので、小型で、制御が簡単で、エネルギー効率が良く、スムーズに付着と離反とができて走破性の高い移動機構を提供することができる。 According to the present invention, the housing includes a cylindrical member that is formed on the outer peripheral surface of the attachment element composed of fine hairs and is supported by the housing, and the contact between the fine hair of the attachment element and the contacted surface. It adheres to the contacted surface by the generated van der Waals force, and it can travel on the contacted surface by driving the fine hairs, so it can travel on the contacted surface, so it is small and easy to control Thus, it is possible to provide a moving mechanism that is highly energy efficient, can be smoothly attached and detached, and has high running performance.
移動機構の第1の実施の形態の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of 1st Embodiment of a moving mechanism. 移動機構の第1の実施の形態の移動時の動作を説明するための模式図である。It is a schematic diagram for demonstrating the operation | movement at the time of the movement of 1st Embodiment of a moving mechanism. 移動機構の第2の実施の形態の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of 2nd Embodiment of a moving mechanism. 移動機構の第3の実施の形態の構成を説明するための側面断面図である。It is side surface sectional drawing for demonstrating the structure of 3rd Embodiment of a moving mechanism. 移動機構の第4の実施の形態の構成を説明するための側面断面図である。It is side surface sectional drawing for demonstrating the structure of 4th Embodiment of a moving mechanism.
 以下、本発明を図示の実施の形態に基づいて説明するが、本発明は該実施の形態に限らない。なお、図中、同一あるいは同等の部分には同一の番号を付与し、重複する説明は省略する。 Hereinafter, the present invention will be described based on the illustrated embodiment, but the present invention is not limited to the embodiment. In the drawings, the same or equivalent parts are denoted by the same reference numerals, and redundant description is omitted.
 最初に、本発明における移動機構の第1の実施の形態について、図1および図2を用いて説明する。図1は、移動機構の第1の実施の形態の構成を説明するための模式図で、図1(a)は移動機構の第1の実施の形態を搭載した医療用マイクロロボットの側面図、図1(b)は移動機構の第1の実施の形態を搭載した医療用マイクロロボットの上面図、図1(c)は移動機構の第1の実施の形態の車輪の部分断面図である。 First, a first embodiment of a moving mechanism according to the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram for explaining the configuration of the first embodiment of the moving mechanism, and FIG. 1A is a side view of a medical microrobot equipped with the first embodiment of the moving mechanism; FIG. 1B is a top view of the medical microrobot equipped with the first embodiment of the moving mechanism, and FIG. 1C is a partial cross-sectional view of the wheel of the first embodiment of the moving mechanism.
 図1(a)および(b)において、医療用マイクロロボット1は、例えば医薬品と同様のカプセル型の外形であり、飲み込みやすくなっている。医療用マイクロロボット1の内部には、円筒状の車輪10と、医療用マイクロロボット1の筐体に固定され、駆動軸151の周りに車輪10を回転させるためのモータやギア等の駆動源15とが搭載されている。また、その他に、カメラ、電源、制御回路、通信回路等の医療用ロボットとしての機能を果たすに必要な機能が搭載されている。 1 (a) and 1 (b), the medical microrobot 1 has a capsule-shaped outer shape similar to, for example, a pharmaceutical product, and is easy to swallow. Inside the medical microrobot 1 is a cylindrical wheel 10 and a drive source 15 such as a motor or a gear that is fixed to the housing of the medical microrobot 1 and rotates the wheel 10 around the drive shaft 151. And are installed. In addition, functions necessary for fulfilling functions as a medical robot such as a camera, a power supply, a control circuit, and a communication circuit are mounted.
 車輪10は、少なくともその一部、例えば胃壁や腸壁等のような走行路9に接する部分が、医療用マイクロロボット1の筐体から外部にはみ出している。ここでは一輪車型の構成を示したが、車輪10は複数あってもよい。また、車輪10の位置も用途に合わせて変更してもよい。 The wheel 10 has at least a part thereof, for example, a part in contact with the traveling path 9 such as a stomach wall or an intestinal wall protruding from the housing of the medical microrobot 1 to the outside. Although a unicycle type configuration is shown here, a plurality of wheels 10 may be provided. Moreover, you may change the position of the wheel 10 according to a use.
 図1(c)において、車輪10は、その外周表面11に、多数の細毛131で構成される付着要素13を有している。車輪10および細毛131は、弾性高分子材料で形成されている。各々の材料は、弾性高分子材料であれば、同じ材料でもよいし、異なっていてもよい。 1 (c), the wheel 10 has an attachment element 13 composed of a large number of fine hairs 131 on the outer peripheral surface 11 thereof. The wheel 10 and the fine hair 131 are made of an elastic polymer material. Each material may be the same or different as long as it is an elastic polymer material.
