WO2011030969A1 - Assembly for processing raw ore powder, and processing method of raw ore using same - Google Patents

Assembly for processing raw ore powder, and processing method of raw ore using same Download PDF

Info

Publication number
WO2011030969A1
WO2011030969A1 PCT/KR2009/007403 KR2009007403W WO2011030969A1 WO 2011030969 A1 WO2011030969 A1 WO 2011030969A1 KR 2009007403 W KR2009007403 W KR 2009007403W WO 2011030969 A1 WO2011030969 A1 WO 2011030969A1
Authority
WO
WIPO (PCT)
Prior art keywords
ore
gas
heat treatment
powder
raw
Prior art date
Application number
PCT/KR2009/007403
Other languages
French (fr)
Korean (ko)
Inventor
진기철
Original Assignee
Jin Ki-Chul
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jin Ki-Chul filed Critical Jin Ki-Chul
Publication of WO2011030969A1 publication Critical patent/WO2011030969A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/02Obtaining noble metals by dry processes

Definitions

  • the present invention relates to an assembly for processing ore processing raw ore powder, and a process for processing ore using the same.
  • Ores mined in mines contain large amounts of impurities, rock (rocks around the deposit), arsenic and sulfur.
  • arsenic contained in the ore is a substance used in insecticides, etc.
  • the skin touches the skin it becomes inflamed or inflamed, and when ingested over a certain amount of life, the life may be endangered.
  • the cited technology only discloses a technique for improving the real rate of gold and silver by adding a floating bar reagent and shortening the beneficiation process time in processing ore, and the discharge of environmental pollutants that may be generated during the flotation process. There is a problem that cannot be prevented, and there is a problem that cannot fundamentally separate the environmental pollutants and resources included in the ore.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a technology for efficiently utilizing the minerals contained in the ore while removing environmental pollutants contained in the ore.
  • Ores processing method in order to achieve this object is a crushing step of crushing the ore finely to generate a fine ore; Vibration screening step for screening the fine particles of the raw form generated through the grinding step by using the vibration of the vibration screw to the ore fine powder and impurities; A heat treatment step of heating the raw ore powder selected in the vibration screening step; And separating and separating the magnetic material and the non-magnetic material after applying magnetic force to the raw ore powder which has undergone the heat treatment step. Characterized in that it comprises a.
  • a gas collecting step of collecting the sublimed gas through the heat treatment step between the heat treatment step and the separation selection step It characterized in that it further comprises.
  • the ore processing method includes an iron oxide reduction step of reducing the iron oxide and iron emulsion contained in the raw ore powder heated through the heat treatment step between the heat treatment step and the gas collection step to iron; It characterized in that it further comprises.
  • a gas treatment step of heating and cooling the gas collected through the gas collecting step between the gas collecting step and the separation selection step It characterized in that it further comprises.
  • ore powder processing assembly in order to achieve this object is a raw material input unit into which ore fine powder is broken into fine ore; A heat treatment unit for transferring and heating the raw ore powder injected through the raw material input unit; A raw material discharge part for discharging the ore fine powder transferred by the heat treatment part; And a power supply unit for supplying power to the heat treatment unit.
  • the raw material discharge portion magnet for separating the magnetic material and non-magnetic material; Characterized in that it comprises a.
  • a screw for transferring the raw ore powder;
  • a cylinder for supporting the screw;
  • at least one heater for heating the ore powder in the cylinder; Characterized in that it comprises a.
  • the at least one heater is characterized in that connected to each other in parallel.
  • the at least one heater is characterized in that a plurality is provided in the form of a square along the tangential surface of the cylinder.
  • At least one gas processing unit for collecting the gas generated through the heat treatment unit, and the collected gas; It characterized in that it further comprises.
  • the gas treatment unit may include a heater for completely burning the incompletely burned gas in the gas generated through the heat treatment unit; And at least one cooler for cooling the gas completely burned through the heater; Characterized in that it comprises a.
  • the by-product beneficiation device for beneficiation of the gold, silver, silica sand and silicic acid by the difference in specific gravity of the non-magnetic material, gold, silver, silica sand and silicic acid separated through the raw material discharge unit; It characterized in that it further comprises.
  • the raw ore fines from which environmental pollutants such as arsenic and arsenic are removed through the heat treatment beneficiation method are used as resources, rather than simply using the raw ore fines from which waste stones are removed after crushing the ore finely. There is an effect that blocks the source of environmental pollution that may occur during the processing of fine powder.
  • the impurities are removed by heating, the reactivity of the ore fine powder to the magnet is improved, and thus, even in the case of the ore fine powder containing a small amount of metal clusters (the ore or the mass of the metal contained in the ore fine powder), the detection can be performed by the magnetic force. There is a possible effect, thereby preventing the raw ore powder containing magnetic materials such as metal clusters from being discarded.
  • the raw ore powder is processed by a simple heat treatment beneficiation method without using a separate reagent or additive, even a small-scale miner can easily process the raw ore powder.
  • FIG. 1 is a schematic diagram of a raw ore powder processing assembly according to the present invention.
  • Figure 2 is a cross-sectional view of the ore powder processing assembly according to the present invention.
  • FIG. 3 is a flowchart of the ore processing method according to the present invention.
  • the raw ore fine processing assembly 100 relates to a technology for reducing environmental pollution caused by processing ore and utilizing minerals contained in ore as resources.
  • FIG. 1 is a block diagram of a raw ore powder processing assembly 100 according to the present invention.
  • the raw ore powder processing assembly 100 according to the present invention, as shown in Figure 1, the raw material input unit 110, the heat treatment unit 120, the power supply unit 130, gas processing unit 140, the raw material discharge unit ( 150) and by-product beneficiation device (160).
  • the raw material input part 110 is a place where raw ore fine powder is removed after crushing the ore finely to remove impurities, and is composed of a raw material input hopper 111 and an inlet 112, and the raw light fine powder introduced into the raw material input hopper 111.
  • the amount of may be appropriately adjusted in consideration of the specifications of the raw ore powder processing assembly 100 and the time when the raw ore powder is heated, preferably about 100 kg of the raw ore powder in one minute.
  • the heat treatment unit 120 sublimes sulfur and arsenic by using the heat treatment beneficiation method through the raw material input unit 110 to remove the impurities of the metal cluster contained in the ore fine powder to form a magnet and transport it. This will be described in more detail with reference to FIG. 2.
  • the heat treatment part 120 includes a screw 121, a cylinder 122, a heater 123, a firebrick 124, a heat insulating material 125, and an iron plate 126 from inside to outside. It is built sequentially.
  • the screw 121 is a device for transferring the raw ore fine powder introduced through the raw material input unit 110, and has various rotation cycles according to the heating temperature of the raw ore fine powder, and is preferably provided to rotate 2 times per minute.
  • the movement distance of the ore fine powder according to the rotation of the screw 121 may be variously determined according to the specification of the ore fine powder processing assembly 100 and the heating time of the ore fine powder, but preferably, when the screw 121 is rotated once It is provided to be able to move a tenth of the length (L) of the ore powder processing assembly 100.
  • the cylinder 122 is provided along the outer circumferential surface of the screw 121 in a cylindrical shape having a hollow provided therein, and is a place where raw ore fine particles introduced through the raw material input part 110 are transferred through the rotation of the screw 121.
  • the heater 123 is a device for heating the raw ore powder and at least one heater is connected through the combination C to maintain a constant temperature of the entire heater 123 and to uniformly heat the raw ore powder in the cylinder 122. It is provided in a form connected in parallel to each other, the combination (C) is preferably made of a metal plate, a metal pin or the like. In addition, the heater 123 is preferably provided with a total of 60 heaters 123, each 15 in a square shape along the tangential surface of the cylinder 122 in order to uniformly heat the raw ore powder. The temperature of the heater 123 may be maintained at 613 ° C., which is a temperature capable of subliming sulfur and arsenic, but is maintained at about 700 to 800 ° C. in order to heat all of sulfur and arsenic present in the ore powder to 613 ° C. or more. It is desirable to. In addition, one side of the heater is preferably provided with a temperature sensor 123a for measuring the temperature.
  • the oxygen of iron oxide contained in the ore powder is separated from the iron at about 540 °C, because the temperature of the ore powder is maintained at 540 °C or more and the re-combination with iron and sulfur and arsenic gas is released to the gas treatment unit 140 do.
  • Refractory brick 124 is a device provided along the outer wall surface of the heater 123, to withstand the thermal shock generated from the heater 123 to prevent damage to the raw ore fine processing assembly 100.
  • the refractory brick 124 has a high thermal shock resistance and may be any material as long as it is a material resistant to chemical erosion, but is preferably made of a material having a refractoriness of SK26 (1580 ° C.) or more.
  • the heat insulating material 125 is provided along the outer wall surface of the refractory brick 124 as a device for preventing heat generated from the heater 123 from leaking to the outside of the raw ore powder processing assembly 100.
  • Iron plate 126 is a device provided along the outer wall surface of the heat insulating material 125 in order to enhance the durability of the ore powder processing assembly 100, it is preferably made of a thickness of about 3mm to withstand the impact from the inside and outside.
  • the power supply unit 130 supplies power for rotating the screw 121, and includes a motor 131 and shaft gears 132 and 133 capable of accelerating and decelerating so as to adjust a rotation speed of the screw 121. .
  • Gas processing unit 140 is provided with at least one or more to collect harmful gases such as sulfur and arsenic generated from the raw ore powder heated by the heater 123 to prevent environmental pollution, the gas outlet ( 141, a collector (not shown) in the form of a tube or chamber for collecting gas, a heater 142, and a cooler 143.
  • the heater 142 When the heater 142 immediately cools harmful gases such as sulfur and arsenic generated by the heat treatment unit 120, smoke may be generated due to some incompletely burned gases such as sulfur and arsenic. It is a device for heat treatment.
  • the heater 142 preferably burns harmful gases such as sulfur and arsenic sublimed through the heat treatment unit 120 using a high pressure gas.
  • the cooler 143 is a device for safely discharging harmful gases such as sulfur and arsenic generated by the heat treatment unit 120 at a low temperature by using a coolant, and safely discharging them.
  • the cooler 143 is composed of at least one cooler 143 and a raw ore powder processing assembly. It is preferable that the three coolers 143 are connected in consideration of the amount of raw ore powder introduced into the 100 and the component ratios of sulfur and arsenic contained in the raw ore powder.
  • the raw material discharge part 150 is a device for separating and discharging raw ore powder from which arsenic and sulfur have been removed through the raw ore powder processing assembly 100, and an outlet 151, a first conveyor belt 152, a high frequency electromagnet 153, The second conveyor belt 154, the silica sand hopper 155 and the metal hopper 156 is provided.
  • the first conveyor belt 152 is a device for transferring the raw material discharged through the discharge port 151, it is preferable that the first conveyor belt 152 is made of a thermal insulation resistance belt having a large thermal shock resistance in order to transfer the raw material heated. Do.
  • One side of the first conveyor belt 152 by the heat treatment unit 120 is sublimated sulfur and arsenic to improve the reaction to the magnetic metal cluster, and the magnetic byproducts such as silica and silicic acid having almost no magnetic
  • a high frequency electromagnet 153 is provided. Due to the high frequency electromagnet 153, nonmagnetic materials such as silica and silicic acid having little magnetism flow down along the first conveyor belt 152 to the silica sand hopper 155 through the second conveyor belt 154. The magnetic material, such as a metal cluster having improved magnetic properties, is transferred to the metal hopper 156 along the first conveyor belt 152 provided with the high frequency electromagnet 153.
  • the byproduct beneficiation device 160 is a device for sorting gold and silver contained in nonmagnetic materials such as silica sand and silicic acid transferred through the silica sand hopper 155, and an agitator 161 and specific gravity mixing the byproducts with water. It consists of a table 162 for beneficiation of the by-products.
  • the raw ore fine processing assembly 100 captures harmful gases such as sulfur and arsenic, separates magnetic metal clusters using magnetic force, and uses specific gravity of gold, silver, Separation of silicon and silicic acid prevents the components contained in the ore powder from being used and discarded.
  • the ore fine powder that has passed through the heat treatment unit 120 is separated from oxygen, sulfur, and arsenic of iron oxide, so that the magnetic reactivity is stronger, and thus a large amount of metal clusters can be obtained with weak magnetic force.
  • the raw ore powder processing assembly 100 in order to prevent the raw ore powder introduced through the raw material input unit 110 to move the cylinder 122 faster than the traveling speed of the screw 121 by gravity and inertia. It is preferable to incline 15 degrees with respect to the ground.
  • the ore processing method according to the present invention relates to a technique for processing ore using the ore fine processing assembly.
  • a ball mill ray mill
  • a raymond mill raymond mill
  • the fine ore of the particulate form generated through the step S302 is selected using the vibration of the vibrating screw as the ore fine powder and the impurities, respectively.
  • the raw ore powder selected through step S303 is dried by a dryer (50 to 100 ° C.) to remove moisture contained in the raw ore powder.
  • the raw ore powder from which the water is removed through step S304 is heated to about 700 to 800 ° C. through the heat treatment unit 120 of the ore fine powder processing assembly 100.
  • iron, gold, silver, sulfur arsenic, oxygen, lead and zinc contained in the ore powder are separated from the ore powder by heat.
  • Sulfur and arsenic gas separated in step S305 is moved to the gas processing unit 140 of the ore fine processing assembly 100.
  • step S306 The gas collected in step S306 is cooled using the cooler 143.
  • step S305 if the gas generated by step S305 is directly cooled, smoke may be generated due to some incompletely burned sulfur or arsenic gas, and thus additionally heat treated through the heater 142 before cooling using the cooler 143. do.
  • the magnetic force is applied using the high frequency electromagnet 153 in order to separate the byproducts such as silica and silicic acid, which are substantially free of metal clusters and magnetically enhanced reactions to the magnetic through the step S305.
  • the magnetic material and the nonmagnetic material are separated through the high frequency electromagnet.
  • step S308 the magnetic material and the nonmagnetic material are separated through the electromagnet to which the magnetic force is applied.
  • Magnetic metal clusters and non-magnetic by-products (such as silica, silicic acid, gold and silver) are collected through different hoppers 154 and 155.
  • By-products (gold, silver, silica sand and silicic acid, etc.) separated in step S309 are mixed through a stirrer and beneficiated using specific gravity.
  • materials such as silica sand and silicic acid are used as materials for building materials and cement.
  • a ball mill ray mill
  • a raymond mill raymond mill
  • the fine particles of fine particles generated through the step S402 are separated into fine ore powders and impurities using the vibration of the vibration screw.
  • the raw ore fine powder selected through step S403 is dried by a dryer (50 to 100 ° C.) to remove moisture contained in the ore fine powder.
  • the raw ore powder from which the water is removed through step S404 is heated through the heat treatment unit 120 of the ore fine powder processing assembly 100.
  • Oxygen, sulfur, and arsenic of iron oxide and iron emulsion contained in the raw ore powder heated to 700 to 800 ° C. or higher through step S405 are separated from iron. Oxygen separated from the iron oxide is collected through the gas treatment unit 140.
  • Sulfur and arsenic gas sublimed in ore powder heated to 613 ° C. or higher through step S405 are collected through the gas treatment unit 140.
  • step S407 The gas collected in step S407 is cooled using the cooler 143.
  • step S405 if the gas generated by step S405 is directly cooled, smoke may be generated due to some incompletely burned sulfur and arsenic, and the like, and then through the heater 142 once again before cooling using the cooler 143. Heat treatment.
  • Impurities, oxygen, sulfur, and arsenic are separated through steps S405 and S406 to apply a high frequency to the high frequency electromagnet 153 to extract a metal cluster having improved conductivity.
  • a high frequency electromagnet 153 is applied to separate the metal cluster, which is a magnetic material, and by-products such as silica, silicic acid, gold, and silver, which are nonmagnetic materials.
  • By-products (gold, silver, silica sand and silicic acid, etc.) separated in step S410 are mixed through a stirrer and beneficiated by using specific gravity.
  • materials such as silica sand and silicic acid are used as materials for building materials and cement.

Abstract

The present invention relates to an apparatus for processing (dressing) raw ore mined from a mine, and a method thereof. Environmental pollution generated during processing raw ore is fundamentally prevented since raw ore is utilized as a resource after pollutants and impurities contained in raw ore are separated, raw ore can be processed at any mine lot due to a safe and economical processing method, and even a small-scale miner can easily process a raw ore powder due to the installation and management with small capital.

Description

원광미분 가공조립체 및 이를 이용한 원광 가공방법Ore powder processing assembly and ore processing method using the same
본 발명은 원광미분(原鑛微粉, RAW ORE POWDER)을 가공(선광, 選鑛)하는 조립체 및 이를 이용한 원광(原鑛, RAW ORE) 가공방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an assembly for processing ore processing raw ore powder, and a process for processing ore using the same.
광산에서 채굴된 원광은 불순물, 모암(광상 주변의 암석), 비소 및 황 등을 다량으로 함유하고 있다.Ores mined in mines contain large amounts of impurities, rock (rocks around the deposit), arsenic and sulfur.
특히, 원광에 포함되어 있는 비소는 살충제 등에 사용되는 물질로서 피부에 닿으면 피부가 헐거나 염증이 생기고 일정량 이상 섭취할 경우 생명이 위태로울 수도 있으며, 황은 빗물 또는 지하수를 산성으로 바꾸어 원광에 포함되어 있는 중금속을 용출시켜 주변의 하천 및 토양을 심각하게 오염시키기 때문에 원광을 자원으로서 활용하기 위해서는 이러한 물질들을 분리하기 위한 가공작업이 필요하다.In particular, arsenic contained in the ore is a substance used in insecticides, etc. When the skin touches the skin, it becomes inflamed or inflamed, and when ingested over a certain amount of life, the life may be endangered. Sulfur changes the rainwater or groundwater into acid and is included in the ore. Because heavy metals are eluted and seriously pollute the surrounding rivers and soils, processing to separate these materials is necessary to utilize ore as a resource.
그리하여 원광을 자원으로서 활용하기 위해 가공하는 선행기술로는 대한민국 등록특허10-0541466호(발명의 명칭: 금, 은광 부유선광법) 등이 있다.Thus, the prior art processing to utilize the raw ore as a resource is Republic of Korea Patent No. 10-0541466 (name of the invention: gold, silver ore floating beneficiation method) and the like.
하지만 상기 인용기술은 원광을 가공함에 있어, 부선시약을 첨가하고 선광공정시간을 단축하여 금 및 은의 실수율을 향상시키는 기술만을 개시하고 있을 뿐, 부유선광 과정에서 발생될 수 있는 환경오염물질이 방류되는 것을 예방하지 못하는 문제가 있으며, 근본적으로 원광에 포함되어 있는 환경오염물질 및 자원을 분리하지 못하는 문제가 있다.However, the cited technology only discloses a technique for improving the real rate of gold and silver by adding a floating bar reagent and shortening the beneficiation process time in processing ore, and the discharge of environmental pollutants that may be generated during the flotation process. There is a problem that cannot be prevented, and there is a problem that cannot fundamentally separate the environmental pollutants and resources included in the ore.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 원광에 포함되어 있는 환경오염물질을 제거함과 동시에 원광에 포함되어 있는 광물을 효율적으로 활용하기 위한 기술을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an object thereof is to provide a technology for efficiently utilizing the minerals contained in the ore while removing environmental pollutants contained in the ore.
이러한 목적을 달성하기 위하여 본 발명의 일 태양에 따른 원광 가공방법은 원광을 잘게 부수어 미립형태의 원광을 생성하는 분쇄단계; 상기 분쇄단계를 통하여 생성된 미립형태의 원광을 진동스크류의 진동을 이용하여 원광미분 및 불순물로 각각 선별하기 위한 진동선별단계; 상기 진동선별단계에서 선별된 원광미분을 가열하는 열처리단계; 및 상기 열처리단계를 거친 원광미분에 자력을 인가 후 자성물질과 비자성물질을 분리하는 분리선별단계; 를 포함하는 것을 특징으로 한다.Ores processing method according to an aspect of the present invention in order to achieve this object is a crushing step of crushing the ore finely to generate a fine ore; Vibration screening step for screening the fine particles of the raw form generated through the grinding step by using the vibration of the vibration screw to the ore fine powder and impurities; A heat treatment step of heating the raw ore powder selected in the vibration screening step; And separating and separating the magnetic material and the non-magnetic material after applying magnetic force to the raw ore powder which has undergone the heat treatment step. Characterized in that it comprises a.
그리고 상기 열처리단계 및 상기 분리선별단계 사이에 상기 열처리단계를 통하여 승화된 기체를 포집하는 기체포집단계; 를 더 포함하는 것을 특징으로 한다.And a gas collecting step of collecting the sublimed gas through the heat treatment step between the heat treatment step and the separation selection step. It characterized in that it further comprises.
또한, 본 발명의 일 태양에 따른 원광 가공방법은 상기 열처리단계 및 상기 기체포집단계 사이에 상기 열처리단계를 통하여 가열된 원광미분에 포함되어 있는 산화철 및 유화철을 철로 환원시키는 산화철환원단계; 를 더 포함하는 것을 특징으로 한다.In addition, the ore processing method according to an aspect of the present invention includes an iron oxide reduction step of reducing the iron oxide and iron emulsion contained in the raw ore powder heated through the heat treatment step between the heat treatment step and the gas collection step to iron; It characterized in that it further comprises.
아울러 상기 기체포집단계 및 상기 분리선별단계 사이에 상기 기체포집단계를 통하여 포집된 기체를 가열 후 냉각하는 기체처리단계; 를 더 포함하는 것을 특징으로 한다.In addition, a gas treatment step of heating and cooling the gas collected through the gas collecting step between the gas collecting step and the separation selection step; It characterized in that it further comprises.
그리고 상기 분리선별단계에서 분리된 비자성물질인 금, 은, 규사 및 규산의 비중차이를 통하여 상기 금, 은, 규사 및 규산을 선광(選鑛)하는 부산물선광단계; 를 더 포함하는 것을 특징으로 한다.And by-product beneficiation step of beneficiation of the gold, silver, silica sand and silicic acid by the difference in specific gravity of the gold, silver, silica sand and silicic acid separated in the separation screening step; It characterized in that it further comprises.
한편, 이러한 목적을 달성하기 위하여 본 발명에 따른 원광미분 가공조립체는 원광을 잘게 부순 원광미분이 투입되는 원료투입부; 상기 원료투입부를 통하여 투입된 원광미분을 이송하고 가열하는 열처리부; 상기 열처리부에 의하여 이송된 원광미분을 배출하기 위한 원료배출부; 및 상기 열처리부에 동력을 공급하기 위한 동력공급부; 를 포함하며, 상기 원료배출부는 자성물질과 비자성물질을 분리하기 위한 자석; 을 포함하는 것을 특징으로 한다.On the other hand, ore powder processing assembly according to the present invention in order to achieve this object is a raw material input unit into which ore fine powder is broken into fine ore; A heat treatment unit for transferring and heating the raw ore powder injected through the raw material input unit; A raw material discharge part for discharging the ore fine powder transferred by the heat treatment part; And a power supply unit for supplying power to the heat treatment unit. It includes, The raw material discharge portion magnet for separating the magnetic material and non-magnetic material; Characterized in that it comprises a.
그리고 상기 열처리부는 원광미분을 이송시키기 위한 스크류; 상기 스크류를 지지하기 위한 실린더; 및 상기 실린더 내부의 원광미분을 가열하기 위한 적어도 하나 이상의 히터; 를 포함하는 것을 특징으로 한다.And a screw for transferring the raw ore powder; A cylinder for supporting the screw; And at least one heater for heating the ore powder in the cylinder; Characterized in that it comprises a.
또한, 상기 적어도 하나 이상의 히터는 서로 병렬로 연결되는 것을 특징으로 한다.In addition, the at least one heater is characterized in that connected to each other in parallel.
아울러 상기 적어도 하나 이상의 히터는 상기 실린더의 접선면을 따라 사각의 형태로 복수개가 마련되는 것을 특징으로 한다.In addition, the at least one heater is characterized in that a plurality is provided in the form of a square along the tangential surface of the cylinder.
또한, 상기 열처리부를 통하여 발생된 기체를 포집하고, 포집된 기체를 처리하는 적어도 하나 이상의 기체처리부; 를 더 포함하는 것을 특징으로 한다.In addition, at least one gas processing unit for collecting the gas generated through the heat treatment unit, and the collected gas; It characterized in that it further comprises.
그리고 상기 기체처리부는 상기 열처리부를 통하여 발생된 기체중 불완전 연소된 기체를 완전 연소시키기 위한 가열기; 및 상기 가열기를 통하여 완전 연소된 기체를 냉각시키기 위한 적어도 하나 이상의 냉각기; 를 포함하는 것을 특징으로 한다.The gas treatment unit may include a heater for completely burning the incompletely burned gas in the gas generated through the heat treatment unit; And at least one cooler for cooling the gas completely burned through the heater; Characterized in that it comprises a.
또한, 상기 원료배출부를 통하여 분리된 비자성물질인 금, 은, 규사 및 규산의 비중차이를 통하여 상기 금, 은, 규사 및 규산을 선광(選鑛)하는 부산물선광장치; 를 더 포함하는 것을 특징으로 한다.In addition, the by-product beneficiation device for beneficiation of the gold, silver, silica sand and silicic acid by the difference in specific gravity of the non-magnetic material, gold, silver, silica sand and silicic acid separated through the raw material discharge unit; It characterized in that it further comprises.
본 발명에 의하면, 단순히 원광을 잘게 부순 후 폐석 등을 제거한 원광미분을 자원으로서 활용하는 것이 아니라 열처리 선광방식을 통하여 황 및 비소 등의 환경오염물질이 제거된 원광미분을 자원으로서 활용하는 것이기 때문에 원광미분의 가공 과정에서 발생될 수 있는 환경오염을 원천적으로 차단하는 효과가 있다.According to the present invention, the raw ore fines from which environmental pollutants such as arsenic and arsenic are removed through the heat treatment beneficiation method are used as resources, rather than simply using the raw ore fines from which waste stones are removed after crushing the ore finely. There is an effect that blocks the source of environmental pollution that may occur during the processing of fine powder.
또한, 가열을 통하여 불순물이 제거되었기 때문에 자성에 대한 원광미분의 반응성이 향상되고, 이로 인해 미량의 금속클러스터(원광 또는 원광미분에 포함된 금속덩어리)를 포함한 원광미분의 경우에도 자력을 통하여 검출이 가능한 효과가 있으며, 이를 통하여 금속클러스터와 같은 자성물질을 포함하고 있는 원광미분이 버려지는 것을 방지하는 효과가 있다.In addition, since the impurities are removed by heating, the reactivity of the ore fine powder to the magnet is improved, and thus, even in the case of the ore fine powder containing a small amount of metal clusters (the ore or the mass of the metal contained in the ore fine powder), the detection can be performed by the magnetic force. There is a possible effect, thereby preventing the raw ore powder containing magnetic materials such as metal clusters from being discarded.
그리고 자성이 없는 물질만을 모아서 비중 차이를 이용하여 금 및 은을 검출하기 때문에, 검출에 따른 비용이 절감되는 효과가 있으며 금속성분이 거의 없는 금 및 은의 원광미분을 검출할 수 있는 효과가 있다.In addition, since gold and silver are detected using only the difference in specific gravity by collecting only non-magnetic materials, the cost of the detection is reduced, and the raw powders of gold and silver having almost no metal components can be detected.
또한, 자성 및 비중을 이용하여 검출된 원광미분 이외의 부산물은 건축자재 및 시멘트 등의 재료로 사용되기 때문에 별도의 폐기물 처리비용의 발생을 방지하고 원광을 효율적으로 사용하는 경제적인 효과가 있다.In addition, since by-products other than the ore fine powder detected using magnetic and specific gravity are used as materials for building materials and cement, it is economical to prevent the occurrence of separate waste disposal costs and to efficiently use ore.
아울러 원광미분에 포함되어 있는 환경오염물질을 단순히 제거하는 것이 아니라 별도의 기체처리부를 통해 처리하기 때문에 환경오염물질을 자원으로서 재활용하는 경제적인 효과가 있다.In addition, there is an economical effect of recycling environmental pollutants as a resource because the environmental pollutants contained in the raw ore powder are not simply removed but processed through a separate gas treatment unit.
한편, 별도의 시약 또는 첨가제를 사용하지 않고 간단한 열처리 선광 방식으로 원광미분을 가공하기 때문에 소규모 채굴업자도 손쉽게 원광미분을 가공할 수 있는 효과가 있다.On the other hand, since the raw ore powder is processed by a simple heat treatment beneficiation method without using a separate reagent or additive, even a small-scale miner can easily process the raw ore powder.
도1은 본 발명에 따른 원광미분 가공조립체의 개략도이다.1 is a schematic diagram of a raw ore powder processing assembly according to the present invention.
도2는 본 발명에 따른 원광미분 가공조립체의 단면도이다.Figure 2 is a cross-sectional view of the ore powder processing assembly according to the present invention.
도3은 본 발명에 따른 원광 가공방법의 흐름도이다.3 is a flowchart of the ore processing method according to the present invention.
도4는 본 발명에 따른 원광 가공방법의 또 다른 흐름도이다.4 is another flowchart of the ore processing method according to the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
100 : 원광미분 가공조립체100: ore powder processing assembly
110 : 원료투입부110: input material
111 : 원료투입호퍼111: raw material input hopper
112 : 투입구112: inlet
120 : 열처리부120: heat treatment unit
121 : 스크류121: screw
122 : 실린더122: cylinder
123 : 히터123: heater
123a : 온도감지센서123a: Temperature sensor
124 : 내화벽돌124: fireproof brick
125 : 단열재125: insulation
126 : 철판126: iron plate
130 : 동력공급부130: power supply unit
131 : 모터131: motor
132 : 축기어132: shaft gear
133 : 축기어133: shaft gear
140 : 기체처리부140: gas processing unit
141 : 기체배출구141 gas outlet
142 : 가열기142: heater
143 : 냉각기143: cooler
150 : 원료배출부150: raw material discharge part
151 : 배출구151 outlet
152 : 제1콤베이어벨트152: 1st conveyor belt
153 : 고주파전자석153: high frequency electromagnet
154 : 제2콤베이어벨트154: second conveyor belt
155 : 규사호퍼155: Silica Hopper
156 : 금속호퍼156: metal hopper
160 : 부산물선광장치160: byproduct beneficiation device
161 : 교반기161: Stirrer
162 : 테이블162: table
본 발명의 바람직한 실시예에 대하여 첨부된 도면을 참조하여 더 구체적으로 설명하되, 이미 주지되어진 기술적 부분에 대해서는 설명의 간결함을 위해 생략하거나 압축하기로 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings, and the well-known technical parts will be omitted or compressed for brevity of description.
<구성에 대한 설명><Description of configuration>
본 발명에 따른 원광미분 가공조립체(100)는 원광을 가공함으로 인해 발생되는 환경오염을 줄이고, 원광에 포함되어 있는 광물을 자원으로써 활용하는 기술에 관계한다.The raw ore fine processing assembly 100 according to the present invention relates to a technology for reducing environmental pollution caused by processing ore and utilizing minerals contained in ore as resources.
도1은 본 발명에 따른 원광미분 가공조립체(100)에 대한 구성도이다.1 is a block diagram of a raw ore powder processing assembly 100 according to the present invention.
본 발명에 따른 원광미분 가공조립체(100)는, 도1에서 참조되는 바와 같이, 원료투입부(110), 열처리부(120), 동력공급부(130), 기체처리부(140), 원료배출부(150) 및 부산물선광장치(160) 등을 포함하여 이루어진다.The raw ore powder processing assembly 100 according to the present invention, as shown in Figure 1, the raw material input unit 110, the heat treatment unit 120, the power supply unit 130, gas processing unit 140, the raw material discharge unit ( 150) and by-product beneficiation device (160).
원료투입부(110)는 원광을 잘게 부순 후 불순물 등을 제거한 원광미분이 투입되는 곳으로서 원료투입호퍼(111) 및 투입구(112)로 이루어지며, 이러한 원료투입호퍼(111)에 투입되는 원광미분의 양은 원광미분 가공조립체(100)의 규격 및 원광미분이 가열되는 시간을 고려하여 적정하게 조절될 수 있으며, 바람직하게는 1분에 약 100kg의 원광미분이 투입되도록 마련된다.The raw material input part 110 is a place where raw ore fine powder is removed after crushing the ore finely to remove impurities, and is composed of a raw material input hopper 111 and an inlet 112, and the raw light fine powder introduced into the raw material input hopper 111. The amount of may be appropriately adjusted in consideration of the specifications of the raw ore powder processing assembly 100 and the time when the raw ore powder is heated, preferably about 100 kg of the raw ore powder in one minute.
열처리부(120)는 원료투입부(110)를 통하여 투입된 원광미분을 열처리 선광방식을 사용하여 황 및 비소를 승화시키고 원광미분에 포함되어 있는 금속클러스터의 불순물을 제거하여 자성을 형성시킨 후 이송시키는 곳으로써 도2를 참조하여 이를 보다 상세히 설명하기로 한다.The heat treatment unit 120 sublimes sulfur and arsenic by using the heat treatment beneficiation method through the raw material input unit 110 to remove the impurities of the metal cluster contained in the ore fine powder to form a magnet and transport it. This will be described in more detail with reference to FIG. 2.
도2에 도시된 바와 같이, 열처리부(120)는 스크류(121), 실린더(122), 히터(123), 내화벽돌(124), 단열재(125) 및 철판(126) 등이 내부로부터 외부로 순차적으로 내장되어 이루어진다.As shown in FIG. 2, the heat treatment part 120 includes a screw 121, a cylinder 122, a heater 123, a firebrick 124, a heat insulating material 125, and an iron plate 126 from inside to outside. It is built sequentially.
스크류(121)는 원료투입부(110)를 통해 투입된 원광미분을 이송시키기 위한 장치로써, 원광미분의 가열온도에 따라 다양한 회전주기를 갖으며, 바람직하게는 1분에 2회전하도록 마련된다. 또한, 스크류(121)의 회전에 따른 원광미분의 이동거리는 원광미분 가공조립체(100)의 규격 및 원광미분의 가열시간에 따라 다양하게 결정될 수 있지만, 바람직하게는 스크류(121)가 1회전할 때 원광미분 가공조립체(100)의 길이(L)의 10분의 1을 이동할 수 있도록 마련된다.The screw 121 is a device for transferring the raw ore fine powder introduced through the raw material input unit 110, and has various rotation cycles according to the heating temperature of the raw ore fine powder, and is preferably provided to rotate 2 times per minute. In addition, the movement distance of the ore fine powder according to the rotation of the screw 121 may be variously determined according to the specification of the ore fine powder processing assembly 100 and the heating time of the ore fine powder, but preferably, when the screw 121 is rotated once It is provided to be able to move a tenth of the length (L) of the ore powder processing assembly 100.
실린더(122)는 내부에 중공이 마련된 원통형상으로 스크류(121)의 외주면을 따라 마련되며, 원료투입부(110)를 통하여 투입된 원광미분이 스크류(121)의 회전을 통하여 이송되는 곳이다.The cylinder 122 is provided along the outer circumferential surface of the screw 121 in a cylindrical shape having a hollow provided therein, and is a place where raw ore fine particles introduced through the raw material input part 110 are transferred through the rotation of the screw 121.
히터(123)는 원광미분을 가열하기 위한 장치로써 히터(123) 전체의 온도를 일정하게 유지하고 실린더(122) 내부의 원광미분을 균일하게 가열하기 위하여 적어도 하나 이상의 히터가 결합체(C)를 통하여 서로 병렬로 연결된 형태로 마련되며, 이러한 결합체(C)는 금속판, 금속핀 등으로 이루어지는 것이 바람직하다. 또한, 히터(123)는 원광미분을 균일하게 가열하기 위해 실린더(122)의 접선면을 따라 사각의 형태로 한면에 15개씩 총 60개의 히터(123)가 마련되는 것이 바람직하다. 이러한 히터(123)의 온도는 황 및 비소를 승화시킬 수 있는 온도인 613℃를 유지하면 되지만, 원광미분 내부에 존재하는 황 및 비소를 모두 613℃ 이상으로 가열하기 위하여 약 700 내지 800℃를 유지하는 것이 바람직하다. 아울러 히터의 일측에는 온도를 측정하기 위한 온도감지센서(123a)가 마련되는 것이 바람직하다.The heater 123 is a device for heating the raw ore powder and at least one heater is connected through the combination C to maintain a constant temperature of the entire heater 123 and to uniformly heat the raw ore powder in the cylinder 122. It is provided in a form connected in parallel to each other, the combination (C) is preferably made of a metal plate, a metal pin or the like. In addition, the heater 123 is preferably provided with a total of 60 heaters 123, each 15 in a square shape along the tangential surface of the cylinder 122 in order to uniformly heat the raw ore powder. The temperature of the heater 123 may be maintained at 613 ° C., which is a temperature capable of subliming sulfur and arsenic, but is maintained at about 700 to 800 ° C. in order to heat all of sulfur and arsenic present in the ore powder to 613 ° C. or more. It is desirable to. In addition, one side of the heater is preferably provided with a temperature sensor 123a for measuring the temperature.
이와 같이, 히터(123)의 온도를 700 내지 800℃로 유지함으로써 원광미분에 포함되어 있는 금속클러스터의 불순물이 제거되어 자성이 강화된다.As such, by maintaining the temperature of the heater 123 at 700 to 800 ° C., impurities of the metal cluster included in the raw ore powder are removed to enhance the magnetic properties.
한편, 원광미분에 포함되어 있는 산화철의 산소는 약 540℃에서 철과 분리되는데, 원광미분의 온도가 540℃ 이상을 유지하기 때문에 철과 재결합하지 못하고 황 및 비소 기체가 기체처리부(140)로 방출된다.On the other hand, the oxygen of iron oxide contained in the ore powder is separated from the iron at about 540 ℃, because the temperature of the ore powder is maintained at 540 ℃ or more and the re-combination with iron and sulfur and arsenic gas is released to the gas treatment unit 140 do.
내화벽돌(124)은 히터(123)의 외벽면을 따라 마련되는 장치로써, 히터(123)에서 발생되는 열충격을 견디어 원광미분 가공조립체(100)의 파손을 방지한다. 이러한 내화벽돌(124)은 열충격저항이 크며, 화학적 침식에 강한 재질이라면 어떠한 것이라도 가능하지만 SK26(1580℃) 이상의 내화도(refractoriness)를 가진 재료로 이루어지는 것이 바람직하다. Refractory brick 124 is a device provided along the outer wall surface of the heater 123, to withstand the thermal shock generated from the heater 123 to prevent damage to the raw ore fine processing assembly 100. The refractory brick 124 has a high thermal shock resistance and may be any material as long as it is a material resistant to chemical erosion, but is preferably made of a material having a refractoriness of SK26 (1580 ° C.) or more.
단열재(125)는 히터(123)에서 발생되는 열이 원광미분 가공조립체(100)의 외부로 유출되는 것을 방지하기 위한 장치로써 내화벽돌(124)의 외벽면을 따라 마련된다.The heat insulating material 125 is provided along the outer wall surface of the refractory brick 124 as a device for preventing heat generated from the heater 123 from leaking to the outside of the raw ore powder processing assembly 100.
철판(126)은 원광미분 가공조립체(100)의 내구도를 증진시키기 위해서 단열재(125)의 외벽면을 따라 마련되는 장치로써, 내부 및 외부의 충격으로부터 견디기 위하여 약 3mm의 두께로 이루어지는 것이 바람직하다. Iron plate 126 is a device provided along the outer wall surface of the heat insulating material 125 in order to enhance the durability of the ore powder processing assembly 100, it is preferably made of a thickness of about 3mm to withstand the impact from the inside and outside.
동력공급부(130)는 스크류(121)를 회전시키기 위한 동력을 공급하는 곳으로써, 스크류(121)의 회전속도를 조절할 수 있도록 가감속이 가능한 모터(131) 및 축기어(132, 133)가 포함된다.The power supply unit 130 supplies power for rotating the screw 121, and includes a motor 131 and shaft gears 132 and 133 capable of accelerating and decelerating so as to adjust a rotation speed of the screw 121. .
기체처리부(140)는 적어도 하나 이상으로 마련되어 히터(123)에 의해 가열된 원광미분에서 발생되는 황 및 비소와 같은 유해한 기체를 포집하여 환경오염을 방지하기 위한 것으로써, 기체가 배출되는 기체배출구(141), 기체를 포집하기 위한 관 또는 챔버 형태의 포집기(미도시), 가열기(142) 및 냉각기(143)로 이루어진다. Gas processing unit 140 is provided with at least one or more to collect harmful gases such as sulfur and arsenic generated from the raw ore powder heated by the heater 123 to prevent environmental pollution, the gas outlet ( 141, a collector (not shown) in the form of a tube or chamber for collecting gas, a heater 142, and a cooler 143.
가열기(142)는 열처리부(120)에 의하여 발생된 황 및 비소 등의 유해한 기체를 바로 냉각시킬 경우 일부 불완전 연소된 황 및 비소 등의 기체로 인하여 연기 등이 발생할 수 있으므로 기체를 냉각시키기 전에 추가적으로 열처리하는 장치이다. 이러한 가열기(142)는 고압가스를 이용하여 열처리부(120)를 통하여 승화된 황 및 비소 등의 유해한 기체를 연소시키는 것이 바람직하다.When the heater 142 immediately cools harmful gases such as sulfur and arsenic generated by the heat treatment unit 120, smoke may be generated due to some incompletely burned gases such as sulfur and arsenic. It is a device for heat treatment. The heater 142 preferably burns harmful gases such as sulfur and arsenic sublimed through the heat treatment unit 120 using a high pressure gas.
냉각기(143)는 냉각제를 이용하여 열처리부(120)에 의하여 발생된 황 및 비소 등의 유해한 기체를 저온으로 냉각시켜 안전하게 배출하는 장치로써, 적어도 하나 이상의 냉각기(143)로 이루어지며 원광미분 가공조립체(100)에 투입되는 원광미분의 양과 원광미분에 포함되어 있는 황 및 비소의 성분비를 고려하여 3개의 냉각기(143)가 연결되어 이루어지는 것이 바람직하다.The cooler 143 is a device for safely discharging harmful gases such as sulfur and arsenic generated by the heat treatment unit 120 at a low temperature by using a coolant, and safely discharging them. The cooler 143 is composed of at least one cooler 143 and a raw ore powder processing assembly. It is preferable that the three coolers 143 are connected in consideration of the amount of raw ore powder introduced into the 100 and the component ratios of sulfur and arsenic contained in the raw ore powder.
원료배출부(150)는 원광미분 가공조립체(100)를 통해 비소 및 황이 제거된 원광미분을 분리하여 배출하는 장치로써 배출구(151), 제1콤베이어벨트(152), 고주파전자석(153), 제2콤베이어벨트(154), 규사호퍼(155) 및 금속호퍼(156) 등을 포함하여 마련된다.The raw material discharge part 150 is a device for separating and discharging raw ore powder from which arsenic and sulfur have been removed through the raw ore powder processing assembly 100, and an outlet 151, a first conveyor belt 152, a high frequency electromagnet 153, The second conveyor belt 154, the silica sand hopper 155 and the metal hopper 156 is provided.
제1콤베이어벨트(152)는 배출구(151)를 통해 배출된 원료를 이송시키는 장치로써, 열처리부(120)에 의해 가열된 원료를 이송시키기 위하여 열충격저항이 큰 단열 콤베이어벨트로 이루어지는 것이 바람직하다. 이러한 제1콤베이어벨트(152)의 일측에는 열처리부(120)에 의해 황 및 비소가 승화되어 자성에 대한 반응이 향상된 금속클러스터와, 자성이 거의 없는 규사 및 규산과 같은 부산물을 분리 획득하기 위한 고주파전자석(153)이 마련된다. 이와 같은 고주파전자석(153)으로 인해 자성이 거의 없는 규사 및 규산과 같은 비자성물질은 제1콤베이어벨트(152)를 따라 흘러내려 제2콤베이어벨트(154)를 통해 규사호퍼(155)로 이송되며, 자성이 향상된 금속클러스터와 같은 자성물질은 고주파전자석(153)이 마련된 제1콤베이어벨트(152)를 따라 금속호퍼(156)로 이송된다.The first conveyor belt 152 is a device for transferring the raw material discharged through the discharge port 151, it is preferable that the first conveyor belt 152 is made of a thermal insulation resistance belt having a large thermal shock resistance in order to transfer the raw material heated. Do. One side of the first conveyor belt 152 by the heat treatment unit 120 is sublimated sulfur and arsenic to improve the reaction to the magnetic metal cluster, and the magnetic byproducts such as silica and silicic acid having almost no magnetic A high frequency electromagnet 153 is provided. Due to the high frequency electromagnet 153, nonmagnetic materials such as silica and silicic acid having little magnetism flow down along the first conveyor belt 152 to the silica sand hopper 155 through the second conveyor belt 154. The magnetic material, such as a metal cluster having improved magnetic properties, is transferred to the metal hopper 156 along the first conveyor belt 152 provided with the high frequency electromagnet 153.
부산물선광장치(160)는 규사호퍼(155)를 통해 이송된 규사 및 규산과 같은 비자성물질에 포함되어 있는 금 및 은을 선별하는 장치로써, 물과 함께 부산물을 섞어주는 교반기(161) 및 비중을 이용하여 부산물을 선광하는 테이블(162)로 이루어진다.The byproduct beneficiation device 160 is a device for sorting gold and silver contained in nonmagnetic materials such as silica sand and silicic acid transferred through the silica sand hopper 155, and an agitator 161 and specific gravity mixing the byproducts with water. It consists of a table 162 for beneficiation of the by-products.
이와 같이 본 발명에 따른 원광미분 가공조립체(100)는 황 및 비소 등의 유해한 기체를 포집하고, 자력을 이용하여 자성물질인 금속클러스터를 분리하며, 비중을 이용하여 비자성물질인 금, 은, 규소 및 규산을 분리하기 때문에 원광미분에 포함되어 있는 구성성분이 활용되지 못하고 버려지는 것을 예방한다.As described above, the raw ore fine processing assembly 100 according to the present invention captures harmful gases such as sulfur and arsenic, separates magnetic metal clusters using magnetic force, and uses specific gravity of gold, silver, Separation of silicon and silicic acid prevents the components contained in the ore powder from being used and discarded.
한편, 열처리부(120)를 통과한 원광미분은 산화철의 산소, 유황 및 비소가 분리된 상태이므로 자성에 대한 반응성이 더욱 강해서 약한 자력으로 다량의 금속클러스터를 획득할 수 있다.On the other hand, the ore fine powder that has passed through the heat treatment unit 120 is separated from oxygen, sulfur, and arsenic of iron oxide, so that the magnetic reactivity is stronger, and thus a large amount of metal clusters can be obtained with weak magnetic force.
아울러 본 발명에 따른 원광미분 가공조립체(100)는 원료투입부(110)를 통해 투입된 원광미분이 중력 및 관성력에 의해 스크류(121)의 진행속도보다 빨리 실린더(122)를 이동하는 것을 방지하기 위하여 지면을 기준으로 15 기울어져 있는 것이 바람직하다.In addition, the raw ore powder processing assembly 100 according to the present invention in order to prevent the raw ore powder introduced through the raw material input unit 110 to move the cylinder 122 faster than the traveling speed of the screw 121 by gravity and inertia. It is preferable to incline 15 degrees with respect to the ground.
<방법에 대한 설명><Description of the method>
다음으로 상기에서 설명한 방법에 대해 도3 및 도4에 도시된 흐름도를 따라 편의상 순서를 붙여 설명하되, 도1 및 도2를 참조하여 설명한다.Next, the above-described method will be described in order of convenience according to the flowcharts shown in FIGS. 3 and 4, but will be described with reference to FIGS. 1 and 2.
본 발명에 따른 원광 가공방법은 원광미분 가공조립체를 이용하여 원광을 가공하는 기술에 관계한다.The ore processing method according to the present invention relates to a technique for processing ore using the ore fine processing assembly.
이하에서는 도3을 참조하여 원광 가공방법을 단계별로 설명한다.Hereinafter, the ore processing method will be described step by step with reference to FIG. 3.
1. 파쇄단계<S301>1. Shredding step <S301>
원광을 파쇄단 등을 이용하여 잘게 부순다.Crush the ore finely using a crushing edge or the like.
2. 분쇄단계<S302>2. Grinding step <S302>
단계S301을 통해 잘게 부수어진 원광을 볼밀(ball mill) 또는 레이몬드밀(raymond mill)을 이용하여 80~100 메시(mesh)의 미립형태로 원광을 분쇄(grinding)한다.The ore finely crushed through the step S301 using a ball mill (ray mill) or a raymond mill (raymond mill) to grind the ore in a fine form of 80 to 100 mesh (mesh).
3. 진동선별단계<S303>3. Vibration screening step <S303>
단계S302를 통하여 생성된 미립형태의 원광을 진동스크류의 진동을 이용하여 원광미분 및 불순물로 각각 선별한다.The fine ore of the particulate form generated through the step S302 is selected using the vibration of the vibrating screw as the ore fine powder and the impurities, respectively.
4. 건조단계<S304>4. Drying step <S304>
단계S303을 거쳐 선별된 원광미분을 건조기(50~100℃)로 건조하여 원광미분에 포함되어 있는 수분을 제거한다.The raw ore powder selected through step S303 is dried by a dryer (50 to 100 ° C.) to remove moisture contained in the raw ore powder.
5. 열처리단계<S305>5. Heat treatment step <S305>
단계S304를 거쳐 수분이 제거된 원광미분을 원광미분 가공조립체(100)의 열처리부(120)를 통하여 약 700 내지 800℃로 가열한다.The raw ore powder from which the water is removed through step S304 is heated to about 700 to 800 ° C. through the heat treatment unit 120 of the ore fine powder processing assembly 100.
이때, 원광미분에 포함되어 있는 철, 금, 은, 황 비소, 산소, 연 및 아연은 열에 의해 원광미분에서 분리된다.At this time, iron, gold, silver, sulfur arsenic, oxygen, lead and zinc contained in the ore powder are separated from the ore powder by heat.
6. 기체포집단계<S306>6. Gas collection step <S306>
단계S305에서 분리된 황 및 비소기체는 원광미분 가공조립체(100)의 기체처리부(140)로 이동한다.Sulfur and arsenic gas separated in step S305 is moved to the gas processing unit 140 of the ore fine processing assembly 100.
7. 기체처리단계<S307>7. Gas treatment step <S307>
단계S306을 통하여 포집된 기체를 냉각기(143)를 이용하여 냉각한다.The gas collected in step S306 is cooled using the cooler 143.
이때, 단계S305에 의하여 발생된 기체를 바로 냉각시킬 경우 일부 불완전 연소된 황 및 비소 등의 기체로 인하여 연기 등이 발생할 수 있으므로 냉각기(143)를 이용하여 냉각시키기 전에 추가적으로 가열기(142)를 통하여 열처리한다.At this time, if the gas generated by step S305 is directly cooled, smoke may be generated due to some incompletely burned sulfur or arsenic gas, and thus additionally heat treated through the heater 142 before cooling using the cooler 143. do.
8. 자력인가단계<S308>8. Self-applying step <S308>
단계S305를 거쳐 불순물이 제거되어 자성에 대한 반응이 향상된 금속클러스터 및 자성이 거의 없는 규사 및 규산과 같은 부산물을 분리하기 위하여 고주파전자석(153)을 이용하여 자력을 인가한다.The magnetic force is applied using the high frequency electromagnet 153 in order to separate the byproducts such as silica and silicic acid, which are substantially free of metal clusters and magnetically enhanced reactions to the magnetic through the step S305.
즉, 고주파전자석을 통하여 자성물질과 비자성물질을 분리한다.That is, the magnetic material and the nonmagnetic material are separated through the high frequency electromagnet.
9. 분리선별단계<S309>9. Separation screening step <S309>
단계S308에서 자력이 인가된 전자석을 통하여 자성물질과 비자성물질을 분리한다. 자성물질인 금속클러스터와 비자성물질인 부산물(규사, 규산, 금 및 은 등)은 서로 다른 호퍼(154, 155)를 통하여 모이게 된다.In step S308, the magnetic material and the nonmagnetic material are separated through the electromagnet to which the magnetic force is applied. Magnetic metal clusters and non-magnetic by-products (such as silica, silicic acid, gold and silver) are collected through different hoppers 154 and 155.
10. 부산물가공단계<S310>10. By-product processing stage <S310>
단계S309에서 분리된 비자성물질인 부산물(금, 은, 규사 및 규산 등)을 교반기를 통해 섞어준 후 비중을 이용하여 선광한다.By-products (gold, silver, silica sand and silicic acid, etc.) separated in step S309 are mixed through a stirrer and beneficiated using specific gravity.
이때, 규사 및 규산과 같은 물질은 건축자재 및 시멘트 등의 재료로 사용된다. In this case, materials such as silica sand and silicic acid are used as materials for building materials and cement.
이하에서는 도4를 참조하여 본 발명에 따른 원광 가공방법의 또 다른 실시형태를 단계별로 설명한다.Hereinafter, another embodiment of the ore processing method according to the present invention will be described step by step with reference to FIG.
1. 파쇄단계<S401>1. Shredding step <S401>
원광을 파쇄단 등을 이용하여 잘게 부순다.Crush the ore finely using a crushing edge or the like.
2. 분쇄단계<S402>2. Grinding step <S402>
단계S401을 통해 잘게 부수어진 원광을 볼밀(ball mill) 또는 레이몬드밀(raymond mill)을 이용하여 80~100 메시(mesh)의 미립형태로 원광을 분쇄(grinding)한다.The ore finely crushed through the step S401 using a ball mill (ray mill) or a raymond mill (raymond mill) to grind the ore in a fine form of 80 to 100 mesh (mesh).
3. 진동선별단계<S403>3. Vibration screening step <S403>
단계S402를 통하여 생성된 미립형태의 원광을 진동스크류의 진동을 이용하여 원광미분 및 불순물로 각각 선별한다.The fine particles of fine particles generated through the step S402 are separated into fine ore powders and impurities using the vibration of the vibration screw.
4. 건조단계<S404>4. Drying step <S404>
단계S403을 거쳐 선별된 원광미분을 건조기(50~100℃)로 건조하여 원광미분에 포함되어 있는 수분을 제거한다.The raw ore fine powder selected through step S403 is dried by a dryer (50 to 100 ° C.) to remove moisture contained in the ore fine powder.
5. 열처리단계<S405>5. Heat treatment step <S405>
단계S404를 거쳐 수분이 제거된 원광미분을 원광미분 가공조립체(100)의 열처리부(120)를 통하여 가열한다.The raw ore powder from which the water is removed through step S404 is heated through the heat treatment unit 120 of the ore fine powder processing assembly 100.
6. 산화철 및 유화철환원단계<S406>6. Iron oxide and iron emulsion reduction step <S406>
단계S405를 통해 700 내지 800℃ 이상으로 가열된 원광미분에 포함되어 있는 산화철 및 유화철의 산소, 유황 및 비소가 철과 분리된다. 산화철에서 분리된 산소는 기체처리부(140)를 통하여 포집된다. Oxygen, sulfur, and arsenic of iron oxide and iron emulsion contained in the raw ore powder heated to 700 to 800 ° C. or higher through step S405 are separated from iron. Oxygen separated from the iron oxide is collected through the gas treatment unit 140.
7. 기체포집단계<S407>7. Gas collection step <S407>
단계S405를 거쳐 613℃ 이상으로 가열된 원광미분에서 승화된 황 및 비소 기체를 기체처리부(140)를 통하여 포집한다.Sulfur and arsenic gas sublimed in ore powder heated to 613 ° C. or higher through step S405 are collected through the gas treatment unit 140.
8. 기체처리단계<S408>8. Gas treatment step <S408>
단계S407을 통하여 포집된 기체를 냉각기(143)를 이용하여 냉각한다.The gas collected in step S407 is cooled using the cooler 143.
이때, 단계S405에 의하여 발생된 기체를 바로 냉각시킬 경우 일부 불완전 연소된 황 및 비소 등의 기체로 인하여 연기 등이 발생할 수 있으므로 냉각기(143)를 이용하여 냉각시키기 전에 다시 한번 가열기(142)를 통하여 열처리한다.In this case, if the gas generated by step S405 is directly cooled, smoke may be generated due to some incompletely burned sulfur and arsenic, and the like, and then through the heater 142 once again before cooling using the cooler 143. Heat treatment.
9. 고주파인가단계<S409>9. High frequency application step <S409>
단계S405 및 단계S406을 거쳐 불순물, 산소, 유황 및 비소가 분리되어 전도성이 향상된 금속클러스터를 추출하기 위하여 고주파전자석(153)에 고주파를 인가한다.Impurities, oxygen, sulfur, and arsenic are separated through steps S405 and S406 to apply a high frequency to the high frequency electromagnet 153 to extract a metal cluster having improved conductivity.
10. 금속클러스터 및 규산분말 분리단계<S410>10. Separation step of metal cluster and silicate powder <S410>
단계S409를 거쳐 고주파가 인가된 고주파전자석(153)을 통해 자성물질인 금속클러스터와 비자성물질인 부산물(규사, 규산, 금 및 은 등)을 분리한다.Through the step S409, a high frequency electromagnet 153 is applied to separate the metal cluster, which is a magnetic material, and by-products such as silica, silicic acid, gold, and silver, which are nonmagnetic materials.
11. 부산물가공단계<S411>11. By-Product Processing Stage <S411>
단계S410에서 분리된 비자성물질인 부산물(금, 은, 규사 및 규산 등)을 교반기를 통해 섞어준 후 비중을 이용하여 부산물을 선광한다.By-products (gold, silver, silica sand and silicic acid, etc.) separated in step S410 are mixed through a stirrer and beneficiated by using specific gravity.
이때, 규사 및 규산과 같은 물질은 건축자재 및 시멘트 등의 재료로 사용된다.In this case, materials such as silica sand and silicic acid are used as materials for building materials and cement.
위에서 설명한 바와 같이 본 발명에 대한 구체적인 설명은 첨부된 도면을 참조한 실시예에 의해서 이루어졌지만, 상술한 실시예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이기 때문에, 본 발명이 상기의 실시예에만 국한되는 것으로 이해되어져서는 아니 되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가개념으로 이해되어져야 할 것이다.As described above, the detailed description of the present invention has been made by the embodiments with reference to the accompanying drawings. However, since the above-described embodiments have only been described with reference to preferred examples of the present invention, the present invention is limited to the above embodiments. It should not be understood that the scope of the present invention is to be understood by the claims and equivalent concepts described below.

Claims (12)

  1. 원광(原鑛)을 잘게 부수어 미립형태의 원광을 생성하는 분쇄단계;A grinding step of crushing the ore finely to generate fine ore in the fine form;
    상기 분쇄단계를 통하여 생성된 미립형태의 원광을 진동스크류의 진동을 이용하여 원광미분(原鑛微粉) 및 불순물로 각각 선별하기 위한 진동선별단계;Vibration screening step for screening the fine particles of the raw form generated through the grinding step by the vibration of the vibration screw to the ore fine powder and impurities;
    상기 진동선별단계에서 선별된 원광미분을 가열하는 열처리단계; 및A heat treatment step of heating the raw ore powder selected in the vibration screening step; And
    상기 열처리단계를 거친 원광미분에 자력을 인가 후 자성물질과 비자성물질을 분리하는 분리선별단계; 를 포함하는 것을 특징으로 하는A separation and sorting step of separating magnetic material and nonmagnetic material after applying magnetic force to the raw ore powder which has undergone the heat treatment step; Characterized in that it comprises
    원광 가공방법.Ore processing method.
  2. 제1항에 있어서,The method of claim 1,
    상기 열처리단계 및 상기 분리선별단계 사이에 상기 열처리단계를 통하여 승화된 기체를 포집하는 기체포집단계; 를 더 포함하는 것을 특징으로 하는A gas collecting step of collecting the sublimed gas through the heat treatment step between the heat treatment step and the separation selection step; Characterized in that it further comprises
    원광 가공방법.Ore processing method.
  3. 제2항에 있어서,The method of claim 2,
    상기 열처리단계 및 상기 기체포집단계 사이에 상기 열처리단계를 통하여 가열된 원광미분에 포함되어 있는 산화철 및 유화철을 철로 환원시키는 산화철환원단계; 를 더 포함하는 것을 특징으로 하는An iron oxide reduction step of reducing iron oxide and iron emulsion contained in the raw ore powder heated through the heat treatment step between the heat treatment step and the gas collecting step to iron; Characterized in that it further comprises
    원광 가공방법.Ore processing method.
  4. 제2항에 있어서,The method of claim 2,
    상기 기체포집단계 및 상기 분리선별단계 사이에 상기 기체포집단계를 통하여 포집된 기체를 가열 후 냉각하는 기체처리단계; 를 더 포함하는 것을 특징으로 하는A gas treatment step of heating and cooling the gas collected through the gas collecting step between the gas collecting step and the separation selection step; Characterized in that it further comprises
    원광 가공방법.Ore processing method.
  5. 제1항에 있어서,The method of claim 1,
    상기 분리선별단계에서 분리된 비자성물질인 금, 은, 규사 및 규산의 비중차이를 통하여 상기 금, 은, 규사 및 규산을 선광(選鑛)하는 부산물선광단계; 를 더 포함하는 것을 특징으로 하는By-product beneficiation step of beneficiation of the gold, silver, silica sand and silicic acid by the specific gravity difference of the gold, silver, silica sand and silicic acid separated in the separation screening step; Characterized in that it further comprises
    원광 가공방법.Ore processing method.
  6. 원광(原鑛)을 잘게 부순 원광미분(原鑛微粉)이 투입되는 원료투입부;A raw material input section into which raw ore fine powder is broken into fine ore;
    상기 원료투입부를 통하여 투입된 원광미분을 이송하고 가열하는 열처리부;A heat treatment unit for transferring and heating the raw ore powder injected through the raw material input unit;
    상기 열처리부에 의하여 이송된 원광미분을 배출하기 위한 원료배출부; 및A raw material discharge part for discharging the ore fine powder transferred by the heat treatment part; And
    상기 열처리부에 동력을 공급하기 위한 동력공급부; 를 포함하며,A power supply unit for supplying power to the heat treatment unit; Including;
    상기 원료배출부는 자성물질과 비자성물질을 분리하기 위한 자석; 을 포함하는 것을 특징으로 하는The raw material discharge unit for separating the magnetic material and the non-magnetic material magnet; Characterized in that it comprises
    원광미분 가공조립체.Ore powder processing assembly.
  7. 제6항에 있어서,The method of claim 6,
    상기 열처리부는 The heat treatment unit
    원광미분을 이송시키기 위한 스크류; A screw for transferring the ore fine powder;
    상기 스크류를 지지하기 위한 실린더; 및 A cylinder for supporting the screw; And
    상기 실린더 내부의 원광미분을 가열하기 위한 적어도 하나 이상의 히터; 를 포함하는 것을 특징으로 하는 At least one heater for heating the ore powder in the cylinder; Characterized in that it comprises
    원광미분 가공조립체.Ore powder processing assembly.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 적어도 하나 이상의 히터는 서로 병렬로 연결되는 것을 특징으로 하는The at least one heater is characterized in that connected in parallel to each other
    원광미분 가공조립체.Ore powder processing assembly.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 적어도 하나 이상의 히터는 상기 실린더의 접선면을 따라 사각의 형태로 복수개가 마련되는 것을 특징으로 하는The at least one heater is characterized in that a plurality is provided in the form of a square along the tangential surface of the cylinder.
    원광미분 가공조립체.Ore powder processing assembly.
  10. 제6항에 있어서,The method of claim 6,
    상기 열처리부를 통하여 발생된 기체를 포집하고, 포집된 기체를 처리하는 적어도 하나 이상의 기체처리부; 를 더 포함하는 것을 특징으로 하는At least one gas processing unit for collecting the gas generated through the heat treatment unit and processing the collected gas; Characterized in that it further comprises
    원광미분 가공조립체.Ore powder processing assembly.
  11. 제10항에 있어서,The method of claim 10,
    상기 기체처리부는The gas treatment unit
    상기 열처리부를 통하여 발생된 기체중 불완전 연소된 기체를 완전 연소시키기 위한 가열기; 및 A heater for completely burning incompletely burned gas in the gas generated through the heat treatment unit; And
    상기 가열기를 통하여 완전 연소된 기체를 냉각시키기 위한 적어도 하나 이상의 냉각기; 를 포함하는 것을 특징으로 하는  At least one cooler for cooling the gas completely burned through the heater; Characterized in that it comprises
    원광미분 가공조립체.Ore powder processing assembly.
  12. 제6항에 있어서,The method of claim 6,
    상기 원료배출부를 통하여 분리된 비자성물질인 금, 은, 규사 및 규산의 비중차이를 통하여 상기 금, 은, 규사 및 규산을 선광(選鑛)하는 부산물선광장치; 를 더 포함하는 것을 특징으로 하는 By-product beneficiation device for beneficiation of the gold, silver, silica sand and silicic acid through the specific gravity difference of the gold, silver, silica sand and silicic acid separated through the raw material discharge portion; Characterized in that it further comprises
    원광미분 가공조립체.Ore powder processing assembly.
PCT/KR2009/007403 2009-09-10 2009-12-10 Assembly for processing raw ore powder, and processing method of raw ore using same WO2011030969A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090085366A KR101124756B1 (en) 2009-09-10 2009-09-10 Processing assembly of a raw ore powder and processing method of a raw ore using there of
KR10-2009-0085366 2009-09-10

Publications (1)

Publication Number Publication Date
WO2011030969A1 true WO2011030969A1 (en) 2011-03-17

Family

ID=43732616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007403 WO2011030969A1 (en) 2009-09-10 2009-12-10 Assembly for processing raw ore powder, and processing method of raw ore using same

Country Status (2)

Country Link
KR (1) KR101124756B1 (en)
WO (1) WO2011030969A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101248183B1 (en) * 2011-01-21 2013-04-15 (주)엔엠텍 combustion-concentration method for gaining copper-concentrate
KR101522363B1 (en) * 2014-10-21 2015-05-21 (주)남광 method and apparatus for recovering iron from slag
KR102564379B1 (en) * 2022-06-10 2023-08-07 렘코 주식회사 Mill scale recycling briquette manufacturing facility

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900008927B1 (en) * 1987-10-30 1990-12-13 김수진 Process and method for separating noniron ores
KR20000026801A (en) * 1998-10-23 2000-05-15 이경운 Method for separation and collection of organic minerals from dressing ore wastes of gold mine
KR20010001736A (en) * 1999-06-08 2001-01-05 곽영훈 Method of removing impurities contains iron on nonmetallic minerals
KR20070050522A (en) * 2005-11-11 2007-05-16 동서기업 주식회사 The steel ingot or carbon steel ingot manufacturing method and manufacturing devices which uses the steel by product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005002A1 (en) * 1994-08-15 1996-02-22 Shinmaywa Industries, Ltd. Heavy metal-containing waste treating process and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900008927B1 (en) * 1987-10-30 1990-12-13 김수진 Process and method for separating noniron ores
KR20000026801A (en) * 1998-10-23 2000-05-15 이경운 Method for separation and collection of organic minerals from dressing ore wastes of gold mine
KR20010001736A (en) * 1999-06-08 2001-01-05 곽영훈 Method of removing impurities contains iron on nonmetallic minerals
KR20070050522A (en) * 2005-11-11 2007-05-16 동서기업 주식회사 The steel ingot or carbon steel ingot manufacturing method and manufacturing devices which uses the steel by product

Also Published As

Publication number Publication date
KR20110027327A (en) 2011-03-16
KR101124756B1 (en) 2012-06-12

Similar Documents

Publication Publication Date Title
WO2017105083A1 (en) System and method for melting aluminum and recycling black dross
WO2010002216A2 (en) Coal ash recycle device and method therefor
KR100252722B1 (en) Method and apparatus for using blast-furnace slag in cement clinker production
WO2016032138A1 (en) Method and apparatus for extracting lithium from coal ash
WO2015060634A1 (en) Apparatus for recycling waste raw material
KR100311653B1 (en) Recycling of Valuable Metals from Scraps
WO2011030969A1 (en) Assembly for processing raw ore powder, and processing method of raw ore using same
WO2014038745A1 (en) Method for separately recovering iron from non-metal waste slag discharged from process of refining non-ferrous metal such as copper, zinc and lead by physical chemical screening method
WO2020262959A1 (en) Complex sorting system and complex sorting method for sorting automobile shredder residue using trommel
WO2012060547A1 (en) Apparatus for atomizing molten slag and recovering valuable metal
WO2013006011A2 (en) Method for manufacturing light-weight construction material using waste product and light-weight construction material manufactured thereby
WO2014003444A1 (en) Apparatus for treating reduction slag generated in secondary refining of steelmaking process
KR100984770B1 (en) Processing assembly of mine waste and processing method of mine waste using there of
WO2012033317A2 (en) Method for recycling fly ash containing large amounts of cao
KR101433019B1 (en) Block manufacturing method using ferronickel slag and apparatus using the same
WO2013065940A1 (en) Quenched environmentally friendly nickel slag ball using high-speed gas, method for manufacturing same, and apparatus for manufacturing same
WO2020111598A1 (en) Method and apparatus for manufacturing lithium sulfate solution from lithium bearing ore
Lu et al. Lead extraction from Cathode Ray Tube (CRT) funnel glass: Reaction mechanisms in thermal reduction with addition of carbon (C)
WO2015163606A1 (en) Apparatus for separating components from printed circuit board, and method for screening copper
WO2016060387A1 (en) Method for manufacturing briquette and briquette manufactured by using same
JP4739041B2 (en) Method for treating inorganic waste materials containing asbestos
WO2011027919A2 (en) Assembling process for mine waste and method for processing mine waste using same
CN112041084B (en) Ceramic stoneware product
KR100891204B1 (en) Reprocessing Method for Industrial Waste
WO2010044595A2 (en) Apparatus and method for treating mine waste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/07/12)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/07/12)

122 Ep: pct application non-entry in european phase

Ref document number: 09849286

Country of ref document: EP

Kind code of ref document: A1