WO2011034183A1 - Porphyrin compound - Google Patents

Porphyrin compound Download PDF

Info

Publication number
WO2011034183A1
WO2011034183A1 PCT/JP2010/066247 JP2010066247W WO2011034183A1 WO 2011034183 A1 WO2011034183 A1 WO 2011034183A1 JP 2010066247 W JP2010066247 W JP 2010066247W WO 2011034183 A1 WO2011034183 A1 WO 2011034183A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
formula
carbon atoms
metal complex
Prior art date
Application number
PCT/JP2010/066247
Other languages
French (fr)
Japanese (ja)
Inventor
登 古賀
悟 唐澤
寛幸 林
研吾 大久保
Original Assignee
国立大学法人九州大学
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 日産化学工業株式会社 filed Critical 国立大学法人九州大学
Priority to JP2011531987A priority Critical patent/JP5745415B2/en
Publication of WO2011034183A1 publication Critical patent/WO2011034183A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/101Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals
    • A61K49/106Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals the complex-forming compound being cyclic, e.g. DOTA
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings

Definitions

  • the present invention relates to a novel porphyrin metal complex that self-assembles in an aqueous solution, a molecular assembly thereof, and an MRI contrast agent using the assembly.
  • Magnetic resonance imaging which is currently used in clinical settings, is a technique for imaging the proton signal of water.
  • the position information of protons present in the living body and the surrounding contrast are two-dimensionally shaded. It is a technology to display.
  • Proton position information is obtained by using a gradient magnetic field that intentionally distorts the static magnetic field in nuclear magnetic resonance (NMR), and contrast is obtained as NMR information of protons such as water and lipids.
  • NMR nuclear magnetic resonance
  • the relaxation time is widely used in various diagnoses because it changes depending on the relative arrangement and movement between the water molecule including the observed spin and the surrounding molecules, and well reflects the state of the surrounding tissue. .
  • the MRI contrast agent currently used in the MRI method adds contrast between tissues having different distribution amounts by changing the relaxation time of water in the living tissue. That is, the contrast agent is indirectly detected through a change in the relaxation time of water protons.
  • T 1 relaxation contrast agents containing Gd and Mn and T 2 relaxation contrast agents using iron oxide are used, and longitudinal and lateral relaxation is promoted by the interaction between these metal ions and water protons.
  • the contrast agent (Patent Document 1) using the effect of increasing the relaxation ability (paramagnetic substance relaxation promoting effect) by increasing the rotation correlation time according to the molecular size, and the nitroxide compound that is an organic radical and a metal ion are highly hybridized.
  • Non-Patent Document 2 A contrast agent having relaxation ability (Patent Document 2) and a contrast agent having cancer cell selectivity with a superparamagnetic iron oxide nanoparticle composited with a polymer and having an average particle diameter of about 26 nm have been reported (Non-Patent Document 2). Reference 1).
  • Patent Document 3 a contrast agent using a dendrimer having a nitroxyl group which is an organic radical without using any metal ion has been reported.
  • Patent Document 4 a contrast agent carrying a nitroxyl group at the end of a hyperbranched polymer has also been reported.
  • contrast agents As described above, many of the contrast agents proposed so far contain metal ions, and there is a problem that safety in vivo is a concern. Further, in contrast agents that do not use metal ions, there are problems in synthesis in order to obtain an average particle size that has low relaxation ability and can be expected to be selective for cancer cells. .
  • the present invention has been made in view of the above circumstances, that is, MRI that has safety in vivo and satisfies various requirements such as the magnitude of relaxation ability and cancer cell and organ selectivity. It is an object of the present invention to provide a novel porphyrin metal complex and its molecular assembly that can be applied as a contrast agent.
  • the present inventors have introduced an ethylene glycol chain into a porphyrin metal complex, whereby the resulting metal complex is nonionic, and the metal complex is an aqueous solution. It was found that it can self-assemble to form a molecular assembly having a diameter of 5 to 2000 nm. By using this metal complex and aggregate, it was found useful as a novel MRI contrast agent having a high paramagnetic substance relaxation promoting effect and high relaxation ability, and completed the present invention.
  • this invention relates to the porphyrin metal complex represented by Formula (1) as a 1st viewpoint.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are each independently a hydrogen atom, halogen Atom, nitro group, cyano group, sulfonyl group, hydroxy group, amino group, carboxyl group, alkyl group having 1 to 10 carbon atoms [this alkyl group is a halogen atom, hydroxy group, carboxyl group, carbon atom having 1 to 3 carbon atoms An alkoxy group and a phenyl group (this phenyl group may be optionally substituted with a halogen atom, an alkoxy group having 1 to 3 carbon atoms, or an alkyl group having 1 to 10 carbon atoms).
  • Alkyl group or formula (2) (N represents 1 to 10) It may be optionally substituted with an oligoethylene glycol methyl ether group represented by: And a group selected from the group consisting of oligoethylene glycol methyl ether groups represented by the above formula (2), provided that at least one of R 1 to R 12 is represented by the above formula (2).
  • R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 and R 11 are each independently a hydrogen atom, chlorine atom, bromine atom.
  • the porphyrin metal complex according to the first aspect which represents a phenyl group.
  • R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 and R 11 represent a hydrogen atom
  • the R 3 , R 6 , R 9 and R 12 are each independently represented by the formula (4) (In the formula, n represents 3 to 6.)
  • the porphyrin metal complex as described in the 2nd viewpoint which represents the phenyl group represented by these.
  • the M relates to the porphyrin metal complex according to any one of the first to third aspects, which represents Mn (III), Fe (III), or Co (III) having a halogen atom.
  • the M relates to the porphyrin metal complex according to the fourth aspect, which represents Mn (III) having a halogen atom.
  • the present invention relates to a molecular assembly having a diameter of 5 nm to 2000 nm formed by self-assembly of the porphyrin metal complex according to any one of the first aspect to the fifth aspect.
  • the present invention relates to an MRI contrast agent comprising the porphyrin metal complex according to any one of the first aspect to the fifth aspect or the molecular assembly according to the sixth aspect.
  • the porphyrin metal complex of the present invention is nonionic and self-assembles in an aqueous solution to form a molecular assembly having a diameter of 5 to 2000 nm, preferably 30 to 1000 nm. For this reason, it can be used as a novel contrast agent for MRI having a high relaxation ability due to a large paramagnetic substance relaxation promoting effect.
  • the molecular assembly has a size of 5 to 2000 nm, it is expected to be a revolutionary MRI contrast agent having cancer cell selectivity and organ selectivity.
  • FIG. 1 shows the dynamics of compound (3) [Mn-TPPPEG 12 ], compound (16) [Mn-TPPHEG 3 ], compound (19) [Mn-TPPHEG 6 ] and compound (21) [Mn-TPPHEG 12 ]. It is a figure which shows the measurement result of a light-scattering method (DLS) (horizontal axis: diameter (nm), vertical axis: scattering intensity (%)).
  • FIG. 2 is a view showing a result of observation of a compound (3) [Mn-TPPPEG 12 ] by a transmission electron microscope (TEM) (FIG. 2 (a)), and a transmission electron of the compound (16) [Mn-TPPHEG 3 ]. shows the observation results of the microscope (TEM) (FIG.
  • TEM transmission electron microscope
  • FIG. 2 (b)) compound (19) [Mn-TPPHEG 6 ] shows the observations transmission electron microscope (TEM) in (FIG. 2 (c)),
  • FIG. 2D is a diagram showing an observation result of a transmission electron microscope (TEM) of the compound (21) [Mn-TPPHEG 12 ] (FIG. 2D).
  • FIG. 3 shows the measurement results of T 1 relaxation time (longitudinal relaxation) (FIG. 3 (a)) and T 2 relaxation time (lateral relaxation) (FIG. 3 (b)) of compound (3) [Mn-TPPPEG 12 ]. shown figure, the measurement results of the compound (16) [Mn-TPPHEG 3 ] T 1 relaxation time (longitudinal relaxation) (FIG.
  • FIG. 3 is a graph showing measurement results of T 1 relaxation time (longitudinal relaxation) (FIG. 3 (g)) and T 2 relaxation time (lateral relaxation) (FIG. 3 (h)) of compound (21) [Mn-TPPHEG 12 ].
  • FIG. 3 is a graph showing measurement results of T 1 relaxation time (longitudinal relaxation) (FIG. 3 (g)) and T 2 relaxation time (lateral relaxation) (FIG. 3 (h)) of compound (21) [Mn-TPPHEG 12 ].
  • the present invention relates to a porphyrin metal complex represented by the above formula (1).
  • the substituents R 1 to R 12 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a sulfonyl group, a hydroxy group, an amino group, a carboxyl group, An alkyl group having 1 to 10 carbon atoms [this alkyl group is a halogen atom, a hydroxy group, a carboxyl group, an alkoxy group having 1 to 3 carbon atoms, a phenyl group (this phenyl group is a halogen atom, having 1 to 3 carbon atoms) It may be optionally substituted with an alkoxy group or an alkyl group having 1 to 10 carbon atoms.
  • an oligoethylene glycol methyl ether group represented by the above formula (2) wherein at least one of R 1 to R 12 is an oligoethylene glycol methyl ether group represented by the above formula (2)
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl group having 1 to 10 carbon atoms which may be optionally substituted with the above substituents include, for example, methyl group, ethyl group, propyl group, isopropyl group, normal butyl group, isobutyl group, secondary butyl Group, tertiary butyl group, normal pentyl group, isopentyl group, tertiary pentyl group, neopentyl group, normal hexyl group, heptyl group, octyl group, nonyl group, decyl group, trifluoromethyl group, 2,2,2-trimethyl Fluoroethyl group, 1,1,2,2,2-pentafluoroethyl group, 2,2,3,3,3-pentafluoropropyl group, hydroxymethyl group, hydroxymethyl group
  • Examples of the cycloalkyl group having 3 to 6 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, and cyclohexyl group.
  • Examples of the alkoxy group having 1 to 6 carbon atoms include methoxy group, ethoxy group, and normal propoxy group. Group, isopropoxy group, normal butoxy group, isobutoxy group, secondary butoxy group, tertiary butoxy group, normal pentyloxy group, normal hexyloxy group and the like.
  • examples of the phenyl group that may be optionally substituted with the above-described nucleus substituent include a phenyl group, a pentaphenyl group, an anisole group, and a tolyl group.
  • R 1 to R 12 are each independently a hydrogen atom, chlorine atom, bromine atom, cyano group, sulfonic acid group, hydroxy group, amino group, carboxyl group, methyl group, ethyl group, normal propyl group, isopropyl group.
  • More preferable examples include a hydrogen group, an ethyl group, a normal propyl group, a phenyl group, a pentafluorophenyl group, or a phenyl group having an oligoethylene glycol methyl ether group represented by the above formula (2).
  • R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 and R 11 are each independently a hydrogen atom, chlorine atom, bromine atom, cyano group, Methyl, ethyl, normal propyl, isopropyl, normal butyl, isobutyl, secondary butyl, tertiary butyl, trifluoromethyl, hydroxymethyl, hydroxyethyl, carboxymethyl, methoxy, ethoxy It preferably represents a group selected from the group consisting of a group, a normal propoxy group, an isopropoxy group, a phenyl group, a pentafluorophenyl group, an anisole group and a tolyl group, and R 1 , R 2 , R 4 , R 5 , R Most preferably, 7 , R 8 , R 10 and R 11 represent a hydrogen atom.
  • R 3, R 6, R 9 and R 12 are each independently preferably represent a phenyl group represented by the formula (3), R 3, R 6, R Most preferably, 9 and R 12 each independently represent a phenyl group represented by the formula (4).
  • n is 1 to 10, preferably 3 to 6.
  • R 13 , R 14 , R 15 , R 16 and R 17 are each independently a hydrogen atom or an oligoethylene glycol methyl ether represented by the above formula (2). Represents a group.
  • n represents 3-6.
  • M represents a divalent metal atom or a trivalent to pentavalent metal atom which may have an oxygen atom, a halogen atom, a nitro group or a cyano group.
  • M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta,
  • a divalent metal atom selected from the group consisting of W, Re, Os, Ir, Pt, Au, and Hg, or a trivalent to pentavalent group that may have an oxygen atom, a halogen atom, a nitro group, or a cyano group Metal atom.
  • divalent metal atom examples include magnesium (II), calcium (II), iron (II), cobalt (II), nickel (II), copper (II), zinc (II), ruthenium (II) , Palladium (II), tin (II), osmium (II), iridium (II), platinum (II), lead (II), etc., preferably zinc (II), ruthenium (II), palladium (II ), Tin (II), osmium (II), iridium (II), platinum (II).
  • the trivalent metal atom examples include aluminum (III), iron (III), manganese (III), cobalt (III), rhodium (III), indium (III), antimony (III), and bismuth (III). Etc., preferably rhodium (III).
  • Specific examples of the tetravalent metal atom include germanium (IV), tin (IV), and preferably tin (IV).
  • Specific examples of the pentavalent metal atom include molybdenum (V), antimony (V), bismuth (V), and the like.
  • M is preferably Mn (III), Fe (III) or Co (III) having a halogen atom, and most preferably M is Mn (III) having a halogen atom.
  • porphyrin ligands used in the porphyrin metal complex of the present invention include, for example, PNAS, 104 (26), 10780-2007 and Journal of Polymer Science: Part A: Polymer Chemistry. 32, 1243-1254, 1994 and Huaxue Shijie, 31 (4) 164-6, 1990, and the like.
  • a typical porphyrin ligand can be produced by the following method.
  • the obtained sulfonic acid compound is deprotonated by a method such as Chemistry-A European Journal, 13 (31), 8660-8666, 2007, Chemistry-A European Journal, 12, 3735-3740, 2007, etc. Of porphyrin is obtained.
  • Cationic porphyrins can also be obtained according to the following procedures such as Russian Journal of General Chemistry, 77 (11), 1955-1958, 2007.
  • porphyrin metal complex represented by the formula (1) is, for example, the above-mentioned PNAS, 104 (26), 10780-2007, Journal of Polymer Science: Part A: Polymer Chemistry. 32, 1243-1254, 1994 and the like.
  • the porphyrin metal complex of the present invention self-assembles when charged into a polar solution such as water, an aqueous solution, or an alcohol aqueous solution.
  • a polar solution such as water, an aqueous solution, or an alcohol aqueous solution.
  • self-assembly also referred to as self-assembly
  • self-assembly is spontaneous in a group of molecules (molecules) that are initially in a random state due to non-covalent interactions between molecules under appropriate external conditions. It means to grow into a macro functional assembly by meeting together.
  • the porphyrin surface in the porphyrin metal complex and the porphyrin surface in another adjacent complex are assembled, and the oligoethylene glycol methyl ether chain located outside the complex forms an intermolecular non-covalent bond with the external solution.
  • the porphyrin metal complex or molecular assembly thereof according to the present invention is expected to be applied to various fields. Among them, from its nature and size, it has a high paramagnetic substance relaxation promoting effect and cancer cell or organ selectivity. Therefore, it is useful as an MRI contrast agent.
  • the MRI contrast agent comprising the porphyrin metal complex of the present invention or a molecular assembly thereof is usually used in a state of being dispersed, suspended or dissolved in a solvent such as distilled water for injection, physiological saline or Ringer's solution. Depending on the case, pharmacologically acceptable additives such as simple substances and excipients can be included.
  • the MRI contrast agent of the present invention can be applied to cells and the like, and can be administered in vivo by intravascular (venous, arterial) administration, oral administration, rectal administration, intravaginal administration, intralymphatic administration, intraarticular administration, etc. Preferably, it is administered by intravenous administration or oral administration in the form of a solution or emulsion or suspension.
  • the additives that can be included in the MRI contrast agent vary depending on the administration form, administration route, and the like. Specifically, in the case of an injection, a buffer, an antibacterial agent, a stabilizer, a solubilizing agent, Excipients, etc.
  • oral administration agents specifically, water, syrup, emulsion or suspension
  • coloring agents specifically, water, syrup, emulsion or suspension
  • preservatives specifically, stabilizers, suspending agents
  • Emulsifiers particularly, Emulsifiers, thickeners, sweeteners, fragrances and the like
  • Emulsifiers those usually used in this field are used.
  • the MRI contrast agent of the present invention can be administered and imaged according to a conventional MRI contrast agent. Further, the MRI contrast agent can be suitably used as a contrast agent for various animals other than humans, and its administration form, administration route, dosage and the like are appropriately selected according to the body weight and condition of the subject animal.
  • compound (3) [Mn-TPPPEG 12 ], which is the final product, was synthesized from compound (1).
  • Compound (1) is a known compound in the literature. Org. Chem. , 2005, 70, 7065-7079.
  • Compound (11) is a known compound in the literature, and was synthesized with reference to Organic & Biomolecular Chemistry, 6 (12), 2118-2132, 2008.
  • Example 5 Measurement by dynamic light scattering (DLS)
  • Compound (3) prepared in Example 1-4 [Mn-TPPPEG 12 ], Compound (16) [Mn-TPPHEG 3 ], Compound (19) [Mn-TPPHEG 6 ], Compound (21) [Mn-TPPHEG 12 ]
  • DLS dynamic light scattering
  • Example 6 Observation by transmission electron microscope (TEM)]
  • Compound (3) prepared in Example 1-4 [Mn-TPPPEG 12 ], Compound (16) [Mn-TPPHEG 3 ], Compound (19) [Mn-TPPHEG 6 ], Compound (21) [Mn-TPPHEG 12 ]
  • Compound (3) prepared in Example 1-4 [Mn-TPPPEG 12 ]
  • Compound (21) [Mn-TPPHEG 12 ] Were each dispersed in deionized water to prepare a 1 mM sample. 5 ⁇ l of this sample was placed on an elastic carbon support membrane (grid pitch: 100 ⁇ m) manufactured by Oken Shoji Co., Ltd., and the excess solution was blotted with a filter paper.
  • an elastic carbon support membrane grid pitch: 100 ⁇ m
  • Example 7 Measurement of relaxation time
  • Compound (3) prepared in Example 1-4 [Mn-TPPPEG 12 ], Compound (16) [Mn-TPPHEG 3 ], Compound (19) [Mn-TPPHEG 6 ], Compound (21) [Mn-TPPHEG 12 ]
  • Compound (16) [Mn-TPPHEG 3 ] Compound (19) [Mn-TPPHEG 6 ]
  • Compound (21) [Mn-TPPHEG 12 ] Were each dispersed in deionized water to prepare 5 different concentrations of samples ranging from 0.1 mM to 8 mM.
  • a total of 6 samples of 0.3 ml of each of the five concentrations and 0.3 ml of deionized water were placed in a 10 ⁇ sample tube, respectively, and a pulse NMR apparatus JNM-MU25RAN (0.59T, 25 MHz, 25 manufactured by JEOL Ltd.) was used.
  • T 1 relaxation time Longitudinal relaxation
  • T 2 relaxation time lateral relaxation
  • the T 1 relaxation time was measured by the Invertion Recovery method
  • the T 2 relaxation time was measured by the Carr-Purcell-Meibuum-Gill (CPMG) method.
  • the vertical axis represents the relaxation time of water (reciprocal of relaxation time T 1 or T 2 ) and the horizontal axis represents the concentration, and the relaxation capacity r 1 , r 2 (mM ⁇ 1 s ⁇ 1 ) from the slope.
  • Table 1 shows the results of the relaxation abilities r 1 and r 2 of the obtained compounds. As shown in FIG. 3 and Table 1, the relaxation ability r 1 (FIG.
  • the relaxation ability values of the compound (16) [Mn-TPPHEG 3 ], the compound (19) [Mn-TPPHEG 6 ] and the compound (21) [Mn-TPPHEG 12 ] are also larger than those of Gd-DTPA. These compounds were also confirmed to be clinically applicable as MRI contrast agents.

Abstract

Disclosed is a novel porphyrin metal complex which is safe in vivo and satisfies requirements for relaxation ability, cancer cell selectivity, organ selectivity and the like. The porphyrin metal complex is able to be applied to an MRI contrast medium. Also disclosed is a molecular aggregate of the porphyrin metal complex. Specifically disclosed is a porphyrin metal complex represented by formula (1). (In the formula, R1-R12 each represents a hydrogen atom, a halogen atom, a nitro group, a cyano group, a sulfonyl group, a hydroxy group, an amino group, a carboxyl group, an optionally substituted alkyl group having 1-10 carbon atoms, a cycloalkyl group having 3-6 carbon atoms, an alkoxy group having 1-6 carbon atoms, an optionally substituted phenyl group, or a group selected from the group consisting of oligoethylene glycol methyl ether groups represented by formula (2) (wherein n represents a number of 1-10), (provided that at least one of the R1-R12 represents a group represented by formula (2)); and M represents a divalent metal atom or a trivalent to pentavalent metal atom which may have a substituent atom or a substituent group.)

Description

ポルフィリン化合物Porphyrin compounds
 本発明は、水溶液中で自己集合化する新規ポルフィリン金属錯体とその分子集合体、並びに該集合体を用いたMRI造影剤に関する。 The present invention relates to a novel porphyrin metal complex that self-assembles in an aqueous solution, a molecular assembly thereof, and an MRI contrast agent using the assembly.
 現在、臨床現場において使用されている磁気共鳴画像(MRI)法とは、水のプロトンの信号を画像化する技術であり、生体内に存在するプロトンの位置情報と周囲のコントラストを2次元で濃淡表示する技術である。プロトンの位置情報は、核磁気共鳴(NMR)内の静磁場を故意に歪める傾斜磁場を用いることによって得られ、コントラストは水や脂質などのプロトンのNMR情報として得られるスピン密度、緩和時間、拡散速度、化学シフト、位相などによって決定される。特に緩和時間は、観測されるスピンを含む水分子と周辺分子の間の相対的な配置や運動によって変化し、周囲の組織の状態をよく反映することから、種々の診断において広く用いられている。 Magnetic resonance imaging (MRI), which is currently used in clinical settings, is a technique for imaging the proton signal of water. The position information of protons present in the living body and the surrounding contrast are two-dimensionally shaded. It is a technology to display. Proton position information is obtained by using a gradient magnetic field that intentionally distorts the static magnetic field in nuclear magnetic resonance (NMR), and contrast is obtained as NMR information of protons such as water and lipids. Spin density, relaxation time, diffusion Determined by speed, chemical shift, phase, etc. In particular, the relaxation time is widely used in various diagnoses because it changes depending on the relative arrangement and movement between the water molecule including the observed spin and the surrounding molecules, and well reflects the state of the surrounding tissue. .
 現在上記MRI法に用いられMRI造影剤は、生体組織中の水の緩和時間を変化させることにより、その分布量が異なる組織間にコントラストを付加する。すなわち造影剤は水プロトンの緩和時間の変化を通し間接的に検出される。現在、GdやMnを含有するT1緩和造影剤や、酸化鉄を用いたT2緩和造影剤が用いられており、これらの金属イオンと水プロトンの相互作用により縦横の緩和が促進される。 The MRI contrast agent currently used in the MRI method adds contrast between tissues having different distribution amounts by changing the relaxation time of water in the living tissue. That is, the contrast agent is indirectly detected through a change in the relaxation time of water protons. Currently, T 1 relaxation contrast agents containing Gd and Mn and T 2 relaxation contrast agents using iron oxide are used, and longitudinal and lateral relaxation is promoted by the interaction between these metal ions and water protons.
 これらの金属イオンは有毒である傾向があるため、生体組織が吸収する能力を低減するために、実際には配位子によってキレート化されているものが使用される。しかしながらこのキレート化は、金属イオンが有している緩和能力を減少させ、造影剤としての効果を低減させることにもつながる。そこで、分子サイズに応じた回転相関時間の増大による緩和能上昇効果(常磁性体緩和促進効果)を利用した造影剤(特許文献1)や、有機ラジカルであるニトロキシド化合物と金属イオンをハイブリッド化し高い緩和能を有する造影剤(特許文献2)、また、超常磁性体の酸化鉄ナノ粒子をポリマーで複合化し平均粒子径が26nm程度のガン細胞選択性を有する造影剤が報告されている(非特許文献1)。 Since these metal ions tend to be toxic, what is actually chelated by a ligand is used to reduce the ability of living tissue to absorb. However, this chelation reduces the relaxation ability of the metal ions and leads to a reduction in the effect as a contrast agent. Therefore, the contrast agent (Patent Document 1) using the effect of increasing the relaxation ability (paramagnetic substance relaxation promoting effect) by increasing the rotation correlation time according to the molecular size, and the nitroxide compound that is an organic radical and a metal ion are highly hybridized. A contrast agent having relaxation ability (Patent Document 2) and a contrast agent having cancer cell selectivity with a superparamagnetic iron oxide nanoparticle composited with a polymer and having an average particle diameter of about 26 nm have been reported (Non-Patent Document 2). Reference 1).
 一方、金属イオンを全く用いず、有機ラジカルであるニトロキシル基を有するデンドリマーを用いた造影剤なども報告されている(特許文献3)。
 又はハイパーブランチポリマー末端にニトロキシル基を担持した造影剤なども報告されている(特許文献4)
On the other hand, a contrast agent using a dendrimer having a nitroxyl group which is an organic radical without using any metal ion has been reported (Patent Document 3).
Alternatively, a contrast agent carrying a nitroxyl group at the end of a hyperbranched polymer has also been reported (Patent Document 4).
 上記したように、これまで提案された造影剤にあっては、その多くが金属イオンを含有しており、生体内での安全性が危惧されるという課題を有している。
 また、金属イオンを用いない造影剤にあっては、緩和能が低いことや、ガン細胞などへの選択性が期待できる平均粒子径の大きさを得るには合成上に課題を有している。
As described above, many of the contrast agents proposed so far contain metal ions, and there is a problem that safety in vivo is a concern.
Further, in contrast agents that do not use metal ions, there are problems in synthesis in order to obtain an average particle size that has low relaxation ability and can be expected to be selective for cancer cells. .
 本発明は、上記の事情に鑑みなされたものであって、すなわち、生体内での安全性を備え、緩和能の大きさや、ガン細胞や臓器選択性などの種々の要求を満足するようなMRI造影剤として応用することができる、新規なポルフィリン金属錯体及びその分子集合体を提供することを目的とする。 The present invention has been made in view of the above circumstances, that is, MRI that has safety in vivo and satisfies various requirements such as the magnitude of relaxation ability and cancer cell and organ selectivity. It is an object of the present invention to provide a novel porphyrin metal complex and its molecular assembly that can be applied as a contrast agent.
 本発明者らは、上記の課題を解決するために鋭意検討した結果、ポルフィリン金属錯体にエチレングリコール鎖を導入することにより、得られた金属錯体が非イオン性であり、しかも該金属錯体が水溶液中で自己集合化し、直径5~2000nmの分子集合体を形成することができることを見出した。そしてこの金属錯体及び集合体を利用することにより、大きな常磁性体緩和促進効果を発現して高い緩和能を有する、新規なMRI造影剤として有用であることを見いだし、本発明を完成させた。 As a result of diligent studies to solve the above problems, the present inventors have introduced an ethylene glycol chain into a porphyrin metal complex, whereby the resulting metal complex is nonionic, and the metal complex is an aqueous solution. It was found that it can self-assemble to form a molecular assembly having a diameter of 5 to 2000 nm. By using this metal complex and aggregate, it was found useful as a novel MRI contrast agent having a high paramagnetic substance relaxation promoting effect and high relaxation ability, and completed the present invention.
 即ち、本発明は、第1観点として、式(1)で表されるポルフィリン金属錯体に関する。
Figure JPOXMLDOC01-appb-C000005
{式中、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11及びR12は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、スルホニル基、ヒドロキシ基、アミノ基、カルボキシル基、炭素原子数1乃至10のアルキル基〔このアルキル基はハロゲン原子、ヒドロキシ基、カルボキシル基、炭素原子数1乃至3のアルコキシ基、フェニル基(このフェニル基はハロゲン原子、炭素原子数1乃至3のアルコキシ基、又は炭素原子数1乃至10のアルキル基で任意に置換されていてもよい。)で任意に置換されていてもよい。〕、炭素原子数3乃至6のシクロアルキル基、炭素原子数1乃至6のアルコキシ基、フェニル基〔このフェニル基はハロゲン原子、炭素原子数1乃至3のアルコキシ基、炭素原子数1乃至10のアルキル基、又は式(2)
Figure JPOXMLDOC01-appb-C000006
(nは1から10を表す。)
で表されるオリゴエチレングリコールメチルエーテル基で任意に置換されていてもよい。〕及び上記式(2)で表されるオリゴエチレングリコールメチルエーテル基からなる群から選択される基を表し、ただし、R1乃至R12のうち少なくとも一つは上記式(2)で表されるオリゴエチレングリコールメチルエーテル基又は上記式(2)で表されるオリゴエチレングリコールメチルエーテル基で置換されたフェニル基を表し、
Mは、2価の金属原子、又は酸素原子、ハロゲン原子、ニトロ基、もしくはシアノ基を有してもよい3価~5価の金属原子を表す。}。
 第2観点として、前記式(1)において、前記R1、R2、R4、R5、R7、R8、R10及びR11はそれぞれ独立して、水素原子、塩素原子、臭素原子、シアノ基、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、トリフルオロメチル基、ヒドロキシメチル基、ヒドロキシエチル基、カルボキシメチル基、メトキシ基、エトキシ基、ノルマルプロポキシ基、イソプロポキシ基、フェニル基、ペンタフルオロフェニル基、アニソール基及びトリル基からなる群から選択される基を表し、
前記R3、R6、R9及びR12はそれぞれ独立して、式(3)
Figure JPOXMLDOC01-appb-C000007
(式中、R13、R14、R15、R16及びR17はそれぞれ独立して、水素原子、又は前記式(2)で表されるオリゴエチレングリコールメチルエーテル基を表す。)で表されるフェニル基を表す、第1観点に記載のポルフィリン金属錯体に関する。
 第3観点として、前記式(1)において、前記R1、R2、R4、R5、R7、R8、R10及びR11は水素原子を表し、前記R3、R6、R9及びR12は、それぞれ独立して、式(4)
Figure JPOXMLDOC01-appb-C000008
(式中、nは3から6を表す。)
で表されるフェニル基を表す、第2観点に記載のポルフィリン金属錯体に関する。
 第4観点として、前記Mはハロゲン原子を有するMn(III)、Fe(III)又はCo(III)を表す、第1観点乃至第3観点のうちいずれか一項に記載のポルフィリン金属錯体に関する。
 第5観点として、前記Mはハロゲン原子を有するMn(III)を表す、第4観点に記載のポルフィリン金属錯体に関する。
 第6観点として、第1観点乃至第5観点のうちいずれか一項に記載のポルフィリン金属錯体の自己集合化により形成される直径5nm~2000nmの大きさを有する分子集合体に関する。
 第7観点として、第1観点乃至第5観点のうちいずれか一項に記載のポルフィリン金属錯体、又は第6観点に記載の分子集合体を含むMRI造影剤に関する。
That is, this invention relates to the porphyrin metal complex represented by Formula (1) as a 1st viewpoint.
Figure JPOXMLDOC01-appb-C000005
{Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are each independently a hydrogen atom, halogen Atom, nitro group, cyano group, sulfonyl group, hydroxy group, amino group, carboxyl group, alkyl group having 1 to 10 carbon atoms [this alkyl group is a halogen atom, hydroxy group, carboxyl group, carbon atom having 1 to 3 carbon atoms An alkoxy group and a phenyl group (this phenyl group may be optionally substituted with a halogen atom, an alkoxy group having 1 to 3 carbon atoms, or an alkyl group having 1 to 10 carbon atoms). May be. ], A cycloalkyl group having 3 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group [this phenyl group is a halogen atom, an alkoxy group having 1 to 3 carbon atoms, or an alkyl group having 1 to 10 carbon atoms. Alkyl group or formula (2)
Figure JPOXMLDOC01-appb-C000006
(N represents 1 to 10)
It may be optionally substituted with an oligoethylene glycol methyl ether group represented by: And a group selected from the group consisting of oligoethylene glycol methyl ether groups represented by the above formula (2), provided that at least one of R 1 to R 12 is represented by the above formula (2). Represents a phenyl group substituted with an oligoethylene glycol methyl ether group or an oligoethylene glycol methyl ether group represented by the above formula (2);
M represents a divalent metal atom or a trivalent to pentavalent metal atom which may have an oxygen atom, a halogen atom, a nitro group, or a cyano group. }.
As a second aspect, in the formula (1), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 and R 11 are each independently a hydrogen atom, chlorine atom, bromine atom. Cyano group, methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, isobutyl group, secondary butyl group, tertiary butyl group, trifluoromethyl group, hydroxymethyl group, hydroxyethyl group, carboxymethyl group, Represents a group selected from the group consisting of methoxy group, ethoxy group, normal propoxy group, isopropoxy group, phenyl group, pentafluorophenyl group, anisole group and tolyl group;
R 3 , R 6 , R 9 and R 12 are each independently selected from the formula (3)
Figure JPOXMLDOC01-appb-C000007
(Wherein R 13 , R 14 , R 15 , R 16 and R 17 each independently represents a hydrogen atom or an oligoethylene glycol methyl ether group represented by the formula (2)). The porphyrin metal complex according to the first aspect, which represents a phenyl group.
As a third aspect, in the formula (1), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 and R 11 represent a hydrogen atom, and the R 3 , R 6 , R 9 and R 12 are each independently represented by the formula (4)
Figure JPOXMLDOC01-appb-C000008
(In the formula, n represents 3 to 6.)
The porphyrin metal complex as described in the 2nd viewpoint which represents the phenyl group represented by these.
As a fourth aspect, the M relates to the porphyrin metal complex according to any one of the first to third aspects, which represents Mn (III), Fe (III), or Co (III) having a halogen atom.
As a fifth aspect, the M relates to the porphyrin metal complex according to the fourth aspect, which represents Mn (III) having a halogen atom.
As a sixth aspect, the present invention relates to a molecular assembly having a diameter of 5 nm to 2000 nm formed by self-assembly of the porphyrin metal complex according to any one of the first aspect to the fifth aspect.
As a seventh aspect, the present invention relates to an MRI contrast agent comprising the porphyrin metal complex according to any one of the first aspect to the fifth aspect or the molecular assembly according to the sixth aspect.
 本発明のポルフィリン金属錯体は非イオン性であり、水溶液中で自己集合化して直径5~2000nm、好ましくは直径30~1000nmの分子集合体を形成する。このため、大きな常磁性体緩和促進効果により高い緩和能を有する新規なMRI用造影剤として利用可能である。また、分子集合体は5~2000nmの大きさを有することから、ガン細胞選択性や臓器選択性を有する画期的なMRI造影剤と期待される。 The porphyrin metal complex of the present invention is nonionic and self-assembles in an aqueous solution to form a molecular assembly having a diameter of 5 to 2000 nm, preferably 30 to 1000 nm. For this reason, it can be used as a novel contrast agent for MRI having a high relaxation ability due to a large paramagnetic substance relaxation promoting effect. In addition, since the molecular assembly has a size of 5 to 2000 nm, it is expected to be a revolutionary MRI contrast agent having cancer cell selectivity and organ selectivity.
図1は、化合物(3)[Mn-TPPTEG12]、化合物(16)[Mn-TPPHEG3]、化合物(19)[Mn-TPPHEG6]及び化合物(21)[Mn-TPPHEG12]の動的光散乱法(DLS)の測定結果を示す図である(横軸:直径(nm)、縦軸:散乱強度(%))。FIG. 1 shows the dynamics of compound (3) [Mn-TPPPEG 12 ], compound (16) [Mn-TPPHEG 3 ], compound (19) [Mn-TPPHEG 6 ] and compound (21) [Mn-TPPHEG 12 ]. It is a figure which shows the measurement result of a light-scattering method (DLS) (horizontal axis: diameter (nm), vertical axis: scattering intensity (%)). 図2は、化合物(3)[Mn-TPPTEG12]の透過型電子顕微鏡(TEM)の観察結果を示す図(図2(a))、化合物(16)[Mn-TPPHEG3]の透過型電子顕微鏡(TEM)の観察結果を示す図(図2(b))、化合物(19)[Mn-TPPHEG6]の透過型電子顕微鏡(TEM)の観察結果を示す図(図2(c))、及び化合物(21)[Mn-TPPHEG12]の透過型電子顕微鏡(TEM)の観察結果を示す図(図2(d))である。FIG. 2 is a view showing a result of observation of a compound (3) [Mn-TPPPEG 12 ] by a transmission electron microscope (TEM) (FIG. 2 (a)), and a transmission electron of the compound (16) [Mn-TPPHEG 3 ]. shows the observation results of the microscope (TEM) (FIG. 2 (b)), compound (19) [Mn-TPPHEG 6 ] shows the observations transmission electron microscope (TEM) in (FIG. 2 (c)), And FIG. 2D is a diagram showing an observation result of a transmission electron microscope (TEM) of the compound (21) [Mn-TPPHEG 12 ] (FIG. 2D). 図3は、化合物(3)[Mn-TPPTEG12]のT1緩和時間(縦緩和)(図3(a))及びT2緩和時間(横緩和)(図3(b))の測定結果を示す図、化合物(16)[Mn-TPPHEG3]のT1緩和時間(縦緩和)(図3(c))及びT2緩和時間(横緩和)(図3(d))の測定結果を示す図、化合物(19)[Mn-TPPHEG6]のT1緩和時間(縦緩和)(図3(e))及びT2緩和時間(横緩和)(図3(f))の測定結果を示す図、及び化合物(21)[Mn-TPPHEG12]のT1緩和時間(縦緩和)(図3(g))及びT2緩和時間(横緩和)(図3(h))の測定結果を示す図である(縦軸:緩和時間の逆数、横軸:濃度(mM))。FIG. 3 shows the measurement results of T 1 relaxation time (longitudinal relaxation) (FIG. 3 (a)) and T 2 relaxation time (lateral relaxation) (FIG. 3 (b)) of compound (3) [Mn-TPPPEG 12 ]. shown figure, the measurement results of the compound (16) [Mn-TPPHEG 3 ] T 1 relaxation time (longitudinal relaxation) (FIG. 3 (c)) and T 2 relaxation times (transverse relaxation) (FIG. 3 (d)) showing figure shows the measurement result of the compound (19) [Mn-TPPHEG 6 ] T 1 relaxation time (longitudinal relaxation) (FIG. 3 (e)) and T 2 relaxation times (transverse relaxation) (FIG. 3 (f)) And FIG. 3 is a graph showing measurement results of T 1 relaxation time (longitudinal relaxation) (FIG. 3 (g)) and T 2 relaxation time (lateral relaxation) (FIG. 3 (h)) of compound (21) [Mn-TPPHEG 12 ]. (Vertical axis: reciprocal relaxation time, horizontal axis: concentration (mM)).
[ポルフィリン金属錯体]
 本発明は、上記式(1)で表されるポルフィリン金属錯体に関する。
 式(1)で表される金属錯体において、置換基R1乃至R12は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、スルホニル基、ヒドロキシ基、アミノ基、カルボキシル基、炭素原子数1乃至10のアルキル基〔このアルキル基はハロゲン原子、ヒドロキシ基、カルボキシル基、炭素原子数1乃至3のアルコキシ基、フェニル基(このフェニル基はハロゲン原子、炭素原子数1乃至3のアルコキシ基、又は炭素原子数1乃至10のアルキル基で任意に置換されていてもよい。)で任意に置換されていてもよい。〕、炭素原子数3乃至6のシクロアルキル基、炭素原子数1乃至6のアルコキシ基、フェニル基〔このフェニル基はハロゲン原子、炭素原子数1乃至3のアルコキシ基、炭素原子数1乃至10のアルキル基、又は上記式(2)で表されるオリゴエチレングリコールメチルエーテル基で任意に置換されていてもよい。〕、又は上記式(2)で表されるオリゴエチレングリコールメチルエーテル基を表し、ただし、R1乃至R12のうちの少なくとも一つは上記式(2)で表されるオリゴエチレングリコールメチルエーテル基又は上記式(2)で表されるオリゴエチレングリコールメチルエーテル基で置換されたフェニル基を表す。
[Porphyrin metal complex]
The present invention relates to a porphyrin metal complex represented by the above formula (1).
In the metal complex represented by the formula (1), the substituents R 1 to R 12 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a sulfonyl group, a hydroxy group, an amino group, a carboxyl group, An alkyl group having 1 to 10 carbon atoms [this alkyl group is a halogen atom, a hydroxy group, a carboxyl group, an alkoxy group having 1 to 3 carbon atoms, a phenyl group (this phenyl group is a halogen atom, having 1 to 3 carbon atoms) It may be optionally substituted with an alkoxy group or an alkyl group having 1 to 10 carbon atoms. ], A cycloalkyl group having 3 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group [this phenyl group is a halogen atom, an alkoxy group having 1 to 3 carbon atoms, or an alkyl group having 1 to 10 carbon atoms. It may be optionally substituted with an alkyl group or an oligoethylene glycol methyl ether group represented by the above formula (2). Or an oligoethylene glycol methyl ether group represented by the above formula (2), wherein at least one of R 1 to R 12 is an oligoethylene glycol methyl ether group represented by the above formula (2) Alternatively, it represents a phenyl group substituted with an oligoethylene glycol methyl ether group represented by the above formula (2).
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 また、上記各置換基で任意に置換されていてもよい炭素原子数1乃至10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、ノルマルペンチル基、イソペンチル基、ターシャリーペンチル基、ネオペンチル基、ノルマルヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基、2,2,3,3,3-ペンタフルオロプロピル基、ヒドロキシメチル基、ヒドロキシエチル基、カルボキシメチル基、カルボキシエチル基、メトキシエチル基、ベンジル基、p-フルオロベンジル基、p-メトキシベンジル基、p-メチルベンジル基、フェニルエチル基等が挙げられる。
 また炭素原子数3乃至6のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基又はシクロヘキシル基が挙げられ、炭素原子数1乃至6のアルコキシ基としては、メトキシ基、エトキシ基、ノルマルプロポキシ基、イソプロポキシ基、ノルマルブトキシ基、イソブトキシ基、セカンダリーブトキシ基、ターシャリーブトキシ基、ノルマルペンチルオキシ基、ノルマルヘキシルオキシ基等が挙げられる。
 さらに上記核置換基で任意に置換されていてもよいフェニル基としては、フェニル基、ペンタフェニル基、アニソール基、トリル基等が挙げられる。
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the alkyl group having 1 to 10 carbon atoms which may be optionally substituted with the above substituents include, for example, methyl group, ethyl group, propyl group, isopropyl group, normal butyl group, isobutyl group, secondary butyl Group, tertiary butyl group, normal pentyl group, isopentyl group, tertiary pentyl group, neopentyl group, normal hexyl group, heptyl group, octyl group, nonyl group, decyl group, trifluoromethyl group, 2,2,2-trimethyl Fluoroethyl group, 1,1,2,2,2-pentafluoroethyl group, 2,2,3,3,3-pentafluoropropyl group, hydroxymethyl group, hydroxyethyl group, carboxymethyl group, carboxyethyl group, Methoxyethyl group, benzyl group, p-fluorobenzyl group, p-methoxybenzyl group, p Methylbenzyl group, and phenylethyl group.
Examples of the cycloalkyl group having 3 to 6 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, and cyclohexyl group. Examples of the alkoxy group having 1 to 6 carbon atoms include methoxy group, ethoxy group, and normal propoxy group. Group, isopropoxy group, normal butoxy group, isobutoxy group, secondary butoxy group, tertiary butoxy group, normal pentyloxy group, normal hexyloxy group and the like.
Furthermore, examples of the phenyl group that may be optionally substituted with the above-described nucleus substituent include a phenyl group, a pentaphenyl group, an anisole group, and a tolyl group.
 好ましいR1乃至R12としては、それぞれ独立して、水素原子、塩素原子、臭素原子、シアノ基、スルホン酸基、ヒドロキシ基、アミノ基、カルボキシル基、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、トリフルオロメチル基、ヒドロキシメチル基、ヒドロキシエチル基、カルボキシメチル基、メトキシ基、エトキシ基、ノルマルプロポキシ基、イソプロポキシ基、フェニル基、ペンタフルオロフェニル基、アニソール基、トリル基、上記式(2)で表されるオリゴエチレングリコールメチルエーテル基で置換されたフェニル基、又は上記式(2)で表されるオリゴエチレングリコールメチルエーテル基が挙げられる。より好ましくは、水素原子、塩素原子、臭素原子、シアノ基、スルホン酸基、メチル基、エチル基、ノルマルプロピル基、トリフルオロメチル基、ヒドロキシメチル基、カルボキシメチル基、メトキシ基、フェニル基、ペンタフルオロフェニル基、又は上記式(2)で表されるオリゴエチレングリコールメチルエーテル基で置換されたフェニル基が挙げられる。さらに好ましくは、水素原子、エチル基、ノルマルプロピル基、フェニル基、ペンタフルオロフェニル基、又は上記式(2)で表されるオリゴエチレングリコールメチルエーテル基を有するフェニル基が挙げられる。 Preferable R 1 to R 12 are each independently a hydrogen atom, chlorine atom, bromine atom, cyano group, sulfonic acid group, hydroxy group, amino group, carboxyl group, methyl group, ethyl group, normal propyl group, isopropyl group. Group, normal butyl group, isobutyl group, secondary butyl group, tertiary butyl group, trifluoromethyl group, hydroxymethyl group, hydroxyethyl group, carboxymethyl group, methoxy group, ethoxy group, normal propoxy group, isopropoxy group, phenyl Group, pentafluorophenyl group, anisole group, tolyl group, phenyl group substituted with oligoethylene glycol methyl ether group represented by the above formula (2), or oligoethylene glycol methyl ether represented by the above formula (2) Groups. More preferably, hydrogen atom, chlorine atom, bromine atom, cyano group, sulfonic acid group, methyl group, ethyl group, normal propyl group, trifluoromethyl group, hydroxymethyl group, carboxymethyl group, methoxy group, phenyl group, pentane Examples thereof include a phenyl group substituted with a fluorophenyl group or an oligoethylene glycol methyl ether group represented by the above formula (2). More preferable examples include a hydrogen group, an ethyl group, a normal propyl group, a phenyl group, a pentafluorophenyl group, or a phenyl group having an oligoethylene glycol methyl ether group represented by the above formula (2).
 特に、上記式(1)中、R1、R2、R4、R5、R7、R8、R10及びR11はそれぞれ独立して、水素原子、塩素原子、臭素原子、シアノ基、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、トリフルオロメチル基、ヒドロキシメチル基、ヒドロキシエチル基、カルボキシメチル基、メトキシ基、エトキシ基、ノルマルプロポキシ基、イソプロポキシ基、フェニル基、ペンタフルオロフェニル基、アニソール基及びトリル基からなる群から選択される基を表すことが好ましく、R1、R2、R4、R5、R7、R8、R10及びR11が水素原子を表すことが最も好ましい。
 また上記式(1)中、R3、R6、R9及びR12は、それぞれ独立して、前記式(3)で表されるフェニル基を表すことが好ましく、R3、R6、R9及びR12がそれぞれ独立して前記式(4)で表されるフェニル基を表すことが最も好ましい。
In particular, in the above formula (1), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 and R 11 are each independently a hydrogen atom, chlorine atom, bromine atom, cyano group, Methyl, ethyl, normal propyl, isopropyl, normal butyl, isobutyl, secondary butyl, tertiary butyl, trifluoromethyl, hydroxymethyl, hydroxyethyl, carboxymethyl, methoxy, ethoxy It preferably represents a group selected from the group consisting of a group, a normal propoxy group, an isopropoxy group, a phenyl group, a pentafluorophenyl group, an anisole group and a tolyl group, and R 1 , R 2 , R 4 , R 5 , R Most preferably, 7 , R 8 , R 10 and R 11 represent a hydrogen atom.
Also in the above formula (1), R 3, R 6, R 9 and R 12 are each independently preferably represent a phenyl group represented by the formula (3), R 3, R 6, R Most preferably, 9 and R 12 each independently represent a phenyl group represented by the formula (4).
 なお上記式(2)で表されるオリゴエチレングリコールメチルエーテル基において、nは1~10であり、好ましくは3~6である。
 また上記式(3)で表されるフェニル基において、R13、R14、R15、R16及びR17はそれぞれ独立して水素原子又は前記式(2)で表されるオリゴエチレングリコールメチルエーテル基を表す。
 そして上記式(4)で表されるオリゴエチレングリコールメチルエーテル基を有するフェニル基において、nは3~6を表す。
In the oligoethylene glycol methyl ether group represented by the above formula (2), n is 1 to 10, preferably 3 to 6.
In the phenyl group represented by the above formula (3), R 13 , R 14 , R 15 , R 16 and R 17 are each independently a hydrogen atom or an oligoethylene glycol methyl ether represented by the above formula (2). Represents a group.
In the phenyl group having an oligoethylene glycol methyl ether group represented by the above formula (4), n represents 3-6.
 また、上記式(1)中、Mは、2価の金属原子、又は酸素原子、ハロゲン原子、ニトロ基もしくはシアノ基を有してもよい3価~5価の金属原子を表す。
 Mは、具体的には、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、Hf、Ta、W、Re、Os、Ir、Pt、Au及びHgからなる群から選択される2価の金属原子、又は酸素原子、ハロゲン原子、ニトロ基、又はシアノ基を有してもよい3価~5価の金属原子である。
 2価の金属原子の具体例としては、マグネシウム(II)、カルシウム(II)、鉄(II)、コバルト(II)、ニッケル(II)、銅(II)、亜鉛(II)、ルテニウム(II)、パラジウム(II)、スズ(II)、オスミウム(II)、イリジウム(II)、白金(II)、鉛(II)等が挙げられ、好ましくは亜鉛(II)、ルテニウム(II)、パラジウム(II)、スズ(II)、オスミウム(II)、イリジウム(II)、白金(II)が挙げられる。
 3価の金属原子の具体例としては、アルミニウム(III)、鉄(III)、マンガン(III)、コバルト(III)、ロジウム(III)、インジウム(III)、アンチモン(III)、ビスマス(III)等が挙げられ、好ましくはロジウム(III)が挙げられる。
 4価の金属原子の具体例としては、ゲルマニウム(IV)、スズ(IV)等が挙げられ、好ましくはスズ(IV)が挙げられる。
 5価の金属原子の具体例としては、モリブデン(V)、アンチモン(V)、ビスマス(V)等が挙げられる。
 これらの中でも、Mはハロゲン原子を有するMn(III)、Fe(III)又はCo(III)であることが好ましく、Mがハロゲン原子を有するMn(III)であることが最も好ましい。
In the above formula (1), M represents a divalent metal atom or a trivalent to pentavalent metal atom which may have an oxygen atom, a halogen atom, a nitro group or a cyano group.
Specifically, M is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, A divalent metal atom selected from the group consisting of W, Re, Os, Ir, Pt, Au, and Hg, or a trivalent to pentavalent group that may have an oxygen atom, a halogen atom, a nitro group, or a cyano group Metal atom.
Specific examples of the divalent metal atom include magnesium (II), calcium (II), iron (II), cobalt (II), nickel (II), copper (II), zinc (II), ruthenium (II) , Palladium (II), tin (II), osmium (II), iridium (II), platinum (II), lead (II), etc., preferably zinc (II), ruthenium (II), palladium (II ), Tin (II), osmium (II), iridium (II), platinum (II).
Specific examples of the trivalent metal atom include aluminum (III), iron (III), manganese (III), cobalt (III), rhodium (III), indium (III), antimony (III), and bismuth (III). Etc., preferably rhodium (III).
Specific examples of the tetravalent metal atom include germanium (IV), tin (IV), and preferably tin (IV).
Specific examples of the pentavalent metal atom include molybdenum (V), antimony (V), bismuth (V), and the like.
Among these, M is preferably Mn (III), Fe (III) or Co (III) having a halogen atom, and most preferably M is Mn (III) having a halogen atom.
 次に、ポルフィリン金属錯体の製造方法について説明する。
 まず、本発明のポルフィリン金属錯体に用いられるポルフィリン配位子は、例えばPNAS,104(26),10780-2007やJournal of Polymer Science:Part A:Polymer Chemistry.32,1243-1254,1994、及び、Huaxue Shijie,31(4)164-6,1990等に記載の方法に準じて合成できる。代表的なポルフィリン配位子は、以下の方法で製造することができる。
Figure JPOXMLDOC01-appb-C000009
Next, the manufacturing method of a porphyrin metal complex is demonstrated.
First, porphyrin ligands used in the porphyrin metal complex of the present invention include, for example, PNAS, 104 (26), 10780-2007 and Journal of Polymer Science: Part A: Polymer Chemistry. 32, 1243-1254, 1994 and Huaxue Shijie, 31 (4) 164-6, 1990, and the like. A typical porphyrin ligand can be produced by the following method.
Figure JPOXMLDOC01-appb-C000009
 得られたスルホン酸化合物をChemistry-A European Journal,13(31),8660-8666,2007や、Chemistry-A European Journal,12,3735-3740,2007等の方法で脱プロトン化を行い、アニオン性のポルフィリンが得られる。 The obtained sulfonic acid compound is deprotonated by a method such as Chemistry-A European Journal, 13 (31), 8660-8666, 2007, Chemistry-A European Journal, 12, 3735-3740, 2007, etc. Of porphyrin is obtained.
 また、下記に示すRussian Jouranl of General Chemistry,77(11),1955-1958,2007等の手順に従い、カチオン性のポルフィリンを得ることもできる。
Figure JPOXMLDOC01-appb-C000010
Cationic porphyrins can also be obtained according to the following procedures such as Russian Journal of General Chemistry, 77 (11), 1955-1958, 2007.
Figure JPOXMLDOC01-appb-C000010
 次に、式(1)で表されるポルフィリン金属錯体は、例えば、前出のPNAS,104(26),10780-2007やJournal of Polymer Science:Part A:Polymer Chemistry.32,1243-1254,1994等に記載の方法に準じて合成できる。 Next, the porphyrin metal complex represented by the formula (1) is, for example, the above-mentioned PNAS, 104 (26), 10780-2007, Journal of Polymer Science: Part A: Polymer Chemistry. 32, 1243-1254, 1994 and the like.
[ポルフィリン金属錯体より形成される集合体]
 本発明のポルフィリン金属錯体は、水や水溶液又はアルコール水溶液などの極性溶液中に投入されると自己集合化する。ここで「自己集合化」(自己組織化ともいう)とは、当初ランダムな状態にある物質(分子)群において、分子が適切な外部条件下で分子間の非共有結合性相互作用等により自発的に会合することにより、マクロな機能性集合体に成長することを指す。
 具体的には、ポルフィリン金属錯体中のポルフィリン面と隣接する他の錯体中のポルフィリン面が集合し、また錯体の外側に位置するオリゴエチレングリコールメチルエーテル鎖が外部の溶液と分子間非共有結合を形成してポルフィリンの自己集合化を安定化し、その結果、直径5nm乃至2000nm程度、好ましくは直径30~1000nm程度の大きさを有する分子集合体が形成される。
[Aggregates formed from porphyrin metal complexes]
The porphyrin metal complex of the present invention self-assembles when charged into a polar solution such as water, an aqueous solution, or an alcohol aqueous solution. Here, “self-assembly” (also referred to as self-assembly) is spontaneous in a group of molecules (molecules) that are initially in a random state due to non-covalent interactions between molecules under appropriate external conditions. It means to grow into a macro functional assembly by meeting together.
Specifically, the porphyrin surface in the porphyrin metal complex and the porphyrin surface in another adjacent complex are assembled, and the oligoethylene glycol methyl ether chain located outside the complex forms an intermolecular non-covalent bond with the external solution. This stabilizes the self-assembly of porphyrin, and as a result, a molecular assembly having a diameter of about 5 nm to 2000 nm, preferably about 30 to 1000 nm is formed.
 上記本発明のポルフィリン金属錯体又はその分子集合体は、種々の分野への応用が期待されるが、中でもその性質や大きさから、高い常磁性体緩和促進効果とガン細胞や臓器選択性を有することが期待され、MRI造影剤として有用である。
 上記本発明のポルフィリン金属錯体又はその分子集合体からなるMRI造影剤は、通常注射用蒸留水、生理食塩水やリンゲル液等の溶媒に分散、懸濁又は溶解等の状態で用いられ、さらに一用に応じて、薬理学的に許容され得る単体、賦形剤等の添加剤を含めることができる。
 本発明の上記MRI造影剤は、細胞などに適用し得るほか、血管(静脈、動脈)内投与、経口投与、直腸内投与、腟内投与、リンパ管内投与、関節内投与等によって生体内に投与することができ、好ましくは、水剤又は乳剤又は懸濁液等の形態で静脈内投与や経口投与によって投与する。
 上記MRI造影剤に含められ得る添加剤としては、その投与形態、投与経路等によっても異なるが、具体的には、注射剤の場合には緩衝剤、抗菌剤、安定化剤、溶解補助剤や賦形剤等が単独又は組み合わせて用いられ、経口投与剤(具体的には水剤、シロップ剤、乳剤又は懸濁液等)の場合、着色剤、保存剤、安定化剤、懸濁化剤、乳化剤、粘稠剤、甘味剤、芳香剤等が単独又は組み合わせて用いられる。各種添加剤は、通常当分野で用いられるものが使用される。
The porphyrin metal complex or molecular assembly thereof according to the present invention is expected to be applied to various fields. Among them, from its nature and size, it has a high paramagnetic substance relaxation promoting effect and cancer cell or organ selectivity. Therefore, it is useful as an MRI contrast agent.
The MRI contrast agent comprising the porphyrin metal complex of the present invention or a molecular assembly thereof is usually used in a state of being dispersed, suspended or dissolved in a solvent such as distilled water for injection, physiological saline or Ringer's solution. Depending on the case, pharmacologically acceptable additives such as simple substances and excipients can be included.
The MRI contrast agent of the present invention can be applied to cells and the like, and can be administered in vivo by intravascular (venous, arterial) administration, oral administration, rectal administration, intravaginal administration, intralymphatic administration, intraarticular administration, etc. Preferably, it is administered by intravenous administration or oral administration in the form of a solution or emulsion or suspension.
The additives that can be included in the MRI contrast agent vary depending on the administration form, administration route, and the like. Specifically, in the case of an injection, a buffer, an antibacterial agent, a stabilizer, a solubilizing agent, Excipients, etc. are used alone or in combination, and in the case of oral administration agents (specifically, water, syrup, emulsion or suspension), coloring agents, preservatives, stabilizers, suspending agents , Emulsifiers, thickeners, sweeteners, fragrances and the like may be used alone or in combination. As the various additives, those usually used in this field are used.
 本発明の上記MRI造影剤は、従来のMRI用造影剤に準じて投与、造影することができる。
 また上記MRI造影剤は、ヒト以外にも各種動物用の造影剤としても好適に用いることができ、その投与形態、投与経路、投与量等は対象となる動物の体重や状態によって適宜選択する。
The MRI contrast agent of the present invention can be administered and imaged according to a conventional MRI contrast agent.
Further, the MRI contrast agent can be suitably used as a contrast agent for various animals other than humans, and its administration form, administration route, dosage and the like are appropriately selected according to the body weight and condition of the subject animal.
 以下に実施例を掲げて本発明をさらに詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to only these examples.
[実施例1:Mn-TPPTEG12の合成]
Figure JPOXMLDOC01-appb-C000011
[Example 1: Synthesis of Mn-TPPPEG 12 ]
Figure JPOXMLDOC01-appb-C000011
 上記スキームに従い、化合物(1)より最終目的物である化合物(3)[Mn-TPPTEG12]を合成した。
 化合物(1)は文献既知の化合物であり、J.Org.Chem.,2005,70,7065-7079を参考に合成を行った。
According to the above scheme, compound (3) [Mn-TPPPEG 12 ], which is the final product, was synthesized from compound (1).
Compound (1) is a known compound in the literature. Org. Chem. , 2005, 70, 7065-7079.
<化合物(2)の合成>
 化合物(1)0.6g(1.0mmol)を酢酸10mlに溶解し、ピロール0.07ml(1.0mmol)を加え、5時間130℃で加熱還流した。冷却後、エバポレーターで溶媒留去し、黒色油状体の生成物を得た。これをシリカゲルカラムクロマトグラフィーにより精製を行った。1回目は展開溶媒をクロロホルム:メタノールを用いて、2回目は展開溶媒をジエチルエーテル:メタノールを用いて、いずれも365nmの光を当てながら、桃色の蛍光を発するフラクションを集めた。溶媒を減圧留去し、紫色油状体の化合物(2)[TPPTEG12]80mg(31.3μmol)を得た。
1H-NMR(270MHz,CDCl3)δ(ppm):8.89(s,8H),7.46(s,8H),3.3-4.5(m,180H),-2.87(s,2H)
・UV-vis(H2O):λmax(nm)424,518,554,592,648
・FABMS(m-ニトロベンジルアルコール):2560.3281(M++1)
<Synthesis of Compound (2)>
0.6 g (1.0 mmol) of compound (1) was dissolved in 10 ml of acetic acid, 0.07 ml (1.0 mmol) of pyrrole was added, and the mixture was heated to reflux at 130 ° C. for 5 hours. After cooling, the solvent was distilled off with an evaporator to obtain a black oily product. This was purified by silica gel column chromatography. In the first time, using chloroform: methanol as a developing solvent, and in the second time using diethyl ether: methanol as a developing solvent, fractions emitting pink fluorescence were collected while applying 365 nm light. The solvent was distilled off under reduced pressure to obtain 80 mg (31.3 μmol) of a purple oily compound (2) [TPPPEG 12 ].
1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 8.89 (s, 8H), 7.46 (s, 8H), 3.3-4.5 (m, 180H), -2. 87 (s, 2H)
UV-vis (H 2 O): λ max (nm) 424, 518, 554, 592, 648
FABMS (m-nitrobenzyl alcohol): 2560.3281 (M + +1)
<化合物(3)の合成>
 化合物(2)70mg(27.3μmol)をジメチルホルムアミド10mlに溶解し、二臭素化マンガン四水和物500mg(1.74mmol)を加え、135℃で加熱し、8時間撹拌した。冷却後、真空ポンプで溶媒留去し、クロロホルムで抽出した後、有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール)により精製を行い、緑色油状体の化合物(3)[Mn-TPPTEG12]50mg(19.0μmol)を得た。
・UV-vis(H2O):λmax(nm)382,402,470,518,566,602
・FABMS(m-ニトロベンジルアルコール):2613.2433(M++1-Br-
<Synthesis of Compound (3)>
70 mg (27.3 μmol) of compound (2) was dissolved in 10 ml of dimethylformamide, 500 mg (1.74 mmol) of manganese dibromide tetrahydrate was added, heated at 135 ° C., and stirred for 8 hours. After cooling, the solvent was distilled off with a vacuum pump and extracted with chloroform, and then the organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. Purification was carried out by silica gel column chromatography (chloroform: methanol) to obtain 50 mg (19.0 μmol) of a green oily compound (3) [Mn-TPPPEG 12 ].
UV-vis (H 2 O): λ max (nm) 382, 402, 470, 518, 566, 602
FABMS (m-nitrobenzyl alcohol): 2613.433 (M + + 1-Br )
[実施例2:Mn-TPPHEG3の合成)
Figure JPOXMLDOC01-appb-C000012
[Example 2: Synthesis of Mn-TPPHEG 3]
Figure JPOXMLDOC01-appb-C000012
 上記スキームに従い、化合物(11)を用い、最終目的物である化合物(16)[Mn-TPPHEG3]を得た。
 化合物(11)は文献既知の化合物であり、Organic&Biomolecular Chemistry,6(12),2118-2132,2008を参考に合成を行った。
According to the above scheme, using Compound (11), Compound (16) [Mn-TPPHEG 3 ] as the final target product was obtained.
Compound (11) is a known compound in the literature, and was synthesized with reference to Organic & Biomolecular Chemistry, 6 (12), 2118-2132, 2008.
<化合物(12)の合成>)
 没食子酸メチル2g(10.86mmol)を蒸留ジメチルホルムアミド20mlに溶解し、化合物(11)15.1g(33.5mmol)、炭酸カリウム2g(14.5mmol)を加え、135℃で20時間撹拌した。反応途中で1回冷却後、真空ポンプで溶媒を留去し、クロロホルムに溶解し、吸引濾過をして塩を取り除いた。その後シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール)により精製を行った。これを再度蒸留ジメチルホルムアミド20mlに溶解し、化合物(11)12g(26.6mmol)、炭酸カリウム2g(14.5mmol)を加え、135℃で10時間撹拌した。反応終了後、真空ポンプで溶媒を留去し、クロロホルムに溶解し、吸引濾過にて塩を取り除いた。その後シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール)により精製し、橙色油状体の化合物(12)10g(9.8mmol)を得た。
1H-NMR(270MHz,CDCl3)δ(ppm):7.29(s,2H),3.37-4.19(m,81H),2.96(s,3H),
<Synthesis of Compound (12)>)
2 g (10.86 mmol) of methyl gallate was dissolved in 20 ml of distilled dimethylformamide, 15.1 g (33.5 mmol) of compound (11) and 2 g (14.5 mmol) of potassium carbonate were added, and the mixture was stirred at 135 ° C. for 20 hours. After cooling once during the reaction, the solvent was distilled off with a vacuum pump, dissolved in chloroform, and filtered by suction to remove the salt. Thereafter, purification was performed by silica gel column chromatography (chloroform: methanol). This was again dissolved in 20 ml of distilled dimethylformamide, 12 g (26.6 mmol) of compound (11) and 2 g (14.5 mmol) of potassium carbonate were added, and the mixture was stirred at 135 ° C. for 10 hours. After completion of the reaction, the solvent was distilled off with a vacuum pump, dissolved in chloroform, and the salt was removed by suction filtration. Thereafter, the product was purified by silica gel column chromatography (chloroform: methanol) to obtain 10 g (9.8 mmol) of orange oily compound (12).
1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 7.29 (s, 2H), 3.37-4.19 (m, 81H), 2.96 (s, 3H),
<化合物(13)の合成>
 化合物(12)10g(9.8mmol)を蒸留テトラヒドロフラン50mlに溶解し、氷浴中で水素化アルミニウムリチウム1.5g(39.5mmol)を加え、75℃で8時間加熱還流した。反応終了後、冷却し、メタノールをゆっくり滴下した。その後、酒石酸カリウムナトリウム水溶液、1Mの塩酸を加え中和した。エバポレーターにより溶媒を留去し、クロロホルムに溶解し、セライト濾過を行った。ろ液を濃縮したものをシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール)により精製し、黄色油状体の化合物(13)8.8g(8.9mmol)を得た。
1H-NMR(270MHz,CDCl3)δ(ppm):6.64(s,2H),4.57(s,2H),3.37-4.20(m,81H)
<Synthesis of Compound (13)>
10 g (9.8 mmol) of the compound (12) was dissolved in 50 ml of distilled tetrahydrofuran, 1.5 g (39.5 mmol) of lithium aluminum hydride was added in an ice bath, and the mixture was heated to reflux at 75 ° C. for 8 hours. After completion of the reaction, the reaction mixture was cooled and methanol was slowly added dropwise. Then, potassium sodium tartrate aqueous solution and 1M hydrochloric acid were added for neutralization. The solvent was removed by an evaporator, dissolved in chloroform, and filtered through celite. The filtrate was concentrated and purified by silica gel column chromatography (chloroform: methanol) to obtain 8.8 g (8.9 mmol) of yellow oily compound (13).
1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 6.64 (s, 2H), 4.57 (s, 2H), 3.37-4.20 (m, 81H)
<化合物(14)の合成>
 化合物(13)8.8g(8.9mmol)をクロロホルム100mlに溶解し、二酸化マンガン10g(115mmol)を加え、75℃で3時間加熱還流した。冷却後、吸引濾過を行い、ろ液を濃縮したものをシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール)により精製し、黄色油状体の化合物(14)4.3g(4.36mmol)を得た。
1H-NMR(270MHz,CDCl3)δ(ppm):9.82(s,1H),7.14(s,2H),3.37-4.26(m,81H)
<Synthesis of Compound (14)>
Compound (13) (8.8 g, 8.9 mmol) was dissolved in chloroform (100 ml), manganese dioxide (10 g, 115 mmol) was added, and the mixture was heated to reflux at 75 ° C. for 3 hours. After cooling, suction filtration was performed, and the filtrate was concentrated and purified by silica gel column chromatography (chloroform: methanol) to obtain 4.3 g (4.36 mmol) of yellow oily compound (14).
1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 9.82 (s, 1H), 7.14 (s, 2H), 3.37-4.26 (m, 81H)
<化合物(15)の合成>:
 化合物(14)1.5 g(1.52mmol)を酢酸20mlに溶解し、ベンズアルデヒド0.8g(7.5mmol)、ピロール0.61g(9.1mmol)を加え、10時間130℃で加熱還流した。冷却後、エバポレーターで溶媒留去し、黒色油状体のものを得た。これをシリカゲルカラムクロマトグラフィーにより精製を行った。1回目は展開溶媒クロロホルム:メタノールで、2回目は展開溶媒酢酸エチル:メタノールを用いて、いずれも365nmの光を当てながら、桃色の蛍光を発するフラクションを集めた。溶媒を減圧留去し、紫色油状体の化合物(15)[TPPHEG3]115mg(76.8μmol)を得た。
1H-NMR(270MHz,CDCl3)δ(ppm):8.91(d,2H),8.84(s,6H),8.21(dd,3H),7.77(s,6H),7.75(t,6H),7.48(s,2H),3.3-4.5(m,81H),-2.81(s,2H)
・UV-vis(H2O):λmax(nm)420,518,552,592,652
・FABMS(m-ニトロベンジルアルコール):1520.7[M++23]
<Synthesis of Compound (15)>:
Compound (14) 1.5 g (1.52 mmol) was dissolved in acetic acid 20 ml, benzaldehyde 0.8 g (7.5 mmol) and pyrrole 0.61 g (9.1 mmol) were added, and the mixture was heated to reflux at 130 ° C. for 10 hours. . After cooling, the solvent was distilled off with an evaporator to obtain a black oily substance. This was purified by silica gel column chromatography. Fractions emitting pink fluorescence were collected using the developing solvent chloroform: methanol for the first time and the developing solvent ethyl acetate: methanol for the second time, both being irradiated with 365 nm light. The solvent was distilled off under reduced pressure to obtain 115 mg (76.8 μmol) of a purple oily compound (15) [TPPHEG 3 ].
1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 8.91 (d, 2H), 8.84 (s, 6H), 8.21 (dd, 3H), 7.77 (s, 6H ), 7.75 (t, 6H), 7.48 (s, 2H), 3.3-4.5 (m, 81H), -2.81 (s, 2H)
UV-vis (H 2 O): λ max (nm) 420, 518, 552, 592, 652
FABMS (m-nitrobenzyl alcohol): 1520.7 [M + +23]
<化合物(16)の合成>
 化合物(15)100mg(66.8μmol)を蒸留ジメチルホルムアミド10mlに溶解し、二臭化マンガン四水和物300mg(1.05mmol)を加え、135℃で加熱し、8時間撹拌した。冷却後、真空ポンプで溶媒留去し、クロロホルムで抽出した後、有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール)により精製を行い、緑色油状体の化合物(16)59mg[Mn-TPPHEG3](36.2μmol)を得た。
・UV-vis(H2O):λmax(nm)380,400,468,520,568,602
<Synthesis of Compound (16)>
100 mg (66.8 μmol) of compound (15) was dissolved in 10 ml of distilled dimethylformamide, 300 mg (1.05 mmol) of manganese dibromide tetrahydrate was added, heated at 135 ° C., and stirred for 8 hours. After cooling, the solvent was distilled off with a vacuum pump and extracted with chloroform, and then the organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. Purification was performed by silica gel column chromatography (chloroform: methanol) to obtain 59 mg [Mn-TPPHEG 3 ] (36.2 μmol) of a green oily compound (16).
UV-vis (H 2 O): λ max (nm) 380, 400, 468, 520, 568, 602
[実施例3:Mn-TPPHEG6の合成]
Figure JPOXMLDOC01-appb-C000013
[Example 3: Synthesis of Mn-TPPHEG 6 ]
Figure JPOXMLDOC01-appb-C000013
上記スキームに従い、化合物(17)を用い、最終目的物である化合物(19)[Mn-TPPHEG6]を得た。 According to the above scheme, using Compound (17), Compound (19) [Mn-TPPHEG 6 ] as the final target product was obtained.
<化合物(17)の合成>
 30mlの水に0.54mlの塩酸を溶かした0.18Mの塩酸溶液に、ピロール3g(44.6mmol)を溶解し、ベンズアルデヒド(18.8mmol)をゆっくり滴下し、3時間室温で撹拌した。クロロホルムで抽出した後、有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(ヘキサン:クロロホルム)により精製を行い、黄色固体の化合物(17)1.4g(6.3mmol)を得た。
<Synthesis of Compound (17)>
3 g (44.6 mmol) of pyrrole was dissolved in a 0.18 M hydrochloric acid solution in which 0.54 ml of hydrochloric acid was dissolved in 30 ml of water, benzaldehyde (18.8 mmol) was slowly added dropwise, and the mixture was stirred at room temperature for 3 hours. After extraction with chloroform, the organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. Purification was performed by silica gel column chromatography (hexane: chloroform) to obtain 1.4 g (6.3 mmol) of a yellow solid compound (17).
<化合物(18)の合成>
 化合物(14)0.5g(0.5mmol)と化合物(17)0.17g(0.76mmol)を蒸留塩化メチレンに溶解させ、三フッ化ホウ素ジエチルエーテル錯体0.06ml(0.42mmol)を加え、1時間室温撹拌した。その後パラ-クロラ二ル100mg(0.4mmol)を加え、3時間室温撹拌した。少量の水を加え溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(1回目はヘキサン:クロロホルム、2回目はクロロホルム:メタノール)により精製を行い、紫色油状体の化合物(18)[TPPHEG6]50mg(21.0μmol)を得た。
<Synthesis of Compound (18)>
Compound (14) 0.5 g (0.5 mmol) and compound (17) 0.17 g (0.76 mmol) are dissolved in distilled methylene chloride, and boron trifluoride diethyl ether complex 0.06 ml (0.42 mmol) is added. Stir at room temperature for 1 hour. Thereafter, 100 mg (0.4 mmol) of para-chloranil was added and stirred at room temperature for 3 hours. A small amount of water was added, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (first time hexane: chloroform, second time chloroform: methanol) to give a purple oily compound (18) [TPPHEG 6 ] 50 mg ( 21.0 μmol) was obtained.
<化合物(19)の合成>
 化合物(18)50mg(21.0μmol)を蒸留ジメチルホルムアミド5mlに溶解し、二臭化マンガン四水和物200mg(0.7mmol)を加え、135℃で加熱し、8時間撹拌した。冷却後、真空ポンプで溶媒留去し、クロロホルムで抽出した後、有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール)により精製を行い、緑色油状体の化合物(19)[Mn-TPPHEG6]30mg(12.0μmol)を得た。
・UV-vis(H2O):λmax(nm)380,402,470,524,568,606
<Synthesis of Compound (19)>
50 mg (21.0 μmol) of compound (18) was dissolved in 5 ml of distilled dimethylformamide, 200 mg (0.7 mmol) of manganese dibromide tetrahydrate was added, heated at 135 ° C., and stirred for 8 hours. After cooling, the solvent was distilled off with a vacuum pump and extracted with chloroform, and then the organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography (chloroform: methanol) gave 30 mg (12.0 μmol) of a green oily compound (19) [Mn-TPPHEG 6 ].
UV-vis (H 2 O): λmax (nm) 380, 402, 470, 524, 568, 606
[実施例4:Mn-TPPHEG12の合成]
Figure JPOXMLDOC01-appb-C000014
[Example 4: Synthesis of Mn-TPPHEG 12 ]
Figure JPOXMLDOC01-appb-C000014
 上記スキームに従い、化合物(14)を用い、最終目的物である化合物(21)[Mn-TPPHEG12]を得た。 According to the above scheme, using Compound (14), Compound (21) [Mn-TPPHEG 12 ] as the final target product was obtained.
<化合物(20)の合成>
 化合物(14)1.5 g(1.52mmol)を酢酸20mlに溶解し、ピロール0.1g(1.49mmol)を加え、10時間130℃で加熱還流した。冷却後、エバポレーターで溶媒留去し、黒色油状体のものを得た。これをシリカゲルカラムクロマトグラフィーにより精製を行った。1回目は展開溶媒クロロホルム:メタノールで、2回目は展開溶媒酢酸エチル:メタノールを用いて、いずれも365nmの光を当てながら、桃色の蛍光を発するフラクションを集めた。溶媒を減圧留去し、紫色油状体の化合物(20)[TPPHEG12]250mg(60.3μmol)を得た。
1H-NMR(270MHz,CDCl3)δ(ppm):8.88(s,8H),7.45(s,8H),3.3-4.5(m,324H),-2.88(s,2H)
・UV-vis(H2O):λmax(nm)422,517,552,586,644
<Synthesis of Compound (20)>
Compound (14) (1.5 g, 1.52 mmol) was dissolved in acetic acid (20 ml), pyrrole (0.1 g, 1.49 mmol) was added, and the mixture was heated to reflux at 130 ° C. for 10 hours. After cooling, the solvent was distilled off with an evaporator to obtain a black oily substance. This was purified by silica gel column chromatography. Fractions emitting pink fluorescence were collected using the developing solvent chloroform: methanol for the first time and the developing solvent ethyl acetate: methanol for the second time, both being irradiated with 365 nm light. The solvent was distilled off under reduced pressure to obtain 250 mg (60.3 μmol) of a purple oily compound (20) [TPPHEG 12 ].
1 H-NMR (270 MHz, CDCl 3 ) δ (ppm): 8.88 (s, 8H), 7.45 (s, 8H), 3.3-4.5 (m, 324H), -2. 88 (s, 2H)
UV-vis (H 2 O): λmax (nm) 422, 517, 552, 586, 644
<化合物(21)の合成>
 化合物(20)200mg(48.2μmol)を蒸留ジメチルホルムアミド10mlに溶解し、二臭化マンガン四水和物1g(3.49mmol)を加え、135℃で加熱し、8時間撹拌した。冷却後、真空ポンプで溶媒留去し、クロロホルムで抽出した後、有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール)を3回行うことにより精製し、緑色油状体の化合物(21)[Mn-TPPHEG12]40mg(9.35μmol)を得た。
・UV-vis(H2O):λmax(nm)382,402,470,518,567,602
<Synthesis of Compound (21)>
200 mg (48.2 μmol) of compound (20) was dissolved in 10 ml of distilled dimethylformamide, 1 g (3.49 mmol) of manganese dibromide tetrahydrate was added, heated at 135 ° C., and stirred for 8 hours. After cooling, the solvent was distilled off with a vacuum pump and extracted with chloroform, and then the organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. Purification was performed by silica gel column chromatography (chloroform: methanol) three times to obtain 40 mg (9.35 μmol) of a green oily compound (21) [Mn-TPPHEG 12 ].
UV-vis (H 2 O): λmax (nm) 382, 402, 470, 518, 567, 602
[実施例5:動的光散乱法(DLS)による測定]
 実施例1-4で調製した化合物(3)[Mn-TPPTEG12]、化合物(16)[Mn-TPPHEG3]、化合物(19)[Mn-TPPHEG6]、化合物(21)[Mn-TPPHEG12]をそれぞれ脱イオン水に分散させ、0.1mMのサンプル1mlを調製した。
 このサンプルを用いて動的光散乱法(DLS,使用機器:シスメックス(株)製ZETA SIZER Nano series)により粒子径測定を行った。図1にその結果を示す。また表1に、本測定により得られたそれぞれの化合物において形成された集合体の大きさを示す。
[Example 5: Measurement by dynamic light scattering (DLS)]
Compound (3) prepared in Example 1-4 [Mn-TPPPEG 12 ], Compound (16) [Mn-TPPHEG 3 ], Compound (19) [Mn-TPPHEG 6 ], Compound (21) [Mn-TPPHEG 12 ] Were each dispersed in deionized water to prepare 1 ml of a 0.1 mM sample.
Using this sample, the particle size was measured by a dynamic light scattering method (DLS, equipment used: ZETA SIZE Nano series manufactured by Sysmex Corporation). The result is shown in FIG. Table 1 shows the size of the aggregate formed in each compound obtained by this measurement.
[実施例6:透過型電子顕微鏡(TEM)による観察]
 実施例1-4で調製した化合物(3)[Mn-TPPTEG12]、化合物(16)[Mn-TPPHEG3]、化合物(19)[Mn-TPPHEG6]、化合物(21)[Mn-TPPHEG12]をそれぞれ脱イオン水に分散させ、1mMのサンプルを調製した。
 このサンプルを応研商事(株)製のエラスチックカーボン支持膜(グリッドピッチ:100μm)に5μl乗せ、余分な溶液をろ紙で吸い取った。その後、2%酢酸ウラン水溶液5μlで染色を行い、余分な溶液はろ紙で吸い取った後、透過型電子顕微鏡(TEM)(日本電子(株)製,JEM 2000 EX)を用いて、形態観察を行った(図2)。また表1に、本観察により得られたそれぞれの化合物において形成された集合体の大きさを示す。
[Example 6: Observation by transmission electron microscope (TEM)]
Compound (3) prepared in Example 1-4 [Mn-TPPPEG 12 ], Compound (16) [Mn-TPPHEG 3 ], Compound (19) [Mn-TPPHEG 6 ], Compound (21) [Mn-TPPHEG 12 ] Were each dispersed in deionized water to prepare a 1 mM sample.
5 μl of this sample was placed on an elastic carbon support membrane (grid pitch: 100 μm) manufactured by Oken Shoji Co., Ltd., and the excess solution was blotted with a filter paper. Thereafter, staining is performed with 5 μl of a 2% uranium acetate aqueous solution, and the excess solution is blotted with a filter paper, followed by morphological observation using a transmission electron microscope (TEM) (manufactured by JEOL Ltd., JEM 2000 EX). (FIG. 2). Table 1 shows the size of the aggregate formed in each compound obtained by this observation.
[実施例7:緩和時間の測定]
 実施例1-4で調製した化合物(3)[Mn-TPPTEG12]、化合物(16)[Mn-TPPHEG3]、化合物(19)[Mn-TPPHEG6]、化合物(21)[Mn-TPPHEG12]をそれぞれ脱イオン水に分散させ、0.1mM~8mMの範囲の5つの濃度の異なるサンプルを調製した。5つの各濃度のサンプル0.3mlと脱イオン水0.3mlの計6サンプルを10φのサンプル管にそれぞれ入れ、日本電子(株)製のパルスNMR装置JNM-MU25RAN(0.59T、25MHz、25℃)を用いて、各サンプルについてのT1緩和時間(縦緩和)及びT2緩和時間(横緩和)を測定した。なおT1緩和時間はInvertion Recovery法により、T2緩和時間はCarr-Purcell-Meibuum-Gill(CPMG)法により測定した。各測定法別に、縦軸に水の緩和時間(緩和時間T1又はT2の逆数)、横軸に濃度でプロットし、その傾きから緩和能r1、r2(mM-1-1)を算出した(図3参照)。得られた各化合物の緩和能r1、r2の結果を表1に示す。
 図3及び表1に示すように、化合物(3)[Mn-TPPTEG12]の緩和能r1(図3(a))と緩和能r2(図3(b))は、それぞれ18mM-1-1、21mM-1-1という値を得た。この値は、従来のMRI造影剤であるGd-DTPAの緩和能r1=5.5M-1-1(0.59T、25MHz、25℃)と比べると、大きな値であり、化合物(3)がMRI造影剤として臨床応用可能であることが確認された。同様に化合物(16)[Mn-TPPHEG3]、化合物(19)[Mn-TPPHEG6]、化合物(21)[Mn-TPPHEG12]の緩和能の値もGd-DTPAに比べて大きな値であり、これら化合物もMRI造影剤として臨床応用可能であることが確認された。
[Example 7: Measurement of relaxation time]
Compound (3) prepared in Example 1-4 [Mn-TPPPEG 12 ], Compound (16) [Mn-TPPHEG 3 ], Compound (19) [Mn-TPPHEG 6 ], Compound (21) [Mn-TPPHEG 12 ] Were each dispersed in deionized water to prepare 5 different concentrations of samples ranging from 0.1 mM to 8 mM. A total of 6 samples of 0.3 ml of each of the five concentrations and 0.3 ml of deionized water were placed in a 10φ sample tube, respectively, and a pulse NMR apparatus JNM-MU25RAN (0.59T, 25 MHz, 25 manufactured by JEOL Ltd.) was used. C)), T 1 relaxation time (longitudinal relaxation) and T 2 relaxation time (lateral relaxation) of each sample were measured. The T 1 relaxation time was measured by the Invertion Recovery method, and the T 2 relaxation time was measured by the Carr-Purcell-Meibuum-Gill (CPMG) method. For each measurement method, the vertical axis represents the relaxation time of water (reciprocal of relaxation time T 1 or T 2 ) and the horizontal axis represents the concentration, and the relaxation capacity r 1 , r 2 (mM −1 s −1 ) from the slope. Was calculated (see FIG. 3). Table 1 shows the results of the relaxation abilities r 1 and r 2 of the obtained compounds.
As shown in FIG. 3 and Table 1, the relaxation ability r 1 (FIG. 3 (a)) and relaxation ability r 2 (FIG. 3 (b)) of the compound (3) [Mn-TPPPEG 12 ] were 18 mM −1 , respectively. Values of s −1 , 21 mM −1 s −1 were obtained. This value is a large value compared with the relaxation ability r 1 = 5.5 M −1 s −1 (0.59T, 25 MHz, 25 ° C.) of Gd-DTPA, which is a conventional MRI contrast agent. ) Was confirmed to be clinically applicable as an MRI contrast agent. Similarly, the relaxation ability values of the compound (16) [Mn-TPPHEG 3 ], the compound (19) [Mn-TPPHEG 6 ] and the compound (21) [Mn-TPPHEG 12 ] are also larger than those of Gd-DTPA. These compounds were also confirmed to be clinically applicable as MRI contrast agents.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
米国特許第4,822,594号明細書US Pat. No. 4,822,594 特表2001-523215号公報JP-T-2001-523215 特表2004-524259号公報JP-T-2004-524259 国際公開第2009/054455号パンフレットInternational Publication No. 2009/054455 Pamphlet

Claims (7)

  1. 式(1)で表されるポルフィリン金属錯体
    Figure JPOXMLDOC01-appb-C000001
    {式中、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11及びR12は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、スルホニル基、ヒドロキシ基、アミノ基、カルボキシル基、炭素原子数1乃至10のアルキル基〔このアルキル基はハロゲン原子、ヒドロキシ基、カルボキシル基、炭素原子数1乃至3のアルコキシ基、フェニル基(このフェニル基はハロゲン原子、炭素原子数1乃至3のアルコキシ基、又は炭素原子数1乃至10のアルキル基で任意に置換されていてもよい。)で任意に置換されていてもよい。〕、炭素原子数3乃至6のシクロアルキル基、炭素原子数1乃至6のアルコキシ基、フェニル基〔このフェニル基はハロゲン原子、炭素原子数1乃至3のアルコキシ基、炭素原子数1乃至10のアルキル基、又は式(2)
    Figure JPOXMLDOC01-appb-C000002
    (nは1から10を表す。)
    で表されるオリゴエチレングリコールメチルエーテル基で任意に置換されていてもよい。〕及び上記式(2)で表されるオリゴエチレングリコールメチルエーテル基からなる群から選択される基を表し、ただし、R1乃至R12のうち少なくとも一つは上記式(2)で表されるオリゴエチレングリコールメチルエーテル基又は上記式(2)で表されるオリゴエチレングリコールメチルエーテル基で置換されたフェニル基を表し、
    Mは、2価の金属原子、又は酸素原子、ハロゲン原子、ニトロ基、もしくはシアノ基を有してもよい3価~5価の金属原子を表す。}。
    Porphyrin metal complex represented by the formula (1)
    Figure JPOXMLDOC01-appb-C000001
    {Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are each independently a hydrogen atom, halogen Atom, nitro group, cyano group, sulfonyl group, hydroxy group, amino group, carboxyl group, alkyl group having 1 to 10 carbon atoms [this alkyl group is a halogen atom, hydroxy group, carboxyl group, carbon atom having 1 to 3 carbon atoms An alkoxy group and a phenyl group (this phenyl group may be optionally substituted with a halogen atom, an alkoxy group having 1 to 3 carbon atoms, or an alkyl group having 1 to 10 carbon atoms). May be. ], A cycloalkyl group having 3 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group [this phenyl group is a halogen atom, an alkoxy group having 1 to 3 carbon atoms, or an alkyl group having 1 to 10 carbon atoms. Alkyl group or formula (2)
    Figure JPOXMLDOC01-appb-C000002
    (N represents 1 to 10)
    It may be optionally substituted with an oligoethylene glycol methyl ether group represented by: And a group selected from the group consisting of oligoethylene glycol methyl ether groups represented by the above formula (2), provided that at least one of R 1 to R 12 is represented by the above formula (2). Represents a phenyl group substituted with an oligoethylene glycol methyl ether group or an oligoethylene glycol methyl ether group represented by the above formula (2);
    M represents a divalent metal atom or a trivalent to pentavalent metal atom which may have an oxygen atom, a halogen atom, a nitro group, or a cyano group. }.
  2. 前記式(1)において、前記R1、R2、R4、R5、R7、R8、R10及びR11はそれぞれ独立して、水素原子、塩素原子、臭素原子、シアノ基、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、トリフルオロメチル基、ヒドロキシメチル基、ヒドロキシエチル基、カルボキシメチル基、メトキシ基、エトキシ基、ノルマルプロポキシ基、イソプロポキシ基、フェニル基、ペンタフルオロフェニル基、アニソール基及びトリル基からなる群から選択される基を表し、
    前記R3、R6、R9及びR12はそれぞれ独立して、式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R13、R14、R15、R16及びR17はそれぞれ独立して、水素原子、又は前記式(2)で表されるオリゴエチレングリコールメチルエーテル基を表す。)で表されるフェニル基を表す、請求項1記載のポルフィリン金属錯体。
    In the formula (1), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 and R 11 are each independently a hydrogen atom, a chlorine atom, a bromine atom, a cyano group, methyl Group, ethyl group, normal propyl group, isopropyl group, normal butyl group, isobutyl group, secondary butyl group, tertiary butyl group, trifluoromethyl group, hydroxymethyl group, hydroxyethyl group, carboxymethyl group, methoxy group, ethoxy group Represents a group selected from the group consisting of normal propoxy group, isopropoxy group, phenyl group, pentafluorophenyl group, anisole group and tolyl group,
    R 3 , R 6 , R 9 and R 12 are each independently selected from the formula (3)
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 13 , R 14 , R 15 , R 16 and R 17 each independently represents a hydrogen atom or an oligoethylene glycol methyl ether group represented by the formula (2)). The porphyrin metal complex according to claim 1, which represents a phenyl group.
  3. 前記式(1)において、前記R1、R2、R4、R5、R7、R8、R10及びR11は水素原子を表し、前記R3、R6、R9及びR12は、それぞれ独立して、式(4)
    Figure JPOXMLDOC01-appb-C000004
    (式中、nは3から6を表す。)
    で表されるフェニル基を表す、請求項2に記載のポルフィリン金属錯体。
    In the formula (1), R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 10 and R 11 represent a hydrogen atom, and R 3 , R 6 , R 9 and R 12 are Independently, the formula (4)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, n represents 3 to 6.)
    The porphyrin metal complex of Claim 2 showing the phenyl group represented by these.
  4. 前記Mはハロゲン原子を有するMn(III)、Fe(III)又はCo(III)を表す、請求項1乃至請求項3のうちいずれか一項に記載のポルフィリン金属錯体。 The porphyrin metal complex according to any one of claims 1 to 3, wherein M represents Mn (III), Fe (III), or Co (III) having a halogen atom.
  5. 前記Mはハロゲン原子を有するMn(III)を表す、請求項4記載のポルフィリン金属錯体。 The porphyrin metal complex according to claim 4, wherein M represents Mn (III) having a halogen atom.
  6. 請求項1乃至請求項5のうちいずれか一項に記載のポルフィリン金属錯体の自己集合化により形成される直径5nm~2000nmの大きさを有する分子集合体。 A molecular assembly having a diameter of 5 nm to 2000 nm formed by self-assembly of the porphyrin metal complex according to any one of claims 1 to 5.
  7. 請求項1乃至請求項5のうちいずれか一項に記載のポルフィリン金属錯体、又は請求項6に記載の分子集合体を含むMRI造影剤。 An MRI contrast agent comprising the porphyrin metal complex according to any one of claims 1 to 5 or the molecular assembly according to claim 6.
PCT/JP2010/066247 2009-09-17 2010-09-17 Porphyrin compound WO2011034183A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011531987A JP5745415B2 (en) 2009-09-17 2010-09-17 Porphyrin compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-216219 2009-09-17
JP2009216219 2009-09-17

