WO2011034795A1 - Methods for forming an orthogonal end on a helical stent - Google Patents

Methods for forming an orthogonal end on a helical stent Download PDF

Info

Publication number
WO2011034795A1
WO2011034795A1 PCT/US2010/048488 US2010048488W WO2011034795A1 WO 2011034795 A1 WO2011034795 A1 WO 2011034795A1 US 2010048488 W US2010048488 W US 2010048488W WO 2011034795 A1 WO2011034795 A1 WO 2011034795A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave form
stent
longitudinal axis
pitch angle
turns
Prior art date
Application number
PCT/US2010/048488
Other languages
French (fr)
Inventor
Erik Griswold
Original Assignee
Medtronic Vascular Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Vascular Inc. filed Critical Medtronic Vascular Inc.
Publication of WO2011034795A1 publication Critical patent/WO2011034795A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • A61F2/885Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils comprising a coil including a plurality of spiral or helical sections with alternate directions around a central axis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91508Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a difference in amplitude along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak

Definitions

  • the present invention is generally related to a method of manufacturing a helical stent having an orthogonal end relative to a longitudinal axis of the stent, as well as to a helical stent having an end that is orthogonal to the longitudinal axis of the stent.
  • a stent is typically a hollow, generally cylindrical device that is deployed in a body lumen from a radially contracted configuration into a radially expanded configuration, which allows it to contact and support a vessel wall.
  • a plastically deformable stent can be implanted during an angioplasty procedure by using a delivery system that includes a balloon catheter bearing a compressed or "crimped" stent, which has been loaded onto the balloon. The stent radially expands as the balloon is inflated, forcing the stent into contact with the body lumen, thereby forming a support for the vessel wall. Deployment is effected after the stent has been introduced percutaneously, transported transluminal ⁇ , and positioned at a desired location by means of the balloon catheter.
  • Stents may be formed from wire(s), may be cut from a tube, or may be cut from a sheet of material and then rolled into a tube-like structure. While some stents may include a plurality of connected rings that are substantially parallel to each other and are oriented substantially perpendicular to a longitudinal axis of the stent, others may include a helical coil that is wrapped around the longitudinal axis at a non-perpendicular angle.
  • Helical stents tend to have ends that are not perpendicular to the longitudinal axis due to the pitch of the helix.
  • Other helical stents have transitions near the ends of the stent to compensate for the helical center portion of the stent, yet provide ends that are orthogonal to the longitudinal axis. Because both ends of the stent are modified from the remaining pattern of the stent, it may be difficult to design a stent that has the same flexibility along the length of the stent, as well as uniform radial expansion properties.
  • the method includes forming a wave form having a plurality of struts and a plurality of crowns. Each crown connects two adjacent struts.
  • the wave form has a center and two portions extending from opposite sides of the center.
  • the method also includes wrapping a first portion of the wave form about a longitudinal axis in a first direction along the longitudinal axis at a first pitch angle, starting at the center of the wave form, to define at least one turn oriented at the first pitch angle.
  • the method also includes wrapping a second portion of the wave form about the longitudinal axis in a second direction along the longitudinal axis that is opposite the first direction at a second pitch angle, starting at the center of the wave form, to define at least one turn oriented at the second pitch angle.
  • the first pitch angle and the second pitch angle are substantially opposite to each other.
  • a stent that includes a wave form comprising a plurality of struts and a plurality of crowns.
  • Each crown connects two adjacent struts within the wave form, the wave form being wrapped around a longitudinal axis to define a plurality of turns.
  • At least one of the turns defines a first helix oriented at a first pitch angle, and at least one of the turns defines a second helix oriented at a second pitch angle.
  • the first pitch angle and the second pitch angle are oriented substantially opposite to each other.
  • Figure 2 schematically illustrates an embodiment of a helical stent of the prior art
  • Figure 3 schematically illustrates a method of manufacturing the helical stent of Figure 1 ;
  • Figure 4 schematically illustrates a method of manufacturing a helical stent in accordance with an embodiment of the present invention.
  • Figure 5 schematically illustrates an embodiment of a helical stent manufactured by the method of Figure 4.
  • FIG 1 illustrates an embodiment of a helical stent 10 known in the prior art.
  • the stent 10 is generally cylindrical in shape and has a longitudinal axis LA extending through the center of the stent 10.
  • the stent 10 includes a continuous wave form 20 that includes a plurality of turns 22 that are created when the wave form 20 is wrapped around the longitudinal axis LA during manufacturing of the stent 10.
  • a mandrel 40 or rod that is aligned with the longitudinal axis LA may be used to support the wave form 20 as the wave form 20 is wrapped around the longitudinal axis LA, as shown in Figure 3 and described in further detail below.
  • the wave form 20 includes a plurality of struts 30 and a plurality of crowns 32.