 細毛131は、比較的弾性率の低い高分子材料で形成され、縦横比が略等しい略円形または略正多角形の断面を有し、断面積が25nm以上10000μm以下で、長さが、細毛131と等しい断面積を持つ円の直径の5倍以上で略揃っている。これによって、十分にしなやかな細毛131が実現でき、走行路9のうねりや、うねりに伴う細毛131の離反方向の変化に対しても追従性を持ち、安定した走行に寄与する。 The fine hair 131 is formed of a polymer material having a relatively low elastic modulus, has a substantially circular or substantially regular polygonal cross section with substantially the same aspect ratio, has a cross-sectional area of 25 nm 2 or more and 10,000 μm 2 or less, and has a length of The diameter of the circle having a cross-sectional area equal to that of the fine hair 131 is approximately equal to or more than five times the diameter. As a result, sufficiently fine hairs 131 can be realized, and can follow the undulations of the traveling path 9 and changes in the separating direction of the fine hairs 131 caused by the swells, thereby contributing to stable running.
 ファンデルワールス力は、少なくとも、細毛131の長さと密度とに比例し、断面の半径に反比例すると考えられている。従って、細毛131は、理論的には、限りなく細く、限りなく長く、限りなく高密度であれば、大きなファンデルワールス力を示すことができる。 The van der Waals force is considered to be at least proportional to the length and density of the fine hair 131 and inversely proportional to the radius of the cross section. Accordingly, if the fine hair 131 is theoretically infinitely thin, infinitely long, and infinitely high in density, it can exhibit a large van der Waals force.
 しかしながら、実際には、細毛131の断面積が上述した下限値を下回ると、例えば単層のカーボンナノチューブよりも細い断面積となり、実質的に製造が困難となる。逆に、細毛131の断面積が上述した上限値を上回ると、ファンデルワールス力の効果が小さくなり、付着力が弱くなってしまう。 However, in practice, when the cross-sectional area of the fine hair 131 falls below the lower limit value described above, for example, the cross-sectional area becomes narrower than that of a single-walled carbon nanotube, and the manufacturing becomes substantially difficult. On the other hand, when the cross-sectional area of the fine hair 131 exceeds the above-described upper limit value, the effect of van der Waals force becomes small and the adhesive force becomes weak.
 また、細毛131は、外周表面11に垂直な方向に、外周表面11の表面積に対する断面積の比で10%以上50%以下の密度で並び立って生えている。これによって、後述するように細毛131が折れ曲がり、横たわって走行路9に接触した場合に、ほぼ全ての細毛131がファンデルワールス力による付着に寄与することができる。 Further, the fine hairs 131 are arranged side by side in a direction perpendicular to the outer peripheral surface 11 at a density of 10% or more and 50% or less in terms of the ratio of the cross-sectional area to the surface area of the outer peripheral surface 11. Thereby, as described later, when the fine hairs 131 are bent and lie down and come into contact with the traveling path 9, almost all of the fine hairs 131 can contribute to adhesion by van der Waals force.
 細毛131の密度が上述した下限値を下回ると、細毛131と走行路9との接触面積が少なくなって付着力が弱くなる。逆に、細毛131の密度が上述した上限値を上回ると、細毛131同士の間隔がとれなくなって、折れ曲がったときに相互に干渉して付着に寄与することができなくなる。また、細毛131同士の間隔がとれないことで、製造も困難となる。 When the density of the fine hairs 131 falls below the lower limit value described above, the contact area between the fine hairs 131 and the travel path 9 is reduced, and the adhesion is weakened. Conversely, if the density of the fine hairs 131 exceeds the above-described upper limit value, the fine hairs 131 cannot be spaced apart from each other, and when bent, they cannot interfere with each other and contribute to adhesion. Moreover, since the space | interval of the fine hairs 131 cannot be taken, manufacture also becomes difficult.
 図2は、移動機構の第1の実施の形態の移動時の動作を説明するための模式図で、図2(a)は、移動機構の第1の実施の形態の車輪10が走行路9の上を移動する場合の部分断面図、図2(b)は、車輪10が走行路9の上を移動する場合の車輪10の外周表面11の部分展開図である。 FIG. 2 is a schematic diagram for explaining the operation of the moving mechanism according to the first embodiment during movement. FIG. 2A is a diagram illustrating how the wheel 10 according to the first embodiment of the moving mechanism is traveled by the traveling path 9. FIG. 2B is a partial development view of the outer peripheral surface 11 of the wheel 10 when the wheel 10 moves on the traveling path 9.
 図2(a)および(b)において、車輪10が例えば胃壁や腸壁等のような走行路9に接触すると、細毛131は、しなやかであるために、図中の領域A2に示すように、医療用マイクロロボット1の自重によって折れ曲がり、横たわった状態で走行路9に接触する。これによって細毛131と走行路9との接触面積が増大し、細毛131は強いファンデルワールス力で走行路9に付着する。 In FIGS. 2 (a) and 2 (b), when the wheel 10 comes into contact with the traveling path 9 such as the stomach wall or the intestinal wall, the fine hair 131 is supple, so that as shown in the region A2 in the figure, The medical microrobot 1 is bent by its own weight and comes into contact with the traveling path 9 in a lying state. As a result, the contact area between the fine hair 131 and the travel path 9 increases, and the fine hair 131 adheres to the travel path 9 with a strong van der Waals force.
