WO2011040038A1 - 超音波流量計 - Google Patents

超音波流量計 Download PDF

Info

Publication number
WO2011040038A1
WO2011040038A1 PCT/JP2010/005900 JP2010005900W WO2011040038A1 WO 2011040038 A1 WO2011040038 A1 WO 2011040038A1 JP 2010005900 W JP2010005900 W JP 2010005900W WO 2011040038 A1 WO2011040038 A1 WO 2011040038A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
flow path
measurement
wall
channel
Prior art date
Application number
PCT/JP2010/005900
Other languages
English (en)
French (fr)
Inventor
裕治 中林
裕史 藤井
真人 佐藤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011534087A priority Critical patent/JP5728639B2/ja
Priority to EP10820159A priority patent/EP2485017A1/en
Priority to US13/499,254 priority patent/US20120191382A1/en
Priority to CN201080043836XA priority patent/CN102549395A/zh
Publication of WO2011040038A1 publication Critical patent/WO2011040038A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/14Casings, e.g. of special material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details

Definitions

  • the present invention relates to a flow meter for measuring a household gas flow rate by ultrasonic waves.
  • the conventional ultrasonic anemometer includes a housing 101, a flow channel 102, a pair of ultrasonic sensors 103 disposed in the flow channel 102, and an ultrasonic wave between the pair of ultrasonic sensors 103.
  • Propagation time measuring means 104 for measuring the propagation time and flow rate calculating means 105 for calculating the flow rate from the propagation time by calculation are provided.
  • the flow path 102 is contained in the housing 101, and the gas that is the fluid to be measured leaks out of the flow meter by isolating the inside of the housing 101 through which the fluid to be measured flows from the outside of the housing 101. It wasn't supposed to be.
  • the conventional ultrasonic flowmeter isolates the inside of the housing 101 from the outside, it is necessary to draw the signal line 107 of the ultrasonic sensor 103 into the housing 101 while keeping the airtightness. For this reason, a complicated configuration such as the hermetic seal 106 is adopted, and as a result, the manufacturing cost tends to be high and the manufacturing itself tends to be complicated.
  • the present invention solves the above-described conventional problems, and an object thereof is to provide an ultrasonic flowmeter that can eliminate the need for a complicated structure such as a hermetic seal and can easily realize an ultrasonic flowmeter at low cost. .
  • an ultrasonic flowmeter of the present invention includes a flow path having an inlet and an outlet for a fluid to be measured, and a flow path having an opening formed between the inlet and the outlet of the flow path.
  • a main body a measurement channel inserted into the channel from the opening and communicating with the inlet and the outlet, a wall disposed on a side surface of the measurement channel to cover the opening, and an ultrasonic signal attached to the wall
  • a measurement unit comprising a pair of ultrasonic sensors for transmitting a signal, and flow rate calculation means for calculating a flow rate by measuring a propagation time of an ultrasonic signal between the ultrasonic sensors, and an outer periphery of the wall and the opening It is the structure which seals with a part.
  • the measurement unit having the ultrasonic sensor is inserted into the opening of the flow channel body, the opening of the flow channel body and the wall of the measurement unit are joined while taking a seal structure. Therefore, a configuration can be adopted in which the fluid to be measured does not leak.
  • FIG. 1 It is a schematic sectional drawing which shows the structural example of the ultrasonic flowmeter in Embodiment 1 of this invention. It is a perspective view which shows the example of an external appearance structure of the ultrasonic flowmeter shown in FIG. (A) is a schematic sectional drawing which shows the principal part structural example from arrow A in the ultrasonic flowmeter shown in FIG. 2, (b) is from arrow B in the ultrasonic flowmeter shown in FIG. It is a principal part structural example, and is a schematic sectional drawing equivalent to CC sectional view taken on the line of the ultrasonic flowmeter shown to (a).
  • (A) is a schematic sectional drawing which shows the structural example of the ultrasonic flowmeter in Embodiment 2 of this invention
  • (b) is DD sectional view taken on the line of the ultrasonic flowmeter shown to (a). It is. It is a schematic sectional drawing which shows the structural example of the conventional ultrasonic flowmeter.
  • the present invention includes a channel having an inlet and an outlet for a fluid to be measured, a channel body having an opening formed between the inlet and the outlet of the channel, and the inlet inserted into the channel from the opening. And a measurement flow path that communicates with the outlet, a wall that is disposed on a side surface of the measurement flow path to cover the opening, and a pair of ultrasonic sensors that are attached to the wall and transmit ultrasonic signals, An ultrasonic flowmeter configured to measure a propagation time of an ultrasonic signal between the ultrasonic sensors and calculate a flow rate, and to seal between the wall and the outer peripheral portion of the opening.
  • the measurement unit having an ultrasonic sensor is inserted into the opening of the flow channel body, the opening of the flow channel body and the wall of the measurement unit are joined while taking a seal structure. Can do. Therefore, since the fluid to be measured can be prevented from leaking, it can be avoided that the fluid to be measured flows in the flow path but goes out of the flow path main body.
  • the ultrasonic sensor since the ultrasonic sensor is attached as a measurement unit, it can be detached from the flow path body, making maintenance easier and realizing an easy-to-use ultrasonic flow meter.
  • the measurement channel has a rectangular channel cross section
  • the flow velocity is stabilized and the measurement accuracy can be improved.
  • the wall forming a part of the measurement flow channel can be a flat plate and can be sealed by a simple method.
  • the pair of ultrasonic sensors are arranged on the same surface of the wall, and at least once on the inner wall of the flow path opposed to the ultrasonic signal transmitted from one ultrasonic sensor. Any structure may be used as long as it is reflected and received by the other ultrasonic sensor. Thereby, by arranging the ultrasonic sensor on one side, the opening of the flow channel and the wall of the measurement flow channel can be easily sealed.
  • the flow path is formed in a U shape, and a buffer portion having a cross-sectional area larger than the cross-sectional area of the measurement flow path is formed between the inlet and the measurement flow path. Any configuration may be used. As a result, the flow rate of the fluid to be measured flowing from the inlet is reduced by the buffer portion and then introduced into the measurement flow path, so that the gas flow can be smoothly converted in a right angle direction.
  • the measurement flow path is divided into a plurality of flow directions by a flat plate-like divided member arranged in parallel to the radiation direction of the ultrasonic signal transmitted from the ultrasonic sensor. Any configuration can be used. Thereby, measurement accuracy can be improved by measuring in the state where the flow was stabilized by the rectification effect of a division member.
  • the dividing member may be arranged in parallel to the inflow direction of the fluid to be measured from the inlet of the flow path.
  • the cross section of the measurement flow path may be configured to be smaller than the cross section of the flow path, and the partition portion may be configured in the gap between the measurement flow path and the flow path.
  • the ultrasonic flow meter 10 (flow rate measuring device) of the present embodiment includes a measurement unit 11 attached to an opening 1 c provided in the flow path body 1.
  • the flow channel body 1 is a part of a pipe through which the fluid to be measured flows, and the inside of the flow channel body 1 is a flow channel 8.
  • the flow path body 1 is provided with an opening 1c on the side wall thereof, and the ultrasonic flowmeter 10 can be attached to the opening 1c.
  • the ultrasonic flowmeter 10 is partitioned into a circuit chamber 9 in which the flow path body 1 and a control circuit are accommodated by a partition wall 1d.
  • the flow channel main body 1 has an inlet 1a and an outlet 1b for a fluid to be measured, and further includes a partition 1e for partitioning the inlet 1a side and the outlet 1b side when a measurement unit 11 described later is inserted. I have.
  • the partition wall 1d is provided with an opening 1c for inserting the measurement unit 11. As shown in FIG. 2, if the measurement flow path 2 of the measurement unit 11 is inserted into the opening 1c, As shown in FIG. 1, the inlet 1 a and the outlet 1 b of the flow channel main body 1 are separated by the partition portion 1 e except for the measurement flow channel 2, and therefore communicate with each other only by the measurement flow channel 2.
  • the measuring unit 11 is provided with a flange 11a for screwing.
  • the measurement unit 11 is fixed to the flow path body 1 with screws 14 in a state in which the sealing material 7 is disposed between the wall 6 and the partition wall 1d. .
  • the opening 1c is sealed, so that leakage of the fluid to be measured from the flow path body 1 to the circuit chamber 9 is prevented.
  • the opening 1c is not given a reference sign.
  • the measurement unit 11 includes a measurement channel 2 through which a fluid to be measured passes, a wall 6 provided on a side surface of the measurement channel 2, and a pair of ultrasonic sensors 3 arranged on the wall 6 at a predetermined angle. .
  • the measurement channel 2 is located inside the channel body 1 (that is, in the channel 8) when the measurement unit 11 is attached to the opening 1c.
  • a wall 6 is provided on the side surface of the measurement flow path 2, and when the measurement flow path 2 is located in the opening 1c, it is outside the opening 1c and covers the opening 1c. It is configured as a simple shape.
  • the measurement unit 11 includes a pair of ultrasonic sensors 3, one of these ultrasonic sensors 3 is located downstream of the flow direction of the fluid under measurement in the measurement flow path 2 (block arrow in the figure), and the other is upstream. Located on the side. These ultrasonic sensors 3 are arranged on the same surface of the measurement flow path 2 in such a positional relationship that ultrasonic waves transmitted from one side are reflected once on the inner wall of the measurement flow path 2 and can be received by the other. Yes.
  • the measurement channel 2 the ultrasonic sensor 3, the wall 6 and the like constituting the measurement unit 11 are not particularly limited, and a known channel tube, an ultrasonic transducer, and a plate-like member are preferably used. it can.
  • the pair of ultrasonic sensors 3 is connected to the propagation time measuring means 4, and the propagation time measuring means 4 is connected to the flow rate calculating means 5.
  • the propagation time measuring means 4 measures the time (propagation time) until the ultrasonic signal transmitted from one ultrasonic sensor 3 is received by the other ultrasonic sensor 3 through reflection of the inner wall, and the flow rate is measured.
  • the calculating means 5 calculates the flow rate of the fluid to be measured from this propagation time.
  • the propagation time measuring means 4 and the flow rate calculating means 5 are provided in the circuit chamber 9.
  • the specific configurations of the propagation time measuring means 4 and the flow rate calculating means 5 are not particularly limited.
  • the propagation time measuring means 4 may be a known circuit that can measure the propagation time of ultrasonic waves between the ultrasonic sensors 3, and the flow rate calculating means 5 calculates the flow rate from the propagation time measured by the propagation time measuring means 4. Any known circuit that can be calculated may be used.
  • the propagation time measuring unit 4 and the flow rate calculating unit 5 are combined as a single control circuit 12 in the present embodiment. For example, a configuration in which each circuit as the propagation time measuring unit 4 and the flow rate calculating unit 5 is a circuit board mounted on one board can be given.
  • the propagation time measuring means 4 and the flow rate calculating means 5 may be a functional configuration of a controller. That is, for example, a CPU as a controller is mounted on the control circuit 12, and the CPU may be realized by operating according to a program stored in a storage unit such as a memory (not shown). .
  • a storage unit such as a memory (not shown).
  • the propagation time measuring means 4 and the flow rate calculating means 5 constitute a circuit unit or a functional unit in the ultrasonic flowmeter 10, these constituent elements are the propagation time measuring means in this embodiment. 4 can be read as propagation means measuring instrument or propagation means measuring section, and the flow rate calculating means 5 can be read as flow rate calculator or flow rate calculating section.
  • the ultrasonic sensor 3 and the control circuit 12 are connected by a lead wire as shown in FIG. Is not limited to this, and may be configured to be directly connected to a substrate or the like on which the control circuit 12 is mounted by a configuration such as a lead pin, or may be another known configuration.
  • the wall 6 of the measurement unit 11 is configured to cover the opening 1c, and the wall 6 and the opening are provided. Sealing is performed between the outer periphery of 1c. Specifically, a sealing material 7 is provided between the partition wall 1d and the wall 6, and a known simple configuration can be suitably used as the sealing material 7. Therefore, a configuration in which the fluid to be measured does not leak can be easily realized without using a member such as a hermetic seal.
  • the wall 6 can be a flat plate. Therefore, the wall 6 and the partition wall 1d which is the outer peripheral portion of the opening 1c can be overlapped so as to be in close contact with each other. Therefore, the opening 1c can be sealed by a simple method. Furthermore, in this embodiment, since the “V path” that reflects the ultrasonic wave once by the inner wall of the measurement flow path 2 is adopted, the ultrasonic sensor 3 can be installed on the same surface. Therefore, the opening 1c can be sealed with a simpler configuration as compared with the configuration in which the ultrasonic sensor 3 is disposed so as to sandwich the flow path.
  • the flow channel from the inlet 1a to the outlet 1b is formed in a U-shape, but between the inlet 1a and the measurement flow channel 2, FIG. As shown in b), a buffer unit 15 is provided.
  • the fluid to be measured that has flowed into the ultrasonic flowmeter 10 from the inlet 1 a is introduced into the measurement channel 2 after the flow velocity is reduced in the buffer unit 15.
  • the flow of the fluid to be measured can be smoothly converted in the right-angle direction.
  • the dividing member 2a is disposed along a direction parallel to the radiation direction (transmission direction) of the ultrasonic signal transmitted from the ultrasonic sensor 3. Since the flow of the fluid to be measured is rectified by providing the dividing member 2a in this manner, measurement can be performed in a state where the flow of the fluid to be measured is stable, and the measurement accuracy can be improved.
  • gas is exemplified as the fluid to be measured, but the present invention is not limited to this, and the ultrasonic flowmeter 10 of the present embodiment is suitably used even for other known fluids. be able to.
  • the ultrasonic flowmeter 10 of this Embodiment is equipped with the flow-path main body 1 which divides
  • FIGS. 4 (a) and 4 (b) show an ultrasonic flow meter 16 (flow rate measuring device) in the present embodiment, and the same or corresponding elements as those in the first embodiment are denoted by the same reference numerals. Therefore, the overlapping description is omitted. Also, in FIGS. 4A and 4B, for convenience of explanation, the reference numerals for some elements are omitted.
  • the basic configuration of the ultrasonic flowmeter 16 is the same as that of the ultrasonic flowmeter 10 of the first embodiment, but the measurement flow path 2 is divided.
  • the dividing member 2a is arranged so as to be parallel to the inflow direction of the fluid to be measured from the inlet 1a.
  • the ultrasonic velocimeter according to the present invention can easily realize a configuration in which the fluid to be measured does not leak from the measurement unit to the outside of the housing with a simple configuration, and can improve the maintainability. It can be widely used in an ultrasonic measuring apparatus such as an ultrasonic current meter that performs the above measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Abstract

 本発明は、超音波流量計においてハーメチックシール等複雑な構成が不要となり、超音波流量計を安価かつ容易に実現するものである。代表的な超音波流量計(10)は、流路本体(1)と、流路本体(1)内に配置された計測流路(2)と、一対の超音波センサ(3)と、計測流路(2)を形成し超音波センサ(3)が配置された壁(6)と、超音波センサ(3)の間の超音波の伝搬時間を計測する伝搬時間計測手段(4)と、伝搬時間から演算により流量を算出する流量算出手段(5)を備え、被測定流体が漏れないよう流路本体と壁(6)と、その間にシール材(7)を入れる構成としている。

Description

超音波流量計
 本発明は、超音波によって家庭用のガス流量を計測する流量計に関するものである。
 従来の超音波流速計は、図5に示すように、筐体101と流路102と、流路102に配置された一対の超音波センサ103と、一対の超音波センサ103間の超音波の伝搬時間を計測する伝搬時間計測手段104と、前記伝搬時間から演算により流量を算出する流量算出手段105とを備えていた。そして筐体101の中に流路102が入っており、筐体101の被計測流体が流れる内部と筐体101の外部とを隔絶することにより、被計測流体であるガスが流量計外に漏れないようになっていた。
特開2005-172658号公報
 しかしながら、前記従来の超音波流量計は、筐体101の内部と外部とを隔絶するため、超音波センサ103の信号線107を、密閉を保ちながら筐体101の内部へ引き込む必要があった。そのため、ハーメチックシール106等といった複雑な構成が採用されることになり、その結果、製造コストが高くなり、また、製造そのものが煩雑となる傾向にあった。
 また、筐体の流体入口から出口までをパイプ状の流路で接続し、流体が外部に漏れることを防いでいる構成も知られているが、部品点数が多くなるために接続箇所のシール部も増えてしまう。それゆえ、製造コストが高くなり、また、製造そのものが煩雑になる傾向にあった。
 また、筐体そのものに超音波センサを取りつけている構成も知られているが、一度センサを組み付けると筐体とセンサとを分離することができない。それゆえ、他の構成に比べて取扱性に劣っていた。
 本発明は、前記従来の課題を解決するもので、ハーメチックシール等複雑な構成が不要となり、超音波流量計を安価かつ容易に実現することができる超音波流量計を提供することを目的とする。
 前記従来の課題を解決するために、本発明の超音波流量計は、被測定流体の入口及び出口を有する流路と、前記流路の入口及び出口間に形成された開口部を有する流路本体と、前記開口部から前記流路に挿入され前記入口及び出口を連通する計測流路と、前記計測流路の側面に配置され前記開口部を覆う壁と、前記壁に取り付けられ超音波信号を発信する一対の超音波センサとからなる計測ユニットと、前記超音波センサ間の超音波信号の伝搬時間を計測し流量を算出する流量算出手段と、を備え、前記壁と前記開口部の外周部とでシールを行う構成である。
 前記構成によれば、流路本体の開口部に、超音波センサを有する計測ユニットを挿入する構成としているので、流路本体の開口部と計測ユニットの壁とをシール構造をとりつつ接合することにより被計測流体が漏れない構成とすることができる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 以上のように、本発明によれば、ハーメチックシール等複雑な構成が不要となり、超音波流量計を安価かつ容易に実現する超音波流量計を得ることができる、という効果を奏する。
本発明の実施の形態1における超音波流量計の構成例を示す概略断面図である。 図1に示す超音波流量計の外観構成例を示す斜視図である。 (a)は、図2に示す超音波流量計において矢視Aからの要部構成例を示す概略断面図であり、(b)は、図2に示す超音波流量計において矢視Bからの要部構成例であり、(a)に示す超音波流量計のC-C線矢視断面図に相当する概略断面図である。 (a)は、本発明の実施の形態2における超音波流量計の構成例を示す概略断面図であり、(b)は、(a)に示す超音波流量計のD-D矢視断面図である。 従来の超音波流量計の構成例を示す概略断面図である。
 1  流路本体
 1a 入口
 1b 出口
 1c 開口部
 2  計測流路
 2a 分割部材
 3  超音波センサ
 5  流量算出手段
 6  壁
 8  流路
 10、16  超音波流量計
 11  計測ユニット
 15  バッファ部
 本発明は、被測定流体の入口及び出口を有する流路と、前記流路の入口及び出口間に形成された開口部を有する流路本体と、前記開口部から前記流路に挿入され前記入口及び出口を連通する計測流路と、前記計測流路の側面に配置され前記開口部を覆う壁と、前記壁に取り付けられ超音波信号を発信する一対の超音波センサとからなる計測ユニットと、前記超音波センサ間の超音波信号の伝搬時間を計測し流量を算出する流量算出手段と、を備え、前記壁と前記開口部の外周部とでシールを行う構成の超音波流量計である。この構成では、流路本体の開口部に、超音波センサを有する計測ユニットを挿入する構成となっているので、流路本体の開口部と計測ユニットの壁とをシール構造をとりつつ接合することができる。それゆえ、被計測流体が漏れないようにすることができるため、被測定流体は、流路の中を流れるが流路本体の外に出ることを回避することができる。
 また、超音波センサは計測ユニットとして取り付けられているので、流路本体から脱着可能となりメンテナンスが容易になり、使いやすい超音波流量計が実現できる。
 前記構成の超音波流量計においては、前記計測流路が、流路断面を矩形形状とする構成であるので、流速が安定し、測定精度を向上することができる。また、流路断面を矩形形状に形成することで、測定流路の一部を形成する壁を平板とすることができ、簡易な方法でシールすることができる。
 前記構成の超音波流量計においては、前記一対の超音波センサは、前記壁の同一面に配置され、一方の超音波センサから発信された超音波信号が対向する流路の内壁に少なくとも1回反射されて他方の超音波センサで受信される構成であればよい。これにより、超音波センサを片側に配置することで、流路の開口部と計測流路の壁とのシールを容易に行うことができる。
 前記構成の超音波流量計においては、前記流路は、U字状に形成され、前記入口と前記計測流路との間に当該計測流路の断面積よりも大きな断面積を有するバッファ部を設けた構成であればよい。これにより、バッファ部により、入口から流入した被計測流体の流速が緩和された後、計測流路へ導入されるので、ガスの流れの直角方向への変換がスムーズに行なれる。
 前記構成の超音波流量計においては、前記計測流路は、超音波センサから発信される超音波信号の放射方向に対して平行に配置された平板状の分割部材により流れ方向に複数に区分された構成であればよい。これにより、分割部材の整流効果により、流れが安定した状態で計測を行うことで、測定精度を向上することができる。
 前記構成の超音波流量計においては、前記分割部材は、前記流路の入口からの被測定流体の流入方向に平行に配置された構成であればよい。これにより、入口から流入した被測定流体は、分割部材で区分された各流路に均一に導入されるので、各流路での流速が均一となり、測定精度を向上させることができる。
 前記構成の超音波流量計においては、前記計測流路の断面は、前記流路の断面より小さく構成し、前記測定流路と前記流路の隙間に仕切り部を構成であればよい。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 本発明の実施の形態1について図1~3に基づき説明する。図1に示すように、本実施の形態の超音波流量計10(流量計測装置)は、流路本体1に設けられた開口部1cに取り付けられている計測ユニット11等を備えている。
 流路本体1は、被測定流体が流れる配管の一部であり、その内部は流路8となっている。流路本体1には、その側壁に開口部1cが設けられ、超音波流量計10は、この開口部1cに取付可能となっている。
 超音波流量計10は、区画壁1dにより、流路本体1と制御回路等が収納される回路室9に区画されている。流路本体1は、被測定流体の入口1a、出口1bを有しており、更に、後述の計測ユニット11が挿入された際に入口1a側と出口1b側とを仕切るための仕切り部1eを備えている。
 また、区画壁1dには、計測ユニット11を挿入するための開口部1cが設けられている。図2に示すように、この開口部1cに計測ユニット11の計測流路2を挿入すれば、
図1に示すように、流路本体1の入口1aと出口1bとは、計測流路2を除いて仕切り部1eで仕切られるので、この計測流路2のみで連通することになる。
 更に、図2に示すように、計測ユニット11にはビス止め用のフランジ11aが設けられている。そして、図3(a),(b)に示すように、計測ユニット11は、壁6と区画壁1dとの間にシール材7を配した状態でビス14により流路本体1に固定される。これにより開口部1cに計測ユニット11を挿入した状態であっても当該開口部1cはシールされるので、流路本体1から回路室9への被測定流体の漏れが防止される。なお、説明の便宜上、図3(a),(b)においては、開口部1cには敢えて符号を付していない。
 計測ユニット11は、被測定流体が通過する計測流路2と、計測流路2の側面に設けた壁6と、壁6に所定の角度で配置された一対の超音波センサ3を備えている。計測流路2は、計測ユニット11が開口部1cに取り付けられたときに流路本体1の内部(すなわち流路8内)に位置する。また、計測流路2の側面には壁6が設けられ、計測流路2が開口部1c内に位置している状態では、開口部1cの外側であり、かつ、当該開口部1cを覆うような形状として構成されている。
 計測ユニット11は、一対の超音波センサ3を備え、これら超音波センサ3は、一方が計測流路2における被測定流体の流れ方向(図中ブロック矢印)の下流側に位置し、他方が上流側に位置している。そして、これら超音波センサ3は、一方から発信された超音波が計測流路2の内壁に1回反射して他方で受信できるような位置関係で、計測流路2の同一面に配置されている。
 計測ユニット11を構成する計測流路2、超音波センサ3、壁6等の具体的な構成は特に限定されず、公知の流路管、超音波変換器、板状部材を好適に用いることができる。
 また、一対の超音波センサ3は、伝搬時間計測手段4に接続され、伝搬時間計測手段4は、流量算出手段5に接続されている。伝搬時間計測手段4は、一方の超音波センサ3から発信された超音波信号が、内壁の反射を介して他方の超音波センサ3で受信されるまでの時間(伝搬時間)を計測し、流量算出手段5は、この伝搬時間から被測定流体の流量を算出する。伝搬時間計測手段4および流量算出手段5は、回路室9内に備えられている。
 伝搬時間計測手段4および流量算出手段5の具体的な構成は特に限定されない。伝搬時間計測手段4は、超音波センサ3間の超音波の伝搬時間を計測できる公知の回路であればよいし、流量算出手段5は、伝搬時間計測手段4で計測された伝搬時間から流量を算出できる公知の回路であればよい。また、図3(a),(b)に示すように、伝搬時間計測手段4および流量算出手段5は、本実施の形態では、単一の制御回路12としてまとめられている。例えば、伝搬時間計測手段4および流量算出手段5である各回路を、一つの基板上に実装した回路基板となっている構成を挙げることができる。
 さらに、伝搬時間計測手段4および流量算出手段5は、制御器の機能構成であってもよい。つまり、制御回路12には、制御器としての例えばCPUが実装されており、このCPUが、図示されないメモリ等の記憶部に格納されるプログラムに従って動作することにより実現される構成であってもよい。このように、伝搬時間計測手段4および流量算出手段5は、超音波流量計10における回路ユニットまたは機能ユニットを構成するものであるため、これら構成要素は、本実施の形態において、伝搬時間計測手段4は、伝搬手段計測器または伝搬手段計測部と読み替えることができ、流量算出手段5は、流量算出器または流量算出部と読み替えることができる。
 なお、超音波センサ3と制御回路12(厳密には、伝搬時間計測手段4)とは、本実施の形態では、図3(b)に示すようにリード線により接続しているが、本発明はこれに限定されず、リードピン等の構成によって制御回路12を実装する基板等に直接接続する構成となっていてもよいし、公知の他の構成であってもよい。
 ここで、本実施の形態では、図1および図3(a),(b)に示すように、計測ユニット11の壁6が開口部1cを覆うように構成され、かつ、壁6と開口部1cの外周部とでシールが行われる構成となっている。具体的には、区画壁1dと壁6との間にシール材7が設けられているが、このシール材7は、公知の簡素な構成のものを好適に用いることができる。それゆえ、ハーメチックシール等の部材を使用しなくても被測定流体が漏れない構成を容易に実現することができる。
 また、本実施の形態では、計測流路2は、流路の断面を矩形形状に形成しているので、壁6を平板とすることができる。それゆえ、壁6と開口部1cの外周部である区画壁1dとを略密着できるように重ねることができる。それゆえ、簡易な方法で開口部1cをシールすることができる。さらに、本実施の形態では、超音波を計測流路2の内壁で一回反射させる「Vパス」を採用しているので、超音波センサ3を同一面に設置することができる。それゆえ、超音波センサ3が流路を挟むように対向配置している構成と比較して、より簡易な構成で開口部1cをシールすることができる。
 また、本実施の形態では、流路本体1において、入口1aから出口1bに至る流路はU字状に形成されているが、入口1aと計測流路2との間には、図3(b)に示すように、バッファ部15が設けられている。これにより、入口1aから超音波流量計10に流入した被測定流体は、バッファ部15において流速が緩和された後、計測流路2へ導入される。そのため、被測定流体の流れを直角方向へ円滑に変換することができる。
 更に、計測流路2の内部流路は、図3(b)に示すように、少なくとも一部が分割部材2aにより複数に分割されている。この分割部材2aは、超音波センサ3から発信される超音波信号の放射方向(発信方向)に対して平行となる方向に沿って配置されている。このように分割部材2aを設けることによって、被測定流体の流れが整流されるので、被測定流体の流れが安定した状態で計測を行うことができ、測定精度を向上することができる。
 なお、本実施の形態では、被測定流体としてガスを例示するが、本発明はこれに限定されず、公知の他の流体であっても本実施の形態の超音波流量計10を好適に用いることができる。また、本実施の形態の超音波流量計10は、区画壁1dで回路室9を分割する流路本体1を備えているが、本発明はこれに限定されず、少なくとも計測ユニット11が壁6のようなフランジ状部材を備え、被測定流体が流れる配管の側壁に設けられた開口部1cに計測ユニット11を取り付けたときに、開口部1cとフランジ状部材(壁6等)との間で簡単にシールができるような構成であれば、公知のどのような構成であっても採用することができる。
 (実施の形態2)
 本発明の実施の形態2について図4(a),(b)に基づき説明する。図4(a),(b)は、本実施の形態における超音波流量計16(流量計測装置)を示すもので、実施の形態1と同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。また、図4(a),(b)においては、説明の便宜上、一部の要素に符号を付すことを省略している。
 図4(a),(b)に示すように、超音波流量計16においては、基本的な構成は前記実施の形態1の超音波流量計10と同様であるが、計測流路2を区分している分割部材2aは、入口1aからの被測定流体の流入方向と平行になるように配置されている。
 この構成によると、入口1aから流入した被測定流体は、分割部材2aで区分された各流路に略均一に導入されるので、各流路での被測定流体の流速が均一となり、測定精度を向上させることができる。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 以上のように、本発明にかかる超音波流速計は、簡単な構成で被測定流体が計測部から筐体外部へ漏れない構成が容易に実現でき、メンテナンス性の向上もできるので、さまざまな流体の計測を行う超音波流速計等の超音波計測装置に広く用いることができる。

Claims (7)

  1.  被測定流体の入口及び出口を有する流路と、
     前記流路の入口及び出口間に形成された開口部を有する流路本体と、
     前記開口部から前記流路に挿入され前記入口及び出口を連通する計測流路と、
     前記計測流路の側面に配置され前記開口部を覆う壁と、
     前記壁に取り付けられ超音波信号を発信する一対の超音波センサとからなる計測ユニットと、
     前記超音波センサ間の超音波信号の伝搬時間を計測し流量を算出する流量算出手段と、を備え、
     前記壁と前記開口部の外周部とでシールを行うことを特徴とする、超音波流量計。
  2.  前記計測流路は、流路断面が矩形形状であることを特徴とする、請求項1記載の超音波流量計。
  3.  前記一対の超音波センサは、前記壁の同一面に配置され、一方の超音波センサから発信された超音波信号が対向する流路の内壁に少なくとも1回反射されて他方の超音波センサで受信される構成としたことを特徴とする、請求項2記載の超音波流量計。
  4.  前記流路は、U字状に形成され、前記入口と前記計測流路との間に、当該計測流路の断面積よりも大きな断面積を有するバッファ部を設けたことを特徴とする、請求項3記載の超音波流量計。
  5.  前記計測流路は、前記超音波センサから発信される超音波信号の放射方向に対して平行に配置された平板状の分割部材により流れ方向に複数に区分されたことを特徴とする、請求項4記載の超音波流量計。
  6.  前記分割部材は、前記流路の入口からの被測定流体の流入方向に平行に配置されたことを特徴とする、請求項5記載の超音波流量計。
  7.  前記計測流路の断面は、前記流路の断面より小さく構成し、前記計測流路と前記流路との隙間に仕切り部を構成したことを特徴とする、請求項1~5のいずれか1項に記載の超音波流量計。
     
     
PCT/JP2010/005900 2009-10-01 2010-09-30 超音波流量計 WO2011040038A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011534087A JP5728639B2 (ja) 2009-10-01 2010-09-30 超音波流量計
EP10820159A EP2485017A1 (en) 2009-10-01 2010-09-30 Ultrasonic flowmeter
US13/499,254 US20120191382A1 (en) 2009-10-01 2010-09-30 Ultrasonic flow meter device
CN201080043836XA CN102549395A (zh) 2009-10-01 2010-09-30 超声波流量计

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009229443 2009-10-01
JP2009-229443 2009-10-01

Publications (1)

Publication Number Publication Date
WO2011040038A1 true WO2011040038A1 (ja) 2011-04-07

Family

ID=43825882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005900 WO2011040038A1 (ja) 2009-10-01 2010-09-30 超音波流量計

Country Status (5)

Country Link
US (1) US20120191382A1 (ja)
EP (1) EP2485017A1 (ja)
JP (1) JP5728639B2 (ja)
CN (1) CN102549395A (ja)
WO (1) WO2011040038A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090268A (ja) * 2015-11-11 2017-05-25 愛知時計電機株式会社 超音波流量計
US10704941B2 (en) 2016-07-13 2020-07-07 Gwf Messsysteme Ag Flow meter with measuring channel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728657B2 (ja) * 2009-10-01 2015-06-03 パナソニックIpマネジメント株式会社 超音波流量計測ユニット
JP2012132801A (ja) * 2010-12-22 2012-07-12 Panasonic Corp 超音波流量計
JP6060378B2 (ja) * 2012-11-13 2017-01-18 パナソニックIpマネジメント株式会社 流量計測装置
FR3081999B1 (fr) * 2018-05-30 2023-11-24 Buerkert Werke Gmbh & Co Kg Moyen de mesure de fluide et module de mesure de fluide pour un moyen de mesure de fluide
CN109013092A (zh) * 2018-10-26 2018-12-18 伟创力电子技术(苏州)有限公司 助焊剂液位和流量监控装置
JP7203302B2 (ja) * 2019-03-29 2023-01-13 パナソニックIpマネジメント株式会社 超音波流量計