  • Each crown 32 is a curved portion or turn within the wave form 20 that connects adjacent struts 30 to define the continuous wave form 20.
  • the struts 30 are substantially straight portions of the wave form 20 and have substantially the same length. In other embodiments, the struts 30 may be slightly bent or have other shapes, such as a sinusoidal wave, for example.
  • the wave form 20 is wrapped around the longitudinal axis LA at a constant pitch so that the wave form 20 generally defines a helical coil a constant helical angle, or pitch angle a.
  • the ends of the stent 10 are not orthogonal to the longitudinal axis LA and are angled relative to what would be orthogonal to define an angle ⁇ , which is equal to 90° minus a. It is desirable for the ends of the stent to be orthogonal to the longitudinal axis, i.e. for ⁇ to equal zero.
  • FIG 2 illustrates an embodiment of a stent 1 10 known in the prior art.
  • the stent 1 10 is generally a helical stent that includes a continuous wave form 120 that includes a plurality of turns 122 that are created when the wave form 120 is wrapped around the longitudinal axis LA during manufacturing of the stent 1 10.
  • the wave form 120 includes a plurality of struts 130 and a plurality of crowns 132.
  • Each crown 132 is a curved portion or turn within the wave form 120 that connects adjacent struts 130 to define the continuous wave form 120.
  • the struts 130 are substantially straight portions of the wave form 120.
  • the wave form 120 is wrapped around the longitudinal axis LA at a constant pitch so that the wave form 120 generally defines a helical coil a constant helical angle, or pitch angle a.
  • the struts 130 of all but end turns 124, 126 have substantially the same length.
  • the end turns 124, 126 each include struts of different lengths, including struts 130a that are shorter than the length of the struts 130 of the turns 122.
  • the shorter struts 130a of the end turns 124, 126 are designed to allow the ends of the stent 110 to be orthogonal to the longitudinal axis LA, when the end turns 124, 126 are wrapped at the pitch angle a.
  • the end turns 124, 126 of the stent 110 are not mirror images of each other, i.e., the shorter struts 130a are located on opposite sides of the longitudinal axis LA, which may create non-uniform tracking and expansion behavior along the length of the stent 1 10.
  • Figure 3 illustrates a method of manufacturing the stent 10 of Figure 1.
  • the stent of Figure 2 may also be manufactured using the same method, as understood by one of ordinary skill in the art.
  • one end 24 of the wave form 20 is pressed against the mandrel 40 with a pressing member 50 that is attached to the mandrel 40 so that it rotates and translates with the mandrel 40.
  • the other end 26 of the wave form 20 may be held with a suitable structure 60 that is configured to hold the other end 26 of the wave form 20 as the wave form 20 is wrapped around the mandrel 40 so that the helical angle a stays substantially constant.
  • the mandrel 40 may be rotated and translated, as indicated by arrows 42 and 44, respectively, at a suitable speed so that the wave form 20 wraps around the mandrel 40, and the longitudinal axis LA, to create the turns 22.
  • the number of revolutions of the mandrel 40 determines the number of turns 22 in the stent 10.
  • the wave form may be varied so that the end turns of the stent are substantially orthogonal or perpendicular to the longitudinal axis, such as the end turns 124, 126 of the stent 1 10 illustrated in Figure 2.
  • Figure 4 illustrates a method of manufacturing a stent 210 according to an embodiment of the present invention.
  • An embodiment of the stent 210 manufactured by the method illustrated in Figure 4 is shown in Figure 5.
  • the stent 210 is generally cylindrical in shape and has a longitudinal axis LA extending through the center of the stent 210.
  • the stent 210 includes a continuous wave form 220 that includes a plurality of turns 222 that are created when the wave form 220 is wrapped around the longitudinal axis LA during manufacturing of the stent 210.
  • a mandrel 240 or rod that is aligned with the longitudinal axis LA may be used to support the wave form 220 as the wave form 220 is wrapped around the longitudinal axis LA, as shown in Figure 4.
  • the wave form 220 includes a plurality of struts 230 and a plurality of crowns 232.
  • Each crown 232 is a curved portion or turn within the wave form 220 that connects adjacent struts 230 to define the continuous wave form 220.
  • the struts 230 are substantially straight portions of the wave form 220.
  • the struts 230 may be slightly bent or have other shapes, such as a sinusoidal wave, for example.
  • a first portion 250 which may be about one-half, of the wave form 220 is wrapped around the longitudinal axis LA at a constant helical or pitch angle ⁇ so that the portion 250 of the wave form 220 generally defines a helical coil at the constant pitch angle cp, relative to the longitudinal axis.
  • a second portion 252, which may be about one-half, of the wave form 220 is wrapped around the longitudinal axis LA at a constant helical or pitch angle ⁇ so that the second portion 252 of the wave form 220 generally defines a helical coil at the constant pitch angle ⁇ , relative to the longitudinal axis.
  • the pitch angles ⁇ and ⁇ have substantially the same magnitude, but are positive and negative, respectively, in the x-y coordinate system depicted in Figure 4, and may therefore be considered to be substantially opposite to each other with respect to a centerline CL of the stent 210.
  • the first and second portions 250, 252 of the wave form 220 are on opposite side of the centerline CL of the stent 210, as illustrated in Figure 4, and are connected to each other via the material that is used to form the wave form 220.