 駆動源15によって車輪10が時計回りに回転されると、領域A2の進行方向前方の領域A1の細毛131が走行路9に押しつけられて、折れ曲がって走行路9に接触し、車輪10が矢印Fの方向に進むにつれて横たわった状態となり、走行路9に強く付着していく。 When the wheel 10 is rotated clockwise by the drive source 15, the fine hair 131 in the area A1 ahead of the traveling direction of the area A2 is pressed against the traveling path 9, is bent, and contacts the traveling path 9, and the wheel 10 is moved to the arrow F. As it progresses in the direction of, it will lie down and adhere strongly to the travel path 9.
 逆に、領域A2の進行方向後方の領域A3の細毛131は、車輪10が進むにつれて、横たわった状態から徐々に起きあがることで付着力が減少し、真っ直ぐな形状に復帰しながら走行路9から離反していく。これによって、車輪10即ち医療用マイクロロボット1は、矢印Fの方向に進行する。 Conversely, the fine hairs 131 in the region A3 behind the traveling direction of the region A2 are gradually lifted from the lying state as the wheel 10 advances, so that the adhesive force is reduced and the straight hair 131 is separated from the traveling path 9 while returning to a straight shape. I will do it. Thereby, the wheel 10, that is, the medical microrobot 1 advances in the direction of the arrow F.
 細毛131の長さと外周表面11の表面積に対する密度(10%以上50%以下)とを適切に設定することで、細毛131が折れ曲がり、横たわって走行路9に接触した場合に、細毛131同士が重なり合ったり、横にはみ出したりして相互に干渉することがなく、ほぼ全ての細毛131がファンデルワールス力による付着に寄与することができる。 By appropriately setting the length of the fine hairs 131 and the density (10% or more and 50% or less) with respect to the surface area of the outer peripheral surface 11, the fine hairs 131 are overlapped when the fine hairs 131 bend and lie down and come into contact with the traveling path 9. Or protruding sideways and not interfering with each other, and almost all the fine hairs 131 can contribute to adhesion by van der Waals force.
 矢印Fと逆方向に進むためには、駆動源15を逆方向(ここでは反時計回り)に回転させればよい。 In order to proceed in the direction opposite to the arrow F, the drive source 15 may be rotated in the opposite direction (here, counterclockwise).
 走行路9が斜面であっても、上述したと同様に、走行路9に接触した細毛131が、車輪10の回転によって走行路9に押しつけられることで、接触面積が増大して強く付着するので、斜度が大きくなっても、通常の摩擦力のように滑り落ちることなく、斜面を登坂することができる。走行路9の面状態が異なっていても(例えば、うねりや凹凸があっても、摩擦係数が高くても低くても)同様である。 Even if the travel path 9 is an inclined surface, as described above, the fine hair 131 in contact with the travel path 9 is pressed against the travel path 9 by the rotation of the wheel 10, so that the contact area increases and adheres strongly. Even if the inclination increases, the slope can be climbed without sliding down as in normal frictional force. The same is true even if the surface condition of the travel path 9 is different (for example, even if there are undulations or irregularities, the friction coefficient is high or low).
 上述したように、第1の実施の形態によれば、細毛を有する付着要素が外周表面に形成された車輪と、筐体に固定され、車輪を回転させる駆動源とを備えることで、細毛と走行路との接触によって発生するファンデルワールス力で走行路に付着して走行することができるので、小型で、制御が簡単で、エネルギー効率が良く、スムーズに付着と離反とができて走破性の高い移動機構を提供することができる。 As described above, according to the first embodiment, by providing the attachment element having fine hair on the outer peripheral surface, and the drive source that is fixed to the housing and rotates the wheel, The van der Waals force generated by contact with the road can be attached to the road and run, so it is small, easy to control, energy efficient, and smoothly attaches and detaches. A high movement mechanism can be provided.
 次に、本発明における移動機構の第2の実施の形態について、図3を用いて説明する。図3は、移動機構の第2の実施の形態の構成を説明するための模式図で、図3(a)は移動機構の第2の実施の形態を搭載した医療用マイクロロボットの外観斜視図、図3(b)は移動機構の第2の実施の形態の断面図である。 Next, a second embodiment of the moving mechanism according to the present invention will be described with reference to FIG. FIG. 3 is a schematic view for explaining the configuration of the second embodiment of the moving mechanism, and FIG. 3A is an external perspective view of a medical microrobot equipped with the second embodiment of the moving mechanism. FIG. 3B is a cross-sectional view of the second embodiment of the moving mechanism.
 図3(a)および(b)において、医療用マイクロロボット1は、円筒形の飲み込みやすい外観を備え、円筒状の筐体2の両側面に、円環状の弾性リング20を備えている。円筒状の筐体2の内部には、カメラ、電源、制御回路、通信回路等の医療用ロボットとしての機能を果たすに必要な機能が搭載されている。 3 (a) and 3 (b), the medical microrobot 1 has a cylindrical appearance that is easy to swallow, and is provided with annular elastic rings 20 on both side surfaces of the cylindrical casing 2. The cylindrical housing 2 has functions necessary for fulfilling functions as a medical robot such as a camera, a power supply, a control circuit, and a communication circuit.
 弾性リング20は、筐体2よりも若干小さい半径を有し、筐体2の側面に接する部分で筐体2に固定されている。弾性リング20の側面22は封止されており、弾性リング20の内部に水等が進入しない防水構造を実現している。 The elastic ring 20 has a slightly smaller radius than the housing 2 and is fixed to the housing 2 at a portion in contact with the side surface of the housing 2. The side surface 22 of the elastic ring 20 is sealed to realize a waterproof structure in which water or the like does not enter the elastic ring 20.
 弾性リング20の外周表面21には、第1の実施の形態と同様に、多数の細毛131で構成される付着要素13を有している。弾性リング20および細毛131は、弾性高分子材料で形成されている。各々の材料は、弾性高分子材料であれば、同じ材料でもよいし、異なっていてもよい。細毛131については、第1の実施の形態と同じであるので、説明は省略する。 Similar to the first embodiment, the outer peripheral surface 21 of the elastic ring 20 has an attachment element 13 composed of a large number of fine hairs 131. The elastic ring 20 and the fine hair 131 are made of an elastic polymer material. Each material may be the same or different as long as it is an elastic polymer material. Since the fine hair 131 is the same as that of the first embodiment, the description thereof is omitted.
 弾性リング20の内側には、筐体2に固定され、筐体2の中心軸と略同軸の駆動軸251を有するモータやギア等の駆動源25と、駆動源25によって駆動軸251の周りに回転される太陽ローラ271と、太陽ローラ271に従動して自転しながら駆動軸251の周りに公転する遊星ローラ273等とで構成される遊星機構27が設けられている。 Inside the elastic ring 20, a drive source 25 such as a motor or gear having a drive shaft 251 that is fixed to the housing 2 and is substantially coaxial with the central axis of the housing 2, and around the drive shaft 251 by the drive source 25. A planetary mechanism 27 including a rotating sun roller 271 and a planetary roller 273 that revolves around the drive shaft 251 while rotating following the sun roller 271 is provided.
 遊星ローラ273は、弾性リング20の内側から外周裏面23に圧接しており、図3(b)に示したように、弾性リング20を変形させて、その一部を筐体2の外形よりも外側に突出させて、突出部211を形成している。 The planetary roller 273 is in pressure contact with the outer peripheral back surface 23 from the inside of the elastic ring 20 and deforms the elastic ring 20 as shown in FIG. A protruding portion 211 is formed by protruding outward.
 ここに、太陽ローラ271は本実施の形態における太陽部材として、遊星ローラ273は本実施の形態における遊星部材として、遊星機構27は本実施の形態における進行波発生手段として機能する。 Here, the sun roller 271 functions as a solar member in the present embodiment, the planetary roller 273 functions as a planetary member in the present embodiment, and the planetary mechanism 27 functions as traveling wave generating means in the present embodiment.
 駆動源25によって太陽ローラ271が駆動軸251の周りに例えば時計回りに回転されると、遊星ローラ273は、反時計回りに自転し、弾性リング20の外周裏面23に圧接しながら、駆動軸251の周りに時計回りに公転する。 When the sun roller 271 is rotated, for example, clockwise around the drive shaft 251 by the drive source 25, the planetary roller 273 rotates counterclockwise and presses against the outer peripheral back surface 23 of the elastic ring 20, while driving the drive shaft 251. Revolve clockwise around.
 弾性リング20は筐体2に固定されているため、遊星ローラ273の公転によって、突出部211が弾性リング20の外周表面21の上を時計回りに進むことになる。つまり、弾性リング20の外周表面21の上に時計回りの進行波が発生する。ここに、突出部211は、本実施の形態における進行波の波頭として機能する。 Since the elastic ring 20 is fixed to the housing 2, the projecting portion 211 advances clockwise on the outer peripheral surface 21 of the elastic ring 20 by the revolution of the planetary roller 273. That is, a clockwise traveling wave is generated on the outer peripheral surface 21 of the elastic ring 20. Here, the protruding portion 211 functions as a wave front of the traveling wave in the present embodiment.
 弾性リング20の外周表面21には、多数の細毛131で構成される付着要素13が形成されている。よって、図2で説明したと同様に、突出部211の細毛131と走行路9との間に発生するファンデルワールス力により、弾性リング20の外周表面21が走行路9と付着し、遊星ローラ273の公転に従って、弾性リング20および筐体2、即ち医療用マイクロロボット1は、回転しながら矢印Fの方向に進行する。 On the outer peripheral surface 21 of the elastic ring 20, an attachment element 13 composed of a large number of fine hairs 131 is formed. 2, the outer peripheral surface 21 of the elastic ring 20 adheres to the traveling path 9 due to the van der Waals force generated between the fine hair 131 of the protruding portion 211 and the traveling path 9, and the planetary roller. According to the revolution of 273, the elastic ring 20 and the housing 2, that is, the medical microrobot 1 advance in the direction of arrow F while rotating.
 走行路9が斜面の場合も、第1の実施の形態で説明したと同様である。また、矢印Fと逆方向に進むためには、駆動源15を逆方向(ここでは反時計回り)に回転させればよい。 When the traveling path 9 is a slope, it is the same as described in the first embodiment. In order to proceed in the direction opposite to the arrow F, the drive source 15 may be rotated in the reverse direction (here, counterclockwise).
 第2の実施の形態では、太陽ローラ271と遊星ローラ273とで、弾性リング20の外周表面21の上に進行波を発生させるとしたが、これに限るものではなく、例えば太陽ギアと遊星ギアと遊星ギアに同軸に結合されたローラとで進行波を発生させてもよい。 In the second embodiment, the sun roller 271 and the planetary roller 273 generate a traveling wave on the outer peripheral surface 21 of the elastic ring 20, but the present invention is not limited to this. For example, the sun gear and the planetary gear are used. And a traveling wave may be generated by a roller coaxially coupled to the planetary gear.
 上述したように、第2の実施の形態によれば、円筒状の筐体と、筐体に固定され、細毛を有する付着要素が外周表面に形成された、筐体よりも小さな半径の弾性リングと、弾性リングの外周表面に、波頭が筐体から突出して回転する進行波を発生させる進行波発生手段とを備えることで、細毛と走行路との接触によって発生するファンデルワールス力で走行路に付着して走行することができるので、小型で、制御が簡単で、エネルギー効率が良く、スムーズに付着と離反とができて走破性の高い移動機構を提供することができる。 As described above, according to the second embodiment, an elastic ring having a radius smaller than that of the casing, which is formed on the outer peripheral surface of the cylindrical casing and the attachment elements fixed to the casing and having fine hairs. And a traveling wave generating means for generating a traveling wave in which the wave front protrudes from the housing and rotates on the outer peripheral surface of the elastic ring, so that the traveling path is generated by van der Waals force generated by the contact between the fine hairs and the traveling path. Therefore, it is possible to provide a moving mechanism that is small, easy to control, energy efficient, can be smoothly attached and detached, and has high runnability.
 また、外形がほぼ円筒であるために飲み込みやすく、医療用マイクロロボットに適した形状であるにもかかわらず、どのような場所でも自在に走行でき、小型で、制御が簡単で、エネルギー効率が良く、スムーズに付着と離反とができて走破性の高い移動機構を提供することができる。 In addition, it is easy to swallow because its outer shape is almost cylindrical, and it can run freely in any place despite being a shape suitable for medical microrobots, is small, easy to control, and energy efficient. Therefore, it is possible to provide a moving mechanism that can smoothly attach and detach and has high runnability.
 次に、本発明における移動機構の第3の実施の形態について、図4を用いて説明する。図4は、移動機構の第3の実施の形態の構成を説明するための側面断面図である。第3の実施の形態は、第2の実施の形態の変形例の1つである。 Next, a third embodiment of the moving mechanism according to the present invention will be described with reference to FIG. FIG. 4 is a side cross-sectional view for explaining the configuration of the third embodiment of the moving mechanism. The third embodiment is one of the modifications of the second embodiment.
 図4において、第3の実施の形態では、進行波を発生させる遊星ローラ273が1個ではなく、複数個(ここでは、273a、273b、273cおよび273dの4個)備えられている。その他は第2の実施の形態と同じであるので、説明は省略する。 In FIG. 4, in the third embodiment, the number of planetary rollers 273 that generate traveling waves is not one, but a plurality (four in this case, 273a, 273b, 273c, and 273d) are provided. Others are the same as those in the second embodiment, and thus description thereof is omitted.
 このような構成にすることで、走行路9がどこにあっても、4つの突起部211aから211dの何れかが走行路9に接することができる。従って、医療用マイクロロボット1がどのような状態におかれても、走行が可能である。 By adopting such a configuration, any one of the four protrusions 211a to 211d can be in contact with the travel path 9 wherever the travel path 9 is. Therefore, the medical microrobot 1 can run regardless of the state.
 上述したように、第3の実施の形態によれば、第2の実施の形態の効果に加えて、医療用マイクロロボット1がどのような場所あるいは向きに置かれても、4つの突起部211aから211dの何れかが走行路9に接することができ、どのような状態でも走行が可能となる。 As described above, according to the third embodiment, in addition to the effects of the second embodiment, the four projecting portions 211a can be used regardless of the location or orientation of the medical micro robot 1. To 211d can be in contact with the travel path 9 and can travel in any state.
 次に、本発明における移動機構の第4の実施の形態について、図5を用いて説明する。図5は、移動機構の第4の実施の形態の構成を説明するための側面断面図である。第4の実施の形態も、第2の実施の形態の変形例の1つである。 Next, a fourth embodiment of the moving mechanism in the present invention will be described with reference to FIG. FIG. 5 is a side sectional view for explaining the configuration of the fourth embodiment of the moving mechanism. The fourth embodiment is also one of the modifications of the second embodiment.
 図5において、第4の実施の形態では、進行波を発生させる手段として、遊星機構27ではなく、弾性リング20の外周裏面23の内側に配置された屈曲アクチュエータ29を用いる。屈曲アクチュエータ29は、例えば導電性イオンポリマやバイモルフ型圧電素子等のシート状のアクチュエータであり、多数の小アクチュエータ291を弾性リング20の外周裏面23の内側に、弾性リング20の円周方向に沿って並べた構成となっている。 In FIG. 5, in the fourth embodiment, a bending actuator 29 disposed inside the outer peripheral back surface 23 of the elastic ring 20 is used instead of the planetary mechanism 27 as means for generating a traveling wave. The bending actuator 29 is, for example, a sheet-like actuator such as a conductive ion polymer or a bimorph type piezoelectric element. A large number of small actuators 291 are arranged inside the outer peripheral back surface 23 of the elastic ring 20 along the circumferential direction of the elastic ring 20. Are arranged side by side.
 この構成で、小アクチュエータ291に例えば時計回りに順次電界Eを印加していくと、電界Eが印加された小アクチュエータ291が屈曲して弾性リング20を内側から押し、図5に破線で示したように、弾性リング20に突出部211が形成され、電界Eの印加に従って、弾性リング20の外周表面に進行波が発生する。以降は、第2の実施の形態と同様な動作である。逆方向に進むには、電界Eを反時計回りに印加すればよい。 In this configuration, when the electric field E is sequentially applied to the small actuator 291 in a clockwise direction, for example, the small actuator 291 to which the electric field E is applied bends and pushes the elastic ring 20 from the inside. As described above, the protrusion 211 is formed on the elastic ring 20, and a traveling wave is generated on the outer peripheral surface of the elastic ring 20 as the electric field E is applied. Thereafter, the operation is the same as that of the second embodiment. To proceed in the reverse direction, the electric field E may be applied counterclockwise.
 上述したように、第4の実施の形態によれば、第2および第3の実施の形態の効果に加えて、小アクチュエータ291に順次電界Eを印加していくだけで、自在に走行することができ、走行制御が非常に簡単である。 As described above, according to the fourth embodiment, in addition to the effects of the second and third embodiments, it is possible to travel freely by simply applying the electric field E to the small actuators 291 sequentially. It is possible and the running control is very simple.
 以上に述べたように、本発明によれば、筐体と、細毛で構成された付着要素が外周表面に形成され、筐体に支持された円筒状の部材とを備え、付着要素の細毛と被接触面との接触によって発生するフアンデルワールス力によって被接触面に付着するとともに、細毛の駆動によって被接触面上を走行することで、被接触面上に付着して走行することができるので、小型で、制御が簡単で、エネルギー効率が良く、スムーズに付着と離反とができて走破性の高い移動機構を提供することができる。 As described above, according to the present invention, a housing and a cylindrical member formed on the outer peripheral surface of the attachment element composed of fine hairs and supported by the housing are provided. Because it adheres to the contacted surface by the van der Waals force generated by the contact with the contacted surface and travels on the contacted surface by driving the fine hair, it can travel on the contacted surface. Therefore, it is possible to provide a moving mechanism that is small, easy to control, has high energy efficiency, can smoothly attach and detach, and has high runnability.
 なお、本発明に係る移動機構を構成する各構成の細部構成および細部動作に関しては、本発明の趣旨を逸脱することのない範囲で適宜変更可能である。 It should be noted that the detailed configuration and detailed operation of each component constituting the moving mechanism according to the present invention can be changed as appropriate without departing from the spirit of the present invention.
 1 医療用マイクロロボット
 9 走行路
 10 車輪
 11 (車輪10の)外周表面
 13 付着要素
 131 細毛
 15 駆動源
 151 駆動軸
 2 (医療用マイクロロボット1の)筐体
 20 弾性リング
 21 (弾性リング20の)外周表面
 211、211a、211b、211c、211d (弾性リング20の)突出部
 22 (弾性リング20の)側面
 23 (弾性リング20の)外周裏面
 25 駆動源
 251 (駆動源25の)駆動軸
 27 遊星機構
 271 太陽ローラ
 273、273a、273b、273c、273d 遊星ローラ
 29 屈曲アクチュエータ
 291 小アクチュエータ
DESCRIPTION OF SYMBOLS 1 Medical microrobot 9 Traveling path 10 Wheel 11 (Outside surface of wheel 10) 13 Adhesive element 131 Fine hair 15 Drive source 151 Drive shaft 2 Case (of medical microrobot 1) 20 Elastic ring 21 (of elastic ring 20) Outer peripheral surface 211, 211a, 211b, 211c, 211d Protruding portion 22 (of elastic ring 20) Side surface 23 (of elastic ring 20) Outer peripheral back surface 25 Drive source 251 (of drive source 25) Drive shaft 27 Planet Mechanism 271 Sun roller 273, 273a, 273b, 273c, 273d Planetary roller 29 Bending actuator 291 Small actuator

Claims (11)

  1.  筐体と、
     細毛で構成された付着要素が外周表面に形成され、前記筐体に支持された円筒状の部材とを備え、
     前記付着要素の細毛と被接触面との接触によって発生するフアンデルワールス力によって被接触面に付着するとともに、前記細毛の駆動によって前記被接触面上を走行することを特徴とする移動機構。
    A housing,
    An attachment element composed of fine hair is formed on the outer peripheral surface, and includes a cylindrical member supported by the housing,
    A moving mechanism that adheres to a contacted surface by a van der Waals force generated by contact between the fine hair of the attachment element and the contacted surface, and travels on the contacted surface by driving the fine hair.
  2.  前記円筒状の部材が車輪であって、
     前記筐体に固定され、前記車輪を回転させる駆動源を備えたことを特徴とする請求項1に記載の移動機構。
    The cylindrical member is a wheel;
    The moving mechanism according to claim 1, further comprising a drive source that is fixed to the housing and rotates the wheel.
  3.  前記付着要素は、前記細毛が前記車輪の外周表面に対して略垂直に、前記車輪の外周表面の面積の10%以上50%以下の密度で並び立っていることを特徴とする請求項2に記載の移動機構。 3. The attachment element, wherein the fine hairs are arranged substantially perpendicularly to the outer peripheral surface of the wheel at a density of 10% to 50% of the area of the outer peripheral surface of the wheel. The moving mechanism described.
  4.  前記細毛は、断面形状が略円形または略正多角形で、断面積が25nm以上10000μm以下で、長さが、前記細毛と等しい断面積を持つ円の直径の5倍以上であり、
     材質が高分子材料であることを特徴とする請求項2または3に記載の移動機構。
    The fine hair has a cross-sectional shape of a substantially circular shape or a substantially regular polygon, a cross-sectional area of 25 nm 2 or more and 10000 μm 2 or less, and a length of at least five times the diameter of a circle having a cross-sectional area equal to the fine hair,
    The moving mechanism according to claim 2 or 3, wherein the material is a polymer material.
  5.  前記筐体が円筒状であり、
     前記円筒状の部材が、前記筐体よりも小さな半径で、前記筐体と略同一の中心軸を有する弾性リングであって、
     前記弾性リングの外周表面に波頭が前記筐体から突出する進行波を発生させる進行波発生手段を備えたことを特徴とする請求項1に記載の移動機構。
    The housing is cylindrical;
    The cylindrical member is an elastic ring having a smaller radius than the housing and a central axis substantially the same as the housing;
    The moving mechanism according to claim 1, further comprising traveling wave generating means for generating a traveling wave in which a wave front protrudes from the casing on an outer peripheral surface of the elastic ring.
  6.  前記付着要素は、前記細毛が前記弾性リングの外周表面に対して略垂直に、前記弾性リングの外周表面の面積の10%以上50%以下の密度で並び立っていることを特徴とする請求項5に記載の移動機構。 The adhesion element is characterized in that the fine hairs are arranged substantially perpendicularly to the outer peripheral surface of the elastic ring at a density of 10% to 50% of the area of the outer peripheral surface of the elastic ring. 5. The moving mechanism according to 5.
  7.  前記細毛は、断面形状が略円形または略正多角形で、断面積が25nm以上10000μm以下で、長さが、前記細毛と等しい断面積を持つ円の直径の5倍以上であり、
     材質が高分子材料であることを特徴とする請求項5または6に記載の移動機構。
    The fine hair has a cross-sectional shape of a substantially circular shape or a substantially regular polygon, a cross-sectional area of 25 nm 2 or more and 10000 μm 2 or less, and a length of at least five times the diameter of a circle having a cross-sectional area equal to the fine hair,
    The moving mechanism according to claim 5 or 6, wherein the material is a polymer material.
