WO2011021671A1 - Molded product and production method thereof - Google Patents

Molded product and production method thereof Download PDF

Info

Publication number
WO2011021671A1
WO2011021671A1 PCT/JP2010/064024 JP2010064024W WO2011021671A1 WO 2011021671 A1 WO2011021671 A1 WO 2011021671A1 JP 2010064024 W JP2010064024 W JP 2010064024W WO 2011021671 A1 WO2011021671 A1 WO 2011021671A1
Authority
WO
WIPO (PCT)
Prior art keywords
adherend
polyimide
thermoplastic resin
adhesive
adhesive layer
Prior art date
Application number
PCT/JP2010/064024
Other languages
French (fr)
Japanese (ja)
Inventor
祐一 伊東
友章 佐藤
俊一 五味
弘一 佐野
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2011021671A1 publication Critical patent/WO2011021671A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles

Definitions

  • the present invention relates to a molded body and a manufacturing method thereof.
  • Molded parts of electrical and electronic parts and automotive parts are manufactured from various materials such as rubber, resin, metal, glass, wood, etc.
  • inorganic materials such as metals, alloys, ceramics, and magnets are often used.
  • a resin having a specific gravity smaller than that of an inorganic material and a low thermal conductivity has been attracting attention, and instead of the inorganic material, a resin, in particular, an engineering plastic is being used.
  • polycarbonate, polyamide (PA6, PA66), and alloys thereof are frequently used in the case of mobile phones and personal computers.
  • Patent Document 3 Japanese Patent Laid-Open No. 2008-246695
  • Patent Document 2 Japanese Patent Laid-Open No. 2006-315398
  • Patent Document 3 Japanese Patent Laid-Open No. 2007-221099
  • an object of the present invention is to provide a method for producing a molded body that can join a thermoplastic resin and an adherend to produce a molded body having high high-temperature adhesive strength.
  • Adhesive layer formation for forming an adhesive layer containing at least one of a polyimide and a polyimide precursor having a minimum viscosity of 10 Pa ⁇ s or higher and 10 4 Pa ⁇ s or lower at 23 ° C. or higher and 300 ° C. or lower.
  • the molded body according to ⁇ 1> further comprising: a process and a molding process in which a heat-melted thermoplastic resin is brought into contact with the adhesive layer, and the adherend and the thermoplastic resin are joined via the adhesive layer. It is a manufacturing method.
  • ⁇ 3> The method for producing a molded article according to ⁇ 1> or ⁇ 2>, wherein the glass transition temperature of the solidified adhesive layer obtained by solidifying the adhesive layer is 150 ° C. or higher.
  • ⁇ 4> The method for producing a molded body according to any one of ⁇ 1> to ⁇ 3>, wherein the molding step is performed by injection molding or extrusion molding.
  • ⁇ 5> The method for producing a molded article according to any one of ⁇ 1> to ⁇ 4>, wherein at least one of the polyimide and the polyimide precursor contains at least one crosslinkable group.
  • ⁇ 6> The method for producing a molded body according to any one of ⁇ 1> to ⁇ 5>, wherein the adherend is a metal or a ceramic.
  • ⁇ 7> The method for producing a molded body according to any one of ⁇ 1> to ⁇ 6>, wherein the adherend surface is subjected to at least one of a chemical surface treatment and a physical surface treatment.
  • thermoplastic resin composition (A) having a long-term continuous use temperature of 150 ° C. or higher and a heat deflection temperature measured at 1.82 MPa according to the ASTM D-648 method of 200 ° C. or higher;
  • the body (B) contains at least one of a polyimide and a polyimide precursor containing a crosslinkable group and having a minimum viscosity of 10 Pa ⁇ s to 10 4 Pa ⁇ s at 23 ° C to 300 ° C. It is the molded object joined through the contact bonding layer.
  • thermoplastic resin composition (A) is polyphenylene sulfide (PPS), polyether ether ketone (PEEK), liquid crystal polymer (LCP), polyether nitrile (PEN), polysulfone (PSF), polyether sulfone (PES) ), Polyarylate (PAR), polyamideimide (PAI), polyetherimide (PEI) and thermoplastic polyimide (PI), the molded article according to ⁇ 8>, comprising at least one thermoplastic resin. .
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • LCP liquid crystal polymer
  • PEN polyether nitrile
  • PSF polysulfone
  • PES polyether sulfone
  • PAR Polyarylate
  • PAI polyamideimide
  • PEI polyetherimide
  • PI thermoplastic polyimide
  • the molded body is an insulated wire, an insulated wire, an insulated cable, or an insulated cord
  • the adherend (B) is a conductor
  • a layer made of the thermoplastic resin (A) is formed on the circumference of the conductor.
  • thermoplastic resin thermoplastic resin
  • adherend a method for producing the molded article capable of producing the molded article.
  • an adhesive layer containing at least one of a polyimide having a minimum viscosity of 10 Pa ⁇ s or more and 10 4 Pa ⁇ s or less at 23 ° C. or more and 300 ° C. or less is a surface of an adherend.
  • an adherend on which an adhesive layer is formed may be prepared in advance, and a thermoplastic resin melted by heating may be applied on the adhesive layer, or the adhesive layer is formed. After preparing a non-adhered body and manufacturing an adherend on which an adhesive layer is formed, a heat-melted thermoplastic resin may be applied onto the adhesive layer.
  • the method for producing a molded body of the present invention further includes other steps such as a step of performing a surface treatment for improving the adhesion between the adherend surface and the adhesive layer within a range not impairing the effects of the present invention. May be included. For example, anchoring effects such as shot blasting, chemical treatments such as silane coupling material treatment, and surface treatments described in Patent Literature 1, Patent Literature 2, and Patent Literature 3 can be used.
  • the molded product produced by the method for producing a molded product of the present invention includes at least a solidified thermoplastic resin layer (solidified thermoplastic resin layer) and a layer formed from the adhesive (adhesive layer), A molded body having a multilayer structure of at least three layers having an adherend. More specifically, a mixed layer of both layers exists between the solidified thermoplastic resin layer and the adhesive layer.
  • polyimide and polyimide precursor having a minimum viscosity of 10 Pa ⁇ s or more and 10 4 Pa ⁇ s or less at 23 ° C. or more and 300 ° C. or less may be collectively referred to as “specific compound”.
  • a polyimide precursor is an intermediate compound obtained when a polyimide is synthesized.
  • a specific compound will be described with a focus on polyimide.
  • the resin molecule of the thermoplastic resin and the adhesive are composed at the thermoplastic resin-adhesive interface. It is thought that it is important that the molecule of the compound (hereinafter also referred to as “adhesive molecule”) is compatible and fused. To that end, it is thought that both the molecular motion of the resin molecules of the thermoplastic resin and the molecular motion of the adhesive molecules must be active. The active molecular motion is because the resin is soft, For example, it is considered that the resin melts and the viscosity of the resin is low.
  • the melting temperature and the glass transition temperature (Tg) are high.
  • the melting temperature of the thermoplastic resin is lower than the molding temperature. Therefore, in order to join the thermoplastic resin and the adherend by molding, the polyimide layer that is sufficiently wet and spread on the adhesion surface of the adherend is formed and heated and melted with the polyimide layer that becomes the adhesive layer.
  • adherend molecules Arrange the adherend at the position where the thermoplastic resin faces, contact the polyimide resin layer with the heat-melted thermoplastic resin, and compose the resin molecules of the thermoplastic resin and the adhesive at the molding temperature of the thermoplastic resin It is necessary that the compound molecules (hereinafter also referred to as “adhesive molecules”) be sufficiently familiar and fused together.
  • the “process” will be described by taking injection molding as an example.
  • a polyimide layer adheresive layer
  • an adherend on which a polyimide layer is formed is mounted on a mold, and a polyimide layer that becomes an adhesive layer and a heat-melted thermoplastic resin are disposed at opposite positions, and the heat-melted thermoplastic resin is placed in this polyimide layer.
  • the resin molecules of the thermoplastic resin and the adhesive molecules that make up the adhesive are sufficiently blended and fused between the molding temperature of the thermoplastic resin and the mold temperature, resulting in solidified heat.
  • a mixed layer of both layers is formed between the plastic resin layer and the adhesive layer.
  • the “molding temperature” is the temperature of the cylinder containing the thermoplastic resin when molding, and the “mold temperature” is the temperature of the mold in which the adherend is inserted and held. The maximum temperature before bonding.
  • thermoplastic resin molded body and an adherend using an adhesive containing polyimide since this polyimide has a high melting temperature, Must be above melting temperature. At this time, the thermoplastic resin is excessively heated, and the elastic modulus of the thermoplastic resin is lowered, so that it is difficult to obtain a molded product that retains a pre-shaped shape.
  • the minimum viscosity at 23 to 300 ° C. is 10 Pa ⁇ s to 10 4.
  • An adhesive (hereinafter also referred to as “specific adhesive”) containing at least one of polyimide and a polyimide precursor (specific compound) that is Pa ⁇ s or less is used.
  • the state in which the polyimide and the polyimide precursor have a minimum viscosity of 10 Pa ⁇ s or more and 10 4 Pa ⁇ s or less at 23 ° C. or more and 300 ° C. or less is active in the molecular motion of the thermoplastic resin molecules and the adhesive molecules, and This is considered to be before the polyimide is completely solidified.
  • the minimum viscosity of the polyimide and the polyimide precursor is lower than 10 Pa ⁇ s, when the adherend to which the adhesive has been applied in advance is attached to the mold, it flows down from the adherend, and unevenness occurs as an action of the adhesive, Since the film thickness of the adhesive changes due to the pressure of the low viscosity resin injected during injection molding, the optimum film thickness cannot be maintained, and the adhesive strength may be lowered, which is not preferable.
  • the minimum viscosity of the polyimide and the polyimide precursor exceeds 10 4 Pa ⁇ s, the adhesive molecules become sluggish, become familiar with the thermoplastic resin, do not reach a state of being fused, and cannot be joined. Similarly, at 23 ° C. or higher and 300 ° C. or lower, the solidified adhesive cannot be bonded.
  • the thermoplastic resin melted by heating is molded on the adhesive layer of the adherend in which the adhesive layer containing the specific compound is formed on the surface of the adherend.
  • the specific adhesive of the adhesive layer formed on the surface of the adherend has a great molecular movement between the thermoplastic resin molecules and the adhesive molecules, and the polyimide has completed solidification.
  • a thermoplastic resin is molded, and the molded body is manufactured by bringing the thermoplastic resin into contact with the solidified polyimide.
  • the specific adhesive is heated by contacting with the thermoplastic resin heated and melted at the molding temperature at the time of molding, and once in the viscosity range (10 Pa ⁇ s or more and 10 4 Pa ⁇ s or less).
  • the thermoplastic resin that is lowered and melted by heating solidifies with cooling after molding, and a molded body in which the thermoplastic resin layer, the adhesive layer, and the adherend are integrated is obtained.
  • the molded body thus produced can exhibit high-temperature adhesive strength while having normal-state adhesive strength even when the thermoplastic resin is a heat-resistant thermoplastic polyimide.
  • the polyimide or polyimide precursor used for the adhesive layer “the lowest viscosity at 23 ° C. or more and 300 ° C. or less is 10 Pa ⁇ s or more and 10 4 Pa ⁇ s or less”, and the molded product after the production of the molded product has an adhesive strength.
  • the polyimide or polyimide precursor used for the layer is preferably a thermosetting polyimide or a thermosetting polyimide precursor.
  • thermosetting polyimide of the adhesive layer are sufficiently blended and fused together to supply heat.
  • thermosetting polyimide or thermosetting polyimide precursor Utilizing the heat source of the plastic resin, and then crosslinking the thermosetting polyimide or thermosetting polyimide precursor, it has an advantageous effect on adhesiveness, particularly, adhesiveness at high temperatures.
  • thermosetting polyimide or thermosetting polyimide precursor which is an adhesive
  • the thermosetting polyimide or thermosetting polyimide precursor which is an adhesive
  • the thermoplastic resin heated and melted by molding is brought into contact with the adhesive layer
  • the thermoplastic resin molecule and the adhesive molecule are not contacted with the thermoplastic resin in the state where the crosslinking of the thermosetting polyimide is finished. It is considered that the mixed layer is not formed between the solidified thermoplastic resin layer and the adhesive layer, so that the bonding is insufficient.
  • thermosetting polyimide having a low viscosity is used as an adhesive at a temperature not higher than the glass transition temperature of the thermoplastic resin, and the thermoplastic resin is brought into contact with the thermoplastic resin before cross-linking the thermosetting polyimide. It is considered that a vigorous state of molecular movement of the adhesive molecules can be created, and a molded body capable of exhibiting high-temperature adhesive strength can be produced.
  • the adhesive layer forming step of the present invention an adhesive layer containing at least one of a polyimide having a minimum viscosity of 10 Pa ⁇ s to 10 4 Pa ⁇ s at 23 ° C. or higher and 300 ° C. or lower is used.
  • the adhesive layer forming step is a step of forming an adhesive layer containing a specific compound on the adherend surface by applying at least a specific adhesive to the adherend surface.
  • the specific adhesive contains, in addition to the specific compound, a solvent for diluting the specific compound (for example, N-methylpyrrolidone) and a resin other than the specific compound, as long as the effects of the present invention are not impaired. May be.
  • a solvent for diluting the specific compound for example, N-methylpyrrolidone
  • a resin other than the specific compound for example, you may contain the tackifier which has the effect
  • the specific compound may be used in a paste form using a poor solvent, even if it does not completely dissolve.
  • the poor solvent dihydroterpineol, dibutyl phthalate, or the like can be used.
  • the ratio of the specific compound in the specific adhesive is preferably 1% by mass or more and may be 100% by mass, but more preferably 1% by mass or more and 25% by mass or less.
  • the method of applying the specific adhesive to the adherend surface is not particularly limited, and the specific adhesive is applied to the adherend surface using a brush, roller, bar, spray, screen printing, or gravure printing.
  • Immersion method in which the adherend is immersed in an adhesive or a specific adhesive solution, a rotation method in which a specific adhesive is attached to the adherend, the adherend is rotated, and a film is formed on the adherend surface by centrifugal force, etc. Is mentioned.
  • the layer thickness of the adhesive layer is preferably 5 ⁇ m or more and 500 ⁇ m or less, and more preferably 30 ⁇ m or more and 200 ⁇ m or less from the viewpoint of sufficiently mixing with the thermoplastic resin to form the adhesive layer.
  • the adhesive layer is thinner than 5 ⁇ m, it is insufficient to form a mixed layer of both layers between the solidified thermoplastic resin layer and the adhesive layer, and sufficient adhesive strength cannot be obtained.
  • pre-bonding treatment The adhesive layer formed on the surface of the adherend is such that the solvent in the adhesive layer is removed before the heated and melted thermoplastic resin is brought into contact with the adhesive layer surface by injection molding or the like.
  • the specific compound in it has a crosslinkable functional group
  • the process of drying the adhesive after application of the adhesive is referred to as “joining pretreatment”. “Joint pretreatment” may be abbreviated as “pretreatment”.
  • the solvent contained in the adhesive layer may foam during the molding process and reduce the adhesive strength between the thermoplastic resin layer, the adhesive layer, and the adherend.
  • the adhesive layer is excessively heated and dried, the crosslinking reaction of the crosslinkable functional group of the specific adhesive proceeds excessively with the heat during drying, and the thermoplastic resin molecules and the adhesive molecules of the specific adhesive are injected during the injection molding. May not be sufficiently mixed and fused, and the molded article produced may not exhibit sufficient adhesive strength.
  • the bonding pretreatment there is a method of heating and drying the adherend on which the adhesive layer is formed.
  • the drying temperature is preferably 23 ° C. or higher and 300 ° C. or lower, and 100 ° C. or higher and 250 ° C. or lower. More preferred.
  • vacuum drying can also be used together.
  • the adhesive layer can be formed into a film in advance, and the film can be used in a state of being in contact with the adherend.
  • the molding process according to the present invention is a process in which an adhesive body, an adhesive layer, and the thermoplastic resin are integrated at the same time as applying a heat-melted thermoplastic resin on an adhesive layer of an adherend having an adhesive layer. is there.
  • thermoplastic resin layer is formed at the same time as the adhesion.
  • the body, the adhesive layer, and the thermoplastic resin can be integrated. Molding methods that can be molded while contacting the heat-melted thermoplastic resin with the adherend include compression molding, engel molding, extrusion molding, extrusion lamination molding, rotational molding, calendar molding, injection molding, and vacuum. Molding, slush molding, RIM (reaction injection molding), stamping molding, casting method, foam molding, T-die method, etc. may be used as long as a thermoplastic resin can be applied, but the adhesive layer and the thermoplastic resin It is preferable to carry out by injection molding or extrusion molding from the point of sufficient mixing.
  • FIGS. 1 to 6 the same members and components are denoted by the same reference numerals, and description of members and components common to a plurality of drawings may be omitted.
  • FIG. 1 shows an example of an adherend having an adhesive layer, and shows a state where an adhesive layer 4 containing a specific adhesive is formed on the surface of the adherend 2.
  • FIG. 2 is a side sectional view of a mold showing an example of a mold 20 used for injection molding.
  • the mold 20 shown in FIG. 2 includes a cavity 22 that is a concave member and a cavity 24, and is used by creating a space by fitting the cavity 22 and the cavity 24 together.
  • a core which is a convex member can be used.
  • the mold may be used by combining cavities or cores and cavities. Further, three or more cavities and a core may be used in combination.
  • FIG. 3 is a side cross-sectional view of an adherend having a mold and an adhesive layer, showing an example of a state where an adherend having an adhesive layer is mounted in a cavity and clamped.
  • the adherend 2 having the adhesive layer 4 is mounted in the cavity 24, the cavity 24 and the cavity 22 are fitted (mold closed), and the mold 20 is clamped to form the mold 20. ing.
  • a space is created in the mold 20 by the surface of the adhesive layer 4 and the concave surface of the cavity 22.
  • FIG. 4 is a side cross-sectional view of an adherend, a mold, and a cylinder showing an example of a state where a cylinder is mounted on a clamped mold.
  • the mold is heated to such an extent that the specific adhesive in the adhesive layer is not cured.
  • the cylinder 30 accommodates the heated thermoplastic resin 6 and injects the thermoplastic resin 6 into the space 8 formed by the surface of the adhesive layer 4 and the concave surface of the cavity 22.
  • the heating temperature of the thermoplastic resin is preferably equal to or higher than the glass transition temperature (Tg) of the thermoplastic resin to be used, and is adjusted by adjusting the temperature of the cylinder containing the thermoplastic resin.
  • Tg glass transition temperature
  • the temperature of the mold and the temperature of the cylinder differ depending on the thermoplastic resin to be injected, but the specific adhesive in the adhesive layer and the thermoplastic resin to be injection-molded are sufficiently mixed so that the specific adhesive can react. Above the temperature is preferred.
  • the mold temperature is preferably 180 ° C. or higher and 240 ° C. or lower, and the cylinder temperature is 400 ° C. or higher and 450 ° C. or lower. It is preferable to do.
  • FIG. 5 is a side cross-sectional view of an adherend, a mold, and a cylinder showing an example of a mode in which a thermoplastic resin is injected into a space in the mold from a cylinder mounted on a mold that has been clamped.
  • a piston not shown
  • the thermoplastic resin 6 is injected from the cylinder 30. Is replaced with the thermoplastic resin 6.
  • the pressure is applied by the piston of the cylinder 30 until the space 8 is filled with the thermoplastic resin 6.
  • FIG. 6 is a side cross-sectional view of a molded body showing an example of a molded body manufactured by the method for manufacturing a molded body of the present invention.
  • a solidified adhesive layer 14 and a solidified thermoplastic resin layer (thermoplastic resin layer) 16 are laminated in this order on the surface of the adherend 2.
  • the method for producing a molded body according to the present invention is a surface that performs a surface treatment of the adherend surface to improve the adhesion between the adherend surface and the adhesive layer.
  • a processing step may be included. That is, as the adherend used in the adhesive layer forming step, an adherend that has been subjected to surface treatment of the adherend surface may be used.
  • the surface treatment may be performed by at least one of a chemical surface treatment and a physical surface treatment.
  • the chemical surface treatment include surface treatment of the adherend surface with a known adhesion-imparting agent such as a coupling material to improve the adhesion between the adhesive and the adherend.
  • a chemical surface treatment of polyfunctional triazine dithiol described in JP-A-2007-221099 may be performed.
  • the physical surface treatment the surface of the adherend is subjected to sanding or hydrazine treatment described in Japanese Patent Application Laid-Open No. 2006-315398 to increase the specific surface area of the adherend, thereby adhering by the so-called anchor effect. Improving the adhesion between the agent and the adherend.
  • both chemical surface treatment and physical surface treatment may be performed, or only one of them may be repeated.
  • adhesiveness can also be improved by curing at the temperature below the softening point of a thermoplastic resin after injection molding (after joining).
  • the specific compound described above that is, at least one of a polyimide having a minimum viscosity of 10 Pa ⁇ s to 10 4 Pa ⁇ s at 23 ° C. to 300 ° C. and polyimide precursor is contained.
  • Use adhesive When the specific compound has a minimum viscosity of 10 Pa ⁇ s or more and 10 4 Pa ⁇ s or less at 23 ° C. or more and 300 ° C. or less, the thermoplastic resin can be sufficiently mixed and adhered at the time of injection molding.
  • the minimum viscosity of the specific compound is more preferably from 50 Pa ⁇ s to 5,000 Pa ⁇ s at 80 ° C. to 300 ° C.
  • the minimum viscosity of the specific compound is more preferably from 1,000 Pa ⁇ s to 5,000 Pa ⁇ s at 80 ° C. to 300 ° C.
  • the melt viscosity of the specific compound can be measured using a viscoelasticity measuring apparatus (Reo Stress-RS600 manufactured by Haake).
  • the glass transition temperature (Tg) of the (solidified solidified adhesive layer) is preferably 150 ° C. or higher.
  • the Tg of the solidified product of the specific adhesive is more preferably 180 ° C. or higher.
  • Tg of the solidified product of the specific adhesive is a temperature measured as follows using a differential thermal scanning calorimeter DSC6200 manufactured by SII.
  • a specific adhesive is applied to the surface of the adherend so that the average dry film thickness is 30 ⁇ m, then heated at 200 ° C. for 2 hours, and further heated at 340 ° C. for 2 hours to obtain a test piece for Tg measurement. Get.
  • Tg is measured from an endothermic peak related to phase transition using a differential thermal scanning calorimeter: DSC6200 manufactured by SII.
  • the specific compound contains polyimide or a precursor thereof as a main component, and the polyimide precursor is preferably a polyamic acid.
  • the polyamic acid which is a polyimide or a precursor thereof preferably contains at least one structural unit derived from an aromatic diamine, a structural unit derived from an aromatic tetracarboxylic dianhydride, and a crosslinkable group.
  • the crosslinkable group is preferably a crosslinkable end group, but a crosslinkable group may be present in the repeating unit.
  • the polyimide is preferably a polyimide having a structure represented by the following general formula (1).
  • the parentheses indicate a repeating unit.
  • X represents the main skeleton of diamine
  • Y represents the main skeleton of tetracarboxylic dianhydride.
  • the main skeleton of diamine means a main chain excluding the amino group of diamine
  • the main skeleton of tetracarboxylic dianhydride means a main chain excluding carboxylic dianhydride.
  • At least one of X and Y in the general formula (1) is preferably an aromatic group, and more preferably the following structure. More preferably, both are aromatic groups.
  • Y in the general formula (1) represents the following structure (Y1- 1) to any one of structures (Y1-6) is preferable.
  • R each independently represents a single bond, —O—, —CO—, —SO 2 —, —S—, —CH 2 — or —C ( Any one selected from the group consisting of CH 3 ) 2 —.
  • m and n are each independently an integer of 0 to 7, and Z is each independently —CH 3 or a phenyl group.
  • Y in the general formula (1) is preferably the following structure (Y2-1) or the structure (Y2-2).
  • R is selected from the group consisting of a single bond, —O—, —CO—, —SO 2 —, —S—, —CH 2 — and —C (CH 3 ) 2 —. Any one of them.
  • Y in the general formula (1) is preferably the following structure (Y3-1).
  • the polyimide may be composed only of the structure represented by the general formula (1), but the terminal portion may be sealed with a monoamine or dicarboxylic acid anhydride.
  • the polyimide whose end is sealed with a monoamine or dicarboxylic acid anhydride preferably has a structure represented by the following general formula (2) or general formula (3).
  • X and Y in the general formula (2) and the general formula (3) are synonymous with X and Y in the general formula (1)
  • X ′ in the general formula (2) represents a main skeleton of a monoamine
  • the general formula ( Y ′ in 3) represents the main skeleton of dicarboxylic dianhydride.
  • the main skeleton of monoamine means the main chain excluding the amino group of monoamine
  • the main skeleton of dicarboxylic dianhydride means the main chain excluding carboxylic dianhydride.
  • it is preferable that the molecular ends are blocked with monoamine or carboxylic dianhydride because of excellent stability.
  • the specific compound polyimide is more preferably a thermosetting polyimide
  • X ′ in the general formula (2) is preferably the following structure (X′-1) or structure (X′-2). preferable.
  • R 1 is a methylene group (—CH 2 —) or a phenylene group (—C 6 H 4 —), and R 2 and R 3 are each independently a methyl group (— CH 3 ) or an ethyl group (—C 2 H 5 ).
  • N is an integer of 1 to 7
  • r is an integer of 0 to 2.
  • a polyimide having a partial structure in which X ′ in the general formula (2) is represented by the structure (X′-1) or the structure (X′-2) as the specific compound the adherend and the thermoplastic are used. It becomes possible to further improve the adhesion to the resin.
  • polyimide having a partial structure represented by X ′ in the general formula (2) is represented by the structure (X′-1) or the structure (X′-2) is thermally cured by heating, adhesion in a high temperature environment Excellent strength.
  • Y ′ is preferably any one of the following structures (Y′-1) to (Y′-8).
  • the polyimide having the structure represented by the general formula (1) to the general formula (3) includes a vinylene group, an ethynyl group, a vinylidene group, a benzocyclobutane-4′-yl group, an isocyanate group, an allyl group, an oxirane group, and an oxetane group. It preferably has at least one bridging group selected from a cyano group and an isopropenyl group.
  • the polyimides having the structures represented by the general formulas (1) to (3) are more easily cured by heating due to the introduction of these crosslinking groups, and have excellent adhesive strength in a high temperature environment.
  • the polyamic acid which is a polyimide precursor that can be included in the specific adhesive preferably has any one of the structures represented by the following general formulas (4) to (6).
  • X represents the main skeleton of the diamine compound
  • X ′ represents the main skeleton of the monoamine compound
  • Y represents the main skeleton of the tetracarboxylic dianhydride
  • Y ′ Represents the main skeleton of the dicarboxylic acid anhydride.
  • At least one of X and Y is preferably an aromatic group, and more preferably the following structure.
  • the general formula (4) to the general formula Y in (6) is preferably any one of the structures (Y1-1) to (Y1-6).
  • R each independently represents a single bond, —O—, —CO—, —SO 2 —, —S—, —CH 2 — or —C. Any one selected from the group consisting of (CH 3 ) 2 —, m and n are each independently 0 to 7, and Z is CH 3 or a phenyl group.
  • X in the general formulas (4) to (6) is the structure (X2-1)
  • Y in the general formulas (4) to (6) is the structure (Y2-1) or The structure (Y2-2) is preferable.
  • R is selected from the group consisting of a single bond, —O—, —CO—, —SO 2 —, —S—, —CH 2 —, and —C (CH 3 ) 2 —. Any one of them.
  • X ′ in the general formula (5) is preferably the structure (X′-1) or the structure (X′-2).
  • a polyimide obtained by using a polyamic acid having a structure in which X ′ in the general formula (5) is represented by the structure (X′-1) or the structure (X′-2) is represented by the general formula: Since X ′ in (5) has a partial structure represented by the structure (X′-1) or the structure (X′-2), it is thermally cured by heating, and therefore has excellent adhesive strength in a high temperature environment. .
  • Y ′ is preferably any one of the structures (Y′-1) to (Y′-8).
  • the polyamic acid having the structure represented by the general formula (6) in which Y ′ is any one of the structures (Y′-1) to (Y′-8) is easily cured by heating and has a high temperature. Excellent adhesive strength in the environment.
  • the polyamic acid having the structure represented by the general formula (4) to the general formula (6) includes a vinylene group, an ethynyl group, a vinylidene group, a benzocyclobutane-4′-yl group, an isocyanate group, an allyl group, an oxirane group, and an oxetane. It preferably has at least one bridging group selected from a group, a cyano group, and an isopropenyl group.
  • the polyamic acid having the structure represented by the general formula (4) to the general formula (6) is easily cured by heating due to the introduction of these crosslinking groups, and has excellent adhesive strength in a high temperature environment.
  • the polyimide having the structure represented by the general formula (1) and the polyamic acid having the structure represented by the general formula (4) are synthesized by condensation of diamine and tetracarboxylic dianhydride.
  • the molecular weight can be controlled by adjusting the molar ratio of the monomer components. That is, by using 0.8 to 1.2 mol of diamine with respect to 1 mol of tetracarboxylic dianhydride, a high molecular weight product can be formed.
  • the polyimide or polyamic acid is a high molecular weight material because the cured product of the specific adhesive is excellent in mechanical strength, electrical insulation and the like, and does not generate outgas in a high temperature environment.
  • the molar ratio is more preferably 0.9 to 1.1 mol of diamine with respect to 1 mol of acid dianhydride.
  • diamines that can be used to synthesize the polyimide having the structure represented by the general formula (1) or the polyamic acid having the structure represented by the general formula (4) include the following diamines. Is mentioned.
  • Siloxane diamines such as 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, ⁇ , ⁇ -bis (3-aminopropyl) ) Polydimethylsiloxane, ⁇ , ⁇ -bis (3-aminobutyl) polydimethylsiloxane.
  • Ethylene glycol diamines bis (aminomethyl) ether, bis (2-aminoethyl) ether, bis (3-aminopropyl) ether, bis (2-aminomethoxy) ethyl] ether, bis [2- ( 2-aminoethoxy) ethyl] ether, bis [2- (3-aminopropoxy) ethyl] ether, 1,2-bis (aminomethoxy) ethane, 1,2-bis (2-aminoethoxy) ethane, 1,2 -Bis [2- (aminomethoxy) ethoxy] ethane, 1,2-bis [2- (2-aminoethoxy] ethane, ethylene glycol bis (3-aminopropyl) ether, diethylene glycol bis (3-aminopropyl) Ether, triethylene glycol bis (3-aminopropyl) ether.
  • k) Methylenediamines ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diamino Octane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane.
  • Alicyclic diamines such as 1,2-diaminocyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 1,2-di (2-aminoethyl) cyclohexane, 1,3-di ( 2-aminoethyl) cyclohexane, 1,4-di (2-aminoethyl) cyclohexane, bis (4-aminocyclohexyl) methane, 2,6-bis (aminomethyl) bicyclo [2.2.1] heptane, 2,5-bis (aminomethyl) bicyclo [2.2.1] heptane is exemplified.
  • the diamines exemplified above can be used alone or in combination as appropriate.
  • the diamine compound is a diamine in which a part or all of the hydrogen atoms on the aromatic ring of the diamine are substituted with a substituent selected from a fluoro group, a methyl group, a methoxy group, a trifluoromethyl group, or a trifluoromethoxy group. It may be.
  • a part of the diamine may be replaced with triamines or tetraamines. Specific examples of such triamines include, for example, pararose aniline.
  • tetracarboxylic dianhydride that can be used to synthesize the polyimide having the structure represented by the general formula (1) and the polyamic acid having the structure represented by the general formula (4) include For example, the following may be mentioned.
  • tetracarboxylic dianhydrides exemplified above can be used alone or in combination as appropriate.
  • any of the above tetracarboxylic dianhydrides was selected from a fluoro group, a methyl group, a methoxy group, a trifluoromethyl group, or a trifluoromethoxy group for some or all of the hydrogen atoms on their aromatic rings. It can also be used after being substituted with a substituent.
  • an ethynyl group, a benzocyclobuten-4′-yl group, a vinyl group, an allyl group, a cyano group, an isocyanate group, a nitrilo group, and an isopropenyl group that serve as a crosslinking point are formed on the aromatic ring of the acid dianhydride. Even if it introduce
  • a vinylene group, a vinylidene group, and an ethynylidene group that serve as a crosslinking point may be incorporated in the main chain skeleton instead of a substituent, preferably within a range that does not impair the moldability.
  • a part of tetracarboxylic dianhydride may be replaced with hexacarboxylic dianhydride or octacarboxylic dianhydride.
  • a dicarboxylic acid anhydride or a monoamine may be included as a terminal blocking agent when synthesizing polyimide and polyamic acid.
  • a polyamic acid having a structure represented by (6) can be obtained.
  • dicarboxylic acid anhydrides include phthalic acid anhydride, 2,3-benzophenone dicarboxylic acid anhydride, 3,4-benzophenone dicarboxylic acid anhydride, 2,3-dicarboxyphenyl phenyl ether anhydride, 3,4-dicarboxyphenyl phenyl ether anhydride, 2,3-biphenyl dicarboxylic acid anhydride, 3,4-biphenyl dicarboxylic acid anhydride, 2,3-dicarboxyphenyl phenyl sulfone anhydride, 3,4-dicarboxy Phenylphenyl sulfone anhydride, 2,3-dicarboxyphenyl phenyl sulfide anhydride, 3,4-dicarboxyphenyl phenyl sulfide anhydride, 1,2-naphthalenedicarboxylic acid anhydride, 2,3-naphthalenedicarboxylic acid anhydride, 2,
  • dicarboxylic acid anhydrides may be substituted with groups that are not reactive with amine compounds or tetracarboxylic dianhydrides. These can be used alone or in admixture of two or more. Of these aromatic dicarboxylic anhydrides, phthalic anhydride is preferably used.
  • monoamines include the following. Aniline, o-toluidine, m-toluidine, p-toluidine, 2,3-xylidine, 2,6-xylidine, 3,4-xylidine, 3,5-xylidine, o-chloroaniline, m-chloroaniline, p- Chloroaniline, o-bromoaniline, m-bromoaniline, p-bromoaniline, o-nitroaniline, p-nitroaniline, m-nitroaniline, o-aminophenol, p-aminophenol, m-aminophenol, o- Anisidine, m-anisidine, p-anisidine, o-phenetidine, m-phenetidine, p-phenetidine, o-aminobenzaldehyde, p-aminobenzaldehyde, m-aminobenzaldehyde, o--ch
  • These monoamines and / or dicarboxylic anhydrides may be used alone or in combination of two or more.
