WO2011036792A1 - 撮像装置、撮像装置の制御方法および撮像装置の制御プログラム - Google Patents

撮像装置、撮像装置の制御方法および撮像装置の制御プログラム Download PDF

Info

Publication number
WO2011036792A1
WO2011036792A1 PCT/JP2009/066770 JP2009066770W WO2011036792A1 WO 2011036792 A1 WO2011036792 A1 WO 2011036792A1 JP 2009066770 W JP2009066770 W JP 2009066770W WO 2011036792 A1 WO2011036792 A1 WO 2011036792A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation light
photoelectric conversion
illumination light
driving
irradiation means
Prior art date
Application number
PCT/JP2009/066770
Other languages
English (en)
French (fr)
Inventor
佐藤 隆幸
数明 小嶋
勝己 野口
Original Assignee
国立大学法人高知大学
三洋電機株式会社
三洋半導体株式会社
瑞穂医科工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人高知大学, 三洋電機株式会社, 三洋半導体株式会社, 瑞穂医科工業株式会社 filed Critical 国立大学法人高知大学
Priority to PCT/JP2009/066770 priority Critical patent/WO2011036792A1/ja
Priority to JP2011532868A priority patent/JPWO2011036792A1/ja
Publication of WO2011036792A1 publication Critical patent/WO2011036792A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes

Definitions

  • the present invention relates to an imaging apparatus that irradiates a living body with excitation light and captures fluorescence emitted from the living body to obtain a fluorescent image, a control method for the imaging apparatus, and a control program for the imaging apparatus.
  • a fluorescence observation endoscope apparatus that captures fluorescence of a living body through an endoscope and displays a fluorescence image for diagnosis of whether the living body is normal or abnormal.
  • a fluorescence observation endoscope apparatus includes a conventional endoscope (electronic endoscope) and a light source processor apparatus (a processor that processes a video signal output from the electronic endoscope and outputs it as a video signal).
  • Light source device Specifically, an electronic endoscope used in a fluorescence observation endoscope apparatus is a light guide fiber bundle (hereinafter, simply referred to as “light guide”) that guides irradiation light toward a living tissue, with respect to light in a specific band. A material made of quartz glass fiber with good transparency is used, and an excitation light cut filter for cutting light of a specific wavelength used as excitation light is inserted in the optical path from the objective window to the image sensor. Yes.
  • the light source processor device is configured so that white light or excitation light can be introduced into the light guide of the endoscope as irradiation light for the living tissue, and when white light is introduced into the light guide (hereinafter, “ It is configured to change the image processing content for the image signal output from the electronic endoscope when the excitation light is introduced into the light guide (hereinafter referred to as “fluorescence observation mode”). ing.
  • this fluorescence observation endoscope apparatus there is an apparatus that simultaneously captures visible light color and near-infrared fluorescence.
  • a reagent that emits near-infrared fluorescence indocyanine green or the like (hereinafter also referred to as ICG)). It is essential to dispose an optical filter that specifically blocks the irradiation light (near infrared light) for exciting the image pickup device at the input.
  • the wavelength band of the excitation light and the wavelength band of the fluorescence are close to each other or at least a part of each wavelength band overlaps, the wavelength band of the excitation light and the fluorescence It was difficult or impossible to separate the wavelength band from the wavelength band using an optical filter.
  • the wavelength band of fluorescence and the wavelength band of visible light are close or at least partially overlap each other, the wavelength band of fluorescence and the wavelength band of visible light can be combined using an optical filter. It was difficult or impossible to separate.
  • the configuration of the imaging device and the configuration including the optical filter become complicated, and the cost of the entire device has been increased.
  • the wavelength band of the optical filter for blocking the excitation light and the wavelength band of the visible light are close to each other or overlapped, the control of the wavelength band of the transmitted light by the optical filter becomes insufficient, and can be obtained. There arises a problem that the color balance of the image is lost or broken, or the noise of the obtained image cannot be sufficiently removed and the image is not clear.
  • the present invention has been made in view of such problems, and the problem is that, in the medical field, at least one optical filter used in a conventional fluorescence observation endoscope apparatus is unnecessary.
  • An imaging device that can eliminate the need for special image signal processing for color correction and can simultaneously display a real-time moving image of a normal color image and a real-time moving image of a fluorescent image on a display device, a control method for the imaging device, and imaging It is an object to provide a control program for an apparatus.
  • the present invention adopts the following configuration.
  • the invention according to claim 1 is an imaging apparatus (20) that irradiates a living tissue with at least one of excitation light and illumination light.
  • Excitation light irradiation means (1) for irradiating the excitation light
  • Irradiation means driving means (3) for driving the excitation light irradiation means (1)
  • photoelectric conversion means for converting the fluorescence generated from the living tissue to which the fluorescent compound is administered, which has been irradiated with the excitation light, into electrical signals ( 8), a photoelectric conversion element driving means (6) for determining the operation timing of the photoelectric conversion means, and an accumulated charge reset means (6) for resetting the charge accumulated in the photoelectric conversion means
  • the irradiation means driving means (3) drives the excitation light irradiation means (1) intermittently, and the photoelectric conversion element driving means (6) is driven by the irradiation means driving means (3). Driven) The non time the photoelectric conversion means (8) is driven by, characterized in that to perform the photoelectric conversion.
  • the invention according to claim 2 is the imaging device (20) according to claim 1, further comprising illumination light irradiating means (2) for irradiating the illumination light, wherein the illuminating means driving means (3)
  • the excitation light irradiating means (1) and the illumination light irradiating means (2) are driven, and the photoelectric conversion means (8) emits fluorescence emitted from the biological tissue to which the fluorescent compound is administered, which has been irradiated with the excitation light. Is converted into an electrical signal, and the reflected illumination light reflected by the biological tissue irradiated with the illumination light is converted into an electrical signal.
  • the photoelectric conversion means (8) is driven by the photoelectric conversion element driving means (6) immediately before the photoelectric conversion means (8) is driven.
  • the accumulated charge reset means (6) resets the charges accumulated in the photoelectric conversion means (8).
  • the irradiation means driving means (3) includes the excitation light irradiation means (1) and the illumination light irradiation means ( 2) are driven intermittently so as not to be driven simultaneously, and the photoelectric conversion element driving means (6) is in the period when the excitation light irradiation means (1) is not driven by the irradiation means driving means (3).
  • the photoelectric conversion means (8) is driven to perform photoelectric conversion.
  • the invention according to claim 5 is the imaging device (20) according to any one of claims 2 to 4, wherein the irradiation means driving means (3) includes the excitation light irradiation means (1) and the excitation light irradiation means (1).
  • the illumination light irradiation means (2) is alternately and intermittently driven so as not to be driven simultaneously, and the excitation light irradiation means (1) is driven by the irradiation means driving means (3).
  • the photoelectric conversion means (8) is driven to perform photoelectric conversion during a non-driven period.
  • the invention according to claim 6 is the imaging apparatus (20) according to any one of claims 2 to 5, wherein the irradiation means driving means (3) is irradiated from the illumination light irradiation means (2). It is characterized in that at least one of the pulse width of the illumination light and the luminance of the pulsed illumination light can be arbitrarily changed.
  • the irradiation unit driving unit (3) is at least the excitation with a substantially sinusoidal signal.
  • the excitation light irradiation means (1) is intermittently driven by driving the light irradiation means (1).
  • the photoelectric conversion element driving means (6) for determining an operation timing of the photoelectric conversion element (8) includes the excitation light.
  • the photoelectric conversion element (8) is delayed by a phase difference corresponding to a delay time from irradiation of the excitation light to generation of the fluorescence with respect to the substantially sinusoidal signal for driving the irradiation means (1). It is characterized by being driven.
  • the invention according to claim 9 is an excitation light irradiation step (1) for irradiating the excitation light in the control method of the imaging device (20) for irradiating the living tissue with at least one of excitation light and illumination light.
  • a photoelectric conversion step (8) for converting into an electric signal, a photoelectric conversion element driving step (6) for determining an operation timing in the photoelectric conversion step (8), and a charge accumulated in the photoelectric conversion step (6) are reset.
  • An accumulated charge resetting step (6) wherein the excitation light is intermittently driven in the irradiation means driving step (3), and the irradiation means driving step (3) in the photoelectric conversion element driving step (6).
  • the excitation light is characterized in that to perform the photoelectric conversion in the photoelectric conversion process to a period of non-irradiated (8).
  • the invention according to claim 10 is the control method according to claim 9, further comprising an illumination light irradiation step (2) for irradiating the illumination light, wherein the excitation light irradiation in the irradiation means driving step (3).
  • the excitation light in the step (1) and the illumination light in the illumination light irradiation step (2) are driven and irradiated, and the fluorescent compound that has been irradiated with the excitation light in the photoelectric conversion step (8) is administered.
  • the fluorescent light generated from the living tissue is converted into an electrical signal, and the reflected illumination light reflected by the living tissue irradiated with the illumination light is converted into an electrical signal.
  • the invention according to claim 11 is directed to an excitation light irradiating means (1) for irradiating a computer included in an imaging device (20) for irradiating a living tissue with at least one of excitation light and illumination light.
  • the irradiation means driving means (3) intermittently drives the excitation light irradiation means (1), and the photoelectric conversion element driving means (8) is driven by the irradiation means driving means (3).
  • Serial excitation light irradiation means (1) by driving said photoelectric conversion means (8) during a period that is not driven and having a function of executing photoelectric conversion.
  • the invention according to claim 12 is to cause a computer included in the imaging apparatus (20) according to claim 11 to function as illumination light irradiation means (2) for irradiating the illumination light, and to irradiate the drive means ( 3) Drives the excitation light irradiation means (1) and the illumination light irradiation means (2), and the photoelectric conversion means (8) is irradiated with the excitation light and is irradiated with the fluorescent compound.
  • the fluorescent light generated from the tissue is converted into an electrical signal, and the reflected illumination light reflected by the living tissue irradiated with the illumination light is converted into an electrical signal.
  • the invention according to claim 12 is characterized in that, in the imaging apparatus (20) according to any one of claims 1 to 7, the photoelectric conversion means (8) is a color imaging device.
  • the wavelength of excitation light and the wavelength of fluorescence for generating fluorescence may change.
  • the wavelength band of excitation light and the wavelength band of fluorescence are close to each other, or at least a part of each wavelength band overlaps, and the wavelength band of fluorescence and the wavelength band of visible light are close or respectively
  • the wavelength of the excitation light and the wavelength of the fluorescence for generating fluorescence may each change
  • an optical filter such as a bandpass filter, a low wavelength band filter, and a high wavelength band filter according to the wavelength changed each time.
  • the excitation light irradiation means is intermittently driven, and the photoelectric conversion means is driven and photoelectric conversion is performed during a period when the excitation light irradiation means is not driven, so that the high-intensity reflected excitation light is blocked. Eliminates the need to use optical filters.
  • the charge accumulated in the photoelectric conversion means can be reset at each measurement even when the intensity of the fluorescence generated from the living tissue to which the fluorescent compound has been administered that has been irradiated with the excitation light is very small.
  • accurate photoelectric conversion is possible even when the fluorescence is weak.
  • the charge accumulated in the photoelectric conversion means is reset at each measurement, so that the reflected light is reflected by the photoelectric conversion means. It becomes possible to accurately perform photoelectric conversion of the intensity of illumination light.
  • the excitation light irradiating means and the illumination light irradiating means are intermittently driven so as not to be driven simultaneously, and the photoelectric conversion means is driven and photoelectric conversion is performed during a period in which the excitation light irradiating means and the illumination light irradiating means are not driven.
  • optical filters such as optical filters that block high-intensity reflected excitation light, visible light transmission optical filters, and fluorescence transmission optical filters.
  • the excitation light irradiation means and the illumination light irradiation means are driven alternately and intermittently without being driven at the same time, based on the fluorescence reflected from the affected area and the illumination light reflected from around the affected area including the affected area
  • the affected part and the image including the affected part can be viewed in real time, and the patient can be quickly examined and / or operated using the endoscope apparatus.
  • optical filters such as an optical filter and / or a visible light transmission optical filter and a fluorescence transmission optical filter that block high-intensity reflected excitation light is eliminated, and thus the endoscope apparatus can be reduced in size and cost. Become.
  • the brightness of the illumination light is obtained by intermittently driving the excitation light source as the excitation light irradiation means and driving the image sensor as the photoelectric conversion means during a period when the excitation light source is not driven to perform photoelectric conversion. If the illumination light image by the illumination light reflected by the living tissue irradiated with the illumination light is brightened or darkened so that the doctor is most suitable for surgery or the like, the excitation light The fluorescence image and the illumination light image by the fluorescence generated from the irradiated biological tissue can be simultaneously clearly and visually recognized.
  • the excitation light and the fluorescence can be separated by driving the irradiation means driving means such as an LED with a substantially sinusoidal signal.
  • the fluorescence generated by the irradiation of the excitation light is reliably photoelectrically converted by using the fluorescence lifetime. It becomes possible to measure with an element.
  • FIG. 1 is a block diagram illustrating an entire endoscope system including an imaging device of an endoscope apparatus according to an embodiment of the present invention. It is a figure which shows the function outline
  • the present invention can be implemented in many different modes, and those skilled in the art can easily understand that the modes and details can be variously changed without departing from the spirit and scope of the present invention. Is done. Therefore, the present invention is not construed as being limited to the description of this embodiment mode. Note that in all the drawings for describing the embodiments, the same portions or portions having similar functions are denoted by the same reference numerals, and repetitive description thereof is omitted. (Embodiment)
  • the living tissue is irradiated with at least one of excitation light and illumination light, and the fluorescence image generated by the fluorescence generated from the living tissue that has been irradiated with the excitation light and the illumination light are received.
  • An imaging device that receives an illumination light image reflected by the living tissue reflected by the living tissue by photoelectric conversion, acquires signals representing the fluorescent image and the illumination light image, and outputs the signals as image signals.
  • a control method and a control program for the imaging apparatus will be described.
  • an excitation light source as an excitation light irradiation unit is intermittently driven, and an image sensor as a photoelectric conversion unit is driven to perform photoelectric conversion during a period when the excitation light source is not driven. Therefore, it is not necessary to use an optical filter including an optical filter that blocks high-intensity reflected excitation light, and no special image signal processing for color correction is required.
  • FIG. 1 is an external view of an endoscope system including an imaging device of an endoscope apparatus that is an embodiment of a fluorescence observation endoscope apparatus according to the present invention.
  • the endoscope system includes a fluorescence observation endoscope 10, an imaging device 20 of the endoscope apparatus, and a monitor 60.
  • the fluorescence observation endoscope 10 is obtained by adding a modification for fluorescence observation to a normal electronic endoscope, and is inserted into a body cavity.
  • An operation unit 10b having an angle knob or the like for bending the tip of the unit 10a, a light guide flexible tube 10e for connecting the operation unit 10b and the light source processor device 20, and the light guide flexible tube 10e.
  • the connector 10d provided at the base end of is provided.
  • FIG. 2 is a functional block diagram of the imaging apparatus 20 of the endoscope apparatus in FIG.
  • An imaging device 20 of an endoscope apparatus operates an excitation light source 1 serving as excitation light irradiation means for irradiating a living body with excitation light and a fluorescence observation endoscope 10 in the living body and looks around the affected area of the living body.
  • Illumination light source 2 as illumination light irradiating means for irradiating illumination light
  • a light source as illuminating means driving means for driving excitation light source 1 and illumination light source 2 by determining timing of irradiating light from excitation light source 1 and illumination light source 2
  • the driving circuit 3, the timing generation circuit 4 that outputs a signal for determining timing to the light source driving circuit 3, the transmitter 5 that generates the reference clock in the imaging device 20 of the endoscope apparatus, and the photoelectric of the image sensor 8
  • Image sensor driving circuit 6 as photoelectric conversion element driving means and stored charge resetting means for determining conversion timing, fluorescence from the affected area of the living body, reflected illumination light
  • the lens 7 that receives the radiation excitation light, the image sensor 8 as a photoelectric conversion unit that receives the fluorescence and reflected illumination light from the affected part of the living body and executes photoelectric conversion, and the analog signal output from the image sensor 8 are processed.
  • the excitation light source 1 has a function of irradiating excitation light for exciting a fluorescent reagent such as indocyanine injected into a living body (living tissue).
  • the wavelength of light from the excitation light source 1 is determined by the type of reagent.
  • a wavelength in the range of about 750 nm to 780 nm is selected as the excitation light.
  • a fluorescent reagent such as indocyanine absorbs the energy of excitation light to excite electrons and release excess energy as electromagnetic waves when it returns to the ground state. Therefore, in the case of indocyanine, which generally emits electromagnetic waves (fluorescence) having a wavelength longer than the wavelength of absorbed light and a wavelength in the range of about 750 nm to 780 nm is selected as the excitation light, the wavelength of the fluorescence is about 850 nm. Nearby.
  • a transient response is observed in the fluorescence response to the excitation light, and this transient response period is also referred to as a fluorescence lifetime.
  • fluorescence in the fluorescence lifetime that is the transient response period is used.
  • the fluorescence lifetime is a period that starts after the end of irradiation with excitation light (or immediately after the end of irradiation).
  • an arbitrary light source including an LED (Light Emitting Diode) and a semiconductor laser can be selected.
  • the illumination light source 2 is for obtaining an illumination light image (normal observation image) for operating the fluorescence observation endoscope 10 in the living body, and for obtaining an illumination light image for viewing the affected area and the surroundings of the affected area. It has a function of irradiating illumination light.
  • the illumination light source 2 emits illumination light.
  • the illumination light image (ordinary observation image) is required because the affected part is identified by observing the periphery of the affected part, and the intra-body-cavity insertion part 10a inserted into the body is manipulated by the operation part 10b having an angle knob or the like. This is because an image inside the body (including the affected part) is necessary.
  • any light source including an LED and a semiconductor laser can be selected.
  • the wavelength of the light from the illumination light source 2 includes at least a part of the visible light in order for the operator to observe the body including the affected part.
  • the light source driving circuit 3 has a function of driving the excitation light source 1 and the illumination light source 2, and at least a function of driving the excitation light source 1 intermittently.
  • the light source drive circuit 3 can drive the illumination light source 2 continuously or drive the illumination light source 2 intermittently while driving the excitation light source 1 intermittently (see FIG. 4).
  • the image sensor 8 has a timing when the excitation light source 1 is not driven intermittently (fluorescence lifetime). (Corresponding to t1 in FIG. 4): Fluorescence image due to fluorescence generated from the living tissue of the affected area that has been irradiated with excitation light at the end of irradiation with excitation light).
  • the excitation light source 1 drives intermittently the illumination light image by the illumination light reflected when the illumination light irradiated from the illumination light source 2 was irradiated to the affected part and the living tissue of the human body which does not include the affected part.
  • the image sensor 8 receives light at a timing when the fluorescent image is not received and when the fluorescent image is not received.
  • the illumination light image is received by the image sensor 8 after the fluorescence lifetime and during the time until the excitation light source 1 is intermittently driven (corresponding to t2 in FIG. 4).
  • a plurality of image sensors 8 may be provided.
  • an illumination light image is received by one of the plurality of image sensors 8 at an arbitrary time when the excitation light source 1 is not intermittently driven. It is also possible to configure such that.
  • the light source driving circuit 3 has a function of intermittently driving the excitation light source 1 and the illumination light source 2 so as not to be driven simultaneously.
  • the light source driving circuit 3 has a function of alternately and intermittently driving the excitation light source 1 and the illumination light source 2 so as not to be driven simultaneously (see FIG. 6B).
  • the light source driving circuit 3 drives the excitation light source 1 for a predetermined time, and then stops driving the excitation light source 1.
  • the timing at which the illumination light source 2 is intermittently driven in the image sensor 8 (corresponding to the exposure 2 period in FIG. 6): the duration of the fluorescence generated after the irradiation of the excitation light of the exposure 1 in FIG.
  • the illumination light image generated by the illumination light reflected by the living body is received at a predetermined time after completion). (See FIG. 6 (b)).
  • the light source drive circuit 3 drives the illumination light source 2 for a predetermined time, and the illumination light source 2 performs illumination during the period during which the illumination light source 2 is driven (corresponding to the exposure 2 period in FIG. 6).
  • the image sensor 8 receives an illumination light image generated by the light reflected from the living body.
  • the excitation light source 1 that is intermittently driven can be driven by an arbitrary signal that is driven intermittently, such as a pulse signal or a substantially sinusoidal signal.
  • the light source driving circuit 3 has a function of driving at least one of the pulse width of the illumination light emitted from the illumination light source 2 or the luminance of the pulsed illumination light to be arbitrarily changeable (not shown). ). Further, the light source driving circuit 3 has a function of driving at least one of the pulse width of the excitation light emitted from the excitation light source 1 and the luminance of the pulsed excitation light so as to be arbitrarily changed (not shown). ).
  • the light source driving circuit 3 has a function of driving the excitation light source 1 intermittently by driving at least the excitation light source 1 with a substantially sinusoidal signal (see FIG. 8).
  • the image sensor drive circuit 6 delays the image sensor 8 by a phase difference corresponding to a delay time from irradiation of excitation light to generation of fluorescence with respect to a substantially sinusoidal signal for driving the excitation light source 1. It has a function of driving (see FIG. 8).
  • the illumination is modulated at a frequency that is, for example, four times the fluorescence delay time, and the sensor exposure is performed at the portion shown in FIG.
  • the timing generation circuit 4 generates a timing signal for determining the timing at which the light source driving circuit 3 drives the excitation light source 1 and the illumination light source 2 and the timing at which the image sensor driving circuit 6 drives the image sensor 8.
  • the image sensor driving circuit 6 has a function of driving the image sensor 8 and performing photoelectric conversion during a period when the excitation light source 1 is not driven by the light source driving circuit 3 (see FIGS. 4 and 6).
  • the image sensor driving circuit 6 has a function of resetting the charge accumulated in the image sensor 8 immediately before the image sensor 8 is driven by the photoelectric conversion element driving means.
  • the image sensor 8 may be a monochrome imaging device or a color imaging device.
  • the image sensor driving circuit 6 drives the image sensor 8 during a period in which the excitation light source 1 is not driven by the light source driving circuit 3, and receives irradiation of excitation light during the fluorescence lifetime. It has a function of receiving a fluorescent image by fluorescence generated from the living tissue of the affected area and executing photoelectric conversion.
  • the lens 7 has a function of receiving fluorescence, reflected illumination light, and reflected excitation light from the affected part of the living body.
  • the image sensor drive circuit 6 does not operate the image sensor 8 at the timing when the reflected excitation light passes through the lens 7, the reflected excitation light has no effect on the resulting video signal.
  • an optical filter that blocks the reflected excitation light is not necessary.
  • the image sensor 8 performs photoelectric conversion of fluorescence and reflected illumination light among the light transmitted through the lens 7.
  • the analog front end circuit 9 has a function of processing an analog signal output from the image sensor 8.
  • the digital signal processing circuit 10 displays an image for causing the monitor 60 to operate the fluorescence observation endoscope 10 in the living body and a surrounding image including the affected part of the living body from the signal output from the analog front end circuit 9.
  • FIG. 3A is a diagram showing the relationship between the illumination light, the reagent excitation light, and the fluorescence wavelength band of the reagent when a reagent such as ICG that emits general near-infrared fluorescence is used.
  • the illumination light is emitted from the illumination light source 1 in a visible light (about 400 nm to about 800 nm) region that can be visually recognized by a human, and the illumination light in the wavelength band is received by the image sensor 8 as an illumination light image.
  • the excitation light emitted from the excitation light source 1 that is intermittently driven is in the near infrared region, but the fluorescence emitted from the affected area irradiated with the excitation light has a wavelength in the near infrared region that is longer than the excitation light. This is shown in FIG. 3 (a).
  • the conventional method blocks (attenuates) excitation light with high light intensity so that it is not received by a light-receiving element such as an image sensor.
  • This bandpass is used to receive fluorescence in the near-infrared wavelength band and illumination light in the visible light region.
  • An optical filter was required. For this purpose, it is necessary to make a band pass optical filter having a good cut-off characteristic part of the configuration. Moreover, such an optical filter is expensive, and when the wavelength bands of excitation light and fluorescence change depending on the type of reagent, it is necessary to prepare bandpass optical filters having different wavelength characteristics.