  • the part of the wave form 220 that is used to create the first turns 254, 256 of the first and second portions 250, 252, which may be the center part of the wave form 220, may include struts 230a that are shorter than the struts 230 used in the other turns 222 of the stent 210. This may allow the crowns 232 of the first turn 254 of the first portion 250 that face the centerline CL to substantially align with the centerline CL.
  • the wave form 220 may be configured so that the first turns 254, 256 of each portion 250, 252 of the stent 210 provide transitions from the orthogonal centerline CL to the respective pitch angles ⁇ and ⁇ .
  • a center 258 of the wave form 220 is fixed to the mandrel 240 by any suitable means, such as a clamp. Opposing ends of the wave form 220 may be held and guided by suitable structures 262, 264 that are configured to translate the first and second portions 250, 252 of the wave form 220 in opposing directions, represented by arrows 244, 246, respectively, as the mandrel is rotated, as represented by arrow 242.
  • suitable structures 262, 264 that are configured to translate the first and second portions 250, 252 of the wave form 220 in opposing directions, represented by arrows 244, 246, respectively, as the mandrel is rotated, as represented by arrow 242.
  • the stent 210 is created from the center outward.
  • the wave form 220 may also be configured to provide end turns 224, 226 that provide ends of the stent 210 that are substantially orthogonal to the longitudinal axis LA. This may be done by having shorter struts 230a in the
  • the wave form 220 may include a plurality of transitional turns near the ends of the stent that are configured to gradually transition the pitch angles of the turns of the first and second portions 250, 252, i.e., the pitch angles ⁇ and ⁇ , to the end turns 224, 226 that allow for the ends of the stent to be substantially perpendicular to the longitudinal axis LA.
  • a plurality of turns like the end turns 224, 226 may be used instead of having one turn at each end of the stent that provides the entire transition from the pitch angles ⁇ and ⁇ to the substantially orthogonal ends of the stent.
  • the lengths of the struts in such turns may be more gradually shortened in each of the transitioning turns.
  • the pitch angles ⁇ and ⁇ may not be constant for the first and second portions 250, 252, but instead may be gradually increased in magnitude so that by the last turn 222 of the mandrel 250 to form the end turns 224, 226, the pitch angles ⁇ and ⁇ have increased to about 90°.
  • the end turns 224, 226 of the stent 210 may be separate pieces that may be connected to the wave form 220 after the turns 222 of the stent 210 have been created with the rotation of the mandrel 250.
  • the illustrated embodiments described herein should not be considered to be limiting in any way.
  • the stent 210 may include a plurality of connections 250 that connect selected crowns 232 of adjacent turns 222.
  • the connections 250 may be created by fusing the selected crowns 232 together.
  • "fusing” is defined as heating the target portions of materials to be fused together, without adding any additional material, to a level where the material in the target portions flow together, intermix with one another, and form a fusion when the materials cool down to, for example, room
  • a suitable laser may be used to create the fusion.
  • connections 250 may be created by welding or soldering the selected crowns 232 together.
  • welding and “soldering” are defined as heating an additional material that is separate from the selected crowns and applying the heated additional material to the selected crowns 232 so that when the additional material cools, the selected crowns 232 are welded or soldered together.
  • connections 250 may be created by fusing, welding, or soldering an additional piece of material (not shown) that extends between selected crowns 232.
  • the additional piece of material may resemble a strut or a portion of a strut, and may be sized to provide spacing between the selected crowns of two adjacent turns, if desired.
  • the illustrated embodiments are not intended to be limiting in any way.
  • the size of the connections 250 may also be varied according to the desired flexibility and rate of expansion for a given area of the stent 210.
  • the larger the connection 250 i.e. the larger the fusion or weld, the greater the stiffness, and the slower the rate of expansion of the stent in the area of the larger connections.
  • the embodiments of the stents discussed above may be formed from a wire or a strip of suitable material.
  • the stents may be formed, i.e., etched or cut, from a thin tube of suitable material, or from a thin plate of suitable material and rolled into a tube.
  • Suitable materials for the stent include but are not limited to stainless steel, iridium, platinum, gold, tungsten, tantalum, palladium, silver, niobium, zirconium, aluminum, copper, indium, ruthenium, molybdenum, niobium, tin, cobalt, nickel, zinc, iron, gallium, manganese, chromium, titanium, aluminum, vanadium, and carbon, as well as combinations, alloys, and/or laminations thereof.
  • the stent may be formed from a cobalt alloy, such as L605 or MP35N ® , Nitinol (nickel-titanium shape memory alloy), ABI (palladium-silver alloy), Elgiloy ® (cobalt-chromium-nickel alloy), etc. It is also contemplated that the stent may be formed from two or more materials that are laminated together, such as tantalum that is laminated with MP35N ® . The stents may also be formed from wires having concentric layers of different metals, alloys, or other materials.
  • Embodiments of the stent may also be formed from hollow tubes, or tubes that have been filled with other materials.
  • the aforementioned materials and laminations are intended to be examples and are not intended to be limiting in any way.

Abstract

A method of manufacturing a stent (210) includes forming a wave form (220) having a plurality of struts (230) and a plurality of crowns (232). Each crown connects two adjacent struts. The wave form has a center (258) and two. portions (250,252) extending from opposite sides of the center. The method includes wrapping a first portion of the wave form about a longitudinal axis in a first direction (244) at a first pitch angle, starting at the center of the wave form, to define at least one turn oriented at the first pitch angle, and wrapping a second portion of the wave form about the longitudinal axis in a second direction (246) that is opposite the first direction at a second pitch angle, starting at the center of the wave form, to define at least one turn oriented at the second pitch angle. The first pitch angle is opposite the second pitch angle.

Description

METHODS FOR FORMING AN ORTHOGONAL END
ON A HELICAL STENT
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of priority from United States Provisional Patent Application Serial No. 61/243,600, filed on September 18, 2009, the entire content of which is incorporated herein by reference. This application also claims the benefit of priority from United States Provisional Patent Application Serial Nos. 61/243,578,
61/243,581 , 61/243,582, 61/243,592, and 61/243,597, all filed on September 18, 2009, the entire contents of all of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
Field of the Invention
[0002] The present invention is generally related to a method of manufacturing a helical stent having an orthogonal end relative to a longitudinal axis of the stent, as well as to a helical stent having an end that is orthogonal to the longitudinal axis of the stent.
Background of the Invention
[0003] A stent is typically a hollow, generally cylindrical device that is deployed in a body lumen from a radially contracted configuration into a radially expanded configuration, which allows it to contact and support a vessel wall. A plastically deformable stent can be implanted during an angioplasty procedure by using a delivery system that includes a balloon catheter bearing a compressed or "crimped" stent, which has been loaded onto the balloon. The stent radially expands as the balloon is inflated, forcing the stent into contact with the body lumen, thereby forming a support for the vessel wall. Deployment is effected after the stent has been introduced percutaneously, transported transluminal^, and positioned at a desired location by means of the balloon catheter.
[0004] Stents may be formed from wire(s), may be cut from a tube, or may be cut from a sheet of material and then rolled into a tube-like structure. While some stents may include a plurality of connected rings that are substantially parallel to each other and are oriented substantially perpendicular to a longitudinal axis of the stent, others may include a helical coil that is wrapped around the longitudinal axis at a non-perpendicular angle.
Helical stents tend to have ends that are not perpendicular to the longitudinal axis due to the pitch of the helix. [0005] Other helical stents have transitions near the ends of the stent to compensate for the helical center portion of the stent, yet provide ends that are orthogonal to the longitudinal axis. Because both ends of the stent are modified from the remaining pattern of the stent, it may be difficult to design a stent that has the same flexibility along the length of the stent, as well as uniform radial expansion properties.
SUMMARY OF THE INVENTION
[0006] It is desirable to provide a helical stent that has ends that are orthogonal or perpendicular to the longitudinal axis of the stent, and also has more uniform properties along the length of the stent, both in terms of flexibility and radial expansion.
[0007] It is an aspect of the present invention to provide a method of manufacturing a stent. The method includes forming a wave form having a plurality of struts and a plurality of crowns. Each crown connects two adjacent struts. The wave form has a center and two portions extending from opposite sides of the center. The method also includes wrapping a first portion of the wave form about a longitudinal axis in a first direction along the longitudinal axis at a first pitch angle, starting at the center of the wave form, to define at least one turn oriented at the first pitch angle. The method also includes wrapping a second portion of the wave form about the longitudinal axis in a second direction along the longitudinal axis that is opposite the first direction at a second pitch angle, starting at the center of the wave form, to define at least one turn oriented at the second pitch angle. The first pitch angle and the second pitch angle are substantially opposite to each other.
[0008] It is an aspect of the present invention to provide a stent that includes a wave form comprising a plurality of struts and a plurality of crowns. Each crown connects two adjacent struts within the wave form, the wave form being wrapped around a longitudinal axis to define a plurality of turns. At least one of the turns defines a first helix oriented at a first pitch angle, and at least one of the turns defines a second helix oriented at a second pitch angle. The first pitch angle and the second pitch angle are oriented substantially opposite to each other.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] Embodiments of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, and in which: [0010] Figure 1 schematically illustrates an embodiment of a helical stent of the prior art;
[0011] Figure 2 schematically illustrates an embodiment of a helical stent of the prior art;
[0012] Figure 3 schematically illustrates a method of manufacturing the helical stent of Figure 1 ;
[0013] Figure 4 schematically illustrates a method of manufacturing a helical stent in accordance with an embodiment of the present invention; and
