WO2011032489A1 - 联合使用痘病毒载体hiv疫苗与腺病毒载体hiv疫苗的方法及其应用 - Google Patents

联合使用痘病毒载体hiv疫苗与腺病毒载体hiv疫苗的方法及其应用 Download PDF

Info

Publication number
WO2011032489A1
WO2011032489A1 PCT/CN2010/076905 CN2010076905W WO2011032489A1 WO 2011032489 A1 WO2011032489 A1 WO 2011032489A1 CN 2010076905 W CN2010076905 W CN 2010076905W WO 2011032489 A1 WO2011032489 A1 WO 2011032489A1
Authority
WO
WIPO (PCT)
Prior art keywords
hiv vaccine
vector
vaccine
poxvirus
vector hiv
Prior art date
Application number
PCT/CN2010/076905
Other languages
English (en)
French (fr)
Inventor
陈凌
陈志伟
张林琦
孙彩军
Original Assignee
中国科学院广州生物医院与健康研究院
港大科桥有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州生物医院与健康研究院, 港大科桥有限公司, 清华大学 filed Critical 中国科学院广州生物医院与健康研究院
Publication of WO2011032489A1 publication Critical patent/WO2011032489A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/21Retroviridae, e.g. equine infectious anemia virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/543Mucosal route intranasal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10041Use of virus, viral particle or viral elements as a vector
    • C12N2710/10043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24041Use of virus, viral particle or viral elements as a vector
    • C12N2710/24043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the invention relates to the field of biotechnology, and particularly relates to a novel method for preventing and treating AIDS by using a combination of a poxvirus vector HIV vaccine and an adenovirus vector HIV vaccine.
  • AIDS Acquired Immune Deficiency Syndrome
  • WHO World Health Organization
  • UNAIDS announced at the end of 2008 that the total number of HIV-infected people worldwide is about 33 million, and the number of AIDS patients who have died has exceeded 30 million.
  • WHO World Health Organization
  • UNAIDS announced at the end of 2008 that the total number of HIV-infected people worldwide is about 33 million, and the number of AIDS patients who have died has exceeded 30 million.
  • 2007 alone there were 2.1 million people died of AIDS and 2.7 million were infected with HIV; Asia and Eastern Europe have become the fastest-growing areas of HIV (UNAIDS report, 2008).
  • the HIV epidemic trend in China is also quite serious.
  • HIV vaccines In the past one or two decades, although there have been many advances in the treatment of AIDS in drug treatment, the AIDS mortality rate in developed countries has dropped significantly, and some new drugs (such as antiretroviral drugs) that can treat and control HIV have emerged. , protease inhibitors, etc.) and new therapies (combined cocktails), but once the body is infected, it is impossible to eradicate the HIV virus, and due to high variability, the resistance of the HIV virus is becoming more serious, and drug treatment brings to HIV-infected people. The great adverse reactions and the affordability of patients make the prospects of these therapies unsatisfactory, so the development of effective HIV vaccines is still the most urgent need. In the field of HIV vaccines, it is generally believed that the study of HIV vaccines can be divided into three stages:
  • Phase 1 The AIDS vaccine study, which began in 1984, focused on the induction of antibodies to prevent viral infections, without considering the role of cellular immunity.
  • the second stage AIDS vaccine research emphasizes the role of cellular immune response.
  • This stage is mainly based on recombinant viral vector vaccines that induce cellular immune responses (vaccinia, adenovirus, canarypox virus, etc.), because theoretically, cellular immune responses can effectively control the replication and infection of HIV, and mathematical models also show that A reduction in viral load by 1 log can effectively reduce the rate of transmission of the population, which allows clinical trials to see the application prospects of this vaccine.
  • One of the most notable results is the AIDS vaccine developed by Merck, which is based on human adenovirus type 5, and the SHIV89.6P model has demonstrated a better immune response to CD8 T cells induced by HIV. Protection. Merck then pushed the vaccine into clinical trials and entered the clinical lib phase by 2004, but according to clinical trial results published in September 2007, the simple emphasis on cellular immune responses does not provide protection.
  • the current prevailing view, the third stage, is that an effective AIDS vaccine needs to induce a balanced humoral and cellular immune response.
  • the antibody acts as the first line of defense to neutralize part of the virus, which gives the subsequent cell-mediated memory response an activation time, while a strong cellular immune response removes the virus-infected cells and reduces the viral load. It can reduce the spread of HIV in the population.
  • McElrath et al. systematically analyzed Merck's HIV clinical trial data and found that although it did not To protect, but the vaccine produced a strong immune response in most of the tested population (77%), and the analysis also found that specific CD8+ T cells in these populations mainly secrete IFN- ⁇ cytokines alone. (73%), some also secrete TNF- ⁇ , but very few cells that secrete IL-2 cytokines or lymphocytes that secrete multiple cytokines at the same time.
  • the SIVmac251 virus in this group of monkeys The peak load is reduced by 1.4 log values, and the viral load at the setpoint is reduced by 2.4 log values. Moreover, during the whole experiment period (more than 500 days), the monkeys in this group did not die of AIDS or had obvious AIDS symptoms, but other groups of monkeys had different degrees of morbidity.
  • HIV-based vaccines should be able to induce a stronger, broader spectrum and versatility of T lymphocyte responses, while It induces a certain humoral immune response, which is likely to produce effective immune protection against HIV.
  • humoral immune response which is likely to produce effective immune protection against HIV.
  • researchers should experiment with a variety of different types of vaccines in combination to find the best combination.
  • Ad vectors have the advantages of high infection efficiency and high level of exogenous gene expression, high titer recombinant virus preparation, and large capacity. Therefore, Ad vectors are favored as mammalian cell expression vectors, recombinant vaccines and gene therapy vectors. At present, there are 342 clinical trials of infectious diseases, cancer, cardiovascular diseases, and single-gene diseases in the world using adenovirus as a carrier, and it ranks first among all kinds of carriers (24.8%).
  • VTT Tiantan strain poxvirus
  • the poxvirus vector used in this study was a further attenuated MVTT strain, and its experimental evidence showed that its neurotoxicity was greatly reduced. Therefore, it can be used as a safe smallpox vaccine or as a live carrier for other pathogen vaccines.
  • this vector can induce systemic mucosal reactions through mucosal pathways such as nasal and oral.
  • the present invention provides a method of using a combination of a poxvirus vector and an adenovirus vector, which can be used for the prevention and treatment of HIV and other infectious diseases and tumors.
  • the invention combines the use of a poxvirus vector HIV vaccine and an adenovirus vector HIV vaccine, specifically using a combination of a poxvirus vector HIV vaccine and an adenovirus vector HIV vaccine to induce a stronger and broader versatility.
  • the T lymphocyte reaction and the humoral immune response thereby effectively preventing and treating HIV infection.
  • the method can first use the poxvirus vector HIV vaccine to immunize the body, and then use the adenovirus vector HIV vaccine to immunize the body.
  • the method can also first use an adenovirus vector HIV vaccine to immunize the body, and then use a poxvirus vector HIV vaccine to immunize the body.
  • the poxvirus vector HIV vaccine contains the HIV gag, pol, env gene.
  • the poxvirus vector HIV vaccine further comprises a helper regulatory protein gene comprising the nef, vpx, vpr, vif, rev and tat genes.
  • the adenovirus vector HIV vaccine contains the HIVgag, pol, env gene.
  • the adenoviral vector HIV vaccine further comprises a helper regulatory protein gene comprising the nef, vpx, vpr, vif, rev and tat genes.
  • the means for immunizing the body means immunizing the body through a mucosal route, such as the nasal cavity, oral cavity, etc.; immunizing the body by intramuscular injection; by intravenous injection and all other routes of use of the vaccine.
  • a mucosal route such as the nasal cavity, oral cavity, etc.
  • the adenoviral vector described above refers to any adenovirus subtype known to those skilled in the art, an isolate or other animal derived adenovirus. Specifically, it may be a type 5 or type 2 adenoviral vector.
  • the poxvirus vector described above refers to any of the poxvirus subtypes known to those skilled in the art, and is detached. Specifically, it may be a modified Tiantan strain poxvirus vector.
  • the present invention also provides the above method for using a combination of a poxvirus vector and an adenovirus vector in the field of prophylactic and therapeutic HIV vaccines for preventing and treating AIDS, and for preventing and controlling hepatitis B, Ebola virus and tumors. .
  • a poxvirus vector carrying the HIV gag, pol, env gene and an adenoviral vector immunizes the body to induce a stronger, broader spectrum and versatility. T lymphocyte reaction, and showed strong protection and control of the rectal infection of SIVmac239 virus.
  • the strategy of enhancing the body to produce a more intense, linguistic and versatile T lymphocyte response is also suitable for the prevention and treatment of various viral infections, such as hepatitis B, Ebola, etc., as well as various tumors.
  • various viral infections such as hepatitis B, Ebola, etc.
  • poxvirus vectors and adenoviral vectors have been widely used in clinical trials, they have good safety, and the clinical application prospect of this strategy is very bright.
  • the invention is generally applicable to the prevention and treatment of AIDS, as well as the prevention and control of other infectious diseases and tumors.
  • Figure 1 is a graph showing the results of detection of recombinant adenoviral protein expression by western-blot method
  • Figure 2 is a comparison of immunogenicity of primary and boosted recombinant adenovirus in mice
  • Figure 2A is a recombinant adenovirus Comparison of immunogenicity after primary immunization in mice
  • Figure 2B is a comparison of immunogenicity of recombinant adenovirus after booster immunization in mice;
  • Figure 3 is a combination of a poxvirus vector (MVTT) SIV vaccine and an adenovirus (Ad5) vector SIV vaccine in a rhesus monkey immunization and challenge program;
  • MVTT poxvirus vector
  • Ad5 adenovirus
  • Figure 4 is the immunogenicity of the ELISPOT assay in combination with the MVTT vector and the Ad5 vector in rhesus monkeys;
  • Figure 4A is the ELISPOT test data from the last immunization for 6 weeks, and
  • Figure 4B is the ELISPOT test data from the last immunization for 21 weeks;
  • Figure 5 shows the results of detection of cytokine secretion by Gag peptide-stimulated CD8+ T cells by multicolor flow technique 6 weeks after booster immunization with MVTT and Ad5 vector HIV vaccine
  • Figure 6 shows the detection of cytokine secretion by memory T cells in peripheral blood by multicolor flow technique 16 weeks after MVTT combined with Ad5 vector HIV vaccine for booster immunization
  • Figure 6A shows the effect of detection.
  • Figure 6B is experimental data for detecting secretion of various cytokines by central CD8 T cells;
  • Figure 7 is a graph showing the proliferative ability of T lymphocytes stained with live cell dye carboxyfluorescein acetoacetate succinimidyl ester (CFSE) 16 weeks after booster immunization with MVTT and Ad5 vector HIV vaccine.
  • Figure 7A shows the proliferation of CD4 T cells;
  • Figure 7B shows the proliferation of CD8 T cells;
  • Figure 8 shows the cellular immune response against SIV individual antigens after SIVmac239 challenge;
  • Figure 8A is for structural proteins (Gag, The immune response of Pol and Env);
  • Figure 8B is the immune response to the helper regulatory proteins (Nef, Vpx, Vpr, Vif, Rev and Tat);
  • Figure 9 shows the level of SIV-specific antibody response before and after SIVmac239 infection by ELISA.
  • Figure 10 is a graph showing the results of data analysis of the peak viral load in experimental monkeys by quantitative PCR.
  • Example 1 Construction of adenovirus and poxvirus vaccine carrying SIVgag, pol and env genes and immunogenicity in mice
  • the individual genes required for the experiment were obtained by whole-genome synthesis.
  • This example relates to all three genes of the SIVmac239 virus, namely SIVmac239gag, pol and env.
  • the amino acid sequences of these proteins were obtained from the NCBI database and then reverse translated into DNA sequences according to human codons without any change in their amino acid sequence, allowing these antigens to be efficiently expressed in primate cells.
  • the above genes are separately introduced into an adenovirus vector, wherein the adenoviral vector is a human type 5 adenovirus lacking the E1 and E3 regions, and then rescued to obtain a recombinant adenovirus carrying the gene of interest, with a small amount of expansion.
  • the expression and genomic digestion were identified, and then amplified in Trex293 cells and purified by cesium chloride gradient density centrifugation. The purified virus was identified again and the infection titer TCID 5 was determined. And the concentration of the physical particles, and then the frozen storage and standby (refer to the applicant's patent, application number 200710026295.X).
  • Figure 1 shows the detection of recombinant adenovirus eggs by western-blot method.
  • the purified recombinant adenovirus can express the protein of interest at a high level, and these proteins can be further processed into various protein components in a natural form.
  • Ad5-gag can express P55 and P27
  • Ad5-pol can express P66/51, P31, P10, etc.
  • Ad5-env can express gpl 60, gpl20, gp41.
  • FIG. 1 is a comparison of immunogenicity of primary and boosted recombinant adenovirus in mice;
  • Figure 2 is a comparison of immunogenicity of primary recombinant immunized virus in mice;
  • Figure 2 is a recombinant gland Comparison of immunogenicity of the virus in mice after booster immunization; as shown in Fig.
  • mice immunized with SIVgag, pol and env simultaneously an immune response against the three SIV antigens was simultaneously produced.
  • This group has a reduced level of immune response compared to immunization of an antigen alone, which may be related to the high level of expression of multiple antigens in the body, leading to mutual competition between antigens.
  • the poxvirus vector MVTT-gpe (modified poxvirus Tiantan strain) expressing SIVgag, pol and env was constructed and provided by Professor Chen Zhiwei of the Institute of AIDS, Li Ka Shing Medical College, University of Hong Kong, and their expression and antigenicity were confirmed by them ( Huang X et al. Vaccine. 2007).
  • Example 2 Combination of poxvirus vector SIV vaccine and adenovirus vector Immunization of SIV vaccine in rhesus monkey
  • the vaccinia vector MVTT-gpe expressing SIVgag, pol and env was constructed and provided by Professor Chen Zhiwei of the AIDS Research Institute of the Li Ka Shing Faculty of Medicine, University of Hong Kong; the recombinant adenoviruses (S5g, pol and env expressed above) (Ad5-SIVgag, Ad5-SIVpol and Ad5-SIVenv).
  • Monoclonal antibodies used (anti-human CD3-pacific blue, anti-NHP CD4-FITC, anti-human CD4-AmCyan, anti-human CD8-PerCP, anti-human CD8-APC-Cy7 (SKI), anti-human CD28-FITC , anti-human CD95-PE-Cy5, anti-human TNFa-PE-CY7, anti-human IFNy-PE, anti-human IL2-APC) were purchased from BD.
  • peptides are from the National Institutes of Health AIDS Research and Reference Reagent Program (NIH AIDS) The Research & Reference Reagent Program provides that most peptides consist of 15 amino acids with 11 amino acid overlaps between each other. Purity >80%.
  • the solution was dissolved in dimercaptosulfoxide (DMSO) to prepare a solution of 0.4 mg/ml/peptide, and stored at -70 ° C after dispensing.
  • DMSO dimercaptosulfoxide
  • ELISPOT board brand: Millipore; article number: MSIPS4510
  • SIV virus particle lysate was prepared for itself
  • TMB/E substrate catalog: Chemicon, USA.
  • BCIP/NBT substrate brand: Pierce; article number: 34042
  • Cell dye CFSE was purchased from Molecule Probe.
  • Streptomycin-conjugated alkaline phosphatase brand: BD PharMingen, Cat. No. 554065 was purchased from Gene Co., Ltd.
  • MVTT poxvirus vector
  • Ad5 adenovirus
  • Detection indicators include ELISPOT, multifunctional T cells, cell proliferation and antibody titers.
  • the adenovirus was immunized by intramuscular injection at a dose of 10" vp/monkey.
  • the amount of poxvirus was lxlO 8 PFU/ml/monkey, nasal immunization and sublingual immunization.
  • the isolated PBMC cells were counted and adjusted to 2 ⁇ 10 6 /ml, and added to a 24-well culture plate at 1 mL per well.
  • the medium is R10.
  • test antibody biotinylated anti-monkey IFN- ⁇ antibody
  • PBST containing 5 % FBS, ⁇ /well, overnight at 4 °C.
  • Streptomycin-conjugated alkaline phosphatase was diluted 1:2500 with PBST containing 5 % FBS, ⁇ /well, 37 ° C, for 2 hours.
  • BCIP/NBT substrate (Pierce, Cat: 34042), warm bath at 37 °C for 30 min.
  • the vacuum pump pumps off the supernatant. Oscillating on a vortex shaker for 2 - 3 seconds.
  • Multicolor flow cytometry data was analyzed using FlowJo software. Statistical analysis and mapping were performed using JMP version 6.0.3 software. Differences between groups were compared using a nonparametric Wilcoxon rank test.
  • FIG. 4 shows the immunogenicity of the ELISPOT assay in combination with the MVTT vector and the Ad5 vector in rhesus monkeys;
  • Figure 4A shows ELISPOT data from the last immunization for 6 weeks, and
  • Figure 4B shows ELISPOT data from the last immunization for 21 weeks.
  • MVTT modified vaccinia virus Tiantan strain
  • IFN- ⁇ ELISPOT technology has become a relatively versatile and widely accepted indicator for evaluating HIV vaccines, today's more recognized view is that immunoprotection and the number of lymphocytes with multiple functions are more relevant, so-called multi-functional Lymphocytes are lymphocytes that simultaneously secrete various cytokines including IFN- ⁇ , including IL-2, TNFa, MIP 1 ⁇ and the like. Evaluation of multifunctional sputum lymphocytes will gradually become an important indicator for evaluating the effectiveness of HIV vaccines. To this end, we have developed and improved multi-color flow technology to determine the versatile sputum lymphocyte response produced by this strategy.
  • Fig. 5 shows the results of detection of cytokine secretion by Gag peptide-stimulated CD8+ T cells by multicolor flow technique 6 weeks after MVTT and Ad5 vectors were combined with rhesus monkeys; After 6 weeks of immunization with the Ad5 vector, the monkeys in the combined immunization group not only greatly enhanced the ability to secrete a certain cytokine alone, but more importantly, detected more simultaneous secretion of IFN-y/TNF-a/IL-2 cells.
  • Factor of multifunctional CD8+ T lymphocytes are examples of multifunctional CD8+ T lymphocytes.
  • CD8+ T lymphocytes secrete three cytokines of IFN- ⁇ /TNF-a/IL-2, 1.4668 ⁇ 1.1845% of CD8+ T lymphocytes secrete both IFN- ⁇ /TNF-a cytokines; while only 0.0320 ⁇ 0.0472% of CD8+ T lymphocytes secrete IFN- ⁇ /TNF-a /IL-2 in monkeys immunized with Ad5 vector alone.
  • MVTT combined with Ad5 vector produced 7.7 times more multifunctional CD8+ T lymphocytes that secrete IFN- ⁇ /TNF-a/IL-2 simultaneously. More than 9 times more multifunctional CD8+ T lymphocytes capable of secreting both cytokines of IFN- ⁇ /TNF-a.
  • Fig. 6 is a test result of detecting the secretion of cytokines by memory T cells in peripheral blood by multicolor flow technique 16 weeks after the combination of MVTT and Ad5 vector for boosting rhesus monkeys; 6A is experimental data for detecting secretion of various cytokines by effector CD8 T cells; and FIG. 6B is experimental data for detecting secretion of various cytokines by central CD8 T cells.
  • SIV antigen-specific memory CD4+ T cells and CD8+ T cells to produce and secrete cytokines is significantly stronger in these monkeys.
  • the effector CD8 + cells in peripheral blood of monkeys in the MVTT and Ad5 combined immunization groups were significantly more potent in secreting cytokines. These cells secreted IFN-Y/TNF-a cytokines simultaneously. the Lord. Although the ability of central memory CD8+ cells to secrete cytokines was not significantly different in each group of experimental monkeys, these cells were significantly more potent in secreting IL-2 than in effector memory T cells. In conclusion, we detected that MVTT and Ad5 co-immunization can induce more multifunctional memory T lymphocytes in rhesus monkeys. Further analysis showed that this method induced the simultaneous production of central memory and effector memory T cells, with the effect memory CD8 + T fine packets.
  • Fig. 7 is a graph showing the results of detecting the proliferative ability of T lymphocytes by CFSE staining after 16 weeks of booster immunization with MVTT and Ad5 vector;
  • Fig. 7A shows the proliferation of CD4 T cells;
  • Fig. 7B shows the CD8 T cells.
  • the proliferation situation As shown in Figure 7A, MVTT and Ad5 vector combined with monkey-derived PBMC were used in vitro. After SIV Gag stimulation, (4.2725 ⁇ 4.5516)% of CD4+ cells were CFSElow, ie, proliferating progeny cells; whereas the AdB vector-immunized monkey PBMCs were stimulated with SIV Gag (3.2350 ⁇ 1.7008)% of CD4+ T cells. CFSElow.
  • CD8+ T cells As shown in Fig. 7B, after stimulation with SIV Gag, there were (7.4825 ⁇ 5.8550 %) CD8+ T cells as CFSElow, which is a proliferating progeny cell; whereas the Ad5 vector alone in the wolf PBMC was (2.9475 ⁇ 1.6951) %. The CD8+ T cells are CFSElow.
  • the proliferation of CD8+ T lymphocytes against antigen-stimulated MVTT was significantly increased by 2.5-fold compared with the Ad5 vector.
  • the MVTT vector priming the Ad5 vector-enhanced immunization method produced a stronger, broader spectrum and more functional T cell response in Chinese rhesus monkeys, which is in line with the recent evaluation of effective vaccine indicators. This strategy deserves further study.
  • Example 3 Combined use of poxvirus vector and adenovirus vector Immunoprotection test of SIV vaccine in rhesus monkey
  • the SIVmac239 virus was obtained by the inventor, and the SIVmac239 phage molecular clone used was provided by the National Institutes of Health AIDS Research and Reference Reagent Program.
  • Monoclonal antibody used (anti-human CD3 -pacific blue, anti-NHP CD4-FITC, anti-human CD4-AmCyan, anti-human CD8-PerCP, anti-human CD8-APC-Cy7 (SKI), anti-human CD28-FITC, anti-human CD95-PE-Cy5, anti-human TNF (x-PE-CY7, anti-human IFNy-PE, anti-human IL2-APC) was purchased from BD.
  • HRP-anti-monkey IgG was purchased from Beijing Zhongshan Jinqiao Biotechnology Co., Ltd.
  • Quantitative RT-PCR Kit Quantitative RT-PCR Kit (QuantiTect SYBR Green RT-PCR Kit, Cat. No.: 204243) purchased from Qiagen, FACS lysis solution, BD TruCOU T Tubes, Cat. No. 340334 BD Biosciences. See Example 2 for other reagents.
  • the immunization schedule of each group is shown in Fig. 3.
  • the SIVmac239 virus was infected with rectal infection for 22 weeks at the last immunization, and the dose was 10 5 TCID 5 .
  • the specific method is that the monkey is fasted for 24 hours, keep the hip high, insert the anus 4 _ 7cm into the anus with a stomach tube, enter the virus, and inject a small amount of air. Keep this position for at least 20 minutes.
  • the kit comes with primer 2 ( ⁇ ) 0.5 ⁇ 1
  • the virus copy number of each sample was obtained by Opticon Monitor 3 software, and then the virus copy number per ml of blood was obtained according to the dilution factor.
  • Blocking PBST containing 5% non-fat dry milk powder, 250 ⁇ l per well, blocked at 37 ° C for 1 h.
  • Figure 8 is a cellular immune response against SIV individual antigens after challenge with SIVmac239;
  • Figure 8A is an immune response against structural proteins (Gag, Pol and Env);
  • Figure 8B is for helper regulatory proteins (Nef, Vpx, Vpr , Vif, Rev and Tat) immune response.
  • the monkeys in the combined immunization group rapidly increased the response to the vaccine-carrying immunogen (gag/pol/env), while the control group responded slowly and reacted.
  • the intensity is also relatively weak. This indicates the immunity of the present invention
  • the method effectively produces memory T cells that are rapidly activated upon stimulation with the same antigen and produce a corresponding immune response.
  • the response to the immunogen (nef/vpx/vpr/vif/rev/tat) that was not carried by the vaccine in the monkeys of the co-immunized group was significantly weaker than that of the control group.
  • the body is effectively controlled at a relatively low level or is not infected, so that the level of response to the antigen carried by the virus itself is relatively low. This guess was confirmed in the next viral load assay.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Communicable Diseases (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • AIDS & HIV (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

联合使用痘病毒栽体 HIV疫苗与腺病毒载体 HIV疫苗的方法及其应用 技术领域
本发明涉及生物技术领域,具体涉及联合使用痘病毒载体 HIV疫苗和腺病毒载体 HIV疫苗预防和治疗艾滋病的新方法及其应用。
背景技术
艾滋病 ( Acquired Immune Deficiency Syndrome, AIDS )已成为全球公共卫生的最 重大挑战之一, 严重危害了社会进步与经济增长。 世界卫生组织 (WHO)和***艾滋 病规划署 (UNAIDS)在 2008年底公布, 目前全球 HIV感染者总人数约为 3300万, 已 经死亡的艾滋病病人累计超过了 3000万名; 仅 2007年, 全球就有 210万人死于艾滋 病, 270 万人感染艾滋病病毒; 亚洲和东欧已经成为艾滋病毒传播最为迅速的地区 (UNAIDS report, 2008)。 我国的 HIV流行趋势也相当严重, 截至 2007年 10月底, 全 国累计报告艾滋病病毒感染者和艾滋病病人 22.4 万多例, 全国流行病调查估计全国 存活 HIV感染者总数约 70万人, 其中 2007年新感染者约 5万人。 因此防治艾滋病 药物与疫苗的研究将是我国科技部 "十一五"计划的重中之重。
在过去的一、 二十年里在药物治疗控制艾滋病方面虽然取得了多项进展, 在发达 国家的艾滋病病死率显著下降, 出现了一些可以治疗和控制 HIV 的新药物 (如抗逆 转录病毒药物、 蛋白酶抑制物等)和新疗法(联合鸡尾酒法) , 但机体一旦感染后就 无法根除 HIV病毒, 而且由于高变异性, HIV病毒的耐药情况日趋严重, 并且药物 治疗给 HIV感染者带来了很大的不良反应以及病人的经济承受能力等问题使得这些 疗法的前景不尽人意, 因此研制有效的 HIV疫苗仍是最迫切的需要。 在 HIV疫苗领 域, 一般认为 HIV疫苗的研究可分为经历了三个阶段:
第一阶段: 起始于 1984年的艾滋病疫苗研究集中在以诱导抗体以预防病毒感染 为主要目标, 没有考虑细胞免疫的作用。 2003 年在欧美和泰国结束的两个艾滋病疫 苗 III期临床试验, 即实际意义上的艾滋病疫苗第一发展阶段研究成果的临床验证, 结果表明单纯诱导抗体产生的疫苗不具真正的保护效果。
第二阶段: 艾滋病疫苗研究则强调细胞免疫反应作用。 该阶段以诱导细胞免疫反 应的重组病毒载体疫苗为主 (痘苗、 腺病毒、 金丝雀痘病毒等), 因为理论上细胞免疫 反应可以有效控制 HIV 病 的复制与感染, 而且数学模型也显示, 病毒载量降低 1 个 log值就可以有效降低人群的传播率, 这让临床试验看到了这种疫苗的应用前景。 这其中最显著的成果之一就是默克 ( Merck )公司组织开发的以人腺病毒 5型为载体 的艾滋病疫苗, 在 SHIV89.6P模型证明了诱导产生针对 HIV的 CD8 T细胞免疫反应 有较好的保护作用。 随之 Merck公司将该疫苗推入到临床实验, 到 2004年已经进入 临床 lib阶段,但据 2007年 9月公布的临床试验结果来看,单纯的强调细胞免疫应答 也不能产生保护作用。
目前较为流行的观点, 即第三阶段的观点认为, 有效的艾滋病疫苗需要同时诱导 出均衡的体液和细胞免疫反应。 在病毒感染时抗体作为第一道防线可以中和部分病 毒, 这给后续的细胞介导的记忆应答争取了激活时间, 而强烈的细胞免疫应答可清除 感染病毒的细胞, 降低病毒载量, 从而可以降低 HIV病毒在人群的传播率。
McElrath等较***地分析了 Merck的 HIV临床实验数据, 结果发现虽然没有起 到保护作用, 但该疫苗在大多数受试人群中 (77% )产生了较强的免疫应答, 而且分 析还发现这些人群中的特异 CD8+T细胞主要以单独分泌 IFN-γ细胞因子为主( 73% ), 也有一些分泌 TNF-α, 但极少有分泌 IL-2 细胞因子的细胞或者同时分泌多种细胞因 子的淋巴细胞。 此外, 最新的资料表明相比于单独用 Ad5载体免疫两次印度恒河猴, 通过不同血清型的腺病毒载体 ( rAd26/rAd5 )联合免疫后, 诱发了更强更广的细胞免 疫应答。 而且还产生了更多的同时分泌多种细胞因子 ( IFN-y/TNF-a/IL-2 ) 的多功能 性的 CD8+和 CD4 +T淋巴细胞。 更有意义的是, 在通过静脉方式感染 SIVmac251病 毒后, 相比与只免疫两次 Ad5载体, rAd26/rAd5 联合免疫组更有效地控制了病毒的 复制与感染, 这組猴子体内的 SIVmac251病毒的峰值载量降低了 1.4个 log值, 在平 台期 (setpoint ) 的病毒载量更是降低了 2.4个 log值。 而且在整个实验期间 ( 500多 天) 该组的猴子都没有死于 AIDS或者发生明显的 AIDS症状, 但其他组猴子都有不 同程度的发病死亡。
总之, 结合最近的研究成果与 Merck疫苗的失败经验, 这个领域的科研工作者们 普遍认为基于 HIV疫苗的发展方向应该是能够诱导更强烈, 更广谱和多功能性的 T 淋巴细胞反应, 同时诱发一定的体液免疫应答, 这样才有可能产生对 HIV 病毒有效 的免疫保护。 为了寻找到最终有效的 HIV 疫苗, 科研工作者们应该尝试多种不同类 型的疫苗联合使用以期找到最佳组合。
腺病毒载体具有感染效率和外源基因表达水平高、 高滴度重组病毒制备筒单、 容 量大等优点, 因而 Ad载体作为哺乳动物细胞表达载体、 重组疫苗和基因治疗载体备 受青睐。 目前全球范围内以腺病毒作为载体治疗传染性疾病、 癌症、 心血管疾病、 单 基因疾病等的临床实验有 342例之多, 在各类载体中占首位( 24.8% ) 。
天坛株痘病毒(VTT )作为预防天花的疫苗, 在中国大量人群中长期使用过, 具 有非常好的安全性, 是个非常理想的疫苗载体。 本研究中用到的痘病毒载体是进一步 减毒的 MVTT毒株, 实验证明它的神经毒性大大降低。 因此既可以作为安全的天花 疫苗, 也可以作为针对其他病原体疫苗的活载体。 而且实验还表明这个载体可以通过 黏膜途径, 例如鼻腔和口服等, 而诱导出全身性的黏膜反应。
目前, 还没有将重组腺病毒载体 HIV/SIV疫苗与改良型痘病毒天坛株 ( MVTT ) 载体 HIV/SIV疫苗联合使用的报道。
发明内容
为了研制新型的安全有效的 HIV 疫苗以预防和治疗艾滋病, 本发明提供了一种 联合使用痘病毒载体与腺病毒载体的方法, 该方法能用于预防和治疗 HIV及其它传 染性疾病和肿瘤。
本发明的联合使用痘病毒载体 HIV疫苗与腺病毒载体 HIV疫苗的方法, 具体为 联合使用痘病毒载体 HIV疫苗与腺病毒载体 HIV疫苗免疫机体, 以诱发更强烈更广 ■i普和多功能性的 T淋巴细胞反应和体液免疫应答, 从而对 HIV病毒感染起到有效的 预防和治疗效果。
该方法可以先使用痘病毒载体 HIV疫苗免疫机体, 再使用腺病毒载体 HIV疫苗 免疫机体。
该方法也可以先使用腺病毒载体 HIV疫苗免疫机体, 再使用痘病毒载体 HIV疫 苗免疫机体。 优选的, 该方法中, 痘病毒载体 HIV疫苗含 HIVgag, pol, env基因。 优选的, 痘病毒载体 HIV疫苗还含辅助调控蛋白基因, 所述辅助调控蛋白基因 色括 nef、 vpx、 vpr、 vif、 rev和 tat基因。
优选的, 该方法中, 腺病毒载体 HIV疫苗含 HIVgag, pol, env基因。
优选的, 腺病毒载体 HIV疫苗还含辅助调控蛋白基因, 所述辅助调控蛋白基因 包括 nef、 vpx、 vpr、 vif、 rev和 tat基因。
优选的, 所述免疫机体的途径是指通过粘膜途径免疫机体, 例如鼻腔, 口腔等; 通过肌肉注射途径免疫机体; 通过静脉注射途径以及其它所有的疫苗使用途径。
优选的, 上述腺病毒载体指本领域技术人员已知的任何腺病毒亚型, 分离株或其 他动物来源的腺病毒。 具体地, 可以是 5型或 2型腺病毒载体。
优选的, 上述痘病毒载体指本领域技术人员已知的任何痘病毒亚型, 分离抹。 具 体地, 可以是改良型天坛株痘病毒载体。
本发明还提供了上述联合使用痘病毒载体与腺病毒载体的方法应用在预防性和 治疗性 HIV 疫苗领域, 以预防和治疗艾滋病, 以及在预防和控制乙肝、 埃博拉病毒 和肿瘤中的应用。
相比与单独使用痘病毒载体或腺病毒载体的 HIV疫苗, 联合使用携带 HIV gag, pol, env基因的痘病毒载体和腺病毒载体免疫机体后诱发了更强烈、 更广谱和多功能 性的 T淋巴细胞反应, 而且对直肠方式感染的 SIVmac239病毒表现出很强的保护和 控制作用。 资料已经表明, 强烈、 广谱和多功能性的 T淋巴细胞反应, 尤其是杀伤性 T 淋巴细胞反应在控制各种感病毒性传染疾病以及肿瘤方面都发挥着非常重要的作 用, 因此本发明中的增强机体产生更强烈、 更广语和多功能性的 T淋巴细胞反应的策 略同样适合于防治各种感病毒性传染疾病,例如乙肝,埃博拉病毒等, 以及各种肿瘤。 此外由于痘病毒载体和腺病毒载体已广泛应用于临床实验, 因此它们具有良好的安全 性, 使得这种策略的临床应用前景非常光明。 发明人的试验数据为这种疫苗策略进入 临床试验奠定了坚实的基础。 本发明可以普遍用于预防和治疗艾滋病, 以及预防和控 制其它传染性疾病和肿瘤。
下面将结合附图和实施例对本发明作进一步说明。 附图说明
图 1是用 western-blot方法检测重组腺病毒蛋白表达水平的检测结果图; 图 2是重组腺病毒在小鼠中的初次免疫和加强免疫后的免疫原性比较图; 图 2A 是重组腺病毒在小鼠中的初次免疫后的免疫原性比较图; 图 2B是重组腺病毒在小鼠 中的加强免疫后的免疫原性比较图;
图 3是联合使用痘病毒载体 ( MVTT ) SIV疫苗和腺病毒 ( Ad5 )载体 SIV疫苗 在恒河猴中的免疫和攻毒方案;
图 4是 ELISPOT检测联合使用 MVTT载体和 Ad5载体在恒河猴中的免疫原性; 图 4A是距最后一次免疫 6周的 ELISPOT检测数据, 图 4B是距最后一次免疫 21周 的 ELISPOT检测数据;
图 5是 MVTT与 Ad5载体 HIV疫苗联合对恒河猴进行加强免疫后 6周, 用多色 流式技术对 Gag肽刺激的 CD8+T细胞分泌细胞因子的检测结果; 图 6是 MVTT与 Ad5载体 HIV疫苗联合对恒河猴进行加强免疫后 16周后, 用 多色流式技术检测外周血中的记忆性 T细胞分泌细胞因子的检测结果; 图 6A是检测 效应性 CD8 T细胞分泌各种细胞因子的试验数据;图 6B是检测中枢性 CD8 T细胞分 泌各种细胞因子的试验数据;
图 7是 MVTT与 Ad5载体 HIV疫苗联合对恒河猴进行加强免疫后 16周后, 用 活细胞染料羧基荧光素乙酰乙酸琥珀酰亚胺酯 (CFSE ) 染色检测 T淋巴细胞的增殖 能力的结果图; 图 7A是 CD4 T细胞的增殖情况; 图 7B是 CD8 T细胞的增殖情况; 图 8是实险猴经 SIVmac239 攻毒后针对 SIV各个抗原的细胞免疫应答; 图 8A 是针对结构蛋白 (Gag, Pol和 Env ) 的免疫应答; 图 8B是针对辅助调控蛋白 (Nef, Vpx, Vpr, Vif, Rev和 Tat ) 的免疫应答;
图 9是通过 ELISA技术检测 SIVmac239感染实验眷、前后的 SIV特异的抗体反应 水平;
图 10是通过定量 PCR技术检测实验猴体内的病毒载量峰值的数据结果图。
具体实施方式
为使本发明更加容易理解, 下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明本发明而不用于限制本发明的范围, 下列实施例中未提及的具 体实验方法, 通常按照常规实验方法进行。
实施例一:携带 SIVgag、 pol和 env基因的腺病毒和痘病毒疫苗的构建和在小鼠 中的免疫原性
1、 SIVmac239基因的获得
通过全基因合成得到实验所需要的各个基因, 本实施例涉及 SIVmac239 病毒的 全部 3个基因, 即 SIVmac239gag、 pol和 env。 从 NCBI数据库中得到这些蛋白的氨 基酸序列, 然后在保证其氨基酸序列不发生任何改变的情况下按照人源密码子反向翻 译为 DNA序列, 使得这些抗原在灵长类细胞中高效表达。
1.1 本实施例中用到的 SIVmac239gag基因优化序列如下:
cgaagcttac catgggcgtg aggaactctg tgctgtctgg caagaaggct gatgagctgg 60
agaagatcag gctgaggccc aatggcaaga agaagtacat gctgaagcat gtggtgtggg 120
ctgccaatga gctggacagg tttggcctgg ctgagtccct gctggagaac aaggagggct 180
gccagaagat cctgtctgtg ctggcccccc tggtgcccac aggctctgag aacctgaagt 240
ccctgtacaa cacagtgtgt gtgatctggt gcatccatgc tgaggagaag gtgaagcaca 300
cagaggaggc caagcagatt gtgcagaggc acctggtggt ggagacaggc accacagaga 360
ccatgcccaa gacctccagg cccacagccc cctcctctgg cagggggggc aactaccctg 420
tgcagcagat tgggggcaac tatgtgcacc tgcccctgtc ccccaggacc ctgaatgcct 480
gggtgaagct gattgaggag aagaagtttg gggctgaggt ggtgcctggc ttccaggccc 540
tgtctgaggg ctgcaccccc tatgacatca accagatgct gaactgtgtg ggggaccacc 600
aggctgctat gcagatcatc agggacatca tcaatgagga ggctgctgac tgggacctgc 660
agcaccccca gcctgccccc cagcagggcc agctgaggga gccctctggc tctgacattg 720
ctggcaccac ctcctctgtg gatgagcaga tccagtggat gtacaggcag cagaacccca 780
tccctgtggg caacatctac aggaggtgga tccagctggg cctgcagaag tgtgtgagga 840
tgtacaaccc caccaacatc ctggatgtga agcagggccc caaggagccc ttccagtcct 900 acgtggacag gttctacaag tccctgaggg ctgagcagac agatgctgct gtgaagaact 960 ggatgaccca gaccctgctg atccagaatg ccaaccctga ctgcaagctg gtgctgaagg 1020 gcctgggggt gaaccccacc ctggaggaga tgctgacagc ctgccagggg gtggggggcc 1080 ctggccagaa ggccaggctg atggctgagg ccctgaagga ggccctggcc cctgtgccca 1140 tcccctttgc tgctgcccag cagaggggcc ccaggaagcc catcaagtgc tggaactgtg 1200 gcaaggaggg ccactctgcc aggcagtgca gggcccccag gaggcagggc tgctggaagt 1260 gtggcaagat ggaccatgtg atggccaagt gccctgacag gcaggctggc ttcctgggcc 1320 tgggcccctg gggcaagaag cccaggaact tccccatggc ccaggtgcac cagggcctga 1380 tgcccacagc cccccctgag gaccctgctg tggacctgct gaagaactac atgcagctgg 1440 gcaagcagca gagggagaag cagagggagt ccagggagaa gccctacaag gaggtgacag 1500 aggacctgct gcacctgaac tccctgtttg ggggggacca gtaaagtaaa gcccgggtct 1560 agagg 1565
1.2 本实施例中用到的 SIVmac239pol基因优化序列如下:
gatccaccat ggtgctggag ctgtgggaga ggggcaccct gtgcaaggcc atgcagtccc 60 ccaagaagac aggcatgctg gagatgtgga agaatggccc atgctatggc cagatgccca 120 ggcagacagg cggcttcttc aggccatggt ccatgggcaa ggaggccccc cagttccccc 180 atggctcctc tgcctctggc gctgatgcca actgctcccc caggggccca tcctgtggct 240 ctgccaagga gctgcatgct gtgggccagg ctgctgagag gaaggctgag aggaagcaga 300 gggaggccct gcagggcggc gacaggggct ttgctgcccc ccagttctcc ctgtggagga 360 ggcctgtggt gacagcccac attgagggcc agcctgtgga ggtgctgctg gacacaggcg 420 ctgatgactc cattgtgaca ggcattgagc tgggccccca ctacaccccc aagattgtgg 480 gcggcattgg cggcttcatc aacaccaagg agtacaagaa tgtggagatt gaggtgctgg 540 gcaagaggat caagggcacc atcatgacag gcgacacccc catcaacatc tttggcagga 600 acctgctgac agccctgggc atgtccctga acttccccat tgccaaggtg gagcctgtga 660 aggtggccct gaagcctggc aaggatggcc ccaagctgaa gcagtggccc ctgtccaagg 720 agaagattgt ggccctgagg gagatctgtg agaagatgga gaaggatggc cagctggagg 780 aggccccccc caccaaccca tacaacaccc ccacctttgc catcaagaag aaggacaaga 840 acaagtggag gatgctgatt gacttcaggg agctgaacag ggtgacccag gacttcacag 900 aggtgcagct gggcatcccc catcctgctg gcctggccaa gaggaagagg atcacagtgc 960 tggacattgg cgatgcctac ttctccatcc ccctggatga ggagttcagg cagtacacag 1020 ccttcaccct gccatctgtg aacaatgctg agcctggcaa gaggtacatc tacaaggtgc 1080 tgccccaggg ctggaagggc tcccctgcca tcttccagta caccatgagg catgtgctgg 1140 agccattcag gaaggccaac cctgatgtga ccctggtgca gtacatggat gacatcctga 1200 ttgcctctga caggacagac ctggagcatg acagggtggt gctgcagtcc aaggagctgc 1260 tgaactccat tggcttctcc acccctgagg agaagttcca gaaggacccc ccattccagt 1320 ggatgggcta tgagctgtgg cccaccaagt ggaagctgca gaagattgag ctgccccaga 1380 gggagacctg gacagtgaat gacatccaga agctggtggg cgtgctgaac tgggctgccc 1440 agatctaccc tggcatcaag accaagcatc tgtgcaggct gatcaggggc aagatgaccc 1500 tgacagagga ggtgcagtgg acagagatgg ctgaggctga gtatgaggag aacaagatca 1560 tcctgtccca agagcaggag ggctgctact accaggaggg caagcccctg gaggccacag 1620 tgatcaagtc ccaggacaac cagtggtcct acaagatcca tcaggaggac aagatcctga 1680 aggtgggcaa gtttgccaag atcaagaaca cccacaccaa tggcgtgagg ctgctggccc 1740 atgtgatcca gaagattggc aaggaggcca ttgtgatctg gggccaggtg cccaagttcc 1800 atctgcctgt ggagaaggat gtctgggagc agtggtggac agactactgg caggtgacct 1860 ggattcctga gtgggacttc atctccaccc cccccctggt gaggctggtc ttcaacctgg 1920 tgaaggaccc cattgagggc gaggagacct actacacaga tggctcctgc aacaagcagt 1980 ccaaggaggg caaggctggc tacatcacag acaggggcaa ggacaaggtg aaggtgctgg 2040 agcagaccac caaccagcag gctgagctgg aggccttcct gatggccctg acagactctg 2100 gccccaaggc caacatcatt gtggactccc agtatgtgat gggcatcatc acaggctgcc 2160 ccacagagtc tgagtccagg ctggtgaacc agatcattga ggagatgatc aagaagtctg 2220 agatctatgt ggcctgggtg cctgcccaca agggcattgg cggcaaccag gagattgacc 2280 atctggtctc ccagggcatc aggcaggtgc tgttcctgga gaagattgag cctgcccagg 2340 aggagcatga caagtaccac tccaatgtga aggagctggt cttcaagttt ggcctgccca 2400 ggattgtggc caggcagatt gtggacacct gtgacaagtg ccatcagaag ggcgaggcca 2460 tccatggcca ggccaactct gacctgggca cctggcagat ggactgcacc catctggagg 2520 gcaagatcat cattgtggct gtgcatgtgg cctctggctt cattgaggct gaggtgatcc 2580 cccaggagac aggcaggcag acagccctgt tcctgctgaa gctggctggc aggtggccca 2640 tcacccatct gcacacagac aatggcgcca actttgcctc ccaagaggtg aagatggtgg 2700 cctggtgggc tggcattgag cacacctttg gcgtgccata caacccccag tcccagggcg 2760 tggtggaggc catgaaccat catctgaaga accagattga caggatcagg gagcaggcca 2820 actctgtgga gaccattgtg ctgatggctg tgcactgcat gaacttcaag aggaggggcg 2880 gcattggcga catgacccct gctgagaggc tgatcaacat gatcaccaca gagcaggaga 2940 tccagttcca gcagtccaag aactccaagt tcaagaactt cagggtctac tacagggagg 3000 gcagggacca gctgtggaag ggccctggcg agctgctgtg gaagggcgag ggcgctgtga 3060 tcctgaaggt gggcacagac atcaaggtgg tgcccaggag gaaggccaag atcatcaagg 3120 actatggcgg cggcaaggag gtggactcct cctcccacat ggaggacaca ggcgaggcca 3180 gggaggtggc tgactacaag gatgatgatg acaagtaaat ctagagg 3227
1.3 本研究中用到的 SIVmac239env基因优化序列如下:
cgggatccac catgggctgc ctgggcaacc agctgctgat tgccatcctg ctgctgtctg 60 tctatggcat ctactgcacc ctgtatgtga cagtcttcta tggcgtgcct gcctggagga 120 atgccaccat ccccctgttc tgtgccacca agaacaggga cacctggggc accacccagt 180 gcctgcctga caatggcgac tactctgagg tggccctgaa tgtgacagag tcctttgatg 240 cctggaacaa cacagtgaca gagcaggcca ttgaggatgt ctggcagctg tttgagacct 300 ccatcaagcc atgtgtgaag ctgtcccccc tgtgcatcac catgaggtgc aacaagtctg 360 agacagacag gtggggcctg accaagtcca tcaccaccac agcctccacc acctccacca 420 cagcctctgc caaggtggac atggtgaatg agacctcctc ctgcattgcc caggacaact 480 gcacaggcct ggagcaggag cagatgatct cctgcaagtt caacatgaca ggcctgaaga 540 gggacaagaa gaaggagtac aatgagacct ggtactctgc tgacctggtc tgtgagcagg 600 gcaacaacac aggcaatgag tccaggtgct acatgaacca ctgcaacacc tctgtgatcc 660 aggagtcctg tgacaagcac tactgggatg ccatcaggtt caggtactgt gccccccctg 720 gctatgccct gctgaggtgc aatgacacca actactctgg cttcatgccc aagtgctcca 780
aggtggtggt ctcctcctgc accaggatga tggagaccca gacctccacc tggtttggct 840
tcaatggcac cagggctgag aacaggacct acatctactg gcatggcagg gacaacagga 900
ccatcatctc cctgaacaag tactacaacc tgaccatgaa gtgcaggagg cctggcaaca 960
agacagtgct gcctgtgacc atcatgtctg gcctggtctt ccactcccag cccatcaatg 1020
acaggcccaa gcaggcctgg tgctggtttg gcggcaagtg gaaggatgcc atcaaggagg 1080
tgaagcagac cattgtgaag catcccaggt acacaggcac CBBC3BC3CB gacaagatca 1140
acctgacagc ccctggcggc ggcgaccctg aggtgacctt catgtggacc aactgcaggg 1200
gcgagttcct gtactgcaag atgaactggt tcctgaactg ggtggaggac aggaacacag 1260
ccaaccagaa gcccaaggag cagcacaaga ggaactatgt gccatgccac atcaggcaga 1320
tcatcaacac ctggcacaag gtgggcaaga atgtctacct gccccccagg gagggcgacc 1380
tgacctgcaa ctccacagtg acctccctga ttgccaacat tgactggatt gatggcaacc 1440
agaccaacat caccatgtct gctgaggtgg ctgagctgta caggctggag ctgggcgact 1500
acaagctggt ggagatcacc cccattggcc tggcccccac agatgtgaag aggtacacca 1560
caggcggcac ctccaggaac aagaggggcg tctttgtgct gggcttcctg ggcttcctgg 1620
ccacagctgg ctctgccatg ggcgctgcct ccctgaccct gacagcccag tccaggaccc 1680
tgctggctgg cattgtgcag cagcagcagc agctgctgga tgtggtgaag aggcagcagg 1740
agctgctgag gctgacagtc tggggcacca agaacctgca gaccagggtg acagccattg 1800
agaagtacct gaaggaccag gcccagctga atgcctgggg ctgtgccttc aggcaggtct 1860
gccacaccac agtgccatgg cccaatgcct ccctgacccc caagtggaac aatgagacct 1920
ggcaggagtg ggagaggaag gtggacttcc tggaggagaa catcacagcc ctgctggagg 1980
aggcccagat ccagcaggag aagaacatgt atgagctgca gaagctgaac tcctgggatg 2040
tctttggcaa ctggtttgac ctggcctcct ggatcaagta catccagtat ggcgtctaca 2100
ttgtggtggg cgtgatcctg ctgaggattg tgatctacat tgtgcagatg ctggccaagc 2160
tgaggcaggg ctacaggcct gtcttctcct cccccccatc ctacttccag cagacccaca 2220
tccagcagga ccctgccctg cccaccaggg agggcaagga gagggatggc ggcgagggcg 2280
gcggcaactc ctcctggcca tggcagattg agtacatcca cttcctgatc aggcagctga 2340
tcaggctgct gacctggctg ttctccaact gccggaccct gctgtccagg gtctaccaga 2400
tcctgcagcc catcctgcag aggctgtctg ccaccctgca gaggatcagg gaggtgctga 2460
ggacagagct gacctacctg cagtatggct ggtcctactt ccatgaggct gtgcaggctg 2520
tctggaggtc tgccacagag accctggctg gcgcctgggg cgacctgtgg gagaccctga 2580
ggaggggcgg caggtggatt ctggccatcc ccaggaggat caggcagggc ctggagctga 2640
ccctgctgga ctacaaggat gatgatgaca agtaaatcta gage 2684
2、 重组腺病毒的构建, 扩增, 纯化与鉴定
按照常规的重组腺病毒构建方法将上述基因分别到腺病毒载体中,其中的腺病毒 载体为缺失了 E1和 E3区域的人五型腺病毒,然后拯救得到携带目的基因的重组腺病 毒, 少量扩增后进行表达和基因组酶切鉴定, 接着在 Trex293细胞中大量扩增, 并采 用氯化铯梯度密度离心进行纯化, 对纯化的病毒再次鉴定正确后测定其感染滴度 TCID5。和物理颗粒浓度, 然后分装冻存备用(相关方法的具体操作步骤可参见本申请 人的专利, 申请号为 200710026295.X )。 图 1是用 western-blot方法检测重组腺病毒蛋 白表达水平的检测结果图; 如图 1所示, 纯化的重组腺病毒可以高水平的表达目的蛋 白, 并且这些蛋白可被进一步加工成天然形式的各种蛋白组分。 如 Ad5-gag可以表达 P55和 P27 , Ad5-pol可以表达 P66/51 , P31 , P10等, Ad5-env可以表达 gpl 60 , gpl20, gp41。
3、 携带腺病毒载体 SIV全抗原组疫苗在小鼠中的免疫原性
进一步,这些疫苗的免疫原性在小鼠中得到了验证,每组 10只 6-8龄雌性 C57BL/6 小鼠。 免疫剂量为 l x l01Gvp重组腺病毒 /只 /ΙΟΟμΙ^ , 分别在小鼠两侧的股四头^ L各注 射 50μί。 共免疫 2次, 间隔 2周。 图 2是重组腺病毒在小鼠中的初次免疫和加强免 疫后的免疫原性比较图; 图 2Α是重組腺病毒在小鼠中的初次免疫后的免疫原性比较 图; 图 2Β是重组腺病毒在小鼠中的加强免疫后的免疫原性比较图; 如图 2Α和 2Β所 示, 初次免疫和加强免疫后取出小鼠的脾脏, 按组混合在一起, 制备脾脏细胞进行 ELISPOT检测, 在各个免疫组, 小鼠都可以检测到较强的 IFN-y ELISPOT免疫应答, 其中产生针对 SIV Gag 和 Pol 的应答水平相对更高。 更有意义地是在第 5组, 即同 时免疫 SIVgag , pol和 env的小鼠体内可同时产生针对这 3个 SIV抗原的免疫反应。 相比于单独免疫一种抗原, 这组的免疫应答水平有所下降, 这可能与在机体中同时高 水平表达多个抗原, 会导致抗原间的相互竟争有关。 虽然针对单独某个抗原的反应有 所下降, 但我们也可看到针对各个抗原的整体反应水平更趋向一致, 即针对各抗原的 反应更协调, 避免产生了针对一些抗原的过度应答, 这可能更利于控制 SIV病毒的复 制。 在对照组小鼠中检测不到针对任何 SIV抗原的免疫反应。
表达 SIVgag、 pol和 env的痘病毒载体 MVTT-gpe (改良型痘病毒天坛株)由香港 大学李嘉诚医学院艾滋病研究所陈志伟教授构建并提供,其表达情况和抗原性均由他 们得到了证实 ( Huang X等. Vaccine. 2007 )。
实施例二: 联合使用痘病毒载体 SIV疫苗和腺病毒载体 SIV疫苗在恒河猴中的免疫
1、 实验材料
1.1实验动物
16 只中国恒河猴购自中国科学院广州生物医药与健康研究院与华南濒危动物研 究所合作建立的非人灵长类动物疾病模型研究基地, 体重为 3-5kg, 年龄为 3 _ 6岁, 雌雄各半。 实验前已经对这些猴子进行各项检测, 硝定结核杆菌、 志賀菌、 沙门氏菌、 STLV-1、 SIV、 SRV等均为阴性。 动物实验的操作符合实验动物使用的相关规定。
1.2病毒
表达 SIVgag、 pol和 env的痘病毒载体 MVTT-gpe由香港大学李嘉诚医学院艾滋 病研究所陈志伟教授构建并提供; 上述构建的表达 SIVgag、 pol和 env的重组腺病毒 ( Ad5-SIVgag、 Ad5-SIVpol和 Ad5-SIVenv )。
1.3流式抗体
所用单克隆抗体 (抗人 CD3-pacific blue (太平洋兰) 、 抗 NHP CD4-FITC、 抗人 CD4-AmCyan, 抗人 CD8-PerCP、 抗人 CD8-APC-Cy7 (SKI), 抗人 CD28-FITC, 抗人 CD95-PE-Cy5 , 抗人 TNFa-PE-CY7、 抗人 IFNy-PE、 抗人 IL2-APC)购自 BD公司。
1.4 SIV各个抗原的多肽
所有的多肽均由美国国立健康研究所艾滋病研究和参考试剂项目 ( NIH AIDS Research & Reference Reagent Program )提供, 大部分肽由 15个氨基酸组成, 两两之 间有 11 个氨基酸重叠.純度 >80%。 用二曱基亚砜 ( DMSO ) 溶解配制成 0.4mg/ml/肽 的储存液, 分装后 -70°C保存。
1.5其他试剂
ELISPOT板 (品牌: Millipore; 货号: MSIPS4510)购自达科为生物科技有限公司, SIV病毒颗粒裂解产物为自己制备, TMB/E底物(货号: ES001 )购自美国 Chemicon 公司。 BCIP/NBT底物 (品牌: Pierce; 货号: 34042 ) 购自广州吉泰生物科技有限公 司。 细胞染料 CFSE购自美国分子探针 ( Molecule Probe )公司。 链霉素偶联的碱性 磷酸酶(品牌: BD PharMingen, 货号: 554065 ) 购自基因有限公司。
2、 实险方法
2.1动物分组与免疫策略
将 16只猴子分为 4组,每组 4只猴子,如图 3所示联合使用痘病毒载体( MVTT ) SIV疫苗和腺病毒(Ad5) 载体 SIV疫苗在恒河猴中的免疫和攻毒方案。 检测指标包 括 ELISPOT, 多功能 T 细胞, 细胞增殖与抗体滴度等。 其中腺病毒采用肌肉注射的 方式免疫, 剂量为 10"vp/猴。 痘病毒的用量为 lxlO8 PFU/ml/猴, 采用鼻腔免疫和舌 下免疫。
2.2 多色流式技术检测多功能 T 细胞
1 )分离好的 PBMC细胞计数后调整至 2xl06/ml,加入到 24孔培养板,每孔 lmL。 培养基为 R10。
2)在上述细胞悬液中加入特异性抗原肽, 阴性对照孔加入相应浓度的 DMSO, 阳性对照加入佛波酯 (PMA) ( 20ng/ml ) +离子霉素 ( 1000ng/ml)。
3 ) 37 °C, 5%CO2培养 l-2h。
4)加入布雷菲德菌素 (BFA) ( ΙΟμ^ηιΙ) 混匀。
5) 37 °C, 5% CO2培养 16h。
6)吹打均匀细胞, 转移至流式管中 ( 12x75mm 聚苯乙烯管)。 加入 3ml 流式洗 液。 混勾后 300g室温离心 10分钟。
7)弃上清。 分别加入细胞表明标记抗体, 如 CD3 -pacific blue (太平洋兰), CD4- AmCyan, CD8-APC-Cy7, CD28-FITC, CD95-PE-Cy5, 振荡 2— 3秒。
8) 室温避光放置 25 _ 30分钟。
9 )加入 3ml FACS 洗液。 混匀后 300g室温离心 10分钟。
10) 重复洗涤一次。
11 )振荡均匀细胞, 然后加入 250μ1 细胞固定 /通透液(cytofix/cytoperm, 品牌: BD; 货号: 554722 ), 混匀。
12) 4°C, 避光反应 20min。
13 )加入 1ml 1χ细胞通透 /洗涤液( perm/wash,品牌: BD Biosciences;货号: 554723。 产品为 10倍, 用之前用无菌蒸馏水稀释至 1倍), 400g, 离心 8min。 弃上清。
14) 重复一次。
15 ) 弃上清, 加入 IFNy-PE/TNFa-PE CY7/IL2-APC (各 10ul抗体), 混匀。
16) 4°( 避光30_60分钟。
17) 加入 lml lx细包通透 /洗条液(perm/wash), 400g, 离心 8min。 18 ) 弃上清, 加入 3ml 流式洗液。 混匀后 400g室温离心 10分钟。
19 ) 吸走大部分上清, 约留 300μ1。 振荡混匀后上机。
20 )在 FACSAria流式细胞仪上检测,用 Cell Quest软件获取数据, 然后用 Modfit 软件分析。
2.3 IFN-γ酶联免疫斑点技术
第一天:
取一管包被抗体(抗猴 IFN-γ抗体对其中包含有这个抗体, 品牌: U-Cytech, 克 隆号为 MD-1 )用无菌 PBS ( pH7.2-7.4 ) 1 : 100稀释, ΙΟΟμΙ/孔加入到 96孔 PVDF膜 板, 4°C包被过夜。
第二天:
① 甩去液体, 用无菌 PBS洗涤 3次, 每孔加入 200μ1 R10完全培养基, 37°C封 闭 2小时。
②封闭期间分离 PBMC。 釆用 95%稀释的淋巴细胞分离液(商品名为 opti-prep ) 分离淋巴细月包。
③ 弃去封闭液, 每孔加入 100μ1 ΡΒΜ( 。
④ 实验中设阳性对照组( ConA组),特异肽,空白对照( DMSO )。在 37°C 5%CO2 培养箱中孵育。
第三天:
⑤ 24h后, 弃去细胞悬液, 用无菌 PBST 220μ1/Ανε11洗涤 6次。
⑥ 甩去洗液, 在无菌千燥纸上扣干。
⑦ 用含 5 % FBS的 PBST按 1:400稀释检测抗体(生物素标记的抗猴 IFN-γ抗体), ΙΟΟμΙ/well, 4°C过夜。
第四天:
① 用无菌 PBST 220μ1/孔洗涤 4次。
② 甩去洗液, 在无菌千燥纸上扣干。
③ 配置链霉素偶联的碱性磷酸酶: 用含 5 % FBS的 PBST按 1:2500稀释链霉素 偶联的碱性磷酸酶, ΙΟΟμΙ/孔, 37°C, 2小时。
④ 处理 BCIP/NBT底物 (Pierce, Cat: 34042 ) ,37°C温浴 30min。
⑤ 用无菌 PBST 220 l/孔洗涤 5次, 甩去洗液, 在无菌干燥纸上扣干。
⑥ 加入 BCIP/NBT底物, ΙΟΟμΙ/孔, 避光反应 7min。
⑦ 弃去底物, 用水洗涤 2次。 风干读板。
2.4 CFSE检测淋巴细胞增殖情况
1 )分离恒河猴的 PBMC细胞。
2 ) 细胞计数后 300g离心 10分钟。 弃上清, 加入 0.1%FBS/PBS液体重悬, 洗涤 一次, 再用合适体积数目的 0.1%FBS/PBS重悬, 得到 4xl06/ml的细胞悬液。
3 )用 0.1%FBS/PBS稀释 CFSE储存液至 2 mol/L。 以下操作尽量避光操作。
4 )各取 0.25ml上述细胞悬液和 CFSE稀释液, 轻柔混匀。 (此时细胞脆弱, 动作 要尽量轻柔! )
5 ) 37 °C放置 10min。
6 )加入冰冷的 RPMI 1640 完全培养液, 冰浴 5分钟以中止染色。 7 ) 300g室温离心 5分钟。 弃上清, 加入水冷的含 10%FBS 的完全 1640培养液 洗 2次。 最后用 lml RlO培养基重悬。
8 )将上述细胞悬液加入 24孔培养板, 每孔 1ml, 分别用 SEB (终浓度 lug/ml ) 和特异性多肽库 (2 g/ml )刺激。
9 ) 37 °C , 5 % C02 避光培养 5-6天。
10 )吹打均匀细胞, 转移至流式管中( 12x75mm 聚苯乙烯管)。再加入 4ml FACS 洗液。 混匀后 250g室温离心 10分钟。
11 )真空泵抽吸掉上清。 漩涡振荡仪上振荡 2 - 3秒。
12 ) 分别加入 20ul CD4-PE, CD8-Percp, CD3-APC。 振荡 2 - 3秒。
13 ) 室温避光放置 25 - 30分钟。
14 ) 加入 4ml FACS 洗液。 混匀后 300g室温离心 10分钟。
15 ) 吸走大部分上清, 约留 300ul。 振荡混匀。 直接上机。 或继续第 15步。
16 ) 加入 30ul 10 % *** (品牌: Polysciences; 货号: 04018 ), 振荡 10 - 20 秒。
17 ) 4 避光保存 , 24小时内上机检测。
18 )在 FACScalibur流式细胞仪上检测,用 Cell Quest软件获取数据,然后用 Modfit 软件分析。
2.5数据分析
使用 FlowJo软件分析多色流式细胞数据。 用 JMP version 6.0.3 软件进行数据统 计分析和作图, 比较各组间的差异采用非参数 Wilcoxon rank检验。
3、 实验结果
3.1 MVTT /Ad5联合免疫策略在中国恒河猴中诱发更强更持久的的细胞免疫应答 我们比较了单独使用或者联合使用 MVTT载体和 Ad5载体在猴子中的免疫原性, 结果表明单独免疫一次 Ad5载体诱发的免疫反应要远远高于 MVTT载体, 而联合使 用这两种载体的免疫效果又远远强于单独使用任何一种载体。 图 4是 ELISPOT检测 联合使用 MVTT载体和 Ad5载体在恒河猴中的免疫原性; 图 4A是距最后一次免疫 6 周的 ELISPOT数据, 图 4B是距最后一次免疫 21周的 ELISPOT数据。 如图 4所示, 我们观察到单独免疫一次改良型痘病毒天坛株 (MVTT)载体, 在猴子体内 i秀发了一定 强度的细胞免疫应答, 针对其携带的目的抗原的刺激平均产生了 237个斑点(百万个 PBMC细胞); 单独免疫一次我们构建的 5型腺病毒载体, 则在猴子体内产生了较强 的细胞免疫应答, 针对其携带的目的抗原的刺激平均产生了 2643 个斑点 (百万个 PBMC细胞)。 而用 MVTT载体初免, 间隔 6周后再用 Ad5载体加强, 则在猴子体内 诱发了很高水平的细胞免疫应答, 针对其携带的目的抗原的刺激平均产生了 7383个 斑点(百万个 PBMC细胞)。 因此这种策略比单独使用一次 MVTT载体诱发的细胞免 疫的应答水平平均要强 31倍之多,而比单独使用一次 Ad5载体的应答水平也要强 2.8 倍。 这种策略不仅在猴子体内很快就诱发了很高水平的细胞免疫应答, 更重要的是这 种反应持续时间很长。 在距离最后一次免疫 21周后联合免疫组的猴子依然可以检测 到 4艮高水平的 ELISPOT反应。
3.2 MVTT /Ad5联合免疫策略在中国恒河猴中诱发了更多的多功能性的记忆淋 巴细胞 虽然 IFN-γ ELISPOT技术已经成为评价 HIV疫苗的比较通用且被广泛认可的指 标, 但当今较被认可的观点是免疫保护和具有多种功能的淋巴细胞数量更有相关性, 所谓的多功能的淋巴细胞是指同时分泌包括 IFN-γ在内的多种细胞因子的淋巴细胞, 这些细胞因子包括 IL-2, TNFa, MIP 1 β等。评价多功能 Τ淋巴细胞将逐渐成为评价 HIV 疫苗效果的重要指标, 为此我们发展和完善了多色流式技术来测定这种策略所产生的 多功能性的 Τ淋巴细胞反应情况。 结果如图 5所示, 图 5是 MVTT与 Ad5载体联合 对恒河猴进行加强免疫后 6周, 用多色流式技术对 Gag肽刺激的 CD8+T细胞分泌细 胞因子的检测结果; 在 MVTT与 Ad5载体联合免疫 6周后, 联合免疫组的猴子中不 仅单独分泌某种细胞因子的能力大大加强, 更为重要的是检测到了更多同时分泌 IFN-y/TNF-a/IL-2细胞因子的多功能 CD8+T淋巴细胞。 具体地, 在 MVTT与 Ad5载 体联合免疫的猴子中有 0.2464士 0.2770%的 CD8+T淋巴细胞同时分泌 IFN- γ /TNF- a /IL-2这 3种细胞因子, 1.4668士 1.1845%的 CD8+T淋巴细胞同时分泌 IFN- γ /TNF- a 这 2种细胞因子; 而单独免疫 Ad5载体的猴子中只有 0.0320士 0.0472%的 CD8+T淋 巴细胞同时分泌 IFN- γ /TNF- a /IL-2这 3种细胞因子, 0.1587士 0.2035%的 CD8+T淋 巴细胞同时分泌 IFN- y /TNF- a这 2种细胞因子。 即相比单独 Ad5载体免疫, MVTT 与 Ad5载体联合免疫后产生了 7.7倍多的能同时分泌 IFN- γ /TNF- a /IL-2这 3种细胞 因子的多功能性 CD8+T淋巴细胞和 9倍多的能同时分泌 IFN- γ /TNF- a这 2种细胞 因子的多功能性 CD8+T淋巴细胞。
我们进一步检测了 MVTT与 Ad5载体联合免疫后的特异性记忆细胞的产生和分 泌细胞因子的能力。 结果如图 6所示, 图 6是 MVTT与 Ad5载体联合对恒河猴进行 加强免疫后 16周后, 用多色流式技术检测外周血中的记忆性 T细胞分泌细胞因子的 检测结果; 图 6A是检测效应性 CD8 T细胞分泌各种细胞因子的试验数据; 图 6B是 检测中枢性 CD8 T细胞分泌各种细胞因子的试验数据。 这些猴子体内 SIV抗原特异 性记忆 CD4+T细胞和 CD8+T细胞的产生和分泌细胞因子的能力都明显更强。相比于 其他组, MVTT和 Ad5联合免疫组的猴子外周血中的效应性记忆 CD8 +细胞分泌细 胞因子的能力明显更强, 这些细胞以同时分泌 IFN-Y/TNF-a两种细胞因子为主。 虽然 各组实验猴的中枢性记忆 CD8 +细胞分泌细胞因子的能力差异不大,但相比与效应性 记忆 T细胞, 这些细胞分泌 IL - 2的能力明显更强。 总之, 我们检测到了 MVTT和 Ad5联合免疫可以在恒河猴体内诱发更多的多功能记忆性 T淋巴细胞。进一步分析表 明这种方法同时诱导产生了中枢性记忆和效应性记忆 T细胞,其中以效应性记忆 CD8 + T细包为主。
3.3 MVTT /Ad5联合免疫策略在中国恒河猴中诱发了更强的淋巴细胞增殖能力 研究表明, HIV长期不进展患者的 CD4+T细胞和 CD8+T细胞具有很强的针对 HIV抗原的体外增殖能力, 而 HIV发病患者的 CD4+T细胞和 CD8+T细胞针对 HIV 抗原的体外增殖能力很弱。 而且这种增殖能力和患者血浆中的病毒拷贝数存在着一定 程度的负相关性, 以及与 CD4+T细胞的数量成正相关性。 因此检测 T淋巴细胞的增 殖能力可以较好地反映机体对 HIV病毒复制的控制程度。
图 7是 MVTT与 Ad5载体联合对恒河猴进行加强免疫后 16周后, 用 CFSE染色 检测 T淋巴细胞的增殖能力的结果图;图 7A是 CD4 T细胞的增殖情况;图 7B是 CD8 T细胞的增殖情况。如图 7A所示, MVTT与 Ad5载体联合免疫猴的 PBMC在体外用 SIV Gag刺激后有 (4.2725±4.5516 ) %的 CD4+细胞为 CFSElow, 即***增殖的子代 细胞; 而单独 Ad5载体免疫猴的 PBMC用 SIV Gag刺激后有 ( 3.2350±1.7008 ) %的 CD4+ T细胞为 CFSElow。 因此相比于单独 Ad5载体, MVTT与 Ad5载体联合免疫后 针对抗原刺激的 CD4+T淋巴细胞增殖能力略有增强。 而如图 7B所示, 用 SIV Gag 刺激后有 (7.4825土 5.8550 ) %的 CD8+ T细胞为 CFSElow , 即***增殖的子代细胞; 而单独 Ad5 载体免疫狼的 PBMC 中只有 (2.9475±1.6951 ) %的 CD8+ T 细胞为 CFSElow。 因此相比于单独 Ad5载体, MVTT与 Ad5载体联合免疫后针对抗原刺激 的 CD8+T淋巴细胞增殖能力增强了 2.5倍多。
总之 MVTT载体初免, Ad5载体加强的免疫方法在中国恒河猴中产生了更强烈, 更广谱和更多功能性的 T细胞反应, 这非常符合最近评价有效疫苗的指标。 这种策略 所值得进一步研究。
实施例三: 联合使用痘病毒载体和腺病毒载体 SIV疫苗在恒河猴中的免疫保护试验
1实验材料:
1.1实验动物 同实施例 2。
1.2病毒
SIVmac239病毒为发明人拯 1得到, 所用的 SIVmac239 phage分子克隆由美国国 立健康研究所艾滋病研究和参考试剂项目提供。
1.3抗体
所用单克奎抗体 (抗人 CD3 -pacific blue、 抗 NHP CD4-FITC、 抗人 CD4-AmCyan, 抗人 CD8-PerCP、 抗人 CD8-APC-Cy7 (SKI), 抗人 CD28-FITC, 抗人 CD95-PE-Cy5, 抗人 TNF(x-PE-CY7、 抗人 IFNy-PE、 抗人 IL2-APC)购自 BD公司。 HRP-抗猴 IgG购 自北京中杉金桥生物技术有限公司。
1.4其他试剂
荧光定量 RT-PCR检测试剂盒( QuantiTect SYBR Green RT-PCR Kit,货号:: 204243) 购自 Qiagen公司, 红细胞裂解液( FACS lysis solution ), 绝对计数管( BD TruCOU T Tubes, 货号 340334) 购自 BD Biosciences公司。 其他试剂参见实施例 2。
2实验方法
2.1动物分组与攻毒实验
将 16只猴子分为 4组, 每组 4只猴子, 各组的免疫程序如图 3所示, 在最后一 次免疫 22周直肠感染 SIVmac239病毒,剂量为 105 TCID5。。具体方法为猴子禁食 24h, 保持臀高位, 用小儿胃管****** 4 _ 7cm, 打入病毒, 并打入少量空气。 保持这种 ***至少 20min。
2.2定量 PCR测定 SIV病毒载量
1 ) 常规方法分离血浆。
2 )提取血浆中的 SIV病毒 RNA。
3 )进行一步法荧光定量 RT-CR, 每次试验都做标准曲线。
4 ) 配置反应体系 (使用 QuantiTect 的 SYBR Green RT-PC 试剂盒, 货号: 204243):
2x QuantiTect SYBR Green RT-PCR主反应液 25 μΐ
QuantiTect RT mix 0.5μ1 试剂盒自带引物 1 (ΙΟμΜ) 0.5μ1
试剂盒自带引物 2 (ΙΟμΜ) 0.5μ1
RNA模板 2μ1
RNase-free水 21·5μ1
总体积 50μ1
5 )根据样品数量合理安排试验布局。 然后按照下列条件进行 RT-PCR反应条件: a) 50 °C 30min
b) 95°C 15min
c) 94 °C 15s
d) 60 °C 30s
e) 72 °C 30s
f) 读板;
g ) 3)-6)循环 45周;
h ) 65-95度做融解曲线, 每隔 0.5 °C读数, 保持 1秒钟;
i) 保持在 24°C ;
6 )根据标准曲线, 利用 Opticon Monitor 3 软件得到各样品的病毒拷贝数, 然 后根据稀释倍数还原得到每毫升血液中的病毒拷贝数。
2.3 SIV病毒颗粒裂解物 ELISA方法检测结合抗体
I )包被抗原: 96孔板每孔滴加 ΙΟΟμΙ抗原( l g/ml,用 pH7.4的 PBS或者 pH9.6 的碳酸盐緩冲液稀释) , 4°C包被过夜。
2) 洗板: 次日倒掉抗原, 甩干, PBS洗涤 3次。
3 )封闭: 加入含 5%脱脂奶粉的 PBST, 每孔 250μ1, 37°C封闭 lh。
4 ) 洗板: 每孔加入 20(^1 PBST, 3min/次, 洗 3次, 保湿保存备用。
5 )加入待测标本: 每孔加入 ΙΟΟμΙ, 每个样品做双孔测定, 37°C反应 2 h。 (如果 需要稀释, 用封闭液)
6 ) 洗板: 每孔加入 200μ1 ΡΒ8Τ, 3min/次, 洗 6次。
7 ) 结合第二抗体: 每孔加入 ΙΟΟμΙ适当稀释度 HRP-抗鼠 IgG ( 1 : 8000 )抗体 或者抗人 IgG(l :4000), 37°C孵育 lh。 (用封闭液稀释)
8 ) 洗板: 每孔加入 200μ1 ΡΒ8Τ, 3min/次, 洗 6次。
9 )显色: 每孔加入 ΙΟΟμΙ酶反应底物 ΤΜΒ, 室温放置 5-10分钟。
10) 加入等体积的 1M的 H2SO4终止反应。
I I ) 结果测定: 用酶标板分光光度仪在 450nm波长测定 OD450
2.4其他方法参见实施例 2。
3、 实验结果
3.1恒河猴攻毒后针对各个抗原的细胞免疫应答情况
图 8是实险猴经 SIVmac239 攻毒后针对 SIV各个抗原的细胞免疫应答; 图 8A 是针对结构蛋白 (Gag, Pol和 Env ) 的免疫应答; 图 8B是针对辅助调控蛋白 (Nef, Vpx, Vpr, Vif, Rev和 Tat ) 的免疫应答。 如图 8A所示, 在受到 SIVmac239病毒攻 击后, 联合免疫疫苗组的猴子体内针对疫苗携带的免疫原 ( gag/pol/env ) 的反应迅速 升高, 而对照组的反应则比较緩慢, 而且反应强度也相对较弱。 这表明本发明的免疫 方法有效地 i秀发了记忆 T细胞,这些细胞在遇到相同抗原刺激后迅速被激活并产生相 应的免疫应答。 更有意思的是在联合免疫组的猴子体内针对疫苗没有携带的免疫原 ( nef/vpx/vpr/vif/rev/tat )的反应明显比对照组要弱, 我们推测这是由于 SIV病毒在这 些猴子体内被有效地控制在比较低的水平或者没被感染,这样针对病毒本身携带的抗 原的反应水平就比较低。 这种猜测在接下来的病毒载量测定实验中得到了证实。
3.2恒河猴攻毒后针对 SIV的抗体免疫应答情况
我们也对这些实验猴子不同时期血清中的抗体进行了检测, 如图 9 所示, 通过 ELISA技术检测 SIVmac239 感染实验猴前后的 SIV特异的抗体反应水平, 无论是 MVTT载体还是 Ad5载体, 初次免疫后大部分猴子的抗体水平都很低, 但在加强免 疫后大部分猴子的抗体水平迅速升高。 更有意义地是, 免疫组的猴子在受到病毒攻击 后抗体水平迅速升高到了很高水平。 而对照组的实验猴在攻毒前检测不到抗体, 攻毒 后抗体产生的时间相对緩慢, 并且滴度较低。
3.3恒河猴体内的病毒载量测定
攻毒后, 所有猴子的病毒载量在 10-14天达到峰值。 从图 10中可以看出, 联合 免疫组的猴体内病毒载量峰值比对照组有明显減少。联合免疫组 4只猴子中有 1只至 今还没检测到 SIV病毒, 另外 3只的病毒载量比对照组相比降低了 1.371og值。 这表 明我们的联合策略在急性感染期有效地控制了 SIV病毒感染和复制,该方法的长期免 疫保护效果需要更长的观测时间来证实。 有一点需要特别说明, 我们是用更难中和的 SIVmac239毒株高剂量粘膜感染, 而之前别人的研究大部分用毒力相对较弱的毒株。 最后所应当说明的是, 以上实施例仅用以说明本发明的技术方案而非对本发明保 护范围的限制, 尽管参照较佳实施例对本发明作了详细说明, 本领域的普通技术人员 应当理解, 可以对本发明的技术方案进行修改或者等同替换, 而不脱离本发明技术方 案的实质和范围。

Claims

权 利 要 求 书
1、联合使用痘病毒载体 HIV疫苗与腺病毒载体 HIV疫苗的方法, 其特征在 于, 联合使用痘病毒载体 HIV疫苗与腺病毒载体 HIV疫苗免疫机体。
2、 根据权利要求 1所述的联合使用痘病毒载体 HIV疫苗与腺病毒载体 HIV 疫苗的方法, 其特征在于, 先使用痘病毒载体 HIV 疫苗免疫机体, 再使用腺病 毒载体 HIV疫苗免疫机体。
3、 根据权利要求 1所述的联合使用痘病毒载体 HIV疫苗与腺病毒载体 HIV 疫苗的方法, 其特征在于, 先使用腺病毒载体 HIV 疫苗免疫机体, 再使用痘病 毒载体 HIV疫苗免疫机体。
4、 根据权利要求 1所述的联合使用痘病毒载体 HIV疫苗与腺病毒载体 HIV 疫苗的方法, 其特征在于, 所述的痘病毒载体 HIV疫苗含 HIVgag, pol和 env 基因。
5、 根据权利要求 4所述的联合使用痘病毒载体 HIV疫苗与腺病毒载体 HIV 疫苗的方法, 其特征在于, 所述的痘病毒载体 HIV 疫苗还可含辅助调控蛋白基 因, 所述辅助调控蛋白基因包括 nef、 vpx、 vpr、 vif、 rev和 tat基因。
6、 根据权利要求 1所述的联合使用痘病毒载体 HIV疫苗与腺病毒载体 HIV 疫苗的方法, 其特征在于, 所述的腺病毒载体 HIV疫苗含 HIVgag, pol和 env 基因。
7、 根据权利要求 6所述的联合使用痘病毒载体 HIV疫苗与腺病毒载体 HIV 疫苗的方法, 其特征在于, 所述的腺病毒载体 HIV 疫苗还可含辅助调控蛋白基 因, 所述辅助调控蛋白基因包括 nef、 vpx、 vpr、 vif、 rev和 tat基因。
8、 根据权利要求 1所述的联合使用痘病毒载体 HIV疫苗与腺病毒载体 HIV 疫苗的方法, 其特征在于, 所述免疫机体的途径包括粘膜途径、 肌肉注射途径和 静脉注射途径。
9、 根据权利要求 1所述的联合使用痘病毒载体 HIV疫苗与腺病毒载体 HIV 疫苗的方法, 其特征在于, 所述的腺病毒载体为 5型腺病毒载体。
10、根据权利要求 1所述的联合使用痘病毒载体 HIV疫苗与腺病毒载体 HIV 疫苗的方法, 其特征在于, 所述的痘病毒载体为改良型天坛株痘病毒载体。
11、 权利要求 1-10之一所述的联合使用痘病毒载体 HIV疫苗与腺病毒载体 HIV疫苗的方法在防治艾滋病中的应用。
12、 根据权利要求 1-10之一所述的联合使用痘病毒载体 HIV疫苗与腺病毒 载体 HIV疫苗的方法在预防和控制乙肝、 埃博拉病毒以及肿瘤中的应用。
PCT/CN2010/076905 2009-09-15 2010-09-14 联合使用痘病毒载体hiv疫苗与腺病毒载体hiv疫苗的方法及其应用 WO2011032489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910192351A CN101670102A (zh) 2009-09-15 2009-09-15 联合使用痘病毒载体hiv疫苗与腺病毒载体hiv疫苗的方法及其应用
CN200910192351.6 2009-09-15

Publications (1)

Publication Number Publication Date
WO2011032489A1 true WO2011032489A1 (zh) 2011-03-24

Family

ID=42017657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076905 WO2011032489A1 (zh) 2009-09-15 2010-09-14 联合使用痘病毒载体hiv疫苗与腺病毒载体hiv疫苗的方法及其应用

Country Status (2)

Country Link
CN (1) CN101670102A (zh)
WO (1) WO2011032489A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101670102A (zh) * 2009-09-15 2010-03-17 中国科学院广州生物医药与健康研究院 联合使用痘病毒载体hiv疫苗与腺病毒载体hiv疫苗的方法及其应用
CN102258779B (zh) * 2011-07-18 2013-07-24 曾毅 四种及四种以上hiv载体基因疫苗序贯及重复应用
US10561722B2 (en) * 2014-09-03 2020-02-18 Bavarian Nordic A/S Methods and compositions for enhancing immune responses
CN110624106A (zh) * 2018-06-22 2019-12-31 嘉和生物药业有限公司 Pd-1信号通路拮抗剂与艾滋病疫苗的联合应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1695737A (zh) * 2005-05-20 2005-11-16 吉林大学 冻干剂型艾滋病重组痘病毒安卡拉株载体疫苗及其制备方法
CN101219221A (zh) * 2007-01-12 2008-07-16 中国科学院广州生物医药与健康研究院 携带hiv基因的腺病毒载体疫苗
CN101394868A (zh) * 2006-03-07 2009-03-25 浙江海正药业股份有限公司 重组腺病毒5型/35型和痘病毒mva活病毒载体疫苗的联用诱导强大的免疫应答的方法
CN101670102A (zh) * 2009-09-15 2010-03-17 中国科学院广州生物医药与健康研究院 联合使用痘病毒载体hiv疫苗与腺病毒载体hiv疫苗的方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1695737A (zh) * 2005-05-20 2005-11-16 吉林大学 冻干剂型艾滋病重组痘病毒安卡拉株载体疫苗及其制备方法
CN101394868A (zh) * 2006-03-07 2009-03-25 浙江海正药业股份有限公司 重组腺病毒5型/35型和痘病毒mva活病毒载体疫苗的联用诱导强大的免疫应答的方法
CN101219221A (zh) * 2007-01-12 2008-07-16 中国科学院广州生物医药与健康研究院 携带hiv基因的腺病毒载体疫苗
CN101670102A (zh) * 2009-09-15 2010-03-17 中国科学院广州生物医药与健康研究院 联合使用痘病毒载体hiv疫苗与腺病毒载体hiv疫苗的方法及其应用

Also Published As

Publication number Publication date
CN101670102A (zh) 2010-03-17

Similar Documents

Publication Publication Date Title
US11207400B2 (en) Compositions and methods for inducing protective immunity against human immunodeficiency virus infection
US10101329B2 (en) CMV glycoproteins and recombinant vectors
US20140377306A1 (en) Recombinant vaccine viruses expressing il-15 and methods of using the same
KR100347219B1 (ko) 재조합아데노바이러스백신
WO2011032489A1 (zh) 联合使用痘病毒载体hiv疫苗与腺病毒载体hiv疫苗的方法及其应用
CA2518926A1 (en) Adenovirus serotype 24 vectors, nucleic acids and virus produced thereby
WO2019018724A1 (en) METHODS FOR SAFE INDUCTION OF MULTICLADED CROSS-IMMUNITY AGAINST HUMAN IMMUNODEFICIENCY VIRUS INFECTION IN HUMAN BEINGS
Antony Immunobiological Correlates of SIV Vaccine Vectors and Macaque Tropism
NZ767061B2 (en) Methods and compositions for inducing protective immunity against human immunodeficiency virus infection
NZ767061A (en) Methods and compositions for inducing protective immunity against human immunodeficiency virus infection
NZ730841B2 (en) Methods and compositions for inducing protective immunity against human immunodeficiency virus infection
OA18541A (en) Methods and compositions for inducing protective immunity against human immunodeficiency virus infection
Antony Immunobiological Correlates of SIV Vaccine Vectors and Macaque Tropism. vacres. 2019; 6 (2): 23-36
AU2006322645A1 (en) Treatment of Epstein-Barr Virus-associated diseases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10816693

Country of ref document: EP

Kind code of ref document: A1