WO2011030376A1 - Servo device - Google Patents

Servo device Download PDF

Info

Publication number
WO2011030376A1
WO2011030376A1 PCT/JP2009/004460 JP2009004460W WO2011030376A1 WO 2011030376 A1 WO2011030376 A1 WO 2011030376A1 JP 2009004460 W JP2009004460 W JP 2009004460W WO 2011030376 A1 WO2011030376 A1 WO 2011030376A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic sensor
conversion unit
rotation angle
output
motor
Prior art date
Application number
PCT/JP2009/004460
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺寛
Original Assignee
日本遠隔制御株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本遠隔制御株式会社 filed Critical 日本遠隔制御株式会社
Priority to CN2009801613518A priority Critical patent/CN102484440A/en
Priority to JP2011530638A priority patent/JP5425917B2/en
Priority to PCT/JP2009/004460 priority patent/WO2011030376A1/en
Publication of WO2011030376A1 publication Critical patent/WO2011030376A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/072Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37124Magnetic sensor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37187Disk with magnetic, inductive sensors

Definitions

  • the present invention relates to a servo device for operating a controlled object based on an input control signal, and more particularly to a model radio control device, an industrial radio control device, and a servo device used in a robot.
  • a steered device for radio control is equipped with a receiver that receives a signal transmitted from a transmitter and a plurality of servo devices for operating an operation target.
  • the receiver converts the received signal into a pulse-width modulated signal (hereinafter referred to as a PWM signal) for each channel, and provides it to the servo device for each channel as control information.
  • a PWM signal pulse-width modulated signal
  • the servo device has a motor, and the rotation of the motor is decelerated by a reduction mechanism so that the servo horn of the output shaft is within a certain angular range (eg, ⁇ 60 ° from the reference position). Rotate and operate.
  • a potentiometer is attached to the output shaft of the speed reduction mechanism, and the rotation angle of the output shaft is detected, feedback control is performed using the pulse width as a control signal, and control is performed to achieve a desired rotation angle.
  • the potentiometer since the output shaft rotates frequently, the potentiometer also rotates frequently. Moreover, since pressure is easily applied from the outside to the output shaft and pressure is also applied to the potentiometer, there is a drawback that the potentiometer is likely to deteriorate. When the potentiometer is deteriorated, an accurate feedback signal cannot be obtained, so that the angle of the reference position (neutral) of the output shaft is deviated and a desired rotation operation cannot be performed. Therefore, the servo motor has a drawback that it needs to be replaced frequently.
  • the present invention has been made paying attention to such conventional problems, and enables the rotation angle of the output shaft to be detected in a non-contact manner without using a potentiometer, improving the reliability of the servo device and increasing the length.
  • the purpose is to extend the service life.
  • a servo device includes a motor, a speed reduction mechanism connected to the motor and decelerating the output of the motor, a magnet attached to a rotating shaft of the speed reduction mechanism, The motor is rotated so that the difference signal becomes zero based on the difference between the magnetic sensor that detects the rotation angle of the output shaft of the servo horn based on the rotation, and the output from the magnetic sensor and the control signal from the outside. And a control unit for controlling.
  • the magnet is a disc-shaped member, and at least a part of the magnet may have a notch, and may be magnetized symmetrically on the surface of the disc.
  • a linear conversion unit that makes rotation angle information in which an output obtained from the magnetic sensor linearly changes corresponding to the rotation angle of the output shaft of the speed reduction mechanism.
  • control unit further includes an A / D conversion unit that performs A / D conversion on an output obtained from the magnetic sensor, and the linear conversion unit changes the digital signal converted by the A / D conversion unit. May be converted into linearly changing data using a function.
  • control unit further includes an A / D conversion unit that performs A / D conversion on an output obtained from the magnetic sensor, and the linear conversion unit changes the digital signal converted by the A / D conversion unit. May be converted into linearly changing data using a conversion table.
  • the magnetic sensor may be a Hall IC in which the Hall IC and an amplifier are incorporated.
  • the rotation angle of the servo motor since the rotation angle of the servo motor is detected by the magnet and the magnetic sensor, the rotation angle of the output shaft can be detected in a non-contact manner without using a potentiometer. Therefore, malfunctions and neutral angle fluctuations due to deterioration of the potentiometer do not occur, and the reliability of the servo device can be improved and the life can be extended.
  • FIG. 1 is a perspective view showing the overall configuration of a servo device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of the servo device according to the present embodiment.
  • FIG. 3 is a diagram showing the arrangement of the magnet plate and the magnetic sensor for detecting the magnetic flux of the magnet plate according to the present embodiment.
  • FIG. 4 is a diagram showing the relationship between the rotation angle, the voltage of the magnetic detector, A / D conversion data, and linear conversion data.
  • FIG. 1 is a perspective view showing the overall configuration of a servo device according to an embodiment of the present invention.
  • a motor 11 is mounted on a substrate 10.
  • Gears 12a, 12b, and 12c constituting a speed reduction mechanism 12 are sequentially connected to the motor 11, and a servo horn 14 is connected to an output shaft of the gear 12c.
  • a magnet holder 15 and a magnet plate 16 are further connected to the output shaft 13 of the gear 12c.
  • the magnet plate 16 is a disk-shaped magnetic body as will be described later.
  • a magnetic sensor 17 is arranged at a predetermined interval from the magnet plate 16. The magnetic sensor 17 detects a change in magnetism accompanying the rotation of the magnet plate 16 and obtains rotation angle information.
  • the output from the magnetic sensor 17 is amplified by an amplifier 18.
  • a Hall element is used as the magnetic sensor 17.
  • the Hall element and the amplifier 18 may be separate elements, but here, a linear Hall IC 19 in which these elements are combined is used as it is.
  • the linear Hall IC 19 can detect a magnetic flux at a predetermined position and output a voltage signal proportional to the magnetic flux.
  • the output from the linear Hall IC 19 is applied to the A / D conversion unit 21 of the control unit 20.
  • the A / D converter 21 converts the input voltage into digital data, and the output is applied to the linear converter 22.
  • the linear conversion unit 22 converts the rotation angle information into linear data.
  • a pulse width modulated signal (PWM signal) is applied to this servo motor from a receiver (not shown).
  • the PWM signal is a signal whose center value is 1.5 ms, for example, and whose pulse width changes in the range of 1.5 ⁇ 0.6 ms according to the operation of the transmitter.
  • This PWM signal is given to the pulse width angle data converter 23 from the receiver.
  • the pulse width angle data conversion unit 23 converts the PWM signal into instruction data corresponding to the pulse width.
  • the output of the pulse width angle data conversion unit 23 is given to the difference calculation unit 24.
  • the difference calculation unit 24 drives the motor 11 via the motor driver 25 so that the difference signal is zero. By the feedback loop configured in this way, the rotation angle is controlled according to the PWM signal.
  • the present embodiment has a D-shape as shown in FIG. In this case, the manufacturing process can be facilitated by using a magnet holder 15 having a D-shaped depression as shown in FIG. 1 and embedding a disk-shaped magnet plate 16 therein.
  • the magnet plate 16 is magnetized symmetrically as seen from the front as shown in FIG.
  • the detection position P of the Hall IC 19 is set to be the boundary position of the magnetized magnetic poles when viewed from the front.
  • the distance between the Hall IC 19 and the magnet plate 16 is g.
  • FIG. 4A is a graph showing the relationship between the rotation angle ⁇ of the output shaft 13 of the speed reduction mechanism 12 and the voltage detected by the magnetic sensor 16.
  • the output of the Hall IC 19 changes to a sine wave shape with respect to the rotation angle ⁇ , and the amplitude changes as shown by the curves C1 and C2 depending on the interval between the magnet plate 16 and the Hall IC 19. Therefore, the gap g between the Hall IC 19 and the magnet plate 16 is set to a value that allows a sufficient voltage change without saturation of the output.
  • the output of the Hall IC 19 is amplified as shown in FIG. 4B, converted into a digital signal by the A / D converter 21, and then linear as shown in FIG. 4C.
  • FIGS. 4B and 4C show the change in data with respect to the rotation angle as an analog value.
  • the linear converter 22 uses a function having a reverse characteristic to the function indicating the voltage change detected by the magnetic sensor, for example, an arc sine function, and converts the input change to a straight line by appropriately setting the coefficient.
  • the linear conversion unit 22 uses a function having a reverse characteristic to the function indicating the voltage change detected by the magnetic sensor, for example, an arc sine function, and converts the input change to a straight line by appropriately setting the coefficient.
  • the linear conversion unit 22 performs conversion using an arc sine function.
  • a table for outputting angle data that is linear with respect to the input signal is calculated in advance, and this table is read-only. It may be held in a nonvolatile storage memory such as a memory (ROM). In this way, linearly changing data can be obtained by reading the angle data from this table based on the input signal.
  • the rotation angle of the motor is controlled on the basis of the pulse width modulated signal.
  • the servo device is directly supplied with digital data corresponding to the rotation angle, the pulse width angle data conversion is performed. Without providing the unit 23, digital data from the outside can be input to the difference calculation unit 24 as it is.
  • the magnet plate is changed to a part of the disk by switching a part of the disk, but may have other shapes.
  • it may be a rectangle or a shape having notches on the left and right.
  • the shaft of the gear 12c is used as the output shaft 13, and the servo horn 14 and the magnet holder 15 are attached to this shaft. .
  • the output shaft rotates a plurality of times even when it rotates by a predetermined angle, it is necessary to detect the number of rotations at the same time, but the rotation angle of the output shaft can be detected with high resolution.
  • the output from the linear Hall IC is converted into digital data, and linear conversion and difference calculation are performed.
  • the output of the Linear Hall IC is linearly converted as an analog signal, and the pulse width used as a control signal
  • the present invention can also be applied to an analog type servo device that converts the signal into a voltage signal and drives the motor driver based on the difference.
  • the present invention can detect the rotation angle of the output shaft in a non-contact manner without using a potentiometer, and can extend the life of the servo device, so that the controlled object can be driven based on the input control signal.
  • the present invention can be suitably used for servo devices, particularly model radio control devices, industrial radio control devices, and robot servo devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

Rotation of a motor (11) is reduced by a reduction mechanism. A magnet plate (16) is arranged on an output shaft of the reduction mechanism (12).  A magnetic sensor (17) is arranged in the vicinity of the magnet plate (16) so that the magnet sensor (17) reads out the rotation angle.  The output of the magnetic sensor (17) is fed back to a control unit (20) so as to set a rotation angle corresponding to an input signal.  Thus, it is possible to control the rotation angle of the servo motor in a non-contact mode without using a potentiometer and increasing the service life of the servo device.

Description

サーボ装置Servo device
 本発明は入力された制御信号に基づいて被制御対象物を操作するためのサーボ装置に関し、特に模型用ラジオコントロール装置、産業用ラジオコントロール装置やロボットに用いられるサーボ装置に関するものである。 The present invention relates to a servo device for operating a controlled object based on an input control signal, and more particularly to a model radio control device, an industrial radio control device, and a servo device used in a robot.
 ラジオコントロール用の***縦装置には、送信機から送信された信号を受信する受信機と、操作対象を操作するための複数のサーボ装置が搭載されている。受信機は受信した信号を各チャンネル毎のパルス幅変調された信号(以下、PWM信号という)に変換し、制御情報として各チャンネル毎にサーボ装置に与える。特許文献1等に示されるように、サーボ装置はモータを有しており、モータの回転を減速機構で減速して出力軸のサーボホーンを一定の角度範囲(例えば基準位置から±60°)で回動させ、操作を行う。サーボ装置において、減速機構の出力軸にはポテンショメータが取り付けられており、出力軸の回転角度を検出してパルス幅を制御信号としてフィードバック制御を行い、所望の回転角度になるように制御している。
特開2007-318986号公報
A steered device for radio control is equipped with a receiver that receives a signal transmitted from a transmitter and a plurality of servo devices for operating an operation target. The receiver converts the received signal into a pulse-width modulated signal (hereinafter referred to as a PWM signal) for each channel, and provides it to the servo device for each channel as control information. As shown in Patent Document 1 and the like, the servo device has a motor, and the rotation of the motor is decelerated by a reduction mechanism so that the servo horn of the output shaft is within a certain angular range (eg, ± 60 ° from the reference position). Rotate and operate. In the servo device, a potentiometer is attached to the output shaft of the speed reduction mechanism, and the rotation angle of the output shaft is detected, feedback control is performed using the pulse width as a control signal, and control is performed to achieve a desired rotation angle. .
JP 2007-318986 A
 しかるに従来のサーボ装置では、出力軸が頻繁に回動するため、ポテンショメータも頻繁に回動する。又出力軸には外部から圧力が加わり易く、ポテンショメータにも圧力が加わるため、ポテンショメータが劣化し易いという欠点があった。ポテンショメータが劣化すると正確なフィードバック信号が得られなくなるため、出力軸の基準位置(ニュートラル)の角度がずれたり、所望の回転動作を行うことができなくなる。従ってサーボモータは頻繁に交換する必要があるという欠点があった。 However, in the conventional servo device, since the output shaft rotates frequently, the potentiometer also rotates frequently. Moreover, since pressure is easily applied from the outside to the output shaft and pressure is also applied to the potentiometer, there is a drawback that the potentiometer is likely to deteriorate. When the potentiometer is deteriorated, an accurate feedback signal cannot be obtained, so that the angle of the reference position (neutral) of the output shaft is deviated and a desired rotation operation cannot be performed. Therefore, the servo motor has a drawback that it needs to be replaced frequently.
 本発明はこのような従来の問題点に着目してなされたものであって、ポテンショメータを用いることなく出力軸の回転角度を非接触で検出できるようにし、サーボ装置の信頼性を向上すると共に長寿命化を図ることを目的とする。 The present invention has been made paying attention to such conventional problems, and enables the rotation angle of the output shaft to be detected in a non-contact manner without using a potentiometer, improving the reliability of the servo device and increasing the length. The purpose is to extend the service life.
 この課題を解決するために、本発明のサーボ装置は、モータと、前記モータに連結され、前記モータの出力を減速する減速機構と、前記減速機構の回転軸に取付けられるマグネットと、前記マグネットの回動に基づいてサーボホーンの出力軸の回転角度を検出する磁気センサと、前記磁気センサからの出力及び外部からの制御信号との差分に基づいて差分信号が零となるように前記モータを回転制御する制御部と、を具備するものである。 In order to solve this problem, a servo device according to the present invention includes a motor, a speed reduction mechanism connected to the motor and decelerating the output of the motor, a magnet attached to a rotating shaft of the speed reduction mechanism, The motor is rotated so that the difference signal becomes zero based on the difference between the magnetic sensor that detects the rotation angle of the output shaft of the servo horn based on the rotation, and the output from the magnetic sensor and the control signal from the outside. And a control unit for controlling.
 ここで前記マグネットは円板状部材であり、少なくともその一部に切欠きを有し、円板の面に対称に着磁されたものとしてもよい。 Here, the magnet is a disc-shaped member, and at least a part of the magnet may have a notch, and may be magnetized symmetrically on the surface of the disc.
 ここで前記減速機構の出力軸の回転角度に対応して前記磁気センサより得られる出力が直線的に変化する回転角度情報とするリニア変換部を更に有するようにしてもよい。 Here, there may be further provided a linear conversion unit that makes rotation angle information in which an output obtained from the magnetic sensor linearly changes corresponding to the rotation angle of the output shaft of the speed reduction mechanism.
 ここで前記制御部は、前記磁気センサより得られる出力をA/D変換するA/D変換部を更に有し、前記リニア変換部は、前記A/D変換部によって変換されたデジタル信号の変化を関数を用いて直線状に変化するデータに変換するものとしてもよい。 Here, the control unit further includes an A / D conversion unit that performs A / D conversion on an output obtained from the magnetic sensor, and the linear conversion unit changes the digital signal converted by the A / D conversion unit. May be converted into linearly changing data using a function.
 ここで前記制御部は、前記磁気センサより得られる出力をA/D変換するA/D変換部を更に有し、前記リニア変換部は、前記A/D変換部によって変換されたデジタル信号の変化を変換テーブルを用いて直線状に変化するデータに変換するものとしてもよい。 Here, the control unit further includes an A / D conversion unit that performs A / D conversion on an output obtained from the magnetic sensor, and the linear conversion unit changes the digital signal converted by the A / D conversion unit. May be converted into linearly changing data using a conversion table.
 ここで前記磁気センサは、前記ホールICと増幅器とが組み込まれたホールICとしてもよい。 Here, the magnetic sensor may be a Hall IC in which the Hall IC and an amplifier are incorporated.
 このような特徴を有する本発明によれば、サーボモータの回転角度をマグネットと磁気センサによって検出しているため、ポテンショメータを用いることなく出力軸の回転角度を非接触で検出することができる。従ってポテンショメータの劣化による誤動作やニュートラルの角度変動が生じることがなくなり、サーボ装置の信頼性を高め、長寿命化を図ることができるという効果が得られる。 According to the present invention having such characteristics, since the rotation angle of the servo motor is detected by the magnet and the magnetic sensor, the rotation angle of the output shaft can be detected in a non-contact manner without using a potentiometer. Therefore, malfunctions and neutral angle fluctuations due to deterioration of the potentiometer do not occur, and the reliability of the servo device can be improved and the life can be extended.
図1は本発明の実施の形態によるサーボ装置の全体構成を示す斜視図である。FIG. 1 is a perspective view showing the overall configuration of a servo device according to an embodiment of the present invention. 図2は本実施の形態によるサーボ装置のブロック図である。FIG. 2 is a block diagram of the servo device according to the present embodiment. 図3は本実施の形態によるマグネット板及びマグネット板の磁束を検出する磁気センサの配置を示す図である。FIG. 3 is a diagram showing the arrangement of the magnet plate and the magnetic sensor for detecting the magnetic flux of the magnet plate according to the present embodiment. 図4は回転角度と磁気検出器の電圧、A/D変換データ及びリニア変換データの関係を示す図である。FIG. 4 is a diagram showing the relationship between the rotation angle, the voltage of the magnetic detector, A / D conversion data, and linear conversion data.
 10 基板
 11 モータ
 12 減速機構
 12a,12b,12c ギア
 13 出力軸
 14 サーボホーン
 15 マグネットホルダ
 16 マグネット
 17 磁気センサ
 18 増幅器
 19 ホールIC
 20 制御部
 21 A/D変換部
 22 リニア変換部
 23 パルス幅角度データ変換部
 24 差分演算部
 25 モータドライバ
DESCRIPTION OF SYMBOLS 10 Board | substrate 11 Motor 12 Deceleration mechanism 12a, 12b, 12c Gear 13 Output shaft 14 Servo horn 15 Magnet holder 16 Magnet 17 Magnetic sensor 18 Amplifier 19 Hall IC
20 Control Unit 21 A / D Conversion Unit 22 Linear Conversion Unit 23 Pulse Width Angle Data Conversion Unit 24 Difference Calculation Unit 25 Motor Driver
 図1は本発明の実施の形態によるサーボ装置の全体の構成を示す斜視図である。本図に示すように基板10上にモータ11が取付けられている。モータ11には減速機構12を構成するギア12a,12b,12cが順次連結されており、ギア12cの出力軸にはサーボホーン14が接続される。又本実施の形態ではギア12cの出力軸13に更にマグネットホルダ15及びマグネット板16が接続される。マグネット板16は後述するように円板状の磁性体である。そしてこのマグネット板16と所定の間隔を隔てて磁気センサ17を配置する。磁気センサ17はマグネット板16の回転に伴う磁気の変化を検出し、回転角度情報を得るものである。 FIG. 1 is a perspective view showing the overall configuration of a servo device according to an embodiment of the present invention. As shown in the figure, a motor 11 is mounted on a substrate 10. Gears 12a, 12b, and 12c constituting a speed reduction mechanism 12 are sequentially connected to the motor 11, and a servo horn 14 is connected to an output shaft of the gear 12c. In this embodiment, a magnet holder 15 and a magnet plate 16 are further connected to the output shaft 13 of the gear 12c. The magnet plate 16 is a disk-shaped magnetic body as will be described later. A magnetic sensor 17 is arranged at a predetermined interval from the magnet plate 16. The magnetic sensor 17 detects a change in magnetism accompanying the rotation of the magnet plate 16 and obtains rotation angle information.
 次に図2を用いて本実施の形態によるサーボ装置のブロック図について説明する。磁気センサ17からの出力は増幅器18によって増幅される。本実施の形態では磁気センサ17としてホール素子を用いている。ホール素子と増幅器18とは個別の素子を用いてもよいが、ここではこれらを組み合わせたリニアホールIC19をそのまま用いる。リニアホールIC19は所定の位置の磁束を検出し、磁束に比例した電圧信号を出力することができる。リニアホールIC19からの出力は制御部20のA/D変換部21に加えられる。A/D変換部21は入力電圧をデジタルデータに変換するものであり、その出力はリニア変換部22に加えられる。リニア変換部22は回転角度情報を直線的なデータに変換するものである。 Next, a block diagram of the servo device according to the present embodiment will be described with reference to FIG. The output from the magnetic sensor 17 is amplified by an amplifier 18. In the present embodiment, a Hall element is used as the magnetic sensor 17. The Hall element and the amplifier 18 may be separate elements, but here, a linear Hall IC 19 in which these elements are combined is used as it is. The linear Hall IC 19 can detect a magnetic flux at a predetermined position and output a voltage signal proportional to the magnetic flux. The output from the linear Hall IC 19 is applied to the A / D conversion unit 21 of the control unit 20. The A / D converter 21 converts the input voltage into digital data, and the output is applied to the linear converter 22. The linear conversion unit 22 converts the rotation angle information into linear data.
 又このサーボモータには図示しない受信機よりパルス幅変調された信号(PWM信号)が加えられる。PWM信号は例えば中心値が1.5msであり、送信機の操作に応じてパルス幅が1.5±0.6msの範囲で変化する信号である。このPWM信号は受信機よりパルス幅角度データ変換部23に与えられる。パルス幅角度データ変換部23はPWM信号をそのパルス幅に対応した指示データに変換するものである。パルス幅角度データ変換部23の出力は差分演算部24に与えられる。差分演算部24は差分信号を0とするようにモータドライバ25を介してモータ11を駆動する。こうして構成されるフィードバックループにより、PWM信号に応じた回転角度となるように制御される。 Also, a pulse width modulated signal (PWM signal) is applied to this servo motor from a receiver (not shown). The PWM signal is a signal whose center value is 1.5 ms, for example, and whose pulse width changes in the range of 1.5 ± 0.6 ms according to the operation of the transmitter. This PWM signal is given to the pulse width angle data converter 23 from the receiver. The pulse width angle data conversion unit 23 converts the PWM signal into instruction data corresponding to the pulse width. The output of the pulse width angle data conversion unit 23 is given to the difference calculation unit 24. The difference calculation unit 24 drives the motor 11 via the motor driver 25 so that the difference signal is zero. By the feedback loop configured in this way, the rotation angle is controlled according to the PWM signal.
 さてこの実施の形態のサーボ装置では、従来のポテンショメータに代えて、マグネット板16と磁気センサ17とを用いている。このため非接触で回転角度を検出することができる。ここでマグネット板16は完全な円板であれば着磁状態が不明であるため、製造時にどの角度で固定するかは明確でなく、何らかの方法で磁気を検出する必要がある。従って製造を容易にするため、本実施の形態では図3(a)に示すようにD字形の形状としている。この場合マグネットホルダ15も図1に示すようにD字形の窪みを有するものを用い、ここに円板状のマグネット板16を埋め込むようにすれば製造工程を容易にすることができる。ここでマグネット板16は図3(a)に示すように正面から見て対称に着磁されている。そして図3(a)のように着磁することで、マグネット板16の極性を視覚的に判断することができる。そして図3(b)に示すようにホールIC19の検出位置Pを正面から見て着磁されている磁極の境界位置となるように設定する。又図3(c)に示すようにホールIC19とマグネット板16との間隔をgとする。 Now, in the servo device of this embodiment, a magnet plate 16 and a magnetic sensor 17 are used in place of the conventional potentiometer. Therefore, the rotation angle can be detected without contact. Here, if the magnet plate 16 is a complete disc, the magnetized state is unknown, so it is not clear at which angle it is fixed at the time of manufacture, and it is necessary to detect magnetism by some method. Therefore, in order to facilitate manufacture, the present embodiment has a D-shape as shown in FIG. In this case, the manufacturing process can be facilitated by using a magnet holder 15 having a D-shaped depression as shown in FIG. 1 and embedding a disk-shaped magnet plate 16 therein. Here, the magnet plate 16 is magnetized symmetrically as seen from the front as shown in FIG. And by magnetizing like Fig.3 (a), the polarity of the magnet board 16 can be judged visually. Then, as shown in FIG. 3B, the detection position P of the Hall IC 19 is set to be the boundary position of the magnetized magnetic poles when viewed from the front. As shown in FIG. 3C, the distance between the Hall IC 19 and the magnet plate 16 is g.
 図4(a)は減速機構12の出力軸13の回転角度θと磁気センサ16で検出される電圧との関係を示すグラフである。図示のようにホールIC19の出力は回転角度θに対してサイン波形状に変化し、マグネット板16とホールIC19との間隔によってその振幅が曲線C1,C2に示すように変化する。従ってホールIC19とマグネット板16との間隔gを、出力が飽和せず十分な電圧変化が得られる値に設定する。又本発明の実施の形態では、図4(b)に示すようにホールIC19の出力を増幅し、A/D変換部21でデジタル信号に変換した後、図4(c)に示すようにリニア変換部22によって直線状に変化させている。これらの出力は実際には例えば12ビットのデータであるが、図4(b),(c)では回転角度に対するデータの変化をアナログ値として示したものである。リニア変換部22は磁気センサで検出される電圧変化を示す関数に対する逆の特性を有する関数、例えばアークサインの関数を用い、その係数を適宜設定することによって入力変化を直線状に変換する。このようにリニア変換部22を用いることによって回転角度に対して角度データとを直線的に変化させることができ、従来のサーボ装置の機構をそのまま用いることができる。 FIG. 4A is a graph showing the relationship between the rotation angle θ of the output shaft 13 of the speed reduction mechanism 12 and the voltage detected by the magnetic sensor 16. As shown in the figure, the output of the Hall IC 19 changes to a sine wave shape with respect to the rotation angle θ, and the amplitude changes as shown by the curves C1 and C2 depending on the interval between the magnet plate 16 and the Hall IC 19. Therefore, the gap g between the Hall IC 19 and the magnet plate 16 is set to a value that allows a sufficient voltage change without saturation of the output. In the embodiment of the present invention, the output of the Hall IC 19 is amplified as shown in FIG. 4B, converted into a digital signal by the A / D converter 21, and then linear as shown in FIG. 4C. It is changed linearly by the converter 22. Although these outputs are actually 12-bit data, for example, FIGS. 4B and 4C show the change in data with respect to the rotation angle as an analog value. The linear converter 22 uses a function having a reverse characteristic to the function indicating the voltage change detected by the magnetic sensor, for example, an arc sine function, and converts the input change to a straight line by appropriately setting the coefficient. By using the linear conversion unit 22 in this way, the angle data can be linearly changed with respect to the rotation angle, and the mechanism of the conventional servo device can be used as it is.
 尚本実施の形態ではリニア変換部22としてアークサインによる関数を用いて変換しているが、入力信号に対してリニアとなる角度データを出力するテーブルをあらかじめ算出しておき、このテーブルをリードオンリメモリ(ROM)など不揮発性記憶メモリに保持しておいてもよい。こうすれば入力信号に基づいてこのテーブルから角度データを読出すことによって、直線的に変化するデータを得ることができる。 In this embodiment, the linear conversion unit 22 performs conversion using an arc sine function. However, a table for outputting angle data that is linear with respect to the input signal is calculated in advance, and this table is read-only. It may be held in a nonvolatile storage memory such as a memory (ROM). In this way, linearly changing data can be obtained by reading the angle data from this table based on the input signal.
 又この実施の形態ではパルス幅変調された信号に基づいてモータの回転角度を制御するようにしているが、回転角度に対応するデジタルデータが直接与えられるサーボ装置であれば、パルス幅角度データ変換部23を設けることなく、外部からのデジタルデータをそのまま差分演算部24に入力するようにすることができる。 In this embodiment, the rotation angle of the motor is controlled on the basis of the pulse width modulated signal. However, if the servo device is directly supplied with digital data corresponding to the rotation angle, the pulse width angle data conversion is performed. Without providing the unit 23, digital data from the outside can be input to the difference calculation unit 24 as it is.
 又この実施の形態ではマグネット板を円板の一部を切り換えてD字型の一部としているが、他の形状であってもよい。例えば長方形や左右に切欠きを有する形状とすることができる。 In this embodiment, the magnet plate is changed to a part of the disk by switching a part of the disk, but may have other shapes. For example, it may be a rectangle or a shape having notches on the left and right.
 又この実施の形態ではギア12cの軸を出力軸13とし、この軸にサーボホーン14とマグネットホルダ15を取付けているが、モータ軸やその中間のギアの軸にマグネットを取付けるようにしてもよい。この場合には出力軸が所定角度だけ回動する際にも複数回回転するので、回転数も同時に検出する必要があるが、高分解能で出力軸の回転角度を検出することができる。 In this embodiment, the shaft of the gear 12c is used as the output shaft 13, and the servo horn 14 and the magnet holder 15 are attached to this shaft. . In this case, since the output shaft rotates a plurality of times even when it rotates by a predetermined angle, it is necessary to detect the number of rotations at the same time, but the rotation angle of the output shaft can be detected with high resolution.
 更にこの実施の形態ではリニアホールICからの出力をデジタルデータに変換し、リニア変換、差分演算を行っているが、リニアホールICの出力をアナログ信号のままリニア変換し、制御信号となるパルス幅を電圧信号に変換してその差分に基づいてモータドライバを駆動するアナログタイプのサーボ装置にも適用することができることはいうまでもない。 Furthermore, in this embodiment, the output from the linear Hall IC is converted into digital data, and linear conversion and difference calculation are performed. However, the output of the Linear Hall IC is linearly converted as an analog signal, and the pulse width used as a control signal Needless to say, the present invention can also be applied to an analog type servo device that converts the signal into a voltage signal and drives the motor driver based on the difference.
 本発明はポテンショメータを用いることなく非接触で出力軸の回転角度を検出し、サーボ装置の長寿命化を図ることができるので、入力された制御信号に基づいて被制御対象物を駆動するためのサーボ装置、特に模型用ラジオコントロール装置、産業用ラジオコントロール装置やロボット用のサーボ装置に好適に用いることができる。 The present invention can detect the rotation angle of the output shaft in a non-contact manner without using a potentiometer, and can extend the life of the servo device, so that the controlled object can be driven based on the input control signal. The present invention can be suitably used for servo devices, particularly model radio control devices, industrial radio control devices, and robot servo devices.

Claims (6)

  1.  モータと、
     前記モータに連結され、前記モータの出力を減速する減速機構と、
     前記減速機構の回転軸に取付けられるマグネットと、
     前記マグネットの回動に基づいてサーボホーンの出力軸の回転角度を検出する磁気センサと、
     前記磁気センサからの出力及び外部からの制御信号との差分に基づいて差分信号が零となるように前記モータを回転制御する制御部と、を具備するサーボ装置。
    A motor,
    A speed reduction mechanism coupled to the motor and decelerating the output of the motor;
    A magnet attached to the rotating shaft of the speed reduction mechanism;
    A magnetic sensor for detecting the rotation angle of the output shaft of the servo horn based on the rotation of the magnet;
    And a controller that controls the rotation of the motor so that the difference signal becomes zero based on the difference between the output from the magnetic sensor and the control signal from the outside.
  2.  前記マグネットは円板状部材であり、少なくともその一部に切欠きを有し、円板の面に対称に着磁されたものである請求項1記載のサーボ装置。 2. The servo device according to claim 1, wherein the magnet is a disk-shaped member, has a notch at least at a part thereof, and is magnetized symmetrically on the surface of the disk.
  3.  前記減速機構の出力軸の回転角度に対応して前記磁気センサより得られる出力が直線的に変化する回転角度情報とするリニア変換部を更に有する請求項1記載のサーボ装置。 2. The servo device according to claim 1, further comprising a linear conversion unit that converts rotation angle information in which an output obtained from the magnetic sensor linearly changes in correspondence with a rotation angle of an output shaft of the speed reduction mechanism.
  4.  前記制御部は、前記磁気センサより得られる出力をA/D変換するA/D変換部を更に有し、
     前記リニア変換部は、前記A/D変換部によって変換されたデジタル信号の変化を関数を用いて直線状に変化するデータに変換するものである請求項3記載のサーボ装置。
    The control unit further includes an A / D conversion unit that performs A / D conversion on an output obtained from the magnetic sensor,
    4. The servo device according to claim 3, wherein the linear conversion unit converts a change in the digital signal converted by the A / D conversion unit into data that changes linearly using a function.
  5.  前記制御部は、前記磁気センサより得られる出力をA/D変換するA/D変換部を更に有し、
     前記リニア変換部は、前記A/D変換部によって変換されたデジタル信号の変化を変換テーブルを用いて直線状に変化するデータに変換するものである請求項3記載のサーボ装置。
    The control unit further includes an A / D conversion unit that performs A / D conversion on an output obtained from the magnetic sensor,
    4. The servo apparatus according to claim 3, wherein the linear conversion unit converts the change in the digital signal converted by the A / D conversion unit into data that changes linearly using a conversion table.
  6.  前記磁気センサは、前記ホールICと増幅器とが組み込まれたホールICである請求項1記載のサーボ装置。 The servo device according to claim 1, wherein the magnetic sensor is a Hall IC in which the Hall IC and an amplifier are incorporated.
PCT/JP2009/004460 2009-09-09 2009-09-09 Servo device WO2011030376A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801613518A CN102484440A (en) 2009-09-09 2009-09-09 Servo device
JP2011530638A JP5425917B2 (en) 2009-09-09 2009-09-09 Servo device
PCT/JP2009/004460 WO2011030376A1 (en) 2009-09-09 2009-09-09 Servo device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004460 WO2011030376A1 (en) 2009-09-09 2009-09-09 Servo device

Publications (1)

Publication Number Publication Date
WO2011030376A1 true WO2011030376A1 (en) 2011-03-17

Family

ID=43732065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004460 WO2011030376A1 (en) 2009-09-09 2009-09-09 Servo device

Country Status (3)

Country Link
JP (1) JP5425917B2 (en)
CN (1) CN102484440A (en)
WO (1) WO2011030376A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6209486B2 (en) * 2014-05-13 2017-10-04 双葉電子工業株式会社 Angle detection device and servo device using the angle detection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373895A (en) * 1986-09-16 1988-04-04 Yamaha Motor Co Ltd Positioning operation mechanism
JP2002335689A (en) * 2001-05-09 2002-11-22 Hitachi Ltd Motor drive circuit
JP2003086065A (en) * 2001-06-25 2003-03-20 Yazaki Corp Combination switch
JP2007024689A (en) * 2005-07-15 2007-02-01 Sony Corp Noncontact position detection sensor
JP2008022590A (en) * 2006-07-10 2008-01-31 Nachi Fujikoshi Corp Servomotor monitoring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373895A (en) * 1986-09-16 1988-04-04 Yamaha Motor Co Ltd Positioning operation mechanism
JP2002335689A (en) * 2001-05-09 2002-11-22 Hitachi Ltd Motor drive circuit
JP2003086065A (en) * 2001-06-25 2003-03-20 Yazaki Corp Combination switch
JP2007024689A (en) * 2005-07-15 2007-02-01 Sony Corp Noncontact position detection sensor
JP2008022590A (en) * 2006-07-10 2008-01-31 Nachi Fujikoshi Corp Servomotor monitoring device

Also Published As

Publication number Publication date
JP5425917B2 (en) 2014-02-26
JPWO2011030376A1 (en) 2013-02-04
CN102484440A (en) 2012-05-30

Similar Documents

Publication Publication Date Title
US11359936B2 (en) Rotation sensor
JP2008082739A (en) Rotation angle detection device and rotation control device using it
JP4296936B2 (en) Electric power steering device
KR100965342B1 (en) Zero point setting method for linear motor
US8901862B2 (en) Commutated electric drive and method for controlling a commutated electric motor
JP2006220530A (en) Device for detecting absolute angle of rotation
EP2468607A1 (en) Angle sensor
JP5262126B2 (en) Transducer
JP4260544B2 (en) Rotation angle detection device and rotation control device
JP5425917B2 (en) Servo device
JP4215310B2 (en) Vehicle rudder angle detection device
JP6209486B2 (en) Angle detection device and servo device using the angle detection device
JP6006069B2 (en) Encoder and encoder error detection method
JP5464793B2 (en) Motor drive device
JP5441624B2 (en) Motor drive device
JP4725109B2 (en) Brushless motor
EP3708465B1 (en) Vehicle with steering angle sensor
JP7167739B2 (en) position sensor
JP2006047228A (en) Rotation angle detecting device
JP4899410B2 (en) Magnetic encoder device
JP2020137222A (en) Motor controller
JP4877599B2 (en) SR motor rotation angle detection device
JP2005098821A (en) Torque detector
WO2021210125A1 (en) Detection unit and electric power steering device
KR20200092902A (en) Weak field control method using encoder for motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161351.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011530638

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849156

Country of ref document: EP

Kind code of ref document: A1