[0014] Figure 5 schematically illustrates an embodiment of a helical stent manufactured by the method of Figure 4.
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
[0015] The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and use of the invention. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
[0016] Figure 1 illustrates an embodiment of a helical stent 10 known in the prior art. The stent 10 is generally cylindrical in shape and has a longitudinal axis LA extending through the center of the stent 10. The stent 10 includes a continuous wave form 20 that includes a plurality of turns 22 that are created when the wave form 20 is wrapped around the longitudinal axis LA during manufacturing of the stent 10. A mandrel 40 or rod that is aligned with the longitudinal axis LA may be used to support the wave form 20 as the wave form 20 is wrapped around the longitudinal axis LA, as shown in Figure 3 and described in further detail below.
[0017] As illustrated in Figure 1 , the wave form 20 includes a plurality of struts 30 and a plurality of crowns 32. Each crown 32 is a curved portion or turn within the wave form 20 that connects adjacent struts 30 to define the continuous wave form 20. The struts 30 are substantially straight portions of the wave form 20 and have substantially the same length. In other embodiments, the struts 30 may be slightly bent or have other shapes, such as a sinusoidal wave, for example.
[0018] As illustrated in Figure 1 , the wave form 20 is wrapped around the longitudinal axis LA at a constant pitch so that the wave form 20 generally defines a helical coil a constant helical angle, or pitch angle a. The ends of the stent 10 are not orthogonal to the longitudinal axis LA and are angled relative to what would be orthogonal to define an angle β, which is equal to 90° minus a. It is desirable for the ends of the stent to be orthogonal to the longitudinal axis, i.e. for β to equal zero.
[0019] Figure 2 illustrates an embodiment of a stent 1 10 known in the prior art. Like the stent 10 illustrated in Figure 1 , the stent 1 10 is generally a helical stent that includes a continuous wave form 120 that includes a plurality of turns 122 that are created when the wave form 120 is wrapped around the longitudinal axis LA during manufacturing of the stent 1 10.
[0020] As illustrated in Figure 2, the wave form 120 includes a plurality of struts 130 and a plurality of crowns 132. Each crown 132 is a curved portion or turn within the wave form 120 that connects adjacent struts 130 to define the continuous wave form 120. As shown in Figure 2, the struts 130 are substantially straight portions of the wave form 120.
[0021] As illustrated in Figure 2, the wave form 120 is wrapped around the longitudinal axis LA at a constant pitch so that the wave form 120 generally defines a helical coil a constant helical angle, or pitch angle a. In the illustrated embodiment, the struts 130 of all but end turns 124, 126 have substantially the same length. The end turns 124, 126 each include struts of different lengths, including struts 130a that are shorter than the length of the struts 130 of the turns 122. The shorter struts 130a of the end turns 124, 126 are designed to allow the ends of the stent 110 to be orthogonal to the longitudinal axis LA, when the end turns 124, 126 are wrapped at the pitch angle a.
[0022] The end turns 124, 126 of the stent 110 are not mirror images of each other, i.e., the shorter struts 130a are located on opposite sides of the longitudinal axis LA, which may create non-uniform tracking and expansion behavior along the length of the stent 1 10.
[0023] Figure 3 illustrates a method of manufacturing the stent 10 of Figure 1. The stent of Figure 2 may also be manufactured using the same method, as understood by one of ordinary skill in the art. As illustrated in Figure 3, one end 24 of the wave form 20 is pressed against the mandrel 40 with a pressing member 50 that is attached to the mandrel 40 so that it rotates and translates with the mandrel 40. The other end 26 of the wave form 20 may be held with a suitable structure 60 that is configured to hold the other end 26 of the wave form 20 as the wave form 20 is wrapped around the mandrel 40 so that the helical angle a stays substantially constant.
[0024] The mandrel 40 may be rotated and translated, as indicated by arrows 42 and 44, respectively, at a suitable speed so that the wave form 20 wraps around the mandrel 40, and the longitudinal axis LA, to create the turns 22. The number of revolutions of the mandrel 40 determines the number of turns 22 in the stent 10. As discussed above, the wave form may be varied so that the end turns of the stent are substantially orthogonal or perpendicular to the longitudinal axis, such as the end turns 124, 126 of the stent 1 10 illustrated in Figure 2.
[0025] Figure 4 illustrates a method of manufacturing a stent 210 according to an embodiment of the present invention. An embodiment of the stent 210 manufactured by the method illustrated in Figure 4 is shown in Figure 5. As illustrated, the stent 210 is generally cylindrical in shape and has a longitudinal axis LA extending through the center of the stent 210. The stent 210 includes a continuous wave form 220 that includes a plurality of turns 222 that are created when the wave form 220 is wrapped around the longitudinal axis LA during manufacturing of the stent 210. A mandrel 240 or rod that is aligned with the longitudinal axis LA may be used to support the wave form 220 as the wave form 220 is wrapped around the longitudinal axis LA, as shown in Figure 4.
[0026] The wave form 220 includes a plurality of struts 230 and a plurality of crowns 232. Each crown 232 is a curved portion or turn within the wave form 220 that connects adjacent struts 230 to define the continuous wave form 220. As shown in Figures 4 and 5, the struts 230 are substantially straight portions of the wave form 220. In other
embodiments, the struts 230 may be slightly bent or have other shapes, such as a sinusoidal wave, for example.
[0027] As illustrated in Figure 4, a first portion 250, which may be about one-half, of the wave form 220 is wrapped around the longitudinal axis LA at a constant helical or pitch angle φ so that the portion 250 of the wave form 220 generally defines a helical coil at the constant pitch angle cp, relative to the longitudinal axis. A second portion 252, which may be about one-half, of the wave form 220 is wrapped around the longitudinal axis LA at a constant helical or pitch angle Θ so that the second portion 252 of the wave form 220 generally defines a helical coil at the constant pitch angle Θ, relative to the longitudinal axis. In the illustrated embodiment, the pitch angles φ and Θ have substantially the same magnitude, but are positive and negative, respectively, in the x-y coordinate system depicted in Figure 4, and may therefore be considered to be substantially opposite to each other with respect to a centerline CL of the stent 210. The first and second portions 250, 252 of the wave form 220 are on opposite side of the centerline CL of the stent 210, as illustrated in Figure 4, and are connected to each other via the material that is used to form the wave form 220. [0028] The part of the wave form 220 that is used to create the first turns 254, 256 of the first and second portions 250, 252, which may be the center part of the wave form 220, may include struts 230a that are shorter than the struts 230 used in the other turns 222 of the stent 210. This may allow the crowns 232 of the first turn 254 of the first portion 250 that face the centerline CL to substantially align with the centerline CL. This may also allow the crowns 232 of the first turn 256 of the second portion 252 that face the centerline CL to substantially align with the centerline CL so that when the wave form 220 is wrapped around the longitudinal axis LA at the pitch angles φ and Θ, there is only a small gap between the crowns 232 that face each other at the centerline CL. In other words, the wave form 220 may be configured so that the first turns 254, 256 of each portion 250, 252 of the stent 210 provide transitions from the orthogonal centerline CL to the respective pitch angles φ and Θ.
[0029] To form the stent 210, a center 258 of the wave form 220 is fixed to the mandrel 240 by any suitable means, such as a clamp. Opposing ends of the wave form 220 may be held and guided by suitable structures 262, 264 that are configured to translate the first and second portions 250, 252 of the wave form 220 in opposing directions, represented by arrows 244, 246, respectively, as the mandrel is rotated, as represented by arrow 242. In contrast to the manufacturing of the stent 10 that is illustrated by Figure 3, in which the stent 10 created from one end to the other, the stent 210 is created from the center outward.
[0030] As illustrated in Figure 5, the wave form 220 may also be configured to provide end turns 224, 226 that provide ends of the stent 210 that are substantially orthogonal to the longitudinal axis LA. This may be done by having shorter struts 230a in the
corresponding portion of the wave form 220 so that when the mandrel 240 is rotated one last time to create the end turns 224, 226, the ends of the stent are substantially perpendicular to the longitudinal axis LA. In an embodiment, the wave form 220 may include a plurality of transitional turns near the ends of the stent that are configured to gradually transition the pitch angles of the turns of the first and second portions 250, 252, i.e., the pitch angles φ and Θ, to the end turns 224, 226 that allow for the ends of the stent to be substantially perpendicular to the longitudinal axis LA. For example, instead of having one turn at each end of the stent that provides the entire transition from the pitch angles φ and Θ to the substantially orthogonal ends of the stent, a plurality of turns like the end turns 224, 226 may be used. In such an embodiment, the lengths of the struts in such turns may be more gradually shortened in each of the transitioning turns. [0031] In an embodiment, the pitch angles φ and Θ may not be constant for the first and second portions 250, 252, but instead may be gradually increased in magnitude so that by the last turn 222 of the mandrel 250 to form the end turns 224, 226, the pitch angles φ and Θ have increased to about 90°. In an embodiment, the end turns 224, 226 of the stent 210 may be separate pieces that may be connected to the wave form 220 after the turns 222 of the stent 210 have been created with the rotation of the mandrel 250. The illustrated embodiments described herein should not be considered to be limiting in any way.
[0032] As illustrated in Figure 5, the stent 210 may include a plurality of connections 250 that connect selected crowns 232 of adjacent turns 222. The connections 250 may be created by fusing the selected crowns 232 together. As used herein, "fusing" is defined as heating the target portions of materials to be fused together, without adding any additional material, to a level where the material in the target portions flow together, intermix with one another, and form a fusion when the materials cool down to, for example, room
temperature. A suitable laser may be used to create the fusion.
[0033] In an embodiment, the connections 250 may be created by welding or soldering the selected crowns 232 together. As used herein, "welding" and "soldering" are defined as heating an additional material that is separate from the selected crowns and applying the heated additional material to the selected crowns 232 so that when the additional material cools, the selected crowns 232 are welded or soldered together.
[0034] In an embodiment, the connections 250 may be created by fusing, welding, or soldering an additional piece of material (not shown) that extends between selected crowns 232. The additional piece of material may resemble a strut or a portion of a strut, and may be sized to provide spacing between the selected crowns of two adjacent turns, if desired. The illustrated embodiments are not intended to be limiting in any way.
[0035] The size of the connections 250 may also be varied according to the desired flexibility and rate of expansion for a given area of the stent 210. In general, the larger the connection 250, i.e. the larger the fusion or weld, the greater the stiffness, and the slower the rate of expansion of the stent in the area of the larger connections.
[0036] The embodiments of the stents discussed above may be formed from a wire or a strip of suitable material. In certain embodiments, the stents may be formed, i.e., etched or cut, from a thin tube of suitable material, or from a thin plate of suitable material and rolled into a tube. Suitable materials for the stent include but are not limited to stainless steel, iridium, platinum, gold, tungsten, tantalum, palladium, silver, niobium, zirconium, aluminum, copper, indium, ruthenium, molybdenum, niobium, tin, cobalt, nickel, zinc, iron, gallium, manganese, chromium, titanium, aluminum, vanadium, and carbon, as well as combinations, alloys, and/or laminations thereof. For example, the stent may be formed from a cobalt alloy, such as L605 or MP35N®, Nitinol (nickel-titanium shape memory alloy), ABI (palladium-silver alloy), Elgiloy® (cobalt-chromium-nickel alloy), etc. It is also contemplated that the stent may be formed from two or more materials that are laminated together, such as tantalum that is laminated with MP35N®. The stents may also be formed from wires having concentric layers of different metals, alloys, or other materials.
Embodiments of the stent may also be formed from hollow tubes, or tubes that have been filled with other materials. The aforementioned materials and laminations are intended to be examples and are not intended to be limiting in any way.
[0037] While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient roadmap for implementing an exemplary embodiment of the invention, it being understood that various changes may be made in the function and arrangement of members described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A method of manufacturing a stent, the method comprising:
forming a wave form having a plurality of struts and a plurality of crowns, each crown connecting two adjacent struts, the wave form having a center and two portions extending from opposite sides of the center;
wrapping a first portion of the wave form about a longitudinal axis in a first direction along the longitudinal axis at a first pitch angle, starting at the center of the wave form, to define at least one turn oriented at the first pitch angle; and
wrapping a second portion of the wave form about the longitudinal axis in a second direction along the longitudinal axis that is opposite the first direction at a second pitch angle, starting at the center of the wave form, to define at least one turn oriented at the second pitch angle, the first pitch angle and the second pitch angle being substantially opposite to each other.
2. The method of claim 1 , further comprising attaching the center of the wave form to a mandrel and rotating the mandrel to wrap the first portion and second portions of the wave form at substantially the same time.
3. The method of claim 3, wherein the wrapping further comprises guiding opposing ends of the wave form along the mandrel in opposite directions.
4. The method of claim 1 , further comprising wrapping the wave form to form a first turn from the center of the wave form in the first direction so that at least some of the plurality of crowns are aligned to be substantially perpendicular to the longitudinal axis.
5. The method of claim 4, further comprising wrapping the wave form to form a first turn from the center of the wave form in the second direction so that at least some of the plurality of crowns are aligned to be substantially perpendicular to the longitudinal axis.
6. The method of claim 1 , further comprising wrapping the wave form around the longitudinal axis so that an end of a final turn of the wave form is oriented substantially perpendicular to the longitudinal axis.
7. The method of claim 1 , further comprising connecting selected crowns of adjacent turns.
8. The method of claim 7, wherein the connecting comprises fusing the selected crowns of adjacent turns.
9. The method of claim 7, wherein the connecting comprises welding the selected crowns of adjacent turns.
10. A stent comprising:
a wave form comprising a plurality of struts and a plurality of crowns, each crown connecting two adjacent struts within the wave form, the wave form being wrapped around a longitudinal axis to define a plurality of turns, at least one of the turns defining a first helix oriented at a first pitch angle, and at least one of the turns defining a second helix oriented at a second pitch angle, the first pitch angle and the second pitch angle being oriented substantially opposite to each other.
1 1. The stent of claim 10, wherein the wave form defines a plurality of turns oriented at the first pitch angle, and a plurality of turns oriented at the second pitch angle.
12. The stent of claim 10, wherein at least some of the crowns in a central portion of the stent are aligned to be substantially perpendicular to the longitudinal axis.
13. The stent of claim 10, wherein the stent has ends that are substantially perpendicular to the longitudinal axis.
14. The stent of claim 10, further comprising a plurality of connections that connect selected crowns of adjacent turns.
15. The stent of claim 14, wherein the connections are fusions of the selected crowns of adjacent turns.
16. The stent of claim 14, wherein the connections comprises welds.
PCT/US2010/048488 2009-09-18 2010-09-10 Methods for forming an orthogonal end on a helical stent WO2011034795A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24360009P 2009-09-18 2009-09-18
US61/243,600 2009-09-18

Publications (1)

Publication Number Publication Date
WO2011034795A1 true WO2011034795A1 (en) 2011-03-24

Family

ID=43086999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/048488 WO2011034795A1 (en) 2009-09-18 2010-09-10 Methods for forming an orthogonal end on a helical stent

Country Status (1)

Country Link
WO (1) WO2011034795A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2537491A1 (en) * 2011-06-24 2012-12-26 Cook Medical Technologies LLC Helical stent
WO2018082278A1 (en) * 2016-11-04 2018-05-11 先健科技(深圳)有限公司 Vascular stent
WO2022020691A1 (en) * 2020-07-24 2022-01-27 Medtronic Vascular, Inc. Stent with mid-crowns
WO2024067402A1 (en) * 2022-09-30 2024-04-04 深圳市先健纬康科技有限公司 Vascular stent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2793673A1 (en) * 1999-05-18 2000-11-24 Jean Marie Lefebvre Tubular stent-type endoprosthesis for use in cardiovascular surgery is cut out from stainless steel tube and has radial force slightly greater than the elastic retraction of blood vessel in which it is implanted
US20080319529A1 (en) * 2007-06-22 2008-12-25 Medtronic Vascular, Inc. Stent With Improved Mechanical Properties

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2793673A1 (en) * 1999-05-18 2000-11-24 Jean Marie Lefebvre Tubular stent-type endoprosthesis for use in cardiovascular surgery is cut out from stainless steel tube and has radial force slightly greater than the elastic retraction of blood vessel in which it is implanted
US20080319529A1 (en) * 2007-06-22 2008-12-25 Medtronic Vascular, Inc. Stent With Improved Mechanical Properties

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2537491A1 (en) * 2011-06-24 2012-12-26 Cook Medical Technologies LLC Helical stent
JP2013006029A (en) * 2011-06-24 2013-01-10 Cook Medical Technologies Llc Helical stent
AU2012203620B2 (en) * 2011-06-24 2014-09-11 Cook Medical Technologies Llc Helical Stent
EP3023080A1 (en) * 2011-06-24 2016-05-25 Cook Medical Technologies LLC Stent graft
US10271974B2 (en) 2011-06-24 2019-04-30 Cook Medical Technologies Llc Helical stent
WO2018082278A1 (en) * 2016-11-04 2018-05-11 先健科技(深圳)有限公司 Vascular stent
US11497636B2 (en) 2016-11-04 2022-11-15 Lifetech Scientific (Shenzhen) Co. Ltd. Vascular stent
WO2022020691A1 (en) * 2020-07-24 2022-01-27 Medtronic Vascular, Inc. Stent with mid-crowns
WO2024067402A1 (en) * 2022-09-30 2024-04-04 深圳市先健纬康科技有限公司 Vascular stent

Similar Documents

Publication Publication Date Title
US8226705B2 (en) Methods for forming an orthogonal end on a helical stent
US20080319534A1 (en) Stent With Improved Mechanical Properties
EP2111194B1 (en) Stent with improved flexibility and method for making same
US20110218615A1 (en) Stent With Multi-Crown Constraint and Method for Ending Helical Wound Stents
EP2542190B1 (en) Stent with sinusoidal wave form and orthogonal end and method for making same
EP2841231B1 (en) Method for forming a stent an stent obtained by such method
WO2011034795A1 (en) Methods for forming an orthogonal end on a helical stent
EP2477582B1 (en) Methods for forming an orthogonal end on a helical stent
US20120018496A1 (en) Method and Apparatus for Forming a Wave Form Used to Make Wound Stents
WO2011034796A1 (en) Stent with improved flexibility
WO2011034797A1 (en) Helical stent with connections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10757337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10757337

Country of ref document: EP

Kind code of ref document: A1