Publications (1)

Publication Number Publication Date
WO2011034183A1 true WO2011034183A1 (en) 2011-03-24

Family

ID=43758781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066247 WO2011034183A1 (en) 2009-09-17 2010-09-17 Porphyrin compound

Country Status (2)

Country Link
JP (1) JP5745415B2 (en)
WO (1) WO2011034183A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025947A1 (en) * 2013-08-23 2015-02-26 国立大学法人大阪大学 Magnetic resonance imaging contrast agent
CN106496237A (en) * 2016-09-20 2017-03-15 北京科技大学 Good water solubility, the near infrared porphyrin compound of absorption and its preparation method and application
CN106519210A (en) * 2016-11-11 2017-03-22 苏州大学 Covalent organic polymer and preparation method and application thereof
WO2020158607A1 (en) * 2019-01-29 2020-08-06 学校法人同志社 Hydrophilic polymer crosslinked network hydrogel and active oxygen inhibitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249670A (en) * 1996-03-15 1997-09-22 Tokuyama Corp Porphyrin complex and anion-sensitive membrane
CN101070323A (en) * 2006-05-13 2007-11-14 济南赛文医药技术有限公司 Porphyrin derivative, its preparing method and use of same as small-molecular anti-oxidation agent
WO2008095366A1 (en) * 2007-02-02 2008-08-14 Jinan Saiwen Pharmtechnology Inc. Porphyrin derivatives, preparation methods and the uses as small molecular antioxidant thereof
JP2009094366A (en) * 2007-10-10 2009-04-30 Japan Science & Technology Agency Novel liquid crystalline n-type organic conductor material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3809671A1 (en) * 1988-03-18 1989-09-28 Schering Ag PORPHYRINE COMPLEX COMPOUNDS, METHOD FOR THE PRODUCTION THEREOF AND PHARMACEUTICAL AGENTS CONTAINING THEM
US7005517B2 (en) * 2001-01-05 2006-02-28 Lee Sung-Young Paramagnetic metal-phthalocyanine complex compounds and contrast agent using the same
CA2449316A1 (en) * 2001-06-06 2002-12-12 Brookhaven Science Associates Novel metalloporphyrins and their uses as radiosensitizers for radiation therapy
US6995260B2 (en) * 2004-05-20 2006-02-07 Brookhaven Science Associates, Llc Carboranylporphyrins and uses thereof
US6989443B2 (en) * 2004-06-28 2006-01-24 Brookhaven Science Associates, Llc Carboranylporphyrins and uses thereof
KR101015409B1 (en) * 2008-08-18 2011-02-22 금오공과대학교 산학협력단 Single-wall carbon nanotube-porphyrins compositeand preparation thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249670A (en) * 1996-03-15 1997-09-22 Tokuyama Corp Porphyrin complex and anion-sensitive membrane
CN101070323A (en) * 2006-05-13 2007-11-14 济南赛文医药技术有限公司 Porphyrin derivative, its preparing method and use of same as small-molecular anti-oxidation agent
WO2008095366A1 (en) * 2007-02-02 2008-08-14 Jinan Saiwen Pharmtechnology Inc. Porphyrin derivatives, preparation methods and the uses as small molecular antioxidant thereof
JP2009094366A (en) * 2007-10-10 2009-04-30 Japan Science & Technology Agency Novel liquid crystalline n-type organic conductor material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNG S.H. ET AL: "Supramolecular functionalization of single-walled carbon nanotubes with unchanged water soluble porphyrins", J. PORPHYRINS PHTHALOCYANINES, vol. 12, 2008, pages 109 - 115 *
SAKURAI T. ET AL: "Prominent electron transport property observed for triply fused metalloporphyrin dimer: directed columnar liquid crystalline assembly by amphiphilic molecular design", J. AM. CHEM. SOC., vol. 130, 2008, pages 13812 - 13813 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025947A1 (en) * 2013-08-23 2015-02-26 国立大学法人大阪大学 Magnetic resonance imaging contrast agent
JP6084294B2 (en) * 2013-08-23 2017-02-22 国立大学法人大阪大学 Magnetic resonance contrast agent
JPWO2015025947A1 (en) * 2013-08-23 2017-03-02 国立大学法人大阪大学 Magnetic resonance contrast agent
CN106496237A (en) * 2016-09-20 2017-03-15 北京科技大学 Good water solubility, the near infrared porphyrin compound of absorption and its preparation method and application
CN106519210A (en) * 2016-11-11 2017-03-22 苏州大学 Covalent organic polymer and preparation method and application thereof
CN106519210B (en) * 2016-11-11 2018-11-02 苏州大学 A kind of covalent organic polymer and its preparation method and application
WO2020158607A1 (en) * 2019-01-29 2020-08-06 学校法人同志社 Hydrophilic polymer crosslinked network hydrogel and active oxygen inhibitor

Also Published As

Publication number Publication date
JP5745415B2 (en) 2015-07-08
JPWO2011034183A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
Zhang et al. High relaxivity trimetallic nitride (Gd3N) metallofullerene MRI contrast agents with optimized functionality
EP1885721B1 (en) Metal chelates of polyaminocarboxylic macrocyclic derivatives and use thereof in diagnostic imaging
EP0684948B1 (en) Meso-tetraphenyl porphyrin complex compounds, process for preparing the same and pharmaceuticals containing the same
Shu et al. Facile preparation of a new gadofullerene-based magnetic resonance imaging contrast agent with high 1H relaxivity
CA2065290C (en) Hydroxy-aryl metal chelates for diagnostic nmr imaging
US8901294B2 (en) MRI contrast agent having gadolinium complex
JP5745415B2 (en) Porphyrin compounds
Sung et al. Multimetallic complexes and functionalized gold nanoparticles based on a combination of d-and f-elements
Viossat et al. Low-temperature (180 K) crystal structure, electron paramagnetic resonance spectroscopy, and propitious anticonvulsant activities of CuII2 (aspirinate) 4 (DMF) 2 and other CuII2 (aspirinate) 4 chelates
FR2921838A1 (en) NOVEL PROCESS FOR THE PREPARATION OF NANOPARTICLES COVERED WITH A GEM-BISPHOSPHONATE STABILIZING LAYER COUPLED WITH HYDROPHILIC BIODISTRIBUTION LIGANDS
CN108948060B (en) Triphenylamine branch ligand substituted silicon phthalocyanine and preparation method and application thereof
Perrier et al. Investigation of cyano-bridged coordination nanoparticles Gd 3+/[Fe (CN) 6] 3−/d-mannitol as T 1-weighted MRI contrast agents
US6117412A (en) Non-cluster type bismuth compounds
KR19980701674A (en) Bismuth compounds
KR20130027694A (en) Go-gd-dtpa complex, preparation method thereof, and mri contrast agent comprising the same
Ludwig et al. Ni (II) porphyrins as pH dependent light-driven coordination-induced spin-state switches (LD-CISSS) in aqueous solution
DE4341724A1 (en) Pharmaceutical compositions containing haloaryl-substituted metal complexes, their use in diagnostics, and methods for producing the complexes and compositions
CN108997406B (en) Triphenylamine fluoro aryl benzyl ether branch ligand substituted silicon phthalocyanine and preparation method and application thereof
JP5802680B2 (en) Water-soluble hyperbranched polymer with paramagnetism
WO2011131912A1 (en) Magneto-optical nano-objects for cancer detection
CA2805543C (en) Porphyrin compounds and their use as mri contrast agents
US10646595B2 (en) Porphyrin compounds and their use as MRI contrast agents
CN115557971B (en) Organic fluorescent small molecular compound for imaging above 1500nm, and preparation method and application thereof
Choi et al. Supramolecular micelle from amphiphilic Mn (III)-porphyrin derivatives as a potential MRI contrast agent
KR101010061B1 (en) Amphiphilic Porphyrin Derivatives, and the method for preparing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817296

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011531987

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10817296

Country of ref document: EP

Kind code of ref document: A1