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141536A (ja) * 1999-11-18 2001-05-25 Yazaki Corp 流量計測装置
JP2004257738A (ja) * 2003-02-24 2004-09-16 Ricoh Elemex Corp 超音波流量計
JP2005172658A (ja) 2003-12-12 2005-06-30 Matsushita Electric Ind Co Ltd 超音波流量計
JP2005189090A (ja) * 2003-12-25 2005-07-14 Aichi Tokei Denki Co Ltd 超音波式水道メータ
JP2005283565A (ja) * 2004-03-02 2005-10-13 Yazaki Corp 流量計測装置
JP2008107288A (ja) * 2006-10-27 2008-05-08 Ricoh Elemex Corp 超音波流量計

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7237441B2 (en) * 2003-02-24 2007-07-03 Matsushita Electric Industrial Co., Ltd. Ultrasonic type fluid measurement device
DE102004060063B4 (de) * 2004-12-14 2016-10-20 Robert Bosch Gmbh Einrichtung zur Strömungsmessung mittels Ultraschall
DE102004061404A1 (de) * 2004-12-21 2006-07-06 Robert Bosch Gmbh Ultraschall-Durchflussmesser und Verfahren zur Durchflussmessung mittels Ultraschall
EP2180298A4 (en) * 2007-07-09 2011-10-12 Panasonic Corp MULTILAYER CHANNEL ELEMENT FOR ULTRASONIC LIQUID MEASURING DEVICE AND ULTRASONIC LIQUID MEASURING DEVICE
US7882751B2 (en) * 2007-07-19 2011-02-08 Endress + Hauser Flowtec Ag Measuring system with a flow conditioner for flow profile stabilization
WO2010070891A1 (ja) * 2008-12-18 2010-06-24 パナソニック株式会社 超音波式流量計

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141536A (ja) * 1999-11-18 2001-05-25 Yazaki Corp 流量計測装置
JP2004257738A (ja) * 2003-02-24 2004-09-16 Ricoh Elemex Corp 超音波流量計
JP2005172658A (ja) 2003-12-12 2005-06-30 Matsushita Electric Ind Co Ltd 超音波流量計
JP2005189090A (ja) * 2003-12-25 2005-07-14 Aichi Tokei Denki Co Ltd 超音波式水道メータ
JP2005283565A (ja) * 2004-03-02 2005-10-13 Yazaki Corp 流量計測装置
JP2008107288A (ja) * 2006-10-27 2008-05-08 Ricoh Elemex Corp 超音波流量計

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090268A (ja) * 2015-11-11 2017-05-25 愛知時計電機株式会社 超音波流量計
US10704941B2 (en) 2016-07-13 2020-07-07 Gwf Messsysteme Ag Flow meter with measuring channel
US10746580B2 (en) 2016-07-13 2020-08-18 Gwf Messsysteme Ag Flow meter with measuring channel

Also Published As

Publication number Publication date
JP5728639B2 (ja) 2015-06-03
US20120191382A1 (en) 2012-07-26
EP2485017A1 (en) 2012-08-08
JPWO2011040038A1 (ja) 2013-02-21
CN102549395A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
JP5728639B2 (ja) 超音波流量計
WO2012063437A1 (ja) 超音波流量計測装置
WO2012164859A1 (ja) 超音波式流量計測ユニットおよびこれを用いたガス流量計
JP5728657B2 (ja) 超音波流量計測ユニット
CN108463693B (zh) 气量计
WO2012086156A1 (ja) 超音波流量計
JP6095096B2 (ja) 超音波流量計
JP2017015475A (ja) 計測ユニットおよび流量計
JP2014098563A (ja) 流量計測装置
CN106030254A (zh) 气体流量计
JP5816831B2 (ja) 超音波流量計
JP2012177572A (ja) 超音波式流体計測装置
JP2014077750A (ja) 超音波メータ
JP7203302B2 (ja) 超音波流量計
CN211346934U (zh) 一种全段密封性超声波流量计测量***
JP2009287966A (ja) 流量計の組立て方法および流量計
JP7373771B2 (ja) 物理量計測装置
WO2018216481A1 (ja) 流量計測ユニット及びこれを用いたガスメータ
CN108700447B (zh) 气量计
US20240077344A1 (en) Integrated enclosure for ultrasonic flowmeter
JP2000146644A (ja) 超音波流量計
WO2018216482A1 (ja) ガスメータ
JP2018194506A (ja) 流量計測ユニット及びこれを用いたガスメータ
JP2018194505A (ja) 流量計測ユニット及びこれを用いたガスメータ
JP2023028677A (ja) 水素流量濃度計

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043836.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820159

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534087

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13499254

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010820159

Country of ref document: EP