  • the amount of these end-capping agents used is a monoamine (excess component is tetracarboxylic dianhydride) or dicarboxylic anhydride (excess component is 1 to several times the difference in the number of moles of diamine and tetracarboxylic dianhydride used).
  • the excess component may be a diamine), but it is generally used at least about 0.01 mole times that of one component.
  • the polyimide and the polyimide precursor are identified by synthesizing using a diamine having a structure in which two benzene rings are bonded by a ketone bond and a diamine having a structure in which three benzene rings are bonded by an ether. It becomes easy to express the characteristics of the compound, that is, the minimum viscosity at 23 ° C. or more and 300 ° C. or less of 10 Pa ⁇ s to 10 4 Pa ⁇ s.
  • a diamine having a structure in which two benzene rings are bonded by a ketone bond and a diamine having a structure in which three benzene rings are bonded by an ether are 10/0 to 6 / 4 (“diamine having a structure in which three benzene rings are bonded by ether” / “diamine having a structure in which two benzene rings are bonded by a ketone bond”) [molar ratio], more preferably 8 / 2 to 6/4 (“diamine having a structure in which three benzene rings are bonded by ether” / “diamine having a structure in which two benzene rings are bonded by a ketone bond”) [molar ratio].
  • the minimum viscosity of the thermosetting polyimide and the thermosetting polyimide precursor at 23 ° C. or more and 300 ° C. or less is increased.
  • the viscosity can be reduced by increasing the molar ratio of the diamine having a structure in which three benzene rings are bonded with ether.
  • diamine having a structure in which two benzene rings are bonded by a ketone bond 3,3′-diaminobenzophenone is preferable.
  • diamine having a structure in which three benzene rings are bonded with ether 1,3-bis (3-aminophenoxy) benzene is preferable.
  • the synthesis reaction of the polyimide or polyamic acid is usually carried out in an organic solvent.
  • Any organic solvent can be used as the organic solvent for this reaction as long as it has no problem in producing polyimide and polyamic acid, and can dissolve the produced polyimide and polyamic acid.
  • the synthesized polyimide or polyamic acid can be used as a specific adhesive while being dissolved in these organic solvents.
  • the polyimide solvent is preferably cresol or N-methylpyrrolidone
  • the polyamic acid solvent is preferably N-methylpyrrolidone.
  • these organic solvents can be used also as a solvent at the time of using the synthesized polyimide and polyamic acid as a solution.
  • an organic base catalyst in synthesizing polyimide and polyamic acid.
  • the organic base catalyst tertiary amines such as pyridine, ⁇ -picoline, ⁇ -picoline, ⁇ -picoline, quinoline, isoquinoline and triethylamine are used, and pyridine and ⁇ -picoline are particularly preferable.
  • the amount of these catalysts used is 0.001 mol to 0.50 mol with respect to 1 mol of the total amount of tetracarboxylic dianhydride. Particularly preferred is 0.01 mol to 0.1 mol.
  • the reaction temperature when synthesizing the polyamic acid is ⁇ 20 to 60 ° C., preferably 0 to 40 ° C.
  • the reaction time varies depending on the type of tetracarboxylic dianhydride used, the type of solvent, the reaction temperature, and the like, but as a guideline it is 1 to 48 hours, usually several hours to several tens of hours.
  • the organic solvent solution containing the polyamic acid obtained by such a method is referred to as a specific adhesive solution containing the polyamic acid. Since the polyamic acid is a polyimide precursor, the polyamic acid thus obtained is then used as a specific adhesive by dehydration by heating to 150 ° C. to 400 ° C.
  • the reaction temperature at the time of synthesizing the polyimide is 100 ° C. or higher, preferably 150 ° C. to 300 ° C., and it is generally performed while extracting water generated by the reaction.
  • the precursor polyamic acid Prior to imidization, it is possible to first synthesize the precursor polyamic acid at a low temperature of 100 ° C. or lower, and then raise the temperature to 100 ° C. or higher to imidize, but simply with tetracarboxylic dianhydride and After mixing with diamine, imidation can also be performed by immediately raising the temperature to 100 ° C. or higher in the presence of an organic base.
  • the reaction time varies depending on the type of tetracarboxylic dianhydride used, the type of solvent, the type and amount of the organic base catalyst, the reaction temperature, etc., but as a guideline, the distilled water reaches almost the theoretical amount (usually Is a recovery rate of 70% to 90% because not all is recovered, and is usually about several hours to 10 hours.
  • the water generated by the imidation reaction is generally effective by adding an azeotropic agent such as toluene to the reaction system and removing the water by azeotropy.
  • an azeotropic agent such as toluene
  • the organic solvent solution containing the polyimide obtained by such a method is called the specific adhesive solution containing a polyimide.
  • the specific adhesive solution containing polyimide has good storage stability, and after applying to the adhesion surface of the adherend and heating and drying, it is sufficient to contact the molten thermoplastic resin by injection molding or the like. Adhesive peel strength is obtained.
  • the drying temperature varies depending on the boiling point of the solvent and cannot be specified, but is usually 150 ° C. to 300 ° C.
  • the molding is usually carried out at a temperature in the range of 250 ° C to 450 ° C.
  • polyimide may be used after being formed into a film by a known method, not as a solution dissolved in an organic solvent.
  • diaminosiloxane may be included in the specific adhesive in order to improve the adhesiveness of the specific adhesive (Japanese Patent Laid-Open Nos. 5-74245, 5-98233, 5-98234, 5-98235, 5-98236, 5-98237, and 5-112760 publications).
  • the diaminosiloxane is represented by the above general formulas (1) to (6) (wherein X is a structure (X1-5)). Therefore, when diaminosiloxane is used in combination, the polyimide and polyamic acid are those in the general formulas (1) to (6), wherein X is any one of the structures (X1-1) to (X1-4). Is used.
  • the diaminosiloxane is used in 1 mol of a polyimide compound having a structure represented by the general formula (1) to the general formula (3) or a polyamic acid having a structure represented by the general formula (4) to the general formula (6). On the other hand, it is usually used in an amount of 0.10 mol or less. When the diaminosiloxane is 0.1 mol or less, the heat resistance inherent to the specific adhesive is not impaired, and storage stability problems such as phase separation of the specific adhesive solution do not occur. .
  • logarithmic viscosity is used as an index of the molecular weight of polyimide.
  • the logarithmic viscosity of polyimide is usually 0.01 dl / g to 5.0 dl / g at a concentration of 0.5 g / dl in a mixed solvent of p-chlorophenol and phenol (90:10) at 35 ° C., preferably 0.10 dl / g to 0.50 dl / g.
  • the molecular weight of the polyamic acid can be measured by gel permeation chromatography (GPC), and the mass average molecular weight of the polyamic acid is usually 4,000 to 30,000, preferably 5,000 to 15,000.
  • these specific adhesives can be used by mixing a coupling agent, an inorganic filler and the like according to the purpose.
  • the coupling agent is used to improve adhesiveness, and the amount used is 0.1% by mass to 5% by mass in the specific adhesive. By using 0.1% by mass or more, high adhesiveness can be obtained. Moreover, it becomes possible to maintain heat resistance by setting it as 5 mass% or less.
  • already known coupling agents can be used as usable coupling agents. Specific examples include trialkoxysilane compounds and methyl dialkoxysilane compounds.
  • ⁇ -glycidoxypropylmethyldimethoxysilane ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -aminopropyl Methyldimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltrimethoxysilane, N-aminoethyl- ⁇ -iminopropylmethyldimethoxysilane, N-aminoethyl- ⁇ -iminopropyl Trimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -
  • the inorganic filler can be used for the purpose of adjusting the viscosity of the solution, reducing the thermal stress of the molded body, etc., and can be selected from known inorganic compounds without any particular restrictions.
  • thermoplastic resin used in the method for producing a molded article of the present invention is not particularly limited as long as it is an engineering plastic.
  • an engineering plastic for example, as a general-purpose engineering plastic, polyamide, polyacetal, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, and the like
  • engineering plastics include polysulfone, polylatesulfone, polyphenylene sulfide, polyarylate, polyamideimide, polyetherimide, polyetheretherketone, polyimide, and liquid crystalline polymer.
  • thermoplastic polyimide preferably has the following repeating unit (A).
  • L is a single bond, —SO 2 —, —CO—, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, or —S—, and R 1 , R 2 , R 3 , and R 4 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, a halogenated alkyl group, a halogenated alkoxy group, or a halogen atom.
  • J represents any one selected from the group consisting of the following partial structures (j-1) to (j-4).
  • Examples of the alkyl group represented by R 1 to R 4 in the repeating unit (A) include methyl, ethyl, t-butyl, cyclohexyl and the like.
  • Examples of the alkoxy group represented by R 1 to R 4 in the repeating unit (A) include methoxy and ethoxy.
  • Examples of the halogenated alkyl group represented by R 1 to R 4 in the repeating unit (A) include —CF 3 , —C 2 F 5 and the like.
  • Examples of the halogenated alkoxy group represented by R 1 to R 4 in the repeating unit (A) include —OCF 3 and —OC 2 F 5 .
  • Examples of the halogen atom represented by R 1 to R 4 in the repeating unit (A) include a fluorine atom and a chlorine atom.
  • the repeat unit (A) is preferably represented by the following repeat unit (A-1).
  • thermoplastic polyimide may be a copolymer having repeating units (A-1) and the following repeating units (B).
  • m and n represent a copolymerization ratio [mol%], and m / n is preferably 4 to 99.
  • thermoplastic polyimide having the repeating unit (A-1) can be obtained by the following method. That is, 4,4′-bis (3-aminophenoxy) biphenyl and pyromellitic anhydride are first polymerized in an organic solvent to obtain a polyamic acid. This polyamic acid production reaction is usually carried out in an organic solvent.
  • organic solvent used in this reaction examples include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, N-methyl-2-pyrrolidone, 1,3 -Dimethyl-2-imidazolidinone, N-methylcaprolactam, 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, bis ⁇ 2- (2- Methoxyethoxy) ethyl ⁇ ether, tetrahydrofuran, 1,3-dioxane, 1,4-dioxane, pyridine, picoline, dimethyl sulfoxide, dimethyl sulfone, tetramethylurea, hexamethylphosphoramide, m-cresol, P-chlorophenol, Anisole etc. are mentioned. These organic solvents may be used alone or in
  • the reaction temperature is usually 200 ° C. or lower, preferably 50 ° C. or lower.
  • the reaction pressure is not particularly limited, and can be sufficiently carried out at normal pressure.
  • the reaction time varies depending on the type of solvent and the reaction temperature, and the reaction is usually carried out for a time sufficient to complete the production of the polyamic acid having the repeating unit (a-1) below. Usually 4 to 24 hours is sufficient. By such a reaction, a polyamic acid composed of repeating units (a-1) is obtained.
  • the logarithmic viscosity of the polyamic acid which is the polyimide precursor is preferably 0.1 to 4.0 dl / g, more preferably 0.3 to 2.5 dl / g. Further, the resulting polyamic acid is heated to 100 ° C. to 400 ° C. for imidization, or chemically imidized using an imidizing agent such as acetic anhydride, thereby corresponding to the following repeating unit (A-1). A polyimide is obtained.
  • polyimide precursor 4,4′-bis (3-aminophenoxy) biphenyl and pyromellitic anhydride are suspended or dissolved in an organic solvent and then heated to produce polyamic acid which is a polyimide precursor and dehydration imidization. It is also possible to obtain a polyimide composed of repeating units (A-1) by simultaneously performing the above. That is, a polyimide composed of repeating units (A-1) in the form of a film or powder can be obtained using a conventionally known method.
  • thermoplastic polyimide a thermoplastic polyimide having the following repeating unit (C) can also be suitably used.
  • thermoplastic resin It is necessary to select the weight average molecular weight of the thermoplastic resin from the viewpoint of making the thermoplastic resin easy to be injected in the injection molding.
  • thermoplastic polyimide Aurum which is a thermoplastic resin having a repeating unit (A-1), and further, based on this thermoplastic polyimide.
  • a material obtained by compounding an inorganic filler, an organic filler, and various fillers is also provided for this purpose.
  • the inorganic filler include talc, clay, montmoronite, mineral-based materials such as JCN3030 blended with carbon fiber.
  • ether diamine and tetracarboxylic dianhydride as raw materials for these thermoplastic polyimide resins can be used singly or in combination of two or more, as long as the object of the present invention is not impaired.
  • a copolymerization component can be included.
  • a plurality of polyimide resins obtained from different monomers may be arbitrarily polymer blended as long as the object of the present invention is not impaired.
  • thermoplastic resin composition containing the thermoplastic resin of the present invention preferably has a long-term continuous use temperature defined by UL746B of 150 ° C. or higher, more preferably 180 ° C. or higher, and ASTM D-648 method. Accordingly, it is preferable that the thermal deflection temperature measured under the condition of 1.82 MPa is 200 ° C. or higher.
  • the adherend used in the method for producing a molded body of the present invention is not particularly limited, and inorganic materials and organic materials can be used.
  • the inorganic material examples include metals such as pure metals and alloys, and metal oxides such as glass and ceramics.
  • metal and its alloy include aluminum, magnesium, iron, tin, nickel, titanium, stainless steel, and copper.
  • the thing which performed processing, such as plating can also be used for them.
  • the properties are not particularly limited, as long as the above-described production methods can be applied, and lump-shaped, rod-shaped materials, foils, film-shaped materials, and linear materials can also be used.
  • any material that does not deform at the mold temperature can be used.
  • examples thereof include composite materials such as CFRP (carbon fiber reinforced resin; carbon fiber reinforced plastic), SMC (sheet molding compound), and BMC (bulk molding compound).
  • inorganic materials are preferable, metals are more preferable, and alloys are more preferable.
  • the alloy include an aluminum alloy, a magnesium alloy, an iron alloy, and the like.
  • an aluminum alloy is preferable from the viewpoint of weight reduction and availability at a relatively low cost.
  • the adherend is subjected to a known cleaning method, i.e., degreasing using a solvent such as ethyl alcohol, methyl ethyl ketone, hexane, or trichrene, before forming the adhesive layer on the surface of the adherend. It is preferable to wash the surface of the adherend on the side where the film is formed.
  • the molded body produced by the method for producing a molded body of the present invention is excellent in adhesion between a thermoplastic resin and an adherend, particularly a metal, and has high high-temperature adhesive strength. It can be used in various fields such as transportation equipment parts, structural parts, and medical materials.
  • the molded article of the present invention has a thermoplastic resin composition (A) having a long-term continuous use temperature of 150 ° C. or higher and a thermal deflection temperature of 200 ° C. or higher measured under the condition of 1.82 Mpa according to ASTM D-648 method. )
  • the adherend (B) include a crosslinkable group and have a minimum viscosity of 10 Pa ⁇ s to 10 4 Pa ⁇ s at 23 ° C. to 300 ° C., and at least one of polyimide precursors A molded body joined through an adhesive layer containing (C) is particularly preferred.
  • thermoplastic resin composition (A) examples include polyphenylene sulfide (PPS), polyether ether ketone (PEEK), liquid crystal polymer (LCP), polyether nitrile (PEN), polysulfone (PSF), and polyether sulfone (PES). And a composition containing at least one thermoplastic resin selected from polyarylate (PAR), polyamideimide (PAI), polyetherimide (PEI), and thermoplastic polyimide (PI).
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • LCP liquid crystal polymer
  • PEN polyether nitrile
  • PSF polysulfone
  • PES polyether sulfone
  • the adherend (B) is preferably a metal or ceramic.
  • the (C) is preferably a polyimide having the structure represented by the general formula (1), wherein X and Y include an aromatic structure.
  • an insulated wire, an insulated wire, an insulated cable, or an insulated cord can be exemplified.
  • the insulated wire or the like is manufactured by coating a layer made of the thermoplastic resin composition (A) on the circumference of a conductor such as a steel wire by extrusion molding or the like through an adhesive layer containing the (C). can do.
  • the conductor may be a single metal wire or may be a twist of a plurality of metal wires.
  • the conductor may be subjected to chemical surface treatment and physical surface treatment in advance.
  • polyimide has a molar ratio of 1,3-bis (3,3′-aminophenoxy) benzene and 3,3′-diaminobenzophenone of 8/2 and has a phenylethynyl group as a crosslinkable functional group.
  • adhesive A2 A product obtained by diluting this polyimide with N-methylpyrrolidone to a solid content of 15% was designated as adhesive A2.
  • adhesives A1 and A3-A5- In the preparation of adhesive A2, the molar ratios of 1,3-bis (3,3′-aminophenoxy) benzene and 3,3′-diaminobenzophenone were 9/1, 7/3, 6/4, and 5/5. Except having been used, what was prepared similarly to adhesive A2 was obtained as adhesive A1, adhesive A3, adhesive A4, and adhesive A5, respectively.
  • the adhesive M2 was prepared in the same manner except that 6.87 g [0.07 mol] of maleic anhydride was changed to 19.34 g [0.07 mol] of 5- (3-phenylpropinoyl) isobenzofuran-1,3-dione.
  • An adhesive K2 made of polyimide having a phenylpropinoyl group as a crosslinkable functional group was obtained.
  • Table 1 below shows some of the blended components of adhesives A1 to A5, adhesive S, adhesive M2, adhesive E2, adhesive N4, and adhesive K2.
  • melt viscosity- Methanol was added to the prepared adhesive, and pellets having a diameter of 20 mm and a thickness of 1 mm were formed using 0.3 g of polyimide obtained by filtration.
  • the obtained pellet was heated at a measuring frequency of 0.46 Hz from 23 to 400 ° C. at a heating rate of 5 ° C./min using Haake's Reo Stress-RS600, and the lowest in the range of 23 ° C. to 300 ° C.
  • the melt viscosity [Pa ⁇ s] was determined and shown in Table 2.
  • Tg glass transition temperature
  • FIG. 7A and 7B show the shape of the adherend 52 (aluminum alloy A5052 material) (FIG. 7A shows a top view of the adherend 52 and FIG. 7B shows a side view of the adherend 52).
  • the adherend 52 is a flat plate having a length of 63.5 mm, a width of 12.3 mm, and a thickness of 3 mm.
  • the surface from one end of the adherend 52 to 12 mm is half the thickness (1.5 mm) of the adherend 52 (3 mm), and a hole having a diameter of 5 mm is formed at a position 10 mm from the other end.
  • the surface 58 having a step is referred to as an “adhesive resin application surface 58”.
  • Example 1 A molded body 1 in which an aluminum alloy and an engineering plastic were joined was produced as follows.
  • the top view of the molded object 60 manufactured by the Example and the comparative example was shown in FIG. 8A
  • the side view of the molded object 60 was shown in FIG. 8B.
  • an engineering plastic that is the thermoplastic resin layer 54 after solidification is formed on the adhesive resin application surface 58 of the adherend 52.
  • an aluminum alloy A5052 material which is an adherend (adherent 52 shown in FIGS. 7A and 7B), was washed with methyl ethyl ketone and degreased.
  • the adhesive A2 is applied to the adhesive resin application surface (adhesive resin application surface 58 shown in FIGS. 7A and 7B) of the adherend to which the thermoplastic resin is bonded so that the average dry film thickness is 30 ⁇ m. Drying was carried out at 0 ° C. for 2 hours (pre-bonding treatment) to obtain an adherend (referred to as “test piece”) on which an adhesive layer was formed. (Adhesive layer forming step).
  • the test piece was mounted on an injection mold, and after clamping, a cylinder filled with Aurum JCN3030 was prepared. Mold temperature 200 ° C., injection resin temperature 415 ° C., injection pressure 150 MPa, injection time 0 Aurum JCN3030 was injected into the mold under the condition of .6 seconds. Thereafter, the holding pressure was 75 MPa ⁇ 5 seconds, and the mold was cooled to the mold temperature in 25 seconds, and the mold was opened to obtain a molded body 1 that was an aluminum alloy / engineering plastic adhesive (molding step).
  • Aurum JCN3030 was insert-molded in the same manner as in the example except that the adhesive resin was not applied to an aluminum alloy test piece subjected to NMT (Nano Molding Technology) treatment manufactured by Taisei Plus.
  • NMT Nemo Molding Technology
  • Aurum JCN3030 was insert-molded in the same manner as in the example except that the adhesive resin was not applied to the aluminum alloy test piece subjected to TRI treatment manufactured by Toa Denka Co., Ltd.
  • Example 11 The same operation as in Example 1 was performed except that the adhesive was changed to K2.
  • crosslinkable group is a functional functional group possessed by the polyimide contained in each adhesive.
  • the “minimum viscosity” is the minimum melt viscosity [Pa ⁇ s] in the range of 23 ° C. or more and 300 ° C. or less of each adhesive solidified product, and “Tg” is the glass transition temperature [° C] of each adhesive solidified product. It is.
  • Pretreatment is a condition in which an adhesive is applied and dried on the adhesion surface of the adherend (bonding pretreatment conditions). For example, “200 ° C. ⁇ 2 hours” means that the adhesive is dried at 200 ° C. for 2 hours. Means. “Normal” in the “Adhesive strength evaluation” column represents the adhesive strength [kgf] of the molded body at 23 ° C., and “High temperature” represents the adhesive strength [kgf] of the molded body at 150 ° C.
  • the aluminum alloy and the engineering plastic could not be joined.
  • an aluminum alloy and an engineering plastic could be joined, and an aluminum alloy / engineering plastic molded article excellent in normal-state adhesive strength and high-temperature adhesive strength could be obtained.
  • the engineering plastic as the resin part was broken while maintaining the joined state between the aluminum alloy and the engineering plastic.
  • Example 12 Extruded steel wire coating- A molded body having a cross section shown in FIG. 9 and having a conductor 70 covered with an adhesive 71 and a thermoplastic resin 72 was manufactured.
  • a steel wire is used as the conductor 70.
  • Aurum PL450C load deflection temperature 238 ° C.
  • a steel wire (molded body) was obtained in which the periphery of the steel wire was covered with aurum via an adhesive layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided are a method for producing a molded product comprising a forming step wherein, a heated and melted thermoplastic resin is brought into contact with an adhesion layer formed on an adherend surface of an adherend, and the adherend and the thermoplastic resin are joined with the adhesion layer therebetween, wherein the adhesion layer having a minimum viscosity between 10Pa·s and 104Pa·s inclusive at temperatures between 23°C and 300°C inclusive and containing at least one of polyimide and a polyimide precursor; and a molded product obtained by the method. Provided are a production method of a molded body by which a molded body having a strong high temperature adhesive strength between the thermoplastic resin and the adherend can be produced; and a molded product obtained by the method.

Description

成形体及びその製造方法Molded body and manufacturing method thereof
 本発明は、成形体及びその製造方法に関する。 The present invention relates to a molded body and a manufacturing method thereof.
 電気電子部品や、自動車用部品の成型品は、ゴム、樹脂、金属、ガラス、木材等、種々の材料により製造されているが、中でも、金属、合金、セラミックス、磁石等の無機材料が多く用いられてきた。昨今、部品の軽量化や断熱を目的に、無機材料より比重が小さく、熱伝導が低い樹脂が注目されており、無機材料に替えて、樹脂、とりわけエンジニアリングプラスチックを用いることが進められている。
 例えば、携帯電話やパソコンの筐体には、ポリカーボネート、ポリアミド(PA6、PA66)、及びそれらのアロイが多用されている。
Molded parts of electrical and electronic parts and automotive parts are manufactured from various materials such as rubber, resin, metal, glass, wood, etc. Among them, inorganic materials such as metals, alloys, ceramics, and magnets are often used. Has been. Recently, for the purpose of weight reduction and heat insulation of parts, a resin having a specific gravity smaller than that of an inorganic material and a low thermal conductivity has been attracting attention, and instead of the inorganic material, a resin, in particular, an engineering plastic is being used.
For example, polycarbonate, polyamide (PA6, PA66), and alloys thereof are frequently used in the case of mobile phones and personal computers.
 この様に金属、セラミックスの様な無機材料から樹脂への転換が進みつつあるが、機械的強度や耐熱性の面から無機材料を使用せざるを得ないことがあり、樹脂と無機材料が複合されて使用されることがある。樹脂と無機材料とを複合する方法としては、機械的締結の他に、接着剤を用いた接合技術が用いられているが、エンジニアリングプラスチックが一般に用いられるような、高強度であり、且つ、高温下でも使用できる接合技術が無いのが現状である。 In this way, the transition from inorganic materials such as metals and ceramics to resins is progressing, but inorganic materials must be used from the viewpoint of mechanical strength and heat resistance, and resin and inorganic materials are combined. Have been used. As a method of combining a resin and an inorganic material, in addition to mechanical fastening, a joining technique using an adhesive is used. However, engineering plastics are generally used and have high strength and high temperature. There is currently no bonding technology that can be used underneath.
 無機材料と樹脂を接合する手法は、種々検討されている。特に、金属と樹脂の接合方法に関しては多くの検討がなされており、金属により形成されている被着体に接着剤を付与(例えば、塗布)して被着体と金属とを接合する方法として、例えば、接着剤の被着体へのアンカー(投錨)効果を期待し、被着体表面に凹凸面を形成する方法がよく知られている。 Various methods for joining inorganic materials and resins have been studied. In particular, many studies have been made on a method for bonding a metal and a resin. As a method for bonding an adherend and a metal by applying (for example, applying) an adhesive to the adherend formed of the metal. For example, a method of forming an uneven surface on the surface of an adherend is well known in anticipation of an anchoring effect of the adhesive on the adherend.
 しかしながら、昨今の電気電子部品には、単なる接合のみならず、高いシール性や信頼性を保証する高い接合技術が求められている為、従来の被着体の表面処理では不十分であった。
 そこで、ポリイミドフィルム表面に対して、プラズマによる表面処理工程行い、次いでステンレスに熱圧着する工程を経て、金属張の積層体を製造することが知られている(例えば、特許文献1参照)。
However, recent electrical and electronic parts require not only simple bonding but also high bonding technology that guarantees high sealing performance and reliability. Therefore, conventional surface treatment of adherends has been insufficient.
Therefore, it is known to manufacture a metal-clad laminate by performing a surface treatment process using plasma on the polyimide film surface and then performing a thermocompression bonding to stainless steel (see, for example, Patent Document 1).
 また、ヒドラジン水溶液に浸漬し、各種金属表面に30nm~300nm径の凹部を形成し、該凹部にポリアミド系樹脂を射出成形することにより、ポリアミド系樹脂を接合する方法が開示されている(例えば、特許文献2参照)。 Also disclosed is a method of joining a polyamide resin by immersing in an aqueous hydrazine solution to form a recess having a diameter of 30 nm to 300 nm on various metal surfaces and injection molding the polyamide resin in the recess (for example, Patent Document 2).
 多官能性トリアジンジチオールの化学的表面処理を施した被着体表面に対して、エンジニアリングプラスチックを射出成型、及び、プレス成型することによりエンジニアリングプラスチックと被着体を接合することも開示されている(例えば、特許文献3参照)。
 特許文献1:特開2008-246695号公報
 特許文献2:特開2006-315398号公報
 特許文献3:特開2007-221099号公報
It is also disclosed that the engineering plastic and the adherend are bonded to each other by subjecting the surface of the adherend subjected to the chemical surface treatment of the polyfunctional triazinedithiol to injection molding and press molding. For example, see Patent Document 3).
Patent Document 1: Japanese Patent Laid-Open No. 2008-246695 Patent Document 2: Japanese Patent Laid-Open No. 2006-315398 Patent Document 3: Japanese Patent Laid-Open No. 2007-221099
 しかし、上記特許文献1~3に開示された接合方法では、熱可塑性樹脂の中でも耐熱性が高い熱可塑性ポリイミド等の耐熱エンジニアリングプラスチックと金属からなる被着体との接合は困難であり、特に、高温(例えば、150℃以上)環境下に高い接着強度を有する成形体を得ることができなかった。 However, in the joining methods disclosed in Patent Documents 1 to 3, it is difficult to join a heat-resistant engineering plastic such as thermoplastic polyimide having high heat resistance among thermoplastic resins and an adherend made of metal, A molded article having high adhesive strength under a high temperature (for example, 150 ° C. or higher) environment could not be obtained.
 本発明は、上記事情に鑑み、熱可塑性樹脂と被着体とを接合し、高温接着強度が高い成形体を製造可能な成形体の製造方法を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a method for producing a molded body that can join a thermoplastic resin and an adherend to produce a molded body having high high-temperature adhesive strength.
 前記課題を達成するための具体的手段は、以下の通りである。
 <1>23℃以上300℃以下における最低粘度が10Pa・s以上10Pa・s以下であるポリイミド及びポリイミド前駆体の少なくとも一方を含有する接着層が被着体表面に形成された被着体の前記接着層上に、加熱溶融した熱可塑性樹脂を接触させ、前記被着体と前記熱可塑性樹脂とを前記接着層を介して接合する成形工程を有する成形体の製造方法である。
Specific means for achieving the above object are as follows.
<1> An adherend in which an adhesion layer containing at least one of a polyimide and a polyimide precursor having a minimum viscosity of 10 Pa · s to 10 4 Pa · s at 23 ° C to 300 ° C is formed on the adherend surface. This is a method for producing a molded body comprising a molding step in which a thermoplastic resin melted by heating is brought into contact with the adhesive layer, and the adherend and the thermoplastic resin are joined via the adhesive layer.
 <2>23℃以上300℃以下における最低粘度が10Pa・s以上10Pa・s以下であるポリイミド及びポリイミド前駆体の少なくとも一方を含有する接着層を、被着体表面に形成する接着層形成工程と、前記接着層上に、加熱溶融した熱可塑性樹脂を接触させ、前記被着体と前記熱可塑性樹脂とを前記接着層を介して接合する成形工程を有する<1>に記載の成形体の製造方法である。 <2> Adhesive layer formation for forming an adhesive layer containing at least one of a polyimide and a polyimide precursor having a minimum viscosity of 10 Pa · s or higher and 10 4 Pa · s or lower at 23 ° C. or higher and 300 ° C. or lower. The molded body according to <1>, further comprising: a process and a molding process in which a heat-melted thermoplastic resin is brought into contact with the adhesive layer, and the adherend and the thermoplastic resin are joined via the adhesive layer. It is a manufacturing method.
 <3>前記接着層が固化した固化接着層のガラス転移温度が150℃以上である前記<1>又は前記<2>に記載の成形体の製造方法である。 <3> The method for producing a molded article according to <1> or <2>, wherein the glass transition temperature of the solidified adhesive layer obtained by solidifying the adhesive layer is 150 ° C. or higher.
 <4>前記成形工程を、射出成形または押出成形により行なう前記<1>~前記<3>のいずれかに記載の成形体の製造方法である。 <4> The method for producing a molded body according to any one of <1> to <3>, wherein the molding step is performed by injection molding or extrusion molding.
 <5>前記ポリイミド及び前記ポリイミド前駆体の少なくとも一方が、架橋性基を少なくとも1つ含有する 前記<1>~前記<4>のいずれかに記載の成形体の製造方法である。             <5> The method for producing a molded article according to any one of <1> to <4>, wherein at least one of the polyimide and the polyimide precursor contains at least one crosslinkable group. S
<6>前記被着体が、金属またはセラミックスである<1>~<5>のいずれかに記載の成形体の製造方法である。   <6> The method for producing a molded body according to any one of <1> to <5>, wherein the adherend is a metal or a ceramic.
 <7>前記被着体表面に、化学的表面処理および物理的表面処理の少なくとも一方が施されている<1>~<6>のいずれかに記載の成形体の製造方法である。 <7> The method for producing a molded body according to any one of <1> to <6>, wherein the adherend surface is subjected to at least one of a chemical surface treatment and a physical surface treatment.
 <8>長期連続使用温度が150℃以上であり、かつASTM D-648法に従って1.82Mpaの条件で測定した熱たわみ温度が200℃以上である熱可塑性樹脂組成物(A)と、被着体(B)とが、架橋性基を含み、かつ、23℃以上300℃以下における最低粘度が10Pa・s以上10Pa・s以下であるポリイミド及びポリイミド前駆体の少なくとも一方(C)を含有する接着層を介して接合されている成形体である。 <8> a thermoplastic resin composition (A) having a long-term continuous use temperature of 150 ° C. or higher and a heat deflection temperature measured at 1.82 MPa according to the ASTM D-648 method of 200 ° C. or higher; The body (B) contains at least one of a polyimide and a polyimide precursor containing a crosslinkable group and having a minimum viscosity of 10 Pa · s to 10 4 Pa · s at 23 ° C to 300 ° C. It is the molded object joined through the contact bonding layer.
 <9>熱可塑性樹脂組成物(A)がポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、ポリエーテルニトリル(PEN)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリアリレート(PAR)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)及び熱可塑性ポリイミド(PI)から選ばれる少なくとも1種の熱可塑性樹脂を含む前記<8>に記載の成形体である。 <9> The thermoplastic resin composition (A) is polyphenylene sulfide (PPS), polyether ether ketone (PEEK), liquid crystal polymer (LCP), polyether nitrile (PEN), polysulfone (PSF), polyether sulfone (PES) ), Polyarylate (PAR), polyamideimide (PAI), polyetherimide (PEI) and thermoplastic polyimide (PI), the molded article according to <8>, comprising at least one thermoplastic resin. .
 <10>被着体(B)が金属またはセラミックスである<8>または<9>に記載の成形体である。 <10> The molded body according to <8> or <9>, in which the adherend (B) is a metal or ceramic.
 <11>前記(C)が一般式(1)に示す構造を有し、X及びYが芳香族構造を含むポリイミドである<8>~<10>のいずれかに記載の成形体である。
Figure JPOXMLDOC01-appb-C000002
<11> The molded article according to any one of <8> to <10>, wherein (C) has a structure represented by general formula (1), and X and Y are polyimides containing an aromatic structure.
Figure JPOXMLDOC01-appb-C000002
 <12>前記成形体が絶縁電線、絶縁ワイヤ、絶縁ケーブルまたは絶縁コードであり、前記被着体(B)が導体であり、該導体周上に、前記熱可塑性樹脂(A)からなる層が、前記(C)を含有する接着層を介して被覆されている<8>~<11>のいずれかに記載の成形体である。 <12> The molded body is an insulated wire, an insulated wire, an insulated cable, or an insulated cord, the adherend (B) is a conductor, and a layer made of the thermoplastic resin (A) is formed on the circumference of the conductor. The molded article according to any one of <8> to <11>, which is coated with an adhesive layer containing (C).
 本発明によれば、熱可塑性樹脂と被着体との高温接着強度が高い成形体と、それを製造可能な成形体の製造方法を提供することができる。 According to the present invention, it is possible to provide a molded article having high high-temperature adhesive strength between the thermoplastic resin and the adherend and a method for producing the molded article capable of producing the molded article.
接着層が形成された被着体の一例を示す接着層及び被着体の側面断面図である。It is side surface sectional drawing of the adhesion layer and adherend which show an example of the adherend in which the contact bonding layer was formed. 射出成形の金型の一例を示す金型の側面断面図である。It is side surface sectional drawing of the metal mold | die which shows an example of the metal mold | die of injection molding. 被着体を射出成形の金型に型締めした状態の一例を示す金型、接着層及び被着体の側面断面図である。It is side surface sectional drawing of a metal mold | die, a contact bonding layer, and a to-be-adhered body which shows an example of the state which clamped the to-be-adhered body to the metal mold | die of injection molding. 被着体を型締め射出成形の金型にシリンダーを装着した状態の一例を示すシリンダー、金型、接着層及び被着体の側面断面図である。It is side surface sectional drawing of a cylinder, a metal mold | die, an adhesive layer, and a to-be-adhered body which shows an example of the state which mounted | wore the adherend to the metal mold | die of clamping injection molding. シリンダー内の熱可塑性樹脂を、射出成形の金型の空間に射出している状態の一例を示すシリンダー、金型、熱可塑性樹脂層、接着層及び被着体の側面断面図である。It is side surface sectional drawing of a cylinder, a metal mold | die, a thermoplastic resin layer, an adhesive layer, and a to-be-adhered body which shows an example of the state which has injected the thermoplastic resin in a cylinder into the space of the metal mold | die of injection molding. 本発明の成形体の製造方法により製造された成形体の一例を示す成形体の断面図である。It is sectional drawing of the molded object which shows an example of the molded object manufactured by the manufacturing method of the molded object of this invention. 実施例および比較例の成形体製造に用いた被着体の上面図である。It is a top view of the to-be-adhered body used for the molded object manufacture of an Example and a comparative example. 実施例および比較例の成形体製造に用いた被着体の側面図である。It is a side view of the to-be-adhered body used for the molded object manufacture of an Example and a comparative example. 実施例および比較例により製造された成形体の上面図である。It is a top view of the molded object manufactured by the Example and the comparative example. 実施例および比較例により製造された成形体の側面図である。It is a side view of the molded object manufactured by the Example and the comparative example. 実施例により製造された成形体(鋼線)の断面図である。It is sectional drawing of the molded object (steel wire) manufactured by the Example.
 以下、実施形態により、本発明を説明する。 Hereinafter, the present invention will be described by way of embodiments.
<成形体の製造方法>
 本発明の成形体の製造方法は、23℃以上300℃以下における最低粘度が10Pa・s以上10Pa・s以下であるポリイミド及びポリイミド前駆体の少なくとも一方を含有する接着層が被着体表面に形成された被着体の前記接着層上に、加熱溶融した熱可塑性樹脂を接触させ、前記被着体と前記熱可塑性樹脂とを前記接着層を介して接合する成形工程を有する。
 本発明の成形体の製造方法においては、接着層が形成された被着体を予め用意し、該接着層上に加熱溶融した熱可塑性樹脂を付与してもよく、或いは接着層が形成されていない被着体を用意し、接着層が形成された被着体を製造してから、前記接着層上に加熱溶融した熱可塑性樹脂を付与してもよい。
 本発明の成形体の製造方法は、さらに、本発明の効果を損なわない範囲において、被着体表面と、接着層との接着性を向上させるための表面処理を行なう工程等の他の工程を含んでいてもよい。例えば、ショットブラスト処理の様な投錨効果やシランカップリング材処理の様な化学処理や、特許文献1、特許文献2、特許文献3に記載の表面処理を用いることもできる。
<Method for producing molded body>
In the method for producing a molded article of the present invention, an adhesive layer containing at least one of a polyimide having a minimum viscosity of 10 Pa · s or more and 10 4 Pa · s or less at 23 ° C. or more and 300 ° C. or less is a surface of an adherend. A molding step in which a heat-melted thermoplastic resin is brought into contact with the adhesive layer of the adherend formed on the adherend, and the adherend and the thermoplastic resin are joined via the adhesive layer.
In the method for producing a molded body of the present invention, an adherend on which an adhesive layer is formed may be prepared in advance, and a thermoplastic resin melted by heating may be applied on the adhesive layer, or the adhesive layer is formed. After preparing a non-adhered body and manufacturing an adherend on which an adhesive layer is formed, a heat-melted thermoplastic resin may be applied onto the adhesive layer.
The method for producing a molded body of the present invention further includes other steps such as a step of performing a surface treatment for improving the adhesion between the adherend surface and the adhesive layer within a range not impairing the effects of the present invention. May be included. For example, anchoring effects such as shot blasting, chemical treatments such as silane coupling material treatment, and surface treatments described in Patent Literature 1, Patent Literature 2, and Patent Literature 3 can be used.
 本発明の成形体の製造方法においては、熱可塑性樹脂と被着体とを接合する接着剤として、23℃以上300℃以下における最低粘度が10Pa・s以上10Pa・s以下であるポリイミド及びポリイミド前駆体の少なくとも一方を含有する接着剤を用いる。従って、本発明の成形体の製造方法によって製造される成形体は、少なくとも、固化した熱可塑性樹脂の層(固化熱可塑性樹脂層)と、前記接着剤から形成される層(接着層)と、被着体とを有する少なくとも3層の多層構造の成形体である。更に詳しく言えば、固化した熱可塑性樹脂層と接着層の間に両層の混合層が存在する。
 以下、「23℃以上300℃以下における最低粘度が10Pa・s以上10Pa・s以下であるポリイミド及びポリイミド前駆体の少なくとも一方」を『特定化合物』と総称することがある。また、ポリイミド前駆体とは、ポリイミドを合成する際に得られる中間化合物であり、以下、特定化合物について説明するに当たり、ポリイミドを中心に説明する。
In the method for producing a molded body of the present invention, as an adhesive for joining a thermoplastic resin and an adherend, a polyimide having a minimum viscosity of 10 Pa · s to 10 4 Pa · s at 23 ° C. or higher and 300 ° C. or lower and An adhesive containing at least one of the polyimide precursors is used. Therefore, the molded product produced by the method for producing a molded product of the present invention includes at least a solidified thermoplastic resin layer (solidified thermoplastic resin layer) and a layer formed from the adhesive (adhesive layer), A molded body having a multilayer structure of at least three layers having an adherend. More specifically, a mixed layer of both layers exists between the solidified thermoplastic resin layer and the adhesive layer.
Hereinafter, “at least one of polyimide and polyimide precursor having a minimum viscosity of 10 Pa · s or more and 10 4 Pa · s or less at 23 ° C. or more and 300 ° C. or less” may be collectively referred to as “specific compound”. Moreover, a polyimide precursor is an intermediate compound obtained when a polyimide is synthesized. Hereinafter, a specific compound will be described with a focus on polyimide.
 熱可塑性樹脂と被着体とが接着剤を介して接合し、高温での接着強度を発現するためには、熱可塑性樹脂-接着剤界面において、熱可塑性樹脂の樹脂分子と、接着剤を構成する化合物の分子(以下「接着剤分子」ともいう)とが、なじみ、融合しあうことが重要であると考えられる。そのためには、熱可塑性樹脂の樹脂分子の分子運動と、接着剤分子の分子運動が、共に盛んであることが必要であると考えられ、分子運動が活動的であるのは、樹脂が柔らかく、例えば、樹脂が溶融し、樹脂の粘度が低い状態であると考えられる。 In order to bond the thermoplastic resin and the adherend through an adhesive and develop adhesive strength at high temperatures, the resin molecule of the thermoplastic resin and the adhesive are composed at the thermoplastic resin-adhesive interface. It is thought that it is important that the molecule of the compound (hereinafter also referred to as “adhesive molecule”) is compatible and fused. To that end, it is thought that both the molecular motion of the resin molecules of the thermoplastic resin and the molecular motion of the adhesive molecules must be active. The active molecular motion is because the resin is soft, For example, it is considered that the resin melts and the viscosity of the resin is low.
 ここで、本発明において接着剤として作用するポリイミドは、耐熱性を有する為、溶融温度やガラス転移温度(Tg)が高い。また、本発明の製造方法に記載の成形に於いて熱可塑性樹脂の溶融温度は、前記成形温度よりも低いという関係がある。
従って、熱可塑性樹脂と被着体とを成形により接合するためには、被着体の接着面に十分に濡れ広がったポリイミド層を形成した状態で、接着層になるポリイミド層と加熱溶融された熱可塑性樹脂を相対する位置で被着体を配置し、このポリイミド層に加熱溶融された熱可塑性樹脂を接触させ、熱可塑性樹脂の成形温度で、熱可塑性樹脂の樹脂分子と、接着剤を構成する化合物の分子(以下「接着剤分子」ともいう)とが、十分に、なじみ、融合しあう必要がある。
Here, since the polyimide which acts as an adhesive in the present invention has heat resistance, the melting temperature and the glass transition temperature (Tg) are high. In the molding described in the production method of the present invention, there is a relationship that the melting temperature of the thermoplastic resin is lower than the molding temperature.
Therefore, in order to join the thermoplastic resin and the adherend by molding, the polyimide layer that is sufficiently wet and spread on the adhesion surface of the adherend is formed and heated and melted with the polyimide layer that becomes the adhesive layer. Arrange the adherend at the position where the thermoplastic resin faces, contact the polyimide resin layer with the heat-melted thermoplastic resin, and compose the resin molecules of the thermoplastic resin and the adhesive at the molding temperature of the thermoplastic resin It is necessary that the compound molecules (hereinafter also referred to as “adhesive molecules”) be sufficiently familiar and fused together.
 本発明における「接着層が形成された被着体の前記接着層上に、加熱溶融した熱可塑性樹脂を接触させ、前記被着体と前記熱可塑性樹脂とを前記接着層を介して接合する成形工程」を、射出成形を例に説明する。
 本発明の態様においては、被着体の接着面に十分に濡れ広がったポリイミド層(接着層)を形成した状態とする。次いで、金型にポリイミド層が形成された被着体を装着し、接着層になるポリイミド層と加熱溶融した熱可塑性樹脂を相対する位置で配置し、このポリイミド層に加熱溶融した熱可塑性樹脂を射出成形時に接触させ、熱可塑性樹脂の成形温度と金型温度の間で、熱可塑性樹脂の樹脂分子と、接着剤を構成する接着剤分子とが、十分なじみ、融合しあい、結果、固化した熱可塑性樹脂層と接着剤層の間に両層の混合層が形成される。なお、「成形温度」とは、成形を行なうときの、熱可塑性樹脂を収容したシリンダーの温度であり、「金型温度」とは被着体がインサートされ保持されている型の温度で接着層の接着前の最高温度である。
According to the present invention, “a molding in which a heat-melted thermoplastic resin is brought into contact with the adhesive layer of the adherend on which the adhesive layer is formed, and the adherend and the thermoplastic resin are joined via the adhesive layer. The “process” will be described by taking injection molding as an example.
In the aspect of the present invention, a polyimide layer (adhesive layer) that is sufficiently wetted and spread on the adhesion surface of the adherend is formed. Next, an adherend on which a polyimide layer is formed is mounted on a mold, and a polyimide layer that becomes an adhesive layer and a heat-melted thermoplastic resin are disposed at opposite positions, and the heat-melted thermoplastic resin is placed in this polyimide layer. Contacted during injection molding, the resin molecules of the thermoplastic resin and the adhesive molecules that make up the adhesive are sufficiently blended and fused between the molding temperature of the thermoplastic resin and the mold temperature, resulting in solidified heat. A mixed layer of both layers is formed between the plastic resin layer and the adhesive layer. The “molding temperature” is the temperature of the cylinder containing the thermoplastic resin when molding, and the “mold temperature” is the temperature of the mold in which the adherend is inserted and held. The maximum temperature before bonding.
 ここで、予め成形された熱可塑性樹脂成形体と被着体を、ポリイミドを含有する接着剤を用いて接合しようとすると、既述のとおり、このポリイミドは溶融温度が高いため、接着温度を、溶融温度以上にしなければならない。この際、熱可塑性樹脂が過度に加熱され、熱可塑性樹脂の弾性率が低下してしまい、予め成形した形状を保持した成型品を得ることが困難である。一方、熱可塑性樹脂の弾性率が低下しない温度で接合しようとするとポリイミドの溶融温度よりも低い温度で接合することになり、既述の熱可塑性樹脂の樹脂分子と、接着剤を構成する接着剤分子とが、なじみ、融合しあう状態に至らず、接合することができない。以上の事から成形時に接合と成形を同時に完了することが重要であることがわかる。 Here, when trying to join a preformed thermoplastic resin molded body and an adherend using an adhesive containing polyimide, as described above, since this polyimide has a high melting temperature, Must be above melting temperature. At this time, the thermoplastic resin is excessively heated, and the elastic modulus of the thermoplastic resin is lowered, so that it is difficult to obtain a molded product that retains a pre-shaped shape. On the other hand, if an attempt is made to bond at a temperature at which the elastic modulus of the thermoplastic resin does not decrease, the bonding will be performed at a temperature lower than the melting temperature of the polyimide, and the adhesive constituting the adhesive and the resin molecules of the thermoplastic resin described above It does not come into a state where the molecules are familiar and fused together, and cannot be joined. From the above, it can be seen that it is important to complete the joining and molding at the time of molding.
 以上より、本発明の成形体の製造方法においては、まず、熱可塑性樹脂と被着体とを一体化するための接着剤として、23℃以上300℃以下における最低粘度が10Pa・s以上10Pa・s以下であるポリイミド及びポリイミド前駆体の少なくとも一方(特定化合物)を含有する接着剤(以下、「特定接着剤」とも称する)を用いる。ポリイミド及びポリイミド前駆体が、23℃以上300℃以下における最低粘度が10Pa・s以上10Pa・s以下である状態は、熱可塑性樹脂分子と接着剤分子の分子運動が盛んであり、かつ、ポリイミドが固化を完了する前であると考えられる。 As described above, in the method for producing a molded article of the present invention, first, as an adhesive for integrating the thermoplastic resin and the adherend, the minimum viscosity at 23 to 300 ° C. is 10 Pa · s to 10 4. An adhesive (hereinafter also referred to as “specific adhesive”) containing at least one of polyimide and a polyimide precursor (specific compound) that is Pa · s or less is used. The state in which the polyimide and the polyimide precursor have a minimum viscosity of 10 Pa · s or more and 10 4 Pa · s or less at 23 ° C. or more and 300 ° C. or less is active in the molecular motion of the thermoplastic resin molecules and the adhesive molecules, and This is considered to be before the polyimide is completely solidified.
 ポリイミド及びポリイミド前駆体の最低粘度が10Pa・sより低いと、事前に接着剤を塗布した被着体を金型に装着した際、被着体から流れ落ち、接着剤の作用としてムラが生じたり、射出成形時に射出される粘度の低い樹脂の圧力によって、接着剤の膜厚が変化してしまう為、最適な膜厚を維持できなくなり、接着強度が低下する恐れがあり、好ましくない。一方、ポリイミド及びポリイミド前駆体の最低粘度が10Pa・sを超えると接着剤分子が緩慢になり、熱可塑性樹脂となじみ、融合しあう状態に至らず、接合することができない。同様に、23℃以上300℃以下において、固化している状態の接着剤も接合することができない。 When the minimum viscosity of the polyimide and the polyimide precursor is lower than 10 Pa · s, when the adherend to which the adhesive has been applied in advance is attached to the mold, it flows down from the adherend, and unevenness occurs as an action of the adhesive, Since the film thickness of the adhesive changes due to the pressure of the low viscosity resin injected during injection molding, the optimum film thickness cannot be maintained, and the adhesive strength may be lowered, which is not preferable. On the other hand, when the minimum viscosity of the polyimide and the polyimide precursor exceeds 10 4 Pa · s, the adhesive molecules become sluggish, become familiar with the thermoplastic resin, do not reach a state of being fused, and cannot be joined. Similarly, at 23 ° C. or higher and 300 ° C. or lower, the solidified adhesive cannot be bonded.
 以上のように、本発明の成形体の製造方法は、特定化合物を含む接着層が被着体表面に形成された被着体の前記接着層上に、加熱溶融した熱可塑性樹脂を成形することにより、成形と同時に、前記被着体と前記接着剤と前記熱可塑性樹脂とを一体化する成形工程を有する。すなわち、本発明の成形体の製造方法は、被着体表面に形成した接着層の特定接着剤を、熱可塑性樹脂分子と接着剤分子の分子運動が盛んであり、かつ、ポリイミドが固化を完了する前である状況下において、熱可塑性樹脂を成形し、固化中のポリイミドに熱可塑性樹脂を接触させて成形体を製造する。 As described above, in the method for producing a molded body of the present invention, the thermoplastic resin melted by heating is molded on the adhesive layer of the adherend in which the adhesive layer containing the specific compound is formed on the surface of the adherend. Thus, simultaneously with the molding, there is a molding step of integrating the adherend, the adhesive and the thermoplastic resin. That is, according to the method for producing a molded body of the present invention, the specific adhesive of the adhesive layer formed on the surface of the adherend has a great molecular movement between the thermoplastic resin molecules and the adhesive molecules, and the polyimide has completed solidification. Under the circumstances before the molding, a thermoplastic resin is molded, and the molded body is manufactured by bringing the thermoplastic resin into contact with the solidified polyimide.
 かかる工程を経ることにより、特定接着剤は、成形時の成形温度で加熱溶融された熱可塑性樹脂に接することにより加熱され、一度既出の粘度域(10Pa・s以上10Pa・s以下)に下がり、加熱溶融された熱可塑性樹脂が、成形後の冷却と共に固化して、熱可塑性樹脂層と接着層と被着体とが一体化された成形体が得られる。このようにして製造された成形体は、熱可塑性樹脂が耐熱性の熱可塑性ポリイミドであっても、常態接着強度を有しつつ、高温接着強度も発現することができる。 By passing through such a process, the specific adhesive is heated by contacting with the thermoplastic resin heated and melted at the molding temperature at the time of molding, and once in the viscosity range (10 Pa · s or more and 10 4 Pa · s or less). The thermoplastic resin that is lowered and melted by heating solidifies with cooling after molding, and a molded body in which the thermoplastic resin layer, the adhesive layer, and the adherend are integrated is obtained. The molded body thus produced can exhibit high-temperature adhesive strength while having normal-state adhesive strength even when the thermoplastic resin is a heat-resistant thermoplastic polyimide.
 ここで、接着層に用いるポリイミド又はポリイミド前駆体について「23℃以上300℃以下における最低粘度を10Pa・s以上10Pa・s以下」とし、且つ、成形体製造後の成形体について、接着強度、特に、高温での接着強度発現を両立すること、つまり、接着層の固化前は接着層の溶融粘度が低く、成形体製造後は成形体の弾性率が高いことを両立するには、接着層に用いるポリイミド又はポリイミド前駆体が、熱硬化型ポリイミド又は熱硬化型ポリイミド前駆体であることが好ましい。溶融粘度の低い接着層を加熱溶融した熱可塑性樹脂と接することにより、一度粘度降下が起こり、熱可塑性樹脂と接着層の熱硬化ポリイミドが十分になじみ、融合しあう状態になり、供給される熱可塑性樹脂の熱源を利用し、ついで熱硬化ポリイミド又は熱硬化型ポリイミド前駆体が架橋することにより、接着性、取り分け、高温での接着性に有利に作用する。 Here, regarding the polyimide or polyimide precursor used for the adhesive layer, “the lowest viscosity at 23 ° C. or more and 300 ° C. or less is 10 Pa · s or more and 10 4 Pa · s or less”, and the molded product after the production of the molded product has an adhesive strength. In particular, in order to achieve both high adhesive strength development at high temperature, that is, the low melt viscosity of the adhesive layer before solidifying the adhesive layer and the high elastic modulus of the molded product after manufacturing the molded product, The polyimide or polyimide precursor used for the layer is preferably a thermosetting polyimide or a thermosetting polyimide precursor. When the adhesive layer with a low melt viscosity is brought into contact with the heat-melted thermoplastic resin, the viscosity drops once, and the thermoplastic resin and the thermosetting polyimide of the adhesive layer are sufficiently blended and fused together to supply heat. Utilizing the heat source of the plastic resin, and then crosslinking the thermosetting polyimide or thermosetting polyimide precursor, it has an advantageous effect on adhesiveness, particularly, adhesiveness at high temperatures.
 ただし、前述のように接着剤である熱硬化性ポリイミド又は熱硬化型ポリイミド前駆体は、加熱することにより分子内の架橋が始まり硬化すると考えられる。従って、成形により加熱溶融された熱可塑性樹脂を接着層に接触させる際に、熱硬化性ポリイミドの架橋が終わった状態で、熱可塑性樹脂と接触しても、熱可塑性樹脂分子と接着剤分子とはなじみにくく、固化した熱可塑性樹脂層と接着剤層の間に両層の混合層が生成せず、接合が不十分となることが考えられる。 However, as described above, the thermosetting polyimide or thermosetting polyimide precursor, which is an adhesive, is considered to be crosslinked and cured within the molecule by heating. Therefore, when the thermoplastic resin heated and melted by molding is brought into contact with the adhesive layer, the thermoplastic resin molecule and the adhesive molecule are not contacted with the thermoplastic resin in the state where the crosslinking of the thermosetting polyimide is finished. It is considered that the mixed layer is not formed between the solidified thermoplastic resin layer and the adhesive layer, so that the bonding is insufficient.
 そこで、熱可塑性樹脂のガラス転移温度以下の温度で、粘度の低い熱硬化性ポリイミドを接着剤に用い、熱硬化性ポリイミドの架橋前に、熱可塑性樹脂を接触させることで、熱可塑性樹脂分子と接着剤分子の分子運動の盛んな状況を作ることができ、高温接着強度を発現可能な成形体を製造することができると考えられる。 Therefore, a thermosetting polyimide having a low viscosity is used as an adhesive at a temperature not higher than the glass transition temperature of the thermoplastic resin, and the thermoplastic resin is brought into contact with the thermoplastic resin before cross-linking the thermosetting polyimide. It is considered that a vigorous state of molecular movement of the adhesive molecules can be created, and a molded body capable of exhibiting high-temperature adhesive strength can be produced.
 以下、本発明の成形体の製造方法について詳細に説明する。まず、接着層形成工程、成形工程等の各工程を説明し、次に各工程で用いる熱可塑性組成物、特定接着剤、被着体等について説明する。 Hereinafter, the method for producing the molded body of the present invention will be described in detail. First, each process such as an adhesive layer forming process and a molding process will be described, and then a thermoplastic composition, a specific adhesive, an adherend and the like used in each process will be described.
〔接着層形成工程〕
 本発明の接着層形成工程は、23℃以上300℃以下における最低粘度が10Pa・s以上10Pa・s以下であるポリイミド及びポリイミド前駆体の少なくとも一方を含有する接着層を、被着体表面に形成する。
 つまり、接着層形成工程は、少なくとも特定接着剤を被着体表面に付与して、被着体表面に特定化合物を含む接着層を形成する工程である。
[Adhesive layer forming step]
In the adhesive layer forming step of the present invention, an adhesive layer containing at least one of a polyimide having a minimum viscosity of 10 Pa · s to 10 4 Pa · s at 23 ° C. or higher and 300 ° C. or lower is used. To form.
That is, the adhesive layer forming step is a step of forming an adhesive layer containing a specific compound on the adherend surface by applying at least a specific adhesive to the adherend surface.
 特定接着剤は、特定化合物の他、本発明の効果を損なわない限度において、必要に応じて、特定化合物を希釈するための溶剤(例えば、Nメチルピロリドン)や、特定化合物以外の樹脂を含んでいてもよい。例えば、接着性付与の作用を有するタッキファイヤーや応力緩和作用を有する樹脂(ゴム等)を含有してもよい。また、特定化合物は、完全に溶解しなくても、貧溶剤を用いてペースト状にして用いてもよい。貧溶剤としては、ジヒドロターピネオール、ジブチルフタレート等を用いることができる。
 特定接着剤中の特定化合物の割合は、1質量%以上であることが好ましく、100質量%であってもよいが、1質量%以上25質量%以下であることがより好ましい。
The specific adhesive contains, in addition to the specific compound, a solvent for diluting the specific compound (for example, N-methylpyrrolidone) and a resin other than the specific compound, as long as the effects of the present invention are not impaired. May be. For example, you may contain the tackifier which has the effect | action of adhesiveness provision, and resin (rubber etc.) which has a stress relaxation effect | action. Further, the specific compound may be used in a paste form using a poor solvent, even if it does not completely dissolve. As the poor solvent, dihydroterpineol, dibutyl phthalate, or the like can be used.
The ratio of the specific compound in the specific adhesive is preferably 1% by mass or more and may be 100% by mass, but more preferably 1% by mass or more and 25% by mass or less.
 被着体表面への特定接着剤の付与方法は特に制限されず、被着体表面に特定接着剤を筆、ローラー、バー、スプレー、スクリーン印刷、グラビア印刷を用いて塗布する塗布方法、特定接着剤又は特定接着剤溶液中に被着体を浸漬する浸漬方法、特定接着剤を被着体に付着させて被着体を回転させ、遠心力により被着体表面に膜を形成する回転方法等が挙げられる。中でも、塗布方法により、被着体表面に接着層を形成することが好ましい。 The method of applying the specific adhesive to the adherend surface is not particularly limited, and the specific adhesive is applied to the adherend surface using a brush, roller, bar, spray, screen printing, or gravure printing. Immersion method in which the adherend is immersed in an adhesive or a specific adhesive solution, a rotation method in which a specific adhesive is attached to the adherend, the adherend is rotated, and a film is formed on the adherend surface by centrifugal force, etc. Is mentioned. Especially, it is preferable to form an adhesive layer on the adherend surface by a coating method.
 接着層の層厚は、十分に熱可塑性樹脂と混合させ、接着層を形成させる観点から、5μm以上500μm以下であることが好ましく、30μm以上200μm以下であることがより好ましい。接着層が5μmより薄いと、固化した熱可塑性樹脂層と接着剤層の間に両層の混合層を生成するに不十分であり、十分な接着強度を得られない。 The layer thickness of the adhesive layer is preferably 5 μm or more and 500 μm or less, and more preferably 30 μm or more and 200 μm or less from the viewpoint of sufficiently mixing with the thermoplastic resin to form the adhesive layer. When the adhesive layer is thinner than 5 μm, it is insufficient to form a mixed layer of both layers between the solidified thermoplastic resin layer and the adhesive layer, and sufficient adhesive strength cannot be obtained.
-接合前処理-
 被着体表面に形成された接着層は、該接着層表面に、加熱溶融した熱可塑性樹脂を射出成形等により接触する前に、接着層中の溶剤を取り除く程度であって、かつ、接着層中の特定化合物が架橋性官能基を有する場合は、架橋性官能基が反応しない範囲で、接着層を乾燥させること(接合前処理)が好ましい。接着剤の塗布後、接着剤を乾燥する処理を「接合前処理」と称する。「接合前処理」は、「前処理」と略すことがある。
-Pre-bonding treatment-
The adhesive layer formed on the surface of the adherend is such that the solvent in the adhesive layer is removed before the heated and melted thermoplastic resin is brought into contact with the adhesive layer surface by injection molding or the like. When the specific compound in it has a crosslinkable functional group, it is preferable to dry the adhesive layer (pre-bonding treatment) as long as the crosslinkable functional group does not react. The process of drying the adhesive after application of the adhesive is referred to as “joining pretreatment”. “Joint pretreatment” may be abbreviated as “pretreatment”.
 接着層の乾燥が十分でない場合は、接着層中に含まれる溶剤が、成形工程中に発泡して、熱可塑性樹脂層-接着層-被着体間の接着強度を低下させることがある。一方、接着層について過度に加熱乾燥を行うと、乾燥時の熱で特定接着剤の架橋性官能基の架橋反応が進みすぎ、射出成形時に、熱可塑性樹脂分子と、特定接着剤の接着剤分子と、が十分に混合・融合しにくく、製造される成形体が、十分な接着強度を発現しにくいことがある。 If the adhesive layer is not sufficiently dried, the solvent contained in the adhesive layer may foam during the molding process and reduce the adhesive strength between the thermoplastic resin layer, the adhesive layer, and the adherend. On the other hand, if the adhesive layer is excessively heated and dried, the crosslinking reaction of the crosslinkable functional group of the specific adhesive proceeds excessively with the heat during drying, and the thermoplastic resin molecules and the adhesive molecules of the specific adhesive are injected during the injection molding. May not be sufficiently mixed and fused, and the molded article produced may not exhibit sufficient adhesive strength.
 接合前処理の具体的な方法としては、接着層が形成された被着体を加熱乾燥する方法が挙げられ、乾燥温度としては、23℃以上300℃以下が好ましく、100℃以上250℃以下がより好ましい。また、真空乾燥を併用することもできる。
 また、予め接着層をフィルム化し、そのフィルムを被着体に接する状態にして用いることもできる。
As a specific method of the bonding pretreatment, there is a method of heating and drying the adherend on which the adhesive layer is formed. The drying temperature is preferably 23 ° C. or higher and 300 ° C. or lower, and 100 ° C. or higher and 250 ° C. or lower. More preferred. Moreover, vacuum drying can also be used together.
Further, the adhesive layer can be formed into a film in advance, and the film can be used in a state of being in contact with the adherend.
〔成形工程〕
 本発明に係る成形工程は、接着層を有する被着体の接着層上に、加熱溶融した熱可塑性樹脂を付与すると同時に、被着体と接着層と前記熱可塑性樹脂とを一体化する工程である。
[Molding process]
The molding process according to the present invention is a process in which an adhesive body, an adhesive layer, and the thermoplastic resin are integrated at the same time as applying a heat-melted thermoplastic resin on an adhesive layer of an adherend having an adhesive layer. is there.
 接着層を有する被着体の接着層上に、加熱溶融した熱可塑性樹脂を付与し、加熱溶融した熱可塑性樹脂と接着層とを接触させることにより、熱可塑性樹脂層の成形と同時に、被着体と接着層と前記熱可塑性樹脂とを一体化することができる。
 この加熱溶融した熱可塑性樹脂を被着体に接触させながら成形することができる成形方法としては、圧縮成形、エンゲル成形法、押出成形、押出ラミネート成形 、回転成形法、カレンダー成形、射出成形、真空成形、スラッシュ成形、RIM(反応射出成形)、スタンピング成形、注形法、発泡成形 、Tダイ法等、熱可塑性樹脂が適用可能な成形方法であればよいが、接着層と熱可塑性樹脂とが十分に混合する点から射出成形または押出成形により行なうことが好ましい。
By applying a heat-melted thermoplastic resin on the adhesive layer of an adherend having an adhesive layer and bringing the heat-melted thermoplastic resin into contact with the adhesive layer, the thermoplastic resin layer is formed at the same time as the adhesion. The body, the adhesive layer, and the thermoplastic resin can be integrated.
Molding methods that can be molded while contacting the heat-melted thermoplastic resin with the adherend include compression molding, engel molding, extrusion molding, extrusion lamination molding, rotational molding, calendar molding, injection molding, and vacuum. Molding, slush molding, RIM (reaction injection molding), stamping molding, casting method, foam molding, T-die method, etc. may be used as long as a thermoplastic resin can be applied, but the adhesive layer and the thermoplastic resin It is preferable to carry out by injection molding or extrusion molding from the point of sufficient mixing.
 以下、射出成形により行なう成形工程の一連の流れを、図1~図6を用いて説明する。なお、図1~図6は、同一の部材、成分には同じ番号を振っており、複数の図で共通する部材や成分の説明は省略する場合がある。 Hereinafter, a series of flow of the molding process performed by injection molding will be described with reference to FIGS. 1 to 6, the same members and components are denoted by the same reference numerals, and description of members and components common to a plurality of drawings may be omitted.
 図1は、接着層を有する被着体の一例を表し、被着体2表面上に特定接着剤を含む接着層4が形成されている状態を示す。
 図2は、射出成形に用いる金型20の一例を示す金型の側面断面図である。図2に示す金型20は、凹型の部材であるキャビティ22と、キャビティ24とから構成され、キャビティ22とキャビティ24とを嵌合させて空間を作ることにより用いる。組み合わせる部材には、凸型の部材であるコアを用いることもできる。金型は、キャビティ同士又はコアとキャビティとを組み合わせて用いてもよい。また、3つ以上のキャビティとコアを組み合わせて用いてもよい。
FIG. 1 shows an example of an adherend having an adhesive layer, and shows a state where an adhesive layer 4 containing a specific adhesive is formed on the surface of the adherend 2.
FIG. 2 is a side sectional view of a mold showing an example of a mold 20 used for injection molding. The mold 20 shown in FIG. 2 includes a cavity 22 that is a concave member and a cavity 24, and is used by creating a space by fitting the cavity 22 and the cavity 24 together. As a member to be combined, a core which is a convex member can be used. The mold may be used by combining cavities or cores and cavities. Further, three or more cavities and a core may be used in combination.
 図3は、接着層を有する被着体を、キャビティに装着し、型締めした状態の一例を示す金型と接着層を有する被着体の側面断面図である。図3に示すように、接着層4を有する被着体2を、キャビティ24に装着し、キャビティ24とキャビティ22とを嵌合(型閉じ)し、型締めすることにより金型20を形成している。金型20中には、接着層4表面とキャビティ22の凹面とにより空間が作られている。 FIG. 3 is a side cross-sectional view of an adherend having a mold and an adhesive layer, showing an example of a state where an adherend having an adhesive layer is mounted in a cavity and clamped. As shown in FIG. 3, the adherend 2 having the adhesive layer 4 is mounted in the cavity 24, the cavity 24 and the cavity 22 are fitted (mold closed), and the mold 20 is clamped to form the mold 20. ing. A space is created in the mold 20 by the surface of the adhesive layer 4 and the concave surface of the cavity 22.
 図4は、型締めした金型に、シリンダーを装着した状態の一例を示す被着体、金型、及びシリンダーの側面断面図である。
 金型は、接着層中の特定接着剤が硬化しない程度に加熱しておく。シリンダー30には、加熱した熱可塑性樹脂6を収容し、接着層4表面とキャビティ22の凹面とにより作られた空間8に熱可塑性樹脂6を射出する。熱可塑性樹脂の加熱温度は、用いる熱可塑性樹脂のガラス転移温度(Tg)以上であることが好ましく、熱可塑性樹脂を収容するシリンダーの温度を調節することにより、調整する。
FIG. 4 is a side cross-sectional view of an adherend, a mold, and a cylinder showing an example of a state where a cylinder is mounted on a clamped mold.
The mold is heated to such an extent that the specific adhesive in the adhesive layer is not cured. The cylinder 30 accommodates the heated thermoplastic resin 6 and injects the thermoplastic resin 6 into the space 8 formed by the surface of the adhesive layer 4 and the concave surface of the cavity 22. The heating temperature of the thermoplastic resin is preferably equal to or higher than the glass transition temperature (Tg) of the thermoplastic resin to be used, and is adjusted by adjusting the temperature of the cylinder containing the thermoplastic resin.
 金型の温度とシリンダーの温度は、用いる射出する熱可塑性樹脂により異なるが、接着層中の特定接着剤と、射出成形される熱可塑性樹脂とが十分に混じり合い、特定接着剤が反応しうる温度以上が好ましい。例えば、熱可塑性樹脂として、熱可塑性ポリイミドと炭素繊維からなるオーラムJCN3030を用いるときには、金型の温度は180℃以上240℃以下とすることが好ましく、シリンダーの温度は、400℃以上450℃以下とすることが好ましい。 The temperature of the mold and the temperature of the cylinder differ depending on the thermoplastic resin to be injected, but the specific adhesive in the adhesive layer and the thermoplastic resin to be injection-molded are sufficiently mixed so that the specific adhesive can react. Above the temperature is preferred. For example, when using Aurum JCN3030 made of thermoplastic polyimide and carbon fiber as the thermoplastic resin, the mold temperature is preferably 180 ° C. or higher and 240 ° C. or lower, and the cylinder temperature is 400 ° C. or higher and 450 ° C. or lower. It is preferable to do.
 図5は、型締めした金型に装着したシリンダーから金型中の空間に熱可塑性樹脂を射出している形態の一例を示す被着体、金型、及びシリンダーの側面断面図である。図4に示す接着層4表面とキャビティ22の凹面とにより作られた空間8に、シリンダー30のピストン(図示せず)で加圧することにより、シリンダー30から熱可塑性樹脂6を射出し、空間8を、熱可塑性樹脂6に置換する。熱可塑性樹脂6を金型の空間8に射出した後、空間8が熱可塑性樹脂6で満たされるまで、シリンダー30のピストンで加圧する。 FIG. 5 is a side cross-sectional view of an adherend, a mold, and a cylinder showing an example of a mode in which a thermoplastic resin is injected into a space in the mold from a cylinder mounted on a mold that has been clamped. By pressurizing the space 8 formed by the surface of the adhesive layer 4 and the concave surface of the cavity 22 shown in FIG. 4 with a piston (not shown) of the cylinder 30, the thermoplastic resin 6 is injected from the cylinder 30. Is replaced with the thermoplastic resin 6. After the thermoplastic resin 6 is injected into the mold space 8, the pressure is applied by the piston of the cylinder 30 until the space 8 is filled with the thermoplastic resin 6.
 保圧後、金型を冷却することにより、熱可塑性樹脂が固化し、熱可塑性樹脂と接着剤と被着体とが一体化する。熱可塑性樹脂と接着剤と被着体とが一体化した成型体は、金型を型開きすることにより得られる。
 図6は、本発明の成形体の製造方法により製造された成形体の一例を示す成型体の側面断面図である。成形体10は、被着体2の表面上に固化した接着層14と固化した熱可塑性樹脂の層(熱可塑性樹脂層)16とが、この順に積層されている。
After holding the pressure, the mold is cooled to solidify the thermoplastic resin, and the thermoplastic resin, the adhesive, and the adherend are integrated. A molded body in which the thermoplastic resin, the adhesive, and the adherend are integrated is obtained by opening the mold.
FIG. 6 is a side cross-sectional view of a molded body showing an example of a molded body manufactured by the method for manufacturing a molded body of the present invention. In the molded body 10, a solidified adhesive layer 14 and a solidified thermoplastic resin layer (thermoplastic resin layer) 16 are laminated in this order on the surface of the adherend 2.
〔その他の工程〕
 本発明の成形体の製造方法は、接着層形成工程と射出成形工程のほかに、被着体表面と、接着層との接着性を向上させるための、被着体表面の表面処理を行なう表面処理工程を含んでいてもよい。すなわち、接着層形成工程に用いる被着体としては、被着体表面の表面処理が施されている被着体を用いてもよい。
[Other processes]
In addition to the adhesive layer forming step and the injection molding step, the method for producing a molded body according to the present invention is a surface that performs a surface treatment of the adherend surface to improve the adhesion between the adherend surface and the adhesive layer. A processing step may be included. That is, as the adherend used in the adhesive layer forming step, an adherend that has been subjected to surface treatment of the adherend surface may be used.
 表面処理は、化学的表面処理と物理的表面処理の少なくとも一方を行なえばよい。
 化学的表面処理としては、被着体表面をカップリング材等の公知の密着付与剤で表面処理し、接着剤と被着体との接着性を向上することが挙げられる。また、特開2007-221099号公報に記載される多官能性トリアジンジチオールの化学的表面処理を施してもよい。
 物理的表面処理としては、被着体の表面をサンディングや特開2006-315398号公報に記載されるヒドラジン処理を施して、被着体表面の比表面積を大きくすることで、いわゆるアンカー効果により接着剤と被着体との接着性を向上することが挙げられる。
The surface treatment may be performed by at least one of a chemical surface treatment and a physical surface treatment.
Examples of the chemical surface treatment include surface treatment of the adherend surface with a known adhesion-imparting agent such as a coupling material to improve the adhesion between the adhesive and the adherend. Further, a chemical surface treatment of polyfunctional triazine dithiol described in JP-A-2007-221099 may be performed.
As the physical surface treatment, the surface of the adherend is subjected to sanding or hydrazine treatment described in Japanese Patent Application Laid-Open No. 2006-315398 to increase the specific surface area of the adherend, thereby adhering by the so-called anchor effect. Improving the adhesion between the agent and the adherend.
 表面処理は、化学的表面処理と物理的表面処理との両方を行なってもよいし、いずれか一方のみを繰り返し行なってもよい。
 また、射出成形後(接合後)に、熱可塑性樹脂の軟化点以下の温度で養生することにより接着性を向上させることもできる。
As the surface treatment, both chemical surface treatment and physical surface treatment may be performed, or only one of them may be repeated.
Moreover, adhesiveness can also be improved by curing at the temperature below the softening point of a thermoplastic resin after injection molding (after joining).
<特定接着剤>
 本発明の成形体の製造方法では、既述の特定化合物、即ち、23℃以上300℃以下における最低粘度が10Pa・s以上10Pa・s以下であるポリイミド及びポリイミド前駆体の少なくとも一方を含有する接着剤を用いる。
 特定化合物は、23℃以上300℃以下における最低粘度が10Pa・s以上10Pa・s以下であることで、射出成形の際に、熱可塑性樹脂を十分に混合し接着することができる。金型に被着体を設置した際の安定性を考慮すると、特定化合物の最低粘度は、80℃以上300℃以下において、50Pa・s以上5,000Pa・s以下であることがより好ましい。特定化合物の最低粘度は、さらには、80℃以上300℃以下において、1,000Pa・s以上5,000Pa・s以下であることが特に好ましい。
<Specific adhesive>
In the method for producing a molded article of the present invention, the specific compound described above, that is, at least one of a polyimide having a minimum viscosity of 10 Pa · s to 10 4 Pa · s at 23 ° C. to 300 ° C. and polyimide precursor is contained. Use adhesive.
When the specific compound has a minimum viscosity of 10 Pa · s or more and 10 4 Pa · s or less at 23 ° C. or more and 300 ° C. or less, the thermoplastic resin can be sufficiently mixed and adhered at the time of injection molding. Considering the stability when the adherend is placed on the mold, the minimum viscosity of the specific compound is more preferably from 50 Pa · s to 5,000 Pa · s at 80 ° C. to 300 ° C. The minimum viscosity of the specific compound is more preferably from 1,000 Pa · s to 5,000 Pa · s at 80 ° C. to 300 ° C.
 特定化合物の溶融粘度は、粘弾性測定装置(Haake社製ReoStress-RS600等)を用いて測定することができる。 The melt viscosity of the specific compound can be measured using a viscoelasticity measuring apparatus (Reo Stress-RS600 manufactured by Haake).
 特定接着剤を含有する接着層が固化し、熱可塑性樹脂と接着層と被着体とが一体化したときに、被着体の高温接着性を発現するため、特定接着剤が固化した固化物(固化した固化接着層)のガラス転移温度(Tg)は、150℃以上であることが好ましい。特定接着剤の固化物のTgは、さらに、180℃以上であることがより好ましい。 When the adhesive layer containing the specific adhesive is solidified and the thermoplastic resin, the adhesive layer, and the adherend are integrated, the high-temperature adhesiveness of the adherend is manifested. The glass transition temperature (Tg) of the (solidified solidified adhesive layer) is preferably 150 ° C. or higher. The Tg of the solidified product of the specific adhesive is more preferably 180 ° C. or higher.
 特定接着剤の固化物(固化した固化接着層)のTgは、SII社製の示差熱走査熱量計DSC6200を用いて、次のようにして測定された温度である。
 特定接着剤を、被着体表面に平均乾燥膜厚が30μmになるように塗布し、その後、200℃で2時間加熱し、更に、340℃で2時間加熱して、Tg測定用の試験片を得る。得られた試験片を用いて、示差熱走査熱量計:SII社製DSC6200を用いて、相転移にかかる吸熱ピークからTgを測定する。
Tg of the solidified product of the specific adhesive (solidified solidified adhesive layer) is a temperature measured as follows using a differential thermal scanning calorimeter DSC6200 manufactured by SII.
A specific adhesive is applied to the surface of the adherend so that the average dry film thickness is 30 μm, then heated at 200 ° C. for 2 hours, and further heated at 340 ° C. for 2 hours to obtain a test piece for Tg measurement. Get. Using the obtained test piece, Tg is measured from an endothermic peak related to phase transition using a differential thermal scanning calorimeter: DSC6200 manufactured by SII.
 特定化合物は、主成分としてポリイミド又はその前駆体を含むが、ポリイミド前駆体はポリアミド酸であることが好ましい。 The specific compound contains polyimide or a precursor thereof as a main component, and the polyimide precursor is preferably a polyamic acid.
 ポリイミド又はその前駆体であるポリアミド酸は、芳香族ジアミン由来の構成単位、芳香族テトラカルボン酸二無水物由来の構成単位、及び架橋性基を少なくとも1つ含有することが好ましい。架橋性基は架橋性末端基であることが好ましいが、繰返し単位中に架橋性基が存在していてもよい。 The polyamic acid which is a polyimide or a precursor thereof preferably contains at least one structural unit derived from an aromatic diamine, a structural unit derived from an aromatic tetracarboxylic dianhydride, and a crosslinkable group. The crosslinkable group is preferably a crosslinkable end group, but a crosslinkable group may be present in the repeating unit.
 ポリイミドは、また、下記一般式(1)に示す構造を有するポリイミドであることが好ましい。なお、一般式(1)~一般式(6)において括弧内は繰返し単位を表わす。 The polyimide is preferably a polyimide having a structure represented by the following general formula (1). In the general formulas (1) to (6), the parentheses indicate a repeating unit.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(1)中、Xはジアミンの主骨格を表し、Yはテトラカルボン酸二無水物の主骨格を表す。
 ここでジアミンの主骨格とは、ジアミンのアミノ基を除いた主鎖を意味し、テトラカルボン酸二無水物の主骨格とは、カルボン酸二無水物を除いた主鎖を意味する。
In general formula (1), X represents the main skeleton of diamine, and Y represents the main skeleton of tetracarboxylic dianhydride.
Here, the main skeleton of diamine means a main chain excluding the amino group of diamine, and the main skeleton of tetracarboxylic dianhydride means a main chain excluding carboxylic dianhydride.
 一般式(1)中のX、及びYは、少なくとも1つが芳香族基であることが好ましく、さらに下記構造であることが好ましい。また、両方が芳香族基であることがより好ましい。 At least one of X and Y in the general formula (1) is preferably an aromatic group, and more preferably the following structure. More preferably, both are aromatic groups.
(A)一般式(1)におけるXが下記構造(X1-1)~構造(X1-5)のうちのいずれか1つであるとき、一般式(1)におけるYは、下記構造(Y1-1)~構造(Y1-6)のうちのいずれか1つであることが好ましい。 (A) When X in the general formula (1) is any one of the following structures (X1-1) to (X1-5), Y in the general formula (1) represents the following structure (Y1- 1) to any one of structures (Y1-6) is preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 構造(X1-1)~構造(X1-4)において、Rは、各々独立に、単結合、-O-、-CO-、-SO-、-S-、-CH-及び-C(CH-からなる群から選択されるいずれか1つである。構造(X1-5)において、mとnは各々独立に0~7の整数であり、Zは各々独立に-CH又はフェニル基である。 In the structures (X1-1) to (X1-4), R each independently represents a single bond, —O—, —CO—, —SO 2 —, —S—, —CH 2 — or —C ( Any one selected from the group consisting of CH 3 ) 2 —. In the structure (X1-5), m and n are each independently an integer of 0 to 7, and Z is each independently —CH 3 or a phenyl group.
(B)一般式(1)におけるXが下記構造(X2-1)のとき、一般式(1)におけるYは、下記構造(Y2-1)又は構造(Y2-2)であることが好ましい。 (B) When X in the general formula (1) is the following structure (X2-1), Y in the general formula (1) is preferably the following structure (Y2-1) or the structure (Y2-2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 構造(X2-1)において、Rは、単結合、-O-、-CO-、-SO-、-S-、-CH-及び-C(CH-からなる群から選択されるいずれか1つである。 In the structure (X2-1), R is selected from the group consisting of a single bond, —O—, —CO—, —SO 2 —, —S—, —CH 2 — and —C (CH 3 ) 2 —. Any one of them.
 (C)一般式(1)におけるXが下記構造(X3-1)のとき、一般式(1)におけるYは下記構造(Y3-1)であることが好ましい。 (C) When X in the general formula (1) is the following structure (X3-1), Y in the general formula (1) is preferably the following structure (Y3-1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 ポリイミドは、一般式(1)で示される構造のみで構成されていてもよいが、その末端部分がモノアミン又はジカルボン酸無水物で封止されていてもよい。末端がモノアミン又はジカルボン酸無水物で封止されたポリイミドは、下記一般式(2)又は一般式(3)で示される構造を有していることが好ましい。 The polyimide may be composed only of the structure represented by the general formula (1), but the terminal portion may be sealed with a monoamine or dicarboxylic acid anhydride. The polyimide whose end is sealed with a monoamine or dicarboxylic acid anhydride preferably has a structure represented by the following general formula (2) or general formula (3).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(2)及び一般式(3)におけるX及びYは、一般式(1)におけるX及びYと同義であり、一般式(2)におけるX’はモノアミンの主骨格を示し、一般式(3)におけるY’はジカルボン酸二無水物の主骨格を示す。
 ここでモノアミンの主骨格とは、モノアミンのアミノ基を除いた主鎖を意味し、ジカルボン酸二無水物の主骨格とは、カルボン酸二無水物を除く主鎖を意味する。
 この様に、分子末端をモノアミンもしくは、カルボン酸二無水物で封鎖している方が安定性に優れており、好ましい。
X and Y in the general formula (2) and the general formula (3) are synonymous with X and Y in the general formula (1), X ′ in the general formula (2) represents a main skeleton of a monoamine, and the general formula ( Y ′ in 3) represents the main skeleton of dicarboxylic dianhydride.
Here, the main skeleton of monoamine means the main chain excluding the amino group of monoamine, and the main skeleton of dicarboxylic dianhydride means the main chain excluding carboxylic dianhydride.
As described above, it is preferable that the molecular ends are blocked with monoamine or carboxylic dianhydride because of excellent stability.
 また、特定化合物のポリイミドが熱硬化性ポリイミドであることが、更に、好ましく、一般式(2)におけるX’は、下記構造(X’-1)又は構造(X’-2)であることが好ましい。 Further, the specific compound polyimide is more preferably a thermosetting polyimide, and X ′ in the general formula (2) is preferably the following structure (X′-1) or structure (X′-2). preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 構造(X’-1)中、Rは、メチレン基(-CH-)又はフェニレン基(-C-)であり、R及びRは、各々独立に、メチル基(-CH)又はエチル基(-C)である。また、nは、1~7の整数であり、rは、0~2の整数である。 In the structure (X′-1), R 1 is a methylene group (—CH 2 —) or a phenylene group (—C 6 H 4 —), and R 2 and R 3 are each independently a methyl group (— CH 3 ) or an ethyl group (—C 2 H 5 ). N is an integer of 1 to 7, and r is an integer of 0 to 2.
 特定化合物として、一般式(2)におけるX’が、構造(X’-1)又は構造(X’-2)で表される部分構造を有するポリイミドを使用することにより、被着体と熱可塑性樹脂との密着性を、より向上させることが可能になる。また、一般式(2)におけるX’が、構造(X’-1)又は構造(X’-2)で表される部分構造を有するポリイミドは、加熱により熱硬化するため、高温環境下における接着強度に優れている。 By using a polyimide having a partial structure in which X ′ in the general formula (2) is represented by the structure (X′-1) or the structure (X′-2) as the specific compound, the adherend and the thermoplastic are used. It becomes possible to further improve the adhesion to the resin. In addition, since polyimide having a partial structure represented by X ′ in the general formula (2) is represented by the structure (X′-1) or the structure (X′-2) is thermally cured by heating, adhesion in a high temperature environment Excellent strength.
 一般式(3)におけるY’は下記構造(Y’-1)~構造(Y’-8)のいずれか1つであることが好ましい。 In the general formula (3), Y ′ is preferably any one of the following structures (Y′-1) to (Y′-8).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 Y’が下記構造(Y’-1)~構造(Y’-8)のいずれか1つである一般式(3)で表される構造を有するポリイミドは、加熱時に熱硬化し易く、高温環境下における接着強度に優れている。 Polyimide having a structure represented by the general formula (3) where Y ′ is any one of the following structures (Y′-1) to (Y′-8) is easily cured by heating and has a high temperature environment. Excellent adhesive strength below.
 一般式(1)~一般式(3)で表される構造を有するポリイミドは、ビニレン基、エチニル基、ビリニデン基、ベンゾシクロブタン-4’-イル基、イソシアネート基、アリル基、オキシラン基、オキセタン基、シアノ基、イソプロペニル基の中から選択される少なくとも1つの架橋基を有することが好ましい。一般式(1)~一般式(3)で表される構造を有するポリイミドは、これらの架橋基の導入により、加熱時により熱硬化し易くなり、高温環境下における接着強度に優れている。 The polyimide having the structure represented by the general formula (1) to the general formula (3) includes a vinylene group, an ethynyl group, a vinylidene group, a benzocyclobutane-4′-yl group, an isocyanate group, an allyl group, an oxirane group, and an oxetane group. It preferably has at least one bridging group selected from a cyano group and an isopropenyl group. The polyimides having the structures represented by the general formulas (1) to (3) are more easily cured by heating due to the introduction of these crosslinking groups, and have excellent adhesive strength in a high temperature environment.
 また、特定接着剤が含み得るポリイミドの前駆体であるポリアミド酸は、下記一般式(4)~一般式(6)で示される構造のいずれか1つを有することが好ましい。 Further, the polyamic acid which is a polyimide precursor that can be included in the specific adhesive preferably has any one of the structures represented by the following general formulas (4) to (6).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(4)~一般式(6)中、Xはジアミン化合物の主骨格を表し、X’はモノアミン化合物の主骨格を表し、Yはテトラカルボン酸二無水物の主骨格を表し、Y’はジカルボン酸無水物の主骨格を表す。 In the general formulas (4) to (6), X represents the main skeleton of the diamine compound, X ′ represents the main skeleton of the monoamine compound, Y represents the main skeleton of the tetracarboxylic dianhydride, Y ′ Represents the main skeleton of the dicarboxylic acid anhydride.
 一般式(4)~一般式(6)におけるX及びYは、少なくとも1つが芳香族基であることが好ましく、下記構造であることがより好ましい。 In general formulas (4) to (6), at least one of X and Y is preferably an aromatic group, and more preferably the following structure.
(A)一般式(4)~一般式(6)におけるXが、前記構造(X1-1)~前記構造(X1-5)のうちのいずれか1つのとき、一般式(4)~一般式(6)におけるYは、前記構造(Y1-1)~前記構造(Y1-6)のうちのいずれか1つであることが好ましい。
 前記構造(X1-1)~構造(X1-5)において、Rは、各々独立に、単結合、-O-、-CO-、-SO-、-S-、-CH-及び-C(CH-からなる群から選択されるいずれか1つであり、mとnは各々独立に0~7であり、ZはCH又はフェニル基である。
(A) When X in the general formula (4) to the general formula (6) is any one of the structures (X1-1) to (X1-5), the general formula (4) to the general formula Y in (6) is preferably any one of the structures (Y1-1) to (Y1-6).
In the structures (X1-1) to (X1-5), R each independently represents a single bond, —O—, —CO—, —SO 2 —, —S—, —CH 2 — or —C. Any one selected from the group consisting of (CH 3 ) 2 —, m and n are each independently 0 to 7, and Z is CH 3 or a phenyl group.
(B)一般式(4)~一般式(6)におけるXが前記構造(X2-1)のとき、一般式(4)~一般式(6)におけるYは、前記構造(Y2-1)又は構造(Y2-2)であることが好ましい。前記構造(X2-1)において、Rは、単結合、-O-、-CO-、-SO-、-S-、-CH-及び-C(CH-からなる群から選択されるいずれか1つである。 (B) When X in the general formulas (4) to (6) is the structure (X2-1), Y in the general formulas (4) to (6) is the structure (Y2-1) or The structure (Y2-2) is preferable. In the structure (X2-1), R is selected from the group consisting of a single bond, —O—, —CO—, —SO 2 —, —S—, —CH 2 —, and —C (CH 3 ) 2 —. Any one of them.
(C)一般式(4)~一般式(6)におけるXが上記構造(X3-1)のとき、一般式(4)~一般式(6)におけるYは下記構造(Y3-1)であることが好ましい。 (C) When X in general formula (4) to general formula (6) is the above structure (X3-1), Y in general formula (4) to general formula (6) is the following structure (Y3-1) It is preferable.
 一般式(5)中のX’は上記構造(X’-1)又は構造(X’-2)であることが好ましい。
 特定化合物として、一般式(5)におけるX’が、構造(X’-1)又は構造(X’-2)で表される構造を有するポリアミド酸を使用することにより得られるポリイミドは、一般式(5)におけるX’が、構造(X’-1)又は構造(X’-2)で表される部分構造を有するため、加熱により熱硬化するため、高温環境下における接着強度に優れている。
X ′ in the general formula (5) is preferably the structure (X′-1) or the structure (X′-2).
As the specific compound, a polyimide obtained by using a polyamic acid having a structure in which X ′ in the general formula (5) is represented by the structure (X′-1) or the structure (X′-2) is represented by the general formula: Since X ′ in (5) has a partial structure represented by the structure (X′-1) or the structure (X′-2), it is thermally cured by heating, and therefore has excellent adhesive strength in a high temperature environment. .
 一般式(6)におけるY’は上記構造(Y’-1)~構造(Y’-8)のいずれか1つであることが好ましい。Y’が前記構造(Y’-1)~構造(Y’-8)のいずれか1つである一般式(6)で表される構造を有するポリアミド酸は、加熱時に熱硬化し易く、高温環境下における接着強度に優れている。 In the general formula (6), Y ′ is preferably any one of the structures (Y′-1) to (Y′-8). The polyamic acid having the structure represented by the general formula (6) in which Y ′ is any one of the structures (Y′-1) to (Y′-8) is easily cured by heating and has a high temperature. Excellent adhesive strength in the environment.
 一般式(4)~一般式(6)で表される構造を有するポリアミド酸は、ビニレン基、エチニル基、ビリニデン基、ベンゾシクロブタン-4’-イル基、イソシアネート基、アリル基、オキシラン基、オキセタン基、シアノ基、イソプロペニル基の中から選択される少なくとも1つの架橋基を有することが好ましい。一般式(4)~一般式(6)で表される構造を有するポリアミド酸は、これらの架橋基の導入により、加熱時により熱硬化し易くなり、高温環境下における接着強度に優れている。 The polyamic acid having the structure represented by the general formula (4) to the general formula (6) includes a vinylene group, an ethynyl group, a vinylidene group, a benzocyclobutane-4′-yl group, an isocyanate group, an allyl group, an oxirane group, and an oxetane. It preferably has at least one bridging group selected from a group, a cyano group, and an isopropenyl group. The polyamic acid having the structure represented by the general formula (4) to the general formula (6) is easily cured by heating due to the introduction of these crosslinking groups, and has excellent adhesive strength in a high temperature environment.
 一般式(1)で表される構造を有するポリイミド、及び、一般式(4)で表される構造を有するポリアミド酸は、ジアミンとテトラカルボン酸二無水物の縮合により合成される。これらは通常の重縮合系ポリマーの場合と同様に、モノマー成分のモル比を調節することで分子量を制御することができる。すなわち、テトラカルボン酸二無水物1モルに対し、0.8~1.2モルのジアミンを使用することで、高分子量体を形成することが可能になる。ポリイミド又はポリアミド酸が高分子量体であると、特定接着剤の硬化物が機械的強度、電気絶縁性等に優れており、また高温環境下でアウトガスの発生がないため、好ましい。上記のモル比は、より好ましくは、酸二無水物1モルに対してジアミン0.9~1.1モルである。 The polyimide having the structure represented by the general formula (1) and the polyamic acid having the structure represented by the general formula (4) are synthesized by condensation of diamine and tetracarboxylic dianhydride. In the same manner as in the case of ordinary polycondensation polymers, the molecular weight can be controlled by adjusting the molar ratio of the monomer components. That is, by using 0.8 to 1.2 mol of diamine with respect to 1 mol of tetracarboxylic dianhydride, a high molecular weight product can be formed. It is preferable that the polyimide or polyamic acid is a high molecular weight material because the cured product of the specific adhesive is excellent in mechanical strength, electrical insulation and the like, and does not generate outgas in a high temperature environment. The molar ratio is more preferably 0.9 to 1.1 mol of diamine with respect to 1 mol of acid dianhydride.
 一般式(1)で表される構造を有するポリイミド、または、一般式(4)で表される構造を有するポリアミド酸を合成するのに使用可能なジアミンとしては、具体的には例えば以下のジアミンが挙げられる。 Specific examples of the diamine that can be used to synthesize the polyimide having the structure represented by the general formula (1) or the polyamic acid having the structure represented by the general formula (4) include the following diamines. Is mentioned.
a)ベンゼン環1個を有する、p-フェニレンジアミン、m-フェニレンジアミン。 a) p-phenylenediamine and m-phenylenediamine having one benzene ring.
b)ベンゼン環2個を有する、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2-ジ(3-アミノフェニル)プロパン、2,2-ジ(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2,2-ジ(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ジ(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、1,1-ジ(3-アミノフェニル)-1-フェニルエタン、1,1-ジ(4-アミノフェニル)-1-フェニルエタン、1-(3-アミノフェニル)-1-(4-アミノフェニル)-1-フェニルエタン。 b) 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl sulfide, 3,4′-diaminodiphenyl sulfide having two benzene rings 4,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 4,4'- Diaminobenzophenone, 3,4'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2-di (3-aminophenyl) propane, 2, 2-di (4-aminophenyl) propa 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2,2-di (3-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2, 2-di (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2- (3-aminophenyl) -2- (4-aminophenyl) -1,1,1, 3,3,3-hexafluoropropane, 1,1-di (3-aminophenyl) -1-phenylethane, 1,1-di (4-aminophenyl) -1-phenylethane, 1- (3-amino Phenyl) -1- (4-aminophenyl) -1-phenylethane.
c)ベンゼン環3個を有する、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノベンゾイル)ベンゼン、1,3-ビス(4-アミノベンゾイル)ベンゼン、1,4-ビス(3-アミノベンゾイル)ベンゼン、1,4-ビス(4-アミノベンゾイル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、2,6-ビス(3-アミノフェノキシ)ベンゾニトリル、2,6-ビス(3-アミノフェノキシ)ピリジン。 c) 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene having three benzene rings, 1, 4-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminobenzoyl) benzene, 1,3-bis (4-aminobenzoyl) benzene, 1,4-bis (3-aminobenzoyl) benzene, 1,4-bis (4-aminobenzoyl) benzene, 1,3-bis (3-amino-α, α-dimethylbenzyl) benzene, 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene 1,4-bis (3-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,3-bis (3-amino-α α-ditrifluoromethylbenzyl) benzene, 1,3-bis (4-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,4-bis (3-amino-α, α-ditrifluoromethylbenzyl) benzene 1,4-bis (4-amino-α, α-ditrifluoromethylbenzyl) benzene, 2,6-bis (3-aminophenoxy) benzonitrile, 2,6-bis (3-aminophenoxy) pyridine.
d)ベンゼン環4個を有する、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン。 d) 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone having four benzene rings Bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (3- Aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 2 , 2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl Nyl] propane, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) ) Phenyl] -1,1,1,3,3,3-hexafluoropropane.
e)ベンゼン環5個を有する、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン。 e) 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,4-bis having 5 benzene rings [4- (3-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-aminophenoxy) -α, α- Dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1,4-bis [4- (3-aminophenoxy) -α, α-dimethylbenzyl ] Benzene, 1,4-bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene.
f)ベンゼン環6個を有する、4,4’-ビス[4-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’-ビス[4-(4-アミノフェノキシ)フェノキシ]ジフェニルスルホン。 f) 4,4′-bis [4- (4-aminophenoxy) benzoyl] diphenyl ether, 6,4′-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy having 6 benzene rings Benzophenone, 4,4′-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] diphenyl sulfone, 4,4′-bis [4- (4-aminophenoxy) phenoxy] diphenyl sulfone.
g)芳香族置換基を有する、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン。 g) 3,3′-diamino-4,4′-diphenoxybenzophenone, 3,3′-diamino-4,4′-dibiphenoxybenzophenone having an aromatic substituent, 3,3′-diamino-4- Phenoxybenzophenone, 3,3′-diamino-4-biphenoxybenzophenone.
h)スピロビインダン環を有する、6,6’-ビス(3-アミノフェノキシ)3,3,3,’3,’-テトラメチル-1,1’-スピロビインダン、6,6’-ビス(4-アミノフェノキシ)3,3,3,’3,’-テトラメチル-1,1’-スピロビインダン。 h) 6,6′-bis (3-aminophenoxy) 3,3,3,3,3′-tetramethyl-1,1′-spirobiindane having a spirobiindane ring, 6,6′-bis (4-amino) Phenoxy) 3,3,3, '3,'-tetramethyl-1,1'-spirobiindane.
i)シロキサンジアミン類である、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン、α,ω-ビス(3-アミノブチル)ポリジメチルシロキサン。 i) Siloxane diamines such as 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, α, ω-bis (3-aminopropyl) ) Polydimethylsiloxane, α, ω-bis (3-aminobutyl) polydimethylsiloxane.
j)エチレングリコールジアミン類である、ビス(アミノメチル)エーテル、ビス(2-アミノエチル)エーテル、ビス(3-アミノプロピル)エーテル、ビス(2-アミノメトキシ)エチル]エーテル、ビス[2-(2-アミノエトキシ)エチル]エーテル、ビス[2-(3-アミノプロポキシ)エチル]エーテル、1,2-ビス(アミノメトキシ)エタン、1,2-ビス(2-アミノエトキシ)エタン、1,2-ビス[2-(アミノメトキシ)エトキシ]エタン、1,2-ビス[2-(2-アミノエトキシ)エトキシ]エタン、エチレングリコールビス(3-アミノプロピル)エーテル、ジエチレングリコールビス(3-アミノプロピル)エーテル、トリエチレングリコールビス(3-アミノプロピル)エーテル。 j) Ethylene glycol diamines, bis (aminomethyl) ether, bis (2-aminoethyl) ether, bis (3-aminopropyl) ether, bis (2-aminomethoxy) ethyl] ether, bis [2- ( 2-aminoethoxy) ethyl] ether, bis [2- (3-aminopropoxy) ethyl] ether, 1,2-bis (aminomethoxy) ethane, 1,2-bis (2-aminoethoxy) ethane, 1,2 -Bis [2- (aminomethoxy) ethoxy] ethane, 1,2-bis [2- (2-aminoethoxy) ethoxy] ethane, ethylene glycol bis (3-aminopropyl) ether, diethylene glycol bis (3-aminopropyl) Ether, triethylene glycol bis (3-aminopropyl) ether.
k)メチレンジアミン類である、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン。 k) Methylenediamines, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diamino Octane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane.
l)脂環式ジアミン類である、1,2-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、1,2-ジ(2-アミノエチル)シクロヘキサン、1,3-ジ(2-アミノエチル)シクロヘキサン、1,4-ジ(2-アミノエチル)シクロヘキサン、ビス(4-アミノシクロへキシル)メタン、2,6-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、2,5-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、が例示される。 l) Alicyclic diamines such as 1,2-diaminocyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 1,2-di (2-aminoethyl) cyclohexane, 1,3-di ( 2-aminoethyl) cyclohexane, 1,4-di (2-aminoethyl) cyclohexane, bis (4-aminocyclohexyl) methane, 2,6-bis (aminomethyl) bicyclo [2.2.1] heptane, 2,5-bis (aminomethyl) bicyclo [2.2.1] heptane is exemplified.
 また、上記例示したジアミンは、適宜単独で、又は混合して使用することができる。また、ジアミン化合物は、上記ジアミンの芳香環上の水素原子の一部若しくは全てをフルオロ基、メチル基、メトキシ基、トリフルオロメチル基、又はトリフルオロメトキシ基から選ばれた置換基で置換したジアミンであってもよい。また、分岐を導入する目的で、ジアミンの一部をトリアミン類、テトラアミン類と代えてもよい。このようなトリアミン類の具体例としては、例えばパラローズアニリンが挙げられる。 Also, the diamines exemplified above can be used alone or in combination as appropriate. The diamine compound is a diamine in which a part or all of the hydrogen atoms on the aromatic ring of the