  • excitation light with high light intensity cannot be sufficiently attenuated by an optical filter, a part of the excitation light is received by a light receiving element such as an image sensor. For this reason, there has been a problem that the color balance of the obtained video signal is broken and the image observed on the monitor is difficult to see.
  • FIG. 3B shows the relationship between the wavelength bands of illumination light, excitation light, and fluorescence when using the reagent such as ICG that emits the general near-infrared fluorescence shown in FIG. 3A.
  • the excitation light emitted from the excitation light source 1 driven intermittently is in the ultraviolet region, and the fluorescence emitted from the affected area irradiated with the excitation light is in the visible light region. It is shown.
  • FIG. 4 shows a case where the excitation light emitted from the excitation light source 1 is intermittently driven in a pulse shape.
  • Fluorescence emitted from the affected part of the living body continues to emit a fluorescence image as a fluorescence lifetime only for t1 time after the irradiation of the excitation light emitted from the excitation light source 1 is finished in a pulse shape.
  • the image sensor drive circuit 6 resets the charge accumulated in the image sensor 8 and is excited after the charge of the image sensor 8 is reset. A fluorescent image corresponding to the light is received.
  • the fluorescence image received by the image sensor 8 is converted into an image signal as an image that allows the observer to observe the affected area on the monitor 60 via the analog front end circuit 9 and the digital signal processing circuit 10. Is done.
  • the illumination light emitted from the illumination light source 2 is reflected by the living body during the time from the elapse of t1 time, which is the fluorescence lifetime, to the start of the next excitation light irradiation (corresponding to t2 in FIG. 4).
  • the illumination light image formed in this manner may be configured to be received by the image sensor 8.
  • the illumination light image received by the image sensor 8 passes through the analog front end circuit 9 and the digital signal processing circuit 10 as an image that reflects the inside of the living body or the periphery of the affected part. Is converted into a video signal as an observable video.
  • a plurality of image sensors 8 may be provided. In this case, it is possible to configure the illumination light image to be received by one of the plurality of image sensors 8 at an arbitrary time when the excitation light source 1 is not intermittently driven.
  • the light receiving surfaces of the plurality of image sensors 8 may be configured to include an optical filter for receiving an illumination light image and / or an optical filter for receiving a fluorescent image.
  • the imaging device of the endoscope apparatus has the above-described configuration, if the substance such as the type of fluorescent compound and the additive to be injected into the living body changes conventionally,
  • the wavelength of the excitation light and the wavelength of the fluorescence for generating the fluorescence may change.
  • Optical such as a bandpass filter, a low wavelength band filter, a high wavelength band filter, etc., adapted to the changed wavelength each time.
  • the mechanical configuration and the electrical configuration of the imaging apparatus of the endoscope apparatus can be simplified, and the cost of the imaging apparatus of the endoscope apparatus can be reduced.
  • the excitation light irradiation means is intermittently driven, and the photoelectric conversion means is driven and photoelectric conversion is performed during a period when the excitation light irradiation means is not driven, so that the high-intensity reflected excitation light is blocked. Eliminates the need to use optical filters.
  • FIG. 5 is a processing flowchart showing the timing at which the functions of this embodiment are executed.
  • step S10 the light source drive circuit 3 turns on the excitation light source 1.
  • step S11 the excitation light from the excitation light source 1 turned on is irradiated toward the affected part (containing the reagent) in the living body.
  • step S12 the light source drive circuit 3 turns off the excitation light source 1 and stops the irradiation of the excitation light into the living body.
  • step S13 the image sensor drive circuit 6 resets the charge accumulated in the image sensor 8, and drives the image sensor 8 to receive a fluorescent image corresponding to the excitation light after the charge of the image sensor 8 is reset. To do.
  • step S14 the image sensor driving circuit 6 photoelectrically converts the fluorescent image received by the image sensor 8 in step S14.
  • step S15 the fluorescent image received by the image sensor 8 is converted into an image of the affected area through the analog front end circuit 9 and the digital signal processing circuit 10, and an image signal as an image that allows the observer to observe the affected area on the monitor 60. Is converted to
  • step S16 it is determined whether or not the imaging by the imaging device 20 of the endoscope apparatus has been completed.
  • imaging by the imaging device 20 of the endoscope apparatus is completed (step S16: YES)
  • imaging by the imaging apparatus 20 of the endoscope apparatus is terminated, and imaging by the imaging apparatus 20 of the endoscope apparatus is completed. If not (step S16: NO), the process returns to step S10 to capture the next fluorescent image of the affected area.
  • the illumination light source 1 may be continuously turned on to continuously irradiate the illumination light, or intermittently the illumination light. May be driven by the light source driving circuit 3 so as to irradiate.
  • the excitation light source 1 and the illumination light source 2 are alternately and intermittently driven so as not to be simultaneously driven by the light source driving circuit 3 will be described with reference to FIG.
  • the light source drive circuit 3 drives the excitation light source 1 for a predetermined time and irradiates the excitation light near the affected part of the human body, and then stops driving the excitation light source 1 (FIG. 6C). Corresponds to t3).
  • the image sensor 8 has a timing at which the excitation light source 1 does not intermittently emit the excitation light and has a fluorescence lifetime (corresponding to the exposure 1 in FIG. 6 and the duration of the fluorescence generated after the end of the excitation light irradiation). ) To receive a fluorescent image due to fluorescence generated from the living tissue of the affected area that has been irradiated with the excitation light.
  • the light source drive circuit 3 drives the illumination light source 2 for a predetermined time to irradiate the illumination light around the tip of the endoscope of the human body, and stops driving the illumination light source 2 (FIG. 6C). This corresponds to the exposure 2 of the above).
  • the image sensor 8 is a timing at which the illumination light source 2 is intermittently driven (corresponding to the exposure 2 period in FIG. 6C): fluorescence generated after the irradiation of the excitation light in the exposure 1 in FIG.
  • the illumination light image generated when the illumination light from the illumination light source 2 is reflected by the living body is received at a predetermined time after the end of the duration.
  • the light source drive circuit 3 drives the illumination light source 2 for a predetermined time, and during the period in which the illumination light source 2 is driven (corresponding to the exposure 2 period in FIG. 5), the image sensor 8 An illumination light image generated when the illumination light from the illumination light source 2 is reflected by the living body is received.
  • the image sensor driving circuit 6 resets the charge accumulated in the image sensor 8 at the timing when the exposure 2 and exposure 3 periods start (see FIG. 6C).
  • step S20 the light source driving circuit 3 turns on the excitation light source 1.
  • step S21 the excitation light is irradiated from the excitation light source 1 that is turned on toward the affected part (containing the reagent) in the living body.
  • step S22 the light source drive circuit 3 turns off the excitation light source 1 and stops the irradiation of the excitation light into the living body.
  • step S23 the image sensor driving circuit 6 turns on the image sensor 8.
  • step S24 the image sensor drive circuit 6 resets the charge accumulated in the image sensor 8, and drives the image sensor 8 so as to receive a fluorescent image corresponding to the excitation light after the charge of the image sensor 8 is reset. To do.
  • step S25 the image sensor driving circuit 6 photoelectrically converts the fluorescent image received by the image sensor 8 in step S14.
  • the fluorescent image received by the image sensor 8 is converted as an image of the affected area through the analog front end circuit 9 and the digital signal processing circuit 10 into an image signal as an image that allows the observer to observe the affected area on the monitor 60. Is done.
  • step S26 the image sensor drive circuit 6 resets the charge accumulated in the image sensor 8, and after the charge of the image sensor 8 is reset, the image sensor 8 is received so as to receive an illumination light image corresponding to the illumination light. To drive.
  • step S27 the light source driving circuit 3 turns on the illumination light source 2.
  • step S28 the image sensor driving circuit 6 photoelectrically converts the illumination light image received by the image sensor 8. Then, the illumination light image received by the image sensor 8 is imaged as an image inside the human body via the analog front end circuit 9 and the digital signal processing circuit 10, and an image signal as an image that allows the observer to observe the affected area on the monitor 60 Is converted to
  • step S29 the image sensor drive circuit 6 turns off the image sensor 8.
  • step S30 the light source drive circuit 3 turns off the illumination light source 2 and stops the illumination light irradiation.
  • step S31 it is determined whether or not the imaging by the imaging device 20 of the endoscope apparatus is completed.
  • step S31: YES imaging by the imaging device 20 of the endoscope apparatus is terminated, and imaging by the imaging apparatus 20 of the endoscope apparatus is completed. If not (step S31: NO), the process returns to step S20, and the next fluorescent image of the affected area is taken.
  • FIG. 8 shows an example in which the excitation light source 1 driven intermittently is driven by a substantially sinusoidal signal.
  • the light source driving circuit 3 has a function of driving the excitation light source 1 intermittently by driving at least the excitation light source 1 with a substantially sinusoidal signal.
  • the fluorescence pulse of excitation light and fluorescence is reduced by shortening the emission pulse of excitation light emitted from the excitation light source 1.
  • the fluorescence generated in the affected area of the living body is received by the image sensor 8 through the lens 7 after a predetermined time (t4 in FIG. 8) from the substantially sinusoidal excitation light.
  • the light source driving circuit 3 applies excitation light to the substantially sinusoidal signal that drives the excitation light source 1. It is desirable to drive the image sensor 8 with a delay of a phase difference corresponding to a delay time (t4 in FIG. 8) from irradiation of the light to generation of fluorescence (see FIG. 8).
  • the illumination is modulated at a frequency that is, for example, four times the delay time of fluorescence, and the sensor is exposed at the portion shown in FIG. become.
  • the excitation light source as the excitation light irradiating means is intermittently driven, and the image sensor as the photoelectric conversion means is driven to perform the photoelectric conversion during the period in which the excitation light source is not driven.
  • reflected illumination light In order to change the illuminance of reflected illumination light (reflected illumination light) that is visible light, two methods can be considered to increase the luminance of the illumination light on the radiation side (in the form of pulses in FIG. 6A). It is conceivable to increase the amplitude of the emitted visible light or to increase the pulse width of the visible light emitted in a pulse form in FIG.
  • the illumination luminance of the illumination light source 2 is increased via the light source drive circuit 3 of FIG. become.
  • the illumination light source 2 is an independent circuit unit that is separate from the excitation light source 1. Therefore, the luminance can be freely adjusted without correlation with the luminance of the excitation light source 1.
  • the excitation light source as the excitation light irradiating means is intermittently driven, and the image sensor as the photoelectric conversion means is driven to perform the photoelectric conversion during the period when the excitation light source is not driven. Therefore, even if the illuminance of the illumination light image is changed (it can be made very bright) regardless of the fluorescence image with very low illuminance, a clear fluorescence image and a clear illumination light image can be obtained independently. It can be visually recognized by a user such as a doctor.
  • the pulse driving time of the illumination light source 2 via the light source driving circuit 3 in FIG. Will be lengthened.
  • the illumination light source 2 is an independent circuit unit that is separate from the excitation light source 1, and therefore is freely irradiated from the illumination light source 2 without correlation with the luminance or pulse width of the excitation light source 1.
  • the pulse width of the illumination light can be adjusted (time t3 and time exposure 2 in FIG. 6A can be set independently and separately.
  • time t3 + time exposure) 1 + time exposure 2 may be changed, and time t3, time exposure 1 and time exposure 2 may be adjusted to arbitrary times so that time t3 + time exposure 1 + time exposure 2 is constant. .) Even if the illuminance by the reflected illumination light is changed in this way, as shown in FIG. 6, the excitation light source as the excitation light irradiation means is intermittently driven, and photoelectric conversion is performed during the period when the excitation light source is not driven.
  • the image sensor is driven to perform photoelectric conversion as a means, even if the illuminance of the illumination light image is changed (it can be very bright) regardless of the fluorescence image with very small illuminance, A user such as a doctor can visually recognize a clear fluorescent image and a clear illumination light image independently.
  • the imaging device of the endoscope apparatus of the present invention may be provided and used in any endoscope apparatus, and can be applied to other reagents having different fluorescence wavelengths.
  • the above processing can improve the convenience of the imaging apparatus of the endoscope apparatus.
  • 5 and 7 are recorded in advance on a recording medium such as a hard disk or recorded in advance via a network such as the Internet, and are read out and executed by a general-purpose microcomputer or the like. Accordingly, it is possible to cause the general-purpose microcomputer or the like to function as the CPU according to the embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Studio Devices (AREA)

Abstract

 本発明は、光学フィルターを不要にするとともに、カラー補正のための特別な画像信号処理を不要にする蛍光内視鏡装置等を提供することを目的とする。 励起光照射手段(1)と、照射手段駆動手段(3)と、生体組織から発生した蛍光を電気信号に変換する光電変換手段(8)と、光電変換手段(8)の動作タイミングを決定する光電変換素子駆動手段(6)と、光電変換手段(8)に蓄積される電荷をリセットする蓄積電荷リセット手段(6)と、を具備する構成において、励起光照射手段(1)は間欠的に駆動され、光電変換素子駆動手段(6)は励起光照射手段(1)が駆動されていない期間に光電変換手段(6)を駆動させて光電変換を実行させることを特徴とする。

Description

撮像装置、撮像装置の制御方法および撮像装置の制御プログラム
 本発明は、励起光を生体に照射し、生体から発した蛍光を撮像して蛍光画像を得る撮像装置、撮像装置の制御方法および撮像装置の制御プログラムに関する。
 内視鏡を通じて生体の蛍光を撮像し、生体が正常であるか異常であるかの診断に供される蛍光画像を表示する蛍光観察内視鏡装置が、提案されている。このような蛍光観察内視鏡装置は、従来の内視鏡(電子内視鏡)及び光源プロセッサ装置(電子内視鏡から出力された映像信号を処理してビデオ信号として出力するプロセッサを備えた光源装置)によって、構成されている。具体的には、蛍光観察内視鏡装置に用いられる電子内視鏡は、生体組織に向けて照射光を導くライトガイドファイババンドル(以下、単に「ライトガイド」という)として特定の帯域の光に対する透過性が良い石英ガラスファイバーからなるものが用いられ、その対物窓から撮像素子に至る光路中に励起光として用いる特定波長の光をカットするための励起光カットフィルタが挿入されたものとなっている。
 また、光源プロセッサ装置は、生体組織に対する照射光として白色光又は励起光とを内視鏡のライトガイドに導入できるように構成されているとともに、白色光をライトガイドに導入する時(以下、「通常観察モード」という)と励起光をライトガイドに導入する時(以下、「蛍光観察モード」という)とで、電子内視鏡から出力される画像信号に対する画像処理内容を変更するように構成されている。
 この蛍光観察内視鏡装置において、可視光カラーと近赤外蛍光を同時に同時に撮像する装置があり、この技術においては、近赤外蛍光を発する試薬(インドシアニングリーン等(以下ICGとも称する))を励起するための照射光(近赤外光)を特異的に遮断する光学フィルターを撮像装置の入力に配置することが必須である。
特開2002-89109号公報
 しかしながら、従来の蛍光観察内視鏡装置では、励起光の波長帯域と蛍光の波長帯域とが近接またはそれぞれの波長帯域のすくなくとも一部が重複している場合には、励起光の波長帯域と蛍光の波長帯域とを光学フィルターを用いて分離することは困難、または、不可能であった。また、蛍光の波長帯域と可視光の波長帯域とが近接またはそれぞれの波長帯域のすくなくとも一部が重複している場合にも、蛍光の波長帯域と可視光の波長帯域とを光学フィルターを用いて分離することは困難、または、不可能であった。
 このために、医学的に良好な蛍光を発する試薬が開発された場合であっても、上記のような波長帯域の関係になる場合には、従来の医療分野において使用される蛍光観察内視鏡装置を使用して、反射照明光による患者の手術周辺部位の画像と蛍光による患部の画像を同時に提供することはできなかった。
 また、医療現場においては、手術中に蛍光を発する患部を含めた患者の周辺部位(可視光による照明光によって観察される部位)を医師が観察しながら手術をすることが、安全かつ確実な手術を遂行するために、非常に重要である。
 しかしながら、受光部における反射された照明光と蛍光との照度比は本質的に非常に大きいために、放射する照明光の強度を上げると、反射された照明光の照度が大きくなるので、従来の光学フィルターを用いる蛍光観察内視鏡装置では蛍光を確実に検出することが非常に困難であった。すなわち、従来の光学フィルターを用いる蛍光観察内視鏡装置では照明光用の特殊な光学フィルターが必要となるが、この特殊な光学フィルターを用いても十分に鮮明な蛍光による患部画像を提供できなかった。このため、手術中に必要とされる反射された照明光による患者の手術周辺部位の鮮明な画像と蛍光による患部の鮮明な画像とを同時に医師が視認することができなかった。
 また、ある波長帯を特異的に遮断する光学フィルターを必須の構成とすることで、撮像装置の構成および光学フィルターを含む構成の制御が複雑になり、また、装置全体のコストを押し上げていた。さらに、励起光を遮断するための光学フィルターの波長帯域と可視光の波長帯域が近接または重複等している場合には、光学フィルターによる透過光の波長帯域の制御が不十分になり、得られる画像のカラーバランスが崩れまたは破綻し、または得られる画像のノイズを十分に除去できずに鮮明さに欠けるなどの問題が発生する。
 本発明は、このような問題に鑑みてなされたものであり、その課題は、医療分野において、従来の蛍光観察内視鏡装置において使用されていた少なくとも一つ以上の光学フィルターを不要にするとともに、カラー補正のための特別な画像信号処理を不要にし、通常のカラー画像のリアルタイム動画と蛍光画像のリアルタイム動画とを、表示装置によって同時に表示することができる撮像装置、撮像装置の制御方法および撮像装置の制御プログラムを提供することを目的とする。
 上記課題を解決するため、本発明は次のような構成を採用する。
 すなわち、請求項1に係る発明は、生体組織に励起光と照明光との少なくともいずれか一方を照射する撮像装置(20)において、前記励起光を照射する励起光照射手段(1)と、前記励起光照射手段(1)を駆動する照射手段駆動手段(3)と、前記励起光の照射を受けた、蛍光化合物が投与された生体組織から発生した蛍光を電気信号に変換する光電変換手段(8)と、前記光電変換手段の動作タイミングを決定する光電変換素子駆動手段(6)と、前記光電変換手段に蓄積される電荷をリセットする蓄積電荷リセット手段(6)と、を具備し、前記照射手段駆動手段(3)は、前記励起光照射手段(1)を間欠的に駆動し、前記光電変換素子駆動手段(6)は前記照射手段駆動手段(3)によって前記励起光照射手段(1)が駆動されていない期間に前記光電変換手段(8)を駆動させて光電変換を実行させることを特徴とする。
 また、請求項2に係る発明は、請求項1に記載の撮像装置(20)において、前記照明光を照射する照明光照射手段(2)を備え、前記照射手段駆動手段(3)は、前記励起光照射手段(1)および前記照明光照射手段(2)を駆動し、前記光電変換手段(8)は、前記励起光の照射を受けた、蛍光化合物が投与された生体組織から発生した蛍光を電気信号に変換し、前記照明光の照射を受けた前記生体組織によって反射された反射照明光を電気信号に変換することを特徴とする。
 また、請求項3に係る発明は、請求項1または2に記載の撮像装置(20)において、前記光電変換素子駆動手段(6)によって前記光電変換手段(8)が駆動される直前に、前記蓄積電荷リセット手段(6)は、前記光電変換手段(8)に蓄積される電荷をリセットすることを特徴とする。
 また、請求項4に係る発明は、請求項2または3に記載の撮像装置(20)において、前記照射手段駆動手段(3)は、前記励起光照射手段(1)と前記照明光照射手段(2)とを同時に駆動しないように間欠的に駆動し、前記光電変換素子駆動手段(6)は前記照射手段駆動手段(3)によって前記励起光照射手段(1)が駆動されていない期間に前記光電変換手段(8)を駆動させて光電変換を実行させることを特徴とする。
 また、請求項5に係る発明は、請求項2乃至4の何れか一項に記載の撮像装置(20)において、前記照射手段駆動手段(3)は、前記励起光照射手段(1)と前記照明光照射手段(2)とを同時に駆動しないように交互に間欠的に駆動し、前記光電変換素子駆動手段(6)は前記照射手段駆動手段(3)によって前記励起光照射手段(1)が駆動されていない期間に前記光電変換手段(8)を駆動させて光電変換を実行させることを特徴とする。
 また、請求項6に係る発明は、請求項2乃至5の何れか一項に記載の撮像装置(20)において、前記照射手段駆動手段(3)は、前記照明光照射手段(2)から照射される照明光のパルス幅またはパルス状の照明光の輝度のうち、少なくとも何れか一方を任意に変更可能であることを特徴とする。
 また、請求項7に係る発明は、請求項2乃至6の何れか一項に記載の撮像装置(20)において、前記照射手段駆動手段(3)は、略正弦波形状の信号で少なくとも前記励起光照射手段(1)を駆動することにより、前記励起光照射手段(1)を間欠的に駆動することを特徴とする。
 また、請求項8に係る発明は、請求項7に記載の撮像装置(20)において、前記光電変換素子(8)の動作タイミングを決定する前記光電変換素子駆動手段(6)は、前記励起光照射手段(1)が駆動される前記略正弦波形状の信号に対して、前記励起光の照射から前記蛍光の発生までの遅れ時間に対応する位相差だけ遅れて前記光電変換素子(8)を駆動することを特徴とする。
 さらに、請求項9に係る発明は、生体組織に励起光と照明光との少なくともいずれか一方を照射する撮像装置(20)の制御方法において、前記励起光を照射する励起光照射工程(1)と、前記励起光照射工程(1)における前記励起光を駆動し照射する照射手段駆動工程(3)と、前記励起光の照射を受けた、蛍光化合物が投与された生体組織から発生した蛍光を電気信号に変換する光電変換工程(8)と、前記光電変工程(8)における動作タイミングを決定する光電変換素子駆動工程(6)と、前記光電変換工程(6)において蓄積される電荷をリセットする蓄積電荷リセット工程(6)とを具備し、前記照射手段駆動工程(3)では、前記励起光を間欠的に駆動し、光電変換素子駆動工程(6)では前記照射手段駆動工程(3)において前記励起光が照射されていない期間に前記光電変換工程(8)における光電変換を実行させることを特徴とする。
 さらに、請求項10に係る発明は、請求項9に記載の制御方法において、前記照明光を照射する照明光照射工程(2)を備え、前記照射手段駆動工程(3)において、前記励起光照射工程(1)における前記励起光および前記照明光照射工程(2)における前記照明光を駆動して照射し、前記光電変換工程(8)において、前記励起光の照射を受けた、蛍光化合物が投与された生体組織から発生した蛍光を電気信号に変換し、前記照明光の照射を受けた前記生体組織によって反射された反射照明光を電気信号に変換することを特徴とする。
 さらに、請求項11にかかわる発明は、生体組織に励起光と照明光との少なくともいずれか一方を照射する撮像装置(20)に含まれるコンピュータを、前記励起光を照射する励起光照射手段(1)、前記励起光照射手段(1)を駆動する照射手段駆動手段(3)、前記励起光の照射を受けた、蛍光化合物が投与された生体組織から発生した蛍光を電気信号に変換する光電変換手段(8)、前記光電変換手段(8)素子の動作タイミングを決定する光電変換素子駆動手段(6)、前記光電変換手段(8)に蓄積される電荷をリセットする蓄積電荷リセット手段(6)、として機能させ、前記照射手段駆動手段(3)は、前記励起光照射手段(1)を間欠的に駆動し、前記光電変換素子駆動手段(8)は前記照射手段駆動手段(3)によって前記励起光照射手段(1)が駆動されていない期間に前記光電変換手段(8)を駆動させて光電変換を実行させる機能を有することを特徴とする。
 さらに、請求項12にかかわる発明は、請求項11に記載の撮像装置(20)に含まれるコンピュータを、前記照明光を照射する照明光照射手段(2)として機能させ、前記照射手段駆動手段(3)は、前記励起光照射手段(1)および前記照明光照射手段(2)を駆動し、前記光電変換手段(8)は、前記励起光の照射を受けた、蛍光化合物が投与された生体組織から発生した蛍光を電気信号に変換し、前記照明光の照射を受けた前記生体組織によって反射された反射照明光を電気信号に変換する機能を有することを特徴とする。
 さらに、請求項12に係る発明は、請求項1乃至7の何れか一項に記載の前記撮像装置(20)において、前記光電変換手段(8)はカラー撮像デバイスであることを特徴とする。
 生体内に注入される蛍光化合物の種類および添加物等の物質が変わった場合には、蛍光を発生させるための励起光の波長および蛍光の波長は、それぞれが変化する可能性がある。その結果として、励起光の波長帯域と蛍光の波長帯域とが近接またはそれぞれの波長帯域のすくなくとも一部が重複している場合、および、蛍光の波長帯域と可視光の波長帯域とが近接またはそれぞれの波長帯域のすくなくとも一部が重複している場合であっても、本発明によれば、反射照明光による患者の手術周辺部位の画像と蛍光による患部の画像を同時に提供することが可能になる。
 また、生体内に注入される蛍光化合物の種類および添加物等の物質が変わった場合には、蛍光を発生させるための励起光の波長および蛍光の波長は、それぞれが変化する可能性があり、従来はそのたびに変化した波長に合わせたバンドパスフィルター、低波長帯域フィルター、高波長帯域フィルター等の光学フィルターを作製することが必要とされていたが、本発明によれば、レンズ等の波長軸の光学フィルターを電気的な時間軸のフィルターに変換することによって、光学フィルターを使用する必要が無くなるので、内視鏡装置の撮像装置の機械的構成および電気的構成が簡易になるとともに内視鏡装置の撮像装置のコストダウンが可能になる。
 また、前記励起光照射手段を間欠的に駆動し、前記励起光照射手段が駆動されていない期間に光電変換手段が駆動されて光電変換が実行されるので、高強度の反射励起光を遮断する光学フィルターを使用する必要がなくなる。
 さらに、高強度の反射励起光を受光する可能性がなくなるので、手術中に必要とされる反射された照明光による患者の手術周辺部位の鮮明な画像と蛍光による患部の鮮明な画像とを同時に医師が視認することができるようになった。
 さらに、高強度の反射励起光を受光する可能性がなくなるので、被写体のカラーバランスの破綻を防止することが可能になる。
 さらに、高強度の反射励起光を受光する可能性がなくなり、光電変換を含む電子回路のダイナミックレンジを広く取る必要がないので回路構成が簡単になる。
 また、励起光の照射を受けた、蛍光化合物が投与された生体組織から発生した蛍光の強度が非常に小さい場合であっても、毎回の計測時に光電変換手段に蓄積される電荷をリセットすることで、微弱な蛍光である場合にも正確に光電変換することが可能になる。
 さらに、照明光の照射を受けた生体組織によって反射された反射照明光を電気信号に変換する場合にも、毎回の計測時に光電変換手段に蓄積される電荷をリセットするので、光電変換手段において反射照明光の強度を正確に光電変換を実行することが可能になる。
 また、励起光照射手段および照明光照射手段とが同時に駆動しないように間欠的に駆動され、励起光照射手段および照明光照射手段が駆動されていない期間に光電変換手段が駆動されて光電変換が実行されるので、高強度の反射励起光を遮断する光学フィルターおよび可視光透過光学フィルター並びに蛍光透過光学フィルター等の光学フィルターを使用する必要がなくなる。
 さらに、反射された照明光を受光する場合に高強度の反射励起光を受光する可能性がないので被写体のカラーバランスの破綻を防止することが可能になる。
 また、励起光照射手段および照明光照射手段とは同時に駆動せずに交互に間欠的に駆動されるので、患部から反射される蛍光および患部を含む患部の周囲から反射される照明光に基づいて、リアルタイムに患部と患部を含む画像を視認することが可能になり、内視鏡装置を使用した患者の検査および/または手術を迅速に行うことが可能になる。
 さらに、高強度の反射励起光を遮断する光学フィルターおよび/または可視光透過光学フィルター並びに蛍光透過光学フィルター等の光学フィルターの必要がなくなるので、内視鏡装置の小型化、低コスト化が可能になる。
 また、励起光照射手段としての励起光源を間欠的に駆動し、励起光源が駆動されていない期間に光電変換手段としてのイメージセンサを駆動して光電変換を実行させることで、前記照明光の輝度を任意に変化させて、照明光の照射を受けた生体組織によって反射された照明光による照明光像を医師等が手術等に最も適するように明るくし、または暗くしても、前記励起光の照射を受けた生体組織から発生した蛍光による蛍光像と照明光像とを同時にそれぞれ鮮明に視認することができる。
 また、励起光の照射から蛍光の発生までの遅れが非常に短い場合は、理論的には励起光の発光パルスを短くすることで時間的な分離が可能であるが、高周波数で矩形波をコントロールすることは困難である。このような場合にも、この発明によれば、略正弦波形状の信号でLED等の照射手段駆動手段を駆動することによって、励起光と蛍光の分離が可能になる。
 また、この発明によれば、励起光の照射から蛍光の発生までの遅れが非常に短い場合であっても、蛍光寿命を利用することによって、確実に励起光の照射によって発生した蛍光を光電変換素子で計測することが可能になる。
本発明の実施形態に係る内視鏡装置の撮像装置を含む内視鏡システムの全体を示すブロック図である。 本発明の実施形態に係る内視鏡装置の撮像装置の機能概要を示す図である。 本発明に係わる実施形態の照明光、励起光、および、蛍光の波長帯域の関係の一例を示す図である。 本発明の実施形態に係る動作の一例を示す図である。 本発明の実施形態に係る動作を示すフローチャートの一例を示す図である。 本発明の実施形態に係る動作の一例を示す図である。 本発明の実施形態に係る動作を示すフローチャートの一例を示す図である。 本発明の実施形態に係る動作の一例を示す図である。
 以下、図面を参照して本発明を実施するための最良の形態について説明する。
 但し、本発明は多くの異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本実施の形態の記載内容に限定して解釈されるものではない。なお、実施の形態を説明するための全図において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
(実施形態)
 本実施の形態では、生体組織に励起光と照明光との少なくともいずれか一方を照射し、前記励起光の照射を受けた生体組織から発生した蛍光による蛍光像と、前記照明光の照射を受けた生体組織によって反射された照明光による照明光像とを光電変換により受光し、前記蛍光像および照明光像をそれぞれ表す信号を取得し、該信号を画像信号として出力する撮像装置、撮像装置の制御方法および撮像装置の制御プログラムについて説明する。
 すなわち、より具体的な一例として、励起光照射手段としての励起光源を間欠的に駆動し、励起光源が駆動されていない期間に光電変換手段としてのイメージセンサを駆動して光電変換を実行させることで、高強度の反射励起光を遮断する光学フィルターを含む光学フィルターを使用する必要がなくなり、カラー補正のための特別な画像信号処理を不要にした、内視鏡装置の撮像装置、内視鏡装置の撮像装置の制御方法および内視鏡装置の撮像装置の制御プログラムの装置構成及び、フローチャートについて説明する。
 ここで、当該機能を発揮するための構成について、図1および図2に示す機能ブロック図を用いて説明する。
 図1は、本発明による蛍光観察内視鏡装置の実施の形態である内視鏡装置の撮像装置を含む内視鏡システムの外観図である。図1に示されるように、この内視鏡システムは、蛍光観察内視鏡10,内視鏡装置の撮像装置20,及び、モニター60を備えている。
 蛍光観察内視鏡10は、通常の電子内視鏡に蛍光観察用の改変を加えたものであり、体腔内に挿入されるために細長く形成されている体腔内挿入部10a,その体腔内挿入部10aの先端部分を湾曲操作するためのアングルノブ等を有する操作部10b,操作部10bと光源プロセッサ装置20とを接続するためのライトガイド可撓管10e,及び、このライトガイド可撓管10eの基端に設けられたコネクタ10dを、備えている。
 図2は、図1における内視鏡装置の撮像装置20の機能ブロック図である。内視鏡装置の撮像装置20は、生体に励起光を照射する励起光照射手段としての励起光源1と、蛍光観察内視鏡10を生体内で操作させるとともに生体の患部の周囲を見るための照明光を照射する照明光照射手段としての照明光源2と、励起光源1および照明光源2から光を照射するタイミングを決定し、励起光源1および照明光源2を駆動する照射手段駆動手段としての光源駆動回路3と、光源駆動回路3へタイミングを決定するための信号を出力するタイミング発生回路4と、内視鏡装置の撮像装置20における基準クロックを生成する発信器5と、イメージセンサ8の光電変換タイミングを決定する光電変換素子駆動手段ならびに蓄積電荷リセット手段としてのイメージセンサ駆動回路6と、生体の患部からの蛍光、反射照明光並びに反射励起光を受光するレンズ7と、生体の患部からの蛍光および反射照明光を受光し光電変換を実行する光電変換手段としてのイメージセンサ8と、イメージセンサ8から出力されるアナログ信号を処理するアナログフロントエンド回路9およびアナログフロントエンド回路9から出力される信号からモニター60に蛍光観察内視鏡10を生体内で操作させるための画像並びに生体の患部を含む周囲の画像を表示するための映像信号を生成するデジタル信号処理回路10とを具備する。
 励起光源1は、生体内(生体組織)に注入されたインドシアニン等の蛍光を発する試薬を励起するための励起光を照射する機能を有する。
 励起光源1の光の波長は、試薬の種類によって決定される。一例として、インドシアニンの場合にはおよそ750nm~780nmの範囲の波長が励起光として選択される。
 なお、インドシアニン等の蛍光試薬は励起光のエネルギーを吸収することで電子が励起し、それが基底状態に戻る際に余分なエネルギーを電磁波として放出するものである。したがって、一般的に吸収光の波長よりも長波長の電磁波(蛍光)を発し、およそ750nm~780nmの範囲の波長が励起光として選択されているインドシアニンの場合には、蛍光の波長はおよそ850nm近辺となる。
 また、励起光に対する蛍光の応答には過渡的応答が見られ、この過渡的応答期間を蛍光寿命とも称する。本発明では、この過渡的応答期間である蛍光寿命における蛍光を利用する。蛍光寿命は励起光の照射終了後(または照射終了直後)から開始される期間である。
 励起光源1の種類としては、LED(Light Emitting Diode)および半導体レーザを含む任意の光源を選択することが可能である。
 照明光源2は、蛍光観察内視鏡10を生体内で操作させるための照明光像(通常観察像)を得るために、および、患部並びに患部の周囲を見るための照明光像を得るために照明光を照射する機能を有する。
 本実施形態の内視鏡装置の撮像装置20では、励起光の照射を受けた患部の生体組織から発生した蛍光による蛍光像と照明光の照射を受けた生体内および患部を含む周辺の生体組織によって反射された照明光による照明光像とを受光するために、照明光源2から照明光が照射される。
 照明光像(通常観察像)を必要とするのは、患部の周囲を観察することで患部を特定するとともに、体内に挿入された体腔内挿入部10aをアングルノブ等を有する操作部10bで操るために、(患部を含む)体内の画像が必要であるからである。
 照明光源2の種類としては、LEDおよび半導体レーザを含む任意の光源を選択することが可能である。また、患部を含む体内を操作者が観察するために照明光源2の光の波長には少なくとも可視光の一部の波長が含まれる。
 光源駆動回路3は励起光源1および照明光源2を駆動する機能を有し、少なくとも励起光源1を間欠的に駆動する機能を有する。
 光源駆動回路3は、励起光源1を間欠的に駆動しつつ(図4参照)、照明光源2を連続的に駆動することも、照明光源2を間欠的に駆動することもできる。
 光源駆動回路3が、励起光源1を間欠的に駆動しつつ、照明光源2を連続的に駆動する場合には、イメージセンサ8は、励起光源1が間欠的に駆動していないタイミング(蛍光寿命(図4のt1に該当):励起光の照射の終了後に発生する蛍光の持続時間)で励起光の照射を受けた患部の生体組織から発生した蛍光による蛍光像を受光する。
 そして、照明光源2から照射された照明光が患部並びに患部の周囲または患部を含まない人体の生体組織に照射されたときに反射した照明光による照明光像を、励起光源1が間欠的に駆動していないタイミング、かつ、蛍光像を受光しないタイミングでイメージセンサ8は受光する。
 具体的には、蛍光寿命後であって、励起光源1が間欠的に駆動されるまでの間の時間(図4のt2に該当)に照明光像がイメージセンサ8によって受光される。
 または、複数個のイメージセンサ8を設けてもよく、この場合には、励起光源1が間欠的に駆動されていない任意の時点で、複数のイメージセンサ8の一つで照明光像が受光されるように構成することも可能である。
 また、光源駆動回路3は励起光源1と照明光源2とを同時に駆動しないように間欠的に駆動する機能を有する。
 また、光源駆動回路3は励起光源1と照明光源2とを同時に駆動しないように交互に間欠的に駆動する機能を有する(図6(b)参照)。
 この場合には、光源駆動回路3は励起光源1を予め定められた任意の時間だけ駆動し、その後に励起光源1の駆動を止める。そして、イメージセンサ8は、照明光源2が間欠的に駆動しているタイミング(図6の露光2の期間に該当):図6にける露光1の励起光の照射終了後に発生する蛍光の持続時間終了後の予め定められた時間)で照明光が生体で反射して発生した照明光像を受光する。(図6(b)参照)。
 すなわち、光源駆動回路3は照明光源2を予め定められた任意の時間だけ駆動し、その照明光源2が駆動されている期間(図6の露光2の期間に該当)に、照明光源2による照明光が生体で反射したことによる発生する照明光像をイメージセンサ8において受光する。
 間欠的に駆動される励起光源1は、パルス状信号または略正弦波形状の信号等の間欠的に駆動される任意の信号で駆動されることができる。
 また、光源駆動回路3は、照明光源2から照射される照明光のパルス幅またはパルス状の照明光の輝度のうち、少なくとも何れか一方を任意に変更可能に駆動する機能を有する(図示せず)。さらに、光源駆動回路3は、励起光源1から照射される励起光のパルス幅またはパルス状の励起光の輝度のうち、少なくとも何れか一方を任意に変更可能に駆動する機能を有する(図示せず)。
 また、光源駆動回路3は、略正弦波形状の信号で少なくとも励起光源1を駆動することにより、励起光源1を間欠的に駆動する機能を有する(図8参照)。
 蛍光の遅れが非常に短い場合には、理論的には励起光の発光パルスを短くすることで時間的な分離が可能である。しかし、実際には高周波において矩形波を用いて励起光源1をコントロールすることは困難である。このような場合には、図8のようなサイン波でLEDを駆動することになる。
 また、イメージセンサ駆動回路6は、励起光源1が駆動される略正弦波形状の信号に対して、励起光の照射から蛍光の発生までの遅れ時間に対応する位相差だけ遅れてイメージセンサ8を駆動する機能を有する(図8参照)。
 たとえば一例として、蛍光の遅延時間の例えば4倍の周波数で照明を変調させ、図8にしめす部分でセンサーの露光を行うことで、完全ではないが、励起光と蛍光の分離が可能になる。
 タイミング発生回路4は、光源駆動回路3が励起光源1並びに照明光源2を駆動するタイミング、および、イメージセンサ駆動回路6がイメージセンサ8を駆動するタイミングを決定するタイミング信号を生成する。
 イメージセンサ駆動回路6は光源駆動回路3によって励起光源1が駆動されていない期間にイメージセンサ8を駆動させて光電変換を実行させる機能を有する(図4、6等参照)。
 また、イメージセンサ駆動回路6は、光電変換素子駆動手段によってイメージセンサ8を駆動させる直前に、イメージセンサ8に蓄積される電荷をリセットする機能を有する。
 イメージセンサ8を駆動させる直前に、イメージセンサ8に蓄積される電荷をリセットすることによって、リセット後にイメージセンサ8に受光される光量を正確に計測することが可能になる。イメージセンサ8は白黒撮像デバイスであってもカラー撮像デバイスであってもよい。
 また、上記の説明から明らかであるが、イメージセンサ駆動回路6は光源駆動回路3によって励起光源1が駆動されていない期間にイメージセンサ8を駆動させ、蛍光寿命の間に励起光の照射を受けた患部の生体組織から発生した蛍光による蛍光像を受光し、光電変換を実行させる機能を有する。
 レンズ7は、生体の患部からの蛍光、反射照明光並びに反射励起光を受光する機能を有する。
 反射励起光がレンズ7を透過するタイミングでは、イメージセンサ駆動回路6はイメージセンサ8を動作させないので、反射励起光は結果として得られる映像信号には何らの影響を及ぼすことがない。また、反射励起光がレンズ7を透過するタイミングでは、イメージセンサ8によって光電変換が実行されないので、反射励起光を遮る光学的フィルターが不要になる。
 したがって、レンズ7を透過する光のうちの蛍光および反射照明光がイメージセンサ8によって光電変換が実行される。
 アナログフロントエンド回路9は、イメージセンサ8から出力されるアナログ信号を処理する機能を有する。
 デジタル信号処理回路10は、アナログフロントエンド回路9から出力される信号からモニター60に蛍光観察内視鏡10を生体内で操作させるための画像並びに生体の患部を含む周囲の画像を表示するための映像信号を生成する機能を有する。
(照明光、励起光および蛍光の波長帯域の関係)
 次に、照明光、励起光および蛍光の波長帯域の関係について図3を用いて説明する。
 図3(a)は、一般的な近赤外蛍光を発するICG等の試薬を用いた場合の照明光、試薬の励起光および試薬による蛍光の波長帯域の関係を示す図である。
 照明光は人間が視認することが可能な可視光(約400nm~約800nm)領域で照明光源1から発光され、その波長帯域の照明光が照明光像としてイメージセンサ8に受光される。
 間欠的に駆動される励起光源1から発光される励起光は近赤外領域であるが、励起光が照射された患部から発光する蛍光は、励起光よりも長い波長の近赤外領域の波長になっていることが図3(a)に示されている。
 従来の方法では、光強度が強い励起光をイメージサンサ等の受光素子で受光しないように遮断(減衰)し、近赤外波長帯域の蛍光および可視光領域の照明光を受光するためのバンドパス光学フィルターが必要となっていた。このためには、カットオフ特性が良好なバンドパス光学フィルターを構成の一部とする必要があった。また、このような光学フィルターは高価であり、試薬の種類によって励起光と蛍光の波長帯域が変化する場合には波長特性の異なるバンドパス光学フィルターを用意する必要があった。
 また、光強度が強い励起光を光学フィルターで十分に減衰できない場合には、励起光の一部をイメージセンサ等の受光素子で受光することになる。このために、得られる映像信号のカラーバランスが破綻するなどして、モニターで観察される画像が見にくい画像になるなどの問題が発生していた。
 次の図3(b)は、図3(a)において示された一般的な近赤外蛍光を発するICG等の試薬を用いた場合の照明光、励起光および蛍光の波長帯域の関係を示す図において、間欠的に駆動される励起光源1から発光される近赤外領域の励起光と、励起光が照射された患部から発光する近赤外領域の蛍光との波長帯域が非常に近いか、または少なくとも一部が重複している場合を示す図である。
 この場合には、従来の光学フィルターを使用しても、励起光と蛍光とを分離することが不可能になる場合もある。
 次の図3(c)では、間欠的に駆動される励起光源1から発光される励起光が紫外線領域になり、励起光が照射された患部から発光する蛍光が可視光領域の波長になる場合が示されている。
 この場合には、連続的に照射されている照明光による照明光像と蛍光像とを光学フィルターを使用して分離することが不可能になり、従来の手法では試薬による患部の蛍光像を得ることはできない。
 しかし、従来のレンズ等を用いた波長軸の光学フィルターを、本願の発明による電気的な時間軸のフィルターに変換することによって、照明光、励起光および蛍光の波長帯域の関係が図3(b)および図3(c)に示される場合であっても照明光による照明光像と蛍光像を正確に映像信号として得ることが可能になった。
(実施形態1)
 次に図4を用いて本願の実施形態1について説明する。
 図4には、励起光源1から照射される励起光が間欠的にパルス状に駆動されている場合が示されている。
 生体の患部から発せられた蛍光は、励起光源1から照射された励起光の照射がパルス状に終了してから、t1時間だけ蛍光寿命として蛍光像を発し続ける。
 また、蛍光は、励起光の照射直後から発生するので、励起光が照射されている期間においても蛍光は発生している。
 励起光源1から照射される励起光の照射がパルス状に終了する時点で、イメージセンサ駆動回路6はイメージセンサ8に蓄積されている電荷をリセットし、イメージセンサ8の電荷がリセットされてから励起光に対応した蛍光像を受光する。
 その後、イメージセンサ8で受光された蛍光像は、アナログフロントエンド回路9およびデジタル信号処理回路10を介して、患部の映像として、モニター60で観察者が患部を観察できる映像としての映像信号に変換される。
 図4において、蛍光寿命の期間であるt1時間経過後から次の励起光の照射が始まるまでの時間(図4のt2に該当)に、照明光源2から放射された照明光が生体で反射して形成される照明光像がイメージセンサ8によって受光されるように構成してもよい。
 この後、同様に、イメージセンサ8で受光された照明光像は、アナログフロントエンド回路9およびデジタル信号処理回路10を介して、生体の内部または患部の周囲を映し出す映像として、モニター60で観察者が観察できる映像としての映像信号に変換される。
 また、複数個のイメージセンサ8を設けてもよい。この場合には、励起光源1が間欠的に駆動されていない任意の時点で、複数のイメージセンサ8の一つで照明光像が受光されるように構成することが可能である。
 上記の場合には、複数のイメージセンサ8の受光面に、照明光像受光用の光学フィルターおよび/または蛍光像受光用の光学フィルターを備えるように構成することも可能である。
 本発明に係る内視鏡装置の撮像装置は、上述のような構成を有することにより、従来であれば生体内に注入される蛍光化合物の種類および添加物等の物質が変わった場合には、蛍光を発生させるための励起光の波長および蛍光の波長は、それぞれが変化する可能性があり、そのたびに変化した波長に合わせたバンドパスフィルター、低波長帯域フィルター、高波長帯域フィルター等の光学フィルターを作製することが必要とされていたが、本発明によれば、レンズ等の波長軸の光学フィルターを電気的な時間軸のフィルターに変換することによって、光学フィルターを使用する必要が無くなるので、内視鏡装置の撮像装置の機械的構成および電気的構成が簡易になるとともに内視鏡装置の撮像装置のコストダウンが可能になる。
 また、前記励起光照射手段を間欠的に駆動し、前記励起光照射手段が駆動されていない期間に光電変換手段が駆動されて光電変換が実行されるので、高強度の反射励起光を遮断する光学フィルターを使用する必要がなくなる。
 さらに、高強度の反射励起光を受光する可能性がなくなるので、被写体のカラーバランスの破綻を防止することが可能になる。
 さらに、高強度の反射励起光を受光する可能性がなくなり、光電変換を含む電子回路のダイナミックレンジを広く取る必要がないので回路構成が簡単になる。
 次に、図2の内視鏡装置の撮像装置20にこれらの機能を実装し、蛍光寿命を利用することによって、光学フィルターを使用せずに、反射励起光等によるカラー補正の特別な画像信号処理を不要にする機能などを実現する処理動作の一部を、図5と対応させながら説明する。
 図5は、本実施形態の機能が実行されるタイミングを示す処理フロー図である。
 ステップS10では、光源駆動回路3が励起光源1をON状態にさせる。
 ステップS11では、ON状態にされた励起光源1から励起光が生体内の(試薬が含まれる)患部に向けて照射される。
 ステップS12では、光源駆動回路3が励起光源1をOFF状態にさせ、生体内への励起光の照射を停止させる。
 ステップS13では、イメージセンサ駆動回路6はイメージセンサ8に蓄積されている電荷をリセットし、イメージセンサ8の電荷がリセットされてから励起光に対応した蛍光像を受光するようにイメージセンサ8を駆動する。
 ステップS14では、イメージセンサ駆動回路6はステップS14においてイメージセンサ8が受光した蛍光像を光電変換させる。
 ステップS15では、イメージセンサ8で受光された蛍光像が、アナログフロントエンド回路9およびデジタル信号処理回路10を介して、患部の映像として、モニター60で観察者が患部を観察できる映像としての映像信号に変換される。
 ステップS16では、内視鏡装置の撮像装置20による撮像が終了したか否かが判断される。内視鏡装置の撮像装置20による撮像が終了した場合(ステップS16:YES)には、内視鏡装置の撮像装置20による撮像を終了させ、内視鏡装置の撮像装置20による撮像が終了していない場合(ステップS16:NO)には、ステップS10に戻り、患部の次の蛍光像を撮影する。
 上記の動作を示すフローチャートでは、照明光の動作について説明していないが、照明光源1は連続的にON状態となって照明光を連続的に照射していてもよいし、間欠的に照明光を照射するように光源駆動回路3によって駆動されてもよい。
(実施形態2)
 次に図6を用いて、光源駆動回路3によって励起光源1と照明光源2とが同時に駆動しないように交互に間欠的に駆動される場合について説明する。
 この場合には、光源駆動回路3は励起光源1を予め定められた任意の時間だけ駆動して励起光を人体の患部付近に照射してから励起光源1の駆動を止める(図6(c)のt3に該当する)。
 その後、イメージセンサ8は、励起光源1が励起光を間欠的に放射していないタイミングであって蛍光寿命(図6の露光1に該当し、励起光の照射の終了後に発生する蛍光の持続時間)の間に励起光の照射を受けた患部の生体組織から発生する蛍光による蛍光像を受光する。
 その後、光源駆動回路3は照明光源2を予め定められた任意の時間だけ駆動して照明光を人体の内視鏡の先端周囲に照射し、照明光源2の駆動を止める(図6(c)の露光2に該当する)。
 イメージセンサ8は、照明光源2が間欠的に駆動しているタイミング(図6(c)の露光2の期間に該当):図6(b)の露光1の励起光の照射終了後に発生する蛍光の持続時間終了後の予め定められた時間)において照明光源2による照明光が生体で反射したことによって発生する照明光像を受光する。
 すなわち、光源駆動回路3は照明光源2を予め定められた任意の時間だけ駆動し、その照明光源2が駆動されている期間(図5の露光2の期間に該当)に、イメージセンサ8は、照明光源2による照明光が生体で反射したことによる発生する照明光像を受光する。
 イメージセンサ駆動回路6は、露光2および露光3の期間が開始するタイミングでイメージセンサ8に蓄積されている電荷をリセットする(図6(c)参照)。
 次に図7を用いて、本実施形態の一部を示すフローチャートについて説明する。
 図7のフローチャートでは、光源駆動回路3によって励起光源1と照明光源2とが同時に駆動しないように交互に間欠的に駆動される場合について説明する。
 ステップS20では、光源駆動回路3が励起光源1をON状態にさせる。
 ステップS21では、ON状態にされた励起光源1から励起光が生体内の(試薬が含まれる)患部に向けて照射される。
 ステップS22では、光源駆動回路3が励起光源1をOFF状態にさせ、生体内への励起光の照射を停止させる。
 ステップS23では、イメージセンサ駆動回路6はイメージセンサ8をON状態にする。
 ステップS24では、イメージセンサ駆動回路6はイメージセンサ8に蓄積されている電荷をリセットし、イメージセンサ8の電荷がリセットされてから励起光に対応した蛍光像を受光するようにイメージセンサ8を駆動する。
 ステップS25では、イメージセンサ駆動回路6はステップS14においてイメージセンサ8が受光した蛍光像を光電変換させる。そして、イメージセンサ8で受光された蛍光像が、アナログフロントエンド回路9およびデジタル信号処理回路10を介して、患部の映像として、モニター60で観察者が患部を観察できる映像としての映像信号に変換される。
 ステップS26では、イメージセンサ駆動回路6はイメージセンサ8に蓄積されている電荷をリセットし、イメージセンサ8の電荷がリセットされてから照明光に対応した照明光像を受光するようにイメージセンサ8を駆動する。
 ステップS27では、光源駆動回路3が照明光源2をON状態にさせる。
 ステップS28では、イメージセンサ駆動回路6はイメージセンサ8が受光した照明光像を光電変換させる。そして、イメージセンサ8で受光された照明光像が、アナログフロントエンド回路9およびデジタル信号処理回路10を介して、人体内の映像として、モニター60で観察者が患部を観察できる映像としての映像信号に変換される。
 ステップS29では、イメージセンサ駆動回路6はイメージセンサ8をOFF状態にする。
 ステップS30では、光源駆動回路3が照明光源2をOFF状態にさせ、照明光の照射を停止する。
 ステップS31では、内視鏡装置の撮像装置20による撮像が終了したか否かが判断される。内視鏡装置の撮像装置20による撮像が終了した場合(ステップS31:YES)には、内視鏡装置の撮像装置20による撮像を終了させ、内視鏡装置の撮像装置20による撮像が終了していない場合(ステップS31:NO)には、ステップS20に戻り、患部の次の蛍光像を撮影する。
 このように図7に関わる動作によれば、レンズ等の波長軸の光学フィルターを電気的な時間軸のフィルターに変換することによって、光学フィルターを使用する必要が無くなるので、内視鏡装置の撮像装置の機械的構成および電気的構成が簡易になるとともに内視鏡装置の撮像装置のコストダウンが可能になる。
 また、高強度の反射励起光を受光する可能性がなくなるので、被写体のカラーバランスの破綻を防止することが可能になる。
 また、高強度の反射励起光を受光する可能性がなくなり、光電変換を含む電子回路のダイナミックレンジを広く取る必要がないので回路構成が簡単になる。
 次に、間欠的に駆動される励起光源1が、略正弦波形状の信号で駆動される例を図8に示す。
 この場合には、光源駆動回路3は、略正弦波形状の信号で少なくとも励起光源1を駆動することにより、励起光源1を間欠的に駆動する機能を有する。
 生体の患部で発生する蛍光の遅れ(蛍光寿命)が非常に短い場合は、理論的には励起光源1から発光される励起光の発光パルスを短くすることで、励起光と蛍光による蛍光像との時間的な分離が可能である。しかし、実際には高周波の矩形波を使用して励起光源1をコントロールすることは困難である。このような場合は、図8のような略正弦波形状でLED等の励起光源1を駆動することになる。
 図8において、略正弦波形状の励起光から所定の時間(図8におけるt4)だけ遅れて、生体の患部において発生した蛍光がレンズ7を介して、イメージセンサ8に受光される。
 この場合に、イメージセンサ8が効率よく、生体の患部において発生した蛍光を受光するためには、光源駆動回路3は、励起光源1が駆動される略正弦波形状の信号に対して、励起光の照射から蛍光の発生までの遅れ時間(図8におけるt4)に対応する位相差だけ遅れてイメージセンサ8を駆動することが望ましい(図8参照)。
 すなわち、励起光の照射から蛍光の発生までの遅れ時間だけ正確に位相差を持つ必要はなく、イメージセンサ8によって受光される蛍光によって蛍光像を形成できる程度に十分な強度の蛍光が受光できる位相差であればよい。
 図8の場合は、蛍光の遅延時間の例えば4倍の周波数で照明を変調させ、図8に示される部分でセンサーの露光を行うことで、完全ではないが、励起光と蛍光の分離が可能になる。
(実施形態3)
 本実施の形態では、励起光照射手段としての励起光源を間欠的に駆動し、励起光源が駆動されていない期間に光電変換手段としてのイメージセンサを駆動して光電変換を実行させることで、前記照明光の輝度を任意に変化させて、照明光の照射を受けた生体組織によって反射された照明光による照明光像を医師等が手術等に最も適するように明るくし、または暗くしても、前記励起光の照射を受けた生体組織から発生した蛍光による蛍光像と、
照明光像と、がそれぞれ鮮明に視認できる実施形態について説明する。
 可視光である反射された照明光(反射照明光)の照度を変化させるには、放射側の照明光の輝度を上げるには、二つの方法が考えられる(図6(a)におけるパルス状に放射される可視光の振幅を大きくするか、図6(a)におけるパルス状に放射される可視光のパルス幅を長くすることが考えられる。)。
 まず、第1の場合として、図6(a)におけるパルス状に放射される可視光の振幅を大きくする場合には、図2の光源駆動回路3を介して照明光源2の照明輝度を上げることになる。また、図2に示されるように、照明光源2は励起光源1とは別個の独立した回路部であるので、励起光源1の輝度とは相関なく自由に輝度の調整を実施することができる。
 また、図6に示されるように、励起光照射手段としての励起光源を間欠的に駆動し、励起光源が駆動されていない期間に光電変換手段としてのイメージセンサを駆動して光電変換を実行させるので、照度が非常に小さい蛍光像とは関係なく照明光像の照度を変化(非常に明るくすることも可能である)させても、それぞれ独立して鮮明な蛍光像と鮮明な照明光像を医者等のユーザが視認することができる。
 次に、第2の場合として、図6(a)におけるパルス状に放射される可視光のパルス幅を長くする場合には、図2の光源駆動回路3を介して照明光源2のパルス駆動時間を長くすることになる。また、図2に示されるように、照明光源2は励起光源1とは別個の独立した回路部であるので、励起光源1の輝度またはパルス幅とは相関なく自由に照明光源2から照射される照明光のパルス幅の調整を実施することができる(図6(a)における時間t3と時間露光2の期間は独立して別個に設定することが可能である。この場合において、時間t3+時間露光1+時間露光2を変化させてもよいし、時間t3+時間露光1+時間露光2を一定になるように時間t3、時間露光1、時間露光2の時間を任意の時間に調整することも可能である。)
 このように反射された照明光による照度を変化させても、図6に示されるように、励起光照射手段としての励起光源を間欠的に駆動し、励起光源が駆動されていない期間に光電変換手段としてのイメージセンサを駆動して光電変換を実行させるので、照度が非常に小さい蛍光像とは関係なく照明光像の照度を変化(非常に明るくすることも可能である)させても、それぞれ独立して鮮明な蛍光像と鮮明な照明光像を医者等のユーザが視認することができる。
 以上のように、本発明の内視鏡装置の撮像装置は内視鏡装置であればどのようなものに設けて使用してもよく、ほかの蛍光波長の異なる試薬に適用することもできる。
 また上記の処理により、内視鏡装置の撮像装置における利便性の向上を図ることが可能となる。
 なお、図5および図7における動作手順を、ハードディスク等の記録媒体に予め記録しておき、或いはインターネット等のネットワークを介して予め記録しておき、これを汎用のマイクロコンピュータ等により読み出して実行することにより、当該汎用のマイクロコンピュータ等を実施形態に係わるCPUとして機能させることも可能である。
 さらに、本発明は上記実施例に限定されるものではなく、本発明の要旨の範囲内において種々変更可能である。
 さらに、本明細書に記載および図示されている実施形態は具体例としてのものであるに過ぎず、本発明の範囲を限定するものと考えるべきではないと理解すべきである。本発明の精神および範囲にしたがって上述以外の変更および修正を施すことも可能である。
 1 励起光源
 2 照明光源
 3 光源駆動回路
 4 タイミング発生回路
 5 発信器
 6 イメージセンサ駆動回路
 7 レンズ
 8 イメージセンサ

Claims (13)

  1.  生体組織に励起光と照明光との少なくともいずれか一方を照射する撮像装置において、
     前記励起光を照射する励起光照射手段と、
     前記励起光照射手段を駆動する照射手段駆動手段と、
     前記励起光の照射を受けた、蛍光化合物が投与された生体組織から発生した蛍光を電気信号に変換する光電変換手段と、
     前記光電変換手段の動作タイミングを決定する光電変換素子駆動手段と、
     前記光電変換手段に蓄積される電荷をリセットする蓄積電荷リセット手段と、
     を具備し、
     前記照射手段駆動手段は、前記励起光照射手段を間欠的に駆動し、前記光電変換素子駆動手段は前記照射手段駆動手段によって前記励起光照射手段が駆動されていない期間に前記光電変換手段を駆動させて光電変換を実行させることを特徴とする撮像装置。
  2.  請求項1に記載の撮像装置において、
     前記照明光を照射する照明光照射手段を備え、
     前記照射手段駆動手段は、前記励起光照射手段および前記照明光照射手段を駆動し、
     前記光電変換手段は、前記励起光の照射を受けた、蛍光化合物が投与された生体組織から発生した蛍光を電気信号に変換し、前記照明光の照射を受けた前記生体組織によって反射された反射照明光を電気信号に変換することを特徴とする撮像装置。
  3.  請求項1または2に記載の撮像装置において、
     前記光電変換素子駆動手段によって前記光電変換手段が駆動される直前に、前記蓄積電荷リセット手段は、前記光電変換手段に蓄積される電荷をリセットすることを特徴とする撮像装置。
  4.  請求項2または3に記載の撮像装置において、
     前記照射手段駆動手段は、前記励起光照射手段と前記照明光照射手段とを同時に駆動しないように間欠的に駆動し、前記光電変換素子駆動手段は前記照射手段駆動手段によって前記励起光照射手段が駆動されていない期間に前記光電変換手段を駆動させて光電変換を実行させることを特徴とする撮像装置。
  5.  請求項2乃至4の何れか一項に記載の撮像装置において、
     前記照射手段駆動手段は、前記励起光照射手段と前記照明光照射手段とを同時に駆動しないように交互に間欠的に駆動し、前記光電変換素子駆動手段は前記照射手段駆動手段によって前記励起光照射手段が駆動されていない期間に前記光電変換手段を駆動させて光電変換を実行させることを特徴とする撮像装置。
  6.  請求項2乃至5の何れか一項に記載の撮像装置において、
     前記照射手段駆動手段は、前記照明光照射手段から照射される照明光のパルス幅またはパルス状の照明光の輝度のうち、少なくとも何れか一方を任意に変更可能であることを特徴とする撮像装置。
  7.  請求項1乃至6の何れか一項に記載の撮像装置において、
     前記照射手段駆動手段は、略正弦波形状の信号で少なくとも前記励起光照射手段を駆動することにより、前記励起光照射手段を間欠的に駆動することを特徴とする撮像装置。
  8.  請求項7に記載の撮像装置において、
     前記光電変換素子の動作タイミングを決定する前記光電変換素子駆動手段は、前記励起光照射手段が駆動される前記略正弦波形状の信号に対して、前記励起光の照射から前記蛍光の発生までの遅れ時間に対応する位相差だけ遅れて前記光電変換素子を駆動することを特徴とする撮像装置。
  9.  生体組織に励起光と照明光との少なくともいずれか一方を照射する撮像装置の制御方法において、
     前記励起光を照射する励起光照射工程と、
     前記励起光照射工程における前記励起光を駆動し照射する照射手段駆動工程と、
     前記励起光の照射を受けた、蛍光化合物が投与された生体組織から発生した蛍光を電気信号に変換する光電変換工程と、
     前記光電変工程における動作タイミングを決定する光電変換素子駆動工程と、
     前記光電変換工程において蓄積される電荷をリセットする蓄積電荷リセット工程と、
     を具備し、
     前記照射手段駆動工程において、前記励起光を間欠的に駆動し、前記光電変換素子駆動工程では前記照射手段駆動工程において前記励起光が照射されていない期間に前記光電変換工程における光電変換を実行させることを特徴とする撮像装置の制御方法。
  10.  請求項9に記載の制御方法において、
     前記照明光を照射する照明光照射工程を備え、
     前記照射手段駆動工程において、前記励起光照射工程における前記励起光および前記照明光照射工程における前記照明光を駆動して照射し、
     前記光電変換工程において、前記励起光の照射を受けた、蛍光化合物が投与された生体組織から発生した蛍光を電気信号に変換し、前記照明光の照射を受けた前記生体組織によって反射された反射照明光を電気信号に変換することを特徴とする撮像装置の制御方法。
  11.  生体組織に励起光と照明光との少なくともいずれか一方を照射する撮像装置に含まれるコンピュータを、
     前記励起光を照射する励起光照射手段、
     前記励起光照射手段を駆動する照射手段駆動手段、
     前記励起光の照射を受けた、蛍光化合物が投与された生体組織から発生した蛍光を電気信号に変換する光電変換手段、
     前記光電変換手段の動作タイミングを決定する光電変換素子駆動手段、
     前記光電変換手段に蓄積される電荷をリセットする蓄積電荷リセット手段、
     として機能させ、
     前記照射手段駆動手段は、前記励起光照射手段を間欠的に駆動し、前記光電変換素子駆動手段は前記照射手段駆動手段によって前記励起光照射手段が駆動されていない期間に前記光電変換手段を駆動させて光電変換を実行させる機能を有することを特徴とする撮像装置の制御プログラム。
  12.  請求項11に記載の撮像装置に含まれるコンピュータを、
     前記照明光を照射する照明光照射手段として機能させ、
     前記照射手段駆動手段は、前記励起光照射手段および前記照明光照射手段を駆動し、
     前記光電変換手段は、前記励起光の照射を受けた、蛍光化合物が投与された生体組織から発生した蛍光を電気信号に変換し、前記照明光の照射を受けた前記生体組織によって反射された反射照明光を電気信号に変換する機能を有することを特徴とする撮像装置の制御プログラム。
  13.  請求項1乃至8の何れか一項に記載の前記撮像装置において、
     前記光電変換素子はカラー撮像デバイスであることを特徴とする撮像装置。
PCT/JP2009/066770 2009-09-28 2009-09-28 撮像装置、撮像装置の制御方法および撮像装置の制御プログラム WO2011036792A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/066770 WO2011036792A1 (ja) 2009-09-28 2009-09-28 撮像装置、撮像装置の制御方法および撮像装置の制御プログラム
JP2011532868A JPWO2011036792A1 (ja) 2009-09-28 2009-09-28 撮像装置、撮像装置の制御方法および撮像装置の制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066770 WO2011036792A1 (ja) 2009-09-28 2009-09-28 撮像装置、撮像装置の制御方法および撮像装置の制御プログラム

Publications (1)

Publication Number Publication Date
WO2011036792A1 true WO2011036792A1 (ja) 2011-03-31

Family

ID=43795562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066770 WO2011036792A1 (ja) 2009-09-28 2009-09-28 撮像装置、撮像装置の制御方法および撮像装置の制御プログラム

Country Status (2)

Country Link
JP (1) JPWO2011036792A1 (ja)
WO (1) WO2011036792A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171084A1 (ja) * 2015-04-20 2016-10-27 ウシオ電機株式会社 腫瘍部位の診断装置、撮像方法
JP6019167B1 (ja) * 2015-04-30 2016-11-02 パナソニック株式会社 内視鏡システム及び光源制御方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397440A (ja) * 1989-09-08 1991-04-23 Olympus Optical Co Ltd 蛍光観察用内視鏡
JPH0998939A (ja) * 1995-08-03 1997-04-15 Asahi Optical Co Ltd 蛍光診断用内視鏡装置
JPH1057300A (ja) * 1996-08-19 1998-03-03 Asahi Optical Co Ltd 蛍光診断用内視鏡装置
JP2000210246A (ja) * 1999-01-25 2000-08-02 Fuji Photo Film Co Ltd 蛍光観察装置
JP2001137174A (ja) * 1999-11-16 2001-05-22 Fuji Photo Film Co Ltd 蛍光画像表示方法および装置
JP2001190489A (ja) * 2000-01-17 2001-07-17 Fuji Photo Film Co Ltd 蛍光撮像装置
JP2001212071A (ja) * 2000-02-03 2001-08-07 Fuji Photo Film Co Ltd パルス光励起蛍光観察装置
JP2007082769A (ja) * 2005-09-22 2007-04-05 Fujifilm Corp 試料分析装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397440A (ja) * 1989-09-08 1991-04-23 Olympus Optical Co Ltd 蛍光観察用内視鏡
JPH0998939A (ja) * 1995-08-03 1997-04-15 Asahi Optical Co Ltd 蛍光診断用内視鏡装置
JPH1057300A (ja) * 1996-08-19 1998-03-03 Asahi Optical Co Ltd 蛍光診断用内視鏡装置
JP2000210246A (ja) * 1999-01-25 2000-08-02 Fuji Photo Film Co Ltd 蛍光観察装置
JP2001137174A (ja) * 1999-11-16 2001-05-22 Fuji Photo Film Co Ltd 蛍光画像表示方法および装置
JP2001190489A (ja) * 2000-01-17 2001-07-17 Fuji Photo Film Co Ltd 蛍光撮像装置
JP2001212071A (ja) * 2000-02-03 2001-08-07 Fuji Photo Film Co Ltd パルス光励起蛍光観察装置
JP2007082769A (ja) * 2005-09-22 2007-04-05 Fujifilm Corp 試料分析装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171084A1 (ja) * 2015-04-20 2016-10-27 ウシオ電機株式会社 腫瘍部位の診断装置、撮像方法
JP2016205931A (ja) * 2015-04-20 2016-12-08 ウシオ電機株式会社 腫瘍部位の診断装置、撮像方法
TWI698226B (zh) * 2015-04-20 2020-07-11 日商牛尾電機股份有限公司 腫瘤部位的診斷裝置、攝像方法
JP6019167B1 (ja) * 2015-04-30 2016-11-02 パナソニック株式会社 内視鏡システム及び光源制御方法
US10820789B2 (en) 2015-04-30 2020-11-03 Panasonic I-Pro Sensing Solutions Co., Ltd. Endoscope system and light source control method

Also Published As

Publication number Publication date
JPWO2011036792A1 (ja) 2013-02-14

Similar Documents

Publication Publication Date Title
JP3579638B2 (ja) 内視鏡装置
US20060173358A1 (en) Fluorescence observation endoscope apparatus and fluorescence observation method
EP2213222B1 (en) Fluorescence endoscope system
JP2007229053A (ja) 内視鏡システム
JPH11244220A (ja) 蛍光内視鏡
JP2003190091A (ja) 蛍光観察用照明プローブ、電子内視鏡システム及び電子内視鏡
JP7328432B2 (ja) 医療用制御装置、医療用観察システム、制御装置及び観察システム
JP2011104333A (ja) 内視鏡装置及びこれに用いる内視鏡用先端フード
US20070285771A1 (en) Endoscope system
JP2010012102A (ja) 光源装置及びこの光源装置を用いた内視鏡装置
JP5539840B2 (ja) 電子内視鏡システム、電子内視鏡システムのプロセッサ装置、及び電子内視鏡システムの作動方法
JP2008043383A (ja) 蛍光観察内視鏡装置
JP2002153414A (ja) 電子内視鏡及び電子内視鏡システム
JP4846917B2 (ja) 蛍光観察用内視鏡装置
JP5583289B2 (ja) 内視鏡用照明光学系ユニット及びその製造方法
JP2012081048A (ja) 電子内視鏡システム、電子内視鏡、及び励起光照射方法
JP7399151B2 (ja) 光源装置、医療用観察システム、調整装置、照明方法、調整方法およびプログラム
WO2011036792A1 (ja) 撮像装置、撮像装置の制御方法および撮像装置の制御プログラム
JP4919780B2 (ja) 蛍光観察装置
JP2012183216A (ja) 内視鏡装置
JP2006094907A (ja) 電子内視鏡システム
JP5525991B2 (ja) 電子内視鏡システム、電子内視鏡システムのプロセッサ装置、及び電子内視鏡システムの作動方法
JP4526322B2 (ja) 内視鏡装置
JP5438550B2 (ja) 内視鏡用撮像光学系及び内視鏡システム
US20150265202A1 (en) Method for collecting duodenal juice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011532868

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849823

Country of ref document: EP

Kind code of ref document: A1