WO2011027712A1 - Organic el display device, color filter substrate, and process for production of organic el display device - Google Patents

Organic el display device, color filter substrate, and process for production of organic el display device Download PDF

Info

Publication number
WO2011027712A1
WO2011027712A1 PCT/JP2010/064515 JP2010064515W WO2011027712A1 WO 2011027712 A1 WO2011027712 A1 WO 2011027712A1 JP 2010064515 W JP2010064515 W JP 2010064515W WO 2011027712 A1 WO2011027712 A1 WO 2011027712A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
color filter
ultraviolet
layer
substrate
Prior art date
Application number
PCT/JP2010/064515
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 大里
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2011529885A priority Critical patent/JP5609878B2/en
Publication of WO2011027712A1 publication Critical patent/WO2011027712A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present invention relates to a color filter substrate for an organic EL display device, and an organic EL display device, in which an adhesive layer made of a photocurable resin formed between a color filter substrate and an organic EL element substrate is cured by ultraviolet rays.
  • Patent Document 1 it is necessary to increase the amount of ultraviolet rays irradiated to the ultraviolet curable resin approximately 10 times in the red color filter layer and the blue color filter layer. Is concerned. Further, since the green color filter layer is provided with an opening having no color filter layer, there is a concern that the organic EL element is deteriorated by ultraviolet rays.
  • the light generated in the light emitting layer is formed by stacking the substrate, the first electrode on the substrate, the organic layer including at least the light emitting layer, and the second electrode in this order.
  • a color filter comprising: an organic EL element substrate including a plurality of organic EL elements extracted from the side; a translucent substrate; and a plurality of color filter layers formed on the substrate corresponding to the organic EL elements.
  • the color filter substrate used in an organic EL display device comprising: a substrate; and an adhesive layer made of a photocurable resin interposed between and bonded to the organic EL element substrate and the color filter substrate.
  • an ultraviolet light transmitting region that transmits ultraviolet light for curing the photocurable resin is provided in a part of a pixel region that forms the color filter layer.
  • a light scattering layer that exhibits light scattering properties with respect to ultraviolet light is provided on the ultraviolet transmission region and the incident ultraviolet light is scattered, so that a wider area than the ultraviolet transmission region can be obtained. It is possible to cure the photocurable resin. This leads to a reduction in the area of the ultraviolet transmission region formed in the pixel region.
  • the third aspect of the present invention it is possible to irradiate the photocurable resin under the ultraviolet light transmitting region with an ultraviolet ray having an exposure amount necessary for polymerization without significantly increasing the tact time.
  • the ultraviolet light wavelength region is a wavelength region of 440 nm or less.
  • ultraviolet rays can be transmitted without being absorbed by not forming the color filter layer in the ultraviolet transmission region.
  • the color filter layer in the ultraviolet light transmitting region, is made thinner than the region other than the ultraviolet light transmitting region, so that the absorption of ultraviolet rays is suppressed, and the color filter layer in one pixel. It becomes possible to improve the color purity.
  • each color of the organic layer 7 including the light emitting layer of the organic EL element substrate 10 (red light emitting organic layer: 7R, green light emitting organic layer: 7G, The blue light emitting organic layer: 7B) corresponds to each color (red color filter layer: 2R, green color filter layer: 2G, blue color filter layer: 2B) of the color filter layer 14 of the color filter substrate 5, that is, It is preferable that they are fixed to face each other.
  • the combination of the light-emitting layer and the color filter layer is not limited to the above-described ones.
  • the color purity is increased by transmitting wavelengths of 400 nm to 550 nm for blue, 500 nm to 600 nm for green, and 600 nm for red.
  • a method of forming a pattern by repeatedly applying, exposing, and developing a colored photosensitive material in which a dye or pigment is dispersed in a photosensitive resin layer is a common method, particularly recently in terms of durability. There are more color filters in which pigments are dispersed than dyes.
  • the color conversion layer is a layer having a function of emitting visible light having a different wavelength by the fluorescent dye absorbing light in the near ultraviolet region or visible region emitted from the organic light emitting layer. This can emit fluorescence in various wavelength regions depending on the combination of incident light with a fluorescent dye. In addition, for example, by absorbing light emitted in blue and emitting fluorescence in the red region, it is also possible to output light that is stronger than selectively transmitting wavelengths and emitting light in the red region. These are applied to color conversion type organic EL elements.
  • the thickness of the thin film region depends on the ultraviolet transmittance of each color, the thickness depends on each color and the pigment / dye used. Further, it varies depending on the type and concentration of the photocurable resin and the polymerization initiator.
  • the area of the thin film region is preferably the same as that in the first example.
  • the organic layer 7W using a white light emitting material and the color filter layer 14 having the structure of FIG. 1 are combined.
  • the fifth example is a case where the organic layer 7B using the light emitting material in the near ultraviolet light to blue light emitting region and the color conversion layer having the structure of FIG. 1 are combined as shown in FIG.
  • the color filter layer 14 having the structure of FIG. 1 is taken as an example, but the color filter layer 14 having the structure of FIG. 2 or 3 may be used.
  • the configuration of the ultraviolet light transmitting region 15 exemplified in the first to fifth examples may be used alone or in combination.
  • the case where the ultraviolet transmissive region 15 is formed at the boundary position with the black matrix layer 4 is exemplified as the pattern of the ultraviolet transmissive region 15.
  • the pattern of the ultraviolet transmissive region 15 is not particularly limited to this.
  • various patterns as shown in FIGS. 7A and 7B can be exemplified.
  • FIG. 7A shows an example in which the ultraviolet transmissive region 15 is provided at the center of each pixel region X.
  • FIG. 7B shows an example in which the ultraviolet transmissive region 15 is provided so as to cross each pixel region X. It is more preferable from the viewpoint of curing that the ultraviolet light transmitting region 15 is formed at the boundary position with the black matrix layer 4.
  • the arrangement of the ultraviolet transmissive regions 15 is approximately equidistant so that the polymerization reaction spreads efficiently to portions other than the ultraviolet light transmissive region by performing a heating step after the photocurable resin is exposed to ultraviolet rays, and further, It is preferable to set the ultraviolet transmissive region 15 pattern so that the interval is narrowed.
  • the organic EL element substrate 10 includes a driving substrate on which a thin film transistor (TFT) is formed, and a plurality of organic EL elements 30 formed on the driving substrate. .
  • the organic EL element 30 includes a reflective electrode 8 constituting the first electrode from the driving substrate side, an organic layer 7 including at least a light emitting layer formed thereon, and a light transmissive electrode formed thereon. Is provided.
  • the organic EL element 30 takes out the light generated in the light emitting layer from the light transmissive electrode side.
  • the organic layer 7 of each organic EL element 30 is disposed so as to face the corresponding color filter layer 14.
  • an aluminum / lithium alloy or a magnesium / silver alloy having a low work function is formed as thin as about 10 nm.
  • a transparent conductive film made of ITO or the like is formed thereon.
  • the film thickness of the transparent conductive film is preferably about 100 nm, for example, so as to have sufficient in-plane conductivity.
  • the material for the transparent conductive film is preferably an oxide transparent conductive film containing one or more of indium oxide, tin oxide, and zinc oxide.
  • silicon oxide, silicon oxynitride, and silicon nitride are preferable to use, and further, by using a laminated film or a gradient film with a variable film density, a film having both step coverage and barrier properties Become.
  • a resistance heating vapor deposition method As a method for forming the passivation layer 17, a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, a sputtering method, or a CVD method can be used depending on the material. It is preferable to use the CVD method because the film density and film composition can be easily varied depending on the surface of the step coverage and the film forming conditions.
  • a thermal CVD method As the CVD method, a thermal CVD method, a plasma CVD method, a catalytic CVD method, a VUV-CVD method, or the like can be used.
  • a gas such as N 2 , O 2 , NH 3 , H 2 , N 2 O is added to an organic silicon compound such as monosilane, hexamethyldisilazane (HMDS), or tetraethoxysilane.
  • the film density may be changed by changing the gas flow rate of silane or the like, or the plasma power, if necessary.
  • Hydrogen or carbon may be added to the film by the reactive gas used. It can also be contained.
  • an ultraviolet protection film 18 may be provided between the adhesive layer 11 and the organic layer 7.
  • the ultraviolet prevention film 18 is an ultraviolet prevention layer that suppresses the incidence of ultraviolet light on the organic layer 7.
  • the ultraviolet ray prevention film 18 cuts off ultraviolet rays incident on the organic layer 7 side when the adhesive layer 11 made of a photocurable resin is irradiated with ultraviolet rays through the ultraviolet ray transmitting region 15 to form the adhesive layer 11, thereby Suppresses damage to layer 7. Thereby, deterioration of the characteristics of the organic EL element 30 due to the ultraviolet rays is reduced.
  • An oxide transparent conductive film such as ITO is generally formed by a film formation method such as sputtering, but the absorption spectrum of the film can also be controlled by a film formation process.
  • the ultraviolet ray prevention layer composed of the ultraviolet ray prevention film 18 and the like is configured so that the light transmittance of light in the ultraviolet wavelength region can be 10% or less, preferably 5% or less.
  • the material for forming the light scattering layer 16 include a material having light scattering properties by dispersing particles having a high refractive index, such as titania, in a transparent resin having light transmittance.
  • the transparent resin includes a thermoplastic resin, a thermosetting resin, and a photosensitive resin.
  • a method for manufacturing the color filter substrate 5 used in the organic EL display device will be described.
  • a colored composition in which a pigment is dispersed in a pigment carrier will be described.
  • organic or inorganic pigments can be used alone or in admixture of two or more.
  • the pigment is preferably a pigment having a high color developability and a high heat resistance, particularly a pigment having a high heat decomposition resistance, and an organic pigment is usually used.
  • the specific example of the organic pigment which can be used for a coloring composition is shown with a color index number.
  • the red coloring composition include C.I. I. Pigment Red 7, 14, 41, 48: 2, 48: 3, 48: 4, 81: 1, 81: 2, 81: 3, 81: 4, 146, 168, 177, 178, 179, 184, 185, Red pigments such as 187, 200, 202, 208, 210, 246, 254, 255, 264, 270, 272, and 279 can be used, and a yellow pigment can also be used in combination.
  • the yellow pigment C.I. I.
  • Examples of the green coloring composition include C.I. I. Pigment Green 7, 10, 36, 37 or the like can be used, and a yellow pigment can be used in combination.
  • the yellow pigment the same pigments as those mentioned for the red coloring composition can be used.
  • Examples of the blue coloring composition include C.I. I. Pigment Blue 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 22, 60, 64, and the like can be used, and a purple pigment can be used in combination.
  • As the purple pigment C.I. I. Pigment Violet 1, 19, 23, 27, 29, 30, 32, 37, 40, 42, 50 and the like.
  • an inorganic pigment as the pigment, specifically, metals such as yellow lead, zinc yellow, red bean (red iron oxide (III)), cadmium red, ultramarine blue, bitumen, chromium oxide green, cobalt green, etc.
  • metals such as yellow lead, zinc yellow, red bean (red iron oxide (III)), cadmium red, ultramarine blue, bitumen, chromium oxide green, cobalt green, etc.
  • oxide powder such as oxide powder, metal sulfide powder, and metal powder.
  • inorganic pigments are used in combination with organic pigments in order to ensure good coatability, sensitivity, developability and the like while balancing saturation and lightness.
  • the coloring composition can contain a dye within a range that does not reduce heat resistance for color matching.
  • thermoplastic resin examples include butyral resin, styrene-maleic acid copolymer, chlorinated polyethylene, chlorinated polypropylene, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, polyurethane resin, and polyester resin.
  • thermosetting resin examples include epoxy resins, benzoguanamine resins, rosin-modified maleic acid resins, rosin-modified fumaric acid resins, melamine resins, urea resins, and phenol resins.
  • the photosensitive resin examples include (meth) acrylic compounds having a reactive substituent such as an isocyanate group, an aldehyde group, and an epoxy group on a linear polymer having a reactive substituent such as a hydroxyl group, a carboxyl group, or an amino group, A resin obtained by reacting an acid and introducing a photocrosslinkable group such as a (meth) acryloyl group or a styryl group into the linear polymer is used.
  • a linear polymer containing an acid anhydride such as a styrene-maleic anhydride copolymer or an ⁇ -olefin-maleic anhydride copolymer is converted into a (meth) acrylic compound having a hydroxyl group such as hydroxyalkyl (meth) acrylate.
  • Half-esterified products are also used.
  • Monomers and oligomers that are precursors of transparent resins include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, polyethylene glycol di (meth) acrylate, pentaerythritol tri (meth) ) Acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tricyclodecanyl (meth) acrylate, melamine (meth) acrylate, various acrylic esters such as epoxy (meth) acrylate and methacrylic acid Examples thereof include esters, (meth) acrylic acid, styrene, vinyl acetate, (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, acrylonitrile and the like. These can be used alone or in admixture of two or more.
  • a photopolymerization initiator or the like is added to the coloring composition.
  • the photopolymerization initiator include 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- Hydroxycyclohexyl phenyl ketone, 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butane- Acetophenone photopolymerization initiators such as 1-one, benzoin photopolymerization initiators such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzyldi
  • the photopolymerization initiator can be used in an amount of 5 to 200 parts by weight, preferably 10 to 150 parts by weight, based on 100 parts by weight of the pigment in the coloring composition.
  • the above photopolymerization initiators are used alone or in combination of two or more.
  • sensitizers ⁇ -acyloxy ester, acylphosphine oxide, methylphenylglyoxylate, benzyl, 9,10-phenanthrenequinone , Camphorquinone, ethylanthraquinone, 4,4′-diethylisophthalophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 4,4′-diethylaminobenzophenone, etc. It can also be used together.
  • the sensitizer can be contained in an amount of 0.1 to 60 parts by weight with respect to 100 parts by weight of the photopolymerization initiator.
  • the coloring composition can contain a polyfunctional thiol that functions as a chain transfer agent.
  • the polyfunctional thiol can be used in an amount of 0.2 to 150 parts by weight, preferably 0.2 to 100 parts by weight, with respect to 100 parts by weight of the pigment in the coloring composition. Further, in the coloring composition, the pigment is sufficiently dispersed in the pigment carrier and applied to a flat body such as a glass substrate so that the dry film thickness is 0.2 to 5 ⁇ m to form each color display pixel. A solvent can be included for ease.
  • Examples of the solvent include cyclohexanone, ethyl cellosolve acetate, butyl cellosolve acetate, 1-methoxy-2-propyl acetate, diethylene glycol dimethyl ether, ethylbenzene, ethylene glycol diethyl ether, xylene, ethyl cellosolve, methyl-n amyl ketone, propylene glycol monomethyl ether, toluene, Examples include methyl ethyl ketone, ethyl acetate, methanol, ethanol, isopropyl alcohol, butanol, isobutyl ketone, petroleum solvent, and the like. These may be used alone or in combination.
  • the solvent can be used in an amount of 800 to 4000 parts by weight, preferably 1000 to 2500 parts by weight, with respect to 100 parts by weight of the pigment in the coloring composition.
  • the coloring composition comprises one or more pigments, if necessary, together with the above photopolymerization initiator, in a pigment carrier and an organic solvent, such as a three roll mill, a two roll mill, a sand mill, a kneader, and an attritor. It can be produced by finely dispersing using a dispersing means.
  • the coloring composition containing 2 or more types of pigments can also be manufactured by mixing each pigment separately finely dispersed in a pigment carrier and an organic solvent.
  • a dispersion aid such as a resin-type pigment dispersant, a surfactant, or a pigment derivative can be appropriately contained. Since the dispersion aid is excellent in pigment dispersion and has a great effect of preventing re-aggregation of the pigment after dispersion, a coloring composition comprising a pigment dispersed in a pigment carrier and an organic solvent using a dispersion aid is used. If so, a color filter excellent in transparency can be obtained.
  • the dispersing aid can be used in an amount of 0.1 to 40 parts by weight, preferably 0.1 to 30 parts by weight, with respect to 100 parts by weight of the pigment in the coloring composition.
  • the resin-type pigment dispersant has a pigment-affinity part that has the property of adsorbing to the pigment and a part that is compatible with the pigment carrier, and adsorbs to the pigment to stabilize the dispersion of the pigment on the pigment carrier. It works.
  • resin-type pigment dispersants include polycarboxylic acid esters such as polyurethane and polyacrylate, unsaturated polyamides, polycarboxylic acids, polycarboxylic acid (partial) amine salts, polycarboxylic acid ammonium salts, and polycarboxylic acid alkylamines.
  • Salts polysiloxanes, long-chain polyaminoamide phosphates, hydroxyl group-containing polycarboxylic acid esters, their modified products, amides formed by the reaction of poly (lower alkyleneimines) with polyesters having free carboxyl groups, and the like
  • Oil-based dispersants such as salts, water-soluble such as (meth) acrylic acid-styrene copolymers, (meth) acrylic acid- (meth) acrylic ester copolymers, styrene-maleic acid copolymers, polyvinyl alcohol, polyvinylpyrrolidone Resin, water-soluble polymer, polyester Modified polyacrylate, ethylene oxide / propylene oxide addition compound, phosphate ester-based and the like are used, they can be used alone or in admixture of two or more.
  • Surfactants include polyoxyethylene alkyl ether sulfate, sodium dodecylbenzenesulfonate, alkali salt of styrene-acrylic acid copolymer, sodium alkylnaphthalenesulfonate, sodium alkyldiphenyletherdisulfonate, lauryl sulfate monoethanolamine, lauryl Anionic surfactants such as triethanolamine sulfate, ammonium lauryl sulfate, monoethanolamine stearate, sodium stearate, sodium lauryl sulfate, monoethanolamine of styrene-acrylic acid copolymer, polyoxyethylene alkyl ether phosphate; Polyoxyethylene oleyl ether, polyoxyethylene lauryl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene Nonionic surfactants such as alkyl ether phosphates, polyoxyethylene sorbitan monostearate and polyethylene glycol monolau
  • the coloring composition may contain an adhesion improving agent such as a silane coupling agent in order to improve the adhesion to the substrate.
  • silane coupling agents include vinyl silanes such as vinyltris ( ⁇ -methoxyethoxy) silane, vinylethoxysilane, vinyltrimethoxysilane, (meth) acrylsilanes such as ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) methyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ) Epoxysilanes such as methyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane,
  • the silane coupling agent can be contained in an amount of 0.01 to 100 parts by weight with respect to 100 parts by weight of the pigment in the coloring composition.
  • the coloring composition can be prepared in the form of gravure offset printing ink, waterless offset printing ink, silk screen printing ink, ink jet printing ink, solvent development type or alkali development type colored resist.
  • the colored resist is obtained by dispersing a dye in a composition containing a thermoplastic resin, a thermosetting resin or a photosensitive resin, a monomer, a photopolymerization initiator, and an organic solvent.
  • the pigment is preferably contained in a proportion of 5 to 70% by weight based on the total solid content of the coloring composition (100% by weight). More preferably, it is contained in a proportion of 20 to 50% by weight, and the remainder consists essentially of a resinous binder provided by a pigment carrier.
  • the colored composition is removed by means of centrifugal separation, sintering filter, membrane filter, etc. to remove coarse particles of 5 ⁇ m or more, preferably coarse particles of 1 ⁇ m or more, more preferably 0.5 ⁇ m or more and coarse particles It is preferable to carry out.
  • the color filter layer 14 is a color conversion layer
  • a color conversion layer in which a fluorescent dye that performs color conversion is dispersed in the pigment carrier can be used.
  • fluorescent dyes that absorb light in the blue to blue-green region and emit fluorescence in the green region include 3- (2′-benzothiazolyl) -7-diethylamino-coumarin (coumarin 6) and 3- (2′-benzimidazolyl).
  • fluorescent dyes that absorb light in the blue to blue-green region and emit fluorescence in the red region include rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, sulforhodamine, basic violet 11, and basic red.
  • Rhodamine dyes such as 2; cyanine dyes; pyridine dyes such as 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium perchlorate (pyridine 1); or oxazine System dyes and the like.
  • Examples of a method for forming the color filter layer material by patterning on the substrate 1 which is a flat body include various pattern forming methods such as a printing method and a photolithography method.
  • a glass plate such as soda lime glass, low alkali borosilicate glass, non-alkali aluminoborosilicate glass, or a resin plate such as polycarbonate, polymethyl methacrylate, polyethylene terephthalate, or the like is used.
  • each color display pixel (color filter layer 14) by the printing method can be patterned simply by repeating the printing and drying of the colored composition prepared as the above various printing inks. Low cost and excellent mass productivity. Furthermore, it is possible to print a fine pattern having high dimensional accuracy and smoothness by the development of printing technology. In order to perform printing, it is preferable that the ink does not dry and solidify on the printing plate or on the blanket. Control of ink fluidity on a printing press is also important, and ink viscosity can be adjusted with a dispersant or extender pigment.
  • the dried film is exposed to ultraviolet rays through a mask having a predetermined pattern provided in contact or non-contact with the film. Then, after immersing in a solvent or an alkaline developer or spraying the developer by spraying or the like to remove the uncured portion to form a desired pattern, the same operation is repeated for other colors to produce a color filter. be able to. Furthermore, in order to accelerate the polymerization of the colored resist, heating can be performed as necessary. According to the photolithography method, the color filter substrate 5 with higher accuracy than the printing method can be manufactured.
  • an aqueous solution such as sodium carbonate or sodium hydroxide is used as an alkali developer, and an organic alkali such as dimethylbenzylamine or triethanolamine can also be used.
  • an antifoamer and surfactant can also be added to a developing solution.
  • a development processing method a shower development method, a spray development method, a dip (immersion) development method, a paddle (liquid accumulation) development method, or the like can be applied.
  • a water-soluble or alkaline water-soluble resin such as polyvinyl alcohol or a water-soluble acrylic resin is applied and dried to form a film that prevents polymerization inhibition by oxygen. Thereafter, ultraviolet exposure can also be performed.
  • Method for forming ultraviolet transmissive region As a method for forming the ultraviolet transmissive region 15, when the ultraviolet transmissive region 15 is an opening as shown in FIG. 1 (first example), a pattern forming method such as a printing method or a photolithography method is used. The color filter layer 14 may be patterned in a portion other than the ultraviolet light transmitting region 15.
  • the ultraviolet transmissive region 15 is a thin color filter layer 14 as shown in FIG. 2 (second example)
  • the colored composition formed on the substrate 1 is exposed to ultraviolet rays through a mask.
  • the uncured portion of the ultraviolet transmission region 15 is removed in the subsequent development process to reduce the film thickness.
  • the method to do is simple.
  • a method of performing a plurality of exposures using a plurality of photomasks a method of using a halftone mask having a plurality of regions having different light transmittances , A method using a gray-tone mask having a plurality of regions composed of portions having slits less than the resolution of the exposure machine, a method using a wavelength limiting mask having a plurality of regions having different light transmission wavelengths, and a light beam such as an electron beam
  • a method of drawing by scanning or a combination thereof is conceivable, but is not limited thereto.
  • the ultraviolet transmissive region 15 is formed using a material having good ultraviolet transmissive properties as shown in FIG. 3 (third example)
  • a pattern is formed in each region by a pattern forming method such as a printing method or a photolithography method. It may be formed.
  • the material for forming the light scattering layer 16 As the material for forming the light scattering layer 16, as described above, for example, a material having light scattering properties by dispersing particles having a high refractive index such as titania in a transparent resin having light transmittance. .
  • the transparent resin includes a thermoplastic resin, a thermosetting resin, and a photosensitive resin.
  • the light scattering layer 16 is formed by patterning only on the ultraviolet transmissive region 15 as shown in FIG. 9A by, for example, a printing method or a photolithography method, or formed on the entire surface of the pixel as shown in FIG. 9B.
  • the organic EL element substrate 10 uses a driving substrate on which a thin film transistor (TFT) is formed.
  • TFT thin film transistor
  • a known thin film transistor can be used as the thin film transistor.
  • a thin film transistor mainly including an active layer in which a source / drain region and a channel region are formed, a gate insulating film, and a gate electrode can be given.
  • the structure of the thin film transistor is not particularly limited, and examples thereof include a staggered type, an inverted staggered type, a bottom gate type, a top gate type, and a coplanar type.
  • the thin film transistor is connected so as to function as a switching element of the organic EL element, and the drain electrode of the transistor and the reflective electrode 8 of the organic EL element 30 are electrically connected.
  • the reflective electrode 8 may be partitioned by a partition wall (not shown).
  • the partition wall is formed so as to partition a light emitting region corresponding to the pixel.
  • an active matrix drive type display device has a reflective electrode 8 formed for each pixel, and each pixel tries to occupy as large an area as possible, and is formed so as to cover an end of the reflective electrode 8.
  • the most preferable shape of the partition is basically a lattice shape.
  • Examples of the method for forming the partition include a method in which an inorganic film is uniformly formed and masked with a resist and then dry etching, and a method in which a photosensitive resin is stacked and a predetermined pattern is formed by a photolithography method. If necessary, a water repellent can be added, or plasma or UV can be irradiated to impart liquid repellency to the ink after formation.
  • a preferable height of the partition wall is 0.1 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 2 ⁇ m or less. If the height of the partition wall exceeds 10 ⁇ m, the formation and sealing of the counter electrode is hindered. If the height of the partition wall is less than 0.1 ⁇ m, the end of the reflective electrode 8 cannot be covered, or the adjacent pixel is short-circuited when the light emitting medium layer is formed. This is because there is a risk of color mixing.
  • the reflective electrode 8 is made of a material that reflects light from the light emitting layer, such as Ag or Al.
  • an ITO film may be laminated on a metal material such as Ag or Al.
  • the optimum value of the thickness of the reflective electrode 8 varies depending on the element configuration of the organic EL display, it is not less than 100 mm and not more than 10,000 mm, more preferably not more than 3000 mm, regardless of single layer or stacked layers.
  • a dry film forming method such as a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, a sputtering method, a gravure printing method, or a screen printing method is used.
  • a wet film-forming method such as a method or a combination of these can be used.
  • the organic layer 7 can be formed of a single layer film or a multilayer film containing at least a light emitting substance.
  • Examples of the configuration in the case of forming a multilayer film include a hole transport layer, an electron transporting light emitting layer or a hole transporting light emitting layer, a two-layer structure comprising an electron transport layer, a hole transport layer, a light emitting layer, and an electron transport layer.
  • hole transport materials include metal phthalocyanines such as copper phthalocyanine and tetra (t-butyl) copper phthalocyanine, and metal-free phthalocyanines, quinacridone compounds, 1,1-bis (4-di-p-tolylaminophenyl) Cyclohexane, N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine, N, N′-di (1-naphthyl) -N, Aromatic amine low molecular hole injection and transport materials such as N′-diphenyl-1,1′-biphenyl-4,4′-diamine, polyaniline, polythiophene, polyvinylcarbazole, poly (3,4-ethylenedioxythiophene) ) and polymer hole transport materials such as a mixture of polystyrene sulfonic acid, polythiophene oligo
  • an interlayer layer is preferably formed on the hole transport material.
  • materials used for the interlayer layer include polymers containing aromatic amines such as polyvinyl carbazole or derivatives thereof, polyarylene derivatives having aromatic amines in the side chain or main chain, arylamine derivatives, and triphenyldiamine derivatives. . These materials can be dissolved or dispersed in a solvent and formed using various coating methods such as spin coating or letterpress printing.
  • Examples of the light emitting material include 9,10-diarylanthracene derivatives, pyrene, coronene, perylene, rubrene, 1,1,4,4-tetraphenylbutadiene, tris (8-quinolinolato) aluminum complex, tris (4-methyl-8- Quinolinolato) aluminum complex, bis (8-quinolinolato) zinc complex, tris (4-methyl-5-trifluoromethyl-8-quinolinolato) aluminum complex, tris (4-methyl-5-cyano-8-quinolinolato) aluminum complex, Bis (2-methyl-5-trifluoromethyl-8-quinolinolato) [4- (4-cyanophenyl) phenolate] aluminum complex, bis (2-methyl-5-cyano-8-quinolinolato) [4- (4- Cyanophenyl) phenolate] aluminum complex, tri (8-quinolinolato) scandium complex, bis [8- (para-tosyl) aminoquinoline] zinc complex and cadmi
  • polymer materials such as polyfluorene, polyparaphenylene vinylene, polythiophene, and polyspiro, materials obtained by dispersing or copolymerizing the low molecular materials in these polymer materials, and other existing fluorescent light emitting materials and phosphorescent light emitting materials are used. be able to.
  • the light emitting material when the color filter layer 14 is a color conversion layer it is preferable to use a material that emits light having a wavelength from near ultraviolet light to a blue light emitting region.
  • the change in color purity with time and the life of the organic layer 7 are uniform. There is no need to consider the aging and life of each color.
  • electron transport materials examples include 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole, 2,5-bis (1-naphthyl) -1 3,4-oxadiazole, oxadiazole derivatives, bis (10-hydroxybenzo [h] quinolinolato) beryllium complexes, triazole compounds, and the like can be used.
  • these electron transport materials may be used as an electron injection layer by doping a small amount of alkali metal or alkaline earth metal having a low work function such as sodium, barium, or lithium.
  • the film thickness of the organic layer 7 is 1000 nm or less, preferably about 50 to 200 nm, even when formed by a single layer or a stacked layer.
  • the organic layer 7 can be formed by vacuum deposition, various coating methods such as slit coating, spin coating, spray coating, nozzle coating, flexographic printing, gravure printing, micro gravure printing, intaglio offset printing, A printing method, an inkjet method, or the like can be used.
  • the light transmissive electrode 6 a material having a high electron injection efficiency into the organic light emitting medium layer 15, a low work function, and a light transmissive material is used. Specifically, a single metal such as Mg, Al, Yb is used, or a compound such as Ba, Ca, Li, its oxide, or fluoride is sandwiched by about 1 nm at the interface in contact with the light emitting medium. High Al and Cu can be laminated and used. Alternatively, in order to achieve both electron injection efficiency and stability, one or more metals such as Li, Mg, Ca, Sr, La, Ce, Er, Eu, Sc, Y, and Yb having a low work function and stable Ag, Al An alloy system with a metal element such as Cu or Cu may be used.
  • a single metal such as Mg, Al, Yb is used, or a compound such as Ba, Ca, Li, its oxide, or fluoride is sandwiched by about 1 nm at the interface in contact with the light emitting medium.
  • alloys such as MgAg, AlLi, and CuLi can be used.
  • transparent metal composite oxides such as ITO (indium tin composite oxide), indium zinc composite oxide, and zinc aluminum composite oxide may be laminated.
  • the organic light emitting medium layer 15 may be laminated with a metal oxide such as ITO by doping a small amount of a metal such as Li or Ca having a low work function.
  • a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, or a sputtering method can be used depending on the material.
  • the thickness of the light transmissive electrode 6 is preferably about 0.1 to 10 nm when a metal material such as Ca or Li is used. If the thickness is less than 0.1 nm, there may be a portion that is not formed depending on the film forming method or the surface state of the organic layer.
  • a sealing layer is applied on the outer periphery of the color filter substrate 5 by a dispenser device, and a filler made of a photo-curing resin is dropped inside the sealing layer.
  • the inside of the vacuum chamber is sealed and the exhaust valve is opened to reduce the pressure in the chamber to about 1 to 10 Pa. .
  • the exhaust valve is opened to reduce the pressure in the chamber to about 1 to 10 Pa.
  • one of the holders is lowered, the holders are overlapped with each other, are aligned again, and are bonded together. After bonding, the chamber is returned to atmospheric pressure and taken out.
  • the sealing layer is formed of an adhesive such as a thermosetting type or an ultraviolet curable type, and may contain glass beads, silica beads, or the like. These beads define the distance between the substrates 5 and 10 when the color filter substrate 5 and the organic EL element substrate 10 are bonded together.
  • spherical spacers such as glass beads and silica beads may be dispersed between the substrates. It is also possible to use a columnar spacer such as an acrylic resin provided on the color filter substrate 5 by a photolithography method or the like.
  • the organic EL element substrate 10 of the present embodiment forms a thin film transistor in each pixel region X on the glass substrate 9.
  • a reflective electrode 8 made of silver is formed as an anode, and ITO is formed thereon.
  • an insulating layer was formed using a photoresist material between the pixels so as to cover the end of the pixel line.
  • a PEDOT: PSS 1.5 wt aqueous solution was formed as a hole transport layer by spin coating so as to have a film thickness of 40 nm.
  • substrate 9 was fixed to the sheet-fed type letterpress printing apparatus, and the organic luminescent ink of each color was printed.
  • the organic light emitting layer was printed so that the red organic light emitting layer, the green organic light emitting layer, and the blue organic light emitting layer were arranged in a stripe pattern. After printing for each color, drying was performed at 130 ° C. for 1 hour in an oven. After drying, calcium is deposited to a thickness of 4 nm as a first cathode having a low work function so that electrons can be efficiently injected onto the organic light emitting layer formed by printing. As the cathode, aluminum was deposited to a thickness of 2 nm. Here, aluminum has a role to prevent calcium as the first cathode from being chemically altered when the transparent electrode 6 formed thereon is formed by sputtering.
  • a transparent conductive film was formed on the cathode by a sputtering method.
  • ITO was used as the transparent conductive film, and the average transmittance in the wavelength range of 300 nm to 400 nm was controlled to 5% according to the film forming conditions so as to fulfill the function of the ultraviolet ray preventing layer.
  • a passivation film 17 was formed by depositing 200 nm of silicon nitride on the transparent conductive film by a CVD method.
  • the substrate was spray-developed using a sodium carbonate aqueous solution at 23 ° C., washed with ion-exchanged water, and air-dried. Further, baking was performed at 230 ° C. for 30 minutes in a clean oven to form a red color filter layer 14 on the substrate.
  • the green color filter layer 14 was similarly formed using the green color composition, and the blue color filter layer 14 was further formed using the blue color composition.
  • the thickness of the black matrix layer was 1.0 ⁇ m
  • the thickness of each color filter layer 14 was 2.0 ⁇ m.
  • a sealing layer is applied on the outer periphery of the color filter substrate 5 by a dispenser device, and a filler is dropped inside the sealing layer. Then, bonding was performed in a vacuum chamber. The ultimate pressure in the chamber at this time was 1 Pa. Next, the bonded substrate was taken out of the chamber and exposed to ultraviolet rays. A metal halide lamp was used as the light source of the ultraviolet exposure machine, the illuminance at a wavelength of 365 nm was 100 mW / cm 2, and the exposure amount was 6000 mJ / cm 2. Further, baking was performed at 80 ° C. for 60 minutes in a clean oven to bond the substrates together. At this time, the distance between the color filter substrate 5 and the organic EL element substrate 10 was 6.0 ⁇ m.
  • the organic EL display device was left in a constant temperature and humidity chamber at a temperature of 60 ° C. and a humidity of 90%, and deterioration of pixel emission was observed. According to this observation, since no deterioration was observed until 1500 hours, it was found that the sealing performance as a display was satisfied. In addition, when the organic EL light emission efficiency before and after performing ultraviolet exposure to the filler was measured, no decrease in the light emission efficiency value was observed, indicating that damage to the organic EL due to ultraviolet light was suppressed. It was.
  • SYMBOLS 1 Transparent substrate, 2R ... Red color filter layer, 2G ... Green color filter layer, 2B ... Blue color filter layer, 2R '... Red conversion layer, 2G' ... Green conversion layer, 2B '... Blue conversion layer, 3 ... Opening Part (ultraviolet ray transmission region), 4 ... black matrix layer, 5 ... color filter substrate, 6 ... light transmitting electrode, 7 ... organic layer, 7R ... red light emitting organic layer, 7G ... green light emitting organic layer, 7B ... blue light emitting organic Layer, 7W ... white light emitting organic layer, 8 ... reflective electrode, 9 ... substrate, 10 ... organic EL element substrate, 11 ... photocurable resin, 12 ...
  • color filter thin film part (ultraviolet ray transmission region), 13 ... color filter Dissimilar materials (ultraviolet transmission region), 14 ... color filter layer, 15 ... ultraviolet transmission region, 16 ... light scattering layer, 17 ... passivation layer, 18 ... ultraviolet prevention layer, 19 ... light transmissive electrode / ultraviolet prevention Use layer, 30 ... organic EL element

Abstract

Disclosed are: a color filter substrate (5) for an organic EL display device, which enables the satisfactory curing of a photocurable resin formed between a color filter and an organic EL display device upon the irradiation with ultraviolet ray; and an organic EL display device. Specifically disclosed is an organic EL display device, in which an organic EL element substrate (10) having organic EL elements (30) formed therein and a color filter substrate (5) having multiple color filter layers (14) formed therein are adhered to each other through an adhesive layer (11) comprising a photocurable resin, wherein the multiple color filter layers (14) are so arranged as to correspond to the organic EL elements (30). On a part of pixel regions that form the color filter layers (14), an ultraviolet-ray-transmittable region (15) through which ultraviolet ray can be transmitted for curing the photocurable resin is provided.

Description

有機EL表示装置、カラーフィルタ基板、及び有機EL表示装置の製造方法Organic EL display device, color filter substrate, and organic EL display device manufacturing method
 本発明は、カラーフィルタ基板と有機EL素子基板との間に形成される光硬化性樹脂からなる接着層を、紫外線によって硬化する有機EL表示装置用のカラーフィルタ基板、および有機EL表示装置に関する。 The present invention relates to a color filter substrate for an organic EL display device, and an organic EL display device, in which an adhesive layer made of a photocurable resin formed between a color filter substrate and an organic EL element substrate is cured by ultraviolet rays.
 有機EL表示装置は、薄型であることによる省スペース性および軽量性、10V程度の印加電圧であっても高輝度な発光が得られるなどの特徴から、近年ディスプレイへの応用が期待されている。
 有機EL表示装置は、発光可能な有機層を一対の電極で挟んだ構成を有する。有機層は基本的に正孔輸送層、発光層、および電子輸送層を積層したものである。電極としては、光を取り出す側に例えばITO(Indium Tin Oxide)などの透明電極を用い、対向する基板側に例えばアルミニウムなどの反射金属電極を用いる。このような構成において、一対の電極から各々電子と正孔を、電子輸送層および正孔輸送層を介して発光層に注入し、発光層において電子と正孔を再結合させて発光させる。アクティブマトリクス方式では、薄膜トランジスタ(TFT)を設けた基板上に各層を形成するが、発光層からの発光をTFT基板の反対側から取り出す構造(トップエミッション構造)とすることで、TFT基板上の配線に関係なく光を取り出せるので、開口率を上げることが可能である。
The organic EL display device is expected to be applied to a display in recent years because of its features such as space saving and light weight due to its thinness and high luminance emission even at an applied voltage of about 10V.
The organic EL display device has a configuration in which an organic layer capable of emitting light is sandwiched between a pair of electrodes. The organic layer is basically a laminate of a hole transport layer, a light emitting layer, and an electron transport layer. As the electrodes, a transparent electrode such as ITO (Indium Tin Oxide) is used on the light extraction side, and a reflective metal electrode such as aluminum is used on the opposite substrate side. In such a structure, electrons and holes are respectively injected from the pair of electrodes into the light emitting layer through the electron transport layer and the hole transport layer, and the electrons and holes are recombined in the light emitting layer to emit light. In the active matrix method, each layer is formed on a substrate provided with a thin film transistor (TFT). By adopting a structure (top emission structure) in which light emitted from the light emitting layer is extracted from the opposite side of the TFT substrate, wiring on the TFT substrate is performed. Since the light can be extracted regardless of the aperture ratio, the aperture ratio can be increased.
 カラー映像を表示させる有機EL表示装置は、三原色(RGB)の有機EL素子(有機EL画素)を順序良く基板上に並べた構造となっており、それぞれの有機EL素子がサブピクセルとなる。また、RGBの有機EL素子を基板上に形成する方法としては、例えば三原色の発光材料をそれぞれ独立に塗り分ける方式、白色発光をカラーフィルタにて三原色に分ける方式、三原色の発光材料の上にカラーフィルタを設けた方式を挙げることが出来る。ここで、カラーフィルタは、発光層からの発光の色純度の向上と、外光の反射の抑制を同時に満たすことができるため、これを用いた構造が有望である。 An organic EL display device that displays a color image has a structure in which three primary color (RGB) organic EL elements (organic EL pixels) are arranged in order on a substrate, and each organic EL element is a sub-pixel. In addition, as a method of forming RGB organic EL elements on a substrate, for example, a method in which three primary color light emitting materials are separately applied, a method in which white light emission is divided into three primary colors by a color filter, a color on a three primary color light emitting material A system provided with a filter can be mentioned. Here, since the color filter can simultaneously satisfy the improvement in color purity of light emission from the light emitting layer and the suppression of reflection of external light, a structure using this is promising.
 ここで、カラーフィルタ基板と有機EL素子基板は接着層を介して接合される。接着層としては、例えば、熱硬化性樹脂または紫外線硬化性樹脂(光硬化樹脂)があげられる。熱硬化性樹脂を用いた場合、熱硬化時に熱硬化性樹脂の粘度が低下するため基板同士が動きやすくなり、有機EL素子とカラーフィルタ層の位置合わせが困難となる場合がある。また、紫外線硬化性樹脂を用いた場合は、カラーフィルタ基板を通して紫外線を照射して紫外線硬化性樹脂を硬化させるが、カラーフィルタ層の紫外線領域の透過率は、色や濃さにもよるが、紫外光波長領域においてほぼ一桁となるため、紫外線硬化性樹脂を硬化させることは困難であった。 Here, the color filter substrate and the organic EL element substrate are bonded via an adhesive layer. Examples of the adhesive layer include a thermosetting resin or an ultraviolet curable resin (photo curable resin). When the thermosetting resin is used, the viscosity of the thermosetting resin decreases during thermosetting, so that the substrates easily move, and it may be difficult to align the organic EL element and the color filter layer. In addition, when an ultraviolet curable resin is used, the ultraviolet curable resin is cured by irradiating ultraviolet rays through the color filter substrate, but the transmittance in the ultraviolet region of the color filter layer depends on the color and density, Since it is almost an order of magnitude in the ultraviolet wavelength region, it is difficult to cure the ultraviolet curable resin.
 上記課題を解決する従来技術として、たとえば特許文献1や特許文献2に記載の技術がある。
 特許文献1では、赤色カラーフィルタ層と青色カラーフィルタ層の300~430nm波長領域の光透過率を10%以上とすることと、緑色カラーフィルタ層にカラーフィルタ層を形成しない開口部を設けることで、紫外線を透過させて紫外線硬化性樹脂を硬化させる手法が提案されている。
 また、特許文献2では、カラーフィルタ層の周囲に設けられるブラックマトリクス層に、光硬化性樹脂を硬化させる紫外線を導入するための開口部を形成する手法が提案されている。
As conventional techniques for solving the above problems, there are techniques described in Patent Document 1 and Patent Document 2, for example.
In Patent Document 1, the light transmittance in the wavelength region of 300 to 430 nm of the red color filter layer and the blue color filter layer is set to 10% or more, and an opening that does not form the color filter layer is provided in the green color filter layer. There has been proposed a method of transmitting an ultraviolet ray to cure the ultraviolet curable resin.
Patent Document 2 proposes a method of forming an opening for introducing ultraviolet rays for curing a photocurable resin in a black matrix layer provided around a color filter layer.
特開2003-86358号公報JP 2003-86358 A 特開2007-103027号公報JP 2007-103027 A
 しかし、特許文献1の方法では、赤色カラーフィルタ層と青色カラーフィルタ層において、紫外線硬化性樹脂に照射する紫外線の照射量をおおよそ10倍にする必要があり、それに伴う発熱や工程タクトタイムの悪化が懸念される。また、緑色カラーフィルタ層では、カラーフィルタ層がない開口部を設けているので、紫外線による有機EL素子の劣化が懸念される。 However, in the method of Patent Document 1, it is necessary to increase the amount of ultraviolet rays irradiated to the ultraviolet curable resin approximately 10 times in the red color filter layer and the blue color filter layer. Is concerned. Further, since the green color filter layer is provided with an opening having no color filter layer, there is a concern that the organic EL element is deteriorated by ultraviolet rays.
 また、特許文献2の方法では、ブラックマトリクス層に開口部を設けることで、紫外線が透過しても、下部に有機EL素子がないために劣化がおこらない。しかし、ブラックマトリクス層は開口率を向上させるために細線であることが求められ、そこに紫外線を透過するような開口部を設けることはフォトリソグラフィー法のパターニング精度からも難しい。
 本発明は上記課題を解決するためになされたものであり、カラーフィルタ基板と有機EL素子基板の間に形成された光硬化性樹脂からなる接着層を、紫外線によって十分に硬化させることができる有機EL表示装置用のカラーフィルタ基板および有機EL表示装置を提供することを目的とする。
Further, in the method of Patent Document 2, by providing an opening in the black matrix layer, even if ultraviolet rays are transmitted, no deterioration occurs because there is no organic EL element below. However, the black matrix layer is required to be a thin line in order to improve the aperture ratio, and it is difficult to provide an opening that transmits ultraviolet light there from the patterning accuracy of the photolithography method.
The present invention has been made to solve the above-mentioned problems, and is an organic material that can sufficiently cure an adhesive layer made of a photocurable resin formed between a color filter substrate and an organic EL element substrate with ultraviolet rays. It is an object of the present invention to provide a color filter substrate for an EL display device and an organic EL display device.
 上記課題を解決するための本発明の構成を以下に示す。
 請求項1に記載の発明は、基板と、その基板上に第1電極、発光層を少なくとも含む有機層、及び第2電極の順番で積層配置されて上記発光層で発生した光を第2電極側から取り出す複数の有機EL素子と、を備える有機EL素子基板と、 透光性の基板と、その基板に対し上記有機EL素子に対応して形成した複数のカラーフィルタ層と、を備えるカラーフィルタ基板と、上記有機EL素子基板と上記カラーフィルタ基板との間に介装し両者を接合する光硬化性樹脂からなる接着層と、からなる有機EL表示装置に使用される上記カラーフィルタ基板であって、 上記カラーフィルタ層を形成する画素領域の一部に、上記光硬化性樹脂を硬化するための紫外線を透過可能とする紫外線透過領域を設けたことを特徴とするものである。
A configuration of the present invention for solving the above-described problems is shown below.
According to the first aspect of the present invention, the light generated in the light emitting layer is formed by stacking the substrate, the first electrode on the substrate, the organic layer including at least the light emitting layer, and the second electrode in this order. A color filter comprising: an organic EL element substrate including a plurality of organic EL elements extracted from the side; a translucent substrate; and a plurality of color filter layers formed on the substrate corresponding to the organic EL elements. The color filter substrate used in an organic EL display device comprising: a substrate; and an adhesive layer made of a photocurable resin interposed between and bonded to the organic EL element substrate and the color filter substrate. In addition, an ultraviolet light transmitting region that transmits ultraviolet light for curing the photocurable resin is provided in a part of a pixel region that forms the color filter layer.
 次に、請求項2に記載した発明は、請求項1記載した構成に対し、上記紫外線透過領域を通過した紫外光を散乱させる光散乱層を設けることを特徴とするものである。
 次に、請求項3に記載の発明は、請求項1又は請求項2に記載した構成に対し、上記紫外線透過領域は、紫外光波長領域の光に対し光透過率が30%以上となる領域を少なくとも有することを特徴とする者である。
Next, the invention described in claim 2 is characterized in that a light scattering layer that scatters ultraviolet light that has passed through the ultraviolet transmission region is provided in the configuration described in claim 1.
Next, the invention described in claim 3 is the region in which the ultraviolet transmission region is a region in which the light transmittance is 30% or more with respect to the light in the ultraviolet wavelength region with respect to the configuration described in claim 1 or claim 2. It is a person characterized by having at least.
 次に、請求項4に記載した発明は、請求項1~請求項3のいずれか1項に記載した構成に対し、上記紫外線透過領域には、カラーフィルタ層を形成しないことを特徴とするものである。
 次に、請求項5に記載した発明は、請求項1~請求項3のいずれか1項に記載した構成に対し、上記紫外線透過領域にもカラーフィルタ層を形成し、紫外線透過領域の膜厚を当該紫外線透過領域以外のカラーフィルタ層領域の膜厚よりも薄くすることで紫外線透過性を確保することを特徴とするものである。
Next, the invention described in claim 4 is characterized in that, in contrast to the structure described in any one of claims 1 to 3, a color filter layer is not formed in the ultraviolet transmission region. It is.
Next, in the invention described in claim 5, in the structure described in any one of claims 1 to 3, a color filter layer is formed also in the ultraviolet transmission region, and the film thickness of the ultraviolet transmission region is increased. Is made thinner than the film thickness of the color filter layer region other than the ultraviolet light transmitting region to ensure the ultraviolet light transmitting property.
 次に、請求項6に記載した発明は、請求項1~請求項3、又は請求項5のいずれか1項に記載した構成に対し、上記紫外線透過領域にもカラーフィルタ層を形成し、紫外線透過領域のカラーフィルタ層を構成する材料として、紫外線透過領域以外のカラーフィルタ層を構成する材料よりも紫外線透過率の高い材料を使用することを特徴とするものである。
 次に、請求項7に記載した発明は、請求項1~請求項6のいずれか1項に記載した構成に対し、前記カラーフィルタ層を構成する材料が、少なくとも吸収波長と異なる波長を含む光を出力する色変換材料を含むことを特徴とするものである。
 次に、請求項8に記載した発明は、請求項1~請求項7のいずれか1項に記載したカラーフィルタ基板を有する有機EL表示装置を提供するものである。
 次に、請求項9に記載した発明は、請求項8に記載した構成に対し、上記接着層と有機層との間に、紫外線の透過を抑制する1層以上の紫外線防止層を設けることを特徴とするものである。
Next, the invention described in claim 6 is the same as the structure described in any one of claims 1 to 3 or 5, wherein a color filter layer is formed also in the ultraviolet transmission region, As a material constituting the color filter layer in the transmissive region, a material having a higher ultraviolet transmittance than a material constituting the color filter layer other than the ultraviolet transmissive region is used.
Next, the invention described in claim 7 is the light of the structure described in any one of claims 1 to 6, wherein the material constituting the color filter layer includes at least a wavelength different from the absorption wavelength. The color conversion material which outputs is included.
Next, an invention described in claim 8 provides an organic EL display device having the color filter substrate described in any one of claims 1 to 7.
Next, in the invention described in claim 9, in the configuration described in claim 8, one or more ultraviolet ray preventing layers for suppressing the transmission of ultraviolet rays are provided between the adhesive layer and the organic layer. It is a feature.
 次に、請求項10に記載した発明は、発光層を含む有機層を一対の電極で挟んで構成される複数の有機EL素子を備える有機EL素子基板と、上記有機EL素子に対応するカラーフィルタ層を備えるカラーフィルタ基板と、を光硬化性樹脂で接合する有機EL表示装置の製造方法において、
 上記カラーフィルタ基板を製造する際に、上記カラーフィルタ層を形成する画素領域の一部に、上記光硬化性樹脂を硬化するための紫外線を透過可能とする紫外線透過領域を設けた後、
 上記有機EL素子基板とカラーフィルタ基板有機とを対向配置し、その間に光硬化性樹脂ならなる充填剤を充填した後、紫外線を上記紫外線透過領域を通じて上記充填剤に照射して当該充填剤を硬化させることで、上記有機EL素子基板とカラーフィルタ基板有機とを接合することを特徴とするものである。
Next, the invention described in claim 10 is an organic EL element substrate including a plurality of organic EL elements each having an organic layer including a light emitting layer sandwiched between a pair of electrodes, and a color filter corresponding to the organic EL element. In a method for manufacturing an organic EL display device in which a color filter substrate including a layer is bonded with a photocurable resin,
When producing the color filter substrate, after providing an ultraviolet transmissive region capable of transmitting ultraviolet light for curing the photocurable resin in a part of the pixel region forming the color filter layer,
The organic EL element substrate and the color filter substrate organic are arranged opposite to each other, and after filling with a filler made of a photocurable resin, the filler is cured by irradiating the filler with ultraviolet rays through the ultraviolet transmission region. By doing so, the organic EL element substrate and the color filter substrate organic are bonded together.
 次に、請求項11に記載した発明は、請求項10に記載した構成に対して、上記カラーフィルタ基板に対し、上記紫外線透過領域よりも有機EL素子基板側に、紫外光を散乱させる光散乱層を設けた状態で、上記紫外線の照射を行うことを特徴とするものである。
 次に、請求項12に記載した発明は、請求項10又は請求項11に記載した構成に対し、有機EL素子基板に対し、上記有機層より上側に紫外線防止層を積層配置した状態で、上記紫外線の照射を行うことを特徴とするものである。
Next, according to an eleventh aspect of the present invention, in the structure described in the tenth aspect, light scattering is performed to scatter ultraviolet light toward the organic EL element substrate side with respect to the color filter substrate with respect to the ultraviolet transmissive region. The ultraviolet irradiation is performed in a state where the layer is provided.
Next, the invention described in claim 12 is the structure described in claim 10 or claim 11, in a state where an ultraviolet prevention layer is laminated on the organic EL element substrate above the organic layer. It is characterized by irradiating with ultraviolet rays.
 請求項1に係る発明によれば、カラーフィルタ層の画素領域の一部に紫外線透過領域を設けることで、カラーフィルタ基板を通して紫外線を照射して光硬化性樹脂を硬化させる場合、紫外光透過領域下にある光硬化性樹脂を確実に硬化させることが可能となる。また、熱併用型の光硬化性樹脂の場合は、その後の加熱工程を経ることで紫外光透過領域以外の部分にも重合反応が広がり、パネル全面に硬化を進めることが可能となる。 According to the first aspect of the present invention, when the ultraviolet ray transmitting region is provided in a part of the pixel region of the color filter layer, and the photocurable resin is cured by irradiating the ultraviolet ray through the color filter substrate, the ultraviolet light transmitting region. It is possible to reliably cure the underlying photocurable resin. Further, in the case of a heat combined type photo-curing resin, the polymerization reaction spreads to a part other than the ultraviolet light transmitting region through the subsequent heating step, and the entire panel can be cured.
 また請求項2に係る発明によれば、紫外線透過領域上に紫外光に対して光散乱性を示す光散乱層を設け入射してきた紫外光を散乱させることで、紫外線透過領域よりも広い領域の光硬化性樹脂を硬化させることが可能となる。
 これは、画素領域に形成する紫外線透過領域の面積を抑えることに繋がる。
 また請求項3に係る発明によれば、タクトタイムを大幅に増やすことなく、重合に必要な露光量の紫外線を紫外光透過領域下にある光硬化性樹脂に照射することが可能となる。
 紫外光波長領域とは、440nm以下の波長領域とする。
According to the second aspect of the present invention, a light scattering layer that exhibits light scattering properties with respect to ultraviolet light is provided on the ultraviolet transmission region and the incident ultraviolet light is scattered, so that a wider area than the ultraviolet transmission region can be obtained. It is possible to cure the photocurable resin.
This leads to a reduction in the area of the ultraviolet transmission region formed in the pixel region.
According to the third aspect of the present invention, it is possible to irradiate the photocurable resin under the ultraviolet light transmitting region with an ultraviolet ray having an exposure amount necessary for polymerization without significantly increasing the tact time.
The ultraviolet light wavelength region is a wavelength region of 440 nm or less.
 また請求項4に係る発明によれば、紫外線透過領域において、カラーフィルタ層を形成しないことで、紫外線が吸収されることなく透過することができる。
 また請求項5に係る発明によれば、紫外線透過領域において、カラーフィルタ層の膜厚を紫外線透過領域以外の領域よりも薄くすることで、紫外線の吸収を抑制しつつ、カラーフィルタ層一画素中の色純度を向上させることが可能となる。
According to the fourth aspect of the present invention, ultraviolet rays can be transmitted without being absorbed by not forming the color filter layer in the ultraviolet transmission region.
According to the invention of claim 5, in the ultraviolet light transmitting region, the color filter layer is made thinner than the region other than the ultraviolet light transmitting region, so that the absorption of ultraviolet rays is suppressed, and the color filter layer in one pixel. It becomes possible to improve the color purity.
 また請求項6に係る発明によれば、紫外線透過領域に用いられるカラーフィルタ材料を、紫外線透過領域以外の部分に用いられる材料よりも紫外線透過率の高いものとすることで、紫外線の吸収を抑制しつつ、カラーフィルタ層を構成する一画素中の色純度を向上させることが可能となる。
 また、請求項7に係る発明によれば、有機層7は同一の発光材料が用いられるため、有機層7の色純度の経時変化や寿命が均一であるため、3色方式のように各色の経時変化や寿命を考慮する必要が無い。
 また請求項8に係る発明によれば、カラーフィルタ基板と有機EL素子基板との間に形成される光硬化性樹脂からなる接着層を、紫外線によって確実に硬化出来る。
According to the invention of claim 6, the color filter material used in the ultraviolet transmission region has higher ultraviolet transmittance than the material used in the part other than the ultraviolet transmission region, thereby suppressing the absorption of ultraviolet rays. However, the color purity in one pixel constituting the color filter layer can be improved.
Further, according to the invention of claim 7, since the same light emitting material is used for the organic layer 7, the change in color purity with time and the lifetime of the organic layer 7 are uniform. There is no need to consider aging and life.
According to the eighth aspect of the invention, the adhesive layer made of a photocurable resin formed between the color filter substrate and the organic EL element substrate can be reliably cured with ultraviolet rays.
 また請求項9に係る発明によれば、有機ELへの紫外線によるダメージを抑制することが可能となる。
 紫外線防止層は、紫外光波長領域の光の光透過率が10%以下、望ましくは5%以下に出来る構成とする。
 また請求項10に係る発明によれば、カラーフィルタ基板と有機EL素子基板との間に形成される光硬化性樹脂からなる接着層を、紫外線によって確実に硬化出来る。
Moreover, according to the invention which concerns on Claim 9, it becomes possible to suppress the damage by the ultraviolet-ray to organic EL.
The ultraviolet ray preventing layer has a structure that allows the light transmittance of light in the ultraviolet wavelength region to be 10% or less, desirably 5% or less.
According to the invention of claim 10, the adhesive layer made of a photocurable resin formed between the color filter substrate and the organic EL element substrate can be reliably cured with ultraviolet rays.
 また請求項11に係る発明によれば、画素領域に形成する紫外線透過領域の面積を抑えつつ、カラーフィルタ基板と有機EL素子基板との間に形成される光硬化性樹脂からなる接着層を、紫外線によって確実に硬化出来る。
 また請求項12に係る発明によれば、有機ELへの紫外線によるダメージを抑制することが可能となる。
According to the invention of claim 11, the adhesive layer made of a photocurable resin formed between the color filter substrate and the organic EL element substrate while suppressing the area of the ultraviolet light transmitting region formed in the pixel region, It can be reliably cured by ultraviolet rays.
According to the twelfth aspect of the present invention, damage to the organic EL due to ultraviolet rays can be suppressed.
本発明に基づく実施形態に係る有機EL表示装置の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescence display which concerns on embodiment based on this invention. 本発明に基づく実施形態に係る有機EL表示装置の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescence display which concerns on embodiment based on this invention. 本発明に基づく実施形態に係る有機EL表示装置の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescence display which concerns on embodiment based on this invention. 本発明に基づく実施形態に係る有機EL表示装置の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescence display which concerns on embodiment based on this invention. 本発明に基づく実施形態に係る有機EL表示装置の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescence display which concerns on embodiment based on this invention. 本発明に基づく実施形態に係るカラーフィルタ基板に形成する紫外線透過領域パターンの一例を示す平面図である。It is a top view which shows an example of the ultraviolet transmissive area | region pattern formed in the color filter substrate which concerns on embodiment based on this invention. カラーフィルタ基板に形成する紫外線透過領域パターンの別例を示す平面図である。It is a top view which shows another example of the ultraviolet transmissive area | region pattern formed in a color filter board | substrate. 本発明に基づく実施形態に係る紫外線防止層の一例を説明するための断面図である。It is sectional drawing for demonstrating an example of the ultraviolet-ray prevention layer which concerns on embodiment based on this invention. 本発明に基づく実施形態に係る光散乱層の一例を説明するための断面図である。It is sectional drawing for demonstrating an example of the light-scattering layer which concerns on embodiment based on this invention.
 次に、本発明に係る実施形態について図面を参照して説明する。
 本実施形態の有機EL表示装置は、カラーフィルタ基板5と有機EL素子基板10とを接合する光硬化性樹脂を紫外線によって十分に硬化させる構成を備える。その構成としてカラーフィルタ層14を形成する各画素領域Xの一部に紫外線透過領域15を設ける。また、照射した紫外線による有機層7のダメージを抑制するために、光硬化性樹脂からなる接着層11と有機層7との間に紫外線防止層を有する。
以下、本実施形態の有機EL表示装置について詳細に説明する。
Next, an embodiment according to the present invention will be described with reference to the drawings.
The organic EL display device of this embodiment has a configuration in which a photocurable resin that joins the color filter substrate 5 and the organic EL element substrate 10 is sufficiently cured by ultraviolet rays. As a configuration, an ultraviolet transmissive region 15 is provided in a part of each pixel region X in which the color filter layer 14 is formed. Moreover, in order to suppress the damage of the organic layer 7 by the irradiated ultraviolet ray, an ultraviolet ray preventing layer is provided between the adhesive layer 11 made of a photocurable resin and the organic layer 7.
Hereinafter, the organic EL display device of this embodiment will be described in detail.
(構成)
 本実施形態の有機EL表示装置は、図1~図5のように、カラーフィルタ基板5と、有機EL素子基板10と、カラーフィルタ基板5と有機EL素子基板10との間に介装する光硬化性樹脂からなる接着層11と、を備える。すなわち、カラーフィルタ基板5と有機EL素子基板10とは、接着層11によって接合している。有機層が赤色・緑色・青色の発光層を組み合わせた3色方式の場合、有機EL素子基板10の発光層を含む有機層7の各色(赤色発光有機層:7R、緑色発光有機層:7G、青色発光有機層:7B)と、カラーフィルタ基板5のカラーフィルタ層14の各色(赤色カラーフィルタ層:2R、緑色カラーフィルタ層:2G、青色カラーフィルタ層:2B)とがそれぞれ対応して、つまり対向して固定されていることが好ましい。
 なお、発光層とカラーフィルタ層との組み合わせは上述のものに限定されず、例えば白色発光の発光材料を用いた発光層7とカラーフィルタ層14との組み合わせや、近紫外光~青色発光の発光材料を用いた発光層7と後述の色変換層(赤色変換層:2R’、緑色変換層:2G’、青色変換層:2B’)からなるカラーフィルタ層14との組み合わせであっても良い。
(Constitution)
As shown in FIGS. 1 to 5, the organic EL display device of this embodiment includes a color filter substrate 5, an organic EL element substrate 10, and light interposed between the color filter substrate 5 and the organic EL element substrate 10. And an adhesive layer 11 made of a curable resin. That is, the color filter substrate 5 and the organic EL element substrate 10 are bonded by the adhesive layer 11. When the organic layer is a three-color system in which red, green, and blue light emitting layers are combined, each color of the organic layer 7 including the light emitting layer of the organic EL element substrate 10 (red light emitting organic layer: 7R, green light emitting organic layer: 7G, The blue light emitting organic layer: 7B) corresponds to each color (red color filter layer: 2R, green color filter layer: 2G, blue color filter layer: 2B) of the color filter layer 14 of the color filter substrate 5, that is, It is preferable that they are fixed to face each other.
Note that the combination of the light-emitting layer and the color filter layer is not limited to the above-described ones. For example, a combination of the light-emitting layer 7 and the color filter layer 14 using a white light-emitting material, or light emission of near ultraviolet light to blue light emission. A combination of a light emitting layer 7 using a material and a color filter layer 14 including a color conversion layer (red conversion layer: 2R ′, green conversion layer: 2G ′, blue conversion layer: 2B ′) described later may be used.
 次に、上記有機EL表示装置を構成する部材について説明する。
(カラーフィルタ基板の構成)
 上記有機EL表示装置に用いられるカラーフィルタ基板5は、透光性の基板と、その基板における上記有機EL素子基板10側の面に形成される複数のカラーフィルタ層14とを備える。また、カラーフィルタ層14を形成する画素領域X間には、図6に示すように、ブラックマトリックス層4が形成されている。
なお、ここでいうカラーフィルタ層14は、カラーフィルタ層及び色変換層の総称である。カラーフィルタ層は、発光された光の波長を選択的に吸収または透過させることによって出射される光の色純度を向上させる機能を有するフィルターである。例えば赤・青・緑の3原色を用いるフルカラーディスプレイ等では、青色であれば400nm~550nm、緑色であれば500nm~600nm、赤色であれば600nm以上の波長を透過させて色純度を高めている。製法としては、感光性樹脂層に染料や顔料を分散させた着色感材を材料として、これを塗布、露光、現像と繰り返してパターンを形成させる方法が一般的であり、特に最近では耐性面から染料よりも顔料を分散させたカラーフィルタが多くなっている。色変換層は、有機発光層から発光された近紫外領域ないし可視領域の光を蛍光色素が吸収して異なる波長の可視光を発する機能を有する層である。これは蛍光色素と入射させる光の組み合わせによって、様々な波長領域の蛍光を発することができる。また、例えば、青色に発光された光を吸収して赤色領域の蛍光を発することによって、波長を選択的に透過させて赤色領域の光を出射するよりも強い光を出力することも可能であり、これらは色変換方式の有機EL素子に応用されている。
Next, members constituting the organic EL display device will be described.
(Configuration of color filter substrate)
The color filter substrate 5 used in the organic EL display device includes a translucent substrate and a plurality of color filter layers 14 formed on the surface of the substrate on the organic EL element substrate 10 side. In addition, as shown in FIG. 6, a black matrix layer 4 is formed between the pixel regions X where the color filter layer 14 is formed.
In addition, the color filter layer 14 here is a general term for a color filter layer and a color conversion layer. The color filter layer is a filter having a function of improving the color purity of emitted light by selectively absorbing or transmitting the wavelength of emitted light. For example, in a full-color display using three primary colors of red, blue, and green, the color purity is increased by transmitting wavelengths of 400 nm to 550 nm for blue, 500 nm to 600 nm for green, and 600 nm for red. . As a manufacturing method, a method of forming a pattern by repeatedly applying, exposing, and developing a colored photosensitive material in which a dye or pigment is dispersed in a photosensitive resin layer is a common method, particularly recently in terms of durability. There are more color filters in which pigments are dispersed than dyes. The color conversion layer is a layer having a function of emitting visible light having a different wavelength by the fluorescent dye absorbing light in the near ultraviolet region or visible region emitted from the organic light emitting layer. This can emit fluorescence in various wavelength regions depending on the combination of incident light with a fluorescent dye. In addition, for example, by absorbing light emitted in blue and emitting fluorescence in the red region, it is also possible to output light that is stronger than selectively transmitting wavelengths and emitting light in the red region. These are applied to color conversion type organic EL elements.
 本実施形態では、画素領域X内の一部領域で紫外線が透過することを可能とするために、画素領域Xごとに一部に紫外線透過領域15を形成する。そして少なくとも紫外線透過領域15以外の画素領域Xにはカラーフィルタ層14を形成する。なお、図1~図6では、画素領域Xにおけるブラックマトリックス層4との境界位置に紫外線透過領域15を形成した場合を例示している。
 上記紫外線透過領域15は、紫外光波長領域の光に対し光透過率が30%以上となる領域を少なくとも有するように構成する。なお、上記光透過率は、30%以上、好ましくは50%以上とすることで、タクトタイムを大幅に増やすことなく、重合に必要な露光量の紫外線を紫外線透過領域下にある光硬化性樹脂に照射することが可能となる。
In the present embodiment, in order to allow ultraviolet rays to pass through a partial region in the pixel region X, the ultraviolet transmissive region 15 is formed in a part for each pixel region X. The color filter layer 14 is formed at least in the pixel region X other than the ultraviolet light transmitting region 15. 1 to 6 exemplify the case where the ultraviolet ray transmitting region 15 is formed at the boundary position with the black matrix layer 4 in the pixel region X.
The ultraviolet transmissive region 15 is configured to have at least a region having a light transmittance of 30% or more with respect to light in the ultraviolet wavelength region. The light transmittance is 30% or more, preferably 50% or more, so that the exposure amount of ultraviolet light necessary for the polymerization is below the ultraviolet transmission region without significantly increasing the tact time. Can be irradiated.
(紫外線透過領域の構成)
 紫外線透過領域15の構成例として、第1例~第3例を説明する。
 第1例は、図1に示すように、画素領域Xの一部に対し、カラーフィルタ層14を設けない開口からなる開口領域3を形成し、その開口領域3を、紫外線を透過する紫外線透過領域15とする。なお、この開口領域3には、カラーフィルタ基板5と有機EL素子基板10とを接合する際に、光硬化性樹脂が入り込む。
 上記開口領域3は、大きいほど紫外線の透過量が大きくなり光硬化性樹脂を硬化させるのには有利になるが、大きすぎるとカラーフィルタの色度が劣化するので、色度が所望の値から外れない程度の大きさが好ましい。
 そのため、開口領域3の面積としては、光硬化性樹脂を硬化させるのに必要な紫外線が透過するだけの大きさであればよく、その大きさは用いる光硬化性樹脂や重合開始剤の種類や、その濃度などによって決まるが、少なくとも画素となるカラーフィルタ層の面積の1%以上10%以下であることが望ましい。1%未満であると紫外線透過性が悪く、10%より大きいと画素の色純度が低下する。
(Configuration of UV transmissive region)
As a configuration example of the ultraviolet light transmitting region 15, first to third examples will be described.
In the first example, as shown in FIG. 1, an opening region 3 composed of an opening not provided with the color filter layer 14 is formed in a part of the pixel region X, and the opening region 3 transmits ultraviolet light that transmits ultraviolet light. Region 15 is assumed. The opening region 3 is filled with a photocurable resin when the color filter substrate 5 and the organic EL element substrate 10 are bonded.
The larger the opening area 3 is, the larger the amount of transmitted ultraviolet rays is, which is advantageous for curing the photocurable resin. However, if the opening area 3 is too large, the chromaticity of the color filter deteriorates, so that the chromaticity is less than the desired value. A size that does not come off is preferable.
Therefore, the area of the opening region 3 may be a size that allows only the ultraviolet rays necessary for curing the photocurable resin to pass therethrough, and the size of the open region 3 depends on the type of photocurable resin and polymerization initiator used. Although it depends on the density and the like, it is preferably at least 1% to 10% of the area of the color filter layer to be a pixel. If it is less than 1%, the ultraviolet light transmittance is poor, and if it is more than 10%, the color purity of the pixel decreases.
 第2例は、図2のように、画素領域Xにカラーフィルタ層14を形成する際に、その一部のカラーフィルタ層14の膜厚を相対的に薄く形成し、その薄い薄膜領域12を、紫外線を透過する紫外線透過領域15とする。カラーフィルタ層14の膜厚を薄くすることで、その薄膜領域における紫外線の吸収を抑制する。
 この場合には、カラーフィルタ層14の膜厚を薄くすることで、カラーフィルタ層14としての機能をある程度残しつつ、紫外線吸収を抑制することが可能となる。ただし、第1例の開口領域3と比較して紫外線透過率は低くなるため、開口領域3とする場合よりも薄膜領域を広げることで、光硬化性樹脂の硬化性を維持することができる。
 薄膜領域の厚さはそれぞれの色の紫外線透過性に依存するため、その厚さは各色や用いる顔料・染料によって決まる。また、光硬化性樹脂や重合開始剤の種類や、その濃度などによっても異なる。また、薄膜領域の面積は第1例と同様であることが望ましい。
In the second example, as shown in FIG. 2, when the color filter layer 14 is formed in the pixel region X, a part of the color filter layer 14 is formed relatively thin, and the thin thin film region 12 is formed. The ultraviolet transmitting region 15 that transmits ultraviolet rays is used. By reducing the thickness of the color filter layer 14, absorption of ultraviolet rays in the thin film region is suppressed.
In this case, by reducing the thickness of the color filter layer 14, it is possible to suppress ultraviolet absorption while leaving the function as the color filter layer 14 to some extent. However, since the ultraviolet transmittance is lower than that of the opening region 3 of the first example, the curability of the photocurable resin can be maintained by widening the thin film region as compared with the case of the opening region 3.
Since the thickness of the thin film region depends on the ultraviolet transmittance of each color, the thickness depends on each color and the pigment / dye used. Further, it varies depending on the type and concentration of the photocurable resin and the polymerization initiator. The area of the thin film region is preferably the same as that in the first example.
 第3例は、図3のように、画素領域Xの一部に、カラーフィルタ層14を形成可能な材料のうちの紫外線透過性のよい材料を用いてカラーフィルタ層14を形成した領域13を形成する。その領域13を紫外線を透過する紫外線透過領域15とする。この場合には、領域13における紫外線の吸収を抑制可能となる。
 紫外線透過領域15としては、それぞれの色の紫外線透過性に依存し、その厚さは各色や用いる顔料・染料やその濃度によっても異なる。さらに、光硬化性樹脂や重合開始剤の種類や、その濃度などによっても異なるが、紫外線源として一般的に用いられる水銀ランプの主な波長である253.7nmや365nmの波長を透過させるものであることが好ましい。
In the third example, as shown in FIG. 3, a region 13 in which the color filter layer 14 is formed in a part of the pixel region X using a material having good ultraviolet transmittance among materials that can form the color filter layer 14 is formed. Form. The region 13 is an ultraviolet ray transmitting region 15 that transmits ultraviolet rays. In this case, the absorption of ultraviolet rays in the region 13 can be suppressed.
The ultraviolet transmissive region 15 depends on the ultraviolet transmissive property of each color, and the thickness varies depending on each color, the pigment / dye used, and its concentration. Furthermore, although it varies depending on the type and concentration of the photocurable resin and polymerization initiator, it transmits the wavelengths of 253.7 nm and 365 nm, which are the main wavelengths of mercury lamps generally used as an ultraviolet ray source. Preferably there is.
 第4例は、図4のように、白色発光の発光材料を用いた有機層7Wと、図1の構造のカラーフィルタ層14とを組み合わせた場合である。また、第5例は、図5のように近紫外光~青色発光領域の発光材料を用いた有機層7Bと、図1の構造である色変換層とを組み合わせた場合である。第4、5例は図1の構造のカラーフィルタ層14を例にしたが、図2又は図3の構造のカラーフィルタ層14であっても良い。
 なお、上記第1例~第5例に例示した紫外線透過領域15の構成を単独で使用しても良いし、組み合わせて使用しても良い。
In the fourth example, as shown in FIG. 4, the organic layer 7W using a white light emitting material and the color filter layer 14 having the structure of FIG. 1 are combined. Further, the fifth example is a case where the organic layer 7B using the light emitting material in the near ultraviolet light to blue light emitting region and the color conversion layer having the structure of FIG. 1 are combined as shown in FIG. In the fourth and fifth examples, the color filter layer 14 having the structure of FIG. 1 is taken as an example, but the color filter layer 14 having the structure of FIG. 2 or 3 may be used.
The configuration of the ultraviolet light transmitting region 15 exemplified in the first to fifth examples may be used alone or in combination.
 また、上記説明では、紫外線透過領域15のパターンとして、紫外線透過領域15をブラックマトリックス層4との境界位置に形成する場合を例示した。紫外線透過領域15のパターンは、これに特に限定されない。例えば、図7(a)、(b)のような種々のパターンを例示出来る。図7(a)は、紫外線透過領域15を各画素領域Xの中央部に設ける例である。図7(b)は、紫外線透過領域15を各画素領域Xを横断するように設ける例である。なお、紫外線透過領域15は、ブラックマトリックス層4との境界位置に形成することが硬化の面からはより好ましい。硬化が透過領域から広がることを考えると、ブラックマトリックス層4との境界領域に設けた方が、より広域をカバーできて、均一に硬化が出来ると考えられるからである。
 ただし、光硬化性樹脂が紫外線露光後、加熱工程を経ることで紫外光透過領域以外の部分にも効率的に重合反応が広がるように、紫外線透過領域15の配置がおおよそ等間隔となり、さらにその間隔が狭くなるように、紫外線透過領域15パターンを設定することが好ましい。
In the above description, the case where the ultraviolet transmissive region 15 is formed at the boundary position with the black matrix layer 4 is exemplified as the pattern of the ultraviolet transmissive region 15. The pattern of the ultraviolet transmissive region 15 is not particularly limited to this. For example, various patterns as shown in FIGS. 7A and 7B can be exemplified. FIG. 7A shows an example in which the ultraviolet transmissive region 15 is provided at the center of each pixel region X. FIG. 7B shows an example in which the ultraviolet transmissive region 15 is provided so as to cross each pixel region X. It is more preferable from the viewpoint of curing that the ultraviolet light transmitting region 15 is formed at the boundary position with the black matrix layer 4. This is because, considering that the hardening spreads from the transmission region, it is considered that the provision in the boundary region with the black matrix layer 4 can cover a wider area and can be cured uniformly.
However, the arrangement of the ultraviolet transmissive regions 15 is approximately equidistant so that the polymerization reaction spreads efficiently to portions other than the ultraviolet light transmissive region by performing a heating step after the photocurable resin is exposed to ultraviolet rays, and further, It is preferable to set the ultraviolet transmissive region 15 pattern so that the interval is narrowed.
(有機EL素子基板の構成)
 次に、有機EL素子基板10について説明する。
 上記有機EL素子基板10は、図1~図5に示すように、薄膜トランジスタ(TFT)が形成された駆動用基板と、その駆動用基板上に形成された複数の有機EL素子30と、を備える。有機EL素子30は、駆動用基板側から第1電極を構成する反射電極8と、その上に形成された発光層を少なくとも含む有機層7と、その上に形成された光透過性の電極とを備える。そして有機EL素子30は、上記発光層で発生した光を上記光透過性の電極側から取り出す。各有機EL素子30の有機層7は、対応するカラーフィルタ層14と対向するように配置される。
(Configuration of organic EL element substrate)
Next, the organic EL element substrate 10 will be described.
As shown in FIGS. 1 to 5, the organic EL element substrate 10 includes a driving substrate on which a thin film transistor (TFT) is formed, and a plurality of organic EL elements 30 formed on the driving substrate. . The organic EL element 30 includes a reflective electrode 8 constituting the first electrode from the driving substrate side, an organic layer 7 including at least a light emitting layer formed thereon, and a light transmissive electrode formed thereon. Is provided. The organic EL element 30 takes out the light generated in the light emitting layer from the light transmissive electrode side. The organic layer 7 of each organic EL element 30 is disposed so as to face the corresponding color filter layer 14.
 上記実施形態の有機EL素子30は、上面光取り出し型の素子であり、駆動用基板としての基板9の上に第1電極としての反射電極8を形成して陽極とする。反射電極8としてはアルミニウムや銀など、反射率の優れた金属を用いることが好ましい。また、反射電極8の上に例えばITO(Indium-Tin-Oxide)等の透明導電膜を形成することで、電極と有機層7間のエネルギー障壁を低減しキャリアの注入性を向上させることもできる。
反射電極8上には有機層7が積層される。
少なくとも陽極から供給される正孔と陰極から供給される電子との再結合によって発光する発光層を含んでいるが、有機層7は多層構造とすることもできる。
有機層7上には光透過性電極6が積層される。光透過性電極6は異なる材料を用いて多層構造とすることもできる。好ましくはキャリアの注入性を向上することができる金属薄膜と面内導電性を向上させる透明導電膜の積層構造を例示できる。このような構造において、金属薄膜の厚みは、光を透過可能にするために例えば10nm程度が好ましい。また、電子が効率的に注入できるように、仕事関数の低い金属薄膜が好ましい。
例えば、仕事関数の低いアルミニウムとリチウムの合金或いはマグネシウムと銀の合金を10nm程度に薄く成膜する。その上にITO等からなる透明導電膜を形成する。透明導電膜の膜厚としては、十分な面内導電性となるように、例えば100nm程度であることが好ましい。透明導電膜の材料としては酸化インジウム、酸化スズ、および酸化亜鉛を1種類または2種類以上含有する酸化物透明導電膜であることが好ましい。
The organic EL element 30 of the above embodiment is an upper surface light extraction type element, and a reflective electrode 8 as a first electrode is formed on a substrate 9 as a driving substrate to serve as an anode. As the reflective electrode 8, it is preferable to use a metal having excellent reflectivity such as aluminum or silver. Further, by forming a transparent conductive film such as ITO (Indium-Tin-Oxide) on the reflective electrode 8, the energy barrier between the electrode and the organic layer 7 can be reduced, and the carrier injectability can be improved. .
An organic layer 7 is laminated on the reflective electrode 8.
Although it includes a light emitting layer that emits light by recombination of at least holes supplied from the anode and electrons supplied from the cathode, the organic layer 7 may have a multilayer structure.
A light transmissive electrode 6 is laminated on the organic layer 7. The light transmissive electrode 6 can also have a multilayer structure using different materials. Preferably, a laminated structure of a metal thin film that can improve carrier injectability and a transparent conductive film that improves in-plane conductivity can be exemplified. In such a structure, the thickness of the metal thin film is preferably about 10 nm, for example, so that light can be transmitted. A metal thin film having a low work function is preferable so that electrons can be efficiently injected.
For example, an aluminum / lithium alloy or a magnesium / silver alloy having a low work function is formed as thin as about 10 nm. A transparent conductive film made of ITO or the like is formed thereon. The film thickness of the transparent conductive film is preferably about 100 nm, for example, so as to have sufficient in-plane conductivity. The material for the transparent conductive film is preferably an oxide transparent conductive film containing one or more of indium oxide, tin oxide, and zinc oxide.
 なお、図8に示すように、光透過性電極6の上に酸素、水分等から素子を保護するパッシベーション膜17を形成しても良い。このパッシベーション膜17は、酸化珪素、酸化アルミニウム等の金属酸化物、弗化アルミニウム、弗化マグネシウム等の金属弗化物、窒化珪素、窒化アルミニウム、窒化炭素などの金属窒化物、酸窒化珪素などの金属酸窒化物、炭化ケイ素などの金属炭化物、必要に応じて、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、ポリエステル樹脂などの高分子樹脂膜との積層膜を用いてもよいが、特に、バリア性と透明性の面から、酸化ケイ素、酸窒化ケイ素、窒化ケイ素を用いることが好ましく、さらには、膜密度を可変した積層膜や勾配膜を使用することにより、段差被覆性とバリア性を両立する膜となる。 As shown in FIG. 8, a passivation film 17 that protects the element from oxygen, moisture, etc. may be formed on the light transmissive electrode 6. The passivation film 17 is made of a metal oxide such as silicon oxide or aluminum oxide, a metal fluoride such as aluminum fluoride or magnesium fluoride, a metal nitride such as silicon nitride, aluminum nitride or carbon nitride, or a metal such as silicon oxynitride. Laminate films with metal carbides such as oxynitrides and silicon carbide, and polymer resin films such as acrylic resins, epoxy resins, silicone resins, and polyester resins may be used as required. From the viewpoint of performance, it is preferable to use silicon oxide, silicon oxynitride, and silicon nitride, and further, by using a laminated film or a gradient film with a variable film density, a film having both step coverage and barrier properties Become.
パッシベーション層17の形成方法としては、材料に応じて、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法、CVD法を用いることができるが、特に、バリア性や段差被覆性の面、さらには成膜条件により膜密度や膜組成を容易に可変できることから、CVD法を用いることが好ましい。CVD法としては、熱CVD法、プラズマCVD法、触媒CVD法、VUV-CVD法などを用いることができる。また、CVD法における反応ガスとしては、モノシランや、ヘキサメチルジシラザン(HMDS)やテトラエトキシシランなどの有機シリコン化合物に、N、O、NH、H、NOなどのガスを必要に応じて添加してもよく、必要に応じて、シランなどのガス流量や、プラズマ電力を変えることにより膜密度を変化させてもよく、使用する反応性ガスにより膜中に水素や炭素が含有させることもできる。
 さらに、接着層11と有機層7との間に、図8に示すように、紫外線防止膜18を設けても良い。紫外線防止膜18は、有機層7への紫外線光の入射を抑制する紫外線防止層である。図8(a)では、上記パッシベーション膜17の上に紫外線防止膜18を設ける場合を例示している。紫外線防止膜18は、紫外線透過領域15を通じて光硬化性樹脂からなる接着層11に紫外線を照射して当該接着層11を形成する際に、有機層7側に入射する紫外線をカットして、有機層7へのダメージを抑制する。これによって、上記紫外線による有機EL素子30特性の劣化を低減する。
As a method for forming the passivation layer 17, a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, a sputtering method, or a CVD method can be used depending on the material. It is preferable to use the CVD method because the film density and film composition can be easily varied depending on the surface of the step coverage and the film forming conditions. As the CVD method, a thermal CVD method, a plasma CVD method, a catalytic CVD method, a VUV-CVD method, or the like can be used. In addition, as a reaction gas in the CVD method, a gas such as N 2 , O 2 , NH 3 , H 2 , N 2 O is added to an organic silicon compound such as monosilane, hexamethyldisilazane (HMDS), or tetraethoxysilane. The film density may be changed by changing the gas flow rate of silane or the like, or the plasma power, if necessary. Hydrogen or carbon may be added to the film by the reactive gas used. It can also be contained.
Furthermore, as shown in FIG. 8, an ultraviolet protection film 18 may be provided between the adhesive layer 11 and the organic layer 7. The ultraviolet prevention film 18 is an ultraviolet prevention layer that suppresses the incidence of ultraviolet light on the organic layer 7. FIG. 8A illustrates a case where an ultraviolet ray prevention film 18 is provided on the passivation film 17. The ultraviolet ray prevention film 18 cuts off ultraviolet rays incident on the organic layer 7 side when the adhesive layer 11 made of a photocurable resin is irradiated with ultraviolet rays through the ultraviolet ray transmitting region 15 to form the adhesive layer 11, thereby Suppresses damage to layer 7. Thereby, deterioration of the characteristics of the organic EL element 30 due to the ultraviolet rays is reduced.
 紫外線防止膜18を個別に設けなくても、図8(b)のように、光透過性電極と紫外線防止層を兼用した層としてもよい。このような材料としては、ITO等の酸化物透明導電膜を例示できる。酸化物透明導電膜は半導体でありエネルギーギャップがあるため、そのギャップにより大きいエネルギーの光は電子バンド間遷移により吸収し、小さいエネルギーの光は吸収しない。ここで、無色透明になる(可視光を透過する)条件のエネルギーギャップは約3.3eV以上である。よって、エネルギーギャップが3.3eV付近になるような酸化物透明導電膜を成膜することで、そのギャップより大きいエネルギーの紫外光は吸収される。ITO等の酸化物透明導電膜は一般的にスパッタ等の成膜方法にて成膜されるが、成膜プロセスにて膜の吸収スペクトルを制御することも可能である。
 ここで、上記紫外線防止膜18等から構成する紫外線防止層は、紫外光波長領域の光の光透過率が10%以下、望ましくは5%以下に出来る構成とする。
Even if the ultraviolet protection film 18 is not provided separately, a layer that combines the light transmissive electrode and the ultraviolet protection layer as shown in FIG. 8B may be used. Examples of such a material include an oxide transparent conductive film such as ITO. Since the transparent oxide conductive film is a semiconductor and has an energy gap, light having a larger energy is absorbed by the transition between electron bands and light having a smaller energy is not absorbed. Here, the energy gap under the condition of becoming colorless and transparent (transmitting visible light) is about 3.3 eV or more. Therefore, by forming an oxide transparent conductive film having an energy gap of about 3.3 eV, ultraviolet light having an energy larger than the gap is absorbed. An oxide transparent conductive film such as ITO is generally formed by a film formation method such as sputtering, but the absorption spectrum of the film can also be controlled by a film formation process.
Here, the ultraviolet ray prevention layer composed of the ultraviolet ray prevention film 18 and the like is configured so that the light transmittance of light in the ultraviolet wavelength region can be 10% or less, preferably 5% or less.
(変形例)
 また、図9に示すように、カラーフィルタ基板5に光散乱層16を形成しても良い。
 すなわち、上述のような画素領域X内に紫外線領域を有するカラーフィルタ基板5において、図9のように、紫外線透過領域15よりも有機EL素子基板10側に光散乱層16を形成する。
 光散乱層16は、図9(a)のように、紫外線透過領域15上のみに積層するようにパターン形成しても良い。または、図9(b)のように、画素内全面を覆うように形成しても良い。ただし、画素内全面を覆うように光散乱層16を設けると、有機EL素子基板10内の発光層からのEL発光も画素全体で散乱され画像がぼける。従って、図7(a)のように、紫外線透過領域15と重なる位置の範囲内で光散乱層16をパターン形成することが好ましい。
(Modification)
Further, as shown in FIG. 9, a light scattering layer 16 may be formed on the color filter substrate 5.
That is, in the color filter substrate 5 having the ultraviolet region in the pixel region X as described above, the light scattering layer 16 is formed closer to the organic EL element substrate 10 than the ultraviolet transmissive region 15 as shown in FIG.
The light scattering layer 16 may be patterned so as to be laminated only on the ultraviolet ray transmitting region 15 as shown in FIG. Alternatively, it may be formed so as to cover the entire surface of the pixel as shown in FIG. However, when the light scattering layer 16 is provided so as to cover the entire surface of the pixel, EL light emission from the light emitting layer in the organic EL element substrate 10 is also scattered in the entire pixel and an image is blurred. Therefore, as shown in FIG. 7A, it is preferable to pattern the light scattering layer 16 within the range of the position overlapping with the ultraviolet ray transmitting region 15.
 光散乱層16を設けることで、紫外線透過領域15を透過して接着層11に入射してきた紫外光を散乱させ、紫外線透過領域15よりも広い領域の光硬化性樹脂を硬化させることが可能となる。
 光散乱層16を形成する材料としては、例えば光透過性を有する透明樹脂にチタニア等の高屈折率を有する粒子を分散させることで光散乱性を持たせたものがあげられる。透明樹脂には、熱可塑性樹脂、熱硬化性樹脂、および感光性樹脂が含まれる。
By providing the light scattering layer 16, it is possible to scatter ultraviolet light that has passed through the ultraviolet light transmitting region 15 and entered the adhesive layer 11, and can cure the photocurable resin in a region wider than the ultraviolet light transmitting region 15. Become.
Examples of the material for forming the light scattering layer 16 include a material having light scattering properties by dispersing particles having a high refractive index, such as titania, in a transparent resin having light transmittance. The transparent resin includes a thermoplastic resin, a thermosetting resin, and a photosensitive resin.
(カラーフィルタ基板5の製造方法)
 次に、上記有機EL表示装置に用いられるカラーフィルタ基板5の製造方法について説明する。
 先ず、カラーフィルタ層14に用いられる材料の一例として、顔料を顔料担体に分散した着色組成物について記述する。
 上記着色組成物に含まれる顔料としては、有機または無機の顔料を、単独でまたは2種類以上混合して用いることができる。顔料は、発色性が高く、且つ耐熱性の高い顔料、特に耐熱分解性の高い顔料が好ましく、通常は有機顔料が用いられる。
(Method for manufacturing color filter substrate 5)
Next, a method for manufacturing the color filter substrate 5 used in the organic EL display device will be described.
First, as an example of a material used for the color filter layer 14, a colored composition in which a pigment is dispersed in a pigment carrier will be described.
As the pigment contained in the colored composition, organic or inorganic pigments can be used alone or in admixture of two or more. The pigment is preferably a pigment having a high color developability and a high heat resistance, particularly a pigment having a high heat decomposition resistance, and an organic pigment is usually used.
 以下に、着色組成物に使用可能な有機顔料の具体例を、カラーインデックス番号で示す。
 赤色着色組成物には、例えばC.I.Pigment Red 7、14、41、48:2、48:3、48:4、81:1、81:2、81:3、81:4、146、168、177、178、179、184、185、187、200、202、208、210、246、254、255、264、270、272、279等の赤色顔料を用いることができ、黄色顔料を併用することもできる。その黄色顔料としては、C.I. Pigment Yellow1、2、3、4、5、6、10、12、13、14、15、16、17、18、24、31、32、34、35、35:1、36、36:1、37、37:1、40、42、43、53、55、60、61、62、63、65、73、74、77、81、83、93、94、95、97、98、100、101、104、106、108、109、110、113、114、115、116、117、118、119、120、123、126、127、128、129、138、147、150、151、152、153、154、155、156、161、162、164、166、167、168、169、170、171、172、173、174、175、176、177、179、180、181、182、185、187、188、193、194、199、198、213、214等が挙げられる。
Below, the specific example of the organic pigment which can be used for a coloring composition is shown with a color index number.
Examples of the red coloring composition include C.I. I. Pigment Red 7, 14, 41, 48: 2, 48: 3, 48: 4, 81: 1, 81: 2, 81: 3, 81: 4, 146, 168, 177, 178, 179, 184, 185, Red pigments such as 187, 200, 202, 208, 210, 246, 254, 255, 264, 270, 272, and 279 can be used, and a yellow pigment can also be used in combination. As the yellow pigment, C.I. I. Pigment Yellow 1, 2, 3, 4, 5, 6, 10, 12, 13, 14, 15, 16, 17, 18, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37 37: 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 93, 94, 95, 97, 98, 100, 101, 104 106, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 123, 126, 127, 128, 129, 138, 147, 150, 151, 152, 153, 154, 155 156, 161, 162, 164, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 182, 185, 187, 188, 193, 194, 199, 198, 213, 214 and the like.
 また、緑色着色組成物には、例えばC.I.Pigment Green 7、10、36、37等の緑色顔料を用いることができ、黄色顔料を併用できる。その黄色顔料としては、赤色着色組成物のところで挙げた顔料と同様のものが使用可能である。
 青色着色組成物には、例えばC.I.Pigment Blue 15、15:1、15:2、15:3、15:4、15:6、16、22、60、64等の青色顔料を用いることができ、紫色顔料を併用できる。その紫色顔料としては、C.I.Pigment Violet 1、19、23、27、29、30、32、37、40、42、50等が挙げられる。
Examples of the green coloring composition include C.I. I. Pigment Green 7, 10, 36, 37 or the like can be used, and a yellow pigment can be used in combination. As the yellow pigment, the same pigments as those mentioned for the red coloring composition can be used.
Examples of the blue coloring composition include C.I. I. Pigment Blue 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 22, 60, 64, and the like can be used, and a purple pigment can be used in combination. As the purple pigment, C.I. I. Pigment Violet 1, 19, 23, 27, 29, 30, 32, 37, 40, 42, 50 and the like.
 また、顔料として無機顔料を用いることも可能であり、具体的には黄色鉛、亜鉛黄、べんがら(赤色酸化鉄(III))、カドミウム赤、群青、紺青、酸化クロム緑、コバルト緑等の金属酸化物粉、金属硫化物粉、金属粉等が挙げられる。通常、無機顔料は、彩度と明度のバランスを取りつつ良好な塗布性、感度、現像性等を確保するために、有機顔料と組み合わせて用いられる。
 着色組成物には、調色のため、耐熱性を低下させない範囲内で染料を含有させることができる。
It is also possible to use an inorganic pigment as the pigment, specifically, metals such as yellow lead, zinc yellow, red bean (red iron oxide (III)), cadmium red, ultramarine blue, bitumen, chromium oxide green, cobalt green, etc. Examples thereof include oxide powder, metal sulfide powder, and metal powder. In general, inorganic pigments are used in combination with organic pigments in order to ensure good coatability, sensitivity, developability and the like while balancing saturation and lightness.
The coloring composition can contain a dye within a range that does not reduce heat resistance for color matching.
 また、上記着色組成物に含まれる顔料担体は、顔料を分散させるものであり、熱可塑性樹脂・熱硬化性樹脂・感光性樹脂などの透明樹脂、その前駆体またはそれらの混合物により構成される。透明樹脂は、可視光領域の400~700nmの全波長領域において透過率が好ましくは80%以上、より好ましくは95%以上の樹脂である。透明樹脂には、熱可塑性樹脂、熱硬化性樹脂、および感光性樹脂が含まれ、その前駆体には、放射線照射により硬化して透明樹脂を生成するモノマーもしくはオリゴマーが含まれ、これらを単独でまたは2種以上混合して用いることができる。 The pigment carrier contained in the colored composition is for dispersing the pigment, and is composed of a transparent resin such as a thermoplastic resin, a thermosetting resin or a photosensitive resin, a precursor thereof, or a mixture thereof. The transparent resin is a resin having a transmittance of preferably 80% or more, more preferably 95% or more in the entire wavelength region of 400 to 700 nm in the visible light region. The transparent resin includes a thermoplastic resin, a thermosetting resin, and a photosensitive resin, and its precursor includes a monomer or an oligomer that is cured by irradiation with radiation to form a transparent resin. Alternatively, two or more kinds can be mixed and used.
 顔料担体は、着色組成物中の顔料100重量部に対して、30~700重量部、好ましくは60~450重量部の量で用いることができる。また、透明樹脂とその前駆体との混合物を顔料担体として用いる場合には、透明樹脂は、着色組成物中の顔料100重量部に対して、20~400重量部、好ましくは50~250重量部の量で用いることができる。また、透明樹脂の前駆体は、着色組成物中の顔料100重量部に対して、10~300重量部、好ましくは10~200重量部の量で用いることができる。 The pigment carrier can be used in an amount of 30 to 700 parts by weight, preferably 60 to 450 parts by weight with respect to 100 parts by weight of the pigment in the coloring composition. When a mixture of a transparent resin and its precursor is used as a pigment carrier, the transparent resin is 20 to 400 parts by weight, preferably 50 to 250 parts by weight, based on 100 parts by weight of the pigment in the coloring composition. Can be used. The precursor of the transparent resin can be used in an amount of 10 to 300 parts by weight, preferably 10 to 200 parts by weight, based on 100 parts by weight of the pigment in the coloring composition.
 熱可塑性樹脂としては、例えば、ブチラール樹脂、スチレンーマレイン酸共重合体、塩素化ポリエチレン、塩素化ポリプロピレン、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリ酢酸ビニル、ポリウレタン系樹脂、ポリエステル樹脂、アクリル系樹脂、アルキッド樹脂、ポリスチレン樹脂、ポリアミド樹脂、ゴム系樹脂、環化ゴム系樹脂、セルロース類、ポリブタジエン、ポリエチレン、ポリプロピレン、ポリイミド樹脂等が挙げられる。 Examples of the thermoplastic resin include butyral resin, styrene-maleic acid copolymer, chlorinated polyethylene, chlorinated polypropylene, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, polyurethane resin, and polyester resin. And acrylic resins, alkyd resins, polystyrene resins, polyamide resins, rubber resins, cyclized rubber resins, celluloses, polybutadiene, polyethylene, polypropylene, polyimide resins, and the like.
 また、熱硬化性樹脂としては、例えば、エポキシ樹脂、ベンゾグアナミン樹脂、ロジン変性マレイン酸樹脂、ロジン変性フマル酸樹脂、メラミン樹脂、尿素樹脂、フェノール樹脂等が挙げられる。
 感光性樹脂としては、水酸基、カルボキシル基、アミノ基等の反応性の置換基を有する線状高分子にイソシアネート基、アルデヒド基、エポキシ基等の反応性置換基を有する(メタ)アクリル化合物やケイヒ酸を反応させて、(メタ)アクリロイル基、スチリル基等の光架橋性基を該線状高分子に導入した樹脂が用いられる。また、スチレン-無水マレイン酸共重合物やα-オレフィン-無水マレイン酸共重合物等の酸無水物を含む線状高分子をヒドロキシアルキル(メタ)アクリレート等の水酸基を有する(メタ)アクリル化合物によりハーフエステル化したものも用いられる。
Examples of the thermosetting resin include epoxy resins, benzoguanamine resins, rosin-modified maleic acid resins, rosin-modified fumaric acid resins, melamine resins, urea resins, and phenol resins.
Examples of the photosensitive resin include (meth) acrylic compounds having a reactive substituent such as an isocyanate group, an aldehyde group, and an epoxy group on a linear polymer having a reactive substituent such as a hydroxyl group, a carboxyl group, or an amino group, A resin obtained by reacting an acid and introducing a photocrosslinkable group such as a (meth) acryloyl group or a styryl group into the linear polymer is used. A linear polymer containing an acid anhydride such as a styrene-maleic anhydride copolymer or an α-olefin-maleic anhydride copolymer is converted into a (meth) acrylic compound having a hydroxyl group such as hydroxyalkyl (meth) acrylate. Half-esterified products are also used.
 透明樹脂の前駆体であるモノマーおよびオリゴマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、メラミン(メタ)アクリレート、エポキシ(メタ)アクリレート等の各種アクリル酸エステルおよびメタクリル酸エステル、(メタ)アクリル酸、スチレン、酢酸ビニル、(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、アクリロニトリル等が挙げられる。これらは、単独でまたは2種類以上混合して用いることができる。 Monomers and oligomers that are precursors of transparent resins include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, polyethylene glycol di (meth) acrylate, pentaerythritol tri (meth) ) Acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tricyclodecanyl (meth) acrylate, melamine (meth) acrylate, various acrylic esters such as epoxy (meth) acrylate and methacrylic acid Examples thereof include esters, (meth) acrylic acid, styrene, vinyl acetate, (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, acrylonitrile and the like. These can be used alone or in admixture of two or more.
 着色組成物には、該組成物を紫外線等の照射により硬化する場合には、光重合開始剤等が添加される。
 光重合開始剤としては、4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン等のアセトフェノン系光重合開始剤、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール等のベンゾイン系光重合開始剤、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド等のベンゾフェノン系光重合開始剤、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、イソプロピルチオキサントン、2、4-ジイソプロピルチオキサントン等のチオキサントン系光重合開始剤、2、4、6-トリクロロ-s-トリアジン、2-フェニル-4、6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシフェニル)-4、6-ビス(トリクロロメチル)-s-トリアジン、2-(p-トリル)-4、6-ビス(トリクロロメチル)-s-トリアジン、2-ピペロニル-4、6-ビス(トリクロロメチル)-s-トリアジン、2、4-ビス(トリクロロメチル)-6-スチリル-s-トリアジン、2-(ナフト-1-イル)-4、6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシ-ナフト-1-イル)-4、6-ビス(トリクロロメチル)-s-トリアジン、2、4-トリクロロメチル-(ピペロニル)-6-トリアジン、2、4-トリクロロメチル(4’-メトキシスチリル)-6-トリアジン等のトリアジン系光重合開始剤、ボレート系光重合開始剤、カルバゾール系光重合開始剤、イミダゾール系光重合開始剤等が用いられる。
When the composition is cured by irradiation with ultraviolet rays or the like, a photopolymerization initiator or the like is added to the coloring composition.
Examples of the photopolymerization initiator include 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- Hydroxycyclohexyl phenyl ketone, 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butane- Acetophenone photopolymerization initiators such as 1-one, benzoin photopolymerization initiators such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzyldimethyl ketal, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4 - Benzophenone photopolymerization initiators such as phenyl benzophenone, hydroxybenzophenone, acrylated benzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone Thioxanthone photopolymerization initiators such as 2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis (trichloromethyl) -s-triazine, 2- (p-methoxyphenyl) -4, 6-bis (trichloromethyl) -s-triazine, 2- (p-tolyl) -4,6-bis (trichloromethyl) -s-triazine, 2-piperonyl-4, 6-bis (trichloromethyl) -s- Triazine, 2,4-bis (Trichloro Methyl) -6-styryl-s-triazine, 2- (naphth-1-yl) -4, 6-bis (trichloromethyl) -s-triazine, 2- (4-methoxy-naphth-1-yl) -4 , 6-bis (trichloromethyl) -s-triazine, 2,4-trichloromethyl- (piperonyl) -6-triazine, 2,4-trichloromethyl (4′-methoxystyryl) -6-triazine A polymerization initiator, a borate photopolymerization initiator, a carbazole photopolymerization initiator, an imidazole photopolymerization initiator, or the like is used.
 光重合開始剤は、着色組成物中の顔料100重量部に対して、5~200重量部、好ましくは10~150重量部の量で用いることができる。
 上記光重合開始剤は、単独あるいは2種以上混合して用いるが、増感剤として、α-アシロキシエステル、アシルフォスフィンオキサイド、メチルフェニルグリオキシレート、ベンジル、9、10-フェナンスレンキノン、カンファーキノン、エチルアンスラキノン、4、4’-ジエチルイソフタロフェノン、3、3’、4、4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、4、4’-ジエチルアミノベンゾフェノン等の化合物を併用することもできる。
 増感剤は、光重合開始剤100重量部に対して、0.1~60重量部の量で含有させることができる。
 さらに着色組成物には、連鎖移動剤としての働きをする多官能チオールを含有させることができる。
The photopolymerization initiator can be used in an amount of 5 to 200 parts by weight, preferably 10 to 150 parts by weight, based on 100 parts by weight of the pigment in the coloring composition.
The above photopolymerization initiators are used alone or in combination of two or more. As sensitizers, α-acyloxy ester, acylphosphine oxide, methylphenylglyoxylate, benzyl, 9,10-phenanthrenequinone , Camphorquinone, ethylanthraquinone, 4,4′-diethylisophthalophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 4,4′-diethylaminobenzophenone, etc. It can also be used together.
The sensitizer can be contained in an amount of 0.1 to 60 parts by weight with respect to 100 parts by weight of the photopolymerization initiator.
Furthermore, the coloring composition can contain a polyfunctional thiol that functions as a chain transfer agent.
 多官能チオールは、チオール基を2個以上有する化合物であればよく、例えば、ヘキサンジチオール、デカンジチオール、1、4-ブタンジオールビスチオプロピオネート、1、4-ブタンジオールビスチオグリコレート、エチレングリコールビスチオグリコレート、エチレングリコールビスチオプロピオネート、トリメチロールプロパントリスチオグリコレート、トリメチロールプロパントリスチオプロピオネート、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ペンタエリスリトールテトラキスチオプロピオネート、トリメルカプトプロピオン酸トリス(2-ヒドロキシエチル)イソシアヌレート、1、4-ジメチルメルカプトベンゼン、2、4、6-トリメルカプト-s-トリアジン、2-(N、N-ジブチルアミノ)-4、6-ジメルカプト-s-トリアジン等が挙げられる。これらの多官能チオールは、1種または2種以上混合して用いることができる。 The polyfunctional thiol may be a compound having two or more thiol groups. For example, hexanedithiol, decanedithiol, 1,4-butanediol bisthiopropionate, 1,4-butanediol bisthioglycolate, ethylene Glycol bisthioglycolate, ethylene glycol bisthiopropionate, trimethylolpropane tristhioglycolate, trimethylolpropane tristhiopropionate, trimethylolpropane tris (3-mercaptobutyrate), pentaerythritol tetrakisthioglycolate, Pentaerythritol tetrakisthiopropionate, trimercaptopropionic acid tris (2-hydroxyethyl) isocyanurate, 1,4-dimethylmercaptobenzene, 2,4,6-trimerca DOO -s- triazine, 2- (N, N- dibutylamino) -4,6-dimercapto -s- triazine. These polyfunctional thiols can be used alone or in combination.
 多官能チオールは、着色組成物中の顔料100重量部に対して、0.2~150重量部、好ましくは0.2~100重量部の量で用いることができる。
 さらに着色組成物には、顔料を充分に顔料担体中に分散させ、ガラス基板等の平面体上に乾燥膜厚が0.2~5μmとなるように塗布して各色表示画素を形成することを容易にするために溶剤を含有させることができる。溶剤としては、例えばシクロヘキサノン、エチルセロソルブアセテート、ブチルセロソルブアセテート、1-メトキシ-2-プロピルアセテート、ジエチレングリコールジメチルエーテル、エチルベンゼン、エチレングリコールジエチルエーテル、キシレン、エチルセロソルブ、メチル-nアミルケトン、プロピレングリコールモノメチルエーテル、トルエン、メチルエチルケトン、酢酸エチル、メタノール、エタノール、イソプロピルアルコール、ブタノール、イソブチルケトン、石油系溶剤等が挙げられ、これらを単独でもしくは混合して用いる。
The polyfunctional thiol can be used in an amount of 0.2 to 150 parts by weight, preferably 0.2 to 100 parts by weight, with respect to 100 parts by weight of the pigment in the coloring composition.
Further, in the coloring composition, the pigment is sufficiently dispersed in the pigment carrier and applied to a flat body such as a glass substrate so that the dry film thickness is 0.2 to 5 μm to form each color display pixel. A solvent can be included for ease. Examples of the solvent include cyclohexanone, ethyl cellosolve acetate, butyl cellosolve acetate, 1-methoxy-2-propyl acetate, diethylene glycol dimethyl ether, ethylbenzene, ethylene glycol diethyl ether, xylene, ethyl cellosolve, methyl-n amyl ketone, propylene glycol monomethyl ether, toluene, Examples include methyl ethyl ketone, ethyl acetate, methanol, ethanol, isopropyl alcohol, butanol, isobutyl ketone, petroleum solvent, and the like. These may be used alone or in combination.
 溶剤は、着色組成物中の顔料100重量部に対して、800~4000重量部、好ましくは1000~2500重量部の量で用いることができる。
 着色組成物は、1種または2種以上の顔料を、必要に応じて上記光重合開始剤と共に、顔料担体および有機溶剤中に三本ロールミル、二本ロールミル、サンドミル、ニーダー、アトライター等の各種分散手段を用いて微細に分散して製造することができる。また、2種以上の顔料を含む着色組成物は、各顔料を別々に顔料担体および有機溶剤中に微細に分散したものを混合して製造することもできる。顔料を顔料担体および有機溶剤中に分散する際には、適宜、樹脂型顔料分散剤、界面活性剤、顔料誘導体等の分散助剤を含有させることができる。分散助剤は、顔料の分散に優れ、分散後の顔料の再凝集を防止する効果が大きいので、分散助剤を用いて顔料を顔料担体および有機溶剤中に分散してなる着色組成物を用いた場合には、透明性に優れたカラーフィルタが得られる。
The solvent can be used in an amount of 800 to 4000 parts by weight, preferably 1000 to 2500 parts by weight, with respect to 100 parts by weight of the pigment in the coloring composition.
The coloring composition comprises one or more pigments, if necessary, together with the above photopolymerization initiator, in a pigment carrier and an organic solvent, such as a three roll mill, a two roll mill, a sand mill, a kneader, and an attritor. It can be produced by finely dispersing using a dispersing means. Moreover, the coloring composition containing 2 or more types of pigments can also be manufactured by mixing each pigment separately finely dispersed in a pigment carrier and an organic solvent. When the pigment is dispersed in the pigment carrier and the organic solvent, a dispersion aid such as a resin-type pigment dispersant, a surfactant, or a pigment derivative can be appropriately contained. Since the dispersion aid is excellent in pigment dispersion and has a great effect of preventing re-aggregation of the pigment after dispersion, a coloring composition comprising a pigment dispersed in a pigment carrier and an organic solvent using a dispersion aid is used. If so, a color filter excellent in transparency can be obtained.
 分散助剤は、着色組成物中の顔料100重量部に対して、0.1~40重量部、好ましくは0.1~30重量部の量で用いることができる。
 樹脂型顔料分散剤としては、顔料に吸着する性質を有する顔料親和性部位と、顔料担体と相溶性のある部位とを有し、顔料に吸着して顔料の顔料担体への分散を安定化する働きをするものである。樹脂型顔料分散剤として具体的には、ポリウレタン、ポリアクリレートなどのポリカルボン酸エステル、不飽和ポリアミド、ポリカルボン酸、ポリカルボン酸(部分)アミン塩、ポリカルボン酸アンモニウム塩、ポリカルボン酸アルキルアミン塩、ポリシロキサン、長鎖ポリアミノアマイドリン酸塩、水酸基含有ポリカルボン酸エステルや、これらの変性物、ポリ(低級アルキレンイミン)と遊離のカルボキシル基を有するポリエステルとの反応により形成されたアミドやその塩などの油性分散剤、(メタ)アクリル酸-スチレン共重合体、(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体、スチレン-マレイン酸共重合体、ポリビニルアルコール、ポリビニルピロリドンなどの水溶性樹脂や水溶性高分子化合物、ポリエステル系、変性ポリアクリレート系、エチレンオキサイド/プロピレンオキサイド付加化合物、燐酸エステル系等が用いられ、これらは単独でまたは2種以上を混合して用いることができる。
The dispersing aid can be used in an amount of 0.1 to 40 parts by weight, preferably 0.1 to 30 parts by weight, with respect to 100 parts by weight of the pigment in the coloring composition.
The resin-type pigment dispersant has a pigment-affinity part that has the property of adsorbing to the pigment and a part that is compatible with the pigment carrier, and adsorbs to the pigment to stabilize the dispersion of the pigment on the pigment carrier. It works. Specific examples of resin-type pigment dispersants include polycarboxylic acid esters such as polyurethane and polyacrylate, unsaturated polyamides, polycarboxylic acids, polycarboxylic acid (partial) amine salts, polycarboxylic acid ammonium salts, and polycarboxylic acid alkylamines. Salts, polysiloxanes, long-chain polyaminoamide phosphates, hydroxyl group-containing polycarboxylic acid esters, their modified products, amides formed by the reaction of poly (lower alkyleneimines) with polyesters having free carboxyl groups, and the like Oil-based dispersants such as salts, water-soluble such as (meth) acrylic acid-styrene copolymers, (meth) acrylic acid- (meth) acrylic ester copolymers, styrene-maleic acid copolymers, polyvinyl alcohol, polyvinylpyrrolidone Resin, water-soluble polymer, polyester Modified polyacrylate, ethylene oxide / propylene oxide addition compound, phosphate ester-based and the like are used, they can be used alone or in admixture of two or more.
 界面活性剤としては、ポリオキシエチレンアルキルエーテル硫酸塩、ドデシルベンゼンスルホン酸ナトリウム、スチレン-アクリル酸共重合体のアルカリ塩、アルキルナフタリンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、ラウリル硫酸モノエタノールアミン、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ステアリン酸モノエタノールアミン、ステアリン酸ナトリウム、ラウリル硫酸ナトリウム、スチレン-アクリル酸共重合体のモノエタノールアミン、ポリオキシエチレンアルキルエーテルリン酸エステルなどのアニオン性界面活性剤;ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンアルキルエーテルリン酸エステル、ポリオキシエチレンソルビタンモノステアレート、ポリエチレングリコールモノラウレートなどのノニオン性界面活性剤;アルキル4級アンモニウム塩やそれらのエチレンオキサイド付加物などのカオチン性界面活性剤;アルキルジメチルアミノ酢酸ベタインなどのアルキルベタイン、アルキルイミダゾリンなどの両性界面活性剤が挙げられ、これらは単独でまたは2種以上を混合して用いることができる。 Surfactants include polyoxyethylene alkyl ether sulfate, sodium dodecylbenzenesulfonate, alkali salt of styrene-acrylic acid copolymer, sodium alkylnaphthalenesulfonate, sodium alkyldiphenyletherdisulfonate, lauryl sulfate monoethanolamine, lauryl Anionic surfactants such as triethanolamine sulfate, ammonium lauryl sulfate, monoethanolamine stearate, sodium stearate, sodium lauryl sulfate, monoethanolamine of styrene-acrylic acid copolymer, polyoxyethylene alkyl ether phosphate; Polyoxyethylene oleyl ether, polyoxyethylene lauryl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene Nonionic surfactants such as alkyl ether phosphates, polyoxyethylene sorbitan monostearate and polyethylene glycol monolaurate; chaotic surfactants such as alkyl quaternary ammonium salts and their ethylene oxide adducts; Examples include alkylbetaines such as aminoacetic acid betaine and amphoteric surfactants such as alkylimidazoline, and these can be used alone or in admixture of two or more.
 色素誘導体は、有機色素に置換基を導入した化合物であり、用いる顔料の色相に近いものが好ましいが、添加量が少なければ色相の異なるものを用いても良い。有機色素には、一般に色素とは呼ばれていないナフタレン系、アントラキノン系等の淡黄色の芳香族多環化合物も含まれる。色素誘導体としては、特開昭63-305173号公報、特公昭57-15620号公報、特公昭59-40172号公報、特公昭63-17102号公報、特公平5-9469号公報等に記載されているものを使用できる。特に、塩基性基を有する色素誘導体は、顔料の分散効果が大きいため、好適に用いられる。これらは単独でまたは2種類以上を混合して用いることができる。 The pigment derivative is a compound in which a substituent is introduced into an organic pigment, and is preferably close to the hue of the pigment to be used. However, if the addition amount is small, those having different hues may be used. Organic dyes also include light yellow aromatic polycyclic compounds such as naphthalene and anthraquinone that are not generally called dyes. Examples of the dye derivative are described in JP-A-63-305173, JP-B-57-15620, JP-B-59-40172, JP-B-63-17102, JP-B-5-9469, and the like. You can use what you have. In particular, a pigment derivative having a basic group is preferably used because it has a large pigment dispersion effect. These can be used alone or in admixture of two or more.
 着色組成物には、組成物の経時粘度を安定化させるために貯蔵安定剤を含有させることができる。貯蔵安定剤としては、例えばベンジルトリメチルクロライド、ジエチルヒドロキシアミンなどの4級アンモニウムクロライド、乳酸、シュウ酸などの有機酸およびそのメチルエーテル、t-ブチルピロカテコール、テトラエチルホスフィン、テトラフェニルフォスフィンなどの有機ホスフィン、亜リン酸塩等が挙げられる。
 貯蔵安定剤は、着色組成物中の顔料100重量部に対して、0.1~10重量部の量で含有させることができる。
The coloring composition can contain a storage stabilizer in order to stabilize the viscosity with time of the composition. Examples of storage stabilizers include quaternary ammonium chlorides such as benzyltrimethyl chloride and diethylhydroxyamine, organic acids such as lactic acid and oxalic acid, and organic acids such as methyl ether, t-butylpyrocatechol, tetraethylphosphine, and tetraphenylphosphine. Examples thereof include phosphine and phosphite.
The storage stabilizer can be contained in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of the pigment in the coloring composition.
 また、着色組成物には、基板との密着性を高めるためにシランカップリング剤等の密着向上剤を含有させることもできる。
 シランカップリング剤としては、ビニルトリス(β-メトキシエトキシ)シラン、ビニルエトキシシラン、ビニルトリメトキシシラン等のビニルシラン類、γ-メタクリロキシプロピルトリメトキシシラン等の(メタ)アクリルシラン類、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3、4-エポキシシクロヘキシル)メチルトリメトキシシラン、β-(3、4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3、4-エポキシシクロヘキシル)メチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン等のエポキシシラン類、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジエトキシシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリエトキシシラン等のアミノシラン類、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン等のチオシラン類等が挙げられる。
In addition, the coloring composition may contain an adhesion improving agent such as a silane coupling agent in order to improve the adhesion to the substrate.
Examples of silane coupling agents include vinyl silanes such as vinyltris (β-methoxyethoxy) silane, vinylethoxysilane, vinyltrimethoxysilane, (meth) acrylsilanes such as γ-methacryloxypropyltrimethoxysilane, β- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) methyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, β- (3,4-epoxycyclohexyl) ) Epoxysilanes such as methyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β ( Aminoethyl) γ-aminopro Lutriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldiethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N Examples include aminosilanes such as -phenyl-γ-aminopropyltriethoxysilane, and thiosilanes such as γ-mercaptopropyltrimethoxysilane and γ-mercaptopropyltriethoxysilane.
 シランカップリング剤は、着色組成物中の顔料100重量部に対して、0.01~100重量部の量で含有させることができる。
 着色組成物は、グラビアオフセット用印刷インキ、水無しオフセット印刷インキ、シルクスクリーン印刷用インキ、インキジェット印刷用インキ、溶剤現像型あるいはアルカリ現像型着色レジストの形態で調製することができる。着色レジストは、熱可塑性樹脂、熱硬化性樹脂または感光性樹脂と、モノマーと、光重合開始剤と、有機溶剤とを含有する組成物中に色素を分散させたものである。
The silane coupling agent can be contained in an amount of 0.01 to 100 parts by weight with respect to 100 parts by weight of the pigment in the coloring composition.
The coloring composition can be prepared in the form of gravure offset printing ink, waterless offset printing ink, silk screen printing ink, ink jet printing ink, solvent development type or alkali development type colored resist. The colored resist is obtained by dispersing a dye in a composition containing a thermoplastic resin, a thermosetting resin or a photosensitive resin, a monomer, a photopolymerization initiator, and an organic solvent.
 顔料は、着色組成物の全固形分量を基準(100重量%)として5~70重量%の割合で含有されることが好ましい。より好ましくは、20~50重量%の割合で含有され、その残部は、顔料担体により提供される樹脂質バインダーから実質的になる。
 着色組成物は、遠心分離、焼結フィルタ、メンブレンフィルタ等の手段にて、5μm以上の粗大粒子、好ましくは1μm以上の粗大粒子、さらに好ましくは0.5μm以上の粗大粒子および混入した塵の除去を行うことが好ましい。
The pigment is preferably contained in a proportion of 5 to 70% by weight based on the total solid content of the coloring composition (100% by weight). More preferably, it is contained in a proportion of 20 to 50% by weight, and the remainder consists essentially of a resinous binder provided by a pigment carrier.
The colored composition is removed by means of centrifugal separation, sintering filter, membrane filter, etc. to remove coarse particles of 5 μm or more, preferably coarse particles of 1 μm or more, more preferably 0.5 μm or more and coarse particles It is preferable to carry out.
 また、カラーフィルタ層14が色変換層である場合には、上記の顔料担体に色変換を行なう蛍光色素を分散させたものを色変換層として用いることができる。
 青色ないし青緑色領域の光を吸収して、緑色領域の蛍光を発する蛍光色素としては、例えば3-(2’-ベンゾチアゾリル)-7-ジエチルアミノ-クマリン(クマリン6)、3-(2’-ベンゾイミダゾリル)-7-ジエチルアミノ-クマリン(クマリン7)、3-(2’-N-メチルベンゾイミダゾリル)-7-ジエチルアミノ-クマリン(クマリン30)、2,3,5,6-1H,4H-テトラヒドロ-8-トリフルオロメチルキノリジン(9,9a,1-gh)クマリン(クマリン153)等のクマリン系色素、あるいはクマリン色素系染料である、ベーシックイエロー51、さらにはソルベントイエロー11、ソルベントイエロー116等のナフタルイミド系色素等が挙げられる。さらに、各種染料(直接染料、酸性染料、塩基性染料、分散染料等)も蛍光性があれば使用することができる。
 また、青色から青緑色領域の光を吸収して、赤色領域の蛍光を発する蛍光色素としては、例えばローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、スルホローダミン、ベーシックバイオレット11、ベーシックレッド2等のローダミン系色素、シアニン系色素、1-エチル-2-[4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル]-ピリジニウムパークロレート(ピリジン1)等のピリジン系色素、あるいはオキサジン系色素等が挙げられる。さらに、各種染料(直接染料、酸性染料、塩基性染料、分散染料等)も蛍光性があれば使用することができる。
 また、色純度を向上する目的で上記の色変換層と透明基板1との間に、上記の顔料や染料からなるカラーフィルタ層を形成し、色変換層とカラーフィルタ層との併用であっても良い。
When the color filter layer 14 is a color conversion layer, a color conversion layer in which a fluorescent dye that performs color conversion is dispersed in the pigment carrier can be used.
Examples of fluorescent dyes that absorb light in the blue to blue-green region and emit fluorescence in the green region include 3- (2′-benzothiazolyl) -7-diethylamino-coumarin (coumarin 6) and 3- (2′-benzimidazolyl). ) -7-diethylamino-coumarin (coumarin 7), 3- (2′-N-methylbenzimidazolyl) -7-diethylamino-coumarin (coumarin 30), 2,3,5,6-1H, 4H-tetrahydro-8- Coumarin dyes such as trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153), or coumarin dyes such as basic yellow 51, and naphthalimide such as solvent yellow 11 and solvent yellow 116 System dyes and the like. Furthermore, various dyes (direct dyes, acid dyes, basic dyes, disperse dyes, etc.) can be used if they are fluorescent.
Examples of fluorescent dyes that absorb light in the blue to blue-green region and emit fluorescence in the red region include rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, sulforhodamine, basic violet 11, and basic red. Rhodamine dyes such as 2; cyanine dyes; pyridine dyes such as 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium perchlorate (pyridine 1); or oxazine System dyes and the like. Furthermore, various dyes (direct dyes, acid dyes, basic dyes, disperse dyes, etc.) can be used if they are fluorescent.
Further, for the purpose of improving color purity, a color filter layer made of the above pigment or dye is formed between the color conversion layer and the transparent substrate 1, and the color conversion layer and the color filter layer are used in combination. Also good.
(カラーフィルタ基板の形成)
 上記のカラーフィルタ層材料を平面体である基板1上にパターニングして形成する方法としては、例えば印刷法またはフォトリソグラフィー法などの種々のパターン形成方法があげられる。
 平面体である基板1としては、ソーダ石灰ガラス、低アルカリ硼珪酸ガラス、無アルカリアルミノ硼珪酸ガラスなどのガラス板や、ポリカーボネート、ポリメタクリル酸メチル、ポリエチレンテレフタレートなどの樹脂板が用いられる。
(Formation of color filter substrate)
Examples of a method for forming the color filter layer material by patterning on the substrate 1 which is a flat body include various pattern forming methods such as a printing method and a photolithography method.
As the substrate 1 which is a flat body, a glass plate such as soda lime glass, low alkali borosilicate glass, non-alkali aluminoborosilicate glass, or a resin plate such as polycarbonate, polymethyl methacrylate, polyethylene terephthalate, or the like is used.
 印刷法による各色表示画素(カラーフィルタ層14)の形成は、上記各種の印刷インキとして調製した着色組成物の印刷と乾燥を繰り返すだけでパターン化ができるため、カラーフィルタ基板5の製造法としては、低コストで量産性に優れている。さらに、印刷技術の発展により高い寸法精度および平滑度を有する微細パターンの印刷を行うことができる。印刷を行うためには、印刷の版上にて、あるいはブランケット上にてインキが乾燥、固化しないような組成とすることが好ましい。また、印刷機上でのインキの流動性の制御も重要であり、分散剤や体質顔料によるインキ粘度の調整を行うこともできる。 The formation of each color display pixel (color filter layer 14) by the printing method can be patterned simply by repeating the printing and drying of the colored composition prepared as the above various printing inks. Low cost and excellent mass productivity. Furthermore, it is possible to print a fine pattern having high dimensional accuracy and smoothness by the development of printing technology. In order to perform printing, it is preferable that the ink does not dry and solidify on the printing plate or on the blanket. Control of ink fluidity on a printing press is also important, and ink viscosity can be adjusted with a dispersant or extender pigment.
 フォトリソグラフィー法により各色表示画素(カラーフィルタ層14)を形成する場合は、上記溶剤現像型あるいはアルカリ現像型着色レジストとして調製した着色組成物を、平面体上に、スプレーコートやスピンコート、スリットコート、ロールコート等の塗布方法により、乾燥膜厚が0.2~10μmとなるように塗布する。塗布膜を乾燥させる際には、減圧乾燥機、コンベクションオーブン、IRオーブン、ホットプレート等を使用してもよい。 When forming each color display pixel (color filter layer 14) by a photolithography method, the above-described color composition prepared as a solvent development type or alkali development type color resist is spray-coated, spin-coated, or slit-coated on a planar body. The film is applied by a coating method such as roll coating so that the dry film thickness is 0.2 to 10 μm. When drying the coating film, a vacuum dryer, a convection oven, an IR oven, a hot plate, or the like may be used.
 必要により乾燥された膜には、この膜と接触あるいは非接触状態で設けられた所定のパターンを有するマスクを通して紫外線露光を行う。その後、溶剤またはアルカリ現像液に浸漬するかもしくはスプレーなどにより現像液を噴霧して未硬化部を除去して所望のパターンを形成したのち、同様の操作を他色について繰り返してカラーフィルタを製造することができる。さらに、着色レジストの重合を促進するため、必要に応じて加熱を施すこともできる。フォトリソグラフィー法によれば、上記印刷法より精度の高いカラーフィルタ基板5が製造できる。 If necessary, the dried film is exposed to ultraviolet rays through a mask having a predetermined pattern provided in contact or non-contact with the film. Then, after immersing in a solvent or an alkaline developer or spraying the developer by spraying or the like to remove the uncured portion to form a desired pattern, the same operation is repeated for other colors to produce a color filter. be able to. Furthermore, in order to accelerate the polymerization of the colored resist, heating can be performed as necessary. According to the photolithography method, the color filter substrate 5 with higher accuracy than the printing method can be manufactured.
 現像に際しては、アルカリ現像液として炭酸ナトリウム、水酸化ナトリウム等の水溶液が使用され、ジメチルベンジルアミン、トリエタノールアミン等の有機アルカリを用いることもできる。また、現像液には、消泡剤や界面活性剤を添加することもできる。現像処理方法としては、シャワー現像法、スプレー現像法、ディップ(浸漬)現像法、パドル(液盛り)現像法等を適用することができる。
 なお、紫外線露光感度を上げるために、上記着色レジストを塗布乾燥後、水溶性あるいはアルカリ水溶性樹脂、例えばポリビニルアルコールや水溶性アクリル樹脂等を塗布乾燥し酸素による重合阻害を防止する膜を形成した後、紫外線露光を行うこともできる。
In development, an aqueous solution such as sodium carbonate or sodium hydroxide is used as an alkali developer, and an organic alkali such as dimethylbenzylamine or triethanolamine can also be used. Moreover, an antifoamer and surfactant can also be added to a developing solution. As a development processing method, a shower development method, a spray development method, a dip (immersion) development method, a paddle (liquid accumulation) development method, or the like can be applied.
In order to increase the UV exposure sensitivity, after coating and drying the colored resist, a water-soluble or alkaline water-soluble resin such as polyvinyl alcohol or a water-soluble acrylic resin is applied and dried to form a film that prevents polymerization inhibition by oxygen. Thereafter, ultraviolet exposure can also be performed.
(紫外線透過領域の形成方法)
 紫外線透過領域15の形成方法としては、図1のように紫外線透過領域15を開口部とする場合(第1例)は、印刷法またはフォトリソグラフィー法のようなパターン形成法にて、画素内の紫外線透過領域15以外の部分にカラーフィルタ層14をパターニングしてもよい。
(Method for forming ultraviolet transmissive region)
As a method for forming the ultraviolet transmissive region 15, when the ultraviolet transmissive region 15 is an opening as shown in FIG. 1 (first example), a pattern forming method such as a printing method or a photolithography method is used. The color filter layer 14 may be patterned in a portion other than the ultraviolet light transmitting region 15.
 また、図2のように紫外線透過領域15を薄膜のカラーフィルタ層14とする場合(第2例)は、例えばフォトリソグラフィー法において、基板1上に形成された着色組成物にマスクを通して紫外線露光を行う際に、紫外線透過領域15への露光量をそれ以外の領域に照射する露光量よりも少なくすることで、その後の現像工程で紫外線透過領域15の未硬化部を除去して膜厚を薄くする方法が簡便である。
上記領域ごとに異なる露光量の光を照射する手段としては、複数のフォトマスクを使用して複数回の露光を行なう方法、光の透過率の異なる複数の領域を持つハーフトーンマスクを使用する方法、露光機の解像度以下のスリットを有する部分によってなる複数の領域を持つグレイトーンマスクを使用する方法、光の透過波長の異なる複数の領域を持つ波長制限マスクを使用する方法、電子ビーム等の光束を走査して描画する方法、あるいはその組み合わせ等が考えられるが、これらに限定されない。
また、図3のように紫外線透過領域15を紫外線透過性のよい材料を用いて形成する場合(第3例)は、印刷法またはフォトリソグラフィー法のようなパターン形成法にて、各領域にパターン形成をしてもよい。
In the case where the ultraviolet transmissive region 15 is a thin color filter layer 14 as shown in FIG. 2 (second example), for example, in a photolithography method, the colored composition formed on the substrate 1 is exposed to ultraviolet rays through a mask. When performing, by making the exposure amount to the ultraviolet transmission region 15 smaller than the exposure amount to irradiate other regions, the uncured portion of the ultraviolet transmission region 15 is removed in the subsequent development process to reduce the film thickness. The method to do is simple.
As a means for irradiating light with different exposure amounts for each of the above regions, a method of performing a plurality of exposures using a plurality of photomasks, a method of using a halftone mask having a plurality of regions having different light transmittances , A method using a gray-tone mask having a plurality of regions composed of portions having slits less than the resolution of the exposure machine, a method using a wavelength limiting mask having a plurality of regions having different light transmission wavelengths, and a light beam such as an electron beam A method of drawing by scanning or a combination thereof is conceivable, but is not limited thereto.
Further, when the ultraviolet transmissive region 15 is formed using a material having good ultraviolet transmissive properties as shown in FIG. 3 (third example), a pattern is formed in each region by a pattern forming method such as a printing method or a photolithography method. It may be formed.
(光散乱層16の形成方法)
 光散乱層16を形成する材料としては、上述のように、例えば光透過性を有する透明樹脂にチタニア等の高屈折率を有する粒子を分散させることで光散乱性を持たせたものがあげられる。透明樹脂には、熱可塑性樹脂、熱硬化性樹脂、および感光性樹脂が含まれる。
 光散乱層16は、例えば印刷法またはフォトリソグラフィー法によって、図9(a)のように紫外線透過領域15上のみにパターン形成するか、図9(b)のように画素内全面に形成する。
(Method for forming light scattering layer 16)
As the material for forming the light scattering layer 16, as described above, for example, a material having light scattering properties by dispersing particles having a high refractive index such as titania in a transparent resin having light transmittance. . The transparent resin includes a thermoplastic resin, a thermosetting resin, and a photosensitive resin.
The light scattering layer 16 is formed by patterning only on the ultraviolet transmissive region 15 as shown in FIG. 9A by, for example, a printing method or a photolithography method, or formed on the entire surface of the pixel as shown in FIG. 9B.
(有機EL素子基板10の製造方法)
 次にカラーフィルタ基板5と対向して接合される有機EL素子基板10の製造について説明する。
(Method for manufacturing organic EL element substrate 10)
Next, manufacture of the organic EL element substrate 10 bonded to face the color filter substrate 5 will be described.
有機EL素子基板10は、薄膜トランジスタ(TFT)が形成された駆動用基板を用いる。薄膜トランジスタとしては、公知の薄膜トランジスタを用いることができる。具体的には、主として、ソース/ドレイン領域及びチャネル領域が形成される活性層、ゲート絶縁膜及びゲート電極から構成される薄膜トランジスタが挙げられる。薄膜トランジスタの構造としては、特に限定されるものではなく、例えば、スタガ型、逆スタガ型、ボトムゲート型、トップゲート型、コプレーナ型等が挙げられる。
薄膜トランジスタは有機EL素子のスイッチング素子として機能するように接続し、トランジスタのドレイン電極と有機EL素子30の反射電極8が電気的に接続されている。
The organic EL element substrate 10 uses a driving substrate on which a thin film transistor (TFT) is formed. A known thin film transistor can be used as the thin film transistor. Specifically, a thin film transistor mainly including an active layer in which a source / drain region and a channel region are formed, a gate insulating film, and a gate electrode can be given. The structure of the thin film transistor is not particularly limited, and examples thereof include a staggered type, an inverted staggered type, a bottom gate type, a top gate type, and a coplanar type.
The thin film transistor is connected so as to function as a switching element of the organic EL element, and the drain electrode of the transistor and the reflective electrode 8 of the organic EL element 30 are electrically connected.
反射電極8は図示しない隔壁によって区画されていても良く、その場合、隔壁は画素に対応した発光領域を区画するように形成する。一般的にアクティブマトリクス駆動型の表示装置は各画素に対して反射電極8が形成され、それぞれの画素ができるだけ広い面積を占有しようとするため、反射電極8の端部を覆うように形成される隔壁の最も好ましい形状は格子状を基本とする。 The reflective electrode 8 may be partitioned by a partition wall (not shown). In this case, the partition wall is formed so as to partition a light emitting region corresponding to the pixel. In general, an active matrix drive type display device has a reflective electrode 8 formed for each pixel, and each pixel tries to occupy as large an area as possible, and is formed so as to cover an end of the reflective electrode 8. The most preferable shape of the partition is basically a lattice shape.
隔壁の形成方法としては、無機膜を一様に形成し、レジストでマスキングした後、ドライエッチングを行う方法や、感光性樹脂を積層し、フォトリソグラフィ法により所定のパターンとする方法が挙げられる。必要に応じて撥水剤を添加したり、プラズマやUVを照射して形成後にインクに対する撥液性を付与したりすることもできる。 Examples of the method for forming the partition include a method in which an inorganic film is uniformly formed and masked with a resist and then dry etching, and a method in which a photosensitive resin is stacked and a predetermined pattern is formed by a photolithography method. If necessary, a water repellent can be added, or plasma or UV can be irradiated to impart liquid repellency to the ink after formation.
隔壁の好ましい高さは0.1μm以上10μm以下であり、より好ましくは0.5μm以上2μm以下である。隔壁の高さが10μmを超えると対向電極の形成及び封止を妨げてしまい、0.1μm未満だと反射電極8の端部を覆い切れない、あるいは発光媒体層の形成時に隣接する画素とショートしたり混色する恐れがあるからである。 A preferable height of the partition wall is 0.1 μm or more and 10 μm or less, and more preferably 0.5 μm or more and 2 μm or less. If the height of the partition wall exceeds 10 μm, the formation and sealing of the counter electrode is hindered. If the height of the partition wall is less than 0.1 μm, the end of the reflective electrode 8 cannot be covered, or the adjacent pixel is short-circuited when the light emitting medium layer is formed. This is because there is a risk of color mixing.
上記の通り、反射電極8にはAgやAlなどの発光層の光を反射する材料が用いられる。また、反射電極8として正孔注入性が必要な場合には、AgやAlのような金属材料の上にITO膜を積層すればよい。反射電極8の膜厚は、有機ELディスプレイの素子構成により最適値が異なるが、単層、積層にかかわらず、100Å以上10000Å以下であり、より好ましくは、3000Å以下である。 As described above, the reflective electrode 8 is made of a material that reflects light from the light emitting layer, such as Ag or Al. When the hole injection property is required for the reflective electrode 8, an ITO film may be laminated on a metal material such as Ag or Al. Although the optimum value of the thickness of the reflective electrode 8 varies depending on the element configuration of the organic EL display, it is not less than 100 mm and not more than 10,000 mm, more preferably not more than 3000 mm, regardless of single layer or stacked layers.
反射電極8の形成方法としては、材料に応じて、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法などの乾式成膜法や、グラビア印刷法、スクリーン印刷法などの湿式成膜法や、これらを組み合わせた方法を用いることができる。 As a method of forming the reflective electrode 8, depending on the material, a dry film forming method such as a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, a sputtering method, a gravure printing method, or a screen printing method is used. A wet film-forming method such as a method or a combination of these can be used.
有機層7としては、少なくとも発光物質を含む単層膜、あるいは多層膜で形成することができる。多層膜で形成する場合の構成例としては、正孔輸送層、電子輸送性発光層または正孔輸送性発光層、電子輸送層からなる2層構成や正孔輸送層、発光層、電子輸送層からなる3層構成、さらには、必要に応じて正孔(電子)注入機能と正孔(電子)輸送機能を分けたり、正孔や電子の輸送をプロックする層などを挿入することにより、さらに多層形成することがより好ましい。 The organic layer 7 can be formed of a single layer film or a multilayer film containing at least a light emitting substance. Examples of the configuration in the case of forming a multilayer film include a hole transport layer, an electron transporting light emitting layer or a hole transporting light emitting layer, a two-layer structure comprising an electron transport layer, a hole transport layer, a light emitting layer, and an electron transport layer. By further separating the hole (electron) injection function and the hole (electron) transport function as necessary, or by inserting a layer that blocks the transport of holes and electrons, if necessary, It is more preferable to form a multilayer.
正孔輸送材料の例としては、銅フタロシアニン、テトラ(t-ブチル)銅フタロシアニン等の金属フタロシアニン類及び無金属フタロシアニン類、キナクリドン化合物、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン等の芳香族アミン系低分子正孔注入輸送材料や、ポリアニリン、ポリチオフェン、ポリビニルカルバゾール、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸との混合物などの高分子正孔輸送材料、ポリチオフェンオリゴマー材料、CuO,Cr,Mn,FeOx(x~0.1),NiO,CoO,Pr,AgO,MoO,Bi,ZnO,TiO,SnO,ThO,V,Nb,Ta,MoO,WO,MnOなどの無機材料、その他既存の正孔輸送材料の中から選ぶことができる。 Examples of hole transport materials include metal phthalocyanines such as copper phthalocyanine and tetra (t-butyl) copper phthalocyanine, and metal-free phthalocyanines, quinacridone compounds, 1,1-bis (4-di-p-tolylaminophenyl) Cyclohexane, N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine, N, N′-di (1-naphthyl) -N, Aromatic amine low molecular hole injection and transport materials such as N′-diphenyl-1,1′-biphenyl-4,4′-diamine, polyaniline, polythiophene, polyvinylcarbazole, poly (3,4-ethylenedioxythiophene) ) and polymer hole transport materials such as a mixture of polystyrene sulfonic acid, polythiophene oligomer materials, Cu 2 O, Cr 2 O 3, Mn 2 O , FeOx (x ~ 0.1), NiO, CoO, Pr 2 O 3, Ag 2 O, MoO 2, Bi 2 O 3, ZnO, TiO 2, SnO 2, ThO 2, V 2 O 5, Nb 2 O 5 , Ta 2 O 5 , MoO 3 , WO 3 , MnO 2 and other inorganic materials, and other existing hole transport materials can be selected.
高分子ELディスプレイの場合には、正孔輸送材料に、インターレイヤ層を形成することが好ましい。インターレイヤ層に用いる材料として、ポリビニルカルバゾール若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリアリーレン誘導体、アリールアミン誘導体、トリフェニルジアミン誘導体などの、芳香族アミンを含むポリマーなどが挙げられる。これらの材料は溶媒に溶解または分散させ、スピンコート法等を用いた各種塗布方法や凸版印刷方法を用いて形成することができる。 In the case of a polymer EL display, an interlayer layer is preferably formed on the hole transport material. Examples of materials used for the interlayer layer include polymers containing aromatic amines such as polyvinyl carbazole or derivatives thereof, polyarylene derivatives having aromatic amines in the side chain or main chain, arylamine derivatives, and triphenyldiamine derivatives. . These materials can be dissolved or dispersed in a solvent and formed using various coating methods such as spin coating or letterpress printing.
発光材料としては、9,10-ジアリールアントラセン誘導体、ピレン、コロネン、ペリレン、ルブレン、1,1,4,4-テトラフェニルブタジエン、トリス(8-キノリノラート)アルミニウム錯体、トリス(4-メチル-8-キノリノラート)アルミニウム錯体、ビス(8-キノリノラート)亜鉛錯体、トリス(4-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム錯体、トリス(4-メチル-5-シアノ-8-キノリノラート)アルミニウム錯体、ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)[4-(4-シアノフェニル)フェノラート]アルミニウム錯体、ビス(2-メチル-5-シアノ-8-キノリノラート)[4-(4-シアノフェニル)フェノラート]アルミニウム錯体、トリス(8-キノリノラート)スカンジウム錯体、ビス〔8-(パラ-トシル)アミノキノリン〕亜鉛錯体及びカドミウム錯体、1,2,3,4-テトラフェニルシクロペンタジエン、ペンタフェニルシクロペンタジエン、ポリ-2,5-ジヘプチルオキシ-パラ-フェニレンビニレン、クマリン系蛍光体、ペリレン系蛍光体、ピラン系蛍光体、アンスロン系蛍光体、ポルフィリン系蛍光体、キナクリドン系蛍光体、N,N’-ジアルキル置換キナクリドン系蛍光体、ナフタルイミド系蛍光体、N,N’-ジアリール置換ピロロピロール系蛍光体等、Ir錯体等の燐光性発光体などの、一般に用いられている低分子系発光材料を挙げることができる。また、ポリフルオレン、ポリパラフェニレンビニレン、ポリチオフェン、ポリスピロなどの高分子材料や、これら高分子材料に前記低分子材料の分散または共重合した材料や、その他既存の蛍光発光材料や燐光発光材料を用いることができる。
 カラーフィルタ層14が色変換層である場合の発光材料としては、近紫外光から青色発光領域までの波長の光を放出するものを用いることが好ましい。このように近紫外光~青色発光の有機層の場合や、白色発光の有機層を用いる場合には、有機層7の色純度の経時変化や寿命が均一であるため、3色方式のように各色の経時変化や寿命を考慮する必要が無い。
Examples of the light emitting material include 9,10-diarylanthracene derivatives, pyrene, coronene, perylene, rubrene, 1,1,4,4-tetraphenylbutadiene, tris (8-quinolinolato) aluminum complex, tris (4-methyl-8- Quinolinolato) aluminum complex, bis (8-quinolinolato) zinc complex, tris (4-methyl-5-trifluoromethyl-8-quinolinolato) aluminum complex, tris (4-methyl-5-cyano-8-quinolinolato) aluminum complex, Bis (2-methyl-5-trifluoromethyl-8-quinolinolato) [4- (4-cyanophenyl) phenolate] aluminum complex, bis (2-methyl-5-cyano-8-quinolinolato) [4- (4- Cyanophenyl) phenolate] aluminum complex, tri (8-quinolinolato) scandium complex, bis [8- (para-tosyl) aminoquinoline] zinc complex and cadmium complex, 1,2,3,4-tetraphenylcyclopentadiene, pentaphenylcyclopentadiene, poly-2,5- Diheptyloxy-para-phenylene vinylene, coumarin phosphor, perylene phosphor, pyran phosphor, anthrone phosphor, porphyrin phosphor, quinacridone phosphor, N, N'-dialkyl-substituted quinacridone phosphor Examples thereof include generally used low molecular weight light-emitting materials such as naphthalimide-based phosphors, N, N′-diaryl-substituted pyrrolopyrrole-based phosphors, and phosphorescent phosphors such as Ir complexes. In addition, polymer materials such as polyfluorene, polyparaphenylene vinylene, polythiophene, and polyspiro, materials obtained by dispersing or copolymerizing the low molecular materials in these polymer materials, and other existing fluorescent light emitting materials and phosphorescent light emitting materials are used. be able to.
As the light emitting material when the color filter layer 14 is a color conversion layer, it is preferable to use a material that emits light having a wavelength from near ultraviolet light to a blue light emitting region. As described above, in the case of an organic layer that emits near ultraviolet light to blue light, or when an organic layer that emits white light is used, the change in color purity with time and the life of the organic layer 7 are uniform. There is no need to consider the aging and life of each color.
電子輸送材料の例としては、2-(4-ビフェニルイル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール、オキサジアゾール誘導体やビス(10-ヒドロキシベンゾ[h]キノリノラート)ベリリウム錯体、トリアゾール化合物等を用いることができる。また、これらの電子輸送材料に、ナトリウムやバリウム、リチウムといった仕事関数が低いアルカリ金属、アルカリ土類金属を少量ドープすることにより、電子注入層としてもよい。 Examples of electron transport materials include 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole, 2,5-bis (1-naphthyl) -1 3,4-oxadiazole, oxadiazole derivatives, bis (10-hydroxybenzo [h] quinolinolato) beryllium complexes, triazole compounds, and the like can be used. Alternatively, these electron transport materials may be used as an electron injection layer by doping a small amount of alkali metal or alkaline earth metal having a low work function such as sodium, barium, or lithium.
有機層7の膜厚は、単層または積層により形成する場合においても、1000nm以下であり、好ましくは50~200nm程度である。有機層7の形成方法としては、材料に応じて、真空蒸着法や、スリットコート、スピンコート、スプレーコート、ノズルコート、フレキソ印刷、グラビア印刷、マイクログラビア印刷、凹版オフセット印刷などの各種コーティング法や印刷法、インクジェット法などを用いることができる。 The film thickness of the organic layer 7 is 1000 nm or less, preferably about 50 to 200 nm, even when formed by a single layer or a stacked layer. Depending on the material, the organic layer 7 can be formed by vacuum deposition, various coating methods such as slit coating, spin coating, spray coating, nozzle coating, flexographic printing, gravure printing, micro gravure printing, intaglio offset printing, A printing method, an inkjet method, or the like can be used.
光透過性電極6としては、有機発光媒体層15への電子注入効率の高い、仕事関数の低い物質で、かつ透光性を有する材料を用いる。具体的にはMg,Al,Yb等の金属単体を用いたり、発光媒体と接する界面にBa、Ca、Liやその酸化物,フッ化物等の化合物を1nm程度挟んで、安定性・導電性の高いAlやCuを積層して用いることができる。または電子注入効率と安定性を両立させるため、仕事関数が低いLi,Mg,Ca,Sr,La,Ce,Er,Eu,Sc,Y,Yb等の金属1種以上と、安定なAg,Al,Cu等の金属元素との合金系を用いてもよい。具体的にはMgAg,AlLi,CuLi等の合金が使用できる。これらの仕事関数が低いLi,Caを薄く設けた後に、ITO(インジウムスズ複合酸化物)やインジウム亜鉛複合酸化物、亜鉛アルミニウム複合酸化物などの透明な金属複合酸化物を積層してもよく、前記有機発光媒体層15に、仕事関数が低いLi,Caなどの金属を少量ドーピングして、ITOなどの金属酸化物を積層してもよい。光透過性電極6の形成方法は、材料に応じて、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法を用いることができる。光透過性電極6の厚さとしてはCaやLiなどの金属材料を用いる場合の膜厚は0.1~10nm程度が望ましい。0.1nm未満では成膜法や有機層の表面状態によっては形成されない部分が生じる恐れがあり、10nmを超えると金属材料により透光性が低下する。 As the light transmissive electrode 6, a material having a high electron injection efficiency into the organic light emitting medium layer 15, a low work function, and a light transmissive material is used. Specifically, a single metal such as Mg, Al, Yb is used, or a compound such as Ba, Ca, Li, its oxide, or fluoride is sandwiched by about 1 nm at the interface in contact with the light emitting medium. High Al and Cu can be laminated and used. Alternatively, in order to achieve both electron injection efficiency and stability, one or more metals such as Li, Mg, Ca, Sr, La, Ce, Er, Eu, Sc, Y, and Yb having a low work function and stable Ag, Al An alloy system with a metal element such as Cu or Cu may be used. Specifically, alloys such as MgAg, AlLi, and CuLi can be used. After thinly providing Li and Ca having a low work function, transparent metal composite oxides such as ITO (indium tin composite oxide), indium zinc composite oxide, and zinc aluminum composite oxide may be laminated. The organic light emitting medium layer 15 may be laminated with a metal oxide such as ITO by doping a small amount of a metal such as Li or Ca having a low work function. As a method for forming the light transmissive electrode 6, a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, or a sputtering method can be used depending on the material. The thickness of the light transmissive electrode 6 is preferably about 0.1 to 10 nm when a metal material such as Ca or Li is used. If the thickness is less than 0.1 nm, there may be a portion that is not formed depending on the film forming method or the surface state of the organic layer.
 紫外線防止膜18を設ける場合には、例えば、図8(a)のように、上記パッシベーション膜17の上に紫外線防止膜18を成膜する。紫外線防止膜18を個別に設けなくても、図8(b)のように光透過性電極と紫外線防止層を兼用した層としてもよい。このような材料としては、ITO等の酸化物透明導電膜があげられる。酸化物透明導電膜は半導体でありエネルギーギャップがあるため、そのギャップにより大きいエネルギーの光は電子バンド間遷移により吸収し、小さいエネルギーの光は吸収しない。ここで、無色透明になる(可視光を透過する)条件のエネルギーギャップは約3.3eV以上である。よって、エネルギーギャップが3.3eV付近になるような酸化物透明導電膜を成膜することで、そのギャップより大きいエネルギーの紫外光は吸収される。ITO等の酸化物透明導電膜は一般的にスパッタ等の成膜方法にて成膜されるが、成膜プロセスにて膜の吸収スペクトルを制御することも可能である。 When the ultraviolet protection film 18 is provided, for example, as shown in FIG. 8A, the ultraviolet protection film 18 is formed on the passivation film 17. Even if the ultraviolet ray prevention film 18 is not provided separately, a layer that combines the light transmissive electrode and the ultraviolet ray prevention layer as shown in FIG. 8B may be used. Examples of such a material include an oxide transparent conductive film such as ITO. Since the transparent oxide conductive film is a semiconductor and has an energy gap, light having a larger energy is absorbed by the transition between electron bands and light having a smaller energy is not absorbed. Here, the energy gap under the condition of becoming colorless and transparent (transmitting visible light) is about 3.3 eV or more. Therefore, by forming an oxide transparent conductive film having an energy gap of about 3.3 eV, ultraviolet light having an energy larger than the gap is absorbed. An oxide transparent conductive film such as ITO is generally formed by a film formation method such as sputtering, but the absorption spectrum of the film can also be controlled by a film formation process.
(カラーフィルタ基板と有機EL素子基板の接合方法)
 次に、上記のようにして得られたカラーフィルタ基板5と有機EL素子基板10を、光硬化性樹脂からなる接着層11を用いて接合する方法を説明する。
 接合方法の一例としては、基板外周部に封止層を設け、その内部空間を光硬化性樹脂からなる充填剤によって充填する。これによって、カラーフィルタ基板5と有機EL素子基板10を接着するとともに、内部の各構成要素を外部環境の酸素、水分などから保護することができる。
(Method of joining color filter substrate and organic EL element substrate)
Next, a method of joining the color filter substrate 5 and the organic EL element substrate 10 obtained as described above using an adhesive layer 11 made of a photocurable resin will be described.
As an example of the bonding method, a sealing layer is provided on the outer periphery of the substrate, and the inner space is filled with a filler made of a photocurable resin. As a result, the color filter substrate 5 and the organic EL element substrate 10 can be bonded, and the internal components can be protected from oxygen, moisture, and the like in the external environment.
 具体的には、カラーフィルタ基板5の外周上に封止層をディスペンサー装置によって塗布し、その内部に光硬化樹脂からなる充填剤を滴下する。ここで、上記カラーフィルタ基板5と有機EL素子基板10を、真空チャンバー内の対向したホルダーにセットした後、真空チャンバー内を密閉し、排気バルブを開いてチャンバー内を1~10Pa程度に減圧する。それぞれの基板の位置決めをした後、一方のホルダーを下降させ、ホルダー同士を重ね合わせ、再度位置合わせをして張り合わせる。貼り合わせ終了後、チャンバー内を大気圧に戻して取り出す。 Specifically, a sealing layer is applied on the outer periphery of the color filter substrate 5 by a dispenser device, and a filler made of a photo-curing resin is dropped inside the sealing layer. Here, after the color filter substrate 5 and the organic EL element substrate 10 are set in opposite holders in the vacuum chamber, the inside of the vacuum chamber is sealed and the exhaust valve is opened to reduce the pressure in the chamber to about 1 to 10 Pa. . After positioning each substrate, one of the holders is lowered, the holders are overlapped with each other, are aligned again, and are bonded together. After bonding, the chamber is returned to atmospheric pressure and taken out.
 続いて、所定の条件でカラーフィルタ基板5側から紫外線を照射して充填剤および封止剤を硬化させる。このとき、紫外線は主にカラーフィルタ基板5に形成された紫外線透過領域15を通過し、さらにその下の光散乱層16にて散乱され、充填剤が硬化する。なお、紫外線防止層を設けた場合には、充填剤を通過した紫外線は下にある紫外線防止層にて吸収され、有機層7にまで到達しない。また、熱併用型の光硬化性充填剤の場合は、加熱処理を行うことで重合が広がり、未硬化部を硬化することが可能となる。 Subsequently, the filler and the sealant are cured by irradiating ultraviolet rays from the color filter substrate 5 side under predetermined conditions. At this time, the ultraviolet rays mainly pass through the ultraviolet transmissive region 15 formed on the color filter substrate 5, and are further scattered by the light scattering layer 16 below, so that the filler is cured. In the case where an ultraviolet ray preventing layer is provided, the ultraviolet rays that have passed through the filler are absorbed by the underlying ultraviolet ray preventing layer and do not reach the organic layer 7. Further, in the case of a heat combined type photocurable filler, the heat treatment is performed to spread the polymerization and to cure the uncured part.
 封止層は、熱硬化性型、紫外線硬化型等の接着剤から形成され、ガラスビーズ、シリカビーズ等を含んでいても良い。これらのビーズ類は、カラーフィルタ基板5と、有機EL素子基板10との貼り合わせにおいて、両基板5,10間の距離を規定する。
 封止層内部の基板間距離を均一にたもつために、基板間にガラスビーズ、シリカビーズ等の球状スペーサを分散させてもよい。また、カラーフィルタ基板5上にフォトリソグラフィー法等によって設けたアクリル樹脂等の柱状スペーサを用いることも可能である。
The sealing layer is formed of an adhesive such as a thermosetting type or an ultraviolet curable type, and may contain glass beads, silica beads, or the like. These beads define the distance between the substrates 5 and 10 when the color filter substrate 5 and the organic EL element substrate 10 are bonded together.
In order to keep the distance between the substrates inside the sealing layer uniform, spherical spacers such as glass beads and silica beads may be dispersed between the substrates. It is also possible to use a columnar spacer such as an acrylic resin provided on the color filter substrate 5 by a photolithography method or the like.
 また、内部空間を充填層(接着層11)とすることで、内部空間界面における反射を抑制し、EL発光を効率よく透過させることが可能となり、有機EL表示装置の強度も向上する。充填層の材料としては、可視光に対して十分な透過性があるものが好ましく、例えばSiN、SiO、のような無機材料、アクリル樹脂、シリコンゲルのような有機材料を含む。
 また、カラーフィルタ基板5と有機EL素子基板10を対向して接合する別の方法としては、シート状に加工された光硬化性の接着剤を基板上に設け、カラーフィルタ基板5と有機EL素子基板10を接着することもできる。
In addition, by using the internal space as the filling layer (adhesive layer 11), reflection at the internal space interface can be suppressed, EL light can be transmitted efficiently, and the strength of the organic EL display device can be improved. The material of the filling layer is preferably a material having sufficient transparency to visible light, and includes, for example, inorganic materials such as SiN X and SiO X N Y , organic materials such as acrylic resin and silicon gel.
As another method of joining the color filter substrate 5 and the organic EL element substrate 10 facing each other, a photocurable adhesive processed into a sheet shape is provided on the substrate, and the color filter substrate 5 and the organic EL element are provided. The substrate 10 can also be bonded.
 以下に、本発明に基づく実施例を説明する。
 本実施例の有機EL素子基板10は、ガラス基板9上に対し各画素領域Xに薄膜トランジスタを形成する。ここで、陽極として銀からなる反射電極8およびその上にITOを形成する。次に、この画素ラインの端部をカバーするように、画素間にフォトレジスト材料を用いて絶縁層を形成した。その上に、正孔輸送層としてPEDOT:PSS1.5wt水溶液を、スピンコート法により膜厚が40nmとなるように成膜した。次いで、基板9を枚葉式の凸版印刷装置に固定し、各色の有機発光インキを印刷した。有機発光インキは赤色、緑色、青色(RGB)の3色を以下のように調製した。
 赤色発光インキ(R):ポリフルオレン系誘導体のトルエン1質量%溶液
 緑色発光インキ(G):ポリフルオレン系誘導体のトルエン1質量%溶液
 青色発光インキ(B):ポリフルオレン系誘導体のトルエン1質量%溶液
Examples according to the present invention will be described below.
The organic EL element substrate 10 of the present embodiment forms a thin film transistor in each pixel region X on the glass substrate 9. Here, a reflective electrode 8 made of silver is formed as an anode, and ITO is formed thereon. Next, an insulating layer was formed using a photoresist material between the pixels so as to cover the end of the pixel line. On top of that, a PEDOT: PSS 1.5 wt aqueous solution was formed as a hole transport layer by spin coating so as to have a film thickness of 40 nm. Subsequently, the board | substrate 9 was fixed to the sheet-fed type letterpress printing apparatus, and the organic luminescent ink of each color was printed. The organic light-emitting ink was prepared in the following three colors: red, green, and blue (RGB).
Red luminescent ink (R): 1 wt% toluene solution of polyfluorene derivative Green luminescent ink (G): 1 wt% toluene solution of polyfluorene derivative Blue luminescent ink (B): 1 wt% toluene of polyfluorene derivative solution
 有機発光層は、赤色有機発光層、緑色有機発光層、青色有機発光層がストライプ状に並ぶように印刷した。各色について印刷を行った後、オーブン内で、130℃で1時間乾燥をおこなった。乾燥の後、印刷により形成した有機発光層上に電子が効率的に注入できるような仕事関数の低い第一の陰極としてカルシウムを蒸着法により4nmの厚さで成膜し、その上に第二の陰極としてアルミニウムを2nmの厚さで成膜した。ここで、アルミニウムはその上に形成される透明電極6をスパッタリング成膜する際に、第一の陰極であるカルシウムが化学的変質をすることを防ぐ役割がある。次に、陰極上にスパッタリング法によって透明導電膜を成膜した。ここで透明導電膜としてはITOを用い、紫外線防止層の機能も果たすように成膜条件により300nm~400nmの波長帯の平均透過率が5%となるように制御した。さらに、透明導電膜上にCVD法によって窒化珪素を200nm成膜することで、パッシベーション膜17とした。 The organic light emitting layer was printed so that the red organic light emitting layer, the green organic light emitting layer, and the blue organic light emitting layer were arranged in a stripe pattern. After printing for each color, drying was performed at 130 ° C. for 1 hour in an oven. After drying, calcium is deposited to a thickness of 4 nm as a first cathode having a low work function so that electrons can be efficiently injected onto the organic light emitting layer formed by printing. As the cathode, aluminum was deposited to a thickness of 2 nm. Here, aluminum has a role to prevent calcium as the first cathode from being chemically altered when the transparent electrode 6 formed thereon is formed by sputtering. Next, a transparent conductive film was formed on the cathode by a sputtering method. Here, ITO was used as the transparent conductive film, and the average transmittance in the wavelength range of 300 nm to 400 nm was controlled to 5% according to the film forming conditions so as to fulfill the function of the ultraviolet ray preventing layer. Further, a passivation film 17 was formed by depositing 200 nm of silicon nitride on the transparent conductive film by a CVD method.
 本実施形態のカラーフィルタ基板5は、ガラス基板1上に、各画素間の領域にブラックマトリクス層4を設けた後、アクリル樹脂溶液・顔料分散液から成るアルカリ現像型着色組成物にて、赤色カラーフィルタ層2R、緑色カラーフィルタ層2G、青色カラーフィルタ層2Bを形成した。各カラーフィルタ層14の製造方法としては、まず赤色着色組成物を、スピンコーターで塗布した後に、クリーンオーブン中70℃で20分間加熱乾燥し塗布基板を得た。この基板を室温まで冷却後、超高圧水銀灯を用い、フォトマスクを介して紫外線を露光した。このとき、画素内の紫外線透過領域15の部分には、紫外線が透過しないように遮光がしてある。その後、この基板を23℃の炭酸ナトリウム水溶液を用いてスプレー現像した後、イオン交換水で洗浄し、風乾した。さらに、クリーンオーブン中で、230℃で30分間焼成を行ない、基板上に赤色カラーフィルタ層14を形成した。次に緑色着色組成物を使用して同様に緑色カラーフィルタ層14を形成し、さらに青色着色組成物を使用して青色カラーフィルタ層14を形成した。ここで、ブラックマトリクス層の膜厚は1.0μm、各色カラーフィルタ層14の膜厚はいずれにおいても2.0μmであった。また、各色の画素のサイズは75μm×25μmであり、紫外線透過領域15(開口部)は画素の中心部に位置し、サイズは10μm×10μmであった。次にアクリル樹脂溶液にチタニア粒子を分散させた材料を用いて、カラーフィルタ層14の形成方法と同様にフォトリソグラフィー法を用いて紫外線透過領域15上に光散乱層16をパターン形成した。 The color filter substrate 5 of the present embodiment is obtained by providing a black matrix layer 4 in a region between pixels on a glass substrate 1, and then using an alkali developing coloring composition composed of an acrylic resin solution and a pigment dispersion, A color filter layer 2R, a green color filter layer 2G, and a blue color filter layer 2B were formed. As a manufacturing method of each color filter layer 14, after apply | coating a red coloring composition with a spin coater first, it heat-dried at 70 degreeC for 20 minutes in the clean oven, and obtained the application | coating board | substrate. After cooling the substrate to room temperature, ultraviolet rays were exposed through a photomask using an ultrahigh pressure mercury lamp. At this time, the portion of the ultraviolet transmissive region 15 in the pixel is shielded from light so as not to transmit ultraviolet rays. Thereafter, the substrate was spray-developed using a sodium carbonate aqueous solution at 23 ° C., washed with ion-exchanged water, and air-dried. Further, baking was performed at 230 ° C. for 30 minutes in a clean oven to form a red color filter layer 14 on the substrate. Next, the green color filter layer 14 was similarly formed using the green color composition, and the blue color filter layer 14 was further formed using the blue color composition. Here, the thickness of the black matrix layer was 1.0 μm, and the thickness of each color filter layer 14 was 2.0 μm. The size of each color pixel was 75 μm × 25 μm, the ultraviolet light transmitting region 15 (opening) was located at the center of the pixel, and the size was 10 μm × 10 μm. Next, using a material in which titania particles were dispersed in an acrylic resin solution, the light scattering layer 16 was patterned on the ultraviolet light transmitting region 15 using the photolithography method in the same manner as the method for forming the color filter layer 14.
 上記のように製作したカラーフィルタ基板5と有機EL素子基板10を対向して接合するために、カラーフィルタ基板5の外周上に封止層をディスペンサー装置によって塗布し、その内部に充填剤を滴下し、真空チャンバー内で貼り合わせ作業を行った。このときのチャンバー内の到達圧力は1Paであった。次いで、貼り合わせ基板をチャンバーから取り出し、紫外線を露光した。紫外線露光機の光源としてはメタルハライドランプを用い、波長365nmにおける照度は100mW/cm2、露光量は6000mJ/cm2とした。さらに、クリーンオーブン中で、80℃で60分間焼成を行ない、基板同士を接合した。このとき、カラーフィルタ基板5と有機EL素子基板10の距離は6.0μmであった。 In order to bond the color filter substrate 5 and the organic EL element substrate 10 manufactured as described above to face each other, a sealing layer is applied on the outer periphery of the color filter substrate 5 by a dispenser device, and a filler is dropped inside the sealing layer. Then, bonding was performed in a vacuum chamber. The ultimate pressure in the chamber at this time was 1 Pa. Next, the bonded substrate was taken out of the chamber and exposed to ultraviolet rays. A metal halide lamp was used as the light source of the ultraviolet exposure machine, the illuminance at a wavelength of 365 nm was 100 mW / cm 2, and the exposure amount was 6000 mJ / cm 2. Further, baking was performed at 80 ° C. for 60 minutes in a clean oven to bond the substrates together. At this time, the distance between the color filter substrate 5 and the organic EL element substrate 10 was 6.0 μm.
 上記のように作製した有機EL表示装置の貼り合わせ封止性能を測定するために、温度60℃、湿度90%の恒温恒湿槽中に放置し、画素発光の劣化を観察した。この観察によると、1500時間まで劣化が見られなかったことから、ディスプレイとしての封止性能を満足していることがわかった。また、充填剤への紫外線露光を行う前後での有機EL発光効率を測定したところ、発光効率値の低下は見られなかったことから、紫外線による有機ELへのダメージが抑制されていることがわかった。 In order to measure the bonding and sealing performance of the organic EL display device produced as described above, the organic EL display device was left in a constant temperature and humidity chamber at a temperature of 60 ° C. and a humidity of 90%, and deterioration of pixel emission was observed. According to this observation, since no deterioration was observed until 1500 hours, it was found that the sealing performance as a display was satisfied. In addition, when the organic EL light emission efficiency before and after performing ultraviolet exposure to the filler was measured, no decrease in the light emission efficiency value was observed, indicating that damage to the organic EL due to ultraviolet light was suppressed. It was.
(比較例1) 上記構造の有機EL表示装置において、カラーフィルタ基板5の画素内に紫外線透過領域15を設けず、画素全面をカラーフィルタ層14とした場合、温度60℃、湿度90%の恒温恒湿槽中に放置して画素発光の劣化を観察したところ、300時間の時点で劣化が発生した。
(比較例2) 上記構造の有機EL表示装置において、有機EL素子基板10に紫外線防止機能を有する層を設けなかった場合、充填剤への紫外線露光を行う前後での有機EL発光効率を測定したところ、紫外線照射後の発光効率値は照射前と比較して50%となった。
(Comparative Example 1) In the organic EL display device having the above structure, when the ultraviolet light transmitting region 15 is not provided in the pixel of the color filter substrate 5 and the entire surface of the pixel is the color filter layer 14, the temperature is 60 ° C and the humidity is 90%. When the deterioration of the pixel light emission was observed by leaving it in a constant humidity chamber, the deterioration occurred at 300 hours.
(Comparative Example 2) In the organic EL display device having the above-described structure, when the organic EL element substrate 10 was not provided with a layer having an ultraviolet ray prevention function, the organic EL light emission efficiency before and after performing ultraviolet exposure to the filler was measured. However, the luminous efficiency value after ultraviolet irradiation was 50% compared with that before irradiation.
 1…透明基板、2R…赤色カラーフィルタ層、2G…緑色カラーフィルタ層、2B…青色カラーフィルタ層、2R’…赤色変換層、2G’…緑色変換層、2B’…青色変換層、3…開口部(紫外線透過領域)、4…ブラックマトリクス層、5…カラーフィルタ基板、6…光透過性電極、7…有機層、7R…赤色発光有機層、7G…緑色発光有機層、7B…青色発光有機層、7W・・・白色発光有機層、8…反射電極、9…基板、10…有機EL素子基板、11…光硬化性樹脂、12…カラーフィルタ薄膜部(紫外線透過領域)、13…カラーフィルタ異種材料(紫外線透過領域)、14…カラーフィルタ層、15…紫外線透過領域、16…光散乱層、17・・・パッシベーション層、18…紫外線防止層、19…光透過性電極・紫外線防止兼用層、30・・・有機EL素子 DESCRIPTION OF SYMBOLS 1 ... Transparent substrate, 2R ... Red color filter layer, 2G ... Green color filter layer, 2B ... Blue color filter layer, 2R '... Red conversion layer, 2G' ... Green conversion layer, 2B '... Blue conversion layer, 3 ... Opening Part (ultraviolet ray transmission region), 4 ... black matrix layer, 5 ... color filter substrate, 6 ... light transmitting electrode, 7 ... organic layer, 7R ... red light emitting organic layer, 7G ... green light emitting organic layer, 7B ... blue light emitting organic Layer, 7W ... white light emitting organic layer, 8 ... reflective electrode, 9 ... substrate, 10 ... organic EL element substrate, 11 ... photocurable resin, 12 ... color filter thin film part (ultraviolet ray transmission region), 13 ... color filter Dissimilar materials (ultraviolet transmission region), 14 ... color filter layer, 15 ... ultraviolet transmission region, 16 ... light scattering layer, 17 ... passivation layer, 18 ... ultraviolet prevention layer, 19 ... light transmissive electrode / ultraviolet prevention Use layer, 30 ... organic EL element

Claims (12)

  1.  基板と、その基板上に第1電極、発光層を少なくとも含む有機層、第2電極の順番で積層配置されて上記発光層で発生した光を第2電極側から取り出す複数の有機EL素子と、を備える有機EL素子基板と、透光性の基板と、その基板に対し上記有機EL素子に対応して形成した複数のカラーフィルタ層と、を備えるカラーフィルタ基板と、上記有機EL素子基板と上記カラーフィルタ基板との間に介装し両者を接合する光硬化性樹脂からなる接着層と、からなる有機EL表示装置に使用される上記カラーフィルタ基板であって、上記カラーフィルタ層を形成する画素領域の一部に、上記光硬化性樹脂を硬化するための紫外線を透過可能とする紫外線透過領域を設けたことを特徴とする有機EL表示装置用のカラーフィルタ基板。 A plurality of organic EL elements that are arranged in the order of a substrate, a first electrode on the substrate, an organic layer including at least a light emitting layer, and a second electrode, and extract light generated in the light emitting layer from the second electrode side; A color filter substrate comprising: an organic EL element substrate comprising: a translucent substrate; and a plurality of color filter layers formed on the substrate corresponding to the organic EL element; the organic EL element substrate; and A pixel for forming the color filter layer, the color filter substrate used in an organic EL display device comprising an adhesive layer made of a photocurable resin interposed between and bonded to a color filter substrate. A color filter substrate for an organic EL display device, characterized in that an ultraviolet transmissive region capable of transmitting ultraviolet rays for curing the photocurable resin is provided in a part of the region.
  2.  上記紫外線透過領域を通過した紫外光を散乱させる光散乱層を設けることを特徴とする請求項1に記載の有機EL表示装置のカラーフィルタ基板。 2. The color filter substrate of the organic EL display device according to claim 1, further comprising a light scattering layer that scatters ultraviolet light that has passed through the ultraviolet light transmitting region.
  3.  上記紫外線透過領域は、紫外光波長領域の光に対し光透過率が30%以上となる領域を少なくとも有することを特徴とする請求項1又は請求項2に記載の有機EL表示装置のカラーフィルタ基板。 The color filter substrate of the organic EL display device according to claim 1, wherein the ultraviolet transmission region has at least a region having a light transmittance of 30% or more with respect to light in an ultraviolet wavelength region. .
  4. 上記紫外線透過領域には、カラーフィルタ層を形成しないことを特徴とする請求項1~請求項3のいずれか1項に記載の有機EL表示装置のカラーフィルタ基板。 The color filter substrate of the organic EL display device according to any one of claims 1 to 3, wherein a color filter layer is not formed in the ultraviolet transmissive region.
  5.  上記紫外線透過領域にもカラーフィルタ層を形成し、紫外線透過領域の膜厚を当該紫外線透過領域以外のカラーフィルタ層領域の膜厚よりも薄くすることで紫外線透過性を確保することを特徴とする請求項1~請求項3のいずれか1項に記載の有機EL表示装置のカラーフィルタ基板。 A color filter layer is also formed in the ultraviolet transmissive region, and the ultraviolet transmissive property is ensured by making the film thickness of the ultraviolet transmissive region smaller than the film thickness of the color filter layer region other than the ultraviolet transmissive region. The color filter substrate of the organic EL display device according to any one of claims 1 to 3.
  6.  上記紫外線透過領域にもカラーフィルタ層を形成し、紫外線透過領域のカラーフィルタ層を構成する材料として、紫外線透過領域以外のカラーフィルタ層を構成する材料よりも紫外線透過率の高い材料を使用することを特徴とする請求項1~請求項3又は請求項5のいずれか1項に記載の有機EL表示装置のカラーフィルタ基板。 A color filter layer is also formed in the ultraviolet transmission region, and a material having a higher ultraviolet transmittance than a material constituting a color filter layer other than the ultraviolet transmission region is used as a material constituting the color filter layer in the ultraviolet transmission region. The color filter substrate of the organic EL display device according to any one of claims 1 to 3 or 5, wherein:
  7.  前記カラーフィルタ層を構成する材料が、少なくとも吸収波長と異なる波長を含む光を出力する色変換材料を含むことを特徴とする請求項1~6のいずれか1項に記載の有機EL表示装置のカラーフィルタ基板。 7. The organic EL display device according to claim 1, wherein the material constituting the color filter layer includes a color conversion material that outputs at least light having a wavelength different from the absorption wavelength. Color filter substrate.
  8.  請求項1~請求項7のいずれか1項に記載したカラーフィルタ基板を有する有機EL表示装置。 An organic EL display device having the color filter substrate according to any one of claims 1 to 7.
  9.  上記接着層と有機層との間に、紫外線の透過を抑制する1層以上の紫外線防止層を設けることを特徴とする請求項8に記載の有機EL表示装置。 9. The organic EL display device according to claim 8, wherein one or more ultraviolet ray preventing layers for suppressing the transmission of ultraviolet rays are provided between the adhesive layer and the organic layer.
  10.  発光層を含む有機層を一対の電極で挟んで構成される複数の有機EL素子を備える有機EL素子基板と、上記有機EL素子に対応するカラーフィルタ層を備えるカラーフィルタ基板と、を光硬化性樹脂で接合する有機EL表示装置の製造方法において、
     上記カラーフィルタ基板を製造する際に、上記カラーフィルタ層を形成する画素領域の一部に、上記光硬化性樹脂を硬化するための紫外線を透過可能とする紫外線透過領域を設けた後、
     上記有機EL素子基板とカラーフィルタ基板有機とを対向配置し、その間に光硬化性樹脂ならなる充填剤を充填した後、紫外線を上記紫外線透過領域を通じて上記充填剤に照射して当該充填剤を硬化させることで、上記有機EL素子基板とカラーフィルタ基板有機とを接合することを特徴とする有機EL表示装置の製造方法。
    An organic EL element substrate including a plurality of organic EL elements configured by sandwiching an organic layer including a light emitting layer between a pair of electrodes, and a color filter substrate including a color filter layer corresponding to the organic EL element are photocurable. In the method of manufacturing an organic EL display device bonded with resin,
    When producing the color filter substrate, after providing an ultraviolet transmissive region capable of transmitting ultraviolet light for curing the photocurable resin in a part of the pixel region forming the color filter layer,
    The organic EL element substrate and the color filter substrate organic are arranged opposite to each other, and after filling with a filler made of a photocurable resin, the filler is cured by irradiating the filler with ultraviolet rays through the ultraviolet transmission region. The organic EL element substrate and the color filter substrate organic are bonded to each other, thereby manufacturing an organic EL display device.
  11.  上記カラーフィルタ基板に対し、上記紫外線透過領域よりも有機EL素子基板側に、紫外光を散乱させる光散乱層を設けた状態で、上記紫外線の照射を行うことを特徴とする請求項10に記載した有機EL表示装置の製造方法。 The ultraviolet irradiation is performed on the color filter substrate in a state where a light scattering layer for scattering ultraviolet light is provided on the organic EL element substrate side of the ultraviolet transmissive region. Method for manufacturing an organic EL display device.
  12.  有機EL素子基板に対し、上記有機層より上側に紫外線防止層を積層配置した状態で、上記紫外線の照射を行うことを特徴とする請求項10又は請求項11に記載した有機EL表示装置の製造方法。 12. The manufacturing of an organic EL display device according to claim 10, wherein the ultraviolet irradiation is performed on the organic EL element substrate in a state in which an ultraviolet ray preventing layer is laminated on the upper side of the organic layer. Method.
PCT/JP2010/064515 2009-09-07 2010-08-26 Organic el display device, color filter substrate, and process for production of organic el display device WO2011027712A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011529885A JP5609878B2 (en) 2009-09-07 2010-08-26 Organic EL display device, color filter substrate, and organic EL display device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-206013 2009-09-07
JP2009206013 2009-09-07

Publications (1)

Publication Number Publication Date
WO2011027712A1 true WO2011027712A1 (en) 2011-03-10

Family

ID=43649251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064515 WO2011027712A1 (en) 2009-09-07 2010-08-26 Organic el display device, color filter substrate, and process for production of organic el display device

Country Status (2)

Country Link
JP (1) JP5609878B2 (en)
WO (1) WO2011027712A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682058A (en) * 2012-09-21 2014-03-26 索尼公司 Substrate, display panel, and display apparatus
JP2014207159A (en) * 2013-04-15 2014-10-30 株式会社半導体エネルギー研究所 Light-emitting device
CN104282718A (en) * 2013-07-10 2015-01-14 三星显示有限公司 Organic light-emitting display device
KR20180025535A (en) * 2016-09-01 2018-03-09 엘지디스플레이 주식회사 Organic light emitting display device
EP3442023A1 (en) * 2017-08-08 2019-02-13 Samsung Display Co., Ltd. Color conversion element and display device including the same
CN110350111A (en) * 2019-07-12 2019-10-18 昆山梦显电子科技有限公司 The preparation method and display module of high-resolution Micro-OLED
TWI685702B (en) * 2018-06-22 2020-02-21 友達光電股份有限公司 Display apparatus
TWI695994B (en) * 2018-10-19 2020-06-11 采鈺科技股份有限公司 Optical devices
EP3706183A4 (en) * 2017-11-01 2021-08-18 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Oled packaging method and oled packaging structure
US11517188B2 (en) 2016-05-30 2022-12-06 Leica Instruments (Singapore) Pte. Ltd. Medical device for the observation of a partly fluorescent object, using a filter system with a transmission window

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086358A (en) * 2001-09-10 2003-03-20 Sony Corp Display device
JP2003233063A (en) * 2002-02-12 2003-08-22 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP2004163461A (en) * 2002-11-08 2004-06-10 Samsung Electronics Co Ltd Color filter display plate, method for manufacturing the same, and transflective liquid crystal display device including the same
JP2006024421A (en) * 2004-07-07 2006-01-26 Seiko Epson Corp Electro-optical device and manufacturing method of electro-optical device, and electronic apparatus
JP2006171228A (en) * 2004-12-14 2006-06-29 Dainippon Printing Co Ltd Color filter for self-luminous display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103027A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Organic electroluminescent display device and its manufacturing method
JP2007193003A (en) * 2006-01-18 2007-08-02 Sharp Corp Display device
WO2007086159A1 (en) * 2006-01-24 2007-08-02 Sharp Kabushiki Kaisha Display device, method for manufacturing display device, substrate and color filter substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086358A (en) * 2001-09-10 2003-03-20 Sony Corp Display device
JP2003233063A (en) * 2002-02-12 2003-08-22 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP2004163461A (en) * 2002-11-08 2004-06-10 Samsung Electronics Co Ltd Color filter display plate, method for manufacturing the same, and transflective liquid crystal display device including the same
JP2006024421A (en) * 2004-07-07 2006-01-26 Seiko Epson Corp Electro-optical device and manufacturing method of electro-optical device, and electronic apparatus
JP2006171228A (en) * 2004-12-14 2006-06-29 Dainippon Printing Co Ltd Color filter for self-luminous display device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682058A (en) * 2012-09-21 2014-03-26 索尼公司 Substrate, display panel, and display apparatus
JP2014063033A (en) * 2012-09-21 2014-04-10 Sony Corp Substrate, display panel, and display device
JP2014207159A (en) * 2013-04-15 2014-10-30 株式会社半導体エネルギー研究所 Light-emitting device
EP2824709A3 (en) * 2013-07-10 2015-07-01 Samsung Display Co., Ltd. Organic light-emitting display device
US20150014655A1 (en) * 2013-07-10 2015-01-15 Samsung Display Co. Ltd. Organic light-emitting display device
KR20150007399A (en) * 2013-07-10 2015-01-21 삼성디스플레이 주식회사 Organic light emitting display device
KR102122380B1 (en) * 2013-07-10 2020-06-15 삼성디스플레이 주식회사 Organic light emitting display device
US9793326B2 (en) 2013-07-10 2017-10-17 Samsung Display Co., Ltd. Organic light-emitting display device
CN104282718A (en) * 2013-07-10 2015-01-14 三星显示有限公司 Organic light-emitting display device
US11793398B2 (en) 2016-05-30 2023-10-24 Leica Instruments (Singapore) Pte. Ltd. Medical device for the observation of a partly fluorescent object, using a filter system with a transmission window
US11517188B2 (en) 2016-05-30 2022-12-06 Leica Instruments (Singapore) Pte. Ltd. Medical device for the observation of a partly fluorescent object, using a filter system with a transmission window
KR20180025535A (en) * 2016-09-01 2018-03-09 엘지디스플레이 주식회사 Organic light emitting display device
KR102520499B1 (en) 2016-09-01 2023-04-10 엘지디스플레이 주식회사 Organic light emitting display device
US10942389B2 (en) 2017-08-08 2021-03-09 Samsung Display Co., Ltd. Color conversion element and display device including the same
US10466530B2 (en) 2017-08-08 2019-11-05 Samsung Display Co., Ltd. Color conversion element and display device including the same
EP3442023A1 (en) * 2017-08-08 2019-02-13 Samsung Display Co., Ltd. Color conversion element and display device including the same
EP3706183A4 (en) * 2017-11-01 2021-08-18 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Oled packaging method and oled packaging structure
TWI685702B (en) * 2018-06-22 2020-02-21 友達光電股份有限公司 Display apparatus
TWI695994B (en) * 2018-10-19 2020-06-11 采鈺科技股份有限公司 Optical devices
US11675115B2 (en) 2018-10-19 2023-06-13 Visera Technologies Company Limited Optical devices
CN110350111A (en) * 2019-07-12 2019-10-18 昆山梦显电子科技有限公司 The preparation method and display module of high-resolution Micro-OLED

Also Published As

Publication number Publication date
JPWO2011027712A1 (en) 2013-02-04
JP5609878B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5609878B2 (en) Organic EL display device, color filter substrate, and organic EL display device manufacturing method
US8541777B2 (en) Color conversion film and multicolor-emitting, organic electroluminescent device comprising the color conversion film
JP3224237B2 (en) Organic electroluminescence display device
US7215075B2 (en) Organic el device having upper electrode including plurality of transparent electrode layers and method for manufacturing the same
US20070109571A1 (en) Color filter with color conversion function, producing method thereof, and organic el display
GB2341486A (en) Fuorescent conversion filter for an electroluminescent device
JP2005123089A (en) Color organic el display and its manufacturing method
GB2432972A (en) Light-emitting device and method for producing same
TWI470283B (en) Discoloration filter substrate
TWI470284B (en) Color conversion filter substrate
WO2009098793A1 (en) Organic el display and manufacturing method thereof
US20050089772A1 (en) Color-converting filter and manufacturing method
JP3491158B2 (en) Blue color filter and organic electroluminescent device using the same
JP2010146760A (en) Color conversion filter panel, panel type organic el emission portion, and color organic el display
JP5450738B2 (en) Color conversion film and organic EL device including the color conversion film
JP2011165422A (en) Top-emission type organic el display, method of manufacturing the same, and color filter used for the same
JP2012174334A (en) Organic el panel and manufacturing method therefor
JP2007220431A (en) Multi-color luminescent device and its manufacturing method
JP2008010417A (en) Insulation film for organic el element and organic el display device
JP2006269227A (en) Multicolor light emitting device and its manufacturing method
JP3456638B2 (en) Fluorescent color conversion film, fluorescent color conversion film filter using the fluorescent color conversion film, and organic light emitting device including the fluorescent color conversion film filter
JP5126653B2 (en) Electroluminescence element
JP2009087908A (en) Organic el element
JP2014164829A (en) Organic el display panel and manufacturing method thereof
JP2003264069A (en) Organic el display device and manufacturing installation of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813661

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529885

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813661

Country of ref document: EP

Kind code of ref document: A1