  8.  前記進行波発生手段は、
     前記筐体に固定され、前記筐体と略同軸の駆動軸を有する駆動源と、
     前記駆動源によって駆動され、前記駆動軸の周りに回転する太陽部材と、
     前記太陽部材に従動して自転しながら、前記駆動軸の周りに公転する遊星部材とを有し、
     前記遊星部材は、前記弾性リングの外周表面に波頭が前記筐体から突出する進行波を発生させることを特徴とする請求項5から7の何れか1項に記載の移動機構。
    The traveling wave generating means includes
    A drive source fixed to the housing and having a drive shaft substantially coaxial with the housing;
    A sun member that is driven by the drive source and rotates about the drive shaft;
    A planetary member that revolves around the drive shaft while rotating following the sun member;
    8. The moving mechanism according to claim 5, wherein the planetary member generates a traveling wave in which a wave front protrudes from the casing on an outer peripheral surface of the elastic ring. 9.
  9.  前記進行波発生手段は、
     前記弾性リングの内部に貼付けられ、多極化された屈曲アクチュエータであることを特徴とする請求項5から7の何れか1項に記載の移動機構。
    The traveling wave generating means includes
    The moving mechanism according to claim 5, wherein the moving mechanism is a bending actuator that is affixed to the inside of the elastic ring and is multipolarized.
  10.  前記屈曲アクチュエータは、導電性イオンポリマであることを特徴とする請求項9に記載の移動機構。 10. The moving mechanism according to claim 9, wherein the bending actuator is a conductive ion polymer.
  11.  前記屈曲アクチュエータは、バイモルフ型圧電素子であることを特徴とする請求項9に記載の移動機構。 10. The moving mechanism according to claim 9, wherein the bending actuator is a bimorph type piezoelectric element.
PCT/JP2010/063864 2009-09-30 2010-08-17 Movement mechanism WO2011040137A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-226794 2009-09-30
JP2009226794 2009-09-30

Publications (1)

Publication Number Publication Date
WO2011040137A1 true WO2011040137A1 (en) 2011-04-07

Family

ID=43825971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063864 WO2011040137A1 (en) 2009-09-30 2010-08-17 Movement mechanism

Country Status (1)

Country Link
WO (1) WO2011040137A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159243A (en) * 2012-02-06 2013-08-19 Chuo Univ Traveling wave generation device, wall surface moving system and conveyance system
JP2014108649A (en) * 2012-11-30 2014-06-12 Chuo Univ Wave motion transmission type moving device and climbing device using the same
WO2022058751A1 (en) * 2020-09-21 2022-03-24 Ali Majeed Steerable endoscope

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics", 26 August 2004, article CARLO MENON ET AL.: "Gecko Inspired Surface Climbing Robots", pages: 431 - 436, XP010844054, DOI: doi:10.1109/ROBIO.2004.1521817 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159243A (en) * 2012-02-06 2013-08-19 Chuo Univ Traveling wave generation device, wall surface moving system and conveyance system
JP2014108649A (en) * 2012-11-30 2014-06-12 Chuo Univ Wave motion transmission type moving device and climbing device using the same
WO2022058751A1 (en) * 2020-09-21 2022-03-24 Ali Majeed Steerable endoscope
GB2601289B (en) * 2020-09-21 2023-10-11 Waqar Majeed Ali Steerable endoscope

Similar Documents

Publication Publication Date Title
Chen et al. Soft crawling robots: design, actuation, and locomotion
Duduta et al. A high speed soft robot based on dielectric elastomer actuators
Fang et al. Origami-based earthworm-like locomotion robots
EP2142407B1 (en) Vibrating robotic crawler
CN107830307B (en) A kind of Inchworm type creepage robot of high maneuverability
CN100443352C (en) Creep walking mechanism inside pipeline
JP2008022952A (en) Advancing device in duct
WO2011040137A1 (en) Movement mechanism
Li et al. Multisegment annular dielectric elastomer actuators for soft robots
US20120168233A1 (en) Robotic devices and methods
US7064473B2 (en) Actuator film material, actuator film and actuator using the same
JP2007502671A (en) Active polymer articulating instrument and insertion method
US20220069737A1 (en) Electrostatic-actuator-based, tunable, soft robots
JP2009535092A (en) Catheter assembly with variable stiffness
JP2010263769A5 (en)
Li et al. Motion control of capsule-like underwater robot utilizing the swing properties of ionic polymer metal composite actuators
Hutama et al. A millimeter-scale rolling microrobot driven by a micro-geared ultrasonic motor
CN111956169B (en) Active movement capsule endoscope robot based on magnetic drive
CN104210570A (en) Elastic caterpillar band capable of realizing telescopic deformation
Hussein et al. Actuation of mobile microbots: a review
Wu et al. Pre-curved PVDF/PI unimorph structures for biomimic soft crawling actuators
Driesen Concept, modeling and experimental characterization of the modulated friction inertial drive (MFID) locomotion principle: application to mobile microrobots
Hu et al. Soft scalable crawling robots enabled by programmable origami and electrostatic adhesion
Shintake Functional soft robotic actuators based on dielectric elastomers
CN108313151B (en) A kind of software climbing robot turned

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP