WO2011034129A1 - Process for production of carbide fine particles - Google Patents

Process for production of carbide fine particles Download PDF

Info

Publication number
WO2011034129A1
WO2011034129A1 PCT/JP2010/066040 JP2010066040W WO2011034129A1 WO 2011034129 A1 WO2011034129 A1 WO 2011034129A1 JP 2010066040 W JP2010066040 W JP 2010066040W WO 2011034129 A1 WO2011034129 A1 WO 2011034129A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fine particles
carbide
slurry
thermal plasma
Prior art date
Application number
PCT/JP2010/066040
Other languages
French (fr)
Japanese (ja)
Inventor
圭太郎 中村
一貴 今井
Original Assignee
株式会社日清製粉グループ本社
日清エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日清製粉グループ本社, 日清エンジニアリング株式会社 filed Critical 株式会社日清製粉グループ本社
Publication of WO2011034129A1 publication Critical patent/WO2011034129A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides

Definitions

  • the present invention relates to a method for producing nano-sized carbide fine particles, and particularly relates to a method for producing nano-sized carbide fine particles using a metal oxide as a raw material.
  • fine particles such as oxide fine particles, nitride fine particles, carbide fine particles are electrically insulating materials such as semiconductor substrates, printed circuit boards, various electric insulating parts, high hardness and high precision machine tool materials such as cutting tools, dies and bearings, Production of functional materials such as grain boundary capacitors and humidity sensors, production of sintered bodies such as precision sintered molding materials, production of sprayed parts such as materials that require high-temperature wear resistance such as engine valves, and fuel cell electrodes It is used in fields such as electrolyte materials and various catalysts.
  • the bonding strength and denseness of different ceramics or different metals in the sintered body and irradiated parts are improved, and further the functionality is improved.
  • the vapor phase method includes a chemical method in which various gases are chemically reacted at a high temperature and a physical method in which particles are decomposed and evaporated by irradiation with a beam such as an electron beam or a laser to generate fine particles.
  • the thermal plasma method is a method of instantly evaporating raw materials in thermal plasma and then rapidly solidifying them to produce fine particles. Also, it is clean, highly productive, and has a high heat capacity at high temperatures. It has many advantages such as being compatible and being relatively easy to combine compared with other gas phase methods. For this reason, the thermal plasma method is actively used as a method for producing fine particles.
  • the raw material is powdered, and the powdered raw material (powder raw material, powder) is dispersed together with a carrier gas etc. and directly charged into the thermal plasma. By doing so, fine particles are manufactured.
  • Patent Document 1 discloses a thermal plasma flame in which a slurry in which a fine particle manufacturing material is dispersed in a combustible material or a slurry in which the fine particle manufacturing material is dispersed in a combustible material and a combustible material is formed into droplets.
  • a method for producing fine particles is described in which fine particles are produced by introducing into a gas phase mixture and rapidly cooling the gas phase mixture.
  • Patent Document 1 does not specifically disclose a method for producing carbide fine particles. Since carbide has high hardness, it is difficult to pulverize it to produce carbide fine particles. Moreover, since many carbides have a high melting point and exceed 3000K, carbides cannot be used as raw materials when producing carbide fine particles by a vapor phase method. In the case of producing fine particles such as carbide fine particles using a metal, if a fine metal raw material is used in order to further promote evaporation, there is a possibility of explosion depending on the substance, which is difficult to handle. Further, studies have been made on using metal alkoxide as a solution raw material. However, since the raw material is expensive and unstable, it is difficult to handle industrially.
  • An object of the present invention is to solve the problems based on the above prior art and to provide a production method for producing nano-sized carbide fine particles using a metal oxide as a raw material.
  • the present invention provides a method for producing carbide fine particles using a metal oxide, wherein the metal oxide powder is dispersed in a liquid substance containing carbon to form a slurry.
  • the present invention provides a method for producing carbide fine particles, characterized in that the slurry is made into droplets and supplied into a thermal plasma flame not containing oxygen.
  • examples of the metal oxide include TiO 2 , ZrO 2 , V 2 O 5 , Nb 2 O 5 , SiO 2, and WO 3 .
  • the liquid substance containing carbon includes alcohol, ketone, kerosene, octane, and gasoline.
  • the thermal plasma flame is preferably derived from at least one gas of hydrogen, helium and argon.
  • nano-sized carbide fine particles can be produced with high productivity using a metal oxide as a raw material.
  • FIG. 1 It is a mimetic diagram showing the whole particulates manufacture device for carrying out the manufacturing method of the carbide particulates concerning the embodiment of the present invention. It is sectional drawing which expands and shows the plasma torch vicinity in FIG. It is sectional drawing which expands and shows the top plate of the chamber in FIG. 1, and the gas injection opening vicinity provided in this top plate. It is sectional drawing which expands and shows the cyclone in FIG. It is explanatory drawing which shows the angle of the gas inject
  • (A) is a graph which shows the analysis result of the crystal structure by the X-ray diffraction method of the titanium oxide used for the manufacturing method of the carbide fine particle of the Example of this invention
  • (B) is obtained in the Example of this invention. It is a graph which shows the analysis result of the crystal structure by the X ray diffraction method of the obtained titanium carbide.
  • FIG. 1 is a schematic diagram showing an overall configuration of a fine particle production apparatus for carrying out a method for producing carbide fine particles according to an embodiment of the present invention.
  • FIG. 2 is a partially enlarged view of the vicinity of the plasma torch 12 shown in FIG. 3 is an enlarged cross-sectional view showing the top plate 17 of the chamber 16 shown in FIG. 1 and the vicinity of the gas injection port 28a and the gas injection port 28b provided in the top plate 17.
  • FIG. 4 is an enlarged cross-sectional view of the cyclone 19.
  • a fine particle manufacturing apparatus 10 shown in FIG. 1 includes a plasma torch 12 that generates thermal plasma, a material supply device 14 that supplies a metal oxide powder in a slurry state into the plasma torch 12, as described later, and fine particles ( A chamber 16 having a function as a cooling tank for generating (primary fine particles) 15, a cyclone 19 for removing coarse particles having a particle size larger than a predetermined particle size from the generated primary fine particles 15, and a cyclone And a collection unit 20 that collects carbide fine particles (secondary fine particles) 18 having a desired particle size classified by 19.
  • a metal oxide powder (hereinafter also referred to as a metal oxide raw material) is dispersed in a liquid substance containing carbon (hereinafter also referred to as a dispersion medium) to form a slurry, and this slurry is used.
  • a liquid substance containing carbon hereinafter also referred to as a dispersion medium
  • the plasma torch 12 shown in FIG. 2 includes a quartz tube 12a and a high-frequency oscillation coil 12b that surrounds the quartz tube 12a.
  • a supply pipe 14f which will be described later, for supplying metal oxide powder and atomizing gas into the plasma torch 12 is provided at the center of the plasma torch 12, and a plasma gas supply port 12c is provided in the periphery of the supply pipe 14f. It is formed in the part (on the same circumference).
  • the plasma gas is sent from the plasma gas supply source 22 to the plasma gas supply port 12c (see FIG. 2).
  • plasma gas does not contain oxygen in order to generate carbon by decomposing without burning a liquid substance (dispersion medium) containing carbon in a thermal plasma flame 24 to be described later.
  • the plasma gas include hydrogen, helium, and argon.
  • the plasma gas is not limited to a single substance, and these plasma gases may be used in combination, such as hydrogen and argon or helium and argon.
  • the plasma gas supply source 22 is prepared with, for example, two types of plasma gases, hydrogen and argon.
  • the plasma gas is sent from the plasma gas supply source 22 into the plasma torch 12 as indicated by an arrow P through the ring-shaped plasma gas supply port 12c shown in FIG. Then, a high frequency voltage is applied to the high frequency oscillation coil 12b, and a thermal plasma flame 24 not containing oxygen is generated.
  • the outside of the quartz tube 12a is surrounded by a concentric tube (not shown), and cooling water is circulated between the tube and the quartz tube 12a to cool the quartz tube 12a.
  • the quartz tube 12a is prevented from becoming too hot by the thermal plasma flame 24 generated in the plasma torch 12.
  • the material supply apparatus 14 is connected to the upper part of the plasma torch 12 through a pipe 26 and a supply pipe 14f, and a slurry 14a prepared by mixing a metal oxide raw material with a dispersion medium is a material supply apparatus. 14 is uniformly supplied into the plasma torch 12.
  • the material supply device 14 includes a container 14b for containing the slurry 14a, a stirrer 14c for stirring the slurry 14a in the container 14b, and a pump 14d for applying high pressure to the slurry 14a via the supply pipe 14f and supplying the slurry 14a into the plasma torch 12.
  • a spray gas supply source 14e that supplies a spray gas for spraying the slurry 14a into the plasma torch 12, and a supply pipe 14f that droplets the slurry 14a and supplies the slurry 14a into the plasma torch 12.
  • the spray gas subjected to the extrusion pressure is supplied from the spray gas supply source 14e together with the slurry 14a into the thermal plasma flame 24 in the plasma torch 12 through the supply pipe 14f as shown by an arrow G in FIG.
  • the supply pipe 14f has a two-fluid nozzle mechanism for spraying the slurry into the thermal plasma flame 24 in the plasma torch to form droplets, whereby the slurry 14a is contained in the thermal plasma flame 24 in the plasma torch 12. Spray on. That is, the slurry 14a can be formed into droplets.
  • the atomizing gas for example, argon, helium, hydrogen or the like is used alone or in appropriate combination. Note that the atomizing gas is not necessarily supplied as long as the slurry 14a can be formed into droplets.
  • the two-fluid nozzle mechanism can apply high pressure to the slurry and spray the slurry with a spray gas which is a gas, and is used as one method for making the slurry into droplets.
  • a spray gas which is a gas
  • the supply pressure is 0.2 to 0.3 MPa and the slurry is flowed at 20 ml / min and the atomizing gas is sprayed at 10 to 20 liter / min, about 5 to 10 ⁇ m About a droplet is obtained.
  • the two-fluid nozzle mechanism is used, but a one-fluid nozzle mechanism may be used.
  • a slurry is dropped on a rotating disk at a constant speed to form a droplet by centrifugal force (a droplet is formed), and a liquid is applied by applying a high voltage to the slurry surface.
  • a method for forming droplets (generating droplets) is conceivable.
  • the chamber 16 is provided adjacent to the lower side of the plasma torch 12.
  • the dispersion medium in the slurry 14a sprayed into the thermal plasma flame 24 in the plasma torch 12 is reduced in the thermal plasma flame 24 by the carbon generated by being decomposed without burning. Further, the reduced metal material raw material reacts with carbon to become a carbide. Immediately thereafter, the carbide fine particles that have become carbide are rapidly cooled in the chamber 16 to generate primary fine particles (carbide fine particles) 15.
  • the chamber 16 has a function as a cooling tank.
  • a gas supply device 28 for rapidly cooling the generated carbide fine particles is provided.
  • the gas supply device 28 will be described.
  • the gas supply device 28 shown in FIGS. 1 and 3 has a predetermined direction toward the tail of the thermal plasma flame 24 (the end of the thermal plasma flame opposite to the plasma gas supply port 12c, that is, the end of the thermal plasma flame).
  • a gas injection port 28a for injecting gas at an angle a gas injection port 28b for injecting gas from the upper side to the lower side along the side wall of the chamber 16, and a compressor 28c for applying an extrusion pressure to the gas supplied into the chamber 16
  • the compressor 28c may be a blower.
  • the gas ejected from the gas ejection port 28a has a cyclone 19 together with the gas ejected from the gas ejection port 28b, in addition to the action of rapidly cooling the primary fine particles 15 generated in the chamber 16. It has an additional action such as contributing to the classification of the primary fine particles 15.
  • the above-described compressor 28c and gas supply source 28d are connected to the top plate 17 of the chamber 16 through a pipe 28e.
  • the gas injection port 28 b is a slit formed in the outer side top plate component 17 b of the gas supply device 28, and prevents the generated primary fine particles 15 from adhering to the inner wall portion of the chamber 16. It is preferable that an amount of gas can be injected so as to provide a flow rate at which the primary fine particles 15 can be classified by the downstream cyclone 19 at an arbitrary classification point. From the gas injection port 28b, gas is injected from the upper side to the lower side along the inner wall of the chamber 16.
  • the slurry injected into the plasma torch 12 from the material supply device 14 is reduced and carbonized in the thermal plasma flame 24 without being burned, as will be described later. It becomes carbide.
  • the carbide is rapidly cooled in the chamber 16 by the gas injected from the gas injection port 28a (see arrow Q), and primary fine particles 15 made of carbide are generated. At this time, the primary fine particles 15 are prevented from adhering to the inner wall of the chamber 16 by the gas ejected from the gas ejection port 28 b (see arrow R).
  • a cyclone 19 for classifying the generated primary fine particles 15 with a desired particle diameter is provided at the lower side portion of the chamber 16.
  • the cyclone 19 includes an inlet pipe 19 a that supplies the primary fine particles 15 from the chamber 16, a cylindrical outer cylinder 19 b that is connected to the inlet pipe 19 a and is positioned on the upper part of the cyclone 19, A truncated cone part 19c which is continuous from the lower part of the outer cylinder 19b to the lower side and gradually decreases in diameter, and a coarse particle which is connected to the lower side of the truncated cone part 19c and has a particle diameter equal to or larger than the desired particle diameter.
  • the coarse particle recovery chamber 19d for recovering the gas and the inner tube 19e connected to the recovery unit 20 described in detail later and projecting from the outer cylinder 19b are provided.
  • the above-described swirling downward flow is further accelerated by the inner peripheral wall of the truncated cone part 19c, and then reverses to become an upward flow and is discharged out of the system from the inner pipe 19e.
  • a part of the airflow is reversed at the truncated cone part 19c before flowing into the coarse particle recovery chamber 19d, and is discharged out of the system from the inner pipe 19e.
  • Centrifugal force is given to the particles by the swirling flow, and the coarse particles move in the wall direction due to the balance between the centrifugal force and the drag force.
  • the carbide fine particles separated from the airflow descend along the side surface of the truncated cone part 19c and are collected in the coarse particle collection chamber 19d.
  • the fine particles to which the centrifugal force is not sufficiently applied are discharged out of the system together with the reverse airflow at the inner peripheral wall of the truncated cone part 19c.
  • a negative pressure (suction force) is generated from the collection unit 20 described in detail later through the inner tube 19e. Then, by this negative pressure (suction force), the carbide fine particles separated from the above-described swirling airflow are sucked as shown by an arrow U in FIG. 4 and sent to the recovery unit 20 through the inner tube 19e. ing.
  • a recovery unit 20 for recovering secondary fine particles (carbide fine particles) 18 having a desired nano-sized particle diameter is provided on the extension of the inner tube 19e which is an outlet of the air flow in the cyclone 19. It has been.
  • the recovery unit 20 includes a recovery chamber 20a, a filter 20b provided in the recovery chamber 20a, and a vacuum pump (not shown) connected via a pipe provided below the recovery chamber 20a. Yes.
  • the fine particles sent from the cyclone 19 are drawn into the collection chamber 20a by being sucked by a vacuum pump (not shown), and are collected on the surface of the filter 20b.
  • the fine particle production apparatus 10 is used to manufacture the carbide fine particles according to the embodiment of the present invention, and the carbide generated by the production method.
  • the fine particles will be described.
  • the metal oxide raw material is a raw material for the carbide fine particles.
  • the metal oxide raw material include titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), vanadium oxide (V 2 O 5 ), niobium oxide (Nb 2 O 5 ), and oxidation. Examples include silicon (SiO 2 ) and tungsten oxide (WO 3 ).
  • the metal oxide is an oxide of a metal element constituting the carbide fine particles to be generated.
  • the metal oxide raw material has an average particle size of 50 ⁇ m or less, and preferably an average particle size of 10 ⁇ m or less so that it can be easily evaporated in a thermal plasma flame.
  • examples of the liquid substance (dispersion medium) containing carbon include alcohol, ketone, kerosene, octane, and gasoline.
  • examples of the alcohol include ethanol, methanol, propanol, and isopropyl alcohol.
  • the liquid substance (dispersion medium) containing carbon acts as a carbon source for reducing the metal oxide raw material (metal oxide powder) and then supplying carbon for making a carbide. Is. For this reason, it is preferable that the liquid substance containing carbon is easily decomposed by the thermal plasma flame 24. Therefore, the liquid substance containing carbon is preferably a lower alcohol.
  • a metal oxide raw material is dispersed in a dispersion medium to obtain a slurry.
  • the mixing ratio of the metal oxide raw material and the dispersion medium in the slurry is, for example, 6: 4 (60%: 40%). Since the dispersion medium acts as a carbon source for reducing and carbonizing the metal oxide, the mass ratio of the metal oxide raw material and the dispersion medium is appropriately changed so that excess carbon is generated. Thus, a slurry is prepared.
  • one or a mixture of two or more selected from the group consisting of a surfactant, a polymer, and a coupling agent may be added.
  • a surfactant for example, sorbitan fatty acid ester which is a nonionic surfactant is used.
  • ammonium polyacrylate is used as the polymer.
  • a silane coupling agent or the like is used.
  • the slurry 14a prepared as described above is placed in the container 14b of the material supply apparatus 14 shown in FIG. 1 and stirred by the stirrer 14c. Thereby, it is prevented that the metal oxide raw material in a dispersion medium precipitates, and the slurry 14a in which the metal oxide raw material is dispersed in the dispersion medium is maintained.
  • the slurry 14a may be continuously prepared by supplying the metal oxide raw material and the dispersion medium to the material supply device 14.
  • the slurry 14 a is formed into droplets using the above-described two-fluid nozzle mechanism, and the slurry 14 a formed into droplets is supplied into the plasma torch 12, thereby generating heat generated in the plasma torch 12. Carbon is generated without being supplied to the plasma flame 24 and burning the dispersion medium.
  • the oxygen-free thermal plasma flame 24 evaporates the slurry 14a in droplets, decomposes and evaporates without burning the dispersion medium, and generates carbon. Furthermore, the thermal plasma flame 24 reduces the metal oxide raw material with the temperature and generated carbon, and then reacts with excess carbon to form a carbide. For this reason, the temperature of the thermal plasma flame 24 needs to be higher than the temperature at which the metal oxide raw material (metal oxide) contained in the slurry is reduced by carbon and carbonized. On the other hand, the higher the temperature of the thermal plasma flame 24 is, the easier the metal oxide raw material (metal oxide) is reduced and carbonized, but the temperature is not particularly limited, and the metal oxide raw material (metal oxide) Depending on the temperature at which is reduced, it may be appropriately selected. For example, the temperature of the thermal plasma flame 24 can be set to 6000 ° C., and it is theoretically considered to reach about 10000 ° C.
  • the pressure atmosphere in the plasma torch 12 is preferably atmospheric pressure or lower.
  • the atmosphere at atmospheric pressure or lower is not particularly limited, but may be, for example, 5 Torr to 750 Torr.
  • the slurry 14a evaporates in the thermal plasma flame 24 not containing oxygen, and further decomposed without burning a dispersion medium such as methanol to obtain carbon.
  • the amount of the dispersion medium in the chiller 14a is adjusted so that a larger amount of this carbon is produced than the metal oxide raw material.
  • the generated carbon reacts with the metal oxide raw material, and the metal oxide is reduced to metal. Thereafter, excess carbon and the reduced metal react to produce carbide.
  • the generated carbide is rapidly cooled by the gas injected in the direction indicated by the arrow Q through the gas injection port 28a and is rapidly cooled in the chamber 16, whereby the primary fine particles 15 made of carbide are obtained.
  • the amount of gas injected from the gas injection port 28a needs to be a supply amount sufficient to quench the carbide after the metal oxide is converted into carbide in the process of generating the primary fine particles 15.
  • the primary fine particles 15 are arbitrarily classified by the downstream cyclone 19. It is preferable that the flow rate is such that a flow rate that can be classified by the method is obtained and the stability of the thermal plasma flame is not disturbed.
  • the combined amount of the gas injected from the gas injection port 28a and the amount of the gas injected from the gas injection port 28b is 200% to 5000% of the gas supplied into the thermal plasma flame. It is good to do.
  • the gas supplied into the above-described thermal plasma flame is a combination of a plasma gas that forms a thermal plasma flame, a gas that forms a plasma flow, and a spray gas.
  • the supply method and supply position of the injected gas are not particularly limited as long as the stability of the thermal plasma flame is not hindered.
  • a gas is injected by forming a circumferential slit in the top plate 17, but a method that can reliably supply gas on the path from the thermal plasma flame to the cyclone.
  • Other methods and other positions may be used as long as they are positions.
  • the primary fine particles 15 made of carbides generated in the chamber 16 are blown from the inlet pipe 19a of the cyclone 19 along the inner peripheral wall of the outer cylinder 19b together with the air current.
  • the swirl flow is formed to descend.
  • this swirling flow is further accelerated at the inner peripheral wall of the truncated cone part 19c, then reverses, becomes an upward flow, and is discharged out of the system from the inner pipe 19e.
  • a part of the airflow is reversed at the inner peripheral wall of the truncated cone part 19c before flowing into the coarse particle recovery chamber 19d, and is discharged out of the system from the inner pipe 19e.
  • Centrifugal force is applied to the primary fine particles 15 made of carbide by a swirling flow, and coarse particles of the primary fine particles 15 move in the wall direction due to the balance between centrifugal force and drag.
  • particles separated from the air flow descend along the side surface of the truncated cone part 19c and are collected in the coarse particle collection chamber 19d.
  • the fine particles to which the centrifugal force is not sufficiently applied are discharged out of the system as carbide fine particles (secondary fine particles) 18 from the inner tube 19e together with the reverse airflow at the inner peripheral wall of the truncated cone part 19c.
  • the flow velocity of the airflow into the cyclone 19 at this time is preferably 10 m / sec or more.
  • the discharged carbide fine particles (secondary fine particles) 18 are sucked as indicated by an arrow U in FIG. 4 due to the negative pressure (suction force) from the collecting unit 20, and sent to the collecting unit 20 through the inner tube 19e. It is recovered by the filter 20b of the recovery unit 20. At this time, the internal pressure in the cyclone 19 is preferably not more than atmospheric pressure.
  • the particle size of the carbide fine particles (secondary fine particles) 18 is defined as an arbitrary particle size at the nano-size level according to the purpose. Thus, in this embodiment, nanosized carbide fine particles can be obtained.
  • the number of cyclones used is not limited to one, and may be two or more.
  • the carbide fine particles produced by the method for producing carbide fine particles of the present embodiment have a narrow particle size distribution width, that is, a uniform particle size, and there is almost no mixing of coarse particles of 1 ⁇ m or more.
  • Nanosized carbide fine particles having an average particle diameter of 1 to 100 nm.
  • the carbide fine particles for example, titanium carbide (TiC), zirconium carbide (ZrC), vanadium carbide (VC 1-x ), niobium carbide (NbC), tantalum carbide (TaC), Fine particles of silicon carbide (SiC) or tungsten carbide (WC 1-x ) can be obtained.
  • Carbide fine particles obtained by the method for producing carbide fine particles of the present embodiment include, for example, electrical insulation materials such as semiconductor substrates, printed boards, various electrical insulation components, cutting tools, dies, and high-hardness and high-precision machine tools. , Production of functional materials such as grain boundary capacitors and humidity sensors, production of sintered bodies such as precision sintered molding materials, production of thermal spray parts such as materials that require high-temperature wear resistance such as engine valves, and fuel cell It can be used for electrodes, electrolyte materials and various catalysts.
  • the particle size of the carbide fine particles can be made nano-sized, for example, when used for a sintered body, the sinterability can be improved and a high-strength sintered body can be obtained. Thus, for example, a tool with good cutting properties can be obtained. Moreover, when using for a catalyst, since a particle size can be made small, the performance of a catalyst can be improved.
  • the metal oxide raw material can be easily and uniformly supplied to the thermal plasma flame. Furthermore, since the carbon source is a liquid, it can be easily decomposed and reacted with carbon with respect to the metal oxide and the reduced metal more efficiently than a solid carbon source such as graphite. Thereby, the reaction efficiency to the carbide of a metal oxide raw material becomes high, and a carbide can be manufactured with high productivity.
  • the metal oxide material for example, in the case of using TiO 2, it is possible to lower the production cost can be suppressed raw material cost.
  • the fine particles can be classified by a cyclone provided in the apparatus by supplying a gas and arbitrarily controlling the flow rate in the apparatus.
  • the coarse particles can be separated at an arbitrary classification point by changing the gas flow rate or the cyclone inner diameter without changing the reaction conditions. It becomes possible to produce high-quality fine particles with high quality and high productivity.
  • the cooling effect can be further enhanced by employing a water-cooled jacket structure for the entire cyclone.
  • the fine particle production apparatus 10 of the present embodiment is characterized by including the gas supply device 28 whose main purpose is to rapidly cool the gas phase mixture.
  • the gas supply device 28 will be additionally described.
  • the gas supply device 28 shown in FIG. 1 and FIG. 3 has a gas injection port 28 a for injecting gas at a predetermined angle as described above toward the tail of the thermal plasma flame 24, and the upper side along the side wall of the chamber 16.
  • the gas injection port 28b that injects the gas downward, the compressor 28c that applies an extrusion pressure to the gas supplied into the chamber 16, and the gas supply source 28d that is supplied into the chamber 16 are connected to each other.
  • a tube 28e The compressor 28c and the gas supply source 28d are connected to the top plate 17 of the chamber 16 through a pipe 28e.
  • the tail part of the thermal plasma flame is the end of the thermal plasma flame opposite to the plasma gas supply port 12c, that is, the terminal part of the thermal plasma flame.
  • the gas injection port 28 a and the gas injection port 28 b are formed on the top plate 17 of the chamber 16.
  • the top plate 17 includes an inner top plate component 17a having a truncated cone shape and a part of the upper side being a cylinder, an outer top plate component 17b having a truncated cone-shaped hole, and an inner top plate component 17a. And an upper outer part top plate component 17c having a moving mechanism for moving it vertically.
  • a screw is cut at a portion where the inner side top plate component 17a and the upper outer side top plate component 17c are in contact (in the inner side top plate component 17a, the upper cylindrical portion), and the inner top plate component 17a is By rotating, the position can be changed in the vertical direction, and the inner top plate component 17a can adjust the distance from the outer top plate component 17b.
  • the gradient of the truncated cone part of the inner top plate part 17a and the gradient of the truncated cone part of the hole of the outer part top plate part 17b are the same, and are structured to engage with each other.
  • the gas injection port 28a is formed in a circumferential shape that can adjust a gap formed by the inner top plate component 17a and the outer top plate component 17b, that is, a slit width, and is concentric with the top plate. Is a slit.
  • the gas injection port 28a may be any shape that can inject gas toward the tail of the thermal plasma flame 24, and is not limited to the slit shape as described above. A large number of holes may be provided.
  • an air passage 17d through which the gas sent through the pipe 28e passes is provided inside the upper outer top plate component 17c.
  • the gas passes through the air passage 17d and is sent to the gas injection port 28a which is a slit formed by the inner top plate component 17a and the outer top plate component 17b described above.
  • the gas sent to the gas injection port 28a is directed in the direction indicated by the arrow Q in FIGS. 1 and 3 toward the tail portion (terminal portion) of the thermal plasma flame. It is injected at an angle of.
  • the predetermined supply amount will be described.
  • the amount produced to quench the gas phase mixture is, for example, supplied into a chamber that forms a space necessary for quenching the gas phase mixture.
  • the average flow velocity (in-chamber flow velocity) of the gas in the chamber 16 is preferably 0.001 to 60 m / sec, and more preferably 0.5 to 10 m / sec. This is a gas supply amount sufficient to rapidly cool the gas phase mixture sprayed and evaporated in the thermal plasma flame 24 to generate fine particles, and to prevent aggregation due to collision between the generated fine particles.
  • this supply amount is sufficient to rapidly cool and solidify the gas phase mixture, and to prevent agglomeration due to collision between the microparticles immediately after solidification and formation.
  • the amount needs to be sufficient to dilute the mixture, and the value may be appropriately determined according to the shape and size of the chamber 16. However, this supply amount is preferably controlled so as not to hinder the stability of the thermal plasma flame.
  • FIG. 5A is a vertical sectional view passing through the central axis of the top plate 17 of the chamber 16, and FIG. 5B is a view of the top plate 17 as viewed from below. Note that FIG. 5B shows a direction perpendicular to the cross section shown in FIG.
  • a point X shown in FIGS. 5A and 5B indicates that the gas sent from the gas supply source 28d (see FIG. 1) via the air passage 17d is introduced into the chamber 16 from the gas injection port 28a. It is an injection point to be injected.
  • the gas injection port 28a is a circumferential slit, the gas at the time of injection forms a belt-like airflow. Therefore, the point X is a virtual emission point.
  • the center of the opening of the air passage 17d is the origin, the vertical upward is 0 °, the positive direction is counterclockwise on the page, and the gas injection port is in the direction indicated by the arrow Q.
  • the angle of the gas injected from 28a is represented by angle ⁇ . This angle ⁇ is an angle with respect to the direction from the first part of the thermal plasma flame to the tail part (terminal part) described above.
  • the angle of the gas ejected from the gas ejection port 28a in the direction indicated by the arrow Q in the plane direction perpendicular to the direction from the initial part 24 to the tail part (terminal part) is represented by an angle ⁇ .
  • This angle ⁇ is an angle with respect to the central portion of the thermal plasma flame in the plane perpendicular to the direction from the initial portion to the tail portion (terminal portion) of the thermal plasma flame described above.
  • the gas phase mixture is rapidly cooled by the gas injected toward the thermal plasma flame 24 at a predetermined supply amount and a predetermined angle, and primary particles 15 are generated.
  • the gas injected into the chamber 16 at the predetermined angle described above does not necessarily reach the tail of the thermal plasma flame 24 at the injected angle due to the influence of turbulent flow generated inside the chamber 16.
  • the fine particles are injected in the direction indicated by the arrow Q toward the tail (end portion) of the thermal plasma flame through the gas injection port 28a at a predetermined angle and supply amount.
  • the diluted gas dilutes the primary fine particles 15 to prevent the fine particles from colliding and aggregating. That is, the gas injected from the gas injection port 28a rapidly cools the gas-phase mixture, and further prevents the generated fine particles from agglomerating, thereby reducing the particle diameter and making the particle diameter uniform. Acts on both sides.
  • the gas injected from the gas injection port 28 a has a considerable adverse effect on the stability of the thermal plasma flame 24.
  • the gas injection port 28a in the fine particle manufacturing apparatus 10 of the present embodiment is a circumferentially formed slit, and the amount of gas supply can be adjusted by adjusting the slit width. Since a uniform gas can be injected in the central direction, it can be said that it has a preferable shape for stabilizing the thermal plasma flame. This adjustment can also be performed by changing the supply amount of the injected gas.
  • Examples of the method for producing carbide fine particles of the present invention will be specifically described below.
  • the types of plasma gas constituting the thermal plasma flame of the fine particle production apparatus 10 are shown in the columns of Examples 1 to 6 and Comparative Examples 1 to 6 shown in Table 1 below. Thus, production of titanium carbide was attempted.
  • a slurry having a slurry concentration of 50% by mass obtained by mixing and stirring the titanium oxide powder and methanol at a mass ratio of 1: 1 using titanium oxide powder as a raw material was used.
  • titanium oxide used as a raw material has an average particle diameter of 5 ⁇ m and a crystal structure shown in FIG.
  • a high frequency voltage of about 4 MHz and about 80 kVA is applied to the high frequency oscillation coil 12b of the plasma torch 12, and the plasma gas shown in the following Table 1 is supplied from the plasma gas supply source 22 for each embodiment. Then, a thermal plasma flame was generated in the plasma torch 12. In addition, argon gas was supplied at 10 liters / min from the spray gas supply source 14e of the material supply apparatus 14 as the spray gas.
  • the titanium oxide slurry was supplied into the thermal plasma flame 24 in the plasma torch 12 together with the argon gas that is the atomizing gas. Further, argon gas or a mixed gas of argon and helium was used as the gas supplied into the chamber 16 by the gas supply device 28.
  • the flow rate in the chamber at this time was 5 m / sec, and the supply amount was 1 m 3 / min.
  • the pressure in the cyclone 19 was 50 kPa, and the supply speed of fine particles from the chamber 16 to the cyclone 19 was 10 m / sec (average value).
  • the ratio of hydrogen gas, helium gas, and argon gas in the plasma gas of the thermal plasma flame was such that the amount of hydrogen gas was 0 to 20 vol% with respect to the total amount of helium gas and argon gas.
  • the amount of hydrogen gas is 0 to 20 vol% with respect to the total amount of helium gas, and in the case of two types of hydrogen gas and argon gas, the total amount of argon gas is On the other hand, the amount of hydrogen gas was set to 0 to 20 vol%.
  • the plasma gas supply rate was 10 to 300 liters / min for argon gas and 5 to 30 liters / min for helium gas.
  • this raw material alone or a mixture of this raw material, a reducing agent, and a graphite powder that also serves as a carbon source is used as a raw material, and the powder remains as thermal plasma. Supplied to the flame.
  • the manufacturing conditions were the same as those in the above example except that the supply form into the thermal plasma flame 24 did not use slurry.
  • Examples 1 to 6 and Comparative Examples 1 to 6 shown in Table 1 below the crystal structures of the obtained products were examined using X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • Example 1 In each of Examples 1 to 6, as shown in FIG. 6B, only titanium carbide was obtained, and the particle diameter was about 25 nm. On the other hand, in Comparative Examples 1 to 6, compositions having compositions other than titanium carbide were also produced. Compositions other than this titanium carbide were titanium oxide that could not be carbonized and graphite derived from the raw material. Moreover, in Comparative Examples 1 to 6, the yield of titanium carbide was lower than that in Example 1.
  • Fine particle manufacturing apparatus 10

Abstract

A process for the production of carbide fine particles, which comprises dispersing a metal oxide powder in a liquid carbonaceous substance to form a slurry, converting the slurry into liquid drops, and feeding the liquid drops into an oxygen-free thermal plasma to form carbide fine particles.

Description

炭化物微粒子の製造方法Manufacturing method of carbide fine particles
 本発明は、ナノサイズの炭化物微粒子の製造方法に関し、特に、金属酸化物を原料に用いてナノサイズの炭化物微粒子を製造する方法に関する。 The present invention relates to a method for producing nano-sized carbide fine particles, and particularly relates to a method for producing nano-sized carbide fine particles using a metal oxide as a raw material.
 現在、酸化物微粒子、窒化物微粒子、炭化物微粒子等の微粒子は、半導体基板、プリント基板、各種電気絶縁部品などの電気絶縁材料、切削工具、ダイス、軸受などの高硬度高精度の機械工作材料、粒界コンデンサ、湿度センサなどの機能性材料、精密焼結成形材料などの焼結体の製造、エンジンバルブなどの高温耐摩耗性が要求される材料などの溶射部品製造、さらには燃料電池の電極、電解質材料および各種触媒などの分野で用いられている。このような微粒子を用いることにより、焼結体および照射部品などにおける異種セラミックス同士または異種金属同士の接合強度および緻密性、更には機能性を向上させている。 Currently, fine particles such as oxide fine particles, nitride fine particles, carbide fine particles are electrically insulating materials such as semiconductor substrates, printed circuit boards, various electric insulating parts, high hardness and high precision machine tool materials such as cutting tools, dies and bearings, Production of functional materials such as grain boundary capacitors and humidity sensors, production of sintered bodies such as precision sintered molding materials, production of sprayed parts such as materials that require high-temperature wear resistance such as engine valves, and fuel cell electrodes It is used in fields such as electrolyte materials and various catalysts. By using such fine particles, the bonding strength and denseness of different ceramics or different metals in the sintered body and irradiated parts are improved, and further the functionality is improved.
 このような微粒子を製造する方法の一つに、気相法がある。気相法には、各種のガス等を高温で化学反応させる化学的方法と、電子ビームまたはレーザなどのビームを照射して物質を分解・蒸発させ、微粒子を生成する物理的方法とがある。 One method for producing such fine particles is a gas phase method. The vapor phase method includes a chemical method in which various gases are chemically reacted at a high temperature and a physical method in which particles are decomposed and evaporated by irradiation with a beam such as an electron beam or a laser to generate fine particles.
 上記気相法の中の一つとして、熱プラズマ法がある。熱プラズマ法は、熱プラズマ中で原材料を瞬時に蒸発させた後、急冷凝固させ、微粒子を製造する方法であり、また、クリーンで生産性が高く、高温で熱容量が大きいため高融点材料にも対応可能であり、他の気相法に比べて複合化が比較的容易であるといった多くの利点を有する。このため、熱プラズマ法は、微粒子を製造する方法として積極的に利用されている。 There is a thermal plasma method as one of the above gas phase methods. The thermal plasma method is a method of instantly evaporating raw materials in thermal plasma and then rapidly solidifying them to produce fine particles. Also, it is clean, highly productive, and has a high heat capacity at high temperatures. It has many advantages such as being compatible and being relatively easy to combine compared with other gas phase methods. For this reason, the thermal plasma method is actively used as a method for producing fine particles.
 従来の熱プラズマ法を用いた微粒子の製造方法では、原材料物質を粉末状にし、この粉末状にされた原材料(粉末原材料、粉体)をキャリアガス等と共に分散させて、直接熱プラズマ中に投入することにより、微粒子を製造している。 In the conventional method for producing fine particles using the thermal plasma method, the raw material is powdered, and the powdered raw material (powder raw material, powder) is dispersed together with a carrier gas etc. and directly charged into the thermal plasma. By doing so, fine particles are manufactured.
 また、特許文献1には、微粒子製造用材料を可燃性材料中に分散させたスラリー、または微粒子製造用材料を分散媒と可燃性材料とを用いたスラリーを、液滴化させて熱プラズマ炎中に導入して、気相状態の混合物にし、気相状態の混合物を急冷することにより、微粒子を生成する微粒子の製造方法が記載されている。 Patent Document 1 discloses a thermal plasma flame in which a slurry in which a fine particle manufacturing material is dispersed in a combustible material or a slurry in which the fine particle manufacturing material is dispersed in a combustible material and a combustible material is formed into droplets. A method for producing fine particles is described in which fine particles are produced by introducing into a gas phase mixture and rapidly cooling the gas phase mixture.
特開2006-102737号公報JP 2006-102737 A
 しかしながら、特許文献1には、炭化物微粒子の製造方法については具体的に開示されていない。炭化物は硬度が高いため、これを粉砕して炭化物微粒子を製造することは困難である。しかも、炭化物は融点が高く3000Kを超えるものが多いため、炭化物微粒子を気相法で製造する際に、炭化物を原料に用いることができない。
 金属を用いて炭化物微粒子等の微粒子を製造する場合、より蒸発を促進させるために、金属原料に微細なものを使用すると、物質によっては爆発する可能性があり、取扱いに難点がある。
 また、溶液原料である金属アルコキシドを用いる検討もなされているが、原料が高価である上、不安定であるため、工業的に使用するには取扱いに難点がある。
 さらには、炭化させるための炭素源としてメタンなどのガスを用いる方法や、カーボン粒子を金属に混合したものを原料にする方法が示されているが、いずれも酸化物を原料に用いた検討はされていない。
 このように、炭化物微粒子を酸化物から製造する製造方法については、具体的なものがないのが現状である。
However, Patent Document 1 does not specifically disclose a method for producing carbide fine particles. Since carbide has high hardness, it is difficult to pulverize it to produce carbide fine particles. Moreover, since many carbides have a high melting point and exceed 3000K, carbides cannot be used as raw materials when producing carbide fine particles by a vapor phase method.
In the case of producing fine particles such as carbide fine particles using a metal, if a fine metal raw material is used in order to further promote evaporation, there is a possibility of explosion depending on the substance, which is difficult to handle.
Further, studies have been made on using metal alkoxide as a solution raw material. However, since the raw material is expensive and unstable, it is difficult to handle industrially.
Furthermore, a method using a gas such as methane as a carbon source for carbonization and a method using a mixture of carbon particles in a metal as a raw material are shown. It has not been.
As described above, there is no specific manufacturing method for manufacturing carbide fine particles from oxides.
 本発明の目的は、前記従来技術に基づく問題点を解消し、金属酸化物を原料に用いてナノサイズの炭化物微粒子を製造する製造方法を提供することにある。 An object of the present invention is to solve the problems based on the above prior art and to provide a production method for producing nano-sized carbide fine particles using a metal oxide as a raw material.
 上記目的を達成するために、本発明は、金属酸化物を用いて炭化物微粒子を製造する製造方法であって、前記金属酸化物の粉末を、炭素を含む液体状の物質に分散させてスラリーにし、該スラリーを液滴化させて酸素を含まない熱プラズマ炎中に供給することを特徴とする炭化物微粒子の製造方法を提供するものである。 In order to achieve the above object, the present invention provides a method for producing carbide fine particles using a metal oxide, wherein the metal oxide powder is dispersed in a liquid substance containing carbon to form a slurry. The present invention provides a method for producing carbide fine particles, characterized in that the slurry is made into droplets and supplied into a thermal plasma flame not containing oxygen.
 本発明においては、例えば、前記金属酸化物として、TiO、ZrO、V、Nb、SiOまたはWOが挙げられる。
 また、本発明においては、例えば、前記炭素を含む液体状の物質として、アルコール、ケトン、ケロシン、オクタンまたはガソリンが挙げられる。
 さらに、本発明においては、前記熱プラズマ炎は、水素、ヘリウムおよびアルゴンの少なくとも1つのガスに由来するものであることが好ましい。
In the present invention, examples of the metal oxide include TiO 2 , ZrO 2 , V 2 O 5 , Nb 2 O 5 , SiO 2, and WO 3 .
In the present invention, for example, the liquid substance containing carbon includes alcohol, ketone, kerosene, octane, and gasoline.
Furthermore, in the present invention, the thermal plasma flame is preferably derived from at least one gas of hydrogen, helium and argon.
 本発明によれば、金属酸化物を原料として、ナノサイズの炭化物微粒子を高い生産性で製造することができる。 According to the present invention, nano-sized carbide fine particles can be produced with high productivity using a metal oxide as a raw material.
本発明の実施形態に係る炭化物微粒子の製造方法を実施するための微粒子製造装置の全体構成を示す模式図である。It is a mimetic diagram showing the whole particulates manufacture device for carrying out the manufacturing method of the carbide particulates concerning the embodiment of the present invention. 図1中のプラズマトーチ付近を拡大して示す断面図である。It is sectional drawing which expands and shows the plasma torch vicinity in FIG. 図1中のチャンバの天板およびこの天板に備えられた気体射出口付近を拡大して示す断面図である。It is sectional drawing which expands and shows the top plate of the chamber in FIG. 1, and the gas injection opening vicinity provided in this top plate. 図1中のサイクロンを拡大して示す断面図である。It is sectional drawing which expands and shows the cyclone in FIG. 射出される気体の角度を示す説明図であり、(A)はチャンバの天板の中心軸を通る垂直方向の断面図であり、(B)は天板を下方から見た下面図である。It is explanatory drawing which shows the angle of the gas inject | emitted, (A) is sectional drawing of the perpendicular direction which passes along the central axis of the top plate of a chamber, (B) is the bottom view which looked at the top plate from the downward direction. (A)は、本発明の実施例の炭化物微粒子の製造方法に用いた酸化チタンのX線回折法による結晶構造の解析結果を示すグラフであり、(B)は、本発明の実施例において得られた炭化チタンのX線回折法による結晶構造の解析結果を示すグラフである。(A) is a graph which shows the analysis result of the crystal structure by the X-ray diffraction method of the titanium oxide used for the manufacturing method of the carbide fine particle of the Example of this invention, (B) is obtained in the Example of this invention. It is a graph which shows the analysis result of the crystal structure by the X ray diffraction method of the obtained titanium carbide.
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の炭化物微粒子の製造方法を詳細に説明する。
 図1は、本発明の実施形態に係る炭化物微粒子の製造方法を実施するための微粒子製造装置の全体構成を示す模式図である。図2は、図1中に示したプラズマトーチ12付近の部分拡大図である。図3は、図1中に示したチャンバ16の天板17、およびこの天板17に備えられた気体射出口28aおよび気体射出口28b付近を拡大して示す断面図である。また、図4は、サイクロン19を拡大して示す断面図である。
Below, based on the preferred embodiment shown in an accompanying drawing, the manufacturing method of the carbide particulate of the present invention is explained in detail.
FIG. 1 is a schematic diagram showing an overall configuration of a fine particle production apparatus for carrying out a method for producing carbide fine particles according to an embodiment of the present invention. FIG. 2 is a partially enlarged view of the vicinity of the plasma torch 12 shown in FIG. 3 is an enlarged cross-sectional view showing the top plate 17 of the chamber 16 shown in FIG. 1 and the vicinity of the gas injection port 28a and the gas injection port 28b provided in the top plate 17. As shown in FIG. FIG. 4 is an enlarged cross-sectional view of the cyclone 19.
 図1に示す微粒子製造装置10は、熱プラズマを発生させるプラズマトーチ12と、金属酸化物の粉末を後述するように、スラリー状にしてプラズマトーチ12内へ供給する材料供給装置14と、微粒子(一次微粒子)15を生成させるための冷却槽としての機能を有するチャンバ16と、生成された一次微粒子15から任意に規定された粒径以上の粒径を有する粗大粒子を除去するサイクロン19と、サイクロン19により分級された所望の粒径を有する炭化物微粒子(二次微粒子)18を回収する回収部20とを含んで構成される。 A fine particle manufacturing apparatus 10 shown in FIG. 1 includes a plasma torch 12 that generates thermal plasma, a material supply device 14 that supplies a metal oxide powder in a slurry state into the plasma torch 12, as described later, and fine particles ( A chamber 16 having a function as a cooling tank for generating (primary fine particles) 15, a cyclone 19 for removing coarse particles having a particle size larger than a predetermined particle size from the generated primary fine particles 15, and a cyclone And a collection unit 20 that collects carbide fine particles (secondary fine particles) 18 having a desired particle size classified by 19.
 本実施形態においては、金属酸化物の粉末(以下、金属酸化物原料ともいう)を、炭素を含む液体状の物質(以下、分散媒ともいう)に分散させてスラリー状にし、このスラリーを用いて、微粒子製造装置10によりナノサイズの炭化物微粒子が製造される。 In this embodiment, a metal oxide powder (hereinafter also referred to as a metal oxide raw material) is dispersed in a liquid substance containing carbon (hereinafter also referred to as a dispersion medium) to form a slurry, and this slurry is used. Thus, nano-sized carbide particles are manufactured by the particle manufacturing apparatus 10.
 図2に示すプラズマトーチ12は、石英管12aと、その外側を取り巻く高周波発振用コイル12bとで構成されている。プラズマトーチ12の上部には、金属酸化物の粉末と噴霧ガスとをプラズマトーチ12内に供給するための後述する供給管14fがその中央部に設けられており、プラズマガス供給口12cがその周辺部(同一円周上)に形成されている。 The plasma torch 12 shown in FIG. 2 includes a quartz tube 12a and a high-frequency oscillation coil 12b that surrounds the quartz tube 12a. A supply pipe 14f, which will be described later, for supplying metal oxide powder and atomizing gas into the plasma torch 12 is provided at the center of the plasma torch 12, and a plasma gas supply port 12c is provided in the periphery of the supply pipe 14f. It is formed in the part (on the same circumference).
 プラズマガスは、プラズマガス供給源22からプラズマガス供給口12c(図2参照)へ送り込まれる。
 本実施形態においては、後述する熱プラズマ炎24中で、炭素を含む液体状の物質(分散媒)を燃焼させることなく分解して炭素を発生させるために、プラズマガスには酸素を含まないものを用いる。このプラズマガスとしては、例えば、水素、ヘリウム、アルゴン等が挙げられる。プラズマガスは、単体に限定されるものではなく、水素とアルゴン、ヘリウムとアルゴンのように、これらプラズマガスを組み合わせて使用してもよい。
The plasma gas is sent from the plasma gas supply source 22 to the plasma gas supply port 12c (see FIG. 2).
In the present embodiment, plasma gas does not contain oxygen in order to generate carbon by decomposing without burning a liquid substance (dispersion medium) containing carbon in a thermal plasma flame 24 to be described later. Is used. Examples of the plasma gas include hydrogen, helium, and argon. The plasma gas is not limited to a single substance, and these plasma gases may be used in combination, such as hydrogen and argon or helium and argon.
 プラズマガス供給源22には、例えば、水素とアルゴンの2種類のプラズマガスが準備されている。プラズマガスは、プラズマガス供給源22から、図2に示すリング状のプラズマガス供給口12cを介して、矢印Pで示されるようにプラズマトーチ12内に送り込まれる。そして、高周波発振用コイル12bに高周波電圧が印加されて、酸素を含まない熱プラズマ炎24が発生する。 The plasma gas supply source 22 is prepared with, for example, two types of plasma gases, hydrogen and argon. The plasma gas is sent from the plasma gas supply source 22 into the plasma torch 12 as indicated by an arrow P through the ring-shaped plasma gas supply port 12c shown in FIG. Then, a high frequency voltage is applied to the high frequency oscillation coil 12b, and a thermal plasma flame 24 not containing oxygen is generated.
 なお、石英管12aの外側は、同心円状に形成された管(図示されていない)で囲まれており、この管と石英管12aとの間に冷却水を循環させて石英管12aを水冷し、プラズマトーチ12内で発生した熱プラズマ炎24により石英管12aが高温になりすぎるのを防止している。 The outside of the quartz tube 12a is surrounded by a concentric tube (not shown), and cooling water is circulated between the tube and the quartz tube 12a to cool the quartz tube 12a. The quartz tube 12a is prevented from becoming too hot by the thermal plasma flame 24 generated in the plasma torch 12.
 図1に示すように、材料供給装置14は、管26と供給管14fを介してプラズマトーチ12の上部に接続され、金属酸化物原料を分散媒に混ぜて調製されたスラリー14aが材料供給装置14からプラズマトーチ12内へ均一に供給される。 As shown in FIG. 1, the material supply apparatus 14 is connected to the upper part of the plasma torch 12 through a pipe 26 and a supply pipe 14f, and a slurry 14a prepared by mixing a metal oxide raw material with a dispersion medium is a material supply apparatus. 14 is uniformly supplied into the plasma torch 12.
 材料供給装置14は、スラリー14aを入れる容器14bと、容器14b中のスラリー14aを攪拌する攪拌機14cと、供給管14fを介してスラリー14aに高圧をかけプラズマトーチ12内に供給するためのポンプ14dと、スラリー14aをプラズマトーチ12内へ噴霧するための噴霧ガスを供給する噴霧ガス供給源14eと、スラリー14aを液滴化しプラズマトーチ12内に供給する供給管14fを含み構成されている。 The material supply device 14 includes a container 14b for containing the slurry 14a, a stirrer 14c for stirring the slurry 14a in the container 14b, and a pump 14d for applying high pressure to the slurry 14a via the supply pipe 14f and supplying the slurry 14a into the plasma torch 12. A spray gas supply source 14e that supplies a spray gas for spraying the slurry 14a into the plasma torch 12, and a supply pipe 14f that droplets the slurry 14a and supplies the slurry 14a into the plasma torch 12.
 押し出し圧力をかけられた噴霧ガスが、噴霧ガス供給源14eからスラリー14aと共に、図2中に矢印Gで示されるように供給管14fを介してプラズマトーチ12内の熱プラズマ炎24中へ供給される。供給管14fは、スラリーをプラズマトーチ内の熱プラズマ炎24中に噴霧し液滴化するための二流体ノズル機構を有しており、これによりスラリー14aをプラズマトーチ12内の熱プラズマ炎24中に噴霧する。すなわち、スラリー14aを液滴化させることができる。噴霧ガスには、例えば、アルゴン、ヘリウム、水素等が単独または適宜組み合わせて用いられる。なお、スラリー14aが液滴化できるのであれば、噴霧ガスは必ずしも供給しなくてもよい。 The spray gas subjected to the extrusion pressure is supplied from the spray gas supply source 14e together with the slurry 14a into the thermal plasma flame 24 in the plasma torch 12 through the supply pipe 14f as shown by an arrow G in FIG. The The supply pipe 14f has a two-fluid nozzle mechanism for spraying the slurry into the thermal plasma flame 24 in the plasma torch to form droplets, whereby the slurry 14a is contained in the thermal plasma flame 24 in the plasma torch 12. Spray on. That is, the slurry 14a can be formed into droplets. As the atomizing gas, for example, argon, helium, hydrogen or the like is used alone or in appropriate combination. Note that the atomizing gas is not necessarily supplied as long as the slurry 14a can be formed into droplets.
 このように、二流体ノズル機構は、スラリーに高圧をかけ、気体である噴霧ガスによりスラリーを噴霧することができ、スラリーを液滴化させるための一つの方法として用いられる。例えば、ノズルに内径1mmのものを用いた場合、供給圧力を0.2~0.3MPaとして毎分20ミリリットルでスラリーを流し、毎分10~20リットルで噴霧ガスを噴霧すると、約5~10μm程度の液滴が得られる。 As described above, the two-fluid nozzle mechanism can apply high pressure to the slurry and spray the slurry with a spray gas which is a gas, and is used as one method for making the slurry into droplets. For example, when a nozzle having an inner diameter of 1 mm is used, if the supply pressure is 0.2 to 0.3 MPa and the slurry is flowed at 20 ml / min and the atomizing gas is sprayed at 10 to 20 liter / min, about 5 to 10 μm About a droplet is obtained.
 なお、本実施形態では二流体ノズル機構を用いたが、一流体ノズル機構を用いてもよい。さらに他の方法として、例えば、回転している円板上にスラリーを一定速度で落下させて遠心力により液滴化する(液滴を形成する)方法、スラリー表面に高い電圧を印加して液滴化する(液滴を発生させる)方法等が考えられる。 In this embodiment, the two-fluid nozzle mechanism is used, but a one-fluid nozzle mechanism may be used. As another method, for example, a slurry is dropped on a rotating disk at a constant speed to form a droplet by centrifugal force (a droplet is formed), and a liquid is applied by applying a high voltage to the slurry surface. A method for forming droplets (generating droplets) is conceivable.
 一方、図1に示したように、チャンバ16がプラズマトーチ12の下方に隣接して設けられている。プラズマトーチ12内の熱プラズマ炎24中に噴霧されたスラリー14a中の分散媒が熱プラズマ炎24で、燃焼させることなく分解されて発生した炭素により、金属酸化物原料が還元される。更に還元された金属材料原料が炭素と反応して炭化物になる。その直後に、この炭化物となった炭化物微粒子がチャンバ16内で急冷され、一次微粒子(炭化物微粒子)15が生成される。このように、チャンバ16は冷却槽としての機能を有する。 On the other hand, as shown in FIG. 1, the chamber 16 is provided adjacent to the lower side of the plasma torch 12. The dispersion medium in the slurry 14a sprayed into the thermal plasma flame 24 in the plasma torch 12 is reduced in the thermal plasma flame 24 by the carbon generated by being decomposed without burning. Further, the reduced metal material raw material reacts with carbon to become a carbide. Immediately thereafter, the carbide fine particles that have become carbide are rapidly cooled in the chamber 16 to generate primary fine particles (carbide fine particles) 15. Thus, the chamber 16 has a function as a cooling tank.
 また、ここでは、炭化物微粒子をより一層効率的に製造する方法の一つとして、生成された炭化物微粒子を急冷するための気体供給装置28を備えている。以下、この気体供給装置28について説明する。 Also, here, as one of the methods for more efficiently producing carbide fine particles, a gas supply device 28 for rapidly cooling the generated carbide fine particles is provided. Hereinafter, the gas supply device 28 will be described.
 図1、図3に示す気体供給装置28は、熱プラズマ炎24の尾部(プラズマガス供給口12cと反対側の熱プラズマ炎の端、つまり、熱プラズマ炎の終端部)に向かって、所定の角度で気体を射出する気体射出口28aと、チャンバ16の側壁に沿って上方から下方に向かって気体を射出する気体射出口28bと、チャンバ16内に供給する気体に押し出し圧力をかけるコンプレッサ28cと、チャンバ16内に供給する上記気体の供給源28dと、それらを接続する管28eとから構成されている。なお、コンプレッサ28cは、ブロアでもよい。 The gas supply device 28 shown in FIGS. 1 and 3 has a predetermined direction toward the tail of the thermal plasma flame 24 (the end of the thermal plasma flame opposite to the plasma gas supply port 12c, that is, the end of the thermal plasma flame). A gas injection port 28a for injecting gas at an angle, a gas injection port 28b for injecting gas from the upper side to the lower side along the side wall of the chamber 16, and a compressor 28c for applying an extrusion pressure to the gas supplied into the chamber 16 The gas supply source 28d to be supplied into the chamber 16 and a pipe 28e for connecting them. The compressor 28c may be a blower.
 なお、上記気体射出口28aから射出する気体は、後に詳述するように、チャンバ16内で生成される一次微粒子15を急冷する作用以外にも、気体射出口28bから射出する気体とともに、サイクロン19における一次微粒子15の分級に寄与する等の付加的作用を有するものである。
 上述のコンプレッサ28cと気体供給源28dは、管28eを介してチャンバ16の天板17に接続されている。
As will be described in detail later, the gas ejected from the gas ejection port 28a has a cyclone 19 together with the gas ejected from the gas ejection port 28b, in addition to the action of rapidly cooling the primary fine particles 15 generated in the chamber 16. It has an additional action such as contributing to the classification of the primary fine particles 15.
The above-described compressor 28c and gas supply source 28d are connected to the top plate 17 of the chamber 16 through a pipe 28e.
 ここで、上記気体射出口28bは、気体供給装置28の外側部天板部品17b内に形成されたスリットであり、生成された一次微粒子15がチャンバ16の内壁部に付着するのを防止するとともに、一次微粒子15を下流のサイクロン19で任意の分級点で分級できる流速を与えられる量の気体を射出できることが好ましい。上記気体射出口28bからは、チャンバ16の内壁に沿って上方から下方に向かって気体が射出される。 Here, the gas injection port 28 b is a slit formed in the outer side top plate component 17 b of the gas supply device 28, and prevents the generated primary fine particles 15 from adhering to the inner wall portion of the chamber 16. It is preferable that an amount of gas can be injected so as to provide a flow rate at which the primary fine particles 15 can be classified by the downstream cyclone 19 at an arbitrary classification point. From the gas injection port 28b, gas is injected from the upper side to the lower side along the inner wall of the chamber 16.
 気体供給源28d(図1および図3参照)から矢印Sに示されるように管28eを介して天板17(詳しくは、外側部天板部品17bおよび上部外側部天板部品17c)内に供給された気体は、ここに設けられた通気路を介して気体射出口28bから(後述するように、気体射出口28aからも)射出される。 Supplyed from the gas supply source 28d (see FIGS. 1 and 3) into the top plate 17 (specifically, the outer side top plate component 17b and the upper outer side top plate component 17c) through the pipe 28e as indicated by the arrow S. The gas thus discharged is ejected from the gas ejection port 28b (also from the gas ejection port 28a, as will be described later) through the air passage provided here.
 材料供給装置14からプラズマトーチ12内に射出された(液滴化された)スラリーは、熱プラズマ炎24中で、後述するように、燃焼させることなく金属酸化物原料が還元、および炭化されて炭化物となる。そして、この炭化物は、上記気体射出口28aから射出される(矢印Q参照)気体によりチャンバ16内で急冷され、炭化物からなる一次微粒子15が生成される。この際、気体射出口28bから射出される(矢印R参照)気体により、一次微粒子15がチャンバ16の内壁に付着することが防止される。 The slurry injected into the plasma torch 12 from the material supply device 14 (droplet-formed) is reduced and carbonized in the thermal plasma flame 24 without being burned, as will be described later. It becomes carbide. The carbide is rapidly cooled in the chamber 16 by the gas injected from the gas injection port 28a (see arrow Q), and primary fine particles 15 made of carbide are generated. At this time, the primary fine particles 15 are prevented from adhering to the inner wall of the chamber 16 by the gas ejected from the gas ejection port 28 b (see arrow R).
 図1に示すように、チャンバ16の側方下部には、生成された一次微粒子15を所望の粒径で分級するためのサイクロン19が設けられている。このサイクロン19は、図4に示すように、チャンバ16から一次微粒子15を供給する入口管19aと、この入口管19aと接続され、サイクロン19の上部に位置する円筒形状の外筒19bと、この外筒19b下部から下側に向かって連続し、かつ、径が漸減する円錐台部19cと、この円錐台部19c下側に接続され、上述の所望の粒径以上の粒径を有する粗大粒子を回収する粗大粒子回収チャンバ19dと、後に詳述する回収部20に接続され、外筒19bに突設される内管19eとを備えている。 As shown in FIG. 1, a cyclone 19 for classifying the generated primary fine particles 15 with a desired particle diameter is provided at the lower side portion of the chamber 16. As shown in FIG. 4, the cyclone 19 includes an inlet pipe 19 a that supplies the primary fine particles 15 from the chamber 16, a cylindrical outer cylinder 19 b that is connected to the inlet pipe 19 a and is positioned on the upper part of the cyclone 19, A truncated cone part 19c which is continuous from the lower part of the outer cylinder 19b to the lower side and gradually decreases in diameter, and a coarse particle which is connected to the lower side of the truncated cone part 19c and has a particle diameter equal to or larger than the desired particle diameter. The coarse particle recovery chamber 19d for recovering the gas and the inner tube 19e connected to the recovery unit 20 described in detail later and projecting from the outer cylinder 19b are provided.
 入口管19aから、チャンバ16内にて生成された一次微粒子15を含んだ気流が、外筒19b内周壁に沿って吹き込まれ、これにより、この気流が図4中に矢印Tで示すように外筒19bの内周壁から円錐台部19c方向に向かって流れることで、旋回する下降流が形成される。 From the inlet pipe 19a, an air flow containing the primary fine particles 15 generated in the chamber 16 is blown along the inner peripheral wall of the outer cylinder 19b, whereby this air flow is externally shown by an arrow T in FIG. By flowing from the inner peripheral wall of the cylinder 19b toward the truncated cone portion 19c, a swirling downward flow is formed.
 そして、上述の旋回する下降流は、円錐台部19c内周壁でさらに加速され、その後反転し、上昇流となって内管19eから系外に排出される。また、気流の一部は、粗大粒子回収チャンバ19dに流入する前に円錐台部19cで反転し、内管19eから系外に排出される。粒子には、旋回流により遠心力が与えられ、遠心力と抗力とのバランスにより、粗大粒子は壁方向に移動する。また、気流から分離した炭化物微粒子は、円錐台部19c側面に沿って下降し、粗大粒子回収チャンバ19dで回収される。ここで、十分に遠心力が与えられない微粒子は、円錐台部19c内周壁での反転気流とともに、系外へ排出される。 Then, the above-described swirling downward flow is further accelerated by the inner peripheral wall of the truncated cone part 19c, and then reverses to become an upward flow and is discharged out of the system from the inner pipe 19e. A part of the airflow is reversed at the truncated cone part 19c before flowing into the coarse particle recovery chamber 19d, and is discharged out of the system from the inner pipe 19e. Centrifugal force is given to the particles by the swirling flow, and the coarse particles move in the wall direction due to the balance between the centrifugal force and the drag force. Further, the carbide fine particles separated from the airflow descend along the side surface of the truncated cone part 19c and are collected in the coarse particle collection chamber 19d. Here, the fine particles to which the centrifugal force is not sufficiently applied are discharged out of the system together with the reverse airflow at the inner peripheral wall of the truncated cone part 19c.
 また、内管19eを通して、後に詳述する回収部20から負圧(吸引力)が生じるようになっている。そして、この負圧(吸引力)によって、上述の旋回する気流から分離された炭化物微粒子が、図4中の矢印Uで示すように吸引され、内管19eを通して回収部20に送られるようになっている。 Further, a negative pressure (suction force) is generated from the collection unit 20 described in detail later through the inner tube 19e. Then, by this negative pressure (suction force), the carbide fine particles separated from the above-described swirling airflow are sucked as shown by an arrow U in FIG. 4 and sent to the recovery unit 20 through the inner tube 19e. ing.
 図1に示すように、サイクロン19内の気流の出口である内管19eの延長上には、所望のナノサイズの粒径を有する二次微粒子(炭化物微粒子)18を回収する回収部20が設けられている。この回収部20は、回収室20aと、回収室20a内に設けられたフィルター20bと、回収室20a内下方に設けられた管を介して接続された真空ポンプ(図示せず)とを備えている。サイクロン19から送られた微粒子は、真空ポンプ(図示せず)で吸引されることにより、回収室20a内に引き込まれ、フィルター20bの表面で留まった状態にされて回収される。 As shown in FIG. 1, a recovery unit 20 for recovering secondary fine particles (carbide fine particles) 18 having a desired nano-sized particle diameter is provided on the extension of the inner tube 19e which is an outlet of the air flow in the cyclone 19. It has been. The recovery unit 20 includes a recovery chamber 20a, a filter 20b provided in the recovery chamber 20a, and a vacuum pump (not shown) connected via a pipe provided below the recovery chamber 20a. Yes. The fine particles sent from the cyclone 19 are drawn into the collection chamber 20a by being sucked by a vacuum pump (not shown), and are collected on the surface of the filter 20b.
 以下、上述のように構成される微粒子製造装置10の作用を述べつつ、この微粒子製造装置10を用いて、本発明の実施形態に係る炭化物微粒子の製造方法、およびこの製造方法により生成された炭化物微粒子について説明する。 Hereinafter, while describing the operation of the fine particle production apparatus 10 configured as described above, the fine particle production apparatus 10 is used to manufacture the carbide fine particles according to the embodiment of the present invention, and the carbide generated by the production method. The fine particles will be described.
 ここで、本実施形態において、金属酸化物原料(金属酸化物の粉末)は、炭化物微粒子の原料となるものである。この金属酸化物原料(金属酸化物の粉末)としては、例えば、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、酸化バナジウム(V)、酸化ニオブ(Nb)、酸化シリコン(SiO)、および酸化タングステン(WO)が挙げられる。
 本実施形態において、金属酸化物には、生成しようとする炭化物微粒子を構成する金属元素の酸化物が用いられる。
 また、金属酸化物原料は、熱プラズマ炎中で容易に蒸発するように、その平均粒径が50μm以下であり、好ましくは平均粒径が10μm以下である。
Here, in this embodiment, the metal oxide raw material (metal oxide powder) is a raw material for the carbide fine particles. Examples of the metal oxide raw material (metal oxide powder) include titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), vanadium oxide (V 2 O 5 ), niobium oxide (Nb 2 O 5 ), and oxidation. Examples include silicon (SiO 2 ) and tungsten oxide (WO 3 ).
In the present embodiment, the metal oxide is an oxide of a metal element constituting the carbide fine particles to be generated.
The metal oxide raw material has an average particle size of 50 μm or less, and preferably an average particle size of 10 μm or less so that it can be easily evaporated in a thermal plasma flame.
 本実施形態において、炭素を含む液体状の物質(分散媒)としては、例えば、アルコール、ケトン、ケロシン、オクタンまたはガソリンが挙げられる。
 また、アルコールとしては、例えば、エタノール、メタノール、プロパノール、イソプロピルアルコールが挙げられる。
 上述のように、炭素を含む液体状の物質(分散媒)は、金属酸化物原料(金属酸化物の粉末)を還元するとともに、その後、炭化物にするための炭素を供給する炭素源として作用するものである。このため、炭素を含む液体状の物質は、熱プラズマ炎24により分解されやすいことが好ましい。このことから、炭素を含む液体状の物質は、低級アルコールが好ましい。
In the present embodiment, examples of the liquid substance (dispersion medium) containing carbon include alcohol, ketone, kerosene, octane, and gasoline.
Examples of the alcohol include ethanol, methanol, propanol, and isopropyl alcohol.
As described above, the liquid substance (dispersion medium) containing carbon acts as a carbon source for reducing the metal oxide raw material (metal oxide powder) and then supplying carbon for making a carbide. Is. For this reason, it is preferable that the liquid substance containing carbon is easily decomposed by the thermal plasma flame 24. Therefore, the liquid substance containing carbon is preferably a lower alcohol.
 本実施形態の炭化物微粒子の製造方法では、まず、金属酸化物原料を分散媒中に分散させてスラリーを得る。このとき、スラリー中の金属酸化物原料と分散媒との混合比は、例えば、6:4(60%:40%)である。分散媒は、金属酸化物を還元するとともに、炭化するための炭素源として作用するものであるため、余剰の炭素が生じるように、この金属酸化物原料と分散媒との質量比は、適宜変更してスラリーが調製される。 In the method for producing carbide fine particles of the present embodiment, first, a metal oxide raw material is dispersed in a dispersion medium to obtain a slurry. At this time, the mixing ratio of the metal oxide raw material and the dispersion medium in the slurry is, for example, 6: 4 (60%: 40%). Since the dispersion medium acts as a carbon source for reducing and carbonizing the metal oxide, the mass ratio of the metal oxide raw material and the dispersion medium is appropriately changed so that excess carbon is generated. Thus, a slurry is prepared.
 さらに、スラリー14aを調整する際に、界面活性剤、高分子、カップリング剤よりなる群から選ばれる1種または2種以上の混合物を添加してもよい。界面活性剤としては、例えば、ノニオン性界面活性剤であるソルビタン脂肪酸エステルが用いられる。高分子としては、例えば、ポリアクリル酸アンモニウムが用いられる。カップリング剤としては、例えば、シランカップリング剤等が用いられる。界面活性剤、高分子、カップリング剤よりなる群から選ばれる1種または2種以上の混合物をスラリー14aに添加することにより、金属酸化物原料が分散媒で凝集することをより効果的に防止して、スラリー14aを安定化させることができる。 Furthermore, when adjusting the slurry 14a, one or a mixture of two or more selected from the group consisting of a surfactant, a polymer, and a coupling agent may be added. As the surfactant, for example, sorbitan fatty acid ester which is a nonionic surfactant is used. For example, ammonium polyacrylate is used as the polymer. As the coupling agent, for example, a silane coupling agent or the like is used. By adding one or a mixture of two or more selected from the group consisting of a surfactant, a polymer, and a coupling agent to the slurry 14a, the metal oxide raw material is more effectively prevented from aggregating with the dispersion medium. Thus, the slurry 14a can be stabilized.
 上述のようにして調整されたスラリー14aは、図1に示す材料供給装置14の容器14b内に入れられ、攪拌機14cで攪拌される。これにより、分散媒中の金属酸化物原料が沈澱することを防止し、分散媒中で金属酸化物原料が分散された状態のスラリー14aが維持される。なお、材料供給装置14に金属酸化物原料と分散媒とを供給して連続的にスラリー14aを調製してもよい。 The slurry 14a prepared as described above is placed in the container 14b of the material supply apparatus 14 shown in FIG. 1 and stirred by the stirrer 14c. Thereby, it is prevented that the metal oxide raw material in a dispersion medium precipitates, and the slurry 14a in which the metal oxide raw material is dispersed in the dispersion medium is maintained. Alternatively, the slurry 14a may be continuously prepared by supplying the metal oxide raw material and the dispersion medium to the material supply device 14.
 次に、前述の二流体ノズル機構を用いてスラリー14aを液滴化させ、液滴化されたスラリー14aが、プラズマトーチ12内に供給されることにより、プラズマトーチ12内に発生している熱プラズマ炎24中に供給されて、分散媒を燃焼させることなく炭素が生成される。 Next, the slurry 14 a is formed into droplets using the above-described two-fluid nozzle mechanism, and the slurry 14 a formed into droplets is supplied into the plasma torch 12, thereby generating heat generated in the plasma torch 12. Carbon is generated without being supplied to the plasma flame 24 and burning the dispersion medium.
 なお、酸素を含まない熱プラズマ炎24は、液滴化されたスラリー14aを蒸発させ、分散媒を燃焼させることなく分解、蒸発させて炭素を生成させる。更には熱プラズマ炎24は、その温度と生成された炭素により、金属酸化物原料を還元した後、さらに余剰の炭素と反応させ炭化物にさせるものである。このため、熱プラズマ炎24の温度は、スラリーに含まれる金属酸化物原料(金属酸化物)が炭素により還元される温度、および炭化される温度よりも高いことが必要である。
 一方、熱プラズマ炎24の温度が高いほど、容易に金属酸化物原料(金属酸化物)が還元、および炭化されるので好ましいが、特に温度は限定されず、金属酸化物原料(金属酸化物)が還元される温度に応じて適宜選択してよい。例えば、熱プラズマ炎24の温度を6000℃とすることもできるし、理論上は、10000℃程度に達するものと考えられる。
The oxygen-free thermal plasma flame 24 evaporates the slurry 14a in droplets, decomposes and evaporates without burning the dispersion medium, and generates carbon. Furthermore, the thermal plasma flame 24 reduces the metal oxide raw material with the temperature and generated carbon, and then reacts with excess carbon to form a carbide. For this reason, the temperature of the thermal plasma flame 24 needs to be higher than the temperature at which the metal oxide raw material (metal oxide) contained in the slurry is reduced by carbon and carbonized.
On the other hand, the higher the temperature of the thermal plasma flame 24 is, the easier the metal oxide raw material (metal oxide) is reduced and carbonized, but the temperature is not particularly limited, and the metal oxide raw material (metal oxide) Depending on the temperature at which is reduced, it may be appropriately selected. For example, the temperature of the thermal plasma flame 24 can be set to 6000 ° C., and it is theoretically considered to reach about 10000 ° C.
 また、プラズマトーチ12内における圧力雰囲気は、大気圧以下であることが好ましい。ここで、大気圧以下の雰囲気については、特に限定されないが、例えば、5Torr~750Torrとすることができる。 Further, the pressure atmosphere in the plasma torch 12 is preferably atmospheric pressure or lower. Here, the atmosphere at atmospheric pressure or lower is not particularly limited, but may be, for example, 5 Torr to 750 Torr.
 次に、酸素を含まない熱プラズマ炎24中でスラリー14aが蒸発し、更にはメタノール等の分散媒を燃焼させることなく分解されて炭素が得られる。この炭素が、金属酸化物原料に比して多く生成されるように、スリラー14aにおける分散媒の量が調整されている。発生した炭素と金属酸化物原料とが反応し、金属酸化物が金属に還元される。その後、余剰の炭素と還元された金属とが反応して炭化物が生成される。この生成された炭化物が、気体射出口28aを介して矢印Qで示される方向に射出される気体によって急冷されて、チャンバ16内で急冷されることにより、炭化物からなる一次微粒子15が得られる。 Next, the slurry 14a evaporates in the thermal plasma flame 24 not containing oxygen, and further decomposed without burning a dispersion medium such as methanol to obtain carbon. The amount of the dispersion medium in the chiller 14a is adjusted so that a larger amount of this carbon is produced than the metal oxide raw material. The generated carbon reacts with the metal oxide raw material, and the metal oxide is reduced to metal. Thereafter, excess carbon and the reduced metal react to produce carbide. The generated carbide is rapidly cooled by the gas injected in the direction indicated by the arrow Q through the gas injection port 28a and is rapidly cooled in the chamber 16, whereby the primary fine particles 15 made of carbide are obtained.
 従って、上記気体射出口28aから射出される気体の量は、一次微粒子15が生成される過程において、金属酸化物を炭化物とした後、この炭化物を急冷するに十分な供給量であることが必要であるが、これとともに気体射出口28bから射出される気体の量、さらには、後述する熱プラズマ炎中に供給する気体の量と合わせて、一次微粒子15を下流のサイクロン19で任意の分級点で分級できる流速が得られ、かつ、熱プラズマ炎の安定を妨げない程度の量であることが好ましい。 Accordingly, the amount of gas injected from the gas injection port 28a needs to be a supply amount sufficient to quench the carbide after the metal oxide is converted into carbide in the process of generating the primary fine particles 15. However, together with the amount of gas injected from the gas injection port 28b and further, the amount of gas supplied into the thermal plasma flame described later, the primary fine particles 15 are arbitrarily classified by the downstream cyclone 19. It is preferable that the flow rate is such that a flow rate that can be classified by the method is obtained and the stability of the thermal plasma flame is not disturbed.
 なお、上述の気体射出口28aから射出される気体の量と気体射出口28bから射出される気体の量とを合わせた射出量は、上記熱プラズマ炎中に供給する気体の200%~5000%とするのがよい。ここで、上述の熱プラズマ炎中に供給する気体とは、熱プラズマ炎を形成するプラズマガス、プラズマ流を形成するためのガスおよび噴霧ガスを合わせたものである。 Note that the combined amount of the gas injected from the gas injection port 28a and the amount of the gas injected from the gas injection port 28b is 200% to 5000% of the gas supplied into the thermal plasma flame. It is good to do. Here, the gas supplied into the above-described thermal plasma flame is a combination of a plasma gas that forms a thermal plasma flame, a gas that forms a plasma flow, and a spray gas.
 また、熱プラズマ炎の安定を妨げない限り、上記射出される気体の供給方法や供給位置などは、特に限定されない。本実施形態の微粒子製造装置10では、天板17に円周状のスリットを形成して気体を射出しているが、熱プラズマ炎からサイクロンまでの経路上で、確実に気体を供給可能な方法や位置であれば、他の方法、他の位置でも構わない。 Further, the supply method and supply position of the injected gas are not particularly limited as long as the stability of the thermal plasma flame is not hindered. In the fine particle manufacturing apparatus 10 of the present embodiment, a gas is injected by forming a circumferential slit in the top plate 17, but a method that can reliably supply gas on the path from the thermal plasma flame to the cyclone. Other methods and other positions may be used as long as they are positions.
 最終的にチャンバ16内で生成された炭化物からなる一次微粒子15は、サイクロン19の入口管19aから、気流とともに外筒19bの内周壁に沿って吹き込まれ、これにより、この気流が図4中の矢印Tで示すような外筒19bの内周壁に沿って流れることにより、旋回流を形成して下降する。そして、この旋回流は円錐台部19c内周壁でさらに加速され、その後反転し、上昇流となって、内管19eから系外に排出される。また、気流の一部は、粗大粒子回収チャンバ19dに流入する前に円錐台部19c内周壁で反転し、内管19eから系外に排出される。 Finally, the primary fine particles 15 made of carbides generated in the chamber 16 are blown from the inlet pipe 19a of the cyclone 19 along the inner peripheral wall of the outer cylinder 19b together with the air current. By flowing along the inner peripheral wall of the outer cylinder 19b as shown by the arrow T, the swirl flow is formed to descend. Then, this swirling flow is further accelerated at the inner peripheral wall of the truncated cone part 19c, then reverses, becomes an upward flow, and is discharged out of the system from the inner pipe 19e. A part of the airflow is reversed at the inner peripheral wall of the truncated cone part 19c before flowing into the coarse particle recovery chamber 19d, and is discharged out of the system from the inner pipe 19e.
 炭化物からなる一次微粒子15に旋回流により遠心力が与えられ、遠心力と抗力とのバランスにより、一次微粒子15のうち、粗大粒子は壁方向に移動する。また、一次微粒子15のうち、気流から分離された粒子は、円錐台部19c側面に沿って下降し、粗大粒子回収チャンバ19dで回収される。ここで、十分に遠心力が与えられない微粒子は、円錐台部19c内周壁での反転気流とともに、内管19eから、炭化物微粒子(二次微粒子)18として系外へ排出される。このときのサイクロン19内への気流の流速は、好ましくは、10m/sec以上である。 Centrifugal force is applied to the primary fine particles 15 made of carbide by a swirling flow, and coarse particles of the primary fine particles 15 move in the wall direction due to the balance between centrifugal force and drag. In addition, among the primary fine particles 15, particles separated from the air flow descend along the side surface of the truncated cone part 19c and are collected in the coarse particle collection chamber 19d. Here, the fine particles to which the centrifugal force is not sufficiently applied are discharged out of the system as carbide fine particles (secondary fine particles) 18 from the inner tube 19e together with the reverse airflow at the inner peripheral wall of the truncated cone part 19c. The flow velocity of the airflow into the cyclone 19 at this time is preferably 10 m / sec or more.
 排出された炭化物微粒子(二次微粒子)18は、回収部20からの負圧(吸引力)によって、図4中の矢印Uで示すように吸引され、内管19eを通して回収部20に送られ、回収部20のフィルター20bで回収される。このときのサイクロン19内の内圧は、大気圧以下であることが好ましい。また、炭化物微粒子(二次微粒子)18の粒径は、目的に応じてナノサイズレベルの任意の粒径が規定される。
 このようにして、本実施形態においては、ナノサイズの炭化物微粒子を得ることができる。
The discharged carbide fine particles (secondary fine particles) 18 are sucked as indicated by an arrow U in FIG. 4 due to the negative pressure (suction force) from the collecting unit 20, and sent to the collecting unit 20 through the inner tube 19e. It is recovered by the filter 20b of the recovery unit 20. At this time, the internal pressure in the cyclone 19 is preferably not more than atmospheric pressure. In addition, the particle size of the carbide fine particles (secondary fine particles) 18 is defined as an arbitrary particle size at the nano-size level according to the purpose.
Thus, in this embodiment, nanosized carbide fine particles can be obtained.
 また、本発明の炭化物微粒子の製造方法においては、使用するサイクロンの個数は、1つに限定されず、2つ以上でもよい。 In the method for producing carbide fine particles of the present invention, the number of cyclones used is not limited to one, and may be two or more.
 本実施形態の炭化物微粒子の製造方法により製造される炭化物微粒子は、その粒度分布幅が狭い、すなわち、均一な粒径を有し、1μm以上の粗大粒子の混入が殆どなく、具体的には、その平均粒径が1~100nmのナノサイズの炭化物微粒子である。
 本実施形態の炭化物微粒子の製造方法では、炭化物微粒子として、例えば、炭化チタン(TiC)、炭化ジルコニウム(ZrC)、炭化バナジウム(VC1-x)、炭化ニオブ(NbC)、炭化タンタル(TaC)、炭化シリコン(SiC)または炭化タングステン(WC1-x)の微粒子を得ることができる。
The carbide fine particles produced by the method for producing carbide fine particles of the present embodiment have a narrow particle size distribution width, that is, a uniform particle size, and there is almost no mixing of coarse particles of 1 μm or more. Specifically, Nanosized carbide fine particles having an average particle diameter of 1 to 100 nm.
In the method for producing carbide fine particles of the present embodiment, as the carbide fine particles, for example, titanium carbide (TiC), zirconium carbide (ZrC), vanadium carbide (VC 1-x ), niobium carbide (NbC), tantalum carbide (TaC), Fine particles of silicon carbide (SiC) or tungsten carbide (WC 1-x ) can be obtained.
 本実施形態の炭化物微粒子の製造方法で得られる炭化物微粒子は、例えば、半導体基板、プリント基板、各種電気絶縁部品などの電気絶縁材料、切削工具、ダイス、軸受などの高硬度高精度の機械工作材料、粒界コンデンサ、湿度センサなどの機能性材料、精密焼結成形材料などの焼結体の製造、エンジンバルブなどの高温耐摩耗性が要求される材料などの溶射部品製造、さらには燃料電池の電極、電解質材料および各種触媒などに用いることができる。 Carbide fine particles obtained by the method for producing carbide fine particles of the present embodiment include, for example, electrical insulation materials such as semiconductor substrates, printed boards, various electrical insulation components, cutting tools, dies, and high-hardness and high-precision machine tools. , Production of functional materials such as grain boundary capacitors and humidity sensors, production of sintered bodies such as precision sintered molding materials, production of thermal spray parts such as materials that require high-temperature wear resistance such as engine valves, and fuel cell It can be used for electrodes, electrolyte materials and various catalysts.
 本実施形態においては、炭化物微粒子の粒径をナノサイズにできるため、例えば、焼結体に利用する場合、焼結性を高めることができ、高い強度の焼結体を得ることができる。これより、例えば、切削性が良好な工具を得ることができる。また、触媒に利用する場合、粒径を小さくすることができるため、触媒の性能を高めることができる。 In this embodiment, since the particle size of the carbide fine particles can be made nano-sized, for example, when used for a sintered body, the sinterability can be improved and a high-strength sintered body can be obtained. Thus, for example, a tool with good cutting properties can be obtained. Moreover, when using for a catalyst, since a particle size can be made small, the performance of a catalyst can be improved.
 また、本実施形態においては、金属酸化物原料の還元、炭化に用いる炭素源に液体を用いるため、金属酸化物原料を熱プラズマ炎に対して容易に、均一に供給することができる。さらには、炭素源が液体であるため、グラファイト等の固体の炭素源に比して、容易に分解され、金属酸化物および還元された金属に対して効率良く炭素と反応させることができる。これにより、金属酸化物原料の炭化物への反応効率が高くなり、高い生産性で炭化物を製造することができる。
 また、本実施形態においては、金属酸化物原料として、例えば、TiOを用いた場合、原料コストを抑えることができ生産コストを低くすることができる。
Moreover, in this embodiment, since a liquid is used for the carbon source used for reduction and carbonization of the metal oxide raw material, the metal oxide raw material can be easily and uniformly supplied to the thermal plasma flame. Furthermore, since the carbon source is a liquid, it can be easily decomposed and reacted with carbon with respect to the metal oxide and the reduced metal more efficiently than a solid carbon source such as graphite. Thereby, the reaction efficiency to the carbide of a metal oxide raw material becomes high, and a carbide can be manufactured with high productivity.
In the present embodiment, the metal oxide material, for example, in the case of using TiO 2, it is possible to lower the production cost can be suppressed raw material cost.
 また、本実施形態の炭化物微粒子の製造方法では、ガスを供給し、装置内の流速を任意に制御することで、装置内に設けたサイクロンで微粒子を分級可能としている。本実施形態の炭化物微粒子の製造方法では、反応条件を変えることなく、気体の流速、もしくはサイクロン内径を変えることで、任意の分級点で粗大粒子を分離できるため、粒径が微細かつ均一で、品質のよい高純度の微粒子を高い生産性で製造することが可能になる。 Further, in the method for producing carbide fine particles of the present embodiment, the fine particles can be classified by a cyclone provided in the apparatus by supplying a gas and arbitrarily controlling the flow rate in the apparatus. In the method for producing carbide fine particles of the present embodiment, the coarse particles can be separated at an arbitrary classification point by changing the gas flow rate or the cyclone inner diameter without changing the reaction conditions. It becomes possible to produce high-quality fine particles with high quality and high productivity.
 さらに、本実施形態の炭化物微粒子の製造方法では、サイクロン内で旋回流を生じるため滞留時間が長くなり、サイクロン内で微粒子が冷却されるので、これまで冷却機構として用いていたフィンや冷却路を設ける必要がなくなる。そのため、フィン内に堆積した微粒子除去のために装置の稼動を停止させる必要がなくなり、装置の稼動時間を長期化することが可能になる。さらに、サイクロン全体を水冷ジャケット構造とすることで、冷却効果をより一層高めることができる。 Furthermore, in the manufacturing method of the carbide fine particles of the present embodiment, since the swirl flow is generated in the cyclone, the residence time becomes long, and the fine particles are cooled in the cyclone. There is no need to provide it. Therefore, it is not necessary to stop the operation of the apparatus for removing the fine particles accumulated in the fins, and the operation time of the apparatus can be extended. Furthermore, the cooling effect can be further enhanced by employing a water-cooled jacket structure for the entire cyclone.
 前述の通り、本実施形態の微粒子製造装置10は、気相状態の混合物を急冷することを主たる目的とする気体供給装置28を備えることを特徴としている。以下、この気体供給装置28について追加説明する。 As described above, the fine particle production apparatus 10 of the present embodiment is characterized by including the gas supply device 28 whose main purpose is to rapidly cool the gas phase mixture. Hereinafter, the gas supply device 28 will be additionally described.
 図1,図3に示す気体供給装置28は、熱プラズマ炎24の尾部に向かって、前述のような所定の角度で気体を射出する気体射出口28aと、チャンバ16の側壁に沿って上方から下方に向かって気体を射出する気体射出口28bと、チャンバ16内に供給される気体に押し出し圧力をかけるコンプレッサ28cと、チャンバ16内に供給される上記気体の供給源28dと、それらを接続する管28eとから構成されている。
 なお、コンプレッサ28cと気体供給源28dは、管28eを介してチャンバ16の天板17に接続されている。ここで、熱プラズマ炎の尾部とは、プラズマガス供給口12cと反対側の熱プラズマ炎の端、つまり、熱プラズマ炎の終端部である。
The gas supply device 28 shown in FIG. 1 and FIG. 3 has a gas injection port 28 a for injecting gas at a predetermined angle as described above toward the tail of the thermal plasma flame 24, and the upper side along the side wall of the chamber 16. The gas injection port 28b that injects the gas downward, the compressor 28c that applies an extrusion pressure to the gas supplied into the chamber 16, and the gas supply source 28d that is supplied into the chamber 16 are connected to each other. And a tube 28e.
The compressor 28c and the gas supply source 28d are connected to the top plate 17 of the chamber 16 through a pipe 28e. Here, the tail part of the thermal plasma flame is the end of the thermal plasma flame opposite to the plasma gas supply port 12c, that is, the terminal part of the thermal plasma flame.
 図3に示すように、気体射出口28aと気体射出口28bとは、チャンバ16の天板17に形成されている。ここで、天板17は、円錐台形状で上側の一部が円柱である内側部天板部品17aと、円錐台形状の孔を有する外側部天板部品17bと、内側部天板部品17aを垂直に移動させる移動機構を有する上部外側部天板部品17cとを含み構成されている。 As shown in FIG. 3, the gas injection port 28 a and the gas injection port 28 b are formed on the top plate 17 of the chamber 16. Here, the top plate 17 includes an inner top plate component 17a having a truncated cone shape and a part of the upper side being a cylinder, an outer top plate component 17b having a truncated cone-shaped hole, and an inner top plate component 17a. And an upper outer part top plate component 17c having a moving mechanism for moving it vertically.
 ここで、内側部天板部品17aと上部外側部天板部品17cとが接する部分(内側部天板部品17aでは上部の円柱部分)にはネジが切ってあり、内側部天板部品17aが、回転することで垂直方向に位置を変えることができ、内側部天板部品17aは、外側部天板部品17bとの距離を調節できる。また、内側部天板部品17aの円錐台部分の勾配と、外側部天板部品17bが有する孔の円錐台部分の勾配は同一であり、お互いがかみ合う構造になっている。 Here, a screw is cut at a portion where the inner side top plate component 17a and the upper outer side top plate component 17c are in contact (in the inner side top plate component 17a, the upper cylindrical portion), and the inner top plate component 17a is By rotating, the position can be changed in the vertical direction, and the inner top plate component 17a can adjust the distance from the outer top plate component 17b. In addition, the gradient of the truncated cone part of the inner top plate part 17a and the gradient of the truncated cone part of the hole of the outer part top plate part 17b are the same, and are structured to engage with each other.
 また、気体射出口28aとは、内側部天板部品17aと外側部天板部品17bとが形成した間隙、つまり、スリット幅が調節可能であって、天板と同心である円周状に形成されたスリットである。ここで、気体射出口28aは、熱プラズマ炎24の尾部に向かって気体を射出することができる形状であればよく、上述のようなスリット形状に限定されるものではなく、例えば、円周上に多数の孔を配したものでもよい。 Further, the gas injection port 28a is formed in a circumferential shape that can adjust a gap formed by the inner top plate component 17a and the outer top plate component 17b, that is, a slit width, and is concentric with the top plate. Is a slit. Here, the gas injection port 28a may be any shape that can inject gas toward the tail of the thermal plasma flame 24, and is not limited to the slit shape as described above. A large number of holes may be provided.
 また、上部外側部天板部品17cの内部には、管28eを介して送られる気体が通過するための通気路17dが設けられる。上記気体は、通気路17dを通過し、上述した内側部天板部品17aと外側部天板部品17bとが形成するスリットである気体射出口28aに送られる。気体射出口28aに送られた気体は、図1および図3中の矢印Qで示される方向に、熱プラズマ炎の尾部(終端部)に向かって、前述のように、所定の供給量および所定の角度で射出される。 Also, an air passage 17d through which the gas sent through the pipe 28e passes is provided inside the upper outer top plate component 17c. The gas passes through the air passage 17d and is sent to the gas injection port 28a which is a slit formed by the inner top plate component 17a and the outer top plate component 17b described above. As described above, the gas sent to the gas injection port 28a is directed in the direction indicated by the arrow Q in FIGS. 1 and 3 toward the tail portion (terminal portion) of the thermal plasma flame. It is injected at an angle of.
 ここで、上記所定の供給量について説明する。前述のように(段落0048参照)、前記気相状態の混合物を急冷するのに生成した量とは、例えば、前記気相状態の混合物を急冷するのに必要な空間を形成するチャンバ内に供給する気体のチャンバ16内における平均流速(チャンバ内流速)を、0.001~60m/secとすることが好ましく、0.5~10m/secとすることがより好ましい。これは、熱プラズマ炎24中に噴霧され蒸発した気相状態の混合物を急冷し微粒子を生成させ、生成された微粒子同士の衝突による凝集を防止するのに十分な気体の供給量である。 Here, the predetermined supply amount will be described. As described above (see paragraph 0048), the amount produced to quench the gas phase mixture is, for example, supplied into a chamber that forms a space necessary for quenching the gas phase mixture. The average flow velocity (in-chamber flow velocity) of the gas in the chamber 16 is preferably 0.001 to 60 m / sec, and more preferably 0.5 to 10 m / sec. This is a gas supply amount sufficient to rapidly cool the gas phase mixture sprayed and evaporated in the thermal plasma flame 24 to generate fine particles, and to prevent aggregation due to collision between the generated fine particles.
 なお、この供給量は、気相状態の混合物を急冷して凝固させるのに十分な量であり、また、凝固し生成された直後の微粒子同士が衝突することで凝集しないように気相状態の混合物を希釈するのに十分な量である必要があり、チャンバ16の形状や大きさによりその値を適宜定めるのがよい。
 ただし、この供給量は、熱プラズマ炎の安定を妨げることのないように制御されることが好ましい。
Note that this supply amount is sufficient to rapidly cool and solidify the gas phase mixture, and to prevent agglomeration due to collision between the microparticles immediately after solidification and formation. The amount needs to be sufficient to dilute the mixture, and the value may be appropriately determined according to the shape and size of the chamber 16.
However, this supply amount is preferably controlled so as not to hinder the stability of the thermal plasma flame.
 次に、図5(A)、(B)を用いて、気体射出口28aがスリット形状の場合における、上記所定の角度について説明する。図5(A)に、チャンバ16の天板17の中心軸を通る垂直方向の断面図を、また、図5(B)に、天板17を下方から見た図を示す。なお、図5(B)には、図5(A)に示した断面に対して垂直な方向が示されている。ここで、図5(A)、(B)中に示す点Xは、通気路17dを介して気体供給源28d(図1参照)から送られた気体が、気体射出口28aからチャンバ16内部へ射出される射出点である。実際は、気体射出口28aが円周状のスリットであるため、射出時の気体は帯状の気流を形成している。従って、点Xは仮想的な射出点である。 Next, with reference to FIGS. 5A and 5B, the predetermined angle in the case where the gas injection port 28a has a slit shape will be described. FIG. 5A is a vertical sectional view passing through the central axis of the top plate 17 of the chamber 16, and FIG. 5B is a view of the top plate 17 as viewed from below. Note that FIG. 5B shows a direction perpendicular to the cross section shown in FIG. Here, a point X shown in FIGS. 5A and 5B indicates that the gas sent from the gas supply source 28d (see FIG. 1) via the air passage 17d is introduced into the chamber 16 from the gas injection port 28a. It is an injection point to be injected. Actually, since the gas injection port 28a is a circumferential slit, the gas at the time of injection forms a belt-like airflow. Therefore, the point X is a virtual emission point.
 図5(A)に示すように、通気路17dの開口部の中心を原点として、垂直上方を0°、紙面で反時計周りに正の方向をとり、矢印Qで示される方向に気体射出口28aから射出される気体の角度を角度αで表す。この角度αは、上述した、熱プラズマ炎の初部から尾部(終端部)への方向に対する角度である。 As shown in FIG. 5A, the center of the opening of the air passage 17d is the origin, the vertical upward is 0 °, the positive direction is counterclockwise on the page, and the gas injection port is in the direction indicated by the arrow Q. The angle of the gas injected from 28a is represented by angle α. This angle α is an angle with respect to the direction from the first part of the thermal plasma flame to the tail part (terminal part) described above.
 また、図5(B)に示すように、上記仮想的な射出点Xを原点として、熱プラズマ炎24の中心に向かう方向が0°、紙面で反時計回りを正の方向として、熱プラズマ炎24の初部から尾部(終端部)への方向に対して垂直な面方向における、矢印Qで示される方向に気体射出口28aから射出される気体の角度を角度βで表す。この角度βは、上述した、熱プラズマ炎の初部から尾部(終端部)への方向に対して直行する面内で、熱プラズマ炎の中心部に対する角度である。 Further, as shown in FIG. 5B, the thermal plasma flame with the virtual injection point X as the origin, the direction toward the center of the thermal plasma flame 24 as 0 °, and the counterclockwise direction on the paper as the positive direction. The angle of the gas ejected from the gas ejection port 28a in the direction indicated by the arrow Q in the plane direction perpendicular to the direction from the initial part 24 to the tail part (terminal part) is represented by an angle β. This angle β is an angle with respect to the central portion of the thermal plasma flame in the plane perpendicular to the direction from the initial portion to the tail portion (terminal portion) of the thermal plasma flame described above.
 上述した角度α(通常は垂直方向の角度)および角度β(通常は水平方向の角度)を用いると、前記所定の角度、すなわち、前記気体の前記チャンバ内への供給方向は、前記チャンバ16内において、熱プラズマ炎24の尾部(終端部)に対して、角度αが90°<α<240°(好ましくは100°<α<180°の範囲、より好ましくはα=135°)、角度βが-90°<β<90°(好ましくは-45°<β<45°の範囲、より好ましくはβ=0°)であるのがよい。 Using the angle α (usually the vertical angle) and the angle β (usually the horizontal angle) described above, the predetermined angle, that is, the supply direction of the gas into the chamber, , The angle α is 90 ° <α <240 ° (preferably in the range of 100 ° <α <180 °, more preferably α = 135 °) with respect to the tail (end portion) of the thermal plasma flame 24, and the angle β. Is −90 ° <β <90 ° (preferably in the range of −45 ° <β <45 °, more preferably β = 0 °).
 上述したように、熱プラズマ炎24に向かって所定の供給量および所定の角度で射出された気体により、上記気相状態の混合物が急冷され、一次微粒子15が生成される。上述の所定の角度でチャンバ16内部に射出された気体は、チャンバ16内部に発生する乱流等の影響により必ずしもその射出された角度で熱プラズマ炎24の尾部に到達するわけではないが、気相状態の混合物の冷却を効果的に行い、かつ熱プラズマ炎24を安定させて効率よく微粒子製造装置10を動作させるためには、上記角度に決定するのが好ましい。なお、上記角度は、装置の寸法、熱プラズマ炎の大きさ等の条件を考慮して、実験的に決定すればよい。 As described above, the gas phase mixture is rapidly cooled by the gas injected toward the thermal plasma flame 24 at a predetermined supply amount and a predetermined angle, and primary particles 15 are generated. The gas injected into the chamber 16 at the predetermined angle described above does not necessarily reach the tail of the thermal plasma flame 24 at the injected angle due to the influence of turbulent flow generated inside the chamber 16. In order to effectively cool the mixture in the phase state, stabilize the thermal plasma flame 24, and operate the fine particle production apparatus 10 efficiently, it is preferable to determine the angle. The angle may be determined experimentally in consideration of conditions such as the size of the apparatus and the size of the thermal plasma flame.
 生成直後の微粒子同士が衝突し、凝集体を形成することで粒径の不均一が生じると、品質低下の要因となる。これに対し、本発明の炭化物微粒子の製造方法においては、気体射出口28aを介して所定の角度および供給量で熱プラズマ炎の尾部(終端部)に向かって矢印Qで示される方向に射出される気体が、一次微粒子15を希釈することで、微粒子同士が衝突し凝集することを防止する。つまり、気体射出口28aから射出された気体が、上記気相状態の混合物を急冷し、さらに、生成された微粒子の凝集を防止することで、粒子径の微細化、および粒子径の均一化の両面に作用している。 When the fine particles immediately after generation collide with each other and form aggregates, non-uniform particle size causes deterioration in quality. On the other hand, in the method for producing carbide fine particles of the present invention, the fine particles are injected in the direction indicated by the arrow Q toward the tail (end portion) of the thermal plasma flame through the gas injection port 28a at a predetermined angle and supply amount. The diluted gas dilutes the primary fine particles 15 to prevent the fine particles from colliding and aggregating. That is, the gas injected from the gas injection port 28a rapidly cools the gas-phase mixture, and further prevents the generated fine particles from agglomerating, thereby reducing the particle diameter and making the particle diameter uniform. Acts on both sides.
 ところで、気体射出口28aから射出される気体は、熱プラズマ炎24の安定性に少なからず悪影響を与える。しかし、装置全体を連続的に運転するためには熱プラズマ炎を安定させる必要がある。このため、本実施形態の微粒子製造装置10における気体射出口28aは、円周状に形成されたスリットとなっており、そのスリット幅を調節することで気体の供給量を調節することができ、中心方向に均一な気体を射出することができるので、熱プラズマ炎を安定させるのに好ましい形状を有するといえる。また、この調節は、射出される気体の供給量を変えることでも行える。 Incidentally, the gas injected from the gas injection port 28 a has a considerable adverse effect on the stability of the thermal plasma flame 24. However, in order to continuously operate the entire apparatus, it is necessary to stabilize the thermal plasma flame. For this reason, the gas injection port 28a in the fine particle manufacturing apparatus 10 of the present embodiment is a circumferentially formed slit, and the amount of gas supply can be adjusted by adjusting the slit width. Since a uniform gas can be injected in the central direction, it can be said that it has a preferable shape for stabilizing the thermal plasma flame. This adjustment can also be performed by changing the supply amount of the injected gas.
 以上、本発明の炭化物微粒子の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。 As mentioned above, although the manufacturing method of the carbide | carbonized_material fine particle of this invention was demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, it is possible to perform various improvement or a change. Of course.
 以下、本発明の炭化物微粒子の製造方法の実施例について具体的に説明する。
 本実施例および比較例においては、上述の微粒子製造装置10の熱プラズマ炎を構成するプラズマガスの種類を下記表1に示す実施例1~6および比較例1~6のプラズマガスの欄に示すように変えて炭化チタンの製造を試みた。
Examples of the method for producing carbide fine particles of the present invention will be specifically described below.
In the present example and the comparative example, the types of plasma gas constituting the thermal plasma flame of the fine particle production apparatus 10 are shown in the columns of Examples 1 to 6 and Comparative Examples 1 to 6 shown in Table 1 below. Thus, production of titanium carbide was attempted.
 本実施例においては、酸化チタンの粉末を原料として、この酸化チタンの粉末とメタノールとを質量比1:1で混ぜて攪拌して得られた、スラリー濃度が50質量%のスラリーを用いた。なお、原料に用いた酸化チタンは、平均粒径が5μmであり、図6(A)に示す結晶構造を有する。 In this example, a slurry having a slurry concentration of 50% by mass obtained by mixing and stirring the titanium oxide powder and methanol at a mass ratio of 1: 1 using titanium oxide powder as a raw material was used. Note that titanium oxide used as a raw material has an average particle diameter of 5 μm and a crystal structure shown in FIG.
 ここで、プラズマトーチ12の高周波発振用コイル12bには、約4MHz、約80kVAの高周波電圧を印加し、プラズマガス供給源22からは、実施例毎に、それぞれ下記表1に示すプラズマガスを供給し、プラズマトーチ12内に熱プラズマ炎を発生させた。なお、材料供給装置14の噴霧ガス供給源14eから、噴霧ガスとして、10リットル/minでアルゴンガスを供給した。 Here, a high frequency voltage of about 4 MHz and about 80 kVA is applied to the high frequency oscillation coil 12b of the plasma torch 12, and the plasma gas shown in the following Table 1 is supplied from the plasma gas supply source 22 for each embodiment. Then, a thermal plasma flame was generated in the plasma torch 12. In addition, argon gas was supplied at 10 liters / min from the spray gas supply source 14e of the material supply apparatus 14 as the spray gas.
 本実施例では、酸化チタンのスラリーを、噴霧ガスであるアルゴンガスとともに、プラズマトーチ12内の熱プラズマ炎24中に供給した。
 また、気体供給装置28によって、チャンバ16内に供給される気体としては、アルゴンガスまたはアルゴンとヘリウムとの混合ガスを使用した。このときのチャンバ内流速は5m/secで、供給量は1m/minとした。
 なお、サイクロン19内の圧力は50kPaとし、チャンバ16からサイクロン19への微粒子の供給速度は10m/sec(平均値)とした。
In this example, the titanium oxide slurry was supplied into the thermal plasma flame 24 in the plasma torch 12 together with the argon gas that is the atomizing gas.
Further, argon gas or a mixed gas of argon and helium was used as the gas supplied into the chamber 16 by the gas supply device 28. The flow rate in the chamber at this time was 5 m / sec, and the supply amount was 1 m 3 / min.
The pressure in the cyclone 19 was 50 kPa, and the supply speed of fine particles from the chamber 16 to the cyclone 19 was 10 m / sec (average value).
 熱プラズマ炎のプラズマガスにおける水素ガス、ヘリウムガス、アルゴンガスの割合は、ヘリウムガスおよびアルゴンガスの総量に対して、水素ガスの量を0~20vol%とした。
 また、プラズマガスが水素ガス、ヘリウムガスの2種類の場合、ヘリウムガスの総量に対して水素ガスの量を0~20vol%とし、水素ガス、アルゴンガスの2種類の場合、アルゴンガスの総量に対して水素ガスの量を0~20vol%とした。
 なお、プラズマガスの供給量ついては、アルゴンガスは10~300リットル/minとし、ヘリウムガスは5~30リットル/minとした。
The ratio of hydrogen gas, helium gas, and argon gas in the plasma gas of the thermal plasma flame was such that the amount of hydrogen gas was 0 to 20 vol% with respect to the total amount of helium gas and argon gas.
In addition, when the plasma gas is two types of hydrogen gas and helium gas, the amount of hydrogen gas is 0 to 20 vol% with respect to the total amount of helium gas, and in the case of two types of hydrogen gas and argon gas, the total amount of argon gas is On the other hand, the amount of hydrogen gas was set to 0 to 20 vol%.
Note that the plasma gas supply rate was 10 to 300 liters / min for argon gas and 5 to 30 liters / min for helium gas.
 また、比較例においては実施例と同じ酸化チタンの粉末を用いて、この原料のみ、もしくはこの原料と還元剤と炭素源を兼ねるグラファイト粉末を混合したものを原料とし、粉体のまま、熱プラズマ炎に供給した。
 なお、比較例において、製造条件は、熱プラズマ炎24中への供給形態がスラリーを用いない以外、上述の実施例と同じ条件とした。
Further, in the comparative example, using the same titanium oxide powder as in the example, this raw material alone or a mixture of this raw material, a reducing agent, and a graphite powder that also serves as a carbon source is used as a raw material, and the powder remains as thermal plasma. Supplied to the flame.
In the comparative example, the manufacturing conditions were the same as those in the above example except that the supply form into the thermal plasma flame 24 did not use slurry.
 次に、下記表1に示す実施例1~6および比較例1~6において、得られた生成物についてX線回折(XRD)を用いて結晶構造を調べた。
 下記表1の炭化物の欄において、炭化チタンの組成を示すピークだけが現れたものを「○」、一部炭化チタンの組成を示すピークが現れたものの、原料由来の酸化チタンの組成を示すピークも現れたものを「△」、酸化チタンの組成を示すピークのみが現れたものを「×」とした。
Next, in Examples 1 to 6 and Comparative Examples 1 to 6 shown in Table 1 below, the crystal structures of the obtained products were examined using X-ray diffraction (XRD).
In the column of carbides in Table 1 below, “○” indicates only the peak indicating the composition of titanium carbide, and peak indicating the composition of the titanium oxide derived from the raw material, although a peak indicating a part of the titanium carbide composition appears. Also, “Δ” is shown, and “x” is the one showing only the peak indicating the composition of titanium oxide.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~6においては、いずれも、図6(B)に示すように、炭化チタンだけが得られ、粒子径が約25nmであった。
 一方、比較例1~6においては、炭化チタン以外の組成のものも生成された。この炭化チタン以外の組成のものは、炭化できなかった酸化チタンおよび原料に由来するグラファイトであった。しかも、比較例1~6は、炭化チタンの収量も実施例1に比して少なかった。
In each of Examples 1 to 6, as shown in FIG. 6B, only titanium carbide was obtained, and the particle diameter was about 25 nm.
On the other hand, in Comparative Examples 1 to 6, compositions having compositions other than titanium carbide were also produced. Compositions other than this titanium carbide were titanium oxide that could not be carbonized and graphite derived from the raw material. Moreover, in Comparative Examples 1 to 6, the yield of titanium carbide was lower than that in Example 1.
 10 微粒子製造装置
 12 プラズマトーチ
 12a 石英管
 12b 高周波発振用コイル
 12c プラズマガス供給口
 14 材料供給装置
 14a スラリー
 14b 容器
 14c 攪拌機
 14d ポンプ
 14e 噴霧ガス供給源
 14f 供給管
 15 一次微粒子
 16 チャンバ
 17 天板
 17a 内側部天板部品
 17b 外側部天板部品
 17c 上部外側部天板部品
 17d 通気路
 18 微粒子(二次微粒子)
 19 サイクロン
 19a 入口管
 19b 外筒
 19c 円錐台部
 19d 粗大粒子回収チャンバ
 19e 内管
 20 回収部
 20a 回収室
 20b フィルター
 20c 管
 22 プラズマガス供給源
 24 熱プラズマ炎
 26 管
 28 気体供給装置
 28a 気体射出口
 28b 気体射出口
 28c コンプレッサ
 28d 気体供給源
 28e 管
DESCRIPTION OF SYMBOLS 10 Fine particle manufacturing apparatus 12 Plasma torch 12a Quartz tube 12b High frequency oscillation coil 12c Plasma gas supply port 14 Material supply apparatus 14a Slurry 14b Container 14c Stirrer 14d Pump 14e Spray gas supply source 14f Supply pipe 15 Primary particle 16 Chamber 17 Top plate 17a Inside Part top plate component 17b Outer part top plate part 17c Upper outer part top plate part 17d Ventilation path 18 Fine particles (secondary fine particles)
19 Cyclone 19a Inlet tube 19b Outer tube 19c Frustum 19d Coarse particle recovery chamber 19e Inner tube 20 Recovery unit 20a Recovery chamber 20b Filter 20c Tube 22 Plasma gas supply source 24 Thermal plasma flame 26 Tube 28 Gas supply device 28a Gas injection port 28b Gas injection port 28c Compressor 28d Gas supply source 28e Pipe

Claims (4)

  1.  金属酸化物を用いて炭化物微粒子を製造する製造方法であって、
     前記金属酸化物の粉末を、炭素を含む液体状の物質に分散させてスラリーにし、
     該スラリーを液滴化させて酸素を含まない熱プラズマ炎中に供給することを特徴とする炭化物微粒子の製造方法。
    A manufacturing method for manufacturing carbide fine particles using a metal oxide,
    The metal oxide powder is dispersed in a liquid substance containing carbon to form a slurry,
    A method for producing carbide fine particles, wherein the slurry is made into droplets and supplied into a thermal plasma flame not containing oxygen.
  2.  前記金属酸化物は、TiO、ZrO、V、Nb、SiOまたはWOである請求項1に記載の炭化物微粒子の製造方法。 2. The method for producing carbide fine particles according to claim 1, wherein the metal oxide is TiO 2 , ZrO 2 , V 2 O 5 , Nb 2 O 5 , SiO 2 or WO 3 .
  3.  前記炭素を含む液体状の物質は、アルコール、ケトン、ケロシン、オクタンまたはガソリンである請求項1または2に記載の炭化物微粒子の製造方法。 3. The method for producing carbide fine particles according to claim 1, wherein the liquid substance containing carbon is alcohol, ketone, kerosene, octane or gasoline.
  4.  前記熱プラズマ炎は、水素、ヘリウムおよびアルゴンの少なくとも1つのガスに由来するものである請求項1~3のいずれか1項に記載の炭化物微粒子の製造方法。 The method for producing carbide fine particles according to any one of claims 1 to 3, wherein the thermal plasma flame is derived from at least one gas of hydrogen, helium and argon.
PCT/JP2010/066040 2009-09-18 2010-09-16 Process for production of carbide fine particles WO2011034129A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-216827 2009-09-18
JP2009216827 2009-09-18

Publications (1)

Publication Number Publication Date
WO2011034129A1 true WO2011034129A1 (en) 2011-03-24

Family

ID=43758730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066040 WO2011034129A1 (en) 2009-09-18 2010-09-16 Process for production of carbide fine particles

Country Status (2)

Country Link
TW (1) TWI471266B (en)
WO (1) WO2011034129A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9751769B2 (en) 2012-06-28 2017-09-05 Nisshin Engineering Inc. Method for production of titanium carbide nanoparticles
CN111867973A (en) * 2018-03-23 2020-10-30 日清工程株式会社 Composite particle and method for producing composite particle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10486981B2 (en) * 2016-01-08 2019-11-26 Nisshin Engineering Inc. Method of producing sub-stoichiometric titanium oxide fine particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112409A (en) * 1986-10-29 1988-05-17 Nec Corp Production of calcium carbide fine powder
JPS63147812A (en) * 1986-12-10 1988-06-20 Nippon Sheet Glass Co Ltd Production of silicon carbide powder
JP2007029859A (en) * 2005-07-27 2007-02-08 Nisshin Seifun Group Inc Production method of fine particles and apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7828999B2 (en) * 2004-09-07 2010-11-09 Nisshin Seifun Group Inc. Process and apparatus for producing fine particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112409A (en) * 1986-10-29 1988-05-17 Nec Corp Production of calcium carbide fine powder
JPS63147812A (en) * 1986-12-10 1988-06-20 Nippon Sheet Glass Co Ltd Production of silicon carbide powder
JP2007029859A (en) * 2005-07-27 2007-02-08 Nisshin Seifun Group Inc Production method of fine particles and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9751769B2 (en) 2012-06-28 2017-09-05 Nisshin Engineering Inc. Method for production of titanium carbide nanoparticles
CN111867973A (en) * 2018-03-23 2020-10-30 日清工程株式会社 Composite particle and method for producing composite particle
US20210024423A1 (en) * 2018-03-23 2021-01-28 Nisshin Engineering Inc. Composite particles and method for producing composite particles

Also Published As

Publication number Publication date
TWI471266B (en) 2015-02-01
TW201129499A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5363397B2 (en) Method for producing silicon / silicon carbide composite fine particles
JP5362614B2 (en) Method for producing silicon monoxide fine particles and silicon monoxide fine particles
CA2771947C (en) Process and apparatus for producing fine particles
JP4640961B2 (en) Fine particle manufacturing method and apparatus
JP4988164B2 (en) Fine particle manufacturing method and apparatus
JP6061929B2 (en) Method for producing titanium carbide fine particles
JP4794869B2 (en) Method for producing fine particles
JP6759246B2 (en) Manufacturing method of non-stoichiometric titanium oxide fine particles
WO2011034129A1 (en) Process for production of carbide fine particles
JPWO2019146414A1 (en) Copper fine particles
JP7159293B2 (en) Composite particles and method for producing composite particles
WO2021100320A1 (en) Microparticles
WO2023223697A1 (en) Composite particle production method and composite particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10817242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP