WO2011024804A1 - 新規な付加化合物、縮合多環芳香族化合物の精製及び製造方法、有機半導体膜形成用溶液、及び新規なα-ジケトン化合物 - Google Patents

新規な付加化合物、縮合多環芳香族化合物の精製及び製造方法、有機半導体膜形成用溶液、及び新規なα-ジケトン化合物 Download PDF

Info

Publication number
WO2011024804A1
WO2011024804A1 PCT/JP2010/064272 JP2010064272W WO2011024804A1 WO 2011024804 A1 WO2011024804 A1 WO 2011024804A1 JP 2010064272 W JP2010064272 W JP 2010064272W WO 2011024804 A1 WO2011024804 A1 WO 2011024804A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
carbon atoms
group
organic semiconductor
substituted
Prior art date
Application number
PCT/JP2010/064272
Other languages
English (en)
French (fr)
Inventor
吉紀 池田
尚志 城
和男 瀧宮
Original Assignee
帝人株式会社
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010012166A external-priority patent/JP2011148743A/ja
Priority claimed from JP2010012242A external-priority patent/JP5641739B2/ja
Priority claimed from JP2010029163A external-priority patent/JP2011162510A/ja
Priority claimed from JP2010045814A external-priority patent/JP5269825B2/ja
Application filed by 帝人株式会社, 国立大学法人広島大学 filed Critical 帝人株式会社
Priority to EP10811854.8A priority Critical patent/EP2471796B1/en
Priority to KR1020127004942A priority patent/KR101604513B1/ko
Priority to CN2010800383494A priority patent/CN102548998A/zh
Priority to US13/392,996 priority patent/US9056871B2/en
Publication of WO2011024804A1 publication Critical patent/WO2011024804A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/18Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/20Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains three hetero rings
    • C07D513/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains three hetero rings
    • C07D513/18Bridged systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate

Definitions

  • the first present invention relates to a novel addition compound, an organic semiconductor device, and a production method thereof.
  • the invention also relates to intermediates for such novel adducts, as well as solutions containing such novel adducts and methods of use thereof.
  • the second aspect of the present invention relates to a method for purifying and producing a condensed polycyclic aromatic compound, and particularly to a method for purifying and producing a condensed polycyclic aromatic compound suitably used as an organic semiconductor compound.
  • the third aspect of the present invention relates to a novel organic semiconductor film forming solution and a method of using such an organic semiconductor film forming solution.
  • the present invention also relates to an organic semiconductor device obtained by using such an organic semiconductor film forming solution.
  • the fourth aspect of the present invention relates to a novel ⁇ -diketone compound and an organic semiconductor device, and a method for producing them.
  • the present invention also relates to an intermediate for such a novel ⁇ -diketone compound, a solution containing such a novel ⁇ -diketone compound, and a method of using the same.
  • Organic semiconductor compounds have been studied in various ways for use in organic semiconductor layers for organic thin film transistors (TFTs), organic carrier transport layers, organic light emitting devices, and the like.
  • TFTs organic thin film transistors
  • a thin film transistor having an organic semiconductor layer made of an organic semiconductor compound is expected to replace the current silicon-based transistor as a low-cost and lightweight device.
  • the organic semiconductor layer is expected to be applied to smart tags, lightweight displays, and the like by utilizing advantages specific to organic materials such as being lightweight and flexible.
  • Patent Documents 1 to 4 organic semiconductor compounds for forming an organic semiconductor layer
  • condensed polycyclic aromatic compounds are preferable in terms of material stability, carrier mobility, and the like.
  • Non-patent Document 4 a precursor of pentacene, which is an example of an organic semiconductor compound, which can be decomposed by light irradiation to obtain pentacene.
  • JP 2006-89413 A JP 2008-290963 A International Publication WO2006 / 077788 International Publication No. 2008/050726
  • a condensed polycyclic aromatic compound known to be preferable as an organic semiconductor compound is nonpolar and has high crystallinity, so that it is difficult to dissolve in a solution. Therefore, in the formation of the organic semiconductor layer from the condensed polycyclic aromatic compound, particularly the formation of the organic semiconductor layer from the low molecular weight condensed polycyclic aromatic compound, it is common to use a vapor deposition method.
  • the first present invention provides a novel addition compound and a novel addition compound-containing solution that enable the formation of an organic semiconductor layer composed of a condensed polycyclic aromatic compound using a solution method. Moreover, in this invention, the organic-semiconductor film (organic-semiconductor layer) and organic-semiconductor device obtained using such a novel addition compound are provided. Furthermore, the present invention provides a method for synthesizing such a novel addition compound.
  • the second aspect of the present invention there is provided a method for purifying and producing a condensed polycyclic aromatic compound that solves such problems, particularly a method for purifying and producing a condensed polycyclic aromatic compound that is suitably used as an organic semiconductor compound. To do.
  • a solution method (casting, spin coating, printing, etc.) for applying a solution containing the organic semiconductor compound to the substrate and removing the solvent, and vapor deposition for depositing the organic semiconductor compound on the substrate.
  • the law is known. It is known that the solution method is generally preferable with respect to production cost, production rate and the like.
  • a condensed polycyclic aromatic compound known to be preferable as an organic semiconductor compound is nonpolar and has high crystallinity, so that it is difficult to dissolve in a solution. Therefore, in the formation of the organic semiconductor layer from the condensed polycyclic aromatic compound, particularly the formation of the organic semiconductor layer from the low molecular weight condensed polycyclic aromatic compound, it is common to use a vapor deposition method.
  • a novel organic semiconductor film forming solution that makes it possible to stably form an organic semiconductor layer (organic semiconductor film) made of a condensed polycyclic aromatic compound using a solution method, and A method of using such a solution for forming an organic semiconductor film is provided.
  • the present invention also provides an organic semiconductor device obtained using such an organic semiconductor film forming solution.
  • a condensed polycyclic aromatic compound known to be preferable as an organic semiconductor compound is nonpolar and has high crystallinity, so that it is difficult to dissolve in a solution. Therefore, in the formation of the organic semiconductor layer from the condensed polycyclic aromatic compound, particularly the formation of the organic semiconductor layer from the low molecular weight condensed polycyclic aromatic compound, it is common to use a vapor deposition method.
  • the present invention provides a novel ⁇ -diketone compound and a novel ⁇ -diketone compound-containing solution that make it possible to form an organic semiconductor layer composed of a condensed polycyclic aromatic compound using a solution method.
  • the present invention provides an organic semiconductor film (organic semiconductor layer) and an organic semiconductor device obtained using such a novel ⁇ -diketone compound.
  • the present invention provides a method for synthesizing such a novel ⁇ -diketone compound.
  • the compound (II) having a double bond such as hexachlorocyclopentadiene is removed from the condensed polycyclic aromatic compound of the following formula (I) such as dinaphthothienothiophene via this double bond.
  • Ar 1 Ar 2 Ar 3 (I) (Ar 1 and Ar 3 are each independently selected from substituted or unsubstituted fused aromatic ring moieties fused with 2 to 5 aromatic rings; Ar 2 is selected from a substituted or unsubstituted aromatic ring moiety consisting of one aromatic ring and a substituted or unsubstituted fused aromatic ring moiety fused with 2 to 5 aromatic rings; Ar 1 and Ar 2 share at least two carbon atoms to form a condensed aromatic ring, and Ar 2 and Ar 3 share at least two carbon atoms to form a condensed aromatic ring ).
  • the addition compound-containing solution of the present invention is a solution in which the addition compound of the present invention is dissolved in an organic solvent.
  • the method of the present invention for producing an organic semiconductor film comprises the steps of applying the addition compound-containing solution of the present invention to a substrate to produce a film, and subjecting the film to reduced pressure and / or heating to form the film from the addition compound.
  • a step of removing and removing the compound (II) having a double bond to obtain an organic semiconductor film made of the condensed polycyclic aromatic compound of the formula (I) is included.
  • the method of the present invention for producing an organic semiconductor device includes the step of producing an organic semiconductor film by the method of the present invention for producing an organic semiconductor film.
  • the organic semiconductor device of the present invention has an organic semiconductor film, and the organic semiconductor film has a structure in which the compound (II) having a double bond is eliminated from the addition compound of the present invention.
  • the organic semiconductor film is made of a ring aromatic compound and contains the addition compound of the present invention.
  • the organic semiconductor device of the present invention has an organic semiconductor film, and the organic semiconductor film has a crystal of the condensed polycyclic aromatic compound of the formula (I) having a major axis diameter of more than 5 ⁇ m.
  • Another novel addition compound (intermediate addition compound) of the present invention can be used as an intermediate for synthesizing the addition compound of the present invention, and compound (II) having a double bond is added.
  • the method of the present invention for synthesizing the addition compound of the present invention includes a step of mixing the condensed polycyclic aromatic compound of the formula (I) with the compound (II) having a double bond.
  • another method of the present invention for synthesizing the adduct of the present invention includes a step of reacting two molecules of the intermediate adduct of the present invention.
  • the “addition compound” of the present invention has a structure in which the compound (II) having a double bond is detachably added to the condensed polycyclic aromatic compound of the formula (I) via the double bond. It means any compound having, and is not limited by the specific synthesis method.
  • the addition compound of the present invention includes not only an addition compound having a structure in which one molecule of compound (II) having a double bond is added to the condensed polycyclic aromatic compound of formula (I), but also of formula (I)
  • the compound may be an addition compound having a structure in which the compound (II) having a double bond is added to the condensed polycyclic aromatic compound in two molecules, three molecules, four molecules, or more.
  • an “aromatic ring” means a ring that is conjugated in the same way as a benzene ring.
  • a family ring can be mentioned.
  • the term “stereoisomer” means isomerism that occurs when compounds having the same structural formula differ in the configuration of atoms or atomic groups therein, and includes optical isomers, geometric isomers, And rotamers.
  • the process of the present invention for purifying a fused polycyclic aromatic compound of formula (I) below comprises the following steps (a) to (d): Ar 1 Ar 2 Ar 3 (I) (Ar 1 and Ar 3 are each independently selected from substituted or unsubstituted fused aromatic ring moieties fused with 2 to 5 aromatic rings; Ar 2 is selected from a substituted or unsubstituted aromatic ring moiety consisting of one aromatic ring and a substituted or unsubstituted fused aromatic ring moiety fused with 2 to 5 aromatic rings; Ar 1 and Ar 2 share at least two carbon atoms to form a condensed aromatic ring, and Ar 2 and Ar 3 share at least two carbon atoms to form a condensed aromatic ring ); (A) providing a crude product of the fused polycyclic aromatic compound of formula (I); (B) providing a compound (II) having a double bond, which is detachably added to the condensed polycyclic aromatic compound of formula (I); (C) mixing
  • the method of the present invention for producing a condensed polycyclic aromatic compound includes a step of purifying a crude product of the condensed polycyclic aromatic compound by the method of the present invention.
  • another method of the present invention for producing a condensed polycyclic aromatic compound includes a step of obtaining a condensed polycyclic aromatic compound from an addition compound of the condensed polycyclic aromatic compound.
  • the “addition compound” has a structure in which the compound (II) having a double bond is detachably added to the condensed polycyclic aromatic compound of the formula (I) via the double bond. It means any compound having, and is not limited by the specific synthesis method.
  • this addition compound includes not only an addition compound having a structure in which one molecule of the compound (II) having a double bond is added to the condensed polycyclic aromatic compound of the formula (I), but also the condensed polycyclic formula (I). It may be an addition compound having a structure in which the compound (II) having a double bond to the aromatic compound is added in two molecules, three molecules, four molecules, or more.
  • an “aromatic ring” means a ring that is conjugated in the same manner as a benzene ring, such as a furan ring, a thiophene ring, a pyrrole ring, and an imidazole ring alongside the benzene ring. Mention may be made of heteroaromatic rings.
  • the term “stereoisomer” means isomerism that occurs when compounds having the same structural formula differ in the configuration of atoms or atomic groups therein, and includes optical isomers, geometric isomers, And rotamers.
  • the inventor of the present invention has found that a solution for forming an organic semiconductor film containing an addition compound having a structure in which a specific compound is added to a compound such as dinaphthothienothiophene can solve the above problem.
  • the present invention has been conceived.
  • the solution of the present invention for forming an organic semiconductor film includes an organic solvent, a first addition compound dissolved in the organic solvent, and a crystallization of the first addition compound dissolved in the organic solvent. It contains a crystallization inhibitor that suppresses
  • the first addition compound is formed by allowing the first compound (II ′) having a double bond to be removed from the condensed polycyclic aromatic compound of the following formula (I) via the double bond. It has an added structure: Ar 1 Ar 2 Ar 3 (I) (Ar 1 and Ar 3 are each independently selected from substituted or unsubstituted fused aromatic ring moieties fused with 2 to 5 aromatic rings; Ar 2 is selected from a substituted or unsubstituted aromatic ring moiety consisting of one aromatic ring and a substituted or unsubstituted fused aromatic ring moiety fused with 2 to 5 aromatic rings; Ar 1 and Ar 2 share at least two carbon atoms to form a condensed aromatic ring, and Ar 2 and Ar 3 share at least two carbon atoms to form a condensed aromatic ring ).
  • the crystallization inhibitor is at least one compound selected from the group consisting of the following (a) to (c): (A) Second addition having a structure in which a second compound (II ′′) having a double bond is detachably added to the condensed polycyclic aromatic compound of formula (I) via a double bond Compound, (B) a first compound (II ′) having a double bond, which can be detachably added to the condensed polycyclic aromatic compound of formula (I) via a double bond; And (c) a second compound (II ′′) having a double bond, which can be removably added to the condensed polycyclic aromatic compound of formula (I) via the double bond .
  • the method of the present invention for producing an organic semiconductor film comprises the steps of applying a solution of the present invention for forming an organic semiconductor film to a substrate to produce a film, and reducing and / or heating the film. , Removing and removing the first compound (II ′) having a double bond from the first addition compound to obtain an organic semiconductor film made of the condensed polycyclic aromatic compound of the formula (I).
  • the method of the present invention for manufacturing an organic semiconductor device also includes the step of producing an organic semiconductor film by the method of the present invention for producing an organic semiconductor film.
  • the organic semiconductor device of the present invention has an organic semiconductor film, and the organic semiconductor film is made of an organic semiconductor compound having the following formula (I), and the organic semiconductor film has the following formula (I)
  • the first compound (II ′) having a double bond added to the condensed polycyclic aromatic compound of the above is detachably added via the double bond, and an organic semiconductor
  • the first and second “addition compounds” are the first compound (II ′) and the second compound each having a double bond to the condensed polycyclic aromatic compound of the formula (I), respectively. It means any compound having a structure in which (II ′) is detachably added via a double bond, and is not limited by the specific synthesis method.
  • the addition compound has a structure in which one molecule of the first compound (II ′) and / or the second compound (II ′) having a double bond is added to the condensed polycyclic aromatic compound of the formula (I).
  • 2 or 3 molecules of the first compound (II ′) and / or the second compound (II ′) having a double bond in the condensed polycyclic aromatic compound of the formula (I) as well as the addition compound having It may be an addition compound having a structure in which 4 molecules or more are added.
  • an “aromatic ring” means a ring that is conjugated in the same manner as a benzene ring.
  • a heteroaromatic such as a furan ring, a thiophene ring, a pyrrole ring, and an imidazole ring.
  • a family ring can be mentioned.
  • the term “stereoisomer” means isomerism that occurs when compounds having the same structural formula differ in the configuration of atoms or atomic groups therein, and includes optical isomers, geometric isomers, And rotamers.
  • first addition compound and the “second addition compound” may be collectively referred to as “addition compound” for the sake of simplicity.
  • second compound (II ′) having a double bond are referred to as “compound (II ′ having a double bond (II ) ".
  • the ⁇ -diketone compound of the present invention has the following formula (I (a) -X): Ar 1X Ar 2 (a) Ar 3X (I (a) -X) (Ar 1X and Ar 3X are each independently selected from substituted or unsubstituted fused aromatic ring moieties fused with 2 to 5 aromatic rings, and at least one of these aromatic rings is Is substituted with a bicyclo ⁇ -diketone moiety of formula (X):
  • Ar 2 (a) is a substituted or unsubstituted heteroaromatic ring moiety composed of one heteroaromatic ring, and a substituted or unsubstituted condensed heteroaromatic group in which 2 to 5 heteroaromatic rings are condensed. Selected from the family ring part, Ar 1X and Ar 2 (a) share at least two carbon atoms to form a condensed ring, and Ar 2 (a) and Ar 3X share at least two carbon atoms to form a condensed ring. Forming ⁇ .
  • the ⁇ -diketone compound-containing solution of the present invention is a solution in which the ⁇ -diketone compound of the present invention is dissolved in an organic solvent.
  • the method of the present invention for producing an organic semiconductor film comprises the steps of applying the ⁇ -diketone compound-containing solution of the present invention to a substrate to produce a film, and irradiating the film with light to form an ⁇ -diketone compound.
  • a bicyclo ⁇ -diketone portion is decomposed into a benzene ring portion, thereby obtaining an organic semiconductor film made of a condensed polycyclic aromatic compound.
  • the method of the present invention for producing an organic semiconductor device includes the step of producing an organic semiconductor film by the method of the present invention for producing an organic semiconductor film.
  • the organic semiconductor device of the present invention has an organic semiconductor film, the organic semiconductor film is made of a condensed polycyclic aromatic compound, and the organic semiconductor film further contains the ⁇ -diketone compound of the present invention. is doing.
  • the other novel ⁇ -diketone compound of the present invention is a compound that can be used as an intermediate for synthesizing the ⁇ -diketone compound of the present invention.
  • the method of the present invention for synthesizing the ⁇ -diketone compound of the present invention includes a step of hydrolyzing and oxidizing a vinylene carbonate-added condensed polycyclic aromatic compound.
  • another method of the present invention for synthesizing the ⁇ -diketone compound of the present invention includes a step of reacting two molecules of the intermediate ⁇ -diketone compound of the present invention, or one molecule of the intermediate ⁇ -diketone compound of the present invention and this. Reacting with one molecule of the compound having a structure obtained by decomposing the bicyclo ⁇ -diketone portion of the intermediate ⁇ -diketone compound.
  • the ⁇ -diketone compound of the present invention is not limited to one in which one of the aromatic rings is substituted with a bicyclo ⁇ -diketone moiety, and two or more of the aromatic rings are bicyclo ⁇ - It may be substituted with a diketone moiety.
  • an “aromatic ring” means a ring that is conjugated in the same way as a benzene ring.
  • a family ring can be mentioned.
  • the term “stereoisomer” means isomerism that occurs when compounds having the same structural formula differ in the configuration of atoms or atomic groups therein, and includes optical isomers, geometric isomers, And rotamers.
  • “substituted or unsubstituted” with respect to aromatic rings etc. means that the aromatic rings etc. have or do not have a substituent on the ring.
  • the novel addition compound of the present invention is a compound (II) having a double bond such as hexachlorocyclopentadiene to a condensed polycyclic aromatic compound of formula (I) such as dinaphthothienothiophene using Diels-Alder reaction. Is removably added via a double bond.
  • This novel addition compound of the present invention can increase the solubility in a solvent by increasing the polarity and / or decreasing the crystallinity caused by the addition of the compound (II) having a double bond. Therefore, according to the novel addition compound of the present invention, it is possible to form an organic semiconductor layer made of a condensed polycyclic aromatic compound by using a solution method that is generally easier than the vapor deposition method.
  • the method of the present invention for purifying a condensed polycyclic aromatic compound cannot be conventionally achieved by using in place of or in addition to conventional purification methods such as solvent washing and vacuum sublimation purification. Purification can be achieved. This is because in the method of the present invention for purifying the condensed polycyclic aromatic compound of the formula (I), the compound (II) having a double bond is added to the condensed polycyclic aromatic compound of the formula (I), The condensed polycyclic aromatic compound of formula (I) is increased in polarity and / or the crystallinity is decreased, so that the compound (II) having a double bond and an optional solvent for the condensed polycyclic aromatic compound of formula (I) This is thought to be due to an increase in compound solubility.
  • the condensed polycyclic aromatic compound of the formula (I) in addition, according to the method of the present invention for producing the condensed polycyclic aromatic compound of the formula (I), impurities that have been impossible to achieve and / or difficult to remove conventionally are removed.
  • the condensed polycyclic aromatic compound of the formula (I) can be produced.
  • the first and second addition compounds are compounds having a double bond such as hexachlorocyclopentadiene to a condensed polycyclic aromatic compound of the formula (I) such as dinaphthothienothiophene using Diels-Alder reaction (II ) Is removably added via a double bond.
  • This addition compound can increase the solubility in a solvent by the increase in polarity and / or the decrease in crystallinity caused by the addition of compound (II) having a double bond.
  • the solution for forming a semiconductor film of the present invention contains a specific compound as a crystallization inhibitor, thereby suppressing crystallization of the first addition compound when forming an organic semiconductor film by a solution method.
  • a specific compound as a crystallization inhibitor thereby suppressing crystallization of the first addition compound when forming an organic semiconductor film by a solution method.
  • the novel ⁇ -diketone compounds of the present invention can have a relatively high solubility in solvents due to the increased polarity and / or decreased crystallinity caused by the bicyclo ⁇ -diketone moiety.
  • the novel ⁇ -diketone compound of the present invention decomposes the bicyclo ⁇ -diketone portion into a benzene ring portion by light irradiation, and particularly converts the bicyclo ⁇ -diketone portion into a benzene ring portion by light irradiation.
  • a condensed polycyclic aromatic compound, particularly a condensed polycyclic aromatic compound used as an organic semiconductor compound can be obtained by decomposing it into carbon oxide to obtain a benzene ring moiety.
  • the novel ⁇ -diketone compound of the present invention it is possible to form an organic semiconductor layer made of a condensed polycyclic aromatic compound using a solution method that is generally easier than a vapor deposition method.
  • the novel ⁇ -diketone compound of the present invention can reduce or eliminate the need for heating in obtaining a condensed polycyclic aromatic compound by decomposition, thus requiring a relatively low temperature process. Formation of the organic semiconductor layer on the organic substrate can be promoted.
  • FIG. 1 is a schematic diagram of the structure of a field effect transistor (FET) used in Example 1-1A and Comparative Example 1-1A.
  • FIG. 2 is a graph showing the output characteristics of the field effect transistor obtained in Example 1-1A.
  • FIG. 3 is a graph showing the transfer characteristics of the field effect transistor obtained in Example 1-1A.
  • FIG. 4 shows the thermal desorption characteristics of the addition compound of Example 1-10A.
  • FIG. 5 is a graph showing output characteristics of the field effect transistor obtained in Example 1-10A.
  • FIG. 6 is a graph showing the transfer characteristics of the field effect transistor obtained in Example 1-10A.
  • FIG. 7 shows the NMR results for the residual addition compound in the organic semiconductor film obtained in Example 1-10A.
  • FIG. 1 is a schematic diagram of the structure of a field effect transistor (FET) used in Example 1-1A and Comparative Example 1-1A.
  • FIG. 2 is a graph showing the output characteristics of the field effect transistor obtained in Example 1-1A.
  • FIG. 3 is a graph showing
  • FIG. 8 is a micrograph showing the crystal state of DNTT in the channel portion of the organic semiconductor film obtained in Example 1-10A.
  • FIG. 9 is a polarization micrograph showing the crystal state of DNTT in the organic semiconductor film obtained in Example 1-10C.
  • FIG. 10 is a polarization micrograph showing the crystal state of DNTT in the organic semiconductor film obtained in Example 1-10D.
  • FIG. 11 is a polarization micrograph showing the crystal state of DNTT in the organic semiconductor film obtained in Example 1-10E.
  • FIG. 12 is a polarization micrograph showing the crystal state of DNTT in the organic semiconductor film obtained in Example 1-10F.
  • FIG. 13 is a polarization micrograph showing the crystal state of DNTT in the organic semiconductor film obtained in Example 1-10G.
  • FIG. 14 is a diagram conceptually showing the scheme of the purification method of the present invention.
  • FIG. 15 is a diagram showing NMR (nuclear magnetic resonance spectroscopy) results of DNTT (purified products 1 to 3) of Example 2-1.
  • FIG. 16 is a graph showing the desorption characteristics of DNTT-phenylmaleimide 1 adduct (DNTT-1PMI) (Endo isomer, Exo isomer) obtained in Example 2-1.
  • FIG. 17 is a photograph showing a solid obtained from the organic semiconductor film forming solution of Example 3-1.
  • FIG. 18 is a photograph showing an organic semiconductor film of an FET obtained from the organic semiconductor film forming solution of Example 3-1.
  • FIG. 19 is a photograph showing a solid obtained from the organic semiconductor film forming solution of Comparative Example 3-1.
  • FIG. 20 is a photograph showing an organic semiconductor film of an FET obtained from the organic semiconductor film forming solution of Comparative Example 3-1.
  • the addition compound of the present invention has a structure in which a compound (II) having a double bond is detachably added to a condensed polycyclic aromatic compound of the following formula (I) via a double bond:
  • Ar 1 Ar 2 Ar 3 (I) Ar 1 and Ar 3 are each independently selected from substituted or unsubstituted fused aromatic ring moieties fused with 2 to 5 aromatic rings;
  • Ar 2 is selected from a substituted or unsubstituted aromatic ring moiety consisting of one aromatic ring and a substituted or unsubstituted fused aromatic ring moiety fused with 2 to 5 aromatic rings;
  • Ar 1 and Ar 2 share at least two carbon atoms to form a condensed aromatic ring, and
  • Ar 2 and Ar 3 share at least two carbon atoms to form a condensed aromatic ring ).
  • the compound (II) having a double bond is added to the condensed polycyclic aromatic compound of the formula (I) so as to be “detachable”.
  • the compound (II) having a double bond is removed by depressurization and / or heating without decomposing the condensed polycyclic aromatic compound of the formula (I), in particular the compound (II) having a double bond. It means that it can be desorbed and removed.
  • the addition compound of the present invention is an example of the compound (II) having a double bond to the compound of the following formula (I-4) which is an example of the condensed polycyclic aromatic compound of the formula (I).
  • Y is each independently an element selected from chalcogen, and the fused benzene ring moiety is substituted or unsubstituted
  • R is independently hydrogen, halogen, hydroxyl group, amide group, mercapto group, cyano group, alkyl group having 1 to 10 carbon atoms, alkenyl group having 2 to 10 carbon atoms, or alkynyl group having 2 to 10 carbon atoms.
  • alkoxy groups having 1 to 10 carbon atoms substituted or unsubstituted aromatic groups having 4 to 10 carbon atoms, ester groups having 1 to 10 carbon atoms, ether groups having 1 to 10 carbon atoms, carbon atoms It consists of a ketone group having 1 to 10 carbon atoms, an amino group having 1 to 10 carbon atoms, an amide group having 1 to 10 carbon atoms, an imide group having 1 to 10 carbon atoms, and a sulfide group having 1 to 10 carbon atoms. Selected from the group);
  • the addition compound of the present invention is an example of the compound (II) having a double bond to the compound of the following formula (I-4) which is an example of the condensed polycyclic aromatic compound of the formula (I).
  • a compound of the following formula (II-6) is added, whereby a compound having the following formula (III-6) or a stereoisomer thereof:
  • Y is each independently an element selected from chalcogen and the fused benzene ring moiety is substituted or unsubstituted
  • R and R r are each independently hydrogen, halogen, hydroxyl group, amide group, mercapto group, cyano group, alkyl group having 1 to 10 carbon atoms, alkenyl group having 2 to 10 carbon atoms, or 2 to 2 carbon atoms.
  • alkynyl groups alkoxy groups having 1 to 10 carbon atoms, substituted or unsubstituted aromatic groups having 4 to 10 carbon atoms, ester groups having 1 to 10 carbon atoms, ether groups having 1 to 10 carbon atoms
  • the addition compound of the present invention can be produced by a method comprising a step of mixing a condensed polycyclic aromatic compound of the formula (I) with a compound (II) having a double bond.
  • the compound (II) having a double bond can be used by dissolving in a solvent, but can also be used alone.
  • this solvent any solvent capable of dissolving the compound (II) having a double bond can be used.
  • usable solvents include aprotic polar solvents such as N-methylpyrrolidone, dimethyl sulfoxide, acetonitrile and ethyl acetate; ether solvents such as diethyl ether, tetrahydrofuran, diisopropyl ether, diethylene glycol dimethyl ether and 1,4-dioxane;
  • aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene (ie 1,3,5-trimethylbenzene); aliphatic hydrocarbons such as hexane and heptane; and halogen-containing solvents such as dichloromethane, chloroform and dichloroethane can do.
  • the reaction is accelerated by heating and / or light irradiation when mixing the condensed polycyclic aromatic compound of formula (I) and the compound (II) having a double bond.
  • the reaction temperature in the synthesis of the addition compound of the present invention can be determined in consideration of the production rate, the stability of the component, the boiling point of the component, etc., for example, 20 ° C. or higher, 50 ° C. or higher, 100 ° C. or higher.
  • the temperature can be 180 ° C. or lower, 200 ° C. or lower, or 220 ° C. or lower.
  • the reaction time is, for example, 1 minute or more, 10 minutes or more, 30 minutes or more, 1 hour or more, and can be 1 day or less, 3 days or less, 5 days or less, or 10 days or less.
  • the intermediate addition compound of the present invention has a structure in which a compound (II) having a double bond is added to the following compound (I ′) via this double bond:
  • Ar 1 Q (I ′) ⁇ Ar 1 is selected from a substituted or unsubstituted fused aromatic ring moiety fused with 2 to 5 aromatic rings, and Q has the following formula and the fused aromatic ring of Ar 1 Part of: (Y is an element selected from chalcogen) ⁇ .
  • the compound of formula (I ′) may be a compound of the following formula:
  • This intermediate addition compound of the present invention can be obtained by adding a compound (II) having a double bond to a compound of the formula (I ′).
  • reaction conditions for this addition reaction reference can be made to the description relating to the reaction in which compound (II) having a double bond is added to the compound of formula (I).
  • a structure in which a compound (II) having a double bond is detachably added to the condensed polycyclic aromatic compound of the following formula (I (a1)) via this double bond
  • An addition compound of the present invention can be prepared: Ar 1 Ar 2 (a1) Ar 1 (I (a1)) (Ar 1 is selected from substituted or unsubstituted fused aromatic ring moieties fused with 2 to 5 aromatic rings; Ar 2 (a1) is a fused aromatic ring moiety of the following formula (a1), and Ar 1 and Ar 2 (a1) share at least two carbon atoms to form a condensed aromatic ring).
  • Ar 1 and Ar 3 are each independently substituted or unsubstituted with 2 to 5 aromatic rings, especially 2 to 4 aromatic rings fused Selected from the fused aromatic ring moieties.
  • a compound (II) having a double bond can be removably added to this part as a diene part or a diene part.
  • the aromatic ring is in particular a substituted or unsubstituted benzene ring.
  • Ar 1 and Ar 3 may be the same or different.
  • Ar 1 and Ar 3 may each independently be a substituted or unsubstituted benzene ring moiety selected from the group consisting of (b1) to (b4) below:
  • Ar 2 is a substituted or unsubstituted aromatic ring moiety consisting of one aromatic ring, or 2 to 5, especially 2 to 3 aromatics.
  • Ar 2 may be a substituted or unsubstituted aromatic ring moiety or fused aromatic ring moiety selected from the group consisting of the following (a1) to (a4): (Y is each independently a chalcogen, in particular an element selected from oxygen (O), sulfur (S), selenium (Se) and tellurium (Te)), more particularly sulfur, May be different).
  • Y is each independently a chalcogen, in particular an element selected from oxygen (O), sulfur (S), selenium (Se) and tellurium (Te)), more particularly sulfur, May be different).
  • the condensed polycyclic aromatic compound of formula (I) is an organic semiconductor compound, that is, an organic compound exhibiting properties as a semiconductor.
  • the condensed polycyclic aromatic compound of the formula (I) can be selected from the group consisting of substituted or unsubstituted condensed polycyclic aromatic compounds of the following formulas (I-1) to (I-5).
  • These fused polycyclic aromatic compounds are highly stable, and therefore elimination of the compound (II) having a double bond from the addition compound of the present invention, in particular, elimination by heat, more particularly at relatively high temperatures and / or lengths. It can be stably maintained even during the desorption due to heat of time. Therefore, when these compounds are used, the compound (II) having a double bond from the addition compound of the present invention can be eliminated at a high rate.
  • Y is each independently an element selected from chalcogens, especially elements selected from oxygen (O), sulfur (S), selenium (Se) and tellurium (Te), more particularly sulfur, all Y being the same) But some may be different).
  • the condensed polycyclic aromatic compound of the formula (I) and the synthesis thereof are not particularly limited, but Patent Documents 1 to 5 and Non-Patent Document 1 can be referred to.
  • substitution of the aromatic ring part and / or the condensed aromatic ring part of the condensed polycyclic aromatic compound of the formula (I) is, for example, halogen, an alkyl group having 1 to 20 carbon atoms, or an alkyl group having 2 to 20 carbon atoms.
  • Compound (II) having a double bond may be any compound that can be removably added to the condensed polycyclic aromatic compound of formula (I).
  • compound (II) having a double bond is detachably added as a diene isomer (dienophile) or conjugated diene isomer to the condensed polycyclic aromatic compound of formula (I), particularly by Diels-Alder reaction. It may be any compound.
  • the compound (II) having a double bond is particularly an aromatic ring part or a condensed aromatic ring part of at least one of Ar 1 , Ar 2 and Ar 3 of the condensed polycyclic aromatic compound of the formula (I). , More particularly any compound that can be removably added to at least one fused aromatic ring moiety of Ar 1 and Ar 3 of the fused polycyclic aromatic compound of formula (I).
  • the compound (II) having a double bond is a diene isomer
  • the compound (II) having a double bond is any one of the following formulas (II-A1) and (II-B1): Good: (R a , R b , R c and R d are each independently a bond, hydrogen, halogen, hydroxyl group, amide group, mercapto group, cyano group, alkyl group having 1 to 10 carbon atoms, or 2 to 10 carbon atoms.
  • the carbon-carbon double bond portion adjacent to the carbon atom is relatively electrophilic due to the presence of the carbon-oxygen double bond portion. It may be preferable as a diene to promote the Diels-Alder reaction.
  • the carbon-carbon double bond portion adjacent to this oxygen atom is relatively electrophilic, and thus the Diels-Alder reaction as a diene isomer. May be preferred to promote
  • the compound (II) having a double bond is a diene isomer
  • the compound (II) having a double bond is any one of the following formulas (II-A2) and (II-B2): May be: (R b , R c , R d and R e are each independently a bond, hydrogen, halogen, hydroxyl group, amide group, mercapto group, cyano group, alkyl group having 1 to 10 carbon atoms, or 2 to 10 carbon atoms.
  • the presence of two carbon-oxygen double bond moieties makes the carbon-carbon double bond moiety between those carbon atoms relatively electrophilic. Therefore, it may be preferable as a diene isomer to promote the Diels-Alder reaction.
  • the compound of the above formula (II-B2) due to the presence of two oxygens, the carbon-carbon double bond moiety between their oxygen atoms is relatively electrophilic, and thus Diels as diene isomers. May be preferred to promote the alder reaction.
  • the compound (II) having a double bond is any one of the following formulas (II-A3) and (II-B3) May be:
  • R c and R d are each independently a bond, hydrogen, halogen, hydroxyl group, amide group, mercapto group, cyano group, alkyl group having 1 to 10 carbon atoms, alkenyl group having 2 to 10 carbon atoms, carbon atom
  • the compound of the above formula (II-A3) the presence of two carbon-oxygen double bond moieties makes the carbon-carbon double bond moiety between those carbon atoms relatively electrophilic. Therefore, it may be preferable as a diene isomer to promote the Diels-Alder reaction.
  • the compound of formula (II-B3) above has a relatively electrophilic carbon-carbon double bond moiety between their oxygen atoms due to the presence of two oxygens, and thus Diels as diene isomers. May be preferred to promote the alder reaction.
  • the compounds of the above formula (II-A3) or (II-B3) are structurally stable because the double bond is part of the cyclic structure, and therefore these compounds are eliminated. It may be preferred for possible addition to the fused polycyclic aromatic compound of formula (I).
  • the compound (II) having a conjugated diene type double bond is a compound of the condensed polycyclic aromatic compound of the formula (I) according to the combination with the condensed polycyclic aromatic compound of the formula (I) in the Diels-Alder reaction.
  • a group compound as a diene isomer and / or a conjugated diene isomer isomer and / or a conjugated diene isomer.
  • Compound (II) having a double bond may be a compound having a cyclic portion.
  • the fact that the double bond is a part of the cyclic structure means that the compound (II) having a double bond is structurally stabilized, whereby the compound (II) having a double bond can be eliminated. It may be preferred for addition to the condensed polycyclic aromatic compound of I).
  • the compound (II) having a double bond may be any one of the following formulas (II-1) to (II-12):
  • R and R r are each independently hydrogen, halogen, hydroxyl group, amide group, mercapto group, cyano group, alkyl group having 1 to 10 carbon atoms, alkenyl group having 2 to 10 carbon atoms, or 2 to 2 carbon atoms.
  • alkynyl groups alkoxy groups having 1 to 10 carbon atoms, substituted or unsubstituted aromatic groups having 4 to 10 carbon atoms, ester groups having 1 to 10 carbon atoms, ether groups having 1 to 10 carbon atoms
  • the compound (II) having a double bond may be a conjugated diene type compound, for example, a compound of any one of the formulas (II-1) to (II-3) and (II-8).
  • the compound (II) having a double bond is a diene-type compound such as the formula (II-4) to the formula (II-6), the formula (II-9), and the formula (II-10) to the formula It may be any compound of (II-12).
  • the compound (II) having a double bond is a compound having a cyclic moiety, for example, the formula (II-1) to the formula (II-6), the formula (II-8), and the formula (II-10) to It may be any compound of formula (II-12).
  • each R is independently selected from the group consisting of hydrogen and halogen.
  • each R is independently an element selected from the group consisting of fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and combinations thereof, particularly fluorine (F)
  • the compound of formula (II-1) is, for example, hexafluorocyclopentadiene, hexachlorocyclopentadiene, hexabromocyclopentadiene, 5,5-difluorotetrachlorocyclopentadiene, or 5,5-dibromotetrachlorocyclopentadiene, especially hexachloro It may be cyclopentadiene.
  • all R are hydrogen
  • the compound of formula (II-1) is cyclopentadiene.
  • each R is independently selected from the group consisting of hydrogen and halogen.
  • the compound of formula (II-2) is furan.
  • each R is independently selected from the group consisting of hydrogen and halogen.
  • R r is an ester group having 1 to 10 carbon atoms, such as a methyl ester. Therefore, in particular, the compound of the above formula (II-3) is a compound in which R is hydrogen and R r is an alkyl ester group having 1 to 10 carbon atoms, that is, an alkylpyrrole carboxylate, for example, R is hydrogen and It may be a methyl pyrrole carboxylate in which R r is a methyl ester group.
  • R r is a group other than hydrogen, ie a relatively bulky group, indicating that the condensed polycyclic aromatic compound of formula (I) and the compound of formula (II-4) In order to promote the elimination of the compound of the formula (II-4) from the addition compound with, for example, by heating.
  • the compound in which R is both hydrogen is maleic anhydride. Therefore, the compound of the formula (II-5) can be considered as a compound in which maleic anhydride or its hydrogen group is substituted.
  • each R is independently selected from the group consisting of hydrogen and halogen.
  • R r is an alkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted aromatic group having 4 to 10 carbon atoms, such as a hydroxyphenyl group.
  • compounds of formula (II-6) is, R is hydrogen and R r is a methyl group N- methylmaleimide, R is hydrogen and R r is ethyl group N- ethylmaleimide It may be.
  • the compound of the above formula (II-6) is a compound in which R is hydrogen and R r is a substituted or unsubstituted aromatic group having 4 to 10 carbon atoms, that is, an aromatic maleimide, particularly R N-phenylmaleimide in which R is hydrogen and R r is a phenyl group, or hydroxyphenylmaleimide in which R is hydrogen and R r is a hydroxyphenyl group.
  • R r is selected from the group consisting of alkyl groups having 1 to 10 carbon atoms.
  • the compound of formula (II-7) above may be a compound in which R r is an alkyl group, ie an N-sulfonylacylamide, for example N-sulfonylacetamide in which R r is a methyl group.
  • each R is independently selected from the group consisting of hydrogen and halogen.
  • each R is independently an element selected from the group consisting of fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and combinations thereof.
  • the compound of formula (II-8) is anthracene.
  • R r is selected from the group consisting of alkyl groups having 1 to 10 carbon atoms. Therefore, in particular, the compound of the above formula (II-9) is a compound in which R r is an alkyl group, that is, an alkyl-ethylene tricyanocarboxylate, such as methyl-ethylene tricyanocarboxylate in which R r is a methyl group. Good.
  • each R is independently selected from the group consisting of hydrogen and halogen.
  • the compound of formula (II-2) is vinylene carbonate.
  • Addition compound-containing solution is obtained by dissolving the addition compound of the present invention in a solvent, particularly an organic solvent.
  • This addition compound-containing solution can contain the addition compound of the present invention at an arbitrary concentration.
  • the addition compound of the present invention is 0.01 to 20% by mass, 0.05 to 10% by mass, 0.1% by mass. It can be contained at a concentration of ⁇ 5% by mass.
  • any solvent that can dissolve the addition compound of the present invention can be used.
  • usable solvents include aprotic polar solvents such as N-methylpyrrolidone, dimethyl sulfoxide, acetonitrile and ethyl acetate; ether solvents such as diethyl ether, tetrahydrofuran, diisopropyl ether, diethylene glycol dimethyl ether and 1,4-dioxane;
  • aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene (ie 1,3,5-trimethylbenzene); aliphatic hydrocarbons such as hexane and heptane; and halogen-containing solvents such as dichloromethane, chloroform and dichloroethane can do.
  • the solution of the present invention includes, for example, the addition compound of the present invention and at least one stereoisomer thereof dissolved in a solvent, and the addition compound and the stereoisomer thereof.
  • the ratio of the stereoisomer with the lowest thermal desorption temperature to the total of ⁇ addition compound and its stereoisomer with the lowest thermal desorption temperature / addition compound and its stereoisomer ⁇ is more than 50 mol%, It may be more than 70 mol%, more than 90 mol%, more than 95 mol%.
  • the solution of the present invention contains, for example, the Exo form and Endo form of the addition compound of the present invention in a solvent, and Ratio of Stereoisomer with Lower Thermal Desorption Temperature to Total of Exo and Endo Forms of Addition Compound of Invention ⁇ Stereoisomer with Lower Thermal Desorption Temperature of Exo Form and Endo Form / (Exo Body + Endo body) ⁇ may be more than 50 mol%, more than 70 mol%, more than 90 mol%, more than 95 mol%.
  • the solution of the present invention comprises, for example, an Exo isomer and an Endo isomer of the addition compound of the formula (III-6) dissolved in a solvent, and the Exo isomer with respect to the sum of the Exo isomer and Endo isomer of the addition compound.
  • the ratio ⁇ Exo isomer / (Exo isomer + Endo isomer) ⁇ may be greater than 50 mol%, greater than 70 mol%, greater than 90 mol%, greater than 95 mol%, or greater than 99 mol%.
  • the addition compound-containing solution of the present invention contains a stereoisomer having a relatively low thermal desorption temperature in a relatively large proportion
  • the compound (II) having a double bond is heated from this solution.
  • an organic semiconductor film made of the condensed polycyclic aromatic compound of formula (I) is obtained by desorption and removal, this desorption can be started from a relatively low temperature. Therefore, in this case, the generation of the organic semiconductor film at a relatively low temperature can be promoted.
  • a reaction product having a substituent on the opposite side of the main bridge is defined as an Endo isomer
  • a reaction product having a substituent on the same side as the main bridge is defined as an Exo isomer.
  • the method of the present invention for producing an organic semiconductor film comprises the steps of applying the additive compound-containing solution of the present invention to a substrate to produce a film, and subjecting the film to reduced pressure and / or heating to form an organic compound film.
  • a step of removing and removing the compound (II) having a double bond to obtain an organic semiconductor film made of the condensed polycyclic aromatic compound of the formula (I) is included.
  • the application of this solution to the substrate can be performed in an arbitrary manner, for example, by a casting method, a spin coating method, a printing method, or the like.
  • the application of the solution to the substrate can be performed simply by dropping the solution onto the substrate.
  • any conditions that do not substantially decompose the condensed polycyclic aromatic compound of the formula (I) can be used. Accordingly, desorption and removal of compound (II) is, for example, 80 ° C. or higher, 100 ° C. or higher, 120 ° C. or higher, or 140 ° C. or higher, and a temperature of 200 ° C. or lower, 220 ° C. or lower, 240 ° C. or lower, 260 ° C. or lower. Can be heated. In addition, desorption and removal of compound (II) can be performed, for example, under vacuum or atmospheric pressure.
  • desorption and removal of the compound (II) can be performed, for example, in a nitrogen atmosphere or an air atmosphere.
  • the elimination and removal of the compound (II) in an atmospheric atmosphere at atmospheric pressure is preferable in order to facilitate the production of the condensed polycyclic aromatic compound of the formula (I).
  • the elimination and removal of the compound (II) having a double bond is performed by rapid heating, for example, 100 ° C./min, 200 ° C./min, 400 ° C./min, 600 It can be carried out by heating at a heating rate in excess of ° C / min, 800 ° C / min or 1000 ° C / min.
  • rapid heating can be achieved, for example, by directly contacting a substrate having a film with a heated object such as a heated electric heater, and heating the substrate having a film to a heated furnace or the like.
  • this rapid heating can be performed up to 3 ° C. or more, 5 ° C. or more, or 10 ° C. or more higher than the temperature at which desorption and removal of the compound (II) having a double bond is started.
  • Crystallization of the condensed polycyclic aromatic compound of I) proceeds at a large number of locations to generate a large number of crystal nuclei, and in the finally obtained organic semiconductor film, individual condensed polycycles of the formula (I) It is thought that the crystals of the aromatic compound become fine.
  • the inventive method of manufacturing an organic semiconductor device includes the step of producing an organic semiconductor film by the inventive method of producing an organic semiconductor film.
  • the method may optionally further comprise forming an electrode layer and / or a dielectric layer above or below the organic semiconductor film.
  • the organic semiconductor device of the present invention is an organic semiconductor device having an organic semiconductor film, wherein the organic semiconductor film has a structure in which the compound (II) having a double bond is eliminated from the addition compound of the present invention. And the organic semiconductor film contains the addition compound of the present invention.
  • the fact that the organic semiconductor film contains the addition compound of the present invention means that the organic semiconductor film contains the addition compound of the present invention in a detectable amount.
  • the molar ratio of the addition compounds of the present invention may be greater than 1 ppm, greater than 10 ppm, greater than 100 ppm, greater than 1,000 ppm, or greater than 10,000 ppm (1%).
  • the ratio of the addition compound of this invention may be 10 mol% or less, 5 mol% or less, 3 mol% or less, 1 mol% or less, 0.1 mol% or less, or 0.01 mol% or less.
  • Such an organic semiconductor device of the present invention may have characteristics as an organic semiconductor device despite containing the addition compound of the present invention along with the condensed polycyclic aromatic compound of the formula (I). it can. That is, when the organic semiconductor film of the organic semiconductor device of the present invention is produced from the addition compound of the present invention, the organic semiconductor device of the present invention can be obtained even if the thermal desorption reaction of the addition compound of the present invention does not proceed completely. It can have characteristics as a semiconductor device. This is preferable for facilitating the production of the organic semiconductor device of the present invention or the organic semiconductor film thereof.
  • Another organic semiconductor device of the present invention is an organic semiconductor device having an organic semiconductor film, wherein the organic semiconductor film has a major axis diameter of more than 5 ⁇ m, more than 10 ⁇ m, more than 20 ⁇ m, more than 30 ⁇ m, more than 40 ⁇ m, more than 50 ⁇ m, Having crystals of condensed polycyclic aromatic compounds of the following formula (I) of more than 60 ⁇ m, more than 70 ⁇ m, more than 80 ⁇ m, more than 90 ⁇ m or more than 100 ⁇ m Ar 1 Ar 2 Ar 3 (I) (Ar 1 , Ar 2 , and Ar 3 are as described above).
  • the semiconductor characteristics of the organic semiconductor film such as carrier mobility and on / off ratio, can be improved.
  • organic semiconductor films for the organic semiconductor devices of the present invention can be produced, for example, by a solution method, ie, a method of forming an organic semiconductor film comprising the steps of applying the solution to a substrate and removing the solvent from the solution. It can be obtained by the method of the present invention for producing a membrane.
  • Still another organic semiconductor device of the present invention is an organic semiconductor device having an organic semiconductor film, wherein the organic semiconductor film has a structure in which the compound (II) having a double bond is eliminated from the addition compound of the present invention.
  • the organic semiconductor film contains the addition compound of the present invention, and the organic semiconductor film has a major axis diameter of more than 5 ⁇ m. Of condensed polycyclic aromatic compounds.
  • the organic semiconductor device of the present invention is a thin film transistor having a source electrode, a drain electrode, a gate electrode, a gate insulating film, and an organic semiconductor film, wherein the source electrode, the drain electrode, and the gate electrode are insulated by the gate insulating film, The thin film transistor controls the current flowing through the organic semiconductor from the source electrode to the drain electrode by a voltage applied to the gate electrode.
  • the organic semiconductor device of the present invention is a solar cell having an organic semiconductor film as an active layer.
  • “organic semiconductor device” means a device having an organic semiconductor film, and other layers such as an electrode layer and a dielectric layer are made of an inorganic material or an organic material. It may be made.
  • the process of the present invention for purifying a fused polycyclic aromatic compound of formula (I) below comprises the following steps (a) to (d): Ar 1 Ar 2 Ar 3 (I) (Ar 1 and Ar 3 are each independently selected from substituted or unsubstituted fused aromatic ring moieties fused with 2 to 5 aromatic rings; Ar 2 is selected from a substituted or unsubstituted aromatic ring moiety consisting of one aromatic ring and a substituted or unsubstituted fused aromatic ring moiety fused with 2 to 5 aromatic rings; Ar 1 and Ar 2 share at least two carbon atoms to form a condensed aromatic ring, and Ar 2 and Ar 3 share at least two carbon atoms to form a condensed aromatic ring ); (A) providing a crude product of the fused polycyclic aromatic compound of formula (I); (B) providing a compound (II) having a double bond, which is detachably added to the condensed poly
  • Step (a) provides a crude product of the fused polycyclic aromatic compound of formula (I).
  • the crude product of the condensed polycyclic aromatic compound of formula (I) provided herein can be obtained by any synthesis method.
  • the condensed polycyclic aromatic compound of formula (I) is obtained by a synthesis method using a halogen element and / or a metal element or a compound thereof, and / or an aromatic compound as a reaction medium, a raw material, a catalyst, or the like.
  • Patent Documents 1 to 5 and Non-Patent Document 1, particularly Patent Document 2 Therefore, according to the purification method of the present invention, these elements or compounds contained as impurities in the crude product of the condensed polycyclic aromatic compound of formula (I) can be at least partially removed.
  • the crude product of the formula (I) used in step (a) is preferably purified in advance, for example, purified in advance by solvent washing, in order to promote purification by the method of the present invention. Sometimes.
  • the condensed polycyclic aromatic compound of the formula (I) is illustrated more specifically below.
  • Step (b) provides compound (II) having a double bond, which is releasably added to the condensed polycyclic aromatic compound of formula (I).
  • the compound (II) having a double bond added to the condensed polycyclic aromatic compound of the formula (I) “removably” means that the condensed polycyclic aromatic compound of the formula (I) and the double bond
  • the compound (II) having a double bond removes the compound (II) having a double bond without decomposing the condensed polycyclic aromatic compound of the formula (I) by, for example, reduced pressure and / or heating. Means that it is possible.
  • the compound (II) having a double bond is exemplified more specifically below.
  • step (c) the condensed polycyclic aromatic compound of the formula (I) and the compound (II) having a double bond are mixed, and a mixed solution in which an adduct of these compounds is at least partially dissolved. Get.
  • This addition compound is illustrated more specifically below.
  • a solvent can be used together with the compound (II) having a double bond, but the compound (II) having a double bond can also be used alone.
  • the solvent that can be used here any solvent that can dissolve the addition compound obtained in step (c) can be used.
  • usable solvents include aprotic polar solvents such as N-methylpyrrolidone, dimethyl sulfoxide, acetonitrile and ethyl acetate; ether solvents such as diethyl ether, tetrahydrofuran, diisopropyl ether, diethylene glycol dimethyl ether and 1,4-dioxane;
  • aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene (ie 1,3,5-trimethylbenzene); aliphatic hydrocarbons such as hexane and heptane; and halogen-containing solvents such as dichloromethane, chloroform and dichloroethane can do.
  • hydroquinone is used for the purpose of suppressing the polymerization by self-polymerization by radical polymerization of the compound (II) having a double bond.
  • a radical scavenger such as can be used together.
  • step (c) the addition / elimination reaction is promoted by heating and / or light irradiation when mixing the condensed polycyclic aromatic compound of formula (I) and the compound (II) having a double bond. You can also.
  • the temperature of the mixed liquid in step (c) can be determined in consideration of the addition reaction rate, the stability of the component, the boiling point of the component, etc., for example, 20 ° C. or higher, 50 ° C. or higher, 100 ° C. or higher, The temperature can be 180 ° C or lower, 200 ° C or lower, or 220 ° C or lower.
  • the liquid mixture is maintained for a predetermined period, for example, 1 minute or more, 10 minutes or more, 30 minutes or more, 1 hour or more, and is 1 day or less, 3 days or less, 5 days or less, or 10 days or less Can be maintained for a period of time.
  • FIG. 1 shows a conceptual diagram of a scheme in which impurities are separated from a crude product of the condensed polycyclic aromatic compound of formula (I) in the mixed solution of step (c). It is not limited.
  • the left side 100 of the formula of FIG. 1 is the initial stage of the mixture of the condensed polycyclic aromatic compound (crude product) of the formula (I) in the crystalline state including impurities and the compound (II) having a double bond. Shows the state.
  • the compound (II) having a double bond is detachably added to the condensed polycyclic aromatic compound of the formula (I) as shown by the middle side 200 of the formula of FIG.
  • the crystallinity of the condensed polycyclic aromatic compound of formula (I) is reduced and / or the polarity of this compound is increased, whereby the condensed polycyclic aromatic compound of formula (I) is dissolved in the mixture become.
  • Compound (II) having a double bond is detachably added to the condensed polycyclic aromatic compound of formula (I), and therefore, the state of the left side 100, the state of the middle side 200 of the formula of FIG.
  • the states of the right side 300 are in equilibrium with each other.
  • the fused polycyclic aromatic compound of formula (I) is represented by the middle side 200 of the formula of FIG. It is understood that the probability that impurities are taken in when crystallizing from the state of FIG. 1 is relatively low, so that the equilibrium is biased from the state of the left side 100 of FIG. 1 to the state of the middle side 200 and right side 300 of FIG. .
  • step (d) the purified condensed polycyclic aromatic compound of formula (I) is obtained by separation from the mixed solution obtained in step (c).
  • the condensed polycyclic aromatic compound of the formula (I) in the purified crystalline state in the state of the right side 300 in FIG. 1 has low solubility in the mixed solution, and can therefore be separated by filtration or the like.
  • a compound (II) having a double bond without decomposing the condensed polycyclic aromatic compound of formula (I) by, for example, reduced pressure and / or heating. Can be eliminated and removed from the fused polycyclic aromatic compound of formula (I). This is because the compound (II) having a double bond is detachably added to the condensed polycyclic aromatic compound of the formula (I) as described above.
  • desorption and removal of compound (II) is, for example, 80 ° C. or higher, 100 ° C. or higher, 120 ° C. or higher, or 140 ° C. or higher, and a temperature of 200 ° C. or lower, 220 ° C. or lower, 240 ° C. or lower, 260 ° C. or lower.
  • desorption and removal of compound (II) can be performed, for example, under vacuum or atmospheric pressure.
  • desorption and removal of the compound (II) can be performed, for example, in a nitrogen atmosphere or an air atmosphere.
  • the purified condensed polycyclic aromatic compound of the formula (I) obtained in step (d) can be further purified, for example, by a sublimation purification method.
  • the first method of the present invention for producing the fused polycyclic aromatic compound of formula (I) includes the step of purifying the crude product of the fused polycyclic aromatic compound of formula (I) by the method of the present invention.
  • the compound (II) having a double bond is detachably added to the condensed polycyclic aromatic compound of the formula (I).
  • the compound (II) is desorbed and removed from the adduct compound having the structure formed, and in particular, the compound (II) is desorbed and removed by heating and / or reduced pressure.
  • any conditions that do not substantially decompose the condensed polycyclic aromatic compound of the formula (I) can be used. Accordingly, desorption and removal of compound (II) is, for example, 80 ° C. or higher, 100 ° C. or higher, 120 ° C. or higher, or 140 ° C. or higher, and a temperature of 200 ° C. or lower, 220 ° C. or lower, 240 ° C. or lower, 260 ° C. or lower. Can be heated. In addition, desorption and removal of compound (II) can be performed, for example, under vacuum or atmospheric pressure.
  • desorption and removal of the compound (II) can be performed, for example, in a nitrogen atmosphere or an air atmosphere.
  • the elimination and removal of the compound (II) in an atmospheric atmosphere at atmospheric pressure is preferable in order to facilitate the production of the condensed polycyclic aromatic compound of the formula (I).
  • the condensed polycyclic aromatic compound of the formula (I) can be obtained as a powder.
  • the form of the condensed polycyclic aromatic compound of the formula (I) obtained by these methods of the present invention is not limited to powder.
  • the method of the present invention for producing an organic semiconductor film comprises the production of a condensed polycyclic aromatic compound by the method of the present invention, and the obtained condensed polycyclic aromatic compound of formula (I) Obtaining a semiconductor film.
  • the inventive method of manufacturing an organic semiconductor device includes the step of producing an organic semiconductor film by the inventive method of producing an organic semiconductor film.
  • the method may optionally further comprise forming an electrode layer and / or a dielectric layer above or below the organic semiconductor film.
  • the solution of the present invention for forming an organic semiconductor film includes an organic solvent, a first addition compound dissolved in the organic solvent, and a crystallization of the first addition compound dissolved in the organic solvent. Contains a crystallization inhibitor.
  • the first addition compound is formed by allowing the first compound (II ′) having a double bond to be removed from the condensed polycyclic aromatic compound of the following formula (I) via the double bond. It has an added structure: Ar 1 Ar 2 Ar 3 (I) (Ar 1 and Ar 3 are each independently selected from substituted or unsubstituted fused aromatic ring moieties fused with 2 to 5 aromatic rings; Ar 2 is selected from a substituted or unsubstituted aromatic ring moiety consisting of one aromatic ring and a substituted or unsubstituted fused aromatic ring moiety fused with 2 to 5 aromatic rings; Ar 1 and Ar 2 share at least two carbon atoms to form a condensed aromatic ring, and Ar 2 and Ar 3 share at least two carbon atoms to form a condensed aromatic ring ).
  • the crystallization inhibitor is at least one compound selected from the group consisting of the following (a) to (c): (A) Second addition having a structure in which a second compound (II ′′) having a double bond is detachably added to the condensed polycyclic aromatic compound of formula (I) via a double bond Compound, (B) a first compound (II ′) having a double bond, which can be detachably added to the condensed polycyclic aromatic compound of formula (I) via a double bond; And (c) a second compound (II ′′) having a double bond, which can be removably added to the condensed polycyclic aromatic compound of formula (I) via the double bond .
  • the first addition compound has a structure in which the compound (II ′) having a double bond is added to the condensed polycyclic aromatic compound of the formula (I).
  • the polarity is increased and / or the crystallinity is decreased as compared with the condensed polycyclic aromatic compound of formula (I), thereby having a relatively high solubility in a solvent. . Therefore, according to the solution of the present invention, an organic semiconductor layer made of a condensed polycyclic aromatic compound can be formed using a solution method.
  • the solution of the present invention is applied to a substrate to form a film, and the film is decompressed and / or heated to form a first compound having a double bond from the first addition compound.
  • the compound (II ′) By removing and removing the compound (II ′), an organic semiconductor film made of the condensed polycyclic aromatic compound of the formula (I) can be obtained.
  • the solution of the present invention for forming an organic semiconductor film contains a crystallization inhibitor, thereby suppressing crystallization during the formation of the organic semiconductor film by a solution method, thereby providing an excellent organic A semiconductor film can be provided and / or an organic semiconductor film can be provided efficiently.
  • the solution for forming an organic semiconductor film of the present invention can contain the first addition compound at an arbitrary concentration.
  • the first addition compound is 0.01 to 20% by mass, 0.05 to 10% by mass. , In a concentration of 0.1 to 5% by mass.
  • any solvent that can dissolve the first addition compound can be used.
  • usable solvents include aprotic polar solvents such as N-methylpyrrolidone, dimethyl sulfoxide, acetonitrile and ethyl acetate; ether solvents such as diethyl ether, tetrahydrofuran, diisopropyl ether, diethylene glycol dimethyl ether and 1,4-dioxane;
  • aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene (ie 1,3,5-trimethylbenzene); aliphatic hydrocarbons such as hexane and heptane; and halogen-containing solvents such as dichloromethane, chloroform and dichloroethane can do.
  • the solution of the present invention includes, for example, the first addition compound and at least one stereoisomer thereof dissolved in a solvent, and the addition compound and the stereoisomer thereof.
  • the ratio of the stereoisomer with the lowest thermal desorption temperature to the total of ⁇ addition compound and its stereoisomer with the lowest thermal desorption temperature / addition compound and its stereoisomer ⁇ is more than 50 mol%, It may be more than 70 mol%, more than 90 mol%, more than 95 mol%.
  • the solution of the present invention includes, for example, the Exo isomer and Endo isomer of the first addition compound contained in a solvent, and Ratio of stereoisomer with lower thermal desorption temperature to total of Exo and Endo isomers of 1 addition compound ⁇ Stereoisomer with lower thermal desorption temperature of Exo and Endo isomers / (Exo Body + Endo body) ⁇ may be more than 50 mol%, more than 70 mol%, more than 90 mol%, more than 95 mol%.
  • the solution of the present invention comprises, for example, an Exo isomer and an Endo isomer of the addition compound of the formula (III-6) dissolved in a solvent, and the Exo isomer with respect to the sum of the Exo isomer and Endo isomer of the addition compound.
  • the ratio ⁇ Exo isomer / (Exo isomer + Endo isomer) ⁇ may be greater than 50 mol%, greater than 70 mol%, greater than 90 mol%, greater than 95 mol%, or greater than 99 mol%.
  • the compound (II) having a double bond is heated from this solution by heating.
  • an organic semiconductor film made of the condensed polycyclic aromatic compound of formula (I) is obtained by desorption and removal, this desorption can be started from a relatively low temperature. Therefore, in this case, the generation of the organic semiconductor film at a relatively low temperature can be promoted.
  • a reaction product having a substituent on the opposite side of the main bridge is defined as an Endo isomer
  • a reaction product having a substituent on the same side as the main bridge is defined as an Exo isomer.
  • the crystallization inhibitor contained in the solution of the present invention is such that the second compound (II ′′) having a double bond in the condensed polycyclic aromatic compound of formula (I) has a double bond. It is the 2nd addition compound which has a structure formed so that it can detach
  • the second addition compound has the same condensed polycyclic aromatic compound of the formula (I) as the first addition compound. That is, the second addition compound is the same as the second addition compound except that the second compound (II ′′) having a double bond is added instead of the first compound (II ′) having a double bond. Same as 1 addition compound.
  • the portion of the condensed polycyclic aromatic compound of the formula (I) in the second addition compound is the first addition compound, in particular the condensed polycyclic aromatic of the formula (I) in the first addition compound.
  • the first addition compound and the second addition compound are structurally different with respect to the first and second compounds (II ′) and (II ′′) having a double bond, and thus are organic by solution method. It is relatively difficult to crystallize during the formation of the semiconductor film.
  • first and second addition compounds each have a double bond between the first and second compounds (I ′) and (II ′) having a double bond to the condensed polycyclic aromatic compound of the formula (I). It has a structure that is detachably added via Therefore, the first and second addition compounds are removed and removed from the first and second compounds (II ′) and (II ′′) having a double bond, for example, by heating and / or reduced pressure. Either result in a fused polycyclic aromatic compound of formula (I).
  • the solution when the concentration of the first adduct compound contained in the solution is constant, the solution further contains the second adduct compound, thereby allowing a substantial condensation of the formula (I) in the solution.
  • the content rate of a ring aromatic compound can be enlarged.
  • the solution for forming an organic semiconductor film of the present invention can contain the second addition compound as a crystallization inhibitor in any amount that can be dissolved in a solvent.
  • the molar ratio to the first addition compound may be 0.1 mol% or more, 1 mol% or more, 10 mol% or more, 30 mol% or more, 50 mol% or more.
  • this molar ratio being 100 mol% means that the number of moles of the first addition compound and the number of moles of the second addition compound contained in the organic semiconductor film forming solution are the same. means.
  • the crystallization inhibitor contained in the solution of the present invention is the first compound (II ′) having a double bond.
  • the first compound (II ′) having a double bond used as a crystallization inhibitor is detachably added to the condensed polycyclic aromatic compound of the formula (I) via the double bond.
  • the first compound (II ′) having a double bond constituting the first addition compound can be detachably added to the condensed polycyclic aromatic compound of the formula (I) via the double bond.
  • the second compound (II ′′) having a double bond can be detachably added to the condensed polycyclic aromatic compound of the formula (I) via the double bond.
  • the first compound (II ′) having a double bond constituting the first addition compound is different from the first compound (II ′) having a double bond used as a crystallization inhibitor. ”)
  • the first and second compounds (II ′) and (II ′′) having a double bond used as a crystallization inhibitor both have a double bond on the condensed polycyclic aromatic compound of the formula (I).
  • the condensed polycyclic aromatic compound of the formula (I) is converted into the first compound (II ′) having the same structure as that of the first compound (II ′) detachably added via a double bond to form the first addition compound.
  • the detachable addition and / or the affinity for the condensed polycyclic aromatic compound of the formula (I), thereby forming the polarity of the first addition compound during the formation of the organic semiconductor film by the solution method Can be further increased and / or crystallization of the first addition compounds can be prevented.
  • the solution for forming an organic semiconductor film of the present invention is an arbitrary solution capable of dissolving the first and second compounds (II ′) and (II ′′) having a double bond as a crystallization inhibitor in a solvent.
  • the molar ratio of the first and second compounds (II ′) and (II ′′) to the first addition compound (the first and / or second compound (II ′) and (II ′′) / first addition compound) may be 0.1 mol% or more, 1 mol% or more, 10 mol% or more, 30 mol% or more, 50 mol% or more.
  • the molar ratio is 100 mol% That is, the number of moles of the first addition compound and the number of moles of the first and / or second compounds (II ′) and (II ′′) contained in the organic semiconductor film forming solution are the same. Means that.
  • the method of the present invention for producing an organic semiconductor film comprises the steps of applying the organic semiconductor film forming solution of the present invention to a substrate to produce a film, and subjecting the film to reduced pressure and / or heating, Step for obtaining an organic semiconductor film comprising a condensed polycyclic aromatic compound of formula (I) by removing and removing compound (II) having a double bond from one addition compound and optionally a second addition compound including.
  • the application of this solution to the substrate can be performed in an arbitrary manner, for example, by a casting method, a spin coating method, a printing method, or the like.
  • the application of the solution to the substrate can be performed simply by dropping the solution onto the substrate.
  • any conditions that do not substantially decompose the condensed polycyclic aromatic compound of the formula (I) can be used. Accordingly, desorption and removal of compound (II) is, for example, 80 ° C. or higher, 100 ° C. or higher, 120 ° C. or higher, or 140 ° C. or higher, and a temperature of 200 ° C. or lower, 220 ° C. or lower, 240 ° C. or lower, 260 ° C. or lower. Can be heated. In addition, desorption and removal of compound (II) can be performed, for example, under vacuum or atmospheric pressure.
  • desorption and removal of the compound (II) can be performed, for example, in a nitrogen atmosphere or an air atmosphere.
  • the elimination and removal of the compound (II) in an atmospheric atmosphere at atmospheric pressure is preferable in order to facilitate the production of the condensed polycyclic aromatic compound of the formula (I).
  • the inventive method of manufacturing an organic semiconductor device includes the step of producing an organic semiconductor film by the inventive method of producing an organic semiconductor film.
  • the method may optionally further comprise forming an electrode layer and / or a dielectric layer above or below the organic semiconductor film.
  • the organic semiconductor device of the present invention is an organic semiconductor device having an organic semiconductor film, wherein the organic semiconductor film is made of an organic semiconductor compound having the following formula (I), and the organic semiconductor A first addition compound in which a membrane is detachably added to a condensed polycyclic aromatic compound of the following formula (I) having a double bond through a double bond And at least one compound selected from the group consisting of the following (a) to (c): Ar 1 Ar 2 Ar 3 (I) (Ar 1 and Ar 3 are each independently selected from substituted or unsubstituted fused aromatic ring moieties fused with 2 to 5 aromatic rings; Ar 2 is selected from a substituted or unsubstituted aromatic ring moiety consisting of one aromatic ring and a substituted or unsubstituted fused aromatic ring moiety fused with 2 to 5 aromatic rings; Ar 1 and Ar 2 share at least two carbon atoms to form a condensed aromatic ring, and Ar 2 and Ar 3 share at least two carbon atoms to form a con
  • the organic semiconductor film contains the first addition compound and at least one compound selected from the group consisting of the above (a) to (c). Means that these compounds are contained.
  • the molar ratio of these compounds to the organic semiconductor compound having formula (I) may be greater than 1 ppm, greater than 10 ppm, greater than 100 ppm, greater than 1,000 ppm, or greater than 10,000 ppm (1%).
  • the organic-semiconductor compound which has a formula (I) The ratio of these compounds may be 10 mol% or less, 5 mol% or less, 3 mol% or less, 1 mol% or less, 0.1 mol% or less, or 0.01 mol% or less. .
  • Such an organic semiconductor device of the present invention includes at least one selected from the group consisting of the first addition compound and the above (a) to (c) along with the condensed polycyclic aromatic compound of the formula (I).
  • it can have characteristics as an organic semiconductor device. That is, when the organic semiconductor film of the organic semiconductor device of the present invention is produced from the solution for forming an organic semiconductor film of the present invention, the thermal desorption reaction of the addition compound and the removal of the crystallization inhibitor do not proceed completely.
  • the organic semiconductor device of the present invention can have characteristics as a semiconductor device. This is preferable for facilitating the production of the organic semiconductor device of the present invention or the organic semiconductor film thereof.
  • the organic semiconductor device of the present invention is a thin film transistor having a source electrode, a drain electrode, a gate electrode, a gate insulating film, and an organic semiconductor film, wherein the source electrode, the drain electrode, and the gate electrode are insulated by the gate insulating film,
  • the thin film transistor controls the current flowing through the organic semiconductor from the source electrode to the drain electrode by a voltage applied to the gate electrode.
  • the organic semiconductor device of the present invention is a solar cell having an organic semiconductor film as an active layer.
  • the ⁇ -diketone compound of the present invention has the following formula (I (a) -X): Ar 1X Ar 2 (a) Ar 3X (I (a) -X) (Ar 1X and Ar 3X are each independently selected from substituted or unsubstituted fused aromatic ring moieties fused with 2 to 5 aromatic rings, and at least one of these aromatic rings is Is substituted with a bicyclo ⁇ -diketone moiety of formula (X):
  • Ar 2 (a) is a substituted or unsubstituted heteroaromatic ring moiety composed of one heteroaromatic ring, and a substituted or unsubstituted condensed heteroaromatic group in which 2 to 5 heteroaromatic rings are condensed. Selected from the family ring part, Ar 1X and Ar 2 (a) share at least two carbon atoms to form a condensed ring, and Ar 2 (a) and Ar 3X share at least two carbon atoms to form a condensed ring. Forming ⁇ .
  • Ar 1X and Ar 3X each independently represent a substituted or unsubstituted condensed aromatic in which 2 to 5 aromatic rings, particularly 2 to 4 aromatic rings are condensed. Selected from the ring moiety and at least one of these aromatic rings is substituted with a bicyclo ⁇ -diketone moiety of formula (X):
  • Ar 1X and Ar 3X are each independently selected from a condensed benzene ring portion in which 2 to 5 substituted or unsubstituted benzene rings, particularly 2 to 4 substituted or unsubstituted benzene rings are condensed And at least one of the benzene rings is substituted with a bicyclo ⁇ -diketone moiety as described above.
  • Ar 1 and Ar 3 may be the same or different.
  • Ar 1X and Ar 3X are each independently selected from the group consisting of substituted or unsubstituted fused benzene ring moieties (b1) to (b4) below, and at least one of these benzene rings is the above-mentioned Is substituted with a bicyclo ⁇ -diketone moiety:
  • Ar 2 (a) is a substituted or unsubstituted heteroaromatic ring moiety consisting of one heteroaromatic ring, or 2 to 5, in particular 2 to 3 heteroaromatics. It is selected from substituted or unsubstituted fused heteroaromatic ring moieties to which the aromatic ring is fused.
  • the heteroaromatic ring may be, for example, a heteroaromatic ring having the following structure:
  • Y is a chalcogen, in particular an element selected from oxygen (O), sulfur (S), selenium (Se) and tellurium (Te), more particularly sulfur).
  • Ar 2 (a) may be a fused heteroaromatic ring moiety selected from the group consisting of the following (a1), (a3) and (a4), which is substituted or unsubstituted:
  • Y is each independently an element selected from chalcogens, which may all be the same or partially different).
  • the bicyclo ⁇ -diketone portion is decomposed by light irradiation into a benzene ring portion, thereby producing a condensed polycyclic aromatic compound of the following formula (I (a)):
  • Ar 1 Ar 2 (a) Ar 3 (I (a)) Ar 1 and Ar 3 are each independently selected from substituted or unsubstituted fused aromatic ring moieties fused with 2 to 5 aromatic rings;
  • Ar 2 (a) is a substituted or unsubstituted heteroaromatic ring moiety composed of one heteroaromatic ring, and a substituted or unsubstituted condensed heteroaromatic group in which 2 to 5 heteroaromatic rings are condensed.
  • Ar 1 and Ar 2 (a) share at least two carbon atoms to form a condensed ring
  • Ar 2 (a) and Ar 3 share at least two carbon atoms to form a condensed ring. Forming).
  • Ar 1 and Ar 3 are each independently substituted with 2 to 5 aromatic rings, especially 2 to 4 aromatic rings fused Or selected from unsubstituted fused aromatic ring moieties.
  • the aromatic ring is in particular a substituted or unsubstituted benzene ring.
  • Ar 1 and Ar 3 may be the same or different.
  • Ar 1 and Ar 3 may each independently be a substituted or unsubstituted benzene ring moiety selected from the group consisting of (b1) to (b4).
  • Ar 2 (a) is a substituted or unsubstituted heteroaromatic ring moiety consisting of one heteroaromatic ring, or 2 to 5, especially 2 to 3 A substituted or unsubstituted fused heteroaromatic ring moiety to which a number of heteroaromatic rings are fused.
  • Ar 2 (a) may be a substituted or unsubstituted heteroaromatic ring moiety or fused heteroaromatic ring moiety selected from the group consisting of (a1), (a3) and (a4) above. .
  • the condensed polycyclic aromatic compound of the formula (I (a)) is an organic semiconductor compound, that is, an organic compound exhibiting properties as a semiconductor.
  • the condensed polycyclic aromatic compound of the formula (I (a)) can be selected from the group consisting of substituted or unsubstituted condensed polycyclic aromatic compounds of the following formulas (I-1) to (I-5) . These fused polycyclic aromatic compounds are highly stable, and therefore, when the condensed polycyclic aromatic compound of the formula (I (a)) is produced from the ⁇ -diketone compound of the present invention, the formula (I (a) ) Of the condensed polycyclic aromatic compound can be stably maintained.
  • the condensed polycyclic aromatic compound of the formula (I (a)) can be heated even when the condensed polycyclic aromatic compound of the formula (I (a)) is produced. It can be kept stable. Therefore, in this case, the condensed polycyclic aromatic compound of the formula (I (a)) can be produced from the ⁇ -diketone compound of the present invention at a high rate.
  • (Y is an element independently selected from chalcogen).
  • the condensed polycyclic aromatic compound of the formula (I (a)) and the synthesis thereof are not particularly limited, but can be referred to Patent Documents 1 to 5 and Non-Patent Document 1.
  • the ⁇ -diketone compound of the present invention is a compound of the following formulas (I (a) -X1) to (I (a) -X5) or a stereoisomer thereof:
  • Y is each independently an element selected from chalcogen, and the fused benzene ring moiety is substituted or unsubstituted).
  • Y is each independently an element selected from chalcogen, and the fused benzene ring moiety is substituted or unsubstituted
  • substitution of the above aromatic ring is, for example, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or 4 to 4 carbon atoms.
  • 20 substituted or unsubstituted aromatic groups ester groups having 2 to 10 carbon atoms, ether groups having 1 to 20 carbon atoms, ketone groups having 1 to 20 carbon atoms, amino groups having 1 to 20 carbon atoms , An amide group having 1 to 20 carbon atoms, an imide group having 1 to 20 carbon atoms, and a substituent selected from the group consisting of sulfide groups having 1 to 20 carbon atoms.
  • the ⁇ -diketone compound of the present invention can be synthesized by a method including the following steps (a) to (c): (A) A vinylene carbonate-added condensed polycyclic aromatic compound having a structure in which vinylene carbonate is detachably added to the condensed polycyclic aromatic compound represented by the following formula (I (a)) via the double bond.
  • Ar 1 Ar 2 (a) Ar 3 (I (a)) Ar 1 and Ar 3 are each independently selected from substituted or unsubstituted fused aromatic ring moieties fused with 2 to 5 aromatic rings;
  • Ar 2 (a) is a substituted or unsubstituted heteroaromatic ring moiety composed of one heteroaromatic ring, and a substituted or unsubstituted condensed heteroaromatic group in which 2 to 5 heteroaromatic rings are condensed.
  • Ar 1 and Ar 2 (a) share at least two carbon atoms to form a condensed ring
  • Ar 2 (a) and Ar 3 share at least two carbon atoms to form a condensed ring.
  • the vinylene carbonate-added condensed polycyclic aromatic compound used as a raw material in step (a) of this method is a step of adding vinylene carbonate to the condensed polycyclic aromatic compound of formula (I (a)), in particular of these compounds. It can be produced by a method comprising the step of adding these compounds by mixing. At this time, vinylene carbonate can be used by dissolving in a solvent, but can also be used alone. Here, as this solvent, any solvent capable of dissolving vinylene carbonate can be used.
  • usable solvents include aprotic polar solvents such as N-methylpyrrolidone, dimethyl sulfoxide, acetonitrile and ethyl acetate; ether solvents such as diethyl ether, tetrahydrofuran, diisopropyl ether, diethylene glycol dimethyl ether and 1,4-dioxane;
  • aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene (ie 1,3,5-trimethylbenzene); aliphatic hydrocarbons such as hexane and heptane; and halogen-containing solvents such as dichloromethane, chloroform and dichloroethane can do.
  • the reaction temperature in the synthesis of the vinylene carbonate-added condensed polycyclic aromatic compound can be determined in consideration of the production rate, the stability of the component, the boiling point of the component, and the like.
  • the temperature can be set to 180 ° C or lower, 200 ° C or lower, or 220 ° C or lower.
  • the reaction time is, for example, 1 minute or more, 10 minutes or more, 30 minutes or more, 1 hour or more, and can be 1 day or less, 3 days or less, 5 days or less, or 10 days or less.
  • dinaphthothienothiophene (DNTT) as a condensed polycyclic aromatic compound and vinylene carbonate are mixed in a mesitylene solvent, stirred while heating under nitrogen, and vinylene carbonate by Diels-Alder addition reaction. Is added to DNTT to obtain vinylene carbonate-added dinaphthothienothiophene (compound of the following formula (1)) as a vinylene carbonate-added condensed polycyclic aromatic compound. Thereafter, the vinylene carbonate-added dinaphthothienothiophene is obtained as a solid by filtration and washed with chloroform.
  • DNTT dinaphthothienothiophene
  • step (b) of this process for example, the vinylene carbonate-added dinaphthothienothiophene (compound of formula (1) above) provided in step (b) is placed in ethanol and further sodium hydroxide. The mixture is refluxed to obtain an ⁇ -diol compound (compound of the following formula (2)) in which a portion corresponding to vinylene carbonate is converted to an ⁇ -diol portion.
  • ⁇ -diol compound compound of the following formula (2)
  • Non-Patent Document 4 can be referred to.
  • step (c) of this method for example, the ⁇ -diol compound obtained in step (b) is cooled in a mixed solution of dimethyl sulfoxide, trifluoroacetic anhydride, triethylamine, and methylene chloride.
  • the ⁇ -diol compound is oxidized to convert the ⁇ -diol portion into an ⁇ -diketone portion to obtain an ⁇ -diketone compound (compound of the following formula (3)).
  • Non-Patent Document 4 can be referred to.
  • Patent Document 5 it is shown in Patent Document 5 to provide vinylene carbonate-added dinaphthothienothiophene, which is an example of the vinylene carbonate-added condensed polycyclic aromatic compound used as a raw material in step (a).
  • the 2-methylthio-3-naphthaldehyde obtained in this way is placed in a tetrohydrofuran solvent under a stream of nitrogen and vinylene carbonate is added thereto and the reaction is carried out at reflux temperature to give 2-
  • An adduct obtained by adding vinylene carbonate to methylthio-3-naphthaldehyde (compounds of the following formulas (4) and (5)) is obtained.
  • the adduct is subjected to the procedure shown in Example 1 of Patent Document 5 to bind two molecules of the adduct to obtain vinylene carbonate-added dinaphthothienothiophene.
  • the intermediate ⁇ -diketone compound of the present invention has the following formula (I (a) ′):
  • Ar 1X Q (I (a) ′) ⁇ Ar 1X is selected from a substituted or unsubstituted fused aromatic ring moiety in which 2 to 5 aromatic rings are fused, and at least one of these aromatic rings is represented by the following formula (X ) With a bicyclo ⁇ -diketone moiety and:
  • the compound of formula (I (a) ') may be any compound of the following formula or a stereoisomer thereof:
  • Y is an element selected from chalcogen, and the benzene ring moiety is substituted or unsubstituted).
  • This intermediate ⁇ -diketone compound of the present invention can be obtained by adding vinylene carbonate to a compound of formula (I ′) below and hydrolyzing and oxidizing the resulting compound:
  • Ar 1 Q (I ′) ⁇ Ar 1 is selected from a substituted or unsubstituted fused aromatic ring moiety fused with 2 to 5 aromatic rings, and Q has the following formula and the fused aromatic ring of Ar 1 Part of:
  • Non-Patent Document 4 can be referred to.
  • an ⁇ -diketone compound of the present invention of the following formula (I (a1) -X) is synthesized: Ar 1X Ar 2 (a1) Ar 1X (I (a1) -X) (Ar 1X is selected from a substituted or unsubstituted fused aromatic ring moiety in which 2 to 5 aromatic rings are fused, and at least one of these aromatic rings is represented by the following formula (X ) With a bicyclo ⁇ -diketone moiety:
  • Ar 2 (a1) is a condensed heteroaromatic ring moiety of the following formula (a1) (Y is an element selected from chalcogen), and
  • Ar 1X and Ar 2 (a1) share at least two carbon atoms to form a condensed ring).
  • the intermediate ⁇ -diketone compound of the present invention (the compounds of the above formulas (8) and (9)) is subjected to the procedure shown in Example 1 of Patent Document 5 to perform this addition.
  • the two molecules are bonded to obtain vinylene carbonate-added dinaphthothienothiophene (a compound of any one of the following formulas (3-1) to (3-5)).
  • the ⁇ -diketone compound-containing solution of the present invention is obtained by dissolving the ⁇ -diketone compound of the present invention in a solvent, particularly an organic solvent.
  • This ⁇ -diketone compound-containing solution can contain the ⁇ -diketone compound of the present invention at an arbitrary concentration.
  • the ⁇ -diketone compound of the present invention is 0.01 to 20% by mass, 0.05 to 10%. It can be contained at a concentration of mass%, 0.1 to 5 mass%.
  • any solvent that can dissolve the ⁇ -diketone compound of the present invention can be used.
  • usable solvents include aprotic polar solvents such as N-methylpyrrolidone, dimethyl sulfoxide, acetonitrile and ethyl acetate; ether solvents such as diethyl ether, tetrahydrofuran, diisopropyl ether, diethylene glycol dimethyl ether and 1,4-dioxane;
  • aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene (ie 1,3,5-trimethylbenzene); aliphatic hydrocarbons such as hexane and heptane; and halogen-containing solvents such as dichloromethane, chloroform and dichloroethane can do.
  • the inventive method for producing an organic semiconductor film comprises the following steps (a) and (b): (A) applying the ⁇ -diketone compound-containing solution of the present invention to a substrate to produce a film; and (b) irradiating the film with light to form a bicyclo ⁇ -diketone portion of the ⁇ -diketone compound.
  • Ar 1 Ar 2 (a) Ar 3 (I (a)) Ar 1 and Ar 3 are each independently selected from substituted or unsubstituted fused aromatic ring moieties fused with 2 to 5 aromatic rings;
  • Ar 2 (a) is a substituted or unsubstituted heteroaromatic ring moiety composed of one heteroaromatic ring, and a substituted or unsubstituted condensed heteroaromatic group in which 2 to 5 heteroaromatic rings are condensed.
  • Ar 1 and Ar 2 (a) share at least two carbon atoms to form a condensed ring
  • Ar 2 (a) and Ar 3 share at least two carbon atoms to form a condensed ring. Forming).
  • the application of this solution to the substrate can be performed in an arbitrary manner, for example, by a casting method, a spin coating method, a printing method, or the like.
  • the application of the solution to the substrate can be performed simply by dropping the solution onto the substrate.
  • the condensed polycyclic aromatic compound of the formula (I (a)) from the ⁇ -diketone compound light of any wavelength and / or intensity capable of achieving such decomposition is irradiated. can do.
  • decomposition can be achieved using light of visible to ultraviolet wavelengths.
  • it may further include a step of removing impurities other than the condensed polycyclic aromatic compound of the formula (I (a)) by performing reduced pressure and / or heating in combination with or after the light irradiation. .
  • any conditions that do not substantially decompose the condensed polycyclic aromatic compound of the formula (I (a)) can be used.
  • the decomposition of the ⁇ -diketone compound of the present invention and / or removal of impurities can be performed, for example, under vacuum or atmospheric pressure.
  • the ⁇ -diketone compound of the present invention can be decomposed and / or removed of impurities, for example, in a nitrogen atmosphere or an air atmosphere.
  • the decomposition of the ⁇ -diketone compound of the present invention and / or the removal of impurities is preferably performed in an atmospheric atmosphere at atmospheric pressure in order to facilitate the process.
  • the inventive method of manufacturing an organic semiconductor device includes the step of producing an organic semiconductor film by the inventive method of producing an organic semiconductor film.
  • the method may optionally further comprise forming an electrode layer and / or a dielectric layer above or below the organic semiconductor film.
  • the organic semiconductor device of the present invention is an organic semiconductor device having an organic semiconductor film, wherein the organic semiconductor film is made of a condensed polycyclic aromatic compound of the following formula (I (a)), and the organic semiconductor
  • the membrane further contains an ⁇ -diketone compound of the present invention:
  • Ar 1 Ar 2 (a) Ar 3 (I (a)) Ar 1 and Ar 3 are each independently selected from substituted or unsubstituted fused aromatic ring moieties fused with 2 to 5 aromatic rings;
  • Ar 2 (a) is a substituted or unsubstituted heteroaromatic ring moiety composed of one heteroaromatic ring, and a substituted or unsubstituted condensed heteroaromatic group in which 2 to 5 heteroaromatic rings are condensed.
  • Ar 1 and Ar 2 (a) share at least two carbon atoms to form a condensed ring
  • Ar 2 (a) and Ar 3 share at least two carbon atoms to form a condensed ring. Forming).
  • the fact that the organic semiconductor film contains the ⁇ -diketone compound of the present invention means that the organic semiconductor film contains the ⁇ -diketone compound of the present invention in a detectable amount.
  • the molar ratio of the ⁇ -diketone compound of the present invention may be greater than 1 ppm, greater than 10 ppm, greater than 100 ppm, greater than 1,000 ppm, or greater than 10,000 ppm (1%).
  • the proportion of the ⁇ -diketone compound of the present invention may be 10 mol% or less, 5 mol% or less, 3 mol% or less, 1 mol% or less, 0.1 mol% or less, or 0.01 mol% or less.
  • Such an organic semiconductor device of the present invention has characteristics as an organic semiconductor device despite containing the ⁇ -diketone compound of the present invention along with the condensed polycyclic aromatic compound of the formula (I). . That is, when the organic semiconductor film of the organic semiconductor device of the present invention is produced from the ⁇ -diketone compound of the present invention, even if the thermal desorption reaction of the ⁇ -diketone compound of the present invention does not proceed completely, Organic semiconductor devices have characteristics as semiconductor devices. This is preferable for facilitating the production of the organic semiconductor device of the present invention or the organic semiconductor film thereof.
  • the organic semiconductor device of the present invention is a thin film transistor having a source electrode, a drain electrode, a gate electrode, a gate insulating film, and an organic semiconductor film, wherein the source electrode, the drain electrode, and the gate electrode are insulated by the gate insulating film,
  • the thin film transistor controls the current flowing through the organic semiconductor from the source electrode to the drain electrode by a voltage applied to the gate electrode.
  • the organic semiconductor device of the present invention is a solar cell having an organic semiconductor film as an active layer.
  • the structure of the target compound was determined by 1H-NMR (1H-nuclear magnetic resonance spectrum), MS (mass spectrometry spectrum), and elemental analysis as needed, unless otherwise specified.
  • the equipment used is as follows. 1 H-NMR: JEOL ECA-500 (500 MHz) MS: Shimazu QP-5050A Elemental analysis: Parkin Elmer2400 CHN type elemental analyzer
  • DNTT dinaphthothienothiophene
  • HPPD hexachlorocyclopentadiene
  • DNTT-2HCCPD obtained as described above was purified by high performance liquid chromatography (Agilent 1100 Series HPLC: High Performance Liquid Chromatography, SHISEIDO CAPCELL PAK C18 water:
  • the detection value (340 m / z) of mass spectrometry (MS) is consistent with DNTT (molecular weight 340.46), and DNTT-2HCCPD (TTs) is exposed to the conditions of mass spectrometry (70 eV, DI). HCCPD is desorbed to regenerate DNTT.
  • the DNTT-2HCCPD (TTs) obtained by the above synthesis was dissolved in toluene to a concentration of 0.2% by mass to prepare a solution for preparing a semiconductor element.
  • a 300 nm n-doped silicon wafer with SiO 2 oxide film (surface resistance 0.005 ⁇ ⁇ cm) was subjected to UV ozone treatment for 20 minutes (eye UV-ozone cleaning apparatus OC-250615-D + A, eye Graphics Corporation). Further, a 10 mmol / toluene solution of octadecyltrichlorosilane (ODTS, Shin-Etsu Chemical LS-6495) was prepared, and a silicon substrate subjected to UV ozone treatment was immersed in this solution for 24 hours. Thereafter, a source / drain gold electrode having a channel length of 50 ⁇ m and a channel width of 1.5 mm was formed on the silicon substrate by vacuum deposition (Sanyu Electronics, resistance heating deposition device: SVC-700TM / 700-2).
  • a solution for forming a semiconductor element was dropped into the channel portion to evaporate the solvent, thereby forming a thin layer made of DNTT-2HCCPD (TTs).
  • the device thus fabricated was heat-treated at 180 ° C. for 1 hour under vacuum to produce an organic semiconductor device.
  • the outline of the obtained organic semiconductor element is shown in FIG.
  • a dielectric layer 5 made of silicon oxide is formed on a base material (gate electrode) 7 that is a silicon wafer, and source and drain electrodes are formed on the dielectric layer 5. 2 and 3, and the organic semiconductor 1 is laminated.
  • FIGS. 2 and 3 The output characteristics and transfer characteristics of a field effect transistor (FET) are shown in FIGS. 2 and 3, respectively.
  • FET field effect transistor
  • FIG. 2 the vertical axis indicates the drain current (I D (A)), and the horizontal axis indicates the drain voltage (V D (V)).
  • FIG. 3 the vertical axis represents the drain current (I D (A)), and the horizontal axis represents the gate voltage (V G (V)).
  • Comparative Example 1-1A A single DNTT without HCCPD added was added to toluene at a concentration of 0.2% by weight, but was hardly dissolved. Therefore, a single DNTT could not be used in the solution method.
  • Example 1-1B The addition reaction of dinaphthothienothiophene (DNTT) and hexachlorocyclopentadiene (HCCPD) was confirmed by computer simulation using the semi-empirical method (MOPAC) described above.
  • DNTT dinaphthothienothiophene
  • HCCPD hexachlorocyclopentadiene
  • anti indicates that HCCPD is added from the opposite side to the conjugate surface of DNTT, and “iso” indicates that two HCCPDs are added to the end on the same side of DNTT. It shows that you are doing. Furthermore, “anti” when three or more HCCPDs are attached indicates that the binding conformation between HCCPDs between adjacent opposite ends is “anti”.
  • the detection value (339.85 m / z) of mass spectrometry (MS) is consistent with DNTT (molecular weight 340.46), and when DNTT-1NSAA is exposed to the conditions of mass spectrometry (70 eV, DI), It is shown that NSAA is desorbed and DNTT is regenerated.
  • Example 1-2B The addition reaction of dinaphthothienothiophene (DNTT) and N-sulfonylacetamide (NSAA) was confirmed by computer simulation using the semi-empirical method (MOPAC) and non-experienced method (Gaussian) described above.
  • DNTT dinaphthothienothiophene
  • NSAA N-sulfonylacetamide
  • Example 1-3 The addition reaction between dinaphthothienothiophene (DNTT) and cyclopentadiene (CPD, structural formula shown below) was confirmed by computer simulation using the semi-empirical method (MOPAC) and the non-empirical method (Gaussian) described above.
  • DNTT dinaphthothienothiophene
  • CPD cyclopentadiene
  • Example 1-4 The addition reaction of dinaphthothienothiophene (DNTT) and furan (FRN, structural formula shown below) was confirmed by computer simulation using the semi-empirical method (MOPAC) and the non-experienced method (Gaussian) described above.
  • DNTT dinaphthothienothiophene
  • FPN furan
  • Example 1-5 The addition reaction between dinaphthothienothiophene (DNTT) and anthracene (ANTH, structural formula shown below) was confirmed by computer simulation using the semi-empirical method (MOPAC) and non-experiential method (Gaussian) described above.
  • DNTT dinaphthothienothiophene
  • ALH anthracene
  • Example 1-6 Computer simulation using the above semi-empirical method (MOPAC) and non-experiential method (Gaussian) for the addition reaction of dinaphthothienothiophene (DNTT) and tricyano-methyl methyl-ethylene (TCPM, structural formula shown below) Confirmed by.
  • MOPAC semi-empirical method
  • Gaussian non-experiential method
  • DNTT dinaphthothienothiophene
  • TCPM tricyano-methyl methyl-ethylene
  • Light and “heat” in the reaction conditions of the addition reaction in Table 6 mean that the addition reaction can proceed by light and heat, respectively.
  • the additional positions in Table 6 are exemplified below.
  • Example 1-7 The addition reaction between dinaphthothienothiophene (DNTT) and methylpyrrole carboxylate (NMPC, structural formula shown below) was confirmed by computer simulation using the semi-empirical method (MOPAC) and the non-empirical method (Gaussian) described above. .
  • DNTT dinaphthothienothiophene
  • NMPC methylpyrrole carboxylate
  • Light and “heat” in the reaction conditions of the addition reaction in Table 7 mean that the addition reaction can proceed by light and heat, respectively.
  • the additional positions in Table 7 are exemplified below.
  • Example 1-8 The addition reaction between dinaphthothienothiophene (DNTT) and hydroxyphenyl-maleimide (HOPMI, structural formula shown below) was confirmed by computer simulation using the semi-empirical method (MOPAC) and the non-empirical method (Gaussian) described above. .
  • DNTT dinaphthothienothiophene
  • HOPMI hydroxyphenyl-maleimide
  • Light and “heat” in the reaction conditions of the addition reaction in Table 8 mean that the addition reaction can proceed by light and heat, respectively.
  • the additional positions in Table 8 are exemplified below.
  • Example 1-9 The addition reaction between dinaphthothienothiophene (DNTT) and vinylene carbonate (VC (vinylene carbonate), structural formula shown below) was performed by computer simulation using the above semi-empirical method (MOPAC) and non-experiential method (Gaussian). confirmed.
  • DNTT dinaphthothienothiophene
  • VC vinylene carbonate
  • Light and “heat” in the reaction conditions of the addition reaction in Table 9 mean that the addition reaction can proceed by light and heat, respectively.
  • stereoisomer A a mixture of two stereoisomers (referred to as “stereoisomer A” and “stereoisomer B”, respectively).
  • the analysis results for these stereoisomers are shown below. From the NMR results, it is estimated that stereoisomer A is an endo isomer and stereoisomer B is an exo isomer.
  • MS mass spectrometry
  • DNTT-1PMI stereoisomers A and B
  • differential thermal balance analysis Rosetta TG-DTA TG8120
  • DNTT-1PMI stereoisomer A
  • DNTT-1PMI stereoisomer B
  • DNTT-1PMI stereoisomer B
  • DNTT-1PMI stereoisomers A and B
  • a bottom contact bottom gate FET Field effect Transistor
  • the substrate on SiO 2 oxide film of 300 nm SiO 2 oxide film with n-doped silicon wafer (surface resistance 0.005 ⁇ cm), to prepare a source / drain metal electrodes having a channel length of 50 ⁇ m and the channel width 1.5mm Obtained (bottom contact).
  • DNTT-1PMI stereoisomers A and B
  • FIGS. 5 and 6 The output characteristics and transfer characteristics of a field effect transistor (FET) are shown in FIGS. 5 and 6, respectively.
  • the vertical axis represents the drain current (I D (A)), and the horizontal axis represents the drain voltage (V D (V)).
  • the vertical axis represents the drain current (I D (A)), and the horizontal axis represents the gate voltage (V G (V)).
  • FIG. 8 shows the result of observing the crystal state of DNTT in the channel portion of the organic semiconductor film obtained using DNTT-1PMI (stereoisomer B) with a polarizing microscope. According to the observation of the channel portion by this polarizing microscope, it was confirmed that fine crystal particles of about 1 ⁇ m were formed on the entire surface of the organic semiconductor film after heating to obtain the organic semiconductor film. Therefore, it was confirmed that PTT was desorbed from DNTT-1PMI by heating and DNTT crystals were formed.
  • DNTT-1PMI stereoisomer B
  • DNTT has low solubility, and therefore, it is difficult to observe a peak by NMR.
  • DNTT-1PMI stereoisomers A and B
  • an NMR peak corresponding to the dissolved content is observed. Therefore, from this NMR result, the ratio between DNTT-1PMI and DNTT in the organic semiconductor film cannot be determined. Note that the peak of “DNTT” in FIG. 7 has a larger magnification than other peaks, as can be understood from the fact that the noise is large.
  • Example 1-10B The addition reaction of dinaphthothienothiophene (DNTT) and N-phenylmaleimide was confirmed by computer simulation using the semi-empirical method (MOPAC) and the non-experiential method (Gaussian) described above.
  • DNTT dinaphthothienothiophene
  • MOPAC semi-empirical method
  • Gaussian non-experiential method
  • Example 1-10C A 1.5 wt% chloroform solution of DNTT-1PMI (stereoisomer A) synthesized in Example 1-10A was dropped onto a base material and dried on a hot plate at 50 ° C. to thereby form DNTT on the substrate. A thin film of -1 PMI (stereoisomer A) was formed.
  • the base material was an n-doped silicon wafer (surface resistance 0.005 ⁇ ⁇ cm, thickness about 0.5 mm) having a 300 nm SiO 2 oxide film.
  • the substrate having the DNTT-1PMI (stereoisomer A) thin film was placed on a hot plate heated to 210 ° C. in the atmosphere using tweezers, rapidly heated, and held for 3 minutes. By this rapid heating, phenylmaleimide was desorbed from DNTT-1PMI (stereoisomer A), and DNTT was precipitated. In this rapid heating, it was visually observed that the thin film changed from colorless to yellow in about 15 seconds. Considering that the thermal desorption temperature of DNTT-1PMI (stereoisomer A) is 195 ° C., it can be said that the temperature has reached about 200 ° C. in about 15 seconds. Equivalent to.
  • FIG. 9 shows the observation results of DNTT deposited on the substrate with a polarizing microscope. As shown in FIG. 9, DNTT crystal particles having a major axis diameter exceeding 100 ⁇ m were precipitated.
  • a source / drain gold electrode having a channel length of 50 ⁇ m and a channel width of 1.5 mm was produced on the substrate on which DNTT had been deposited to produce an organic semiconductor element (bottom gate top contact). Evaluation of the characteristics of the obtained organic semiconductor film showed p-type semiconductor characteristics.
  • the carrier mobility was 0.2 to 0.001 cm 2 / Vs, and the on / off ratio was 10 4 to 10 6 .
  • Example 1-10D >> Example 1-10C except that a substrate having a thin film of DNTT-1PMI (stereoisomer A) was placed on a hot plate heated to 205 ° C. using tweezers, rapidly heated, and held for 5 minutes. Similarly, DNTT was precipitated. In this rapid heating, it was visually observed that the thin film changed from colorless to yellow in about 15 seconds. Considering that the thermal desorption temperature of DNTT-1PMI (stereoisomer A) is 195 ° C., it can be said that the temperature has reached about 200 ° C. in about 15 seconds. Equivalent to.
  • FIG. 10 shows the observation results of DNTT deposited on the substrate with a polarizing microscope. As shown in FIG. 10, DNTT crystal particles having a major axis diameter exceeding 100 ⁇ m were precipitated.
  • Example 1-10E A substrate having a thin film of DNTT-1PMI (stereoisomer A) is placed on a hot plate at room temperature using tweezers and heated from room temperature to 210 ° C. in air for 10 minutes (about 20 ° C./min. DNTT was precipitated in the same manner as in Example 1-10C, except that the temperature was maintained at 210 ° C. for 3 minutes.
  • DNTT-1PMI stereoisomer A
  • FIG. 11 shows the observation result of DNTT deposited on the substrate with a polarizing microscope. As shown in FIG. 11, fine DNTT crystal particles of about 1 ⁇ m were precipitated.
  • Example 1-10F A substrate having DNTT-1PMI (stereoisomer B) synthesized in Example 1-10A in place of DNTT-1PMI (stereoisomer A) and having a thin film of DNTT-1PMI (stereoisomer B) DNTT was deposited in the same manner as in Example 1-10C except that it was placed on a hot plate heated to 170 ° C. using tweezers, rapidly heated, and held for 15 minutes. In this rapid heating, it was visually observed that the thin film changed from colorless to yellow in about 15 seconds.
  • DNTT-1PMI stereoisomer B
  • the temperature has reached about 160 ° C. in about 15 seconds, which is about 640 ° C./min. Equivalent to.
  • FIG. 12 shows the observation results of DNTT deposited on the substrate with a polarizing microscope. As shown in FIG. 12, DNTT crystal particles having a major axis diameter exceeding 20 ⁇ m were precipitated.
  • Example 1-10G A substrate having DNTT-1PMI (stereoisomer B) synthesized in Example 1-10A in place of DNTT-1PMI (stereoisomer A) and having a thin film of DNTT-1PMI (stereoisomer B) Placed on a hot plate at room temperature with tweezers and raised from room temperature to 170 ° C. in 8 minutes (heating rate of about 20 ° C./min) in air atmosphere and kept isothermal at 170 ° C. for 15 minutes Except for this, DNTT was precipitated in the same manner as in Example 1-10C.
  • FIG. 13 The observation result of the DNTT deposited on the substrate with a polarizing microscope is shown in FIG. As shown in FIG. 13, fine DNTT crystal particles of about 1 ⁇ m were precipitated.
  • Example 1-11 Addition reaction of naphthaldehyde (NAL, structural formula shown below) and N-phenylmaleimide (PMI, structural formula shown below) using the above semi-empirical method (MOPAC) and non-experiential method (Gaussian) Confirmed by computer simulation.
  • NAL naphthaldehyde
  • PMI N-phenylmaleimide
  • Heat in the reaction conditions of the addition reaction in Table 9 means that the addition reaction can be advanced by heat.
  • the obtained DNTT-1MMP was a mixture of two stereoisomers (referred to as “stereoisomer A” and “stereoisomer B”, respectively).
  • stereoisomer A stereoisomer A
  • stereoisomer B stereoisomer B
  • MS mass spectrometry
  • thermal desorption characteristics of DNTT-1MMI were evaluated using differential thermal balance analysis as in Example 1-10A. According to this, thermal desorption occurred in the temperature range of 220 ° C. to 260 ° C. in DNTT-1MMI (stereoisomer A). Since the sample amount of DNTT-1MMI (stereoisomer B) was very small, the thermal desorption characteristics could not be evaluated.
  • Example 1-10A For DNTT-1MMI (stereoisomer A), an organic semiconductor film was obtained as in Example 1-10A, and the semiconductor characteristics were evaluated. Here, the heating for obtaining the organic semiconductor film was performed at 225 ° C. for 2 hours under nitrogen. Evaluation of the characteristics of the obtained organic semiconductor film showed p-type semiconductor characteristics.
  • the carrier mobility was 0.01 to 0.0001 cm 2 / Vs, and the on / off ratio was 10 3 to 10 5 .
  • CHMI N-cyclohexylmaleimide
  • MS mass spectrometry
  • thermal desorption characteristics of DNTT-1CHMI were evaluated using differential thermal balance analysis as in Example 1-10A. According to this, thermal desorption occurred in the temperature range of 200 ° C. to 280 ° C. in DNTT-1CHMI.
  • Example 1-10A an organic semiconductor film was obtained as in Example 1-10A, and the semiconductor characteristics were evaluated.
  • the heating for obtaining the organic semiconductor film was performed at 210 ° C. for 2 hours under nitrogen. Evaluation of the characteristics of the obtained organic semiconductor film showed p-type semiconductor characteristics.
  • the carrier mobility was 0.01 to 0.0001 cm 2 / Vs, and the on / off ratio was 10 3 to 10 5 .
  • MS mass spectrometry
  • thermal desorption characteristics of DNTT-1BZMI were evaluated using differential thermal balance analysis as in Example 1-10A. According to this, thermal desorption occurred in the temperature range of 190 ° C. to 260 ° C. in DNTT-1BZMI.
  • Example 1-10A an organic semiconductor film was obtained as in Example 1-10A, and the semiconductor characteristics were evaluated.
  • the heating for obtaining the organic semiconductor film was performed at 200 ° C. for 2 hours under nitrogen. Evaluation of the characteristics of the obtained organic semiconductor film showed p-type semiconductor characteristics.
  • Each carrier mobility was 0.01 to 0.0001 cm 2 / Vs, and the on / off ratio was 10 3 to 10 5 .
  • TBMI Nt-butylmaleimide
  • DNTT-1TBMI The analysis results for DNTT-1TBMI are shown below. As for DNTT-1TBMI, a stereoisomer was not obtained.
  • MS mass spectrometry
  • Example 2-1 In Examples 2-1 to 2-2 below, the structure of the target compound was determined by 1H-NMR (1H-nuclear magnetic resonance spectrum) and MS (mass spectrometry spectrum) as necessary. The equipment used is as follows. 1 H-NMR: JNM-A-600 (600 MHz) MS: Shimazu QP-5050A
  • DNTT Purified product 2 obtained as described above was further purified by performing the sublimation purification method three times to obtain DNTT (purified product 3).
  • UV ozone treatment was performed on an n-doped silicon wafer with 300 nm SiO 2 oxide film (surface resistance 0.005 ⁇ ⁇ cm) for 20 minutes (eye UV-ozone cleaning device OC-250615-D + A). , Eye Graphics Co., Ltd.), a UV ozone-treated silicon substrate was obtained. Further, a 10 mmol / toluene solution of octadecyltrichlorosilane (ODTS, Shin-Etsu Chemical LS-6495) was prepared, and the UV ozone-treated silicon substrate was immersed in this solution for 24 hours.
  • ODTS octadecyltrichlorosilane
  • DNTT purified product 3
  • vacuum deposition SVC-700TM / 700-2
  • Source / drain gold electrodes were fabricated on DNTT (top contact).
  • HPLC High Performance Liquid Chromatography, Agilent 1100 Series HPLC: High Performance Liquid Chromatography, SHISEIDO CAPCELL PAK C18 TYPE 120 UG water:
  • the thermal desorption characteristics of this DNTT-1PMI are 195 ° C. to 260 ° C. and the weight loss is 31.9 wt% for the Endo isomer.
  • the thermal desorption characteristics of this DNTT-1PMI are 195 ° C. to 260 ° C. and the weight loss is 31.9 wt% for the Endo isomer.
  • DNTT-1PMI Endo isomer, Exo isomer
  • DNTT purified product 2 ′
  • This DNTT (purified product 2 ') had a yellow color, and it was confirmed that the coloring component presumed to be iodine was removed.
  • DNTT purified product 2 ′
  • FIG. 2 according to NMR (nuclear magnetic resonance spectroscopy), DNTT (purified product 2 ′) removes aromatic organic components which are impurities found in DNTT (purified product 1). I was able to confirm that it was done.
  • DNTT from the solid obtained by filtration (purified product 2 of Example 2-1) and DNTT obtained from DNTT-1 PMI (purified product 2 ′ of Example 2-2) were combined to yield 486.
  • the yield was 5 mg and the yield was 97.3 mol%.
  • Comparative Example 2-1 In the same manner as in Example 2-1, except that DNTT was not purified by the method of the present invention, that is, DNTT of Example 2-1 (purified product 1) was purified three times by the sublimation purification method, DNTT (purified product 3 ′) was obtained. In DNTT after sublimation purification, the gray color was slightly thinned, but the gray component could not be removed.
  • Example 2-1 purified product 1 was purified by stirring in a mesitylene solvent under a nitrogen atmosphere at 160 ° C. for 2 hours. In this purification, the gray color of DNTT (purified product 1) was maintained unchanged. Therefore, it is considered that the iodine contained in the DNTT (purified product 1) solid was not removed by this purification.
  • Example 3-1 In this example, a solution for forming an organic semiconductor film containing two kinds of addition compounds was prepared, and the deposited state as a solid was confirmed.
  • Example 1-10A an addition compound (DNTT-1PMI (stereoisomer A) in which one molecule of N-phenylmaleimide (PMI) was added to dinaphthothienothiophene (DNTT) was obtained.
  • this DNTT-1PMI (stereoisomer A) is presumed to be an endo form from the NMR results.
  • an addition compound (DNTT-1CHMI) in which one molecule of N-cyclohexylmaleimide (CHMI) was added to dinaphthothienothiophene (DNTT) was obtained.
  • a total of 1.0 mass% of DNTT-1PMI and DNTT-1CHMI were added to chloroform to obtain an organic semiconductor film forming solution.
  • the molar ratio of DNTT-1PMI and DNTT-1CHMI was set to 1: 1.
  • the substrate on SiO 2 oxide film of 300 nm SiO 2 oxide film with n-doped silicon wafer (surface resistance 0.005 ⁇ cm), to prepare a source / drain metal electrodes having a channel length of 50 ⁇ m and the channel width 1.5mm Obtained (bottom contact).
  • the solution for forming an organic semiconductor film was dropped on the channel portion of the base material at room temperature and quickly evaporated to obtain a film, and this film was heated to obtain an organic semiconductor film. Thereafter, this film was heated at 210 ° C. for 2 hours under nitrogen to obtain an organic semiconductor film.
  • FIG. 2A shows an observation result before heating (annealing)
  • FIG. 2B shows an observation result after heating. From FIG. 2, it is understood that fine crystal particles are deposited over the entire organic semiconductor film by heating.
  • Example 3-2 In this example, a solution for forming an organic semiconductor film containing an addition compound and a compound constituting the addition compound was prepared, and the precipitation state as a solid was confirmed.
  • DNTT-1PMI stereoisomer A
  • PMI N-phenylmaleimide
  • DNTT dinaphthothienothiophene
  • Example 3-3 In this example, a solution for forming an organic semiconductor film containing an addition compound and a compound constituting the addition compound was prepared, and the precipitation state as a solid was confirmed.
  • Example 1-13 an addition compound (DNTT-1CHMI) in which one molecule of N-cyclohexylmaleimide (CHMI) was added to dinaphthothienothiophene (DNTT) was obtained.
  • CHMI N-cyclohexylmaleimide
  • Comparative Example 3-1 a solution for forming an organic semiconductor film containing only an addition compound was prepared, and the precipitation state as a solid was confirmed.
  • DNTT-1PMI stereoisomer A
  • PMI N-phenylmaleimide
  • DNTT dinaphthothienothiophene
  • FIG. 3 is an enlarged photograph (500 times) of this solid material.
  • Example 3-1 Using this solution for forming an organic semiconductor film, a bottom contact bottom gate type FET device was fabricated as in Example 3-1. The characteristics of the organic semiconductor film of the obtained FET were evaluated, but the characteristics as a semiconductor were not obtained. Moreover, the organic semiconductor film of the obtained FET was observed with a polarizing microscope. The results are shown in FIG. As understood from FIG. 4, the organic semiconductor forms particles, and the path of the organic semiconductor film is not formed in the channel between the electrodes.
  • Example 4-1 The addition reaction between dinaphthothienothiophene (DNTT) and vinylene carbonate (VC (vinylene carbonate), structural formula shown below) was performed by computer simulation using the above semi-empirical method (MOPAC) and non-experiential method (Gaussian). confirmed.
  • DNTT dinaphthothienothiophene
  • VC vinylene carbonate
  • Light and “heat” in the reaction conditions of the addition reaction in Table 1 mean that the addition reaction can proceed by light and heat, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Thin Film Transistor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 蒸着法よりも一般に容易な溶液法を用いて、縮合多環芳香族化合物からなる有機半導体層の形成を可能にする新規な付加化合物及びα-ジケトン化合物を提供する。また、この付加化合物の精製方法、及びこの付加化合物を含有する有機半導体膜形成用溶液を提供する。 本発明の付加化合物は、ジナフトチエノチオフェン等の、式(I)の縮合多環芳香族化合物に、ヘキサクロロシクロペンタジエン等の二重結合を有する化合物が脱離可能に付加されてなる構造を有する。また、本発明のα-ジケトン化合物は、ジナフトチエノチオフェン等の縮合多環芳香族化合物に、ヘキサクロロシクロペンタジエン等の二重結合を有する化合物が脱離可能に付加されてなる構造を有する。 ArArAr (I) (式中、Ar、Ar、Arは、明細書で定義されるとおりである。)

Description

新規な付加化合物、縮合多環芳香族化合物の精製及び製造方法、有機半導体膜形成用溶液、及び新規なα-ジケトン化合物
 第1の本発明は、新規な付加化合物及び有機半導体デバイス、並びにそれらの製造方法に関する。また本発明は、このような新規な付加化合物のための中間体、並びにこのような新規な付加化合物を含有する溶液及びその使用方法に関する。第2の本発明は、縮合多環芳香族化合物の精製及び製造方法、特に有機半導体化合物として好適に用いられる縮合多環芳香族化合物の精製及び製造方法に関する。第3の本発明は、新規な有機半導体膜形成用溶液、及びこのような有機半導体膜形成用溶液の使用方法に関する。また、本発明は、このような有機半導体膜形成用溶液を用いて得られる有機半導体デバイスに関する。第4の本発明は、新規なα-ジケトン化合物及び有機半導体デバイス、並びにそれらの製造方法に関する。また本発明は、このような新規なα-ジケトン化合物のための中間体、並びにこのような新規なα-ジケトン化合物を含有する溶液及びその使用方法に関する。
 有機半導体化合物は、有機薄膜トランジスタ(TFT)、有機キャリア輸送層、有機発光デバイス等のための有機半導体層への利用に関して、様々な研究がなされている。特に、有機半導体化合物からなる有機半導体層を有する薄膜トランジスタは、低コスト且つ軽量のデバイスとして、現在のシリコンベーストランジスタを代替することが期待されている。また、有機半導体層は、軽量で且つフレキシブルであること等、有機材料に特有の利点を活用することで、スマートタグ、軽量ディスプレイ等への応用も期待されている。
 したがって、有機半導体層を形成するための有機半導体化合物に関しては多くの研究がなされている(特許文献1~4、並びに非特許文献1及び4)。これらの有機半導体化合物のなかでも、縮合多環芳香族化合物が、材料の安定性、キャリアの移動度等に関して好ましいことが分かってきている。
 なお、ディールス-アルダー(Diels-Alder)反応と呼ばれる反応が、有機合成の分野で知られている。この反応は、共役二重結合をもった化合物の1位及び4位に、二重結合又は三重結合を有する化合物を付加して、6員環の環式化合物を生成するものである。また、このディールス-アルダー反応を用いて、ナフタレンに対してヘキサクロロシクロペンタジエンを付加させることが提案されている(非特許文献2及び3)。
 また、有機半導体化合物の例であるペンタセンの可溶性前駆体であって、光照射によって分解してペンタセンを得ることができる前駆体が知られている(非特許文献4)。
特開2006-89413号公報 特開2008-290963号公報 国際公開WO2006/077888号公報 国際公開第2008/050726号
"Facile Synthesis of Highly π-Extended Heteroarenes, Dinaphtho[2,3-b:2‘,3‘-f]chalcogenopheno[3,2-b]chalcogenophenes, and Their Application to Field-Effect Transistors", Tatsuya Yamamoto, and Kazuo Takimiya, J. Am. Chem. Soc., 2007, 129 (8), pp 2224-2225 "Dienophilic Reactions of Aromatic Double Bonds in the Synthesis of β-Substituted Naphthalenes", A. A. Danish, M. Silverman, Y. A. Tajima, J. Am. Chem. Soc., 1954, 76 (23), pp 6144-6150 "Tandem Diels-Alder-Diels-Alder Reaction Displaying High Stereoselectivity: Reaction of Hexachlorocyclopentadiene with Naphthalene.", Lacourcelle, Claire; Poite, Jean Claude; Baldy, Andre; Jaud, Joel; Negrel, Jean Claude; Chanon, Michel, Acta Chemica Scandinavica 47, 0092-0094 "Photo Precursor for Pentacene", Hidemitsu Uno, et al., Elsevier, Tetrahedron Letters 46 (2005) 1981-1983
 (第1の本発明)
 有機半導体層の形成においては、有機半導体化合物を含有する溶液を基材に塗布し、そして溶媒を除去する溶液法(キャスト、スピンコート、プリント等)、及び有機半導体化合物を基材に蒸着させる蒸着法が知られている。溶液法は一般に、製造コスト、製造速度等に関して好ましいことが知られている。
 しかしながら、有機半導体化合物として好ましいことが知られている縮合多環芳香族化合物は、非極性で且つ結晶性が高いことから、溶液に溶解させることが難しい。したがって、縮合多環芳香族化合物による有機半導体層の形成、特に低分子の縮合多環芳香族化合物による有機半導体層の形成では、蒸着法を用いることが一般的であった。
 そこで第1の本発明では、溶液法を用いて縮合多環芳香族化合物からなる有機半導体層を形成することを可能にする新規な付加化合物、及び新規な付加化合物含有溶液を提供する。また、本発明では、このような新規な付加化合物を用いて得られる有機半導体膜(有機半導体層)及び有機半導体デバイスを提供する。また更に本発明では、このような新規な付加化合物の合成方法を提供する。
 (第2の本発明)
 上記記載のように、有機半導体層を形成するための有機半導体化合物としては、縮合多環芳香族化合物が好ましいことが分かってきている。また、このような用途で用いられる縮合多環芳香族化合物では、非常に高い純度が求められている。
 縮合多環芳香族化合物を製造するためには多くの方法が提案されているが、当然に、最終的な縮合多環芳香族化合物において不純物となる物質を合成反応において用いている。このような不純物を除去するためには、溶媒洗浄、真空昇華精製等が行われている。しかしながら、縮合多環芳香族化合物は結晶性が高く、したがって結晶構造中に不純物を抱き込んでしまうことがある。このように結晶中に抱き込まれた不純物は、溶媒洗浄等の従来の精製方法では充分に精製できないことがあった。
 そこで、第2の本発明では、このような問題を解消する縮合多環芳香族化合物の精製及び製造方法、特に有機半導体化合物として好適に用いられる縮合多環芳香族化合物の精製及び製造方法を提供する。
 (第3の本発明)
 有機半導体層の形成においては、有機半導体化合物を含有する溶液を基材に塗布し、そして溶媒を除去する溶液法(キャスト、スピンコート、プリント等)、及び有機半導体化合物を基材に蒸着させる蒸着法が知られている。溶液法は一般に、製造コスト、製造速度等に関して好ましいことが知られている。
 しかしながら、有機半導体化合物として好ましいことが知られている縮合多環芳香族化合物は、非極性で且つ結晶性が高いことから、溶液に溶解させることが難しい。したがって、縮合多環芳香族化合物による有機半導体層の形成、特に低分子の縮合多環芳香族化合物による有機半導体層の形成では、蒸着法を用いることが一般的であった。
 そこで第3の本発明では、溶液法を用いて縮合多環芳香族化合物からなる有機半導体層(有機半導体膜)を安定的に形成することを可能にする新規な有機半導体膜形成用溶液、及びこのような有機半導体膜形成用溶液の使用方法を提供する。また、本発明では、このような有機半導体膜形成用溶液を用いて得られる有機半導体デバイスを提供する。
 (第4の本発明)
 有機半導体層の形成においては、有機半導体化合物を含有する溶液を基材に塗布し、そして溶媒を除去する溶液法(キャスト、スピンコート、プリント等)、及び有機半導体化合物を基材に蒸着させる蒸着法が知られている。溶液法は一般に、製造コスト、製造速度等に関して好ましいことが知られている。
 しかしながら、有機半導体化合物として好ましいことが知られている縮合多環芳香族化合物は、非極性で且つ結晶性が高いことから、溶液に溶解させることが難しい。したがって、縮合多環芳香族化合物による有機半導体層の形成、特に低分子の縮合多環芳香族化合物による有機半導体層の形成では、蒸着法を用いることが一般的であった。
 そこで第4の本発明では、溶液法を用いて縮合多環芳香族化合物からなる有機半導体層を形成することを可能にする新規なα-ジケトン化合物、及び新規なα-ジケトン化合物含有溶液を提供する。また、本発明では、このような新規なα-ジケトン化合物を用いて得られる有機半導体膜(有機半導体層)及び有機半導体デバイスを提供する。また更に本発明では、このような新規なα-ジケトン化合物の合成方法を提供する。
 (第1の本発明)
 本発明の発明者は、ジナフトチエノチオフェン等の化合物に特定の化合物を付加させた構造を有する付加化合物が、上記の課題を解決できることを見出して、第1の本発明に想到した。
 本発明の付加化合物は、ジナフトチエノチオフェン等の下記式(I)の縮合多環芳香族化合物に、ヘキサクロロシクロペンタジエン等の二重結合を有する化合物(II)がこの二重結合を介して脱離可能に付加されてなる構造を有する:
 ArArAr     (I)
 (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、及び2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成しており、且つ
  ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成している)。
 本発明の付加化合物含有溶液は、本発明の付加化合物が有機溶媒に溶解されている溶液である。
 有機半導体膜を製造する本発明の方法は、本発明の付加化合物含有溶液を、基材に塗布して、膜を作製するステップ、そしてこの膜に減圧及び/又は加熱を行って、付加化合物から二重結合を有する化合物(II)を脱離及び除去して、式(I)の縮合多環芳香族化合物からなる有機半導体膜を得るステップを含む。
 有機半導体デバイスを製造する本発明の方法は、有機半導体膜を製造する本発明の方法によって有機半導体膜を生成するステップを含む。
 本発明の有機半導体デバイスは、有機半導体膜を有し、この有機半導体膜が、本発明の付加化合物から二重結合を有する化合物(II)が脱離した構造を有する式(I)の縮合多環芳香族化合物で作られており、且つこの有機半導体膜が、本発明の付加化合物を含有している。また、本発明の有機半導体デバイスは、有機半導体膜を有し、この有機半導体膜が、長軸径5μm超の式(I)の縮合多環芳香族化合物の結晶を有する。
 本発明の他の新規な付加化合物(中間体付加化合物)は、本発明の付加化合物を合成するための中間体として用いることができ、且つ二重結合を有する化合物(II)が付加している化合物である。
 本発明の付加化合物を合成する本発明の方法は、式(I)の縮合多環芳香族化合物を、二重結合を有する化合物(II)と混合するステップを含む。また、本発明の付加化合物を合成する本発明の他の方法は、本発明の中間体付加化合物2分子を反応させるステップを含む。
 なお、本発明の「付加化合物」は、式(I)の縮合多環芳香族化合物に、二重結合を有する化合物(II)が二重結合を介して脱離可能に付加されてなる構造を有する任意の化合物を意味しており、その具体的な合成方法によっては限定されるものではない。また、この本発明の付加化合物は、式(I)の縮合多環芳香族化合物に二重結合を有する化合物(II)が1分子付加した構造を有する付加化合物だけでなく、式(I)の縮合多環芳香族化合物に二重結合を有する化合物(II)が2分子、3分子、4分子、又はそれよりも多く付加した構造を有する付加化合物であってもよい。
 本発明に関して、「芳香族環」は、ベンゼン環と同様に共役している環を意味するものとし、例えばベンゼン環と並んで、フラン環、チオフェン環、ピロール環、イミダゾール環のような複素芳香族環を挙げることができる。また本発明に関して、「立体異性体」は、同一の構造式を有する化合物がその中の原子又は原子団の立体配置を異にすることによっておこる異性を意味し、光学異性体、幾何異性体、及び回転異性体等を包含する。
 (第2の本発明)
 本件発明者は、付加脱離反応を用いることによって縮合多環芳香族化合物を精製及び製造できることを見出して、第2の本発明に想到した。
 下記の式(I)の縮合多環芳香族化合物を精製する本発明の方法は、下記のステップ(a)~(d)を含む:
 ArArAr     (I)
 (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、及び2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成しており、且つ
  ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成している);
 (a)式(I)の縮合多環芳香族化合物の粗生成物を提供するステップ、
 (b)二重結合を有する化合物(II)であって、式(I)の縮合多環芳香族化合物に脱離可能に付加する化合物(II)を提供するステップ、
 (c)式(I)の縮合多環芳香族化合物と二重結合を有する化合物(II)とを混合して、これらの化合物の付加化合物が少なくとも部分的に溶解している混合液を得るステップ、並びに
 (d)混合液から、精製された式(I)の縮合多環芳香族化合物を分離して得るステップ。
 縮合多環芳香族化合物を製造する本発明の方法は、本発明の方法によって縮合多環芳香族化合物の粗生成物を精製するステップを含む。また、縮合多環芳香族化合物を製造する本発明の他の方法は、縮合多環芳香族化合物の付加化合物から縮合多環芳香族化合物を得るステップを含む。
 なお、本発明に関して「付加化合物」は、式(I)の縮合多環芳香族化合物に、二重結合を有する化合物(II)が二重結合を介して脱離可能に付加されてなる構造を有する任意の化合物を意味しており、その具体的な合成方法によっては限定されるものではない。また、この付加化合物は、式(I)の縮合多環芳香族化合物に二重結合を有する化合物(II)が1分子付加した構造を有する付加化合物だけでなく、式(I)の縮合多環芳香族化合物に二重結合を有する化合物(II)が2分子、3分子、4分子、又はそれよりも多く付加した構造を有する付加化合物であってもよい。
 また、本発明に関して、「芳香族環」は、ベンゼン環と同様に共役している環を意味するものとし、例えばベンゼン環と並んで、フラン環、チオフェン環、ピロール環、イミダゾール環のような複素芳香族環を挙げることができる。また本発明に関して、「立体異性体」は、同一の構造式を有する化合物がその中の原子又は原子団の立体配置を異にすることによっておこる異性を意味し、光学異性体、幾何異性体、及び回転異性体等を包含する。
 (第3の本発明)
 本発明の発明者は、ジナフトチエノチオフェン等の化合物に特定の化合物を付加させた構造を有する付加化合物を含有する有機半導体膜形成用溶液が、上記の課題を解決できることを見出して、第3の本発明に想到した。
 有機半導体膜を形成するための本発明の溶液は、有機溶媒、前記有機溶媒に溶解している第1の付加化合物、及び前記有機溶媒に溶解しており且つ前記第1の付加化合物の結晶化を抑制する結晶化抑制剤を含有している。
 ここで、この第1の付加化合物は、下記の式(I)の縮合多環芳香族化合物に、二重結合を有する第1の化合物(II’)が二重結合を介して脱離可能に付加されてなる構造を有する:
 ArArAr     (I)
 (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、及び2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成しており、且つ
  ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成している)。
 また、結晶化抑制剤は、下記の(a)~(c)からなる群より選択される少なくとも1種の化合物である:
 (a)式(I)の縮合多環芳香族化合物に二重結合を有する第2の化合物(II”)が二重結合を介して脱離可能に付加されてなる構造を有する第2の付加化合物、
 (b)二重結合を有する第1の化合物(II’)であって、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II’)、及び
 (c)二重結合を有する第2の化合物(II”)であって、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II”)。
 有機半導体膜を生成する本発明の方法は、有機半導体膜を形成するための本発明の溶液を、基材に塗布して、膜を作製するステップ、そしてこの膜を減圧及び/又は加熱して、第1の付加化合物から二重結合を有する第1の化合物(II’)を脱離及び除去して、式(I)の縮合多環芳香族化合物からなる有機半導体膜を得るステップを含む。また、有機半導体デバイスを製造する本発明の方法は、有機半導体膜を生成する本発明の方法によって有機半導体膜を生成するステップを含む。
 本発明の有機半導体デバイスは、有機半導体膜を有し、この有機半導体膜が、下記の式(I)を有する有機半導体化合物で作られており、この有機半導体膜が、下記の式(I)の縮合多環芳香族化合物に二重結合を有する第1の化合物(II’)が二重結合を介して脱離可能に付加されてなる第1の付加化合物を含有しており、且つ有機半導体膜が、下記の式(I)の縮合多環芳香族化合物に二重結合を有する第1の化合物(II’)が二重結合を介して脱離可能に付加されてなる第1の付加化合物、及び下記の(a)~(c)からなる群より選択される少なくとも1種の化合物を含有している:
 ArArAr     (I)
 (Ar~Arは、下記に記載のとおり)。
 なお、本発明に関して、第1及び第2の「付加化合物」はそれぞれ、式(I)の縮合多環芳香族化合物に、二重結合を有する第1の化合物(II’)及び第2の化合物(II’)が二重結合を介して脱離可能に付加されてなる構造を有する任意の化合物を意味しており、その具体的な合成方法によっては限定されるものではない。また、この付加化合物は、式(I)の縮合多環芳香族化合物に二重結合を有する第1の化合物(II’)及び/又は第2の化合物(II’)が1分子付加した構造を有する付加化合物だけでなく、式(I)の縮合多環芳香族化合物に二重結合を有する第1の化合物(II’)及び/又は第2の化合物(II’)が2分子、3分子、4分子、又はそれよりも多く付加した構造を有する付加化合物であってもよい。
 本発明に関して、「芳香族環」は、ベンゼン環と同様に共役している環を意味するものとし、例えばベンゼン環と並んで、フラン環、チオフェン環、ピロール環、イミダゾール環のような複素芳香族環を挙げることができる。また本発明に関して、「立体異性体」は、同一の構造式を有する化合物がその中の原子又は原子団の立体配置を異にすることによっておこる異性を意味し、光学異性体、幾何異性体、及び回転異性体等を包含する。
 なお、以下の説明において、「第1の付加化合物」及び「第2の付加化合物」は、簡単のために、「付加化合物」としてまとめて言及することがある。同様に、「二重結合を有する第1の化合物(II’)」及び「二重結合を有する第2の化合物(II’)」は、簡単のために、「二重結合を有する化合物(II)」としてまとめて言及することがある。
 (第4の本発明)
 本発明の発明者は、特定の構造を有するα-ジケトン化合物が、上記の課題を解決できることを見出して、第4の本発明に想到した。
 本発明のα-ジケトン化合物は、下記の式(I(a)-X)を有する:
 Ar1XAr2(a)Ar3X     (I(a)-X)
 (Ar1X及びAr3Xはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、且つこれらの芳香族環のうちの少なくとも1つが、下記の式(X)のビシクロα-ジケトン部分で置換されており:
Figure JPOXMLDOC01-appb-C000026
  Ar2(a)は、1個の複素芳香族環からなる置換又は非置換の複素芳香族環部分、及び2~5個の複素芳香族環が縮合している置換又は非置換の縮合複素芳香族環部分から選択され、
  Ar1XとAr2(a)は、少なくとも2つの炭素原子を共有して縮合環を形成しており、且つ
  Ar2(a)とAr3Xは、少なくとも2つの炭素原子を共有して縮合環を形成している}。
 本発明のα-ジケトン化合物含有溶液は、本発明のα-ジケトン化合物が有機溶媒に溶解されている溶液である。
 有機半導体膜を製造する本発明の方法は、本発明のα-ジケトン化合物含有溶液を、基材に塗布して、膜を作製するステップ、そしてこの膜に光を照射して、α-ジケトン化合物のビシクロα-ジケトン部分を分解してベンゼン環部分にし、それによって縮合多環芳香族化合物からなる有機半導体膜を得るステップを含む。
 有機半導体デバイスを製造する本発明の方法は、有機半導体膜を製造する本発明の方法によって有機半導体膜を生成するステップを含む。
 本発明の有機半導体デバイスは、有機半導体膜を有し、この有機半導体膜が、縮合多環芳香族化合物で作られており、且つこの有機半導体膜が、本発明のα-ジケトン化合物を更に含有している。
 本発明の他の新規なα-ジケトン化合物(中間体α-ジケトン化合物)は、本発明のα-ジケトン化合物を合成するための中間体として用いることができる化合物である。
 本発明のα-ジケトン化合物を合成する本発明の方法は、炭酸ビニレン付加縮合多環芳香族化合物を加水分解及び酸化するステップを含む。また、本発明のα-ジケトン化合物を合成する本発明の他の方法は、本発明の中間体α-ジケトン化合物2分子を反応させるステップ、又は本発明の中間体α-ジケトン化合物1分子とこの中間体α-ジケトン化合物のビシクロα-ジケトン部分を分解して得られる構造を有する化合物1分子とを反応させるステップを含む。
 なお、本発明のα-ジケトン化合物は、芳香族環のうちの1つがビシクロα-ジケトン部分で置換されているものに限らず、芳香族環のうちの2又はそれよりも多くがビシクロα-ジケトン部分で置換されているものであってもよい。
 本発明に関して、「芳香族環」は、ベンゼン環と同様に共役している環を意味するものとし、例えばベンゼン環と並んで、フラン環、チオフェン環、ピロール環、イミダゾール環のような複素芳香族環を挙げることができる。また本発明に関して、「立体異性体」は、同一の構造式を有する化合物がその中の原子又は原子団の立体配置を異にすることによっておこる異性を意味し、光学異性体、幾何異性体、及び回転異性体等を包含する。また更に本発明に関して、芳香族環等に関して「置換又は非置換の」は、芳香族環等が環上に置換基を有する又は有さないことを意味する。
 (第1の本発明)
 本発明の新規な付加化合物は、ディールス-アルダー反応を用いて、ジナフトチエノチオフェン等の式(I)の縮合多環芳香族化合物に、ヘキサクロロシクロペンタジエン等の二重結合を有する化合物(II)を二重結合を介して脱離可能に付加させることによって得られるものである。この本発明の新規な付加化合物は、二重結合を有する化合物(II)の付加によって生じる極性の増加及び/又は結晶性の低下によって、溶媒に対する溶解性を増加させることができる。したがってこの本発明の新規な付加化合物によれば、蒸着法よりも一般に容易な溶液法を用いて、縮合多環芳香族化合物からなる有機半導体層を形成することが可能となる。
 (第2の本発明)
 縮合多環芳香族化合物を精製する本発明の方法を、溶媒洗浄、真空昇華精製等の従来の精製方法に代えて、又はこれらの従来の精製方法に加えて用いることによって、従来は達成できなかった精製を達成できる。これは、式(I)の縮合多環芳香族化合物を精製する本発明の方法では、二重結合を有する化合物(II)が式(I)の縮合多環芳香族化合物に付加することによって、式(I)の縮合多環芳香族化合物の極性が増加し且つ/又は結晶性が低下して、二重結合を有する化合物(II)及び随意の溶媒に対する式(I)の縮合多環芳香族化合物の溶解性が増加することによると考えられる。
 また、式(I)の縮合多環芳香族化合物を製造する本発明の方法によれば、従来は達成できなかった純度を有し、且つ/又は従来は除去することが難しかった不純物が除去されている式(I)の縮合多環芳香族化合物を製造することができる。
 (第3の本発明)
 第1及び第2の付加化合物は、ディールス-アルダー反応を用いて、ジナフトチエノチオフェン等の式(I)の縮合多環芳香族化合物に、ヘキサクロロシクロペンタジエン等の二重結合を有する化合物(II)を二重結合を介して脱離可能に付加させることによって得られるものである。この付加化合物は、二重結合を有する化合物(II)の付加によって生じる極性の増加及び/又は結晶性の低下によって、溶媒に対する溶解性を増加させることができる。したがってこの付加化合物を含有している本発明の半導体膜形成用溶液によれば、蒸着法よりも一般に容易な溶液法を用いて、縮合多環芳香族化合物からなる有機半導体層を形成することが可能となる。
 また、本発明の半導体膜形成用溶液は、特定の化合物を結晶化抑制剤として含有していることによって、溶液法による有機半導体膜の形成の際に、第1の付加化合物の結晶化を抑制し、それによって優れた有機半導体膜を提供すること、且つ/又は効率的に有機半導体膜を提供することができる。
 (第4の本発明)
 本発明の新規なα-ジケトン化合物は、そのビシクロα-ジケトン部分によって生じる極性の増加及び/又は結晶性の低下によって、溶媒に対して比較的大きい溶解性を有することができる。また、この本発明の新規なα-ジケトン化合物は、光照射によってそのビシクロα-ジケトン部分を分解してベンゼン環部分にすること、特に光照射によってそのビシクロα-ジケトン部分をベンゼン環部分と一酸化炭素とに分解してベンゼン環部分を得ることによって、縮合多環芳香族化合物、特に有機半導体化合物として用いられる縮合多環芳香族化合物を得ることができる。
 したがってこの本発明の新規なα-ジケトン化合物によれば、蒸着法よりも一般に容易な溶液法を用いて、縮合多環芳香族化合物からなる有機半導体層を形成することが可能となる。また、この本発明の新規なα-ジケトン化合物によれば、分解によって縮合多環芳香族化合物を得る際の加熱の必要性を減らす又はなくすことができ、したがって比較的低温のプロセスを必要とする有機基材上での有機半導体層の形成を促進できる。
図1は、実施例1-1A及び比較例1-1Aで用いた電界効果トランジスタ(FET)の構造の概略図である。 図2は、実施例1-1Aで得られた電界効果トランジスタの出力特性を示す図である。 図3は、実施例1-1Aで得られた電界効果トランジスタの伝達特性を示す図である。 図4は、実施例1-10Aの付加化合物の熱脱離特性を示す図である。 図5は、実施例1-10Aで得られた電界効果トランジスタの出力特性を示す図である。 図6は、実施例1-10Aで得られた電界効果トランジスタの伝達特性を示す図である。 図7は、実施例1-10Aで得られた有機半導体膜中の残留付加化合物についてのNMR結果を示す図である。 図8は、実施例1-10Aで得られた有機半導体膜のチャネル部におけるDNTTの結晶状態を示す顕微鏡写真である。 図9は、実施例1-10Cで得られた有機半導体膜におけるDNTTの結晶状態を示す偏光顕微鏡写真である。 図10は、実施例1-10Dで得られた有機半導体膜におけるDNTTの結晶状態を示す偏光顕微鏡写真である。 図11は、実施例1-10Eで得られた有機半導体膜におけるDNTTの結晶状態を示す偏光顕微鏡写真である。 図12は、実施例1-10Fで得られた有機半導体膜におけるDNTTの結晶状態を示す偏光顕微鏡写真である。 図13は、実施例1-10Gで得られた有機半導体膜におけるDNTTの結晶状態を示す偏光顕微鏡写真である。 図14は、本発明の精製方法のスキームを概念的に示す図である。 図15は、実施例2-1のDNTT(精製物1~3)についてのNMR(核磁気共鳴分光分析)結果を示す図である。 図16は、実施例2-1で得られたDNTT-フェニルマレイミド1付加物(DNTT-1PMI)(Endo体、Exo体)についての脱離特性を示す図である。 図17は、実施例3-1の有機半導体膜形成用溶液から得られた固形物を示す写真である。 図18は、実施例3-1の有機半導体膜形成用溶液から得られたFETの有機半導体膜を示す写真である。 図19は、比較例3-1の有機半導体膜形成用溶液から得られた固形物を示す写真である。 図20は、比較例3-1の有機半導体膜形成用溶液から得られたFETの有機半導体膜を示す写真である。
 《《第1の本発明》》
 《付加化合物》
 本発明の付加化合物は、下記の式(I)の縮合多環芳香族化合物に、二重結合を有する化合物(II)が二重結合を介して脱離可能に付加されてなる構造を有する:
 ArArAr     (I)
 (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、及び2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成しており、且つ
  ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成している)。
 本発明の付加化合物において、式(I)の縮合多環芳香族化合物に二重結合を有する化合物(II)が「脱離可能」に付加されていることは、本発明の付加化合物が、例えば減圧及び/又は加熱によって、式(I)の縮合多環芳香族化合物を分解させずに、二重結合を有する化合物(II)を脱離させること、特に二重結合を有する化合物(II)を脱離及び除去することが可能であることを意味している。
 例えば、本発明の付加化合物は、式(I)の縮合多環芳香族化合物の例である下記の式(I-4)の化合物に、二重結合を有する化合物(II)の例である下記の式(II-1)の化合物が付加されてなり、それによって下記の式(III-1)を有する化合物又はその立体異性体である:
Figure JPOXMLDOC01-appb-C000027
 (Yはそれぞれ独立に、カルコゲンから選択される元素あり、且つ
  縮合ベンゼン環部分は、置換又は非置換である)
Figure JPOXMLDOC01-appb-C000028
 (Rはそれぞれ独立に、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1~10のアルキル基、炭素原子数2~10のアルケニル基、炭素原子数2~10のアルキニル基、炭素原子数1~10のアルコキシ基、炭素原子数4~10の置換又は非置換の芳香族基、炭素原子数1~10のエステル基、炭素原子数1~10のエーテル基、炭素原子数1~10のケトン基、炭素原子数1~10のアミノ基、炭素原子数1~10のアミド基、炭素原子数1~10のイミド基、及び炭素原子数1~10のスルフィド基からなる群より選択される);
Figure JPOXMLDOC01-appb-C000029
 (Y及びR、並びに縮合ベンゼン環部分は、上記のとおり)。
 また例えば、本発明の付加化合物は、式(I)の縮合多環芳香族化合物の例である下記の式(I-4)の化合物に、二重結合を有する化合物(II)の例である下記の式(II-6)の化合物が付加されてなり、それによって下記の式(III-6)を有する化合物又はその立体異性体である:
Figure JPOXMLDOC01-appb-C000030
 (Yはそれぞれ独立に、カルコゲンから選択される元素であり、且つ
  縮合ベンゼン環部分は、置換又は非置換である);
Figure JPOXMLDOC01-appb-C000031
 (R及びRはそれぞれ独立に、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1~10のアルキル基、炭素原子数2~10のアルケニル基、炭素原子数2~10のアルキニル基、炭素原子数1~10のアルコキシ基、炭素原子数4~10の置換又は非置換の芳香族基、炭素原子数1~10のエステル基、炭素原子数1~10のエーテル基、炭素原子数1~10のケトン基、炭素原子数1~10のアミノ基、炭素原子数1~10のアミド基、炭素原子数1~10のイミド基、及び炭素原子数1~10のスルフィド基からなる群より選択される);
Figure JPOXMLDOC01-appb-C000032
 (Y、R及びR、並びに縮合ベンゼン環部分は、上記のとおり)。
 《付加化合物の第1の合成方法》
 本発明の付加化合物は、式(I)の縮合多環芳香族化合物を、二重結合を有する化合物(II)と混合するステップを含む方法によって製造できる。このとき、二重結合を有する化合物(II)は、溶媒中に溶解して用いることもできるが、単独で用いることもできる。ここで、この溶媒としては、二重結合を有する化合物(II)を溶解できる任意の溶媒を用いることができる。例えば使用可能な溶媒としては、N-メチルピロリドン、ジメチルスルホキシド、アセトニトリル、酢酸エチル等の非プロトン性極性溶媒;ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジエチレングリコールジメチルエーテル、1、4-ジオキサン等のエーテル系溶媒;ベンゼン、トルエン、キシレン、メシチレン(すなわち1,3,5‐トリメチルベンゼン)等の芳香族炭化水素類;ヘキサン、ヘプタン等の脂肪族炭化水素類;及びジクロロメタン、クロロホルム、ジクロロエタン等の含ハロゲン溶媒を考慮することができる。
 本発明の付加化合物の合成においては、式(I)の縮合多環芳香族化合物と、二重結合を有する化合物(II)との混合の際に、加熱及び/又は光照射によって、反応を促進することもできる。本発明の付加化合物の合成の際の反応温度は、生成速度、成分の安定性、成分の沸点等を考慮して決定することができ例えば、20℃以上、50℃以上、100℃以上であって、180℃以下、200℃以下、又は220℃以下の温度にすることができる。また反応時間は例えば、1分以上、10分以上、30分以上、1時間以上であって、1日以下、3日以下、5日以下、又は10日以下にすることができる。
 《中間体付加化合物、及び付加化合物の第2の合成方法》
 本発明の中間体付加化合物は、下記の(I’)の化合物に二重結合を有する化合物(II)がこの二重結合を介して付加されてなる構造を有する:
 ArQ     (I’)
 {Arは、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、且つ
  Qは、下記の式を有し、且つArの縮合芳香環の一部を構成している:
Figure JPOXMLDOC01-appb-C000033
 (Yは、カルコゲンから選択される元素である)}。
 具体的には例えば、式(I’)の化合物は、下記の式の化合物であってよい:
Figure JPOXMLDOC01-appb-C000034
 本発明のこの中間体付加化合物は、式(I’)の化合物に二重結合を有する化合物(II)を付加させて得ることができる。この付加反応の反応条件については、式(I)の化合物に二重結合を有する化合物(II)を付加させる反応に関する記載を参照できる。
 上記の本発明の付加化合物を、上記の中間体付加化合物から合成する方法は、下記の工程(a)及び(b)を含む:
 (a)本発明の中間体付加化合物2分子を反応させて、下記の式の化合物を得ること:
  ArQ=QAr
 (Q=Qは、下記の構造を示す:
Figure JPOXMLDOC01-appb-C000035
)、そして
 (b)上記式ArQ=QArの得られた化合物をヨウ素と反応させること。
 この方法によれば、下記の式(I(a1))の縮合多環芳香族化合物に二重結合を有する化合物(II)がこの二重結合を介して脱離可能に付加されてなる構造を有する本発明の付加化合物を製造することができる:
 ArAr2(a1)Ar     (I(a1))
 (Arは、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  Ar2(a1)は、下記の式(a1)の縮合芳香族環部分であり、且つ
Figure JPOXMLDOC01-appb-C000036
  ArとAr2(a1)は、少なくとも2つの炭素原子を共有して縮合芳香環を形成している)。
 なお、上記の本発明の付加化合物を上記の中間体付加化合物から合成する方法の条件等に関しては、非特許文献1の記載を参照することができる。すなわち例えば、工程(a)における中間体付加化合物2分子の反応は、テトラヒドロフラン中において、テトラクロロチタン/亜鉛(TiCl/Zn)触媒を用いて行うことができる。また、工程(b)における式Ar(Q=Q)Arとヨウ素との反応は、トリクロロメタン(すなわちクロロホルム)(CHCl)中において行うことができる。
 《式(I)の縮合多環芳香族化合物》
 式(I)の縮合多環芳香族化合物に関し、Ar及びArはそれぞれ独立に、2~5個の芳香族環、特に2~4個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択される。Ar及びArは、ディールス-アルダー反応を行ったときに、ジエン部分又は求ジエン部分として、この部分に、二重結合を有する化合物(II)を脱離可能に付加させることができるようにして選択できる。ここでは、芳香族環は特に、置換又は非置換のベンゼン環である。また、ArとArは同じであっても異なっていてもよい。
 したがってAr及びArはそれぞれ独立に、置換又は非置換の下記の(b1)~(b4)からなる群より選択されるベンゼン環部分であってよい:
Figure JPOXMLDOC01-appb-C000037
 また、式(I)の縮合多環芳香族化合物に関し、Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、又は2~5個、特に2~3個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分である。
 したがって、Arは、置換又は非置換の下記の(a1)~(a4)からなる群より選択される芳香族環部分又は縮合芳香族環部分であってよい:
Figure JPOXMLDOC01-appb-C000038
 (Yはそれぞれ独立に、カルコゲン、特に酸素(O)、硫黄(S)、セレン(Se)及びテルル(Te)から選択される元素、より特に硫黄であり、Yは全て同じでも、一部が異なっていてもよい)。
 好ましくは式(I)の縮合多環芳香族化合物は、有機半導体化合物、すなわち半導体としての性質を示す有機物化合物である。また、式(I)の縮合多環芳香族化合物は、置換又は非置換の下記の式(I-1)~(I-5)の縮合多環芳香族化合物からなる群より選択できる。これらの縮合多環芳香族化合物は安定性が高く、したがって本発明の付加化合物からの二重結合を有する化合物(II)の脱離、特に熱による脱離、より特に比較的高温且つ/又は長時間の熱による脱離の際にも、安定に維持することができる。したがって、これらの化合物を用いる場合、本発明の付加化合物からの二重結合を有する化合物(II)の脱離を高い割合で行うことができる。
Figure JPOXMLDOC01-appb-C000039
 (Yはそれぞれ独立に、カルコゲンから選択される元素、特に酸素(O)、硫黄(S)、セレン(Se)及びテルル(Te)から選択される元素、より特に硫黄であり、Yは全て同じでも、一部が異なっていてもよい)。
 式(I)の縮合多環芳香族化合物、及びその合成に関しては、特に限定されないが、特許文献1~5及び非特許文献1を参照することができる。
 なお、式(I)の縮合多環芳香族化合物の芳香族環部分及び/又は縮合芳香族環部分の置換は例えば、ハロゲン、炭素原子数1~20のアルキル基、炭素原子数2~20のアルケニル基、炭素原子数2~20のアルキニル基、炭素原子数4~20の置換又は非置換の芳香族基、炭素原子数2~10のエステル基、炭素原子数1~20のエーテル基、炭素原子数1~20のケトン基、炭素原子数1~20のアミノ基、炭素原子数1~20のアミド基、炭素原子数1~20のイミド基、及び炭素原子数1~20のスルフィド基からなる群より選択される置換基によってなされている。
 《二重結合を有する化合物(II)》
 二重結合を有する化合物(II)は、式(I)の縮合多環芳香族化合物に脱離可能に付加できる任意の化合物であってよい。したがって例えば、二重結合を有する化合物(II)は、特にディールス-アルダー反応によって、式(I)の縮合多環芳香族化合物に求ジエン体(ジエノフィル)又は共役ジエン体として、脱離可能に付加する任意の化合物であってよい。また、二重結合を有する化合物(II)は、特に式(I)の縮合多環芳香族化合物のAr、Ar及びArのうちの少なくとも1つの芳香族環部分又は縮合芳香族環部分、より特に式(I)の縮合多環芳香族化合物のAr及びArのうちの少なくとも1つの縮合芳香族環部分に脱離可能に付加できる任意の化合物であってよい。
 二重結合を有する化合物(II)が求ジエン体である場合、二重結合を有する化合物(II)は、下記の式(II-A1)及び(II-B1)のいずれかの化合物であってよい:
Figure JPOXMLDOC01-appb-C000040
 (R、R、R及びRはそれぞれ独立に、結合、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1~10のアルキル基、炭素原子数2~10のアルケニル基、炭素原子数2~10のアルキニル基、炭素原子数1~10のアルコキシ基、炭素原子数4~10の置換又は非置換の芳香族基、炭素原子数1~10のエステル基、炭素原子数1~10のエーテル基、炭素原子数1~10のケトン基、炭素原子数1~10のアミノ基、炭素原子数1~10のアミド基、炭素原子数1~10のイミド基、及び炭素原子数1~10のスルフィド基からなる群より選択され、
  R及びRは、互いに結合して環を形成していてもよく、且つ
  R及びRは、互いに結合して環を形成していてもよい)。
 ここで、上記の式(II-A1)の化合物は、炭素-酸素二重結合部分の存在によって、その炭素原子に隣接する炭素-炭素二重結合部分が比較的求電子的であり、したがって求ジエン体としてディールス-アルダー反応を促進するために好ましいことがある。同様に上記の式(II-B1)の化合物は、酸素の存在によって、この酸素原子に隣接する炭素-炭素二重結合部分が比較的求電子的であり、したがって求ジエン体としてディールス-アルダー反応を促進するために好ましいことがある。
 また、二重結合を有する化合物(II)が求ジエン体である場合、二重結合を有する化合物(II)は、下記の式(II-A2)及び(II-B2)のいずれかの化合物であってよい:
Figure JPOXMLDOC01-appb-C000041
 (R、R、R及びRはそれぞれ独立に、結合、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1~10のアルキル基、炭素原子数2~10のアルケニル基、炭素原子数2~10のアルキニル基、炭素原子数1~10のアルコキシ基、炭素原子数4~10の置換又は非置換の芳香族基、炭素原子数1~10のエステル基、炭素原子数1~10のエーテル基、炭素原子数1~10のケトン基、炭素原子数1~10のアミノ基、炭素原子数1~10のアミド基、炭素原子数1~10のイミド基、及び炭素原子数1~10のスルフィド基からなる群より選択され、
  R及びRは、互いに結合して環を形成していてもよく、且つ
  R及びRは、互いに結合して環を形成していてもよい)。
 ここで、上記の式(II-A2)の化合物は、2つの炭素-酸素二重結合部分の存在によって、それらの炭素原子の間の炭素-炭素二重結合部分が比較的求電子的であり、したがって求ジエン体としてディールス-アルダー反応を促進するために好ましいことがある。同様に上記の式(II-B2)の化合物は、2つの酸素の存在によって、それらの酸素原子の間の炭素-炭素二重結合部分が比較的求電子的であり、したがって求ジエン体としてディールス-アルダー反応を促進するために好ましいことがある。
 また更に、二重結合を有する化合物(II)が求ジエン体である場合、二重結合を有する化合物(II)は、下記の式(II-A3)及び(II-B3)のいずれかの化合物であってよい:
Figure JPOXMLDOC01-appb-C000042
 (R及びRはそれぞれ独立に、結合、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1~10のアルキル基、炭素原子数2~10のアルケニル基、炭素原子数2~10のアルキニル基、炭素原子数1~10のアルコキシ基、炭素原子数4~10の置換又は非置換の芳香族基、炭素原子数1~10のエステル基、炭素原子数1~10のエーテル基、炭素原子数1~10のケトン基、炭素原子数1~10のアミノ基、炭素原子数1~10のアミド基、炭素原子数1~10のイミド基、及び炭素原子数1~10のスルフィド基からなる群より選択され、
  R及びRは、互いに結合して環を形成していてもよく、
  nは、1~5の整数であり、且つ
  Zは、結合(-)、酸素(-O-)、メチレン性炭素(-C(R-)、エチレン性炭素(-C(R)=)、カルボニル基(-C(=O)-)、窒素(-N(R)-)、及び硫黄(-S-)からなる群より選択され、且つnが2又はそれよりも大きいときにはそれぞれ異なっていてもよい(Rはそれぞれ独立に、水素、ハロゲン、炭素原子数1~10のアルキル基、炭素原子数2~10のアルケニル基、炭素原子数2~10のアルキニル基、炭素原子数1~10のアルコキシ基、炭素原子数4~10の置換又は非置換の芳香族基、炭素原子数1~10のエステル基、炭素原子数1~10のエーテル基、炭素原子数1~10のケトン基、炭素原子数1~10のアミノ基、炭素原子数1~10のアミド基、炭素原子数1~10のイミド基、及び炭素原子数1~10のスルフィド基からなる群より選択される))。
 ここで、上記の式(II-A3)の化合物は、2つの炭素-酸素二重結合部分の存在によって、それらの炭素原子の間の炭素-炭素二重結合部分が比較的求電子的であり、したがって求ジエン体としてディールス-アルダー反応を促進するために好ましいことがある。同様に上記の式(II-B3)の化合物は、2つの酸素の存在によって、それらの酸素原子の間の炭素-炭素二重結合部分が比較的求電子的であり、したがって求ジエン体としてディールス-アルダー反応を促進するために好ましいことがある。また上記の式(II-A3)又は(II-B3)の化合物は、二重結合が環状構造の一部となっていることによって、構造的に安定しており、したがってこれらの化合物を脱離可能に式(I)の縮合多環芳香族化合物に付加させるために好ましいことがある。
 なお、共役ジエン型の二重結合を有する化合物(II)は、ディールス-アルダー反応において、式(I)の縮合多環芳香族化合物との組み合わせに応じて、式(I)の縮合多環芳香族化合物に求ジエン体及び/又は共役ジエン体として付加する。
 二重結合を有する化合物(II)は、環状部分を有する化合物であってよい。二重結合が環状構造の一部となっていることは、二重結合を有する化合物(II)を構造的に安定させ、それによって二重結合を有する化合物(II)を脱離可能に式(I)の縮合多環芳香族化合物に付加させるために好ましいことがある。
 したがって例えば、二重結合を有する化合物(II)は、下記の式(II-1)~(II-12)のいずれかの化合物であってよい:
Figure JPOXMLDOC01-appb-C000043
 (R及びRはそれぞれ独立に、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1~10のアルキル基、炭素原子数2~10のアルケニル基、炭素原子数2~10のアルキニル基、炭素原子数1~10のアルコキシ基、炭素原子数4~10の置換又は非置換の芳香族基、炭素原子数1~10のエステル基、炭素原子数1~10のエーテル基、炭素原子数1~10のケトン基、炭素原子数1~10のアミノ基、炭素原子数1~10のアミド基、炭素原子数1~10のイミド基、及び炭素原子数1~10のスルフィド基からなる群より選択される)。
 二重結合を有する化合物(II)は、共役ジエン型の化合物、例えば式(II-1)~式(II-3)及び式(II-8)のいずれかの化合物であってよい。また、二重結合を有する化合物(II)は、求ジエン型の化合物、例えば式(II-4)~式(II-6)、式(II-9)、及び式(II-10)~式(II-12)のいずれかの化合物であってよい。また更に、二重結合を有する化合物(II)は、環状部分を有する化合物、例えば式(II-1)~式(II-6)、式(II-8)、及び式(II-10)~式(II-12)のいずれかの化合物であってよい。
 なお、式(II-1)~(II-12)のいずれかの化合物のR及びRに関して、炭素原子数4~10の芳香族基の置換基に関しては、式(I)の縮合多環芳香族化合物の芳香族環部分又は縮合芳香族環部分を置換していてもよい置換基を参照できる。
 以下では、下記の式(II-1)~(II-12)のいずれかの化合物について、より詳細に説明する。
 《式(II-1)の化合物》
Figure JPOXMLDOC01-appb-C000044
 (Rは上記のとおり)
 特に、式(II-1)の化合物に関し、Rはそれぞれ独立に、水素及びハロゲンからなる群より選択される。Rがハロゲンである場合、Rはそれぞれ独立に、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)及びそれらの組み合わせからなる群より選択される元素、特にフッ素(F)、塩素(Cl)及びそれらの組み合わせからなる群より選択される元素、より特に塩素であってよい。したがって、式(II-1)の化合物は例えば、ヘキサフルオロシクロペンタジエン、ヘキサクロロシクロペンタジエン、ヘキサブロモシクロペンタジエン、5,5-ジフルオロテトラクロロシクロペンタジエン、又は5,5-ジブロモテトラクロロシクロペンタジエン、特にヘキサクロロシクロペンタジエンであってよい。また、Rが全て水素である場合には、式(II-1)の化合物は、シクロペンタジエンである。
 《式(II-2)の化合物》
Figure JPOXMLDOC01-appb-C000045
 (Rは上記のとおり)
 特に、式(II-2)の化合物に関し、Rはそれぞれ独立に、水素及びハロゲンからなる群より選択される。また、Rが全て水素である場合には、式(II-2)の化合物は、フランである。
 《式(II-3)の化合物》
Figure JPOXMLDOC01-appb-C000046
 (R及びRは上記のとおり)
 特に、式(II-3)の化合物に関し、Rはそれぞれ独立に、水素及びハロゲンからなる群より選択される。また特に、Rは炭素原子数1~10のエステル基、例えばメチルエステルである。したがって特に上記の式(II-3)の化合物は、Rが水素であり且つRが炭素原子数1~10のアルキルエステル基である化合物、すなわちカルボン酸アルキルピロール、例えばRが水素であり且つRがメチルエステル基であるカルボン酸メチルピロールであってよい。
 《式(II-4)の化合物》
Figure JPOXMLDOC01-appb-C000047
 (R及びRは上記のとおり)
 特に、式(II-4)の化合物に関し、Rが水素以外の基、すなわち比較的かさばる基であることは、式(I)の縮合多環芳香族化合物と式(II-4)の化合物との付加化合物から、加熱等によって式(II-4)の化合物の脱離を促進するために好ましいことがある。
 《式(II-5)の化合物》
Figure JPOXMLDOC01-appb-C000048
 (Rは上記のとおり)
 特に、式(II-5)の化合物に関し、Rがいずれも水素である化合物は、無水マレイン酸である。したがって式(II-5)の化合物は、無水マレイン酸又はその水素基が置換された化合物として考えることができる。
 《式(II-6)の化合物》
Figure JPOXMLDOC01-appb-C000049
 (R及びRは上記のとおり)
 特に、式(II-6)の化合物に関し、Rはそれぞれ独立に、水素及びハロゲンからなる群より選択される。また特に、Rは、炭素原子数1~10のアルキル基、又は炭素原子数4~10の置換又は非置換の芳香族基、例えばヒドロキシフェニル基である。
 したがって例えば、上記の式(II-6)の化合物は、Rが水素であり且つRがメチル基であるN-メチルマレイミド、Rが水素であり且つRがエチル基であるN-エチルマレイミドであってよい。また例えば、上記の式(II-6)の化合物は、Rが水素であり且つRが炭素原子数4~10の置換又は非置換の芳香族基である化合物、すなわち芳香族マレイミド、特にRが水素であり且つRがフェニル基であるN-フェニルマレイミド、又はRが水素であり且つRがヒドロキシフェニル基であるヒドロキシフェニルマレイミドであってよい。
 《式(II-7)の化合物》
Figure JPOXMLDOC01-appb-C000050
 (Rは上記のとおり)
 特に、式(II-7)の化合物に関し、Rは、炭素原子数1~10のアルキル基からなる群より選択される。したがって特に上記の式(II-7)の化合物は、Rがアルキル基である化合物、すなわちN-スルホニルアシルアミド、例えばRがメチル基であるN-スルホニルアセトアミドであってよい。
 《式(II-8)の化合物》
Figure JPOXMLDOC01-appb-C000051
 (Rは上記のとおり)
 特に、式(II-8)の化合物に関し、Rはそれぞれ独立に、水素及びハロゲンからなる群より選択される。Rがハロゲンである場合、Rはそれぞれ独立に、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)及びそれらの組み合わせからなる群より選択される元素である。また、Rが全て水素である場合には、式(II-8)の化合物は、アントラセンとなる。
 《式(II-9)の化合物》
Figure JPOXMLDOC01-appb-C000052
 (Rは上記のとおり)
 特に、式(II-9)の化合物に関し、Rは、炭素原子数1~10のアルキル基からなる群より選択される。したがって特に上記の式(II-9)の化合物は、Rがアルキル基である化合物、すなわちトリシアノカルボン酸アルキル-エチレン、例えばRがメチル基であるトリシアノカルボン酸メチル-エチレンであってよい。
 《式(II-10)の化合物》
Figure JPOXMLDOC01-appb-C000053
 (R及びRは上記のとおり)
 《式(II-11)の化合物》
Figure JPOXMLDOC01-appb-C000054
 (Rは上記のとおり)
 特に、式(II-11)の化合物に関し、Rはそれぞれ独立に、水素及びハロゲンからなる群より選択される。また、Rが全て水素である場合には、式(II-2)の化合物は、炭酸ビニレンである。
 《式(II-12)の化合物》
Figure JPOXMLDOC01-appb-C000055
 (R及びRは上記のとおり)
 《付加化合物含有溶液》
 本発明の付加化合物含有溶液は、本発明の付加化合物が、溶媒、特に有機溶媒に溶解されてなる。
 この付加化合物含有溶液は、任意の濃度で本発明の付加化合物を含有することができ、例えば本発明の付加化合物を、0.01~20質量%、0.05~10質量%、0.1~5質量%の濃度で含有することができる。
 この付加化合物含有溶液において使用可能な溶媒としては、本発明の付加化合物を溶解できる任意の溶媒を用いることができる。例えば使用可能な溶媒としては、N-メチルピロリドン、ジメチルスルホキシド、アセトニトリル、酢酸エチル等の非プロトン性極性溶媒;ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジエチレングリコールジメチルエーテル、1、4-ジオキサン等のエーテル系溶媒;ベンゼン、トルエン、キシレン、メシチレン(すなわち1,3,5‐トリメチルベンゼン)等の芳香族炭化水素類;ヘキサン、ヘプタン等の脂肪族炭化水素類;及びジクロロメタン、クロロホルム、ジクロロエタン等の含ハロゲン溶媒を考慮することができる。
 本発明の付加化合物が、立体異性体を有する場合、本発明の溶液は例えば、本発明の付加化合物及び少なくとも1つのその立体異性体が溶媒に溶解されてなり、且つ付加化合物及びその立体異性体の合計に対する熱脱離温度が最も低い立体異性体の割合{付加化合物及びその立体異性体のうちの熱脱離温度が最も低い立体異性体/付加化合物及びその立体異性}が、50mol%超、70mol%超、90mol%超、95mol%超であってよい。
 また、本発明の付加化合物が、立体異性体としてExo体及びEndo体を有する場合、本発明の溶液は例えば、本発明の付加化合物のExo体及びEndo体が溶媒に含有されてなり、且つ本発明の付加化合物のExo体とEndo体との合計に対する熱脱離温度が低い方の立体異性体の割合{Exo体及びEndo体のうちの熱脱離温度が低い方の立体異性体/(Exo体+Endo体)}が、50mol%超、70mol%超、90mol%超、95mol%超であってよい。したがって、本発明の溶液は例えば、式(III-6)の付加化合物のExo体とEndo体とが溶媒に溶解されてなり、且つこの付加化合物のExo体とEndo体との合計に対するExo体の割合{Exo体/(Exo体+Endo体)}が、50mol%超、70mol%超、90mol%超、95mol%超、又は99mol%超であってよい。
 ここで、本発明の付加化合物含有溶液が、比較的熱脱離温度が低い立体異性体を比較的大きい割合で含有している場合、この溶液から加熱によって二重結合を有する化合物(II)を脱離及び除去して式(I)の縮合多環芳香族化合物からなる有機半導体膜を得る際に、比較的低い温度からこの脱離を開始させることができる。したがって、この場合には、比較的低温での有機半導体膜の生成を促進できる。
 なお、ディールス-アルダー反応においては、主橋の反対側に置換基が存在する反応生成物がEndo体として定義され、主橋と同じ側に置換基が存在する反応生成物がExo体として定義される。
 《有機半導体膜の生成方法》
 有機半導体膜を生成する本発明の方法は、本発明の付加化合物含有溶液を、基材に塗布して、膜を作製するステップ、そしてこの膜に減圧及び/又は加熱を行って、付加化合物から二重結合を有する化合物(II)を脱離及び除去して、式(I)の縮合多環芳香族化合物からなる有機半導体膜を得るステップを含む。
 この溶液の基材への塗布は、任意の様式で行うことができ、例えばキャスト法、スピンコート法、プリント法等によって行うこと等ができる。この溶液の基材への塗布は、単に溶液を基材に滴下して行うこともできる。
 加熱及び/又は減圧によって化合物(II)を脱離及び除去させる場合には、式(I)の縮合多環芳香族化合物を実質的に分解させない任意の条件を用いることができる。したがって化合物(II)の脱離及び除去は例えば、80℃以上、100℃以上、120℃以上、又は140℃以上であって、200℃以下、220℃以下、240℃以下、260℃以下の温度で加熱を行うことができる。また、化合物(II)の脱離及び除去は例えば、真空下又は大気圧下において行うことができる。また更に、化合物(II)の脱離及び除去は例えば、窒素雰囲気下又は大気雰囲気下において行うことができる。特に、大気圧の大気雰囲気下において化合物(II)の脱離及び除去を行うことは、式(I)の縮合多環芳香族化合物の製造を容易にするために好ましい。
 有機半導体膜を生成する本発明の方法では、二重結合を有する化合物(II)の脱離及び除去を、急速な加熱、すなわち例えば100℃/分、200℃/分、400℃/分、600℃/分、800℃/分、又は1000℃/分を超える加熱速度での加熱によって行うことができる。このような急速な加熱は例えば、膜を有する基材を、加熱された電気ヒーター等の加熱された物体に直接に接触させること、膜を有する基材を、加熱された炉等の加熱された領域に導入すること、膜側又は基材側に赤外線、マイクロ波等の電磁波を放射すること、又はこれらいずれかを同時に行うことによって達成できる。また、この急速な加熱は、二重結合を有する化合物(II)の脱離及び除去が開始される温度よりも3℃以上、5℃以上、又は10℃以上高い温度まで行うことができる。
 このように二重結合を有する化合物(II)の脱離及び除去を急速な加熱によって行う場合、式(I)の縮合多環芳香族化合物の大きい結晶、例えば長軸径5μm超の式(I)の縮合多環芳香族化合物の結晶を有する有機半導体膜を形成できる。
 これは、このように二重結合を有する化合物(II)の脱離及び除去を急速な加熱によって行う場合、二重結合を有する化合物(II)の脱離及び除去と同時に、式(I)の縮合多環芳香族化合物の熱運動による再配列が起こり、それによって式(I)の縮合多環芳香族化合物の結晶性によって、式(I)の縮合多環芳香族化合物の結晶化が促進されることによると考えられる。これに対して、二重結合を有する化合物(II)の脱離及び除去をゆっくりとした加熱によって行う場合、付加化合物から二重結合を有する化合物(II)が脱離して行くにしたがって、式(I)の縮合多環芳香族化合物の結晶化が多数の箇所で進行して多数の結晶核が生成し、それによって最終的に得られる有機半導体膜において、個々の式(I)の縮合多環芳香族化合物の結晶が微細になると考えられる。
 《有機半導体デバイスの製造方法》
 有機半導体デバイスを製造する本発明の方法は、有機半導体膜を生成する本発明の方法によって有機半導体膜を生成するステップを含む。またこの方法は随意に、有機半導体膜の上側又は下側に、電極層及び/又は誘電体層を形成するステップを更に含むことができる。
 《有機半導体デバイス》
 本発明の有機半導体デバイスは、有機半導体膜を有する有機半導体デバイスであって、有機半導体膜が、本発明の付加化合物から二重結合を有する化合物(II)が脱離した構造を有する式(I)の縮合多環芳香族化合物で作られており、且つ有機半導体膜が本発明の付加化合物を含有している。
 ここで、有機半導体膜が本発明の付加化合物を含有していることは、有機半導体膜が検知可能な量で本発明の付加化合物を含有していることを意味する。したがって例えば本発明の付加化合物のモル比は、1ppm超、10ppm超、100ppm超、1,000ppm超、又は10,000ppm(1%)超であってよい。また、本発明の付加化合物の割合は、10mol%以下、5mol%以下、3mol%以下、1mol%以下、0.1mol%以下、又は0.01mol%以下であってよい。
 このような本発明の有機半導体デバイスは、式(I)の縮合多環芳香族化合物と並んで本発明の付加化合物を含有しているにもかかわらず、有機半導体デバイスとしての特性を有することができる。すなわち、本発明の有機半導体デバイスの有機半導体膜を本発明の付加化合物から製造する場合、本発明の付加化合物の熱脱離反応が完全には進行しなくても、本発明の有機半導体デバイスは半導体デバイスとしての特性を有することができる。これは、本発明の有機半導体デバイス又はその有機半導体膜の製造を容易にするために好ましい。
 また、本発明の他の有機半導体デバイスは、有機半導体膜を有する有機半導体デバイスであって、有機半導体膜が、長軸径5μm超、10μm超、20μm超、30μm超、40μm超、50μm超、60μm超、70μm超、80μm超、90μm超、又は100μm超の下記の式(I)の縮合多環芳香族化合物の結晶を有する:
 ArArAr     (I)
 (Ar、Ar、及びArは、上記記載のとおり)。
 このような本発明の有機半導体デバイスでは、有機半導体膜が大きい結晶を有することによって、有機半導体膜の半導体特性、例えばキャリア移動度及びオン/オフ比を改良することができる。
 これらの本発明の有機半導体デバイスのための有機半導体膜は例えば、溶液法、すなわち溶液を基材に塗布し、そして溶液から溶媒を除去するステップを含む有機半導体膜の形成方法によって、特に有機半導体膜を生成する本発明の方法によって得ることができる。
 また更に、本発明の他の有機半導体デバイスは、有機半導体膜を有する有機半導体デバイスであって、有機半導体膜が、本発明の付加化合物から二重結合を有する化合物(II)が脱離した構造を有する式(I)の縮合多環芳香族化合物で作られており、有機半導体膜が本発明の付加化合物を含有しており、且つ有機半導体膜が、長軸径5μm超の式(I)の縮合多環芳香族化合物の結晶を有する。
 特に本発明の有機半導体デバイスは、ソース電極、ドレイン電極、ゲート電極、ゲート絶縁膜、及び有機半導体膜を有する薄膜トランジスタであって、ゲート絶縁膜によってソース電極及びドレイン電極とゲート電極とを絶縁し、且つゲート電極に印加される電圧によってソース電極からドレイン電極へと有機半導体を通って流れる電流を制御する薄膜トランジスタである。また特に本発明の有機半導体デバイスは、有機半導体膜を活性層として有する太陽電池である。なお、本発明に関して、「有機半導体デバイス」は、有機半導体膜を有するデバイスを意味しており、電極層、誘電体層等の他の層は、無機材料で作られていても、有機材料で作られていてもよい。
 《《第2の本発明》》
 《精製方法》
 下記の式(I)の縮合多環芳香族化合物を精製する本発明の方法は、下記のステップ(a)~(d)を含む:
 ArArAr     (I)
 (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、及び2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成しており、且つ
  ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成している);
 (a)式(I)の縮合多環芳香族化合物の粗生成物を提供するステップ、
 (b)二重結合を有する化合物(II)であって、式(I)の縮合多環芳香族化合物に脱離可能に付加する化合物(II)を提供するステップ、
 (c)式(I)の縮合多環芳香族化合物と二重結合を有する化合物(II)とを混合して、これらの化合物の付加化合物が少なくとも部分的に溶解している混合液を得るステップ、並びに
 (d)混合液から、精製された式(I)の縮合多環芳香族化合物を分離して得るステップ。
 《精製方法-ステップ(a)》
 ステップ(a)では、式(I)の縮合多環芳香族化合物の粗生成物を提供する。ここで提供される式(I)の縮合多環芳香族化合物の粗生成物は、任意の合成方法で得ることができる。一般的に、式(I)の縮合多環芳香族化合物は、ハロゲン元素及び/又は金属元素又はその化合物、及び/又は芳香族化合物を、反応媒体、原料、触媒等として用いる合成方法で得られている(例えば上記の特許文献1~5及び非特許文献1、特に特許文献2を参照)。したがって本発明の精製方法によれば、式(I)の縮合多環芳香族化合物の粗生成物に不純物として含有されるこれらの元素又は化合物を、少なくとも部分的に除去することができる。
 なお、ステップ(a)で用いられる式(I)の粗生成物は、予め精製されていること、例えば溶媒洗浄によって予め精製されていることが、本発明の方法による精製を促進するために好ましいことがある。
 式(I)の縮合多環芳香族化合物については、下記でより具体的に例示する。
 《精製方法-ステップ(b)》
 ステップ(b)では、二重結合を有する化合物(II)であって、式(I)の縮合多環芳香族化合物に脱離可能に付加する化合物(II)を提供する。なお、式(I)の縮合多環芳香族化合物に二重結合を有する化合物(II)が「脱離可能」に付加することは、式(I)の縮合多環芳香族化合物と二重結合を有する化合物(II)との付加化合物が、例えば減圧及び/又は加熱によって、式(I)の縮合多環芳香族化合物を分解させずに、二重結合を有する化合物(II)を脱離させることが可能であることを意味している。
 二重結合を有する化合物(II)については、下記でより具体的に例示する。
 《精製方法-ステップ(c)》
 ステップ(c)では、式(I)の縮合多環芳香族化合物と二重結合を有する化合物(II)とを混合して、これらの化合物の付加化合物が少なくとも部分的に溶解している混合液を得る。この付加化合物については、下記でより具体的に例示する。
 二重結合を有する化合物(II)と共に溶媒を用いることもできるが、二重結合を有する化合物(II)を単独で用いることもできる。ここで使用できる溶媒としては、ステップ(c)で得られる付加化合物を溶解できる任意の溶媒を用いることができる。例えば使用可能な溶媒としては、N-メチルピロリドン、ジメチルスルホキシド、アセトニトリル、酢酸エチル等の非プロトン性極性溶媒;ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジエチレングリコールジメチルエーテル、1、4-ジオキサン等のエーテル系溶媒;ベンゼン、トルエン、キシレン、メシチレン(すなわち1,3,5‐トリメチルベンゼン)等の芳香族炭化水素類;ヘキサン、ヘプタン等の脂肪族炭化水素類;及びジクロロメタン、クロロホルム、ジクロロエタン等の含ハロゲン溶媒を考慮することができる。
 また、式(I)を有する化合物の粗生成物からの不純物の除去を促進するためには、二重結合を有する化合物(II)のラジカル重合による自己重合によるポリマー化を抑制する目的で、ヒドロキノンのようなラジカル捕捉剤を共に用いることもできる。
 ステップ(c)では、式(I)の縮合多環芳香族化合物と、二重結合を有する化合物(II)との混合の際に、加熱及び/又は光照射によって、付加脱離反応を促進することもできる。ステップ(c)の混合液の温度は、付加反応速度、成分の安定性、成分の沸点等を考慮して決定することができ例えば、20℃以上、50℃以上、100℃以上であって、180℃以下、200℃以下、又は220℃以下の温度にすることができる。またこの混合液は、所定の期間にわたって保持すること、例えば1分以上、10分以上、30分以上、1時間以上であって、1日以下、3日以下、5日以下、又は10日以下の期間にわたって保持することができる。
 参考までに、このステップ(c)の混合液において式(I)の縮合多環芳香族化合物の粗生成物から不純物が分離されるスキームの概念図を図1に示すが、本発明はこれに限定されない。
 図1の式の左辺100は、不純物を包含している結晶の状態の式(I)の縮合多環芳香族化合物(粗生成物)と二重結合を有する化合物(II)との混合物の初期の状態を示している。このような混合物では、図1の式の中辺200で示されるように、二重結合を有する化合物(II)が式(I)の縮合多環芳香族化合物に脱離可能に付加することによって、式(I)の縮合多環芳香族化合物の結晶性が低下し且つ/又はこの化合物の極性が増加し、それによって式(I)の縮合多環芳香族化合物が混合液中で溶解した状態になる。
 二重結合を有する化合物(II)は、式(I)の縮合多環芳香族化合物に脱離可能に付加しており、したがって図1の式の左辺100の状態、中辺200の状態、及び右辺300の状態は互いに平衡の関係にある。しかしながら、不純物の量は、二重結合を有する化合物(II)及び随意の溶媒と比較して一般に少量であるので、式(I)の縮合多環芳香族化合物が図1の式の中辺200の状態から結晶化する際に不純物が取り込まれる確率は比較的低く、したがって平衡は図1の左辺100の状態から、図1の中辺200及び右辺300の状態に偏っていくことが理解される。
 《精製方法-ステップ(d)》
 ステップ(d)では、ステップ(c)で得られた混合液から、精製された式(I)の縮合多環芳香族化合物を分離して得る。ここで、図1の右辺300の状態にある精製された結晶状態の式(I)の縮合多環芳香族化合物は、混合液に対する溶解性が低く、したがってろ過等によって分離することができる。
 なお、図1の中辺200の状態にある付加化合物は、例えば減圧及び/又は加熱によって、式(I)の縮合多環芳香族化合物を分解させずに、二重結合を有する化合物(II)を式(I)の縮合多環芳香族化合物から脱離及び除去させることができる。これは、上記記載のように、二重結合を有する化合物(II)は式(I)の縮合多環芳香族化合物に脱離可能に付加されていることによる。
 ここで、加熱及び/又は減圧によって化合物(II)を脱離及び除去させる場合には、式(I)の縮合多環芳香族化合物を実質的に分解させない任意の条件を用いることができる。したがって化合物(II)の脱離及び除去は例えば、80℃以上、100℃以上、120℃以上、又は140℃以上であって、200℃以下、220℃以下、240℃以下、260℃以下の温度で加熱を行うことができる。また、化合物(II)の脱離及び除去は例えば、真空下又は大気圧下において行うことができる。また更に、化合物(II)の脱離及び除去は例えば、窒素雰囲気下又は大気雰囲気下において行うことができる。
 なお、ステップ(d)で得られた精製された式(I)の縮合多環芳香族化合物は、更に精製すること、例えば昇華精製法によって更に精製することができる。
 《縮合多環芳香族化合物の製造方法1》
 式(I)の縮合多環芳香族化合物を製造する本発明の第1の方法は、本発明の方法によって式(I)の縮合多環芳香族化合物の粗生成物を精製するステップを含む。
 《縮合多環芳香族化合物の製造方法2》
 式(I)の縮合多環芳香族化合物を製造する本発明の第2の方法は、式(I)の縮合多環芳香族化合物に二重結合を有する化合物(II)が脱離可能に付加されてなる構造を有する付加化合物から、この化合物(II)を脱離及び除去すること、特に加熱及び/又は減圧によってこの化合物(II)を脱離及び除去することを含む。
 加熱及び/又は減圧によって化合物(II)を脱離及び除去させる場合には、式(I)の縮合多環芳香族化合物を実質的に分解させない任意の条件を用いることができる。したがって化合物(II)の脱離及び除去は例えば、80℃以上、100℃以上、120℃以上、又は140℃以上であって、200℃以下、220℃以下、240℃以下、260℃以下の温度で加熱を行うことができる。また、化合物(II)の脱離及び除去は例えば、真空下又は大気圧下において行うことができる。また更に、化合物(II)の脱離及び除去は例えば、窒素雰囲気下又は大気雰囲気下において行うことができる。特に、大気圧の大気雰囲気下において化合物(II)の脱離及び除去を行うことは、式(I)の縮合多環芳香族化合物の製造を容易にするために好ましい。
 式(I)の縮合多環芳香族化合物を製造する本発明の第1及び第2の方法では、式(I)の縮合多環芳香族化合物を粉末として得ることができる。但し、これらの本発明の方法で得られる式(I)の縮合多環芳香族化合物の形態は粉末に限定されない。
 《有機半導体膜の製造方法》
 有機半導体膜を製造する本発明の方法は、本発明の方法によって縮合多環芳香族化合物を製造し、そして得られた式(I)の縮合多環芳香族化合物から、例えば蒸着法によって、有機半導体膜を得るステップを含む。
 《有機半導体デバイスの製造方法》
 有機半導体デバイスを製造する本発明の方法は、有機半導体膜を生成する本発明の方法によって有機半導体膜を生成するステップを含む。またこの方法は随意に、有機半導体膜の上側又は下側に、電極層及び/又は誘電体層を形成するステップを更に含むことができる。
 《その他》
 付加生成物、式(I)の縮合多環芳香族化合物、二重結合を有する化合物(II)、有機半導体デバイス等については、上記の第1の本発明に関する記載を参照できる。
 《《第3の本発明》》
 《有機半導体膜形成用溶液》
 有機半導体膜を形成するための本発明の溶液は、有機溶媒、有機溶媒に溶解している第1の付加化合物、及び有機溶媒に溶解しており且つ第1の付加化合物の結晶化を抑制する結晶化抑制剤を含有している。
 ここで、この第1の付加化合物は、下記の式(I)の縮合多環芳香族化合物に、二重結合を有する第1の化合物(II’)が二重結合を介して脱離可能に付加されてなる構造を有する:
 ArArAr     (I)
 (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、及び2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成しており、且つ
  ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成している)。
 また、結晶化抑制剤は、下記の(a)~(c)からなる群より選択される少なくとも1種の化合物である:
 (a)式(I)の縮合多環芳香族化合物に二重結合を有する第2の化合物(II”)が二重結合を介して脱離可能に付加されてなる構造を有する第2の付加化合物、
 (b)二重結合を有する第1の化合物(II’)であって、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II’)、及び
 (c)二重結合を有する第2の化合物(II”)であって、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II”)。
 有機半導体膜を形成するための本発明の溶液では、第1の付加化合物が、式(I)の縮合多環芳香族化合物に二重結合を有する化合物(II’)が付加した構造を有していることによって、式(I)の縮合多環芳香族化合物と比較して、極性が増加し且つ/又は結晶性が低下しており、それによって溶媒に対する比較的高い溶解性を有している。したがって本発明の溶液によれば、溶液法を用いて縮合多環芳香族化合物からなる有機半導体層を形成することができる。具体的には例えば、本発明の溶液を、基材に塗布して、膜を作製し、そしてこの膜を減圧及び/又は加熱して、第1の付加化合物から二重結合を有する第1の前記化合物(II’)を脱離及び除去することによって、式(I)の縮合多環芳香族化合物からなる有機半導体膜を得ることができる。
 また、有機半導体膜を形成するための本発明の溶液は、結晶化抑制剤として含有していることによって、溶液法による有機半導体膜の形成の際に結晶化を抑制し、それによって優れた有機半導体膜を提供すること、且つ/又は効率的に有機半導体膜を提供することができる。
 本発明の有機半導体膜形成用溶液は、任意の濃度で第1の付加化合物を含有することができ、例えば第1の付加化合物を、0.01~20質量%、0.05~10質量%、0.1~5質量%の濃度で含有することができる。
 本発明の有機半導体膜形成用溶液において使用可能な溶媒としては、第1の付加化合物を溶解できる任意の溶媒を用いることができる。例えば使用可能な溶媒としては、N-メチルピロリドン、ジメチルスルホキシド、アセトニトリル、酢酸エチル等の非プロトン性極性溶媒;ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジエチレングリコールジメチルエーテル、1、4-ジオキサン等のエーテル系溶媒;ベンゼン、トルエン、キシレン、メシチレン(すなわち1,3,5‐トリメチルベンゼン)等の芳香族炭化水素類;ヘキサン、ヘプタン等の脂肪族炭化水素類;及びジクロロメタン、クロロホルム、ジクロロエタン等の含ハロゲン溶媒を考慮することができる。
 第1の付加化合物が、立体異性体を有する場合、本発明の溶液は例えば、第1の付加化合物及び少なくとも1つのその立体異性体が溶媒に溶解されてなり、且つ付加化合物及びその立体異性体の合計に対する熱脱離温度が最も低い立体異性体の割合{付加化合物及びその立体異性体のうちの熱脱離温度が最も低い立体異性体/付加化合物及びその立体異性}が、50mol%超、70mol%超、90mol%超、95mol%超であってよい。
 また、第1の付加化合物が、立体異性体としてExo体及びEndo体を有する場合、本発明の溶液は例えば、第1の付加化合物のExo体及びEndo体が溶媒に含有されてなり、且つ第1の付加化合物のExo体とEndo体との合計に対する熱脱離温度が低い方の立体異性体の割合{Exo体及びEndo体のうちの熱脱離温度が低い方の立体異性体/(Exo体+Endo体)}が、50mol%超、70mol%超、90mol%超、95mol%超であってよい。したがって、本発明の溶液は例えば、式(III-6)の付加化合物のExo体とEndo体とが溶媒に溶解されてなり、且つこの付加化合物のExo体とEndo体との合計に対するExo体の割合{Exo体/(Exo体+Endo体)}が、50mol%超、70mol%超、90mol%超、95mol%超、又は99mol%超であってよい。
 ここで、第1の付加化合物含有溶液が、比較的熱脱離温度が低い立体異性体を比較的大きい割合で含有している場合、この溶液から加熱によって二重結合を有する化合物(II)を脱離及び除去して式(I)の縮合多環芳香族化合物からなる有機半導体膜を得る際に、比較的低い温度からこの脱離を開始させることができる。したがって、この場合には、比較的低温での有機半導体膜の生成を促進できる。
 なお、ディールス-アルダー反応においては、主橋の反対側に置換基が存在する反応生成物がEndo体として定義され、主橋と同じ側に置換基が存在する反応生成物がExo体として定義される。
 《有機半導体膜形成用溶液-結晶化抑制剤-第2の付加化合物》
 1つの態様では、本発明の溶液に含有されている結晶化抑制剤は、式(I)の縮合多環芳香族化合物に二重結合を有する第2の化合物(II”)が二重結合を介して脱離可能に付加されてなる構造を有する第2の付加化合物である。
 ここで、第2の付加化合物は、第1の付加化合物と同じ式(I)の縮合多環芳香族化合物を有している。すなわち、第2の付加化合物は、二重結合を有する第1の化合物(II’)の代わりに、二重結合を有する第2の化合物(II”)が付加していることを除いて、第1の付加化合物と同じである。
 したがって、第2の付加化合物のうちの式(I)の縮合多環芳香族化合物の部分は、第1の付加化合物、特に第1の付加化合物のうちの式(I)の縮合多環芳香族化合物の部分に対して比較的大きい親和性を有する。しかしながら、第1の付加化合物と第2の付加化合物とは、二重結合を有する第1及び第2の化合物(II’)及び(II”)に関して構造的に異なっており、したがって溶液法による有機半導体膜の形成の際に比較的結晶化しにくい。
 また、第1及び第2の付加化合物はそれぞれ、二重結合を有する第1及び第2の化合物(I’)及び(II’)が式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加されてなる構造を有する。したがって、第1及び第2の付加化合物は、例えば加熱及び/又は減圧によって、二重結合を有する第1及び第2の化合物(II’)及び(II”)を脱離及び除去したときに、いずれも式(I)の縮合多環芳香族化合物をもたらす。
 よって、例えば溶液が含有している第1の付加化合物の濃度が一定である場合、この溶液が第2の付加化合物を更に含有することによって、溶液中における実質的な式(I)の縮合多環芳香族化合物の含有率を大きくすることができる。
 本発明の有機半導体膜形成用溶液は、結晶化抑制剤としての第2の付加化合物を、溶媒中に溶解することが可能な任意の量で含有することができ、例えば第2の付加化合物の第1の付加化合物に対するモル比(第2の付加化合物/第1の付加化合物)は、0.1mol%以上、1mol%以上、10mol%以上、30mol%以上、50mol%以上であってよい。ここで、このモル比が、100mol%であることは、有機半導体膜形成用溶液に含有されている第1の付加化合物のモル数と第2の付加化合物のモル数とが同じであることを意味する。
 《有機半導体膜形成用溶液-結晶化抑制剤-第1及び第2の化合物(II’)及び(II”)》
 他の1つの態様では、本発明の溶液に含有されている結晶化抑制剤は、二重結合を有する第1の化合物(II’)である。ここで、結晶化抑制剤として用いられている二重結合を有する第1の化合物(II’)は、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加して第1の付加化合物を構成している二重結合を有する第1の化合物(II’)と同じである。したがって、結晶化抑制剤として用いられている二重結合を有する第1の化合物(II’)は、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる。
 また、他の1つの態様では、二重結合を有する第2の化合物(II”)であって、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II”)である。すなわち、結晶化抑制剤として用いられている二重結合を有する第1の化合物(II”)は、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加して第1の付加化合物を構成している二重結合を有する第1の化合物(II’)とは異なる。しかしながら、結晶化抑制剤として用いられている二重結合を有する第1の化合物(II”)は、二重結合を有する第1の化合物(II’)と同様に、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる。
 結晶化抑制剤として用いられている二重結合を有する第1及び第2の化合物(II’)及び(II”)はいずれも、式(I)の縮合多環芳香族化合物に二重結合を有する第1の化合物(II’)が二重結合を介して脱離可能に付加して第1の付加化合物を形成するのと同様な機構で、式(I)の縮合多環芳香族化合物に脱離可能に付加し、且つ/又は式(I)の縮合多環芳香族化合物に対して親和性を示し、それによって溶液法による有機半導体膜の形成の際に、第1の付加化合物の極性を更に増加させ、且つ/又は第1の付加化合物同士の結晶化を妨げることができる。
 本発明の有機半導体膜形成用溶液は、結晶化抑制剤としての二重結合を有する第1及び第2の化合物(II’)及び(II”)を、溶媒中に溶解することが可能な任意の量で含有することができ、例えば第1及び第2の化合物(II’)及び(II”)の第1の付加化合物に対するモル比(第1及び/又は第2の化合物(II’)及び(II”)/第1の付加化合物)は、0.1mol%以上、1mol%以上、10mol%以上、30mol%以上、50mol%以上であってよい。ここで、このモル比が、100mol%であることは、有機半導体膜形成用溶液に含有されている第1の付加化合物のモル数と第1及び/又は第2の化合物(II’)及び(II”)のモル数とが同じであることを意味する。
 《有機半導体膜の生成方法》
 有機半導体膜を生成する本発明の方法は、本発明の有機半導体膜形成用溶液を、基材に塗布して、膜を作製するステップ、そしてこの膜に減圧及び/又は加熱を行って、第1の付加化合物、及び随意に第2の付加化合物から二重結合を有する化合物(II)を脱離及び除去して、式(I)の縮合多環芳香族化合物からなる有機半導体膜を得るステップを含む。
 この溶液の基材への塗布は、任意の様式で行うことができ、例えばキャスト法、スピンコート法、プリント法等によって行うこと等ができる。この溶液の基材への塗布は、単に溶液を基材に滴下して行うこともできる。
 加熱及び/又は減圧によって化合物(II)を脱離及び除去させる場合には、式(I)の縮合多環芳香族化合物を実質的に分解させない任意の条件を用いることができる。したがって化合物(II)の脱離及び除去は例えば、80℃以上、100℃以上、120℃以上、又は140℃以上であって、200℃以下、220℃以下、240℃以下、260℃以下の温度で加熱を行うことができる。また、化合物(II)の脱離及び除去は例えば、真空下又は大気圧下において行うことができる。また更に、化合物(II)の脱離及び除去は例えば、窒素雰囲気下又は大気雰囲気下において行うことができる。特に、大気圧の大気雰囲気下において化合物(II)の脱離及び除去を行うことは、式(I)の縮合多環芳香族化合物の製造を容易にするために好ましい。
 《有機半導体デバイスの製造方法》
 有機半導体デバイスを製造する本発明の方法は、有機半導体膜を生成する本発明の方法によって有機半導体膜を生成するステップを含む。またこの方法は随意に、有機半導体膜の上側又は下側に、電極層及び/又は誘電体層を形成するステップを更に含むことができる。
 《有機半導体デバイス》
 本発明の有機半導体デバイスは、有機半導体膜を有する有機半導体デバイスであって、有機半導体膜が、有機半導体膜が、下記の式(I)を有する有機半導体化合物で作られており、且つ有機半導体膜が、下記の式(I)の縮合多環芳香族化合物に二重結合を有する第1の化合物(II’)が二重結合を介して脱離可能に付加されてなる第1の付加化合物、及び下記の(a)~(c)からなる群より選択される少なくとも1種の化合物を含有している:
 ArArAr     (I)
 (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、及び2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成しており、且つ
  ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成している);
 (a)式(I)の縮合多環芳香族化合物に二重結合を有する第2の化合物(II”)が二重結合を介して脱離可能に付加されてなる構造を有する第2の付加化合物、
 (b)二重結合を有する第1の化合物(II’)であって、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II’)、及び
 (c)二重結合を有する第2の化合物(II”)であって、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II”)。
 ここで、有機半導体膜が第1の付加化合物及び上記の(a)~(c)からなる群より選択される少なくとも1種の化合物を含有していることは、有機半導体膜が検知可能な量でこれらの化合物を含有していることを意味する。したがって例えば式(I)を有する有機半導体化合物に対するこれらの化合物のモル比は、1ppm超、10ppm超、100ppm超、1,000ppm超、又は10,000ppm(1%)超であってよい。また、式(I)を有する有機半導体化合物これらの化合物の割合は、10mol%以下、5mol%以下、3mol%以下、1mol%以下、0.1mol%以下、又は0.01mol%以下であってよい。
 このような本発明の有機半導体デバイスは、式(I)の縮合多環芳香族化合物と並んで第1の付加化合物及び上記の(a)~(c)からなる群より選択される少なくとも1種の化合物を含有しているにもかかわらず、有機半導体デバイスとしての特性を有することができる。すなわち、本発明の有機半導体デバイスの有機半導体膜を本発明の有機半導体膜形成用溶液から製造する場合、付加化合物の熱脱離反応及び結晶化抑制剤の除去が完全には進行しなくても、本発明の有機半導体デバイスは半導体デバイスとしての特性を有することができる。これは、本発明の有機半導体デバイス又はその有機半導体膜の製造を容易にするために好ましい。
 特に本発明の有機半導体デバイスは、ソース電極、ドレイン電極、ゲート電極、ゲート絶縁膜、及び有機半導体膜を有する薄膜トランジスタであって、ゲート絶縁膜によってソース電極及びドレイン電極とゲート電極とを絶縁し、且つゲート電極に印加される電圧によってソース電極からドレイン電極へと有機半導体を通って流れる電流を制御する薄膜トランジスタである。また特に本発明の有機半導体デバイスは、有機半導体膜を活性層として有する太陽電池である。
 《その他》
 付加生成物、式(I)の縮合多環芳香族化合物、二重結合を有する化合物(II)等については、上記の第1の本発明に関する記載を参照できる。
 《《第4の本発明》》
 《α-ジケトン化合物》
 本発明のα-ジケトン化合物は、下記の式(I(a)-X)を有する:
 Ar1XAr2(a)Ar3X     (I(a)-X)
 (Ar1X及びAr3Xはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、且つこれらの芳香族環のうちの少なくとも1つが、下記の式(X)のビシクロα-ジケトン部分で置換されており:
Figure JPOXMLDOC01-appb-C000056
  Ar2(a)は、1個の複素芳香族環からなる置換又は非置換の複素芳香族環部分、及び2~5個の複素芳香族環が縮合している置換又は非置換の縮合複素芳香族環部分から選択され、
  Ar1XとAr2(a)は、少なくとも2つの炭素原子を共有して縮合環を形成しており、且つ
  Ar2(a)とAr3Xは、少なくとも2つの炭素原子を共有して縮合環を形成している}。
 本発明のα-ジケトン化合物に関し、Ar1X及びAr3Xはそれぞれ独立に、2~5個の芳香族環、特に2~4個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、且つこれらの芳香族環のうちの少なくとも1つが、下記の式(X)のビシクロα-ジケトン部分で置換されている:
Figure JPOXMLDOC01-appb-C000057
 また例えば、Ar1X及びAr3Xがそれぞれ独立に、置換又は非置換の2~5個のベンゼン環、特に置換又は非置換の2~4個のベンゼン環が縮合している縮合ベンゼン環部分から選択され、且つこれらベンゼン環のうちの少なくとも1つが、上記のビシクロα-ジケトン部分で置換されている。なお、ArとArは同じであっても異なっていてもよい。
 したがってAr1X及びAr3Xはそれぞれ独立に、置換又は非置換の下記の(b1)~(b4)の縮合ベンゼン環部分からなる群より選択され、且つこれらのベンゼン環のうちの少なくとも1つが、上記のビシクロα-ジケトン部分で置換されている:
Figure JPOXMLDOC01-appb-C000058
 本発明のα-ジケトン化合物に関し、Ar2(a)は、1個の複素芳香族環からなる置換又は非置換の複素芳香族環部分、又は2~5個、特に2~3個の複素芳香族環が縮合している置換又は非置換の縮合複素芳香族環部分から選択される。ここで、この複素芳香族環は例えば、下記の構造を有する複素芳香族環であってよい:
Figure JPOXMLDOC01-appb-C000059
 (Yはそれぞれ、カルコゲン、特に酸素(O)、硫黄(S)、セレン(Se)及びテルル(Te)から選択される元素、より特に硫黄)。
 したがって、Ar2(a)は、置換又は非置換の下記の(a1)、(a3)及び(a4)からなる群より選択される縮合複素芳香族環部分であってよい:
Figure JPOXMLDOC01-appb-C000060
 (Yはそれぞれ独立に、カルコゲンから選択される元素であって、全て同じでも一部が異なっていてもよい)。
 本発明のα-ジケトン化合物は、光照射によってビシクロα-ジケトン部分が分解してベンゼン環部分になり、それによって下記の式(I(a))の縮合多環芳香族化合物を生成する:
 ArAr2(a)Ar     (I(a))
 (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  Ar2(a)は、1個の複素芳香族環からなる置換又は非置換の複素芳香族環部分、及び2~5個の複素芳香族環が縮合している置換又は非置換の縮合複素芳香族環部分から選択され、
  ArとAr2(a)は、少なくとも2つの炭素原子を共有して縮合環を形成しており、且つ
  Ar2(a)とArは、少なくとも2つの炭素原子を共有して縮合環を形成している)。
 式(I(a))の縮合多環芳香族化合物に関し、Ar及びArはそれぞれ独立に、2~5個の芳香族環、特に2~4個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択される。ここでは、芳香族環は特に、置換又は非置換のベンゼン環である。また、ArとArは同じであっても異なっていてもよい。
 したがってAr及びArはそれぞれ独立に、置換又は非置換の上記の(b1)~(b4)からなる群より選択されるベンゼン環部分であってよい。
 式(I)の縮合多環芳香族化合物に関し、Ar2(a)は、1個の複素芳香族環からなる置換又は非置換の複素芳香族環部分、又は2~5個、特に2~3個の複素芳香族環が縮合している置換又は非置換の縮合複素芳香族環部分である。
 したがって、Ar2(a)は、置換又は非置換の上記の(a1)、(a3)及び(a4)からなる群より選択される複素芳香族環部分又は縮合複素芳香族環部分であってよい。
 好ましくは式(I(a))の縮合多環芳香族化合物は、有機半導体化合物、すなわち半導体としての性質を示す有機物化合物である。また、式(I(a))の縮合多環芳香族化合物は、置換又は非置換の下記の式(I-1)~(I-5)の縮合多環芳香族化合物からなる群より選択できる。これらの縮合多環芳香族化合物は安定性が高く、したがって本発明のα-ジケトン化合物からの式(I(a))の縮合多環芳香族化合物の生成の際に、式(I(a))の縮合多環芳香族化合物を安定に維持することができる。すなわち、この場合には、式(I(a))の縮合多環芳香族化合物の生成の際に加熱を行う場合であっても、式(I(a))の縮合多環芳香族化合物を安定に維持することができる。したがって、この場合、本発明のα-ジケトン化合物からの式(I(a))の縮合多環芳香族化合物の生成を高い割合で行うことができる。
Figure JPOXMLDOC01-appb-C000061
 (Yはそれぞれ独立に、カルコゲンから選択される元素)。
 式(I(a))の縮合多環芳香族化合物、及びその合成に関しては、特に限定されないが、特許文献1~5及び非特許文献1を参照することができる。
 具体的には例えば、本発明のα-ジケトン化合物は、下記の式(I(a)-X1)~(I(a)-X5)の化合物、又はその立体異性体である:
Figure JPOXMLDOC01-appb-C000062
 (Yはそれぞれ独立に、カルコゲンから選択される元素であり、且つ
  縮合ベンゼン環部分は、置換又は非置換である)。
 ここで、これら式(I(a)-X1)~(I(a)-X5)の化合物、又はその立体異性体は、光の照射によってそのビシクロα-ジケトン部分が分解してベンゼン環部分になり、それによって縮合多環芳香族化合物の例である下記の式(I-4)の化合物を生成することができる:
Figure JPOXMLDOC01-appb-C000063
 (Yはそれぞれ独立に、カルコゲンから選択される元素あり、且つ
  縮合ベンゼン環部分は、置換又は非置換である)
 なお、上記の芳香族環等の置換は例えば、ハロゲン、炭素原子数1~20のアルキル基、炭素原子数2~20のアルケニル基、炭素原子数2~20のアルキニル基、炭素原子数4~20の置換又は非置換の芳香族基、炭素原子数2~10のエステル基、炭素原子数1~20のエーテル基、炭素原子数1~20のケトン基、炭素原子数1~20のアミノ基、炭素原子数1~20のアミド基、炭素原子数1~20のイミド基、及び炭素原子数1~20のスルフィド基からなる群より選択される置換基によってなされている。
 《α-ジケトン化合物の第1の合成方法》
 本発明のα-ジケトン化合物は、下記のステップ(a)~(c)を含む方法によって合成することができる:
 (a)下記の式(I(a))の縮合多環芳香族化合物に、炭酸ビニレンがその二重結合を介して脱離可能に付加されてなる構造を有する、炭酸ビニレン付加縮合多環芳香族化合物を提供するステップ:
 ArAr2(a)Ar     (I(a))
 (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  Ar2(a)は、1個の複素芳香族環からなる置換又は非置換の複素芳香族環部分、及び2~5個の複素芳香族環が縮合している置換又は非置換の縮合複素芳香族環部分から選択され、
  ArとAr2(a)は、少なくとも2つの炭素原子を共有して縮合環を形成しており、且つ
  Ar2(a)とArは、少なくとも2つの炭素原子を共有して縮合環を形成している);
 (b)炭酸ビニレン付加縮合多環芳香族化合物を加水分解して、炭酸ビニレンに対応する部分がα-ジオール部分に転化されたα-ジオール化合物を得るステップ:
 (c)α-ジオール化合物を酸化して、α-ジオール部分をα-ジケトン部分に転化するステップ。
 この方法のステップ(a)において原料として用いられる炭酸ビニレン付加縮合多環芳香族化合物は、式(I(a))の縮合多環芳香族化合物に炭酸ビニレンを付加させるステップ、特にこれらの化合物の混合によってこれらの化合物を付加するステップを含む方法によって製造できる。このとき、炭酸ビニレンは、溶媒中に溶解して用いることもできるが、単独で用いることもできる。ここで、この溶媒としては、炭酸ビニレンを溶解できる任意の溶媒を用いることができる。例えば使用可能な溶媒としては、N-メチルピロリドン、ジメチルスルホキシド、アセトニトリル、酢酸エチル等の非プロトン性極性溶媒;ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジエチレングリコールジメチルエーテル、1、4-ジオキサン等のエーテル系溶媒;ベンゼン、トルエン、キシレン、メシチレン(すなわち1,3,5‐トリメチルベンゼン)等の芳香族炭化水素類;ヘキサン、ヘプタン等の脂肪族炭化水素類;及びジクロロメタン、クロロホルム、ジクロロエタン等の含ハロゲン溶媒を考慮することができる。
 炭酸ビニレン付加縮合多環芳香族化合物の合成においては、式(I(a))の縮合多環芳香族化合物と炭酸ビニレンとの混合の際に、加熱及び/又は光照射によって、反応を促進することもできる。炭酸ビニレン付加縮合多環芳香族化合物の合成の際の反応温度は、生成速度、成分の安定性、成分の沸点等を考慮して決定することができ例えば、20℃以上、50℃以上、100℃以上であって、180℃以下、200℃以下、又は220℃以下の温度にすることができる。また反応時間は例えば、1分以上、10分以上、30分以上、1時間以上であって、1日以下、3日以下、5日以下、又は10日以下にすることができる。
 具体的には例えば、縮合多環芳香族化合物としてのジナフトチエノチオフェン(DNTT)及び炭酸ビニレンをメシチレン溶媒中に混合し、窒素下において加熱しながら撹拌して、ディールス-アルダー付加反応によって炭酸ビニレンをDNTTに付加させ、炭酸ビニレン付加縮合多環芳香族化合物としての炭酸ビニレン付加ジナフトチエノチオフェン(下記の式(1)の化合物)を得る。その後、ろ過によって炭酸ビニレン付加ジナフトチエノチオフェンを固形物として取得し、そしてクロロホルムで洗浄する。
Figure JPOXMLDOC01-appb-C000064
 この方法のステップ(b)における加水分解のためには例えば、ステップ(b)で提供した炭酸ビニレン付加ジナフトチエノチオフェン(上記の式(1)の化合物)をエタノール中に入れ、更に水酸化ナトリウムを加え、還流を行って、炭酸ビニレンに対応する部分がα-ジオール部分に転化されたα-ジオール化合物(下記の式(2)の化合物)を得る。なお、このステップ(b)の加水分解反応に関しては、非特許文献4を参照することができる。
Figure JPOXMLDOC01-appb-C000065
 この方法のステップ(c)における酸化のためには例えば、ステップ(b)で得られたα-ジオール化合物を、ジメチルスルホオキシド、トリフルオロ酢酸無水物、トリエチルアミン、塩化メチレンの混合溶液中において、冷却しながら反応させて、α-ジオール化合物を酸化して、α-ジオール部分をα-ジケトン部分に転化して、α-ジケトン化合物(下記の式(3)の化合物)を得る。なお、このステップ(c)の酸化反応に関しては、非特許文献4を参照することができる。
Figure JPOXMLDOC01-appb-C000066
 また、この方法の他の態様では、ステップ(a)において原料として用いられる炭酸ビニレン付加縮合多環芳香族化合物の例である炭酸ビニレン付加ジナフトチエノチオフェンを提供するために、特許文献5で示されるようにして得られる2-メチルチオ-3-ナフトアルデヒドを、窒素気流下において、テトロヒドロフラン溶媒に入れ、そしてそこに炭酸ビニレンを添加し、そして還流温度にて反応を行わせて、2-メチルチオ-3-ナフトアルデヒドに炭酸ビニレンが付加した付加体(下記の式(4)及び(5)の化合物)を得る。この付加体に対して、特許文献5の実施例1に示される手順を行って、この付加体2分子を結合させて、炭酸ビニレン付加ジナフトチエノチオフェンを得る。
Figure JPOXMLDOC01-appb-C000067
 《中間体α-ジケトン化合物、及びα-ジケトン化合物の第2の合成方法》
 本発明の中間体α-ジケトン化合物は、下記の式(I(a)’)を有する:
 Ar1XQ     (I(a)’)
 {Ar1Xは、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、且つこれらの芳香族環のうちの少なくとも1つが、下記の式(X)のビシクロα-ジケトン部分で置換されており、且つ:
Figure JPOXMLDOC01-appb-C000068
  Qは、下記の式を有し、且つAr1Xの縮合環の一部を構成している:
Figure JPOXMLDOC01-appb-C000069
 (Yは、カルコゲンから選択される元素である)}。
 具体的には例えば、式(I(a)’)の化合物は、下記の式のいずれかの化合物又はその立体異性体であってよい:
Figure JPOXMLDOC01-appb-C000070
 (Yは、カルコゲンから選択される元素であり、且つ
  ベンゼン環部分は、置換又は非置換である)。
 本発明のこの中間体α-ジケトン化合物は、下記の式(I’)の化合物に炭酸ビニレンを付加させ、そして得られた化合物を加水分解及び酸化して得ることができる:
 ArQ     (I’)
 {Arは、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、且つ
  Qは、下記の式を有し、且つArの縮合芳香環の一部を構成している:
Figure JPOXMLDOC01-appb-C000071
 (Yは、カルコゲンから選択される元素)}
 この中間体α-ジケトン化合物を得るための付加反応、加水分解反応、及び酸化反応については、上記のα-ジケトン化合物の第1の合成方法に関する記載を参照できる。
 具体的には、本発明の中間体α-ジケトン化合物を得るためには例えば、2-メチルチオ-3-ナフトアルデヒドに炭酸ビニレンが付加した付加体(上記の式(4)及び(5)の化合物)を、エタノール中に入れ、更に水酸化ナトリウムを加え、還流を行って、炭酸ビニレンに対応する部分がα-ジオール部分に転化されたα-ジオール化合物(下記の式(6)及び(7)の化合物)を得る。なお、この加水分解反応に関しては、非特許文献4を参照することができる。
Figure JPOXMLDOC01-appb-C000072
 その後、α-ジオール化合物(上記の式(6)及び(7)の化合物)を、ジメチルスルホオキシド、トリフルオロ酢酸無水物、トリエチルアミン、塩化メチレンの混合溶液中において、冷却しながら反応させて、このα-ジオール化合物を酸化して、α-ジオール部分をα-ジケトン部分に転化して、本発明の中間体α-ジケトン化合物(式(8)及び(9)の化合物)を得る。なお、この酸化反応に関しては、非特許文献4を参照することができる。
Figure JPOXMLDOC01-appb-C000073
 本発明のα-ジケトン化合物を、上記の中間体α-ジケトン化合物から合成する方法は、下記のステップ(a)及び(b)を含む:
 (a)本発明の中間体α-ジケトン化合物2分子を反応させ、又は本発明の中間体α-ジケトン化合物1分子と本発明の中間体α-ジケトン化合物のビシクロα-ジケトン部分を分解してベンゼン環部分にした構造を有する化合物1分子とを反応させて、下記の式の化合物を得るステップ:
 Ar1XQ=QAr1X
 {Q=Qは、下記の構造を示す:
Figure JPOXMLDOC01-appb-C000074
 (Yは、カルコゲンから選択される元素)};及び
 (b)式Ar1XQ=QAr1Xの得られた化合物をヨウ素と反応させるステップ。
 この方法によれば、下記の式(I(a1)-X)の本発明のα-ジケトン化合物が合成される:
 Ar1XAr2(a1)Ar1X     (I(a1)-X)
 (Ar1Xは、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、且つこれらの芳香族環のうちの少なくとも1つが、下記の式(X)のビシクロα-ジケトン部分で置換されており:
Figure JPOXMLDOC01-appb-C000075
  Ar2(a1)は、下記の式(a1)の縮合複素芳香族環部分(Yは、カルコゲンから選択される元素)であり、且つ
Figure JPOXMLDOC01-appb-C000076
  Ar1XとAr2(a1)は、少なくとも2つの炭素原子を共有して縮合環を形成している)。
 なお、上記の本発明のα-ジケトン化合物を上記の中間体α-ジケトン化合物から合成する方法の条件等に関しては、非特許文献1の記載を参照することができる。すなわち例えば、ステップ(a)における中間体α-ジケトン化合物2分子の反応は、テトラヒドロフラン中において、テトラクロロチタン/亜鉛(TiCl/Zn)触媒を用いて行う。また、ステップ(b)における式Ar(Q=Q)Arとヨウ素との反応は、トリクロロメタン(すなわちクロロホルム)(CHCl)中において行う。
 またこの方法では例えば、本発明の中間体α-ジケトン化合物(上記の式(8)及び(9)の化合物)に対して、特許文献5の実施例1に示される手順を行って、この付加体2分子を結合させて、炭酸ビニレン付加ジナフトチエノチオフェン(下記の式(3-1)~(3-5)のいずれかの化合物)を得る。
Figure JPOXMLDOC01-appb-C000077
 《α-ジケトン化合物含有溶液》
 本発明のα-ジケトン化合物含有溶液は、本発明のα-ジケトン化合物が、溶媒、特に有機溶媒に溶解されてなる。
 このα-ジケトン化合物含有溶液は、任意の濃度で本発明のα-ジケトン化合物を含有することができ、例えば本発明のα-ジケトン化合物を、0.01~20質量%、0.05~10質量%、0.1~5質量%の濃度で含有することができる。
 このα-ジケトン化合物含有溶液において使用可能な溶媒としては、本発明のα-ジケトン化合物を溶解できる任意の溶媒を用いることができる。例えば使用可能な溶媒としては、N-メチルピロリドン、ジメチルスルホキシド、アセトニトリル、酢酸エチル等の非プロトン性極性溶媒;ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジエチレングリコールジメチルエーテル、1、4-ジオキサン等のエーテル系溶媒;ベンゼン、トルエン、キシレン、メシチレン(すなわち1,3,5‐トリメチルベンゼン)等の芳香族炭化水素類;ヘキサン、ヘプタン等の脂肪族炭化水素類;及びジクロロメタン、クロロホルム、ジクロロエタン等の含ハロゲン溶媒を考慮することができる。
 《有機半導体膜の生成方法》
 有機半導体膜を生成する本発明の方法は、下記のステップ(a)及び(b)を含む:
 (a)本発明のα-ジケトン化合物含有溶液を、基材に塗布して、膜を作製するステップ、及び
 (b)この膜に光を照射して、α-ジケトン化合物のビシクロα-ジケトン部分を分解してベンゼン環部分にし、それによって下記の式(I(a))の縮合多環芳香族化合物からなる有機半導体膜を得るステップ:
 ArAr2(a)Ar     (I(a))
 (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  Ar2(a)は、1個の複素芳香族環からなる置換又は非置換の複素芳香族環部分、及び2~5個の複素芳香族環が縮合している置換又は非置換の縮合複素芳香族環部分から選択され、
  ArとAr2(a)は、少なくとも2つの炭素原子を共有して縮合環を形成しており、且つ
  Ar2(a)とArは、少なくとも2つの炭素原子を共有して縮合環を形成している)。
 この溶液の基材への塗布は、任意の様式で行うことができ、例えばキャスト法、スピンコート法、プリント法等によって行うこと等ができる。この溶液の基材への塗布は、単に溶液を基材に滴下して行うこともできる。
 α-ジケトン化合物から式(I(a))の縮合多環芳香族化合物を得るための光の照射においては、このような分解を達成することができる任意の波長及び/又は強度の光を照射することができる。ただし、一般的には、可視光~紫外波長の光を用いて分解を達成することができる。
 なお、光照射と併せて又は光照射の後で、減圧及び/又は加熱を行って、式(I(a))の縮合多環芳香族化合物以外の不純物を除去するステップを更に含むことができる。この場合には、式(I(a))の縮合多環芳香族化合物を実質的に分解させない任意の条件を用いることができる。したがって例えば、40℃以上、60℃以上、80℃以上、100℃以上、120℃以上、又は140℃以上であって、200℃以下、220℃以下、240℃以下、260℃以下の温度で加熱を行うことができる。また、本発明のα-ジケトン化合物の分解及び/又は不純物の除去は例えば、真空下又は大気圧下において行うことができる。また更に、本発明のα-ジケトン化合物の分解及び/又は不純物の除去は例えば、窒素雰囲気下又は大気雰囲気下において行うことができる。特に、本発明のα-ジケトン化合物の分解及び/又は不純物の除去を、大気圧の大気雰囲気下において行うことは、プロセスを容易にするために好ましい。
 《有機半導体デバイスの製造方法》
 有機半導体デバイスを製造する本発明の方法は、有機半導体膜を生成する本発明の方法によって有機半導体膜を生成するステップを含む。またこの方法は随意に、有機半導体膜の上側又は下側に、電極層及び/又は誘電体層を形成するステップを更に含むことができる。
 《有機半導体デバイス》
 本発明の有機半導体デバイスは、有機半導体膜を有する有機半導体デバイスであって、有機半導体膜が、下記の式(I(a))の縮合多環芳香族化合物で作られており、且つ有機半導体膜が、本発明のα-ジケトン化合物を更に含有している:
 ArAr2(a)Ar     (I(a))
 (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
  Ar2(a)は、1個の複素芳香族環からなる置換又は非置換の複素芳香族環部分、及び2~5個の複素芳香族環が縮合している置換又は非置換の縮合複素芳香族環部分から選択され、
  ArとAr2(a)は、少なくとも2つの炭素原子を共有して縮合環を形成しており、且つ
  Ar2(a)とArは、少なくとも2つの炭素原子を共有して縮合環を形成している)。
 ここで、有機半導体膜が本発明のα-ジケトン化合物を含有していることは、有機半導体膜が検知可能な量で本発明のα-ジケトン化合物を含有していることを意味する。したがって例えば本発明のα-ジケトン化合物のモル比は、1ppm超、10ppm超、100ppm超、1,000ppm超、又は10,000ppm(1%)超であってよい。また、本発明のα-ジケトン化合物の割合は、10mol%以下、5mol%以下、3mol%以下、1mol%以下、0.1mol%以下、又は0.01mol%以下であってよい。
 このような本発明の有機半導体デバイスは、式(I)の縮合多環芳香族化合物と並んで本発明のα-ジケトン化合物を含有しているにもかかわらず、有機半導体デバイスとしての特性を有する。すなわち、本発明の有機半導体デバイスの有機半導体膜を本発明のα-ジケトン化合物から製造する場合、本発明のα-ジケトン化合物の熱脱離反応が完全には進行しなくても、本発明の有機半導体デバイスは半導体デバイスとしての特性を有する。これは、本発明の有機半導体デバイス又はその有機半導体膜の製造を容易にするために好ましい。
 特に本発明の有機半導体デバイスは、ソース電極、ドレイン電極、ゲート電極、ゲート絶縁膜、及び有機半導体膜を有する薄膜トランジスタであって、ゲート絶縁膜によってソース電極及びドレイン電極とゲート電極とを絶縁し、且つゲート電極に印加される電圧によってソース電極からドレイン電極へと有機半導体を通って流れる電流を制御する薄膜トランジスタである。また特に本発明の有機半導体デバイスは、有機半導体膜を活性層として有する太陽電池である。
 以下の実施例及び比較例では、特に言及しない場合、目的化合物の構造は、必要に応じて1H-NMR(1H-核磁気共鳴スペクトル)、MS(質量分析スペクトル)、及び元素分析により決定した。使用した機器は以下のとおりである。
 H-NMR  :JEOL ECA-500 (500MHz)
 MS      :Shimazu QP-5050A
 元素分析    :Parkin Elmer2400 CHN型元素分析計
 また、付加反応について行ったコンピュータシュミレーションでの条件は、下記の通りである。
 〈半経験手法〉
 プログラム: MOPAC3.0
 ハミルトニアン: AM1
 構造最適化: EF法で構造最適化
 〈非経験手法〉
 プログラム: Gaussian03
 相関交換関数: B3LYP
 基底関数系: 6-31G(d)
 構造最適化: Bernyアルゴリズム
 このコンピュータシュミレーションでは、原料化合物の生成熱、及びこれらの化合物の付加化合物の生成熱を求め、それによってこの付加化合物を生成する反応の実現可能性を評価した。ここでは、原料化合物の生成熱の合計と、これらの化合物の付加化合物の生成熱との差(相対生成熱)の値が、-20kcal/mol(吸熱)よりも大きい場合、すなわち付加反応が発熱反応であるか又はわずかに吸熱反応である場合には、この付加化合物を生成する反応が実現可能であると考えられる。また、この相対生成熱の値が比較的小さく、例えば相対生成熱の値が-20kcal/molよりも大きい吸熱反応又は20kcal/mol以下の発熱反応である場合には、この付加反応が可逆的であると考えられる。なお、MOPACは炭素及び水素のみを考慮した場合には非常に信頼性が高いものの、それ以外の元素が含まれる場合には、Gaussianの信頼性が高い。
 《実施例1-1A》
 特許文献2に示される手法により合成したジナフトチエノチオフェン(DNTT、MW=340.46、構造式を下記に示す)100mg(0.293mmol)に、ヘキサクロロシクロペンタジエン(HCCPD、MW=272.77、構造式を下記に示す)20g(47.66mmol)を加え、反応温度を24時間にわたって160℃に保った。
Figure JPOXMLDOC01-appb-C000078
 その後、反応生成物を放冷して、ヘキサクロロシクロペンタジエン2付加ジナフトチエノチオフェン(DNTT-2HCCPD(TTs)、Mw.886.00、20mg、0.0225mmol、収率=7.7%、構造式を下記に示す)を得た。
Figure JPOXMLDOC01-appb-C000079
 尚、上記のようにして得たDNTT-2HCCPD(TTs)は、高速液体クロマトグラフィ(Agilent 1100 Series HPLC:High Performance Liquid Chromatography, SHISEIDO CAPCELL PAK C18 TYPE UG120、溶媒:アセトニトリル/水)により精製した。
 DNTT-2HCCPD(TTs)についての分析結果を下記に示す:
 H-NMR(500MHz,CDCl): δ8.43(s,1H),8.39(s,1H),8.33(s,1H),8.24(s,1H),8.05(m,1H),7.96(m,1H),7.55(m,2H),4.20(d,J=9.5Hz,1H),4.16(d,J=9.5Hz,1H),3.64(d,J=8.9Hz,2H)
 Anal.Calcd for C3212Cl12: C,43.37;H,1.37
 Found: C,41.9;H,1.3
 MS(70eV、DI): 340m/z
 質量分析(MS)の検出値(340m/z)は、DNTT(分子量340.46)と一致しており、DNTT-2HCCPD(TTs)が質量分析(70eV、DI)の条件に曝されることで、HCCPDが脱離してDNTTを再生していることが示されている。
 上記合成で得られたDNTT-2HCCPD(TTs)を、0.2質量%の濃度になるようにトルエンに溶解させて、半導体素子作成用溶液を調整した。
 次に、300nmのSiO酸化膜付nドープシリコンウェハ(面抵抗0.005Ω・cm)に対して、UVオゾン処理を20分にわたって行った(アイUV-オゾン洗浄装置OC-250615-D+A、アイグラフィックス株式会社)。また、オクタデシルトリクロロシラン(ODTS、信越化学LS-6495)10mmol/トルエン溶液を調製し、この溶液中に、UVオゾン処理を行ったシリコン基板を24時間浸漬させた。その後、真空蒸着法(サンユー電子、抵抗加熱方式蒸着装置:SVC-700TM/700-2)により、チャネル長50μm及びチャネル幅1.5mmのソース/ドレイン金電極を、シリコン基板上に作製した。
 このシリコン基板を40℃に加熱しながら、チャネル部分に、半導体素子作成用溶液を滴下して溶媒を揮発させ、DNTT-2HCCPD(TTs)からなる薄層を形成した。このようにして作製した素子を、真空下において180℃で1時間にわたって加熱処理し、有機半導体素子を作製した。得られた有機半導体素子の概略を図1に示す。この図1で示す有機半導体素子では、シリコンウェハである基材(ゲート電極)7上に、酸化ケイ素である誘電体層5が形成されており、この誘電体層5上に、ソース及びドレイン電極2及び3、そして有機半導体1が積層されている。
 有機半導体特性の測定を行ったところ、p型半導体を示した。キャリア移動度は、2×10-5cm/Vsであり、オン/オフ比は113、閾値電圧14.4Vであった。電界効果トタンジスタ(FET)としての出力特性及び伝達特性をそれぞれ、図2及び3に示す。ここで、図2は、縦軸がドレイン電流(I(A))を示しており、横軸がドレイン電圧(V(V))を示している。また図3は、縦軸がドレイン電流(I(A))を示しており、横軸がゲート電圧(V(V))を示している。
 《比較例1-1A》
 HCCPDを付加させていない単独のDNTTを0.2質量%の濃度でトルエンに加えたが、ほとんど溶解しなかった。したがって、単独のDNTTは、溶液法で用いることができなかった。
 《実施例1-1B》
 ジナフトチエノチオフェン(DNTT)とヘキサクロロシクロペンタジエン(HCCPD)との付加反応を、上記の半経験手法(MOPAC)を用いるコンピュータシュミレーションによって確認した。
 結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.29kcal/molとし、HCCPDの生成熱は5.86kcal/molであるとした。
Figure JPOXMLDOC01-appb-T000080
 表1の付加位置については、下記の化学式で示すように、「c」は中央の位置、「z」は近い硫黄(S)原子に対して同じ側(zusammen)の末端の位置、「e」は近い硫黄(S)原子に対して反対側(entgegen)の末端の位置で、DNTTにHCCPDが付加していることを示している。
Figure JPOXMLDOC01-appb-C000081
 また、表1において、「anti」は、DNTTの共役面に対して逆側からHCCPDが付加していることを示しており、「iso」は、DNTTの同じ側の末端に2つのHCCPDが付加していることを示している。また更に、3つ以上のHCCPDが付加している場合の「anti」は、隣接する反対末端間でのHCCPD間の結合配座が「anti」であることを示している。
 表1の結果からは、DNTTにHCCPDが1つのみ付加する場合には、近い硫黄(S)原子に対して同じ側の末端の位置(付加位置「z」、記号「DNTT-1HCCPD(T)」)、及び近い硫黄(S)原子に対して反対側の末端の位置(付加位置「e」、記号「DNTT-1HCCPD(Tb)」)で、DNTTにHCCPDが付加することが理解される。また、この付加化合物に対して更にもう1つのHCCPDが付加する場合には、既にHCCPDが付加している末端と同じ末端(付加位置「iso」)に更に、HCCPDが付加することが理解される(記号「DNTT-2HCCPD(TTs)」)。
 DNTTにHCCPDが2つ付加する場合にはHCCPDが既に付加している末端と同じ末端(付加位置「iso」)に更にHCCPDが付加するというこの結果は、実施例1-1Aで得られた結果に対応している。したがって、ディールス-アルダー反応におけるコンピュータシュミレーションの適用の妥当性が理解される。
 《実施例1-2A》
 ジナフトチエノチオフェン(DNTT、MW=340.46)1750mg(5.14mmol)、N―スルホニルアセトアミド(NSAA、MW105.12、構造式を下記に示す)17.83g(169.62mmol、3300mol%)、及び金属触媒試薬CHReO(ACROS A0245387、MW249.23)12.81mg(0.05mmol)を、クロロホルム溶媒中において混合し、窒素下において63℃で15.5時間にわたって還流した。これにより、DNTTとNSAAとのディールス-アルダー付加反応を行った。
Figure JPOXMLDOC01-appb-C000082
 その後、ろ過により固形物を取得し、これをクロロホルムで洗浄した。得られた緑色の固体1.82gは、原料を含む不純物であることが確認された。
 ろ過液にヘキサンを添加して再結晶させ、ろ過により0.2636gの黄色の固形物(31.5mg)を得た。この固形物をHPLCにより分取し、DNTTにNSAA1分子が付加した付加化合物31.5mg(DNTT-1NSAA、Mw=445.58、収率1.4mol%)を得た。この付加化合物の構造式を下記に示す。
Figure JPOXMLDOC01-appb-C000083
 得られたDNTT-1NSAAについての分析結果を下記に示す。
H-NMR(600MHz,CDCl): δ8.42(s,2H),8.38(s,2H),8.05(m,2H),7.95(m,2H),7.54(m,4H),2.03(s,3H)
 MS(70eV、DI): 339.85m/z
 質量分析(MS)の検出値(339.85m/z)は、DNTT(分子量340.46)と一致しており、DNTT-1NSAAが質量分析(70eV、DI)の条件に曝されることで、NSAAが脱離してDNTTが再生していることが示されている。
 《実施例1-2B》
 ジナフトチエノチオフェン(DNTT)とN-スルホニルアセトアミド(NSAA)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
 結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、NSAAの生成熱は-49.27kcal/molであるとした。
Figure JPOXMLDOC01-appb-T000084
 表2の付加位置については、下記の化学式で示すようにDNTTの炭素を番号付けし、NSAAの窒素(N)原子及び硫黄(S)原子が配位する炭素を特定した。
Figure JPOXMLDOC01-appb-C000085
 表2の結果からは、DNTTにNSAAが付加する反応が実現可能であり、この場合には、DNTTの中央の位置にNSAAが付加することが理解される。
 《実施例1-3》
 ジナフトチエノチオフェン(DNTT)とシクロペンタジエン(CPD、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
Figure JPOXMLDOC01-appb-C000086
 結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、CPDの生成熱は37.97kcal/molであるとした。
Figure JPOXMLDOC01-appb-T000087
 表3の付加位置については下記に例示する。なお、表3の記号「CPD-CPD」は、2つのCPDが付加した付加化合物を示している。
Figure JPOXMLDOC01-appb-C000088
 表3の結果からは、DNTTにCPDを付加する付加反応が、実現可能であることが理解される。
 《実施例1-4》
 ジナフトチエノチオフェン(DNTT)とフラン(FRN、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
Figure JPOXMLDOC01-appb-C000089
 結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、FRNの生成熱は2.96kcal/molであるとした。
Figure JPOXMLDOC01-appb-T000090
 表4の付加位置については下記に例示する。なお、表4の記号「FRN-FRN」は、2つのFRNが付加した付加化合物を示している。
Figure JPOXMLDOC01-appb-C000091
 表4の結果からは、DNTTにFRNを付加する付加反応が、実現可能であることが理解される。
 《実施例1-5》
 ジナフトチエノチオフェン(DNTT)とアントラセン(ANTH、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
Figure JPOXMLDOC01-appb-C000092
 結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、ANTHの生成熱は62.92kcal/molであるとした。
Figure JPOXMLDOC01-appb-T000093
 表5の付加位置については下記に示す。
Figure JPOXMLDOC01-appb-C000094
 表5の結果からは、DNTTにANTHを付加する付加反応が、実現可能であることが理解される。
 《実施例1-6》
 ジナフトチエノチオフェン(DNTT)とトリシアノ-カルボン酸メチル-エチレン(TCPM、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
Figure JPOXMLDOC01-appb-C000095
 結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、TCPMの生成熱は40.24kcal/molであるとした。
Figure JPOXMLDOC01-appb-T000096
 表6の付加反応の反応条件における「光」及び「熱」はそれぞれ、光及び熱によって付加反応を進行させられることを意味している。表6の付加位置については下記に例示する。
Figure JPOXMLDOC01-appb-C000097
 表6の結果からは、DNTTにTCPMを付加する付加反応が、実現可能であることが理解される。
 《実施例1-7》
 ジナフトチエノチオフェン(DNTT)とカルボン酸メチルピロール(NMPC、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
Figure JPOXMLDOC01-appb-C000098
 結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、NMPCの生成熱は-30.46kcal/molであるとした。
Figure JPOXMLDOC01-appb-T000099
 表7の付加反応の反応条件における「光」及び「熱」はそれぞれ、光及び熱によって付加反応を進行させられることを意味している。表7の付加位置については下記に例示する。
Figure JPOXMLDOC01-appb-C000100
 表7の結果からは、DNTTにNMPCを付加する付加反応が、実現可能であることが理解される。
 《実施例1-8》
 ジナフトチエノチオフェン(DNTT)とヒドロキシフェニル-マレイミド(HOPMI、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
Figure JPOXMLDOC01-appb-C000101
 結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、HOPMIの生成熱は-38.13kcal/molであるとした。
Figure JPOXMLDOC01-appb-T000102
 表8の付加反応の反応条件における「光」及び「熱」はそれぞれ、光及び熱によって付加反応を進行させられることを意味している。表8の付加位置については下記に例示する。
Figure JPOXMLDOC01-appb-C000103
 表8の結果からは、DNTTにHOPMIを付加する付加反応が、実現可能であることが理解される。
 《実施例1-9》
 ジナフトチエノチオフェン(DNTT)と炭酸ビニレン(VC(ビニレンカーボネート)、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
Figure JPOXMLDOC01-appb-C000104
 結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、VCの生成熱は-59.30kcal/molであるとした。
Figure JPOXMLDOC01-appb-T000105
 表9の付加反応の反応条件における「光」及び「熱」はそれぞれ、光及び熱によって付加反応を進行させられることを意味している。
 表9の付加位置については、下記の化学式で示すとおりである。
Figure JPOXMLDOC01-appb-C000106
M位:2-7
L位:4-5
Z位:3-6
T位:3-4、又は5-6
C位:7b-14b
 表9の結果からは、DNTTにVCを付加する付加反応が、実現可能であることが理解される。
 《実施例1-10A》
 特許文献2に示される手法により合成したジナフトチエノチオフェン(DNTT、MW=340.46)500mg(1.47mmol)、N-フェニルマレイミド(PMI、MW=173.16、構造式を下記に示す)2.54g(14.7mmol、1000mol%DNTT基準)、ラジカル補足剤としてのヒドロキノン(MW110.1)16.2mg(N-フェニルマレイミド基準で1mol%)を、メシチレン溶媒中で混合し、窒素下において160℃で2時間にわたって撹拌した。これにより、DNTTとPMIとのディールス-アルダー付加反応を行った。
Figure JPOXMLDOC01-appb-C000107
 反応後、ろ過により固形物を取得し、これをクロロホルムで洗浄した。この固形物は、NMRによりDNTT(原料)であることが確認された(収量422.3mg、収率84.5mol%)。
 ろ過液を、HPLC(高速液体クロマトグラフィ、Agilent 1100 Series HPLC:High Performance Liquid Chromatography, SHISEIDO CAPCELL PAK C18 TYPE UG120、溶媒:アセトニトリル/水)により分取し、DNTTにPMI1分子が付加した付加化合物113.2mg(DNTT-1PMI、Mw=513.63、収率15.0mol%)を得た。
 得られたDNTT-1PMIは、2種の立体異性体(それぞれ「立体異性体A」及び「立体異性体B」とする)の混合物であった。これらの立体異性体についての分析結果を下記に示す。なお、NMRの結果から、立体異性体Aがendo体であり、且つ立体異性体Bがexo体であると推定される。
 DNTT-1PMI(立体異性体A)
 H-NMR(600MHz,CDCl): δ8.30 (S、1H )、8.23(S、1H)、7.95(m、1H)、7.89(m、1H)、7.50(m、2H)、7.47(m、2H)、7.25(m、2H)、7.12(t、J=7.3Hz,1H)、7.07(dd、J=7.3Hz、7.7Hz,2H)、6.50(d、J=7.7Hz、2H)、5.30(d、J=3.3Hz,1H)、5.22(d、J=3.3Hz,1H)、3.54(dd、J=3.3Hz,8.1Hz,1H)、3.51(dd、J=3.3Hz、8.1Hz、1H)
 MS(70eV、DI): 514.10m/z
 DNTT-1PMI(立体異性体B)
 H-NMR(600MHz,CDCl): δ8.33(s、1H)、8.25(s、1H)、7.97(m、1H)、7.90(m、1H)、7.49(m、2H)、7.42(m、1H)、7.40(m、1H)、7.31(m、1H)、7.30(m、2H)、7.26(m、2H)、6.53(m、2H)、5.22(d、J=3.3Hz、1H)、5.18 (d、J=3.3Hz、1H)、3.59(dd、J=3.3Hz,8.4Hz,1H)、3.56(dd、J=3.3Hz、8.4Hz、1H)
 MS(70eV、DI): 513.05m/z
 質量分析(MS)の検出値はいずれも、DNTT-1PMI(Mw=513.63)と実質的に一致している。
 示差熱天秤分析(Rigaku TG-DTA TG8120)を用いて、窒素下において1℃/minの昇温分析を行って、DNTT-1PMI(立体異性体A及びB)の熱脱離特性を評価した。これによれば、DNTT-1PMI(立体異性体A)では、195℃から260℃の温度範囲において、重量減少が31.9wt%であった。また、DNTT-1PMI(立体異性体B)では、155℃から260℃の温度範囲において、重量減少が32.7wt%であった。結果を図4に示す。DNTT-1PMI(MW=513.63)から、PMIが逆ディールス-アルダー反応により熱脱離した場合、重量減少は-33.7wt%(計算値)であるので、DNTT-1PMI(立体異性体A及びB)での分析結果は、加熱によってPMIが脱離したことを示している。また、NMRによれば、熱脱離後の試料がDNTTと一致することが確認された。
 DNTT-1PMI(立体異性体A及びB)をそれぞれ用いて、下記のようにして、ボトムコンタクトボトムゲート型FET(Field effect Transistor)素子を作製した。
 基材は、300nmのSiO酸化膜付nドープシリコンウェハ(面抵抗0.005Ω・cm)のSiO酸化膜上に、チャネル長50μm及びチャネル幅1.5mmのソース/ドレイン金電極を作製して得た(ボトムコンタクト)。
 この基材を50℃に加熱しながら、DNTT-1PMI(立体異性体A及びB)のクロロホルム3wt%溶液を、基材のチャネル部に滴下し、速やかに揮発させて膜を得、そしてこの膜を加熱して有機半導体膜を得た。ここで、DNTT-1PMI(立体異性体A)ついては、窒素下において、約20℃/分の加熱速度で室温から昇温し、200℃で2時間の加熱を行った。また、DNTT-1PMI(立体異性体B)については、窒素下又は大気下において、約20℃/分の加熱速度で室温から昇温し、160℃で2時間の加熱を行った。
 得られた有機半導体膜の特性を評価すると、p型半導体特性を示した。また、キャリア移動度は0.01~0.0001cm/Vsであり、且つオン/オフ比は10~10であった。すなわち、DNTT-1PMI(立体異性体B)については、窒素下において加熱を行った場合だけでなく、大気下において加熱を行った場合にも、半導体特性が得られた。電界効果トタンジスタ(FET)としての出力特性及び伝達特性をそれぞれ、図5及び6に示す。ここで、図5は、縦軸がドレイン電流(I(A))を示しており、横軸がドレイン電圧(V(V))を示している。また図6は、縦軸がドレイン電流(I(A))を示しており、横軸がゲート電圧(V(V))を示している。
 また、図8は、DNTT-1PMI(立体異性体B)を用いて得た有機半導体膜のチャネル部におけるDNTTの結晶状態を、偏光顕微鏡で観察した結果を示す。この偏光顕微鏡によるチャネル部の観察によれば、加熱して有機半導体膜を得た後では、有機半導体膜の全面に、約1μmの微小な結晶粒子が形成されていることが確認された。したがって、加熱によってDNTT-1PMIからPMIが脱離して、DNTTの結晶が生成していることが確認された。
 DNTT-1PMI(立体異性体B)から得られた有機半導体膜を有する上記のFET素子に関して、有機半導体膜中における残留DNTT-1PMI(立体異性体A及びB)の有無について、NMRにより確認した。結果を図7に示す。なお、この図7において、「DNTT」、「DNTT-1PMI(A)」、「DNTT-1PMI(B)」、及び「FET DNTT-1PMI(B)」はそれぞれ、DNTT、DNTT-1PMI(立体異性体A)、DNTT-1PMI(立体異性体B)、及びDNTT-1PMI(立体異性体B)から得られた有機半導体膜についての分析結果を示している。
 図7によれば、DNTT-1PMI(立体異性体B)から得られた有機半導体膜では、DNTTに相当するNMRピークのみでなく、DNTT-1PMI(立体異性体A及びB)両方に相当するNMRピークが観測される。すなわち、有機半導体膜中にDNTT-1PMI(立体異性体A及びB)が残留している場合であっても、十分な半導体特性を提供できることが確認された。
 ここで、DNTTは溶解性が低く、したがってNMRによってピークが観察されにくい。一方で、DNTT-1PMI(立体異性体A及びB)は溶解性が高いため、溶解分に相当したNMRピークが観測されている。このため、このNMR結果からは、有機半導体膜におけるDNTT-1PMIとDNTTとの比は判断できない。なお、図7の「DNTT」のピークは、ノイズが大きくなっていることから理解されるように、他のピークと比較して倍率を大きくしている。また、有機半導体膜での検出されているDNTT-1PMI(立体異性体A及びB)のNMRピークの大きさが、DNTTのピークと相対してほぼ同程度であることより、残留成分のDNTT-1PMI(立体異性体A及びB)は、微少量であることが分かる。
 《実施例1-10B》
 ジナフトチエノチオフェン(DNTT)とN-フェニルマレイミドとの付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
 結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、PMIの生成熱は5.83kcal/molであるとした。
Figure JPOXMLDOC01-appb-T000108
 表10の付加位置については、下記の化学式で示すとおりである。
Figure JPOXMLDOC01-appb-C000109
M位:2-7
C位:7b-14b
Z位:3-6
MM位:2-7及び9-14
ZZ位:3-6及び10-13
MZ位及びZM位:2-7及び10-13
 表10の結果からは、1分子のDNTTに1分子のPMIを付加する付加反応、及び1分子のDNTTに2分子のPMIを付加する付加反応が、実現可能であることが理解される。
 《実施例1-10C》
 実施例1-10Aで合成したDNTT-1PMI(立体異性体A)のクロロホルム1.5wt%溶液を、基材上に滴下して、50℃のホットプレート上で乾燥させることによって、基板上にDNTT-1PMI(立体異性体A)の薄膜を形成した。ここで、基材は、300nmのSiO酸化膜を有するnドープシリコンウェハ(面抵抗0.005Ω・cm、厚さ約0.5mm)であった。
 このDNTT-1PMI(立体異性体A)の薄膜を有する基板を、大気下において、210℃に加熱したホットプレート上にピンセットを用いて置き、急速加熱を行い、3分間保持した。この急速加熱により、DNTT-1PMI(立体異性体A)からフェニルマレイミドが脱離して、DNTTが析出した。この急速加熱では、約15秒で薄膜が無色から黄色へと変化することを目視で観測した。DNTT-1PMI(立体異性体A)の熱脱離温度が195℃であることを考慮すると、約15秒で約200℃に達していると言え、これは約800℃/分の昇温速度に相当する。
 基板上に析出したDNTTの偏光顕微鏡による観察結果を図9に示す。この図9で示されているように、100μmを越える長軸径を有するDNTTの結晶粒子が析出していた。
 DNTTが析出した基板に対して、チャネル長50μm及びチャネル幅1.5mmのソース/ドレイン金電極を作製して、有機半導体素子を作製した(ボトムゲートトップコンタクト)。得られた有機半導体膜の特性を評価すると、p型半導体特性を示した。また、キャリア移動度は0.2~0.001cm/Vsであり、且つオン/オフ比は10~10であった。
 《実施例1-10D》
 DNTT-1PMI(立体異性体A)の薄膜を有する基板を、205℃に加熱したホットプレート上にピンセットを用いて置き、急速加熱を行い、5分間保持したこと以外は、実施例1-10Cと同様にしてDNTTを析出させた。この急速加熱では、約15秒で薄膜が無色から黄色へと変化することを目視で観測した。DNTT-1PMI(立体異性体A)の熱脱離温度が195℃であることを考慮すると、約15秒で約200℃に達していると言え、これは約800℃/分の昇温速度に相当する。
 基板上に析出したDNTTの偏光顕微鏡による観察結果を図10に示す。この図10で示されているように、100μmを越える長軸径を有するDNTTの結晶粒子が析出していた。
 《実施例1-10E》
 DNTT-1PMI(立体異性体A)の薄膜を有する基板を、室温のホットプレート上にピンセットを用いて置き、そして大気雰囲気において、室温から210℃まで10分間で昇温し(約20℃/分の加熱速度)、そして210℃で3分間にわたって等温保持したこと以外は、実施例1-10Cと同様にしてDNTTを析出させた。
 基板上に析出したDNTTの偏光顕微鏡による観察結果を図11に示す。この図11で示されているように、約1μmの微細なDNTTの結晶粒子が析出していた。
 《実施例1-10F》
 DNTT-1PMI(立体異性体A)の代わりに実施例1-10Aで合成したDNTT-1PMI(立体異性体B)を用いたこと、及びDNTT-1PMI(立体異性体B)の薄膜を有する基板を、170℃に加熱したホットプレート上にピンセットを用いて置き、急速加熱を行い、15分間保持を実施したこと以外は、実施例1-10Cと同様にしてDNTTを析出させた。この急速加熱では、約15秒で薄膜が無色から黄色へと変化することを目視で観測した。DNTT-1PMI(立体異性体B)の熱脱離温度が155℃であることを考慮すると、約15秒で約160℃に達していると言え、これは約640℃/分の昇温速度に相当する。
 基板上に析出したDNTTの偏光顕微鏡による観察結果を図12に示す。この図12で示されているように、20μmを越える長軸径を有するDNTTの結晶粒子が析出していた。
 《実施例1-10G》
 DNTT-1PMI(立体異性体A)の代わりに実施例1-10Aで合成したDNTT-1PMI(立体異性体B)を用いたこと、及びDNTT-1PMI(立体異性体B)の薄膜を有する基板を、室温のホットプレート上にピンセットを用いて置き、そして大気雰囲気において、室温から170℃まで8分間で昇温し(約20℃/分の加熱速度)、そして170℃で15分間にわたって等温保持したこと以外は、実施例1-10Cと同様にしてDNTTを析出させた。
 基板上に析出したDNTTの偏光顕微鏡による観察結果を図13に示す。この図13で示されているように、約1μmの微細なDNTTの結晶粒子が析出していた。
 《実施例1-11》
 ナフトアルデヒド(NAL、構造式を下記に示す)とN-フェニルマレイミド(PMI、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
Figure JPOXMLDOC01-appb-C000110
 同様にして、3-メチルチオ-2-ナフトアルデヒド(MTNAL、構造式を下記に示す)とN-フェニルマレイミド(PMI、構造式を下記に示す)との付加反応を、コンピュータシュミレーションによって確認した。
Figure JPOXMLDOC01-appb-C000111
 結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、NALの生成熱は9.58kcal/molとし、MTNALの生成熱は12.28kcal/molとし、PMIの生成熱は5.83kcal/molであるとした。
Figure JPOXMLDOC01-appb-T000112
 表9の付加反応の反応条件における「熱」は、熱によって付加反応を進行させられることを意味している。
 表11の付加位置は、下記のとおりである:
 M位:1-4
 Z位:8-5
 表11の結果からは、NALにPMIを付加する付加反応、及びMTNALにPMIを付加する付加反応が、実現可能であることが理解される。また、表11の結果からは、下記のEndo体及びExo体が、いずれも形成されることが理解される。
Figure JPOXMLDOC01-appb-C000113
 《実施例1-12》
 ジナフトチエノチオフェン(DNTT、MW=340.46)500mg(1.47mmol)、N-メチルマレイミド(MMI、MW=111.1)1.63g(14.7mmol、DNTT基準で1000mol%)、ラジカル補足剤としてのヒドロキノン(MW110.1)16.2mg(N-メチルマレイミド基準で1mol%)を、メシチレン溶媒中において混合し、窒素下において160℃で2時間にわたって撹拌した。これにより、DNTTとMMIとのディールス-アルダー付加反応を行った。
 その後、ろ過により固形物を取得し、クロロホルムで洗浄した。この固形物は、NMRによりDNTT(原料)であることが確認された(収量343.5mg、収率.68.7mol%)。
 ろ過液を、HPLCにより分取し、DNTTにMMI1分子が付加した付加物化合物113.2mg(DNTT-1MMI、Mw=451.56、収率28.5mol%)を得た。この付加化合物の構造式を下記に示す。
Figure JPOXMLDOC01-appb-C000114
 得られたDNTT-1MMPは、2種の立体異性体(それぞれ「立体異性体A」及び「立体異性体B」とする)の混合物であった。これらの立体異性体についての分析結果を下記に示す。なお、NMRの結果から、立体異性体Aがendo体であり、且つ立体異性体Bがexo体であると推定される。
 DNTT-1MMI(立体異性体A)
 H-NMR(600MHz,CDCl): δ8.28(s,1H),8.19(s,1H),7.94(m,1H),7.88(m,1H),7.47(m,2H),7.46(m,1H),7.42(m,1H),7.21(m,2H),5.18(d,J=2.9Hz,1H),5.11(d,J=2.9Hz,1H),3.37(dd,J=2.9Hz,7.7Hz,1H),3.35(dd,J=2.9Hz,7.7Hz,1H),2.53(s,3H)
 MS(70eV、DI): 451.00m/z
 DNTT-1MMI(立体異性体B)
 H-NMR(600MHz,CDCl): δ8.32(s,1H),8.23(s,1H),7.95(m,1H),7.89(m,1H),7.49(m,2H),7.33(m,1H),7.31(m,1H),7.17(m,2H),5.11(d,J=3.3Hz,1H),5.07(d,J=3.3Hz,1H),3.43(dd,J=3.3Hz,8.4Hz,1H),3.40(dd,J=3.3Hz,8.4Hz,1H),2.52(s,3H)
 MS(70eV、DI): 451.30m/z
 質量分析(MS)の検出値はいずれも、DNTT-1MMI(Mw=451.56)と実質的に一致している。
 実施例1-10Aでのようにして示差熱天秤分析を用いて、DNTT-1MMIの熱脱離特性を評価した。これによれば、DNTT-1MMI(立体異性体A)では、220℃から260℃の温度範囲において熱脱離が起こった。なお、DNTT-1MMI(立体異性体B)のサンプル微量であったため、熱脱離特性の評価が行えなかった。
 DNTT-1MMI(立体異性体A)に関しては、実施例1-10Aでのようにして有機半導体膜を得て、半導体特性を評価した。ここで、有機半導体膜を得るための加熱は、窒素下において、225℃で2時間にわたって行った。得られた有機半導体膜の特性を評価すると、p型半導体特性を示した。また、キャリア移動度は、0.01~0.0001cm/Vsであり、且つオン/オフ比は10~10であった。
 《実施例1-13》
 ジナフトチエノチオフェン(DNTT、MW=340.46)500mg(1.47mmol)、N-シクロヘキシルマレイミド(CHMI、MW=179.22)2.63g(14.7mmol、DNTT基準で1000mol%)、ラジカル補足剤としてのヒドロキノン(MW110.1)16.2mg(N-フェニルマレイミド基準で1mol%)を、メシチレン溶媒中において混合し、窒素下において160℃で2時間にわたって撹拌した。これにより、DNTTとCHMIとのディールス-アルダー付加反応を行った。
 その後、ろ過により固形物を取得し、クロロホルムで洗浄した。この固形物は、NMRによりDNTT(原料)であることが確認された(収量478.5mg、収率.95.7mol%)。
 ろ過液を、HPLCにより分取し、DNTTにCHMI1分子が付加した付加化合物28.9mg(DNTT-1CHMI、Mw=519.13、収率2.1mol%)を得た。この付加化合物の構造式を下記に示す。
Figure JPOXMLDOC01-appb-C000115
 得られたDNTT-1CHMIについての分析結果を下記に示す。なお、DNTT-1CHMIに関しては、立体異性体は得られなかった。
H-NMR(600MHz,CDCl): δ8.31(s,1H),8.23(s,1H),7.95(m,1H),7.89(m,1H),7.48(m,2H),7.33(m,1H),7.32(m,1H),7.17(m,2H),5.08(d,J=3.4Hz,1H),5.05(d,J=3.4Hz,1H),3.51(m,1H),3.33(dd,J=3.4Hz,8.3Hz,1H),3.30(dd,J=3.4Hz,8.3Hz,1H),1.68(m,4H),1.58(m,1H),1.09(m,3H),0.84(m,2H)
 MS(70eV、DI): 519.20m/z
 質量分析(MS)の検出値は、DNTT-1CHMI(Mw=519.13)と実質的に一致している。
 実施例1-10Aでのようにして示差熱天秤分析を用いて、DNTT-1CHMIの熱脱離特性を評価した。これによれば、DNTT-1CHMIでは、200℃から280℃の温度範囲において熱脱離が起こった。
 DNTT-1CHMIに関して、実施例1-10Aでのようにして有機半導体膜を得て、半導体特性を評価した。ここで、有機半導体膜を得るための加熱は、窒素下において、210℃で2時間にわたって行った。得られた有機半導体膜の特性を評価すると、p型半導体特性を示した。キャリア移動度は、0.01~0.0001cm/Vsであり、且つオン/オフ比は10~10であった。
 《実施例1-14》
 ジナフトチエノチオフェン(DNTT、MW=340.46)2000mg(5.87mmol)、N-ベンジルマレイミド(BZMI、MW=187.19)10.99g(58.7mmol、DNTT基準で1000mol%)、ラジカル補足剤としてヒドロキノン(MW110.1)64.8mg(N-ベンジルマレイミド基準で1mol%)をメシチレン溶媒中において混合し、窒素下において160℃で4時間にわたって撹拌した。これにより、DNTTとBZMIとのディールス-アルダー付加反応を行った。
 その後、ろ過により固形物を取得し、クロロホルムで洗浄した。この固形物は、NMRによりDNTT(原料)であることが確認された(収量980mg、収率.49.0mol%)。
 ろ過液を、HPLCにより分取し、DNTTにBZMI1分子が付加した付加化合物659.2mg(DNTT-1BZMI、Mw=527.10、収率21.3mol%)を得た。この付加化合物の構造式を下記に示す。
Figure JPOXMLDOC01-appb-C000116
 得られたDNTT-1BZMIについての分析結果を下記に示す。なお、DNTT-1BZMIに関しては、立体異性体は得られなかった。
 H-NMR(600MHz,CDCl): δ8.31(s,1H),8.22(s,1H),7.95(m,1H),7.89(m,1H),7.48(m,2H),7.23(m,2H),7.18(t,J=7.3Hz,1H),7.14(dd,J=7.3Hz,7.3Hz,2H),6.99(m,2H),6.75(d,J=7.3Hz,2H),5.08(d,J=3.3Hz,1H),5.05(d,J=3.3Hz,1H),4.28(s,2H),3.44(dd,J=3.3Hz,8.4Hz,1H),3.41(dd,J=3.3Hz,8.4Hz,1H)
 MS(70eV、DI): 527.95m/z
 質量分析(MS)の検出値は、DNTT-1BZMI(Mw=527.10)と実質的に一致している。
 実施例1-10Aでのようにして示差熱天秤分析を用いて、DNTT-1BZMIの熱脱離特性を評価した。これによれば、DNTT-1BZMIでは、190℃から260℃の温度範囲において熱脱離が起こった。
 DNTT-1BZMIに関して、実施例1-10Aでのようにして有機半導体膜を得て、半導体特性を評価した。ここで、有機半導体膜を得るための加熱は、窒素下において、200℃で2時間にわたって行った。得られた有機半導体膜の特性を評価すると、p型半導体特性を示した。それぞれのキャリア移動度は、0.01~0.0001cm/Vsであり、オン/オフ比は10~10であった。
 《実施例1-15》
 ジナフトチエノチオフェン(DNTT、MW=340.46)500mg(1.47mmol)、N-t-ブチルマレイミド(TBMI、MW=153.18)2.25g(14.7mmol、DNTT基準で1000mol%)、ラジカル補足剤としてのヒドロキノン(MW110.1)16.2mg(N-t-ブチルマレイミド基準で1mol%)をメシチレン溶媒中において混合し、窒素下において160℃で4時間にわたって撹拌した。これにより、DNTTにTBMIとのディールス-アルダー付加反応を行った。
 その後、ろ過により固形物を取得し、クロロホルムで洗浄した。この固形物は、NMRによりDNTT(原料)であることが確認された(収量486mg、収率.97.2mol%)。
 ろ過液を、HPLCにより分取し、DNTTへのTBMI1分子が付加した付加化合物2.1mg(DNTT-1TBMI、Mw=493.64、収率0.29mol%)を得た。この付加化合物の構造式を下記に示す。
Figure JPOXMLDOC01-appb-C000117
 DNTT-1TBMIについての分析結果を下記に示す。なお、DNTT-1TBMIに関しては、立体異性体は得られなかった。
 H-NMR(600MHz,CDCl): δ8.31(s,1H),8.22(s,1H),7.95(m,1H),7.89(m,1H),7.48(m,2H),7.35(m,1H),7.33(m,1H),7.18(m,2H),5.06(d,J=3.3Hz,1H),5.02(d,J=3.3Hz,1H),3.23(dd,J=3.3Hz,8.8Hz,1H),3.16(dd,J=3.3Hz,8.8Hz,1H),2.59(s,9H)
 《実施例1-16》
 ジナフトチエノチオフェン(DNTT、MW=340.46)500mg(1.47mmol)、無水マレイン酸(MA、MW=98.06)1.44g(14.7mmol、DNTT基準で1000mol%)、ラジカル補足剤としてのヒドロキノン(MW110.1)16.2mg(無水マレイン酸基準で1mol%)をメシチレン溶媒中において混合し、窒素下において160℃で4時間にわたって撹拌した。これにより、DNTTとMAとのディールス-アルダー付加反応を行った。
 その後、ろ過により固形物を取得し、クロロホルムで洗浄した。この固形物は、NMRによりDNTT(原料)であることが確認された(収量472.2mg、収率.94.4mol%)。
 ろ過液を、HPLCにより分取し、DNTTにMA1分子が付加した付加化合物32.2mg(DNTT-1MA、Mw=438.52、収率5.0mol%)を得た。この付加化合物の構造式を下記に示す。
Figure JPOXMLDOC01-appb-C000118
 得られたDNTT-1MAについての分析結果を下記に示す。
 H-NMR(600MHz,CDCl): δ8.31(s,1H),8.22(s,1H),7.95(m,1H),7.89(m,1H),7.48(m,2H),7.23(m,2H),7.00(m,2H),5.09(d,J=3.3Hz,1H),5.05(d,J=3.3Hz,1H),3.44(dd,J=3.3Hz,8.4Hz,1H),3.41(dd,J=3.3Hz,8.4Hz,1H)
 MS(70eV、DI): 341.31m/z
 質量分析(MS)の検出値は、DNTT(分子量340.46)と一致しており、DNTT-1MAが質量分析(70eV、DI)の条件に曝されることで、MAが脱離してDNTTが再生していることが示されている。
 《実施例2-1》
 以下の実施例2-1~比較例2-2では、目的化合物の構造は、必要に応じて1H-NMR(1H-核磁気共鳴スペクトル)、及びMS(質量分析スペクトル)により決定した。使用した機器は以下のとおりである。
 H-NMR  :JNM-A-600 (600MHz)
 MS      :Shimazu QP-5050A
 (DNTTの生成)
 非特許文献1のSupporting Informationに示される手法にしたがって、出発原料としての2-ナフトアルデヒド(MW=156.18)9.59g(61.4mmol)を用いて、ジナフトチエノチオフェン(DNTT)(MW=340.46、構造式を下記に示す)4.03g(11.8mmol、収率38.56%)を得た。
Figure JPOXMLDOC01-appb-C000119
 (溶媒洗浄によるDNTTの精製)
 このようにして得たDNTTを、クロロホルム及びヘキサン溶媒で洗浄し、そしてフィルターろ過した。この時点でのDNTT(精製物1)の色は、灰色がかかった黄色であった。純粋なDNTTは黄色であり、したがってこのDNTT(精製物1)灰色の着色は、DNTTの製造の間に用いたヨウ素を、DNTT固体が抱きこんでいることが原因と考えられる。また、図2で示すように、NMR(核磁気共鳴分光分析)によれば、このDNTT(精製物1)が芳香族性不純物を含んでいることが確認された。このDNTT(精製物1)の不純物含有率は、H-NMRデータのプロトン比に基づいて計算すると約11mol%であった。
 (本発明の方法によるDNTTの精製)
 このDNTT(精製物1)500mgに対して、N-フェニルマレイミド(PMI)(MW=173.16)2.54g(118.3mmol、DNTT基準で1000mol%)、ラジカル補足剤としてのヒドロキノン(MW110.1)16.2mg(N-フェニルマレイミド基準で1mol%)、及びメシチレン溶媒を加えて混合液を得、この混合液を窒素雰囲気において160℃で2時間にわたって攪拌した。これにより、N-フェニルマレイミドによるDNTTに対するDiels-Alder付加反応を行った。
 その後、ろ過により混合液の固形物を取得し、得られた固形物をクロロホルムで洗浄した。この固形物は、NMRによりDNTT(精製物2)であることが確認された(収量422.3mg、収率84.4mol%)。このDNTT(精製物2)は、黄色を呈しており、ヨウ素と推定される着色成分が除去されたことが確認された。また、図2で示すように、NMR(核磁気共鳴分光分析)によれば、DNTT(精製物2)では、DNTT(精製物1)に見られた不純物である芳香族性有機成分が除去されたことも確認できた。
 (昇華によるDNTTの精製)
 DNTTで、有機半導体特性を得るためには、さらなる高純度化が不可欠である。したがって、上記のようにして得られたDNTT(精製物2)を更に、昇華精製法を3回行って精製して、DNTT(精製物3)とした。
 (FET素子の作製)
 DNTT(精製物3)を用いて、蒸着法により、トップコンタクトボトムゲート型電界効果トランジスタ(FET:Field Effect Transistor)素子を作製した。
 具体的には、300nmのSiO酸化膜付nドープシリコンウェハ(面抵抗0.005Ω・cm)に対して、UVオゾン処理を20分にわたって行って(アイUV-オゾン洗浄装置OC-250615-D+A、アイグラフィックス株式会社)、UVオゾン処理シリコン基板を得た。また、オクタデシルトリクロロシラン(ODTS、信越化学LS-6495)10mmol/トルエン溶液を調整して、この溶液中に、UVオゾン処理シリコン基板を24時間浸漬させた。その後、真空蒸着法(サンユー電子、抵抗加熱方式蒸着装置:SVC-700TM/700-2)により、DNTT(精製物3)で約50nmの薄膜を作製し、そしてチャネル幅50μm及びチャネル長1.5mmのソース/ドレイン金電極をDNTT上(トップコンタクト)に作製した。
 このFET素子において半導体特性を測定したところ、p型半導体の特性を示した。また、キャリア移動度は1.3cm/Vsであり、オン/オフ比は10であった。
 《実施例2-2》
 実施例2-1の本発明の方法によるDNTTの精製で得られたろ過液を、HPLC(高速液体クロマトグラフィ、Agilent 1100 Series HPLC:High Performance Liquid Chromatography, SHISEIDO CAPCELL PAK C18 TYPE UG120、溶媒:アセトニトリル/水)により分取して、下記の式のジナフトチエノチオフェン-フェニルマレイミド1付加物(DNTT-1PMI、立体異性体Endo体、Exo体、Mw=513.63、収量113.2mg、収率15.0mol%)を得た。
Figure JPOXMLDOC01-appb-C000120
 DNTT-1PMI(Endo体及びExo体)についての分析結果をそれぞれ下記の(1)及び(2)下記に示す。
 (1)DNTT-1PMI(Endo体)
 H-NMR(600MHz,CDCl): δ8.30 (S、1H )、8.23(S、1H)、7.95(m、1H)、7.89(m、1H)、7.50(m、2H)、7.47(m、2H)、7.25(m、2H)、7.12(t、J=7.3Hz,1H)、7.07(dd、J=7.3Hz、7.7Hz,2H)、6.50(d、J=7.7Hz、2H)、5.30(d、J=3.3Hz,1H)、5.22(d、J=3.3Hz,1H)、3.54(dd、J=3.3Hz,8.1Hz,1H)、3.51(dd、J=3.3Hz、8.1Hz、1H)
 MS(70eV、DI): 514.10m/z
 (2)DNTT-1PMI(Exo体)
 H-NMR(600MHz,CDCl): δ8.33(s、1H)、8.25(s、1H)、7.97(m、1H)、7.90(m、1H)、7.49(m、2H)、7.42(m、1H)、7.40(m、1H)、7.31(m、1H)、7.30(m、2H)、7.26(m、2H)、6.53(m、2H)、5.22(d、J=3.3Hz、1H)、5.18 (d、J=3.3Hz、1H)、3.59(dd、J=3.3Hz,8.4Hz,1H)、3.56(dd、J=3.3Hz、8.4Hz、1H)
 MS(70eV、DI): 513.05m/z
 質量分析(MS)の検出値(514.10m/z及び513.05m/z)は、DNTT-フェニルマレイミド1付加物(DNTT-1PMI)(Mw=513.63)と一致していた。
 このDNTT-1PMI(Endo体及びExo体)の熱脱離特性は、図3で示されているように、Endo体については195℃~260℃で重量減少が31.9wt%であり、Exo体については155℃~260℃で重量減少が32.7wt%であることが、示差熱天秤分析(Rigaku TG-DTA TG8120、窒素雰囲気、1℃/minの昇温分析)により確認された。
 DNTT-1PMI(MW=513.63)からPMIが逆Diels-Alder反応により熱脱離する場合の重量減少の計算値は33.7wt%であり、これは分析結果と一致している。また、熱脱離後の試料に関しては、NMRによりDNTTと一致することが確認された。
 DNTT-1PMI(Endo体、Exo体)は、窒素雰囲気において260℃まで加熱して、精製されたDNTT(精製物2’)64.2mgを得た。このDNTT(精製物2’)は、黄色を呈しており、ヨウ素と推定される着色成分が除去されたことが確認された。また、図2で示すように、NMR(核磁気共鳴分光分析)によれば、DNTT(精製物2’)では、DNTT(精製物1)に見られた不純物である芳香族性有機成分が除去されたことも確認できた。
 ろ過よって得られた固形物からのDNTT(実施例2-1の精製物2)と、DNTT-1PMIから得たDNTT(実施例2-2の精製物2’)とを合計すると、収量486.5mg、収率97.3mol%であった。
 《比較例2-1》
 本発明の方法によるDNTTの精製を行わないことを除いて実施例2-1と同様にして、すなわち実施例2-1のDNTT(精製物1)を3回にわたって昇華精製法により精製して、DNTT(精製物3’)を得た。昇華精製した後のDNTTでは、灰色の着色はやや薄くなったものの、灰色成分は除去することができなかった。
 このようにして得たDNTT(精製物3’)を用いて、実施例2-1と同様にして、蒸着法によりFET素子を作製した。このFET素子において半導体特性を測定したところ、p型半導体の特性を示した。また、キャリア移動度は0.023cm/Vsであり、オン/オフ比は10であった。したがって、比較例2-1のFET素子は、実施例2-1のFET素子と比較して有意に劣っていた。
 《比較例2-2》
 実施例2-1のDNTT(精製物1)を、窒素雰囲気のメシチレン溶媒中において160℃で2時間にわたって攪拌して、精製した。この精製では、DNTT(精製物1)の灰色の着色が変化せずに維持された。したがって、この精製では、このDNTT(精製物1)固体に抱き込まれているよるヨウ素は除去されなかったと考えられる。
 《実施例3-1》
 この実施例では、2種類の付加化合物を含有する有機半導体膜形成用溶液を調製し、その固形物としての析出状態について確認した。
 上記の実施例1-10Aでのようにして、ジナフトチエノチオフェン(DNTT)にN-フェニルマレイミド(PMI)1分子が付加した付加化合物(DNTT-1PMI(立体異性体A))を得た。ここで、このDNTT-1PMI(立体異性体A)は、NMRの結果から、endo体であると推定される。また、上記の実施例1-13でのようにして、ジナフトチエノチオフェン(DNTT)にN-シクロヘキシルマレイミド(CHMI)1分子が付加した付加化合物(DNTT-1CHMI)を得た。
 合計で1.0質量%の量のDNTT-1PMI及びDNTT-1CHMIをクロロロホルムに加えて、有機半導体膜形成用溶液を得た。ここで、DNTT-1PMIとDNTT-1CHMIとのモル比は、1:1になるようにした。
 〈結晶化の評価〉
 この有機半導体膜形成用溶液をシリコンウェハに滴下し、溶媒であるクロロホルムを常温の大気中において揮発させて固形物を析出させた。この固形物の析出状態を顕微鏡にて観察した。結果を図1に示す。ここで、図1(a)は、この固形物の全体を示す写真であり、且つ図1(a)は、この固形物の拡大写真(500倍)である。
 図1から理解されるように、固形物が膜状に析出しており、実質的に結晶化が進行していないことが確認された。これは、有機半導体膜形成用溶液が2種類の付加化合物を含有していることにより、溶媒が揮発して固形物が析出する際に、結晶化が抑制されていることによると考えられる。
 〈FETの作製〉
 この有機半導体膜形成用溶液を用いて、下記のようにして、ボトムコンタクトボトムゲート型FET(Field effect Transistor)素子を作製した。
 基材は、300nmのSiO酸化膜付nドープシリコンウェハ(面抵抗0.005Ω・cm)のSiO酸化膜上に、チャネル長50μm及びチャネル幅1.5mmのソース/ドレイン金電極を作製して得た(ボトムコンタクト)。
 有機半導体膜形成用溶液を、室温において基材のチャネル部に滴下し、速やかに揮発させて膜を得、そしてこの膜を加熱して有機半導体膜を得た。その後、窒素下において、210℃で2時間にわたってこの膜を加熱して、有機半導体膜を得た。
 窒素下における加熱の前後において、この膜を観察した。結果を図2に示す。ここで、図2(a)は、加熱(アニール)の前の観察結果を示しており、また図2(b)は、加熱の後の観察結果を示している。この図2からは、加熱によって、有機半導体膜全体にわたって微小な結晶粒子が析出することが理解される。
 得られたFETの有機半導体膜の特性を評価すると、p型半導体特性を示した。また、キャリア移動度は最大で0.01cm/Vsであり、且つオン/オフ比は最大で10であった。
 《実施例3-2》
 この実施例では、付加化合物とこの付加化合物を構成する化合物とを含有する有機半導体膜形成用溶液を調製し、その固形物としての析出状態について確認した。
 上記の実施例1-10Aでのようにして、ジナフトチエノチオフェン(DNTT)にN-フェニルマレイミド(PMI)1分子が付加した付加化合物(DNTT-1PMI(立体異性体A))を得た。ここで、このDNTT-1PMI(立体異性体A)は、NMRの結果から、endo体であると推定される。
 1.0質量%の量のDNTT-1PMI、及びDNTT-1PMIに対して1mol%のPMIをクロロロホルムに加えて、有機半導体膜形成用溶液を得た。
 〈結晶化の評価〉
 この有機半導体膜形成用溶液をシリコンウェハに滴下し、溶媒であるクロロホルムを常温の大気中において揮発させて固形物を析出させた。この固形物の析出状態を顕微鏡にて観察すると、固形物が膜状に析出しており、実質的に結晶化が進行していないことが確認された。これは、有機半導体膜形成用溶液が付加化合物とこの付加化合物を構成する化合物を含有していることにより、溶媒が揮発して固形物が析出する際に、結晶化が抑制されていることによると考えられる。
 〈FETの作製〉
 この有機半導体膜形成用溶液を用いて、実施例3-1でのようにして、ボトムコンタクトボトムゲート型FET素子を作製した。得られたFETの有機半導体膜の特性を評価すると、p型半導体特性を示した。また、キャリア移動度は最大で0.01cm/Vsであり、且つオン/オフ比は最大で10であった。
 《実施例3-3》
 この実施例では、付加化合物とこの付加化合物を構成する化合物とを含有する有機半導体膜形成用溶液を調製し、その固形物としての析出状態について確認した。
 上記の実施例1-13でのようにして、ジナフトチエノチオフェン(DNTT)にN-シクロヘキシルマレイミド(CHMI)1分子が付加した付加化合物(DNTT-1CHMI)を得た。
 1.0質量%の量のDNTT-1CHMI、及びDNTT-1CHMIに対して1mol%のPMIをクロロロホルムに加えて、有機半導体膜形成用溶液を得た。
 〈結晶化の評価〉
 この有機半導体膜形成用溶液をシリコンウェハに滴下し、溶媒であるクロロホルムを常温の大気中において揮発させて固形物を析出させた。この固形物の析出状態を顕微鏡にて観察すると、固形物が膜状に析出しており、実質的に結晶化が進行していないことが確認された。これは、有機半導体膜形成用溶液が付加化合物とこの付加化合物を構成する化合物を含有していることにより、溶媒が揮発して固形物が析出する際に、結晶化が抑制されていることによると考えられる。
 〈FETの作製〉
 この有機半導体膜形成用溶液を用いて、実施例3-1でのようにして、ボトムコンタクトボトムゲート型FET素子を作製した。得られたFETの有機半導体膜の特性を評価すると、p型半導体特性を示した。また、キャリア移動度は最大で0.01cm/Vsであり、且つオン/オフ比は最大で10であった。
 《比較例3-1》
 この比較例では、付加化合物のみを含有する有機半導体膜形成用溶液を調製し、その固形物としての析出状態について確認した。
 上記の実施例1-10Aでのようにして、ジナフトチエノチオフェン(DNTT)にN-フェニルマレイミド(PMI)1分子が付加した付加化合物(DNTT-1PMI(立体異性体A))を得た。ここで、このDNTT-1PMI(立体異性体A)は、NMRの結果から、endo体であると推定される。
 1.0質量%の量のDNTT-1PMIをクロロロホルムに加えて、有機半導体膜形成用溶液を得た。
 〈結晶化の評価〉
 この有機半導体膜形成用溶液をシリコンウェハに滴下し、溶媒であるクロロホルムを常温の大気中において揮発させて固形物を析出させた。結果を図3に示す。ここで、図3は、この固形物の拡大写真(500倍)である。
 図3から理解されるように、固形物は粒子状に析出しており、固形物の膜状は得られなかった。これは、有機半導体膜形成用溶液から溶媒が揮発する間にDNTT-1PMIの結晶化が進行したことによると考えられる。
 〈FETの作製〉
 この有機半導体膜形成用溶液を用いて、実施例3-1でのようにして、ボトムコンタクトボトムゲート型FET素子を作製した。得られたFETの有機半導体膜の特性を評価が、半導体としての特性は得られなかった。また、得られたFETの有機半導体膜を偏光顕微鏡によって観察した。結果を図4に示す。図4から理解されるように、有機半導体が粒子を形成しており、電極間のチャネルにおいて有機半導体膜の経路が形成されていなかった。
 《実施例4-1》
 ジナフトチエノチオフェン(DNTT)と炭酸ビニレン(VC(ビニレンカーボネート)、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
Figure JPOXMLDOC01-appb-C000121
 結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、VCの生成熱は-59.30kcal/molであるとした。
Figure JPOXMLDOC01-appb-T000122
 表1の付加反応の反応条件における「光」及び「熱」はそれぞれ、光及び熱によって付加反応を進行させられることを意味している。
 表1の付加位置については、下記の化学式で示すとおりである。
Figure JPOXMLDOC01-appb-C000123
M位:2-7
L位:4-5
Z位:3-6
T位:3-4、又は5-6
C位:7b-14b
 表1の結果からは、DNTTにVCを付加する付加反応が、実現可能であることが理解される。
 1  有機半導体
 2  ソース電極
 3  ドレイン電極
 5  誘電体層(酸化ケイ素)
 7  シリコンウェハ基材(ゲート電極)
 10  有機半導体素子

Claims (74)

  1.  下記の式(I)の縮合多環芳香族化合物に、二重結合を有する化合物(II)が前記二重結合を介して脱離可能に付加されてなる構造を有する、付加化合物:
     ArArAr     (I)
     (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、及び2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成しており、且つ
      ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成している)。
  2.  二重結合を有する前記化合物(II)が求ジエン体として、式(I)の縮合多環芳香族化合物に脱離可能に付加する化合物である、請求項1に記載の付加化合物。
  3.  二重結合を有する前記化合物(II)が、下記の式(II-A1)及び(II-B1)のいずれかの化合物である、請求項2に記載の付加化合物:
    Figure JPOXMLDOC01-appb-C000001
     (R、R、R及びRはそれぞれ独立に、結合、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1~10のアルキル基、炭素原子数2~10のアルケニル基、炭素原子数2~10のアルキニル基、炭素原子数1~10のアルコキシ基、炭素原子数4~10の置換又は非置換の芳香族基、炭素原子数1~10のエステル基、炭素原子数1~10のエーテル基、炭素原子数1~10のケトン基、炭素原子数1~10のアミノ基、炭素原子数1~10のアミド基、炭素原子数1~10のイミド基、及び炭素原子数1~10のスルフィド基からなる群より選択され、
      R及びRは、互いに結合して環を形成していてもよく、且つ
      R及びRは、互いに結合して環を形成していてもよい)。
  4.  二重結合を有する前記化合物(II)が、下記の式(II-A2)及び(II-B2)のいずれかの化合物である、請求項3に記載の付加化合物:
    Figure JPOXMLDOC01-appb-C000002
     (R、R、R及びRはそれぞれ独立に、結合、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1~10のアルキル基、炭素原子数2~10のアルケニル基、炭素原子数2~10のアルキニル基、炭素原子数1~10のアルコキシ基、炭素原子数4~10の置換又は非置換の芳香族基、炭素原子数1~10のエステル基、炭素原子数1~10のエーテル基、炭素原子数1~10のケトン基、炭素原子数1~10のアミノ基、炭素原子数1~10のアミド基、炭素原子数1~10のイミド基、及び炭素原子数1~10のスルフィド基からなる群より選択され、
      R及びRは、互いに結合して環を形成していてもよく、且つ
      R及びRは、互いに結合して環を形成していてもよい)。
  5.  二重結合を有する前記化合物(II)が、下記の式(II-A3)及び(II-B3)のいずれかの化合物である、請求項4に記載の付加化合物:
    Figure JPOXMLDOC01-appb-C000003
     (R及びRはそれぞれ独立に、結合、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1~10のアルキル基、炭素原子数2~10のアルケニル基、炭素原子数2~10のアルキニル基、炭素原子数1~10のアルコキシ基、炭素原子数4~10の置換又は非置換の芳香族基、炭素原子数1~10のエステル基、炭素原子数1~10のエーテル基、炭素原子数1~10のケトン基、炭素原子数1~10のアミノ基、炭素原子数1~10のアミド基、炭素原子数1~10のイミド基、及び炭素原子数1~10のスルフィド基からなる群より選択され、
      R及びRは、互いに結合して環を形成していてもよく、
      nは、1~5の整数であり、且つ
      Zは、結合(-)、酸素(-O-)、メチレン性炭素(-C(R-)、エチレン性炭素(-C(R)=)、カルボニル基(-C(=O)-)、窒素(-N(R)-)、及び硫黄(-S-)からなる群より選択され、且つnが2又はそれよりも大きいときにはそれぞれ異なっていてもよい(Rはそれぞれ独立に、水素、ハロゲン、炭素原子数1~10のアルキル基、炭素原子数2~10のアルケニル基、炭素原子数2~10のアルキニル基、炭素原子数1~10のアルコキシ基、炭素原子数4~10の置換又は非置換の芳香族基、炭素原子数1~10のエステル基、炭素原子数1~10のエーテル基、炭素原子数1~10のケトン基、炭素原子数1~10のアミノ基、炭素原子数1~10のアミド基、炭素原子数1~10のイミド基、及び炭素原子数1~10のスルフィド基からなる群より選択される))。
  6.  二重結合を有する前記化合物(II)が、共役ジエン体として、式(I)の縮合多環芳香族化合物に脱離可能に付加する化合物である、請求項1に記載の付加化合物。
  7.  二重結合を有する前記化合物(II)が、環状部分を有する、請求項1~6のいずれかに記載の付加化合物。
  8.  二重結合を有する前記化合物(II)が、下記の式(II-1)~(II-12)のいずれかを有する、請求項1~7のいずれかに記載の付加化合物:
    Figure JPOXMLDOC01-appb-C000004
     (R及びRはそれぞれ独立に、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1~10のアルキル基、炭素原子数2~10のアルケニル基、炭素原子数2~10のアルキニル基、炭素原子数1~10のアルコキシ基、炭素原子数4~10の置換又は非置換の芳香族基、炭素原子数1~10のエステル基、炭素原子数1~10のエーテル基、炭素原子数1~10のケトン基、炭素原子数1~10のアミノ基、炭素原子数1~10のアミド基、炭素原子数1~10のイミド基、及び炭素原子数1~10のスルフィド基からなる群より選択される)。
  9.  Arが、置換又は非置換の下記の(a1)~(a4)からなる群より選択される芳香族環部分又は縮合芳香族環部分である、請求項1~8のいずれかに記載の付加化合物:
    Figure JPOXMLDOC01-appb-C000005
     (Yはそれぞれ独立に、カルコゲンから選択される元素)。
  10.  Ar及びArがそれぞれ独立に、置換又は非置換の2~4個のベンゼン環が縮合している縮合ベンゼン環部分から選択される、請求項1~9のいずれかに記載の付加化合物。
  11.  Ar及びArがそれぞれ独立に、置換又は非置換の下記の(b1)~(b4)の縮合ベンゼン環部分からなる群より選択される、請求項10に記載の付加化合物:
    Figure JPOXMLDOC01-appb-C000006
  12.  減圧及び/又は加熱によって、前記式(I)の縮合多環芳香族化合物から、二重結合を有する前記化合物(II)を脱離させることができる、請求項1~11のいずれかに記載の付加化合物。
  13.  前記式(I)の縮合多環芳香族化合物が有機半導体化合物である、請求項1~12のいずれかに記載の付加化合物。
  14.  前記式(I)の縮合多環芳香族化合物が、置換又は非置換の下記の式(I-1)~(I-5)の化合物からなる群より選択される、請求項13に記載の付加化合物:
    Figure JPOXMLDOC01-appb-C000007
     (Yはそれぞれ独立に、カルコゲンから選択される元素)。
  15.  下記の式(III-1)を有する化合物又はその立体異性体である、請求項1に記載の付加化合物:
    Figure JPOXMLDOC01-appb-C000008
     (Yはそれぞれ独立に、カルコゲンから選択される元素であり、
      R及びRはそれぞれ独立に、水素、ハロゲン、炭素原子数1~10のアルキル基、炭素原子数2~10のアルケニル基、炭素原子数2~10のアルキニル基、炭素原子数1~10のアルコキシ基、炭素原子数4~10の芳香族基、炭素原子数1~10のエステル基、炭素原子数1~10のエーテル基、炭素原子数1~10のケトン基、炭素原子数1~10のアミノ基、炭素原子数1~10のアミド基、炭素原子数1~10のイミド基、及び炭素原子数1~10のスルフィド基からなる群より選択され、且つ
      縮合ベンゼン環部分は、置換又は非置換である)。
  16.  下記の式(III-6)を有する化合物又はその立体異性体である、請求項1に記載の付加化合物:
    Figure JPOXMLDOC01-appb-C000009
     (Yはそれぞれ独立に、カルコゲンから選択される元素であり、
      Rはそれぞれ独立に、水素、ハロゲン、炭素原子数1~10のアルキル基、炭素原子数2~10のアルケニル基、炭素原子数2~10のアルキニル基、炭素原子数1~10のアルコキシ基、炭素原子数4~10の芳香族基、炭素原子数1~10のエステル基、炭素原子数1~10のエーテル基、炭素原子数1~10のケトン基、炭素原子数1~10のアミノ基、炭素原子数1~10のアミド基、炭素原子数1~10のイミド基、及び炭素原子数1~10のスルフィド基からなる群より選択され、且つ
      縮合ベンゼン環部分は、置換又は非置換である)。
  17.  Exo付加体である、請求項16に記載の付加化合物。
  18.  前記芳香族環部分又は縮合芳香族環部分の置換が、それぞれ独立に、ハロゲン、炭素原子数1~20のアルキル基、炭素原子数2~20のアルケニル基、炭素原子数2~20のアルキニル基、炭素原子数4~20の置換又は非置換の芳香族基、炭素原子数2~10のエステル基、炭素原子数1~20のエーテル基、炭素原子数1~20のケトン基、炭素原子数1~20のアミノ基、炭素原子数1~20のアミド基、炭素原子数1~20のイミド基、及び炭素原子数1~20のスルフィド基からなる群より選択される置換基によってなされている、請求項1~17のいずれかに記載の付加化合物。
  19.  請求項1~18のいずれかに記載の付加化合物が溶媒に溶解されてなる、付加化合物含有溶液。
  20.  請求項1~18のいずれかに記載の付加化合物及び少なくとも1つのその立体異性体が溶媒に溶解されてなり、且つ前記付加化合物及びその立体異性体の合計に対する熱脱離温度が最も低い立体異性体の割合{前記付加化合物及びその立体異性体のうちの熱脱離温度が最も低い立体異性体/前記付加化合物及びその立体異性}が、50mol%超である、請求項19に記載の溶液。
  21.  請求項1~18のいずれかに記載の付加化合物のExo体及びEndo体が溶媒に含有されてなり、且つ前記付加化合物のExo体とEndo体との合計に対する熱脱離温度が低い方の立体異性体の割合{Exo体及びEndo体のうちの熱脱離温度が低い方の立体異性体/(Exo体+Endo体)}が、50mol%超である、請求項20に記載の溶液。
  22.  請求項16に記載の付加化合物のExo体及びEndo体が溶媒に含有されてなり、且つ前記付加化合物のExo体とEndo体との合計に対するExo体の割合{Exo体/(Exo体+Endo体)}が、50mol%超である、請求項19に記載の溶液。
  23.  請求項19~22のいずれかに記載の前記付加化合物含有溶液を、基材に塗布して、膜を作製するステップ、そして
     前記膜に減圧及び/又は加熱を行って、前記付加化合物から二重結合を有する前記化合物(II)を脱離及び除去して、前記式(I)の縮合多環芳香族化合物からなる有機半導体膜を得るステップ、
    を含む、有機半導体膜の生成方法。
  24.  二重結合を有する前記化合物(II)の脱離及び除去を、100℃/分を超える加熱速度での加熱によって行う、請求項23に記載の方法。
  25.  前記加熱を、前記膜を有する前記基材を加熱された物体に直接に接触させること、前記膜を有する前記基材を加熱された領域に導入すること、及び/又は膜側又は基材側に電磁波を放射することによって行う、請求項23又は24に記載の方法。
  26.  前記有機半導体膜が、長軸径5μm超の前記式(I)の縮合多環芳香族化合物の結晶を有する、請求項24又は25に記載の方法。
  27.  前記脱離及び除去を大気下で行う、請求項23~26のいずれかに記載の方法。
  28.  請求項23~27のいずれかに記載の方法によって有機半導体膜を生成するステップを含む、有機半導体デバイスの製造方法。
  29.  有機半導体膜を有する有機半導体デバイスであって、前記有機半導体膜が、請求項1~18のいずれかに記載の付加化合物から二重結合を有する前記化合物(II)が脱離した構造を有する前記式(I)の縮合多環芳香族化合物で作られており、且つ前記有機半導体膜が、請求項1~18のいずれかに記載の付加化合物を含有している、有機半導体デバイス。
  30.  有機半導体膜を有する有機半導体デバイスであって、前記有機半導体膜が、長軸径5μm超の下記の式(I)の縮合多環芳香族化合物の結晶を有する、有機半導体デバイス:
     ArArAr     (I)
     (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、及び2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成しており、且つ
      ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成している)。
  31.  前記有機半導体膜が、溶液法によって得られた膜である、請求項30に記載の有機半導体デバイス。
  32.  ソース電極、ドレイン電極、ゲート電極、ゲート絶縁膜、及び前記有機半導体膜を有する薄膜トランジスタであって、前記ゲート絶縁膜によって前記ソース電極及び前記ドレイン電極と前記ゲート電極とを絶縁し、且つ前記ゲート電極に印加される電圧によって前記ソース電極から前記ドレイン電極へと前記有機半導体を通って流れる電流を制御する薄膜トランジスタである、請求項29~31に記載の有機半導体デバイス。
  33.  前記式(I)の縮合多環芳香族化合物を、二重結合を有する前記化合物(II)と混合するステップを含む、請求項1~18のいずれかに記載の有機化合物の合成方法。
  34.  下記の式(I’)の化合物に、二重結合を有する化合物(II)が前記二重結合を介して付加されてなる構造を有する、付加化合物:
     ArQ     (I’)
     {Arは、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、且つ
      Qは、下記の式を有し、且つArの縮合芳香環の一部を構成している:
    Figure JPOXMLDOC01-appb-C000010
     (Yは、カルコゲンから選択される元素である)}。
  35.  (a)請求項34に記載の付加化合物2分子を反応させて、下記の式の化合物を得ること:
     式ArQ=QAr
     (Q=Qは、下記の構造を示す:
    Figure JPOXMLDOC01-appb-C000011
    )、そして
     (b)前記式ArQ=QArの得られた化合物をヨウ素と反応させること、
    を含む、下記の式(I(a1))の縮合多環芳香族化合物に二重結合を有する化合物(II)が前記二重結合を介して脱離可能に付加されてなる構造を有する付加化合物の製造方法:
     ArAr2(a1)Ar     (I(a1))
     (Arは、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      Ar2(a1)は、下記の式(a1)の縮合芳香族環部分であり、且つ
    Figure JPOXMLDOC01-appb-C000012
      ArとAr2(a1)は、少なくとも2つの炭素原子を共有して縮合芳香環を形成している)。
  36.  下記のステップ(a)~(d)を含む、下記の式(I)の縮合多環芳香族化合物の精製方法:
     ArArAr     (I)
     (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、及び2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成しており、且つ
      ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成している);
     (a)前記式(I)の縮合多環芳香族化合物の粗生成物を提供するステップ、
     (b)二重結合を有する化合物(II)であって、前記式(I)の縮合多環芳香族化合物に脱離可能に付加する化合物(II)を提供するステップ、
     (c)前記式(I)の縮合多環芳香族化合物と前記二重結合を有する化合物(II)とを混合して、これらの化合物の付加化合物が少なくとも部分的に溶解している混合液を得るステップ、並びに
     (d)前記混合液から、精製された前記式(I)の縮合多環芳香族化合物を分離して得るステップ。
  37.  ステップ(a)において提供される前記式(I)の縮合多環芳香族化合物の粗生成物が、ハロゲン及び/又は金属の元素又はその化合物、及び/又は芳香族化合物を不純物として含有している、請求項36に記載の方法。
  38.  二重結合を有する前記化合物(II)が、請求項2~8、及び18のいずれかに記載の二重結合を有する前記化合物(II)から選択される、請求項36又は37に記載の方法。
  39.  式(I)の前記縮合多環芳香族化合物が、請求項9~11、13、14、及び18のいずれかに記載の式(I)の前記縮合多環芳香族化合物から選択される、請求項36~38のいずれかに記載の方法。
  40.  ステップ(c)において更に溶媒を混合する、請求項36~39のいずれかに記載の方法。
  41.  請求項36~40のいずれかに記載の方法によって前記式(I)の縮合多環芳香族化合物の粗生成物を精製するステップを含む、前記式(I)の縮合多環芳香族化合物の製造方法。
  42.  下記の式(I)の縮合多環芳香族化合物に二重結合を有する化合物(II)が脱離可能に付加されてなる構造を有する付加化合物から、前記化合物(II)を脱離させることを含む、下記の式(I)の縮合多環芳香族化合物を製造する方法:
     ArArAr     (I)
     (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、及び2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成しており、且つ
      ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成している)。
  43.  請求項41又は42に記載の方法によって、前記式(I)の縮合多環芳香族化合物を製造し、得られた前記式(I)の縮合多環芳香族化合物から有機半導体膜を得る、有機半導体膜の製造方法。
  44.  有機溶媒、前記有機溶媒に溶解している第1の付加化合物、及び前記有機溶媒に溶解しており且つ前記第1の付加化合物の結晶化を抑制する結晶化抑制剤を含有しており;前記第1の付加化合物が、下記の式(I)の縮合多環芳香族化合物に、二重結合を有する第1の化合物(II’)が前記二重結合を介して脱離可能に付加されてなる構造を有し;且つ前記結晶化抑制剤が、下記の(a)~(c)からなる群より選択される少なくとも1種の化合物である、有機半導体膜形成用溶液:
     ArArAr     (I)
     (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、及び2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成しており、且つ
      ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成している);
     (a)式(I)の縮合多環芳香族化合物に二重結合を有する第2の化合物(II”)が二重結合を介して脱離可能に付加されてなる構造を有する第2の付加化合物、
     (b)二重結合を有する前記第1の化合物(II’)、及び
     (c)二重結合を有する前記第2の化合物(II”)。
  45.  前記結晶化抑制剤を、前記第1の付加化合物に対して0.1mol%~100mol%の割合で含有している、請求項44に記載の溶液。
  46.  二重結合を有する前記第1の化合物(II’)及び/又は第2の化合物(II”)が、請求項2~8、及び18のいずれかに記載の二重結合を有する前記化合物(II)から選択される、請求項44又は45に記載の溶液。
  47.  式(I)の前記縮合多環芳香族化合物が、請求項9~11、13、14、及び18のいずれかに記載の式(I)の前記縮合多環芳香族化合物から選択される、請求項44~46のいずれかに記載の溶液。
  48.  請求項44~47のいずれかに記載の溶液を、基材に塗布して、膜を作製するステップ、そして
     前記膜を減圧及び/又は加熱して、前記第1の付加化合物から二重結合を有する第1の前記化合物(II’)を脱離及び除去して、前記式(I)の縮合多環芳香族化合物からなる有機半導体膜を得るステップ、
    を含む、有機半導体膜の生成方法。
  49.  前記脱離及び除去を大気下で行う、請求項48に記載の方法。
  50.  請求項48又は49に記載の方法によって有機半導体膜を生成するステップを含む、有機半導体デバイスの製造方法。
  51.  有機半導体膜を有する有機半導体デバイスであって、
     前記有機半導体膜が、下記の式(I)を有する有機半導体化合物で作られており、且つ
     前記有機半導体膜が、下記の式(I)の縮合多環芳香族化合物に二重結合を有する第1の化合物(II’)が前記二重結合を介して脱離可能に付加されてなる第1の付加化合物、及び下記の(a)~(c)からなる群より選択される少なくとも1種の化合物を含有している、有機半導体デバイス:
     ArArAr     (I)
     (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、及び2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成しており、且つ
      ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成している);
     (a)式(I)の縮合多環芳香族化合物に二重結合を有する第2の化合物(II”)が二重結合を介して脱離可能に付加されてなる構造を有する第2の付加化合物、
     (b)二重結合を有する前記第1の化合物(II’)、及び
     (c)二重結合を有する前記第2の化合物(II”)。
  52.  ソース電極、ドレイン電極、ゲート電極、ゲート絶縁膜、及び前記有機半導体膜を有する薄膜トランジスタであって、前記ゲート絶縁膜によって前記ソース電極及び前記ドレイン電極と前記ゲート電極とを絶縁し、且つ前記ゲート電極に印加される電圧によって前記ソース電極から前記ドレイン電極へと前記有機半導体を通って流れる電流を制御する薄膜トランジスタである、請求項51に記載の有機半導体デバイス。
  53.  下記の式(I(a)-X)のα-ジケトン化合物:
     Ar1XAr2(a)Ar3X     (I(a)-X)
     (Ar1X及びAr3Xはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、且つ前記芳香族環のうちの少なくとも1つが、下記の式(X)のビシクロα-ジケトン部分で置換されており:
    Figure JPOXMLDOC01-appb-C000013
      Ar2(a)は、1個の複素芳香族環からなる置換又は非置換の複素芳香族環部分、及び2~5個の複素芳香族環が縮合している置換又は非置換の縮合複素芳香族環部分から選択され、
      Ar1XとAr2(a)は、少なくとも2つの炭素原子を共有して縮合環を形成しており、且つ
      Ar2(a)とAr3Xは、少なくとも2つの炭素原子を共有して縮合環を形成している}。
  54.  Ar2(a)が、置換又は非置換の下記の(a1)、(a3)及び(a4)からなる群より選択される縮合複素芳香族環部分である、請求項53に記載のα-ジケトン化合物:
    Figure JPOXMLDOC01-appb-C000014
     (Yはそれぞれ独立に、カルコゲンから選択される元素)。
  55.  Ar1X及びAr3Xがそれぞれ独立に、置換又は非置換の2~4個のベンゼン環が縮合している縮合ベンゼン環部分から選択され、且つ前記ベンゼン環のうちの少なくとも1つが、前記ビシクロα-ジケトン部分で置換されている、請求項53又は54に記載のα-ジケトン化合物。
  56.  Ar1X及びAr3Xがそれぞれ独立に、置換又は非置換の下記の(b1)~(b4)の縮合ベンゼン環部分からなる群より選択され、且つ前記ベンゼン環のうちの少なくとも1つが、前記ビシクロα-ジケトン部分で置換されている、請求項55に記載のα-ジケトン化合物:
    Figure JPOXMLDOC01-appb-C000015
  57.  光照射によって前記ビシクロα-ジケトン部分を分解してベンゼン環部分にし、それによって下記の式(I(a))の縮合多環芳香族化合物を得ることができる、請求項53~56のいずれかに記載のα-ジケトン化合物:
     ArAr2(a)Ar     (I(a))
     (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      Ar2(a)は、1個の複素芳香族環からなる置換又は非置換の複素芳香族環部分、及び2~5個の複素芳香族環が縮合している置換又は非置換の縮合複素芳香族環部分から選択され、
      ArとAr2(a)は、少なくとも2つの炭素原子を共有して縮合環を形成しており、且つ
      Ar2(a)とArは、少なくとも2つの炭素原子を共有して縮合環を形成している)。
  58.  前記式(I(a))の縮合多環芳香族化合物が有機半導体化合物である、請求項57に記載のα-ジケトン化合物。
  59.  前記式(I(a))の縮合多環芳香族化合物が、置換又は非置換の下記の式(I-1)~(I-5)の化合物からなる群より選択される、請求項58に記載のα-ジケトン化合物:
    Figure JPOXMLDOC01-appb-C000016
     (Yはそれぞれ独立に、カルコゲンから選択される元素)。
  60.  下記の式(I(a)-X1)~(I(a)-X5)の化合物、又はその立体異性体である、請求項53に記載のα-ジケトン化合物:
    Figure JPOXMLDOC01-appb-C000017
     (Yはそれぞれ独立に、カルコゲンから選択される元素であり、且つ
      縮合ベンゼン環部分は、置換又は非置換である)。
  61.  前記置換が、それぞれ独立に、ハロゲン、炭素原子数1~20のアルキル基、炭素原子数2~20のアルケニル基、炭素原子数2~20のアルキニル基、炭素原子数4~20の置換又は非置換の芳香族基、炭素原子数2~10のエステル基、炭素原子数1~20のエーテル基、炭素原子数1~20のケトン基、炭素原子数1~20のアミノ基、炭素原子数1~20のアミド基、炭素原子数1~20のイミド基、及び炭素原子数1~20のスルフィド基からなる群より選択される置換基によってなされている、請求項53~60のいずれかに記載のα-ジケトン化合物。
  62.  請求項53~61のいずれかに記載のα-ジケトン化合物が有機溶媒に溶解されている、α-ジケトン化合物含有溶液。
  63.  下記のステップ(a)及び(b)を含む、有機半導体膜の生成方法:
     (a)請求項62に記載の前記α-ジケトン化合物含有溶液を、基材に塗布して、膜を作製するステップ、そして
     (b)前記膜に光を照射して、前記α-ジケトン化合物の前記ビシクロα-ジケトン部分を分解してベンゼン環部分にし、それによって下記の式(I(a))の縮合多環芳香族化合物からなる有機半導体膜を得るステップ:
     ArAr2(a)Ar     (I(a))
     (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      Ar2(a)は、1個の複素芳香族環からなる置換又は非置換の複素芳香族環部分、及び2~5個の複素芳香族環が縮合している置換又は非置換の縮合複素芳香族環部分から選択され、
      ArとAr2(a)は、少なくとも2つの炭素原子を共有して縮合環を形成しており、且つ
      Ar2(a)とArは、少なくとも2つの炭素原子を共有して縮合環を形成している)。
  64.  (c)前記光照射と併せて又は前記光照射の後で、減圧及び/又は加熱を行って、前記式(I(a))の縮合多環芳香族化合物以外の不純物を除去するステップ、を更に含む、請求項63に記載の方法。
  65.  前記分解及び/又は不純物の除去を大気下で行う、請求項63又は64に記載の方法。
  66.  請求項63~65のいずれかに記載の方法によって有機半導体膜を生成するステップを含む、有機半導体デバイスの製造方法。
  67.  有機半導体膜を有する有機半導体デバイスであって、前記有機半導体膜が、下記の式(I(a))の縮合多環芳香族化合物で作られており、且つ前記有機半導体膜が、請求項53~61のいずれかに記載の前記α-ジケトン化合物を更に含有している、有機半導体デバイス:
     ArAr2(a)Ar     (I(a))
     (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      Ar2(a)は、1個の複素芳香族環からなる置換又は非置換の複素芳香族環部分、及び2~5個の複素芳香族環が縮合している置換又は非置換の縮合複素芳香族環部分から選択され、
      ArとAr2(a)は、少なくとも2つの炭素原子を共有して縮合環を形成しており、且つ
      Ar2(a)とArは、少なくとも2つの炭素原子を共有して縮合環を形成している)。
  68.  ソース電極、ドレイン電極、ゲート電極、ゲート絶縁膜、及び前記有機半導体膜を有する薄膜トランジスタであって、前記ゲート絶縁膜によって前記ソース電極及び前記ドレイン電極と前記ゲート電極とを絶縁し、且つ前記ゲート電極に印加される電圧によって前記ソース電極から前記ドレイン電極へと前記有機半導体を通って流れる電流を制御する薄膜トランジスタである、請求項67に記載の有機半導体デバイス。
  69.  下記のステップ(a)~(c)を含む、請求項53~61のいずれかに記載のα-ジケトン化合物の合成方法:
     (a)下記の式(I(a))の縮合多環芳香族化合物に、炭酸ビニレンがその二重結合を介して脱離可能に付加されてなる構造を有する、炭酸ビニレン付加縮合多環芳香族化合物を提供するステップ:
     ArAr2(a)Ar     (I(a))
     (Ar及びArはそれぞれ独立に、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
      Ar2(a)は、1個の複素芳香族環からなる置換又は非置換の複素芳香族環部分、及び2~5個の複素芳香族環が縮合している置換又は非置換の縮合複素芳香族環部分から選択され、
      ArとAr2(a)は、少なくとも2つの炭素原子を共有して縮合環を形成しており、且つ
      Ar2(a)とArは、少なくとも2つの炭素原子を共有して縮合環を形成している);
     (b)前記炭酸ビニレン付加縮合多環芳香族化合物を加水分解して、前記炭酸ビニレンに対応する部分がα-ジオール部分に転化されたα-ジオール化合物を得るステップ:
     (c)前記α-ジオール化合物を酸化して、前記α-ジオール部分をα-ジケトン部分に転化するステップ。
  70.  ステップ(a)の前記炭酸ビニレン付加縮合多環芳香族化合物を、前記式(I(a))の縮合多環芳香族化合物に炭酸ビニレンを付加させることを含む方法によって製造する、請求項69に記載の方法。
  71.  ステップ(a)の前記炭酸ビニレン付加縮合多環芳香族化合物を、下記のステップ(a-1)~(a-3)を含む方法によって製造する、請求項69に記載の方法:
     (a-1)下記の式(I’)の化合物を提供すること:
     ArQ     (I’)
     {Arは、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、且つ
      Qは、下記の式を有し、且つArの縮合環の一部を構成している:
    Figure JPOXMLDOC01-appb-C000018
     (Yは、カルコゲンから選択される元素)};
     (a-2)前記式(I’)の化合物に炭酸ビニレンを付加させて、炭酸ビニレン付加化合物を得るステップ;
     (a-3)前記炭酸ビニレン付加化合物2分子を反応させ、又は前記炭酸ビニレン付加化合物1分子と前記式(I’)の化合物1分子とを反応させて、下記の式の化合物に1又は2つの炭酸ビニレンが付加した構造を有する化合物を得るステップ:
     ArQ=QAr
     {(Q=Qは、下記の構造を示す:
    Figure JPOXMLDOC01-appb-C000019
     (Yは、カルコゲンから選択される元素)};及び
     (b)前記式ArQ=QArの化合物に1又は2つの炭酸ビニレンが付加した構造を有する化合物を、ヨウ素と反応させるステップ。
  72.  下記の式(I(a)’)のα-ジケトン化合物:
     Ar1XQ     (I(a)’)
     {Ar1Xは、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、且つ前記芳香族環のうちの少なくとも1つが、下記の式(X)のビシクロα-ジケトン部分で置換されており、且つ:
    Figure JPOXMLDOC01-appb-C000020
      Qは、下記の式を有し、且つAr1Xの縮合環の一部を構成している:
    Figure JPOXMLDOC01-appb-C000021
     (Yは、カルコゲンから選択される元素である)}。
  73.  下記の式のいずれかの化合物、又はその立体異性体である、請求項72に記載のα-ジケトン化合物:
    Figure JPOXMLDOC01-appb-C000022
     (Yは、カルコゲンから選択される元素であり、且つ
      ベンゼン環部分は、置換又は非置換である)。
  74.  下記のステップ(a)及び(b)を含む、下記の式(I(a1)-X)のα-ジケトン化合物の製造方法:
     Ar1XAr2(a1)Ar1X     (I(a1)-X)
     (Ar1Xは、2~5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、且つ前記芳香族環のうちの少なくとも1つが、下記の式(X)のビシクロα-ジケトン部分で置換されており:
    Figure JPOXMLDOC01-appb-C000023
      Ar2(a1)は、下記の式(a1)の縮合複素芳香族環部分(Yは、カルコゲンから選択される元素)であり、且つ
    Figure JPOXMLDOC01-appb-C000024
      Ar1XとAr2(a1)は、少なくとも2つの炭素原子を共有して縮合環を形成している);
     (a)請求項72又は73に記載のα-ジケトン化合物2分子を反応させ、又は前記α-ジケトン化合物1分子と前記α-ジケトン化合物のビシクロα-ジケトン部分を分解してベンゼン環部分にした構造を有する化合物1分子とを反応させて、下記の式の化合物を得るステップ:
     Ar1XQ=QAr1X
     {(Q=Qは、下記の構造を示す:
    Figure JPOXMLDOC01-appb-C000025
     (Yは、カルコゲンから選択される元素)};及び
     (b)前記式Ar1XQ=QAr1Xの得られた化合物をヨウ素と反応させるステップ。
PCT/JP2010/064272 2009-08-28 2010-08-24 新規な付加化合物、縮合多環芳香族化合物の精製及び製造方法、有機半導体膜形成用溶液、及び新規なα-ジケトン化合物 WO2011024804A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10811854.8A EP2471796B1 (en) 2009-08-28 2010-08-24 Novel adduct compound, solution for formation of organic semiconductor film, method for producing said semiconductor film and method for synthesizing said adduct compound
KR1020127004942A KR101604513B1 (ko) 2009-08-28 2010-08-24 신규한 부가 화합물, 축합 다고리 방향족 화합물의 정제 및 제조 방법, 유기 반도체막 형성용 용액, 및 신규한 α-디케톤 화합물
CN2010800383494A CN102548998A (zh) 2009-08-28 2010-08-24 新型加成化合物、稠合多环芳香族化合物的精制以及制造方法、有机半导体膜形成用溶液、以及新型α-二酮化合物
US13/392,996 US9056871B2 (en) 2009-08-28 2010-08-24 Adduct compound, methods for purification and preparation of fused polycyclic aromatic compound, solution for formation of organic semiconductor film, and novel alpha-diketone compound

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2009-198753 2009-08-28
JP2009198753 2009-08-28
JP2010-012269 2010-01-22
JP2010012166A JP2011148743A (ja) 2010-01-22 2010-01-22 縮合多環芳香族化合物の精製及び製造方法
JP2010-012166 2010-01-22
JP2010012269 2010-01-22
JP2010-012242 2010-01-22
JP2010012242A JP5641739B2 (ja) 2010-01-22 2010-01-22 有機半導体膜形成用溶液、及び有機半導体デバイス
JP2010-029163 2010-02-12
JP2010029163A JP2011162510A (ja) 2010-02-12 2010-02-12 新規なα−ジケトン化合物、及び有機半導体デバイス
JP2010-045814 2010-03-02
JP2010045814A JP5269825B2 (ja) 2009-08-28 2010-03-02 新規な付加化合物、及び有機半導体デバイス

Publications (1)

Publication Number Publication Date
WO2011024804A1 true WO2011024804A1 (ja) 2011-03-03

Family

ID=45045030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064272 WO2011024804A1 (ja) 2009-08-28 2010-08-24 新規な付加化合物、縮合多環芳香族化合物の精製及び製造方法、有機半導体膜形成用溶液、及び新規なα-ジケトン化合物

Country Status (6)

Country Link
US (1) US9056871B2 (ja)
EP (1) EP2471796B1 (ja)
KR (1) KR101604513B1 (ja)
CN (2) CN102548998A (ja)
TW (1) TWI492948B (ja)
WO (1) WO2011024804A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021953A1 (ja) 2011-08-05 2013-02-14 帝人株式会社 縮合多環芳香族化合物、芳香族重合体、及び芳香族化合物の合成方法
JP2013053138A (ja) * 2011-08-05 2013-03-21 Teijin Ltd 新規な縮合多環芳香族化合物
WO2013146631A1 (ja) * 2012-03-28 2013-10-03 東レ株式会社 有機デバイス材料前駆体およびその製造方法ならびにこれを用いた発光素子およびその製造方法
WO2013146630A1 (ja) * 2012-03-28 2013-10-03 東レ株式会社 有機デバイス材料前駆体およびその製造方法ならびにこれを用いた発光素子およびその製造方法
WO2014027685A1 (ja) 2012-08-15 2014-02-20 帝人株式会社 有機半導体溶液及び有機半導体膜
JP2015156412A (ja) * 2014-02-20 2015-08-27 富士フイルム株式会社 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228129B2 (ja) * 2012-12-12 2017-11-08 株式会社ダイセル 有機トランジスタ製造用溶剤又は溶剤組成物

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266157A (ja) * 2003-03-03 2004-09-24 Canon Inc 有機電界効果型トランジスタ及びその製造方法
JP2006032914A (ja) * 2004-06-15 2006-02-02 Mitsubishi Chemicals Corp 電子素子の製造方法および電子素子
JP2006089413A (ja) 2004-09-24 2006-04-06 Japan Science & Technology Agency 新規な有機半導体化合物、その製造方法およびそれを用いた有機半導体デバイス
WO2006077888A1 (ja) 2005-01-19 2006-07-27 National University Of Corporation Hiroshima University 新規な縮合多環芳香族化合物およびその利用
JP2006248982A (ja) * 2005-03-10 2006-09-21 Univ Nagoya ヘテロアセン化合物及びその製造方法
JP2007273938A (ja) * 2005-09-06 2007-10-18 Canon Inc 半導体素子の製造方法
WO2008050726A1 (fr) 2006-10-25 2008-05-02 Hiroshima University Nouveau composé aromatique à cycle fusionne, son procédé de production et son utilisation
WO2008091670A2 (en) * 2007-01-24 2008-07-31 Polyera Corporation Organic semiconductor materials and precursors thereof
JP2008290963A (ja) 2007-05-24 2008-12-04 Nippon Kayaku Co Ltd 芳香族化合物の製造方法
JP2009081408A (ja) * 2006-12-27 2009-04-16 Canon Inc 新規化合物および有機半導体素子の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101296029B1 (ko) * 2005-07-14 2013-08-12 이데미쓰 고산 가부시키가이샤 바이페닐 유도체, 유기 전기발광 소자용 재료, 및 그것을이용한 유기 전기발광 소자
US7695999B2 (en) 2005-09-06 2010-04-13 Canon Kabushiki Kaisha Production method of semiconductor device
JP5499422B2 (ja) 2006-06-28 2014-05-21 コニカミノルタ株式会社 有機半導体材料、有機半導体膜、有機薄膜トランジスタ及び有機薄膜トランジスタの製造方法
KR20080100982A (ko) 2007-05-15 2008-11-21 삼성전자주식회사 헤테로아센 화합물, 이를 포함하는 유기 박막 및 상기박막을 포함하는 전자 소자
WO2009009790A1 (en) 2007-07-12 2009-01-15 President And Fellows Of Harvard College Air-stable, high hole mobility thieno-thiophene derivatives
JP2009152355A (ja) 2007-12-20 2009-07-09 Konica Minolta Holdings Inc 有機薄膜トランジスタの製造方法、及び有機薄膜トランジスタ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266157A (ja) * 2003-03-03 2004-09-24 Canon Inc 有機電界効果型トランジスタ及びその製造方法
JP2006032914A (ja) * 2004-06-15 2006-02-02 Mitsubishi Chemicals Corp 電子素子の製造方法および電子素子
JP2006089413A (ja) 2004-09-24 2006-04-06 Japan Science & Technology Agency 新規な有機半導体化合物、その製造方法およびそれを用いた有機半導体デバイス
WO2006077888A1 (ja) 2005-01-19 2006-07-27 National University Of Corporation Hiroshima University 新規な縮合多環芳香族化合物およびその利用
JP2006248982A (ja) * 2005-03-10 2006-09-21 Univ Nagoya ヘテロアセン化合物及びその製造方法
JP2007273938A (ja) * 2005-09-06 2007-10-18 Canon Inc 半導体素子の製造方法
WO2008050726A1 (fr) 2006-10-25 2008-05-02 Hiroshima University Nouveau composé aromatique à cycle fusionne, son procédé de production et son utilisation
JP2009081408A (ja) * 2006-12-27 2009-04-16 Canon Inc 新規化合物および有機半導体素子の製造方法
WO2008091670A2 (en) * 2007-01-24 2008-07-31 Polyera Corporation Organic semiconductor materials and precursors thereof
JP2008290963A (ja) 2007-05-24 2008-12-04 Nippon Kayaku Co Ltd 芳香族化合物の製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A. A. DANISH; M. SILVERMAN; Y. A. TAJIMA: "Dienophilic Reactions of Aromatic Double Bonds in the Synthesis of ?-Substituted Naphthalenes", J. AM. CHEM. SOC., vol. 76, no. 23, 1954, pages 6144 - 6150
H UNO ET AL.: "Photo precursor for pentacene", TETRAHEDRON LETTERS, vol. 46, no. 12, 2005, pages 1981 - 1983, XP004768387 *
HIDEMITSU UNO ET AL.: "Tetrahedron Letters", vol. 46, 2005, ELSEVIER, article "Photo Precursor for Pentacene", pages: 1981 - 1983
LACOURCELLE, CLAIRE; POITE, JEAN CLAUDE; BALDY, ANDR; JAUD, JOEL; NEGREL, JEAN CLAUDE; CHANON, MICHEL: "Tandem Diels-Alder-Diels-Alder Reaction Displaying High Stereoselectivity: Reaction of Hexachlorocyclopentadiene with Naphthalene", ACTA CHEMICA SCANDINAVICA, vol. 47, pages 0092 - 0094
See also references of EP2471796A4
TATSUYA YAMAMOTO; KAZUO TAKIMIYA: "Facile Synthesis of Highly ?-Extended Heteroarenes, Dinaphtho[2,3-b:2',3'-f]chalcogenophena[3, 2-b]chalcogenophenes, and Their Application to Field-Effect Transistors", J. AM. CHEM. SOC., vol. 129, no. 8, 2007, pages 2224 - 2225
WANG, Y. ET AL.: "Synthesis, characterization, and reactions of 6,13-disubstituted 2,3,9, 10-tetrakis(trimethylsilyl)pentacene derivatives", TETRAHEDRON, vol. 63, no. 35, 2007, pages 8586 - 8597, XP022173635 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021953A1 (ja) 2011-08-05 2013-02-14 帝人株式会社 縮合多環芳香族化合物、芳香族重合体、及び芳香族化合物の合成方法
JP2013053138A (ja) * 2011-08-05 2013-03-21 Teijin Ltd 新規な縮合多環芳香族化合物
CN103717606A (zh) * 2011-08-05 2014-04-09 帝人株式会社 稠合多环芳香族化合物、芳香族聚合物及芳香族化合物的合成方法
US8829202B2 (en) 2011-08-05 2014-09-09 Teijin Limited Condensed polycyclic aromatic compound, aromatic polymer, and method for synthesizing aromatic compound
WO2013146631A1 (ja) * 2012-03-28 2013-10-03 東レ株式会社 有機デバイス材料前駆体およびその製造方法ならびにこれを用いた発光素子およびその製造方法
WO2013146630A1 (ja) * 2012-03-28 2013-10-03 東レ株式会社 有機デバイス材料前駆体およびその製造方法ならびにこれを用いた発光素子およびその製造方法
WO2014027685A1 (ja) 2012-08-15 2014-02-20 帝人株式会社 有機半導体溶液及び有機半導体膜
EP2887414A4 (en) * 2012-08-15 2015-10-07 Teijin Ltd ORGANIC SEMICONDUCTOR SOLUTION AND ORGANIC SEMICONDUCTOR FILM
JPWO2014027685A1 (ja) * 2012-08-15 2016-07-28 帝人株式会社 有機半導体溶液及び有機半導体膜
JP2015156412A (ja) * 2014-02-20 2015-08-27 富士フイルム株式会社 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料

Also Published As

Publication number Publication date
EP2471796A1 (en) 2012-07-04
KR20120060831A (ko) 2012-06-12
EP2471796A4 (en) 2016-03-23
KR101604513B1 (ko) 2016-03-17
CN103880860A (zh) 2014-06-25
CN103880860B (zh) 2017-05-17
TW201120046A (en) 2011-06-16
TWI492948B (zh) 2015-07-21
EP2471796B1 (en) 2019-10-30
US20120211731A1 (en) 2012-08-23
US9056871B2 (en) 2015-06-16
CN102548998A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2011024804A1 (ja) 新規な付加化合物、縮合多環芳香族化合物の精製及び製造方法、有機半導体膜形成用溶液、及び新規なα-ジケトン化合物
JP4612786B2 (ja) 有機電界効果型トランジスタの製造方法
JP2009081408A (ja) 新規化合物および有機半導体素子の製造方法
JP5044226B2 (ja) ビシクロポルフィリン化合物、ビシクロピロール化合物、化合物の製造方法、有機半導体及びその製造方法
JP5641739B2 (ja) 有機半導体膜形成用溶液、及び有機半導体デバイス
JP5959647B2 (ja) 有機半導体溶液及び有機半導体膜
JP5269825B2 (ja) 新規な付加化合物、及び有機半導体デバイス
JP2004107216A (ja) 膜形成方法
JP5490386B2 (ja) フタロシアニン前駆体及びその製造方法、フタロシアニンの製造方法、並びにフタロシアニン膜の製造方法
US20130017497A1 (en) Synthesis and applications of soluble pentacene precursors and related compounds
JP2014133713A (ja) ジナフトフラン化合物とこれを用いた有機半導体デバイス
JP2011148743A (ja) 縮合多環芳香族化合物の精製及び製造方法
JP2013191821A (ja) 有機半導体デバイスとその製造方法、および化合物
JP2011162510A (ja) 新規なα−ジケトン化合物、及び有機半導体デバイス
WO2019193953A1 (ja) 有機半導体素子、組成物、化合物を精製する方法およびそれらの応用
JP5397802B2 (ja) ポルフィセン及びその製造方法、フィルム、半導体材料、蛍光色素並びに太陽電池
JP4325914B2 (ja) 新規ビシクロ化合物、それを用いたペンタセンの製造方法及びペンタセンの膜の形成方法
TWI374132B (en) Organic semiconducting material precursor and method for manufacturing otft
JP2011168569A5 (ja)
JP5881363B2 (ja) 新規な芳香族重合体
JP2004323434A (ja) ジシアノピラジノキノキサリン誘導体
Stark Preparation of Perylene Bisimide Acceptors with Ethylcarboxyl and Pyrenylcyclohexyl Imide Groups
JP5404865B2 (ja) 新規な縮合多環芳香族化合物
JP2013053140A (ja) 新規な縮合多環芳香族化合物
PL238683B1 (pl) Sposób otrzymywania nafto-lub antraceno-lub fenantro- [1,2,3,4-ghi]perylenu

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038349.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811854

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127004942

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010811854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13392996

Country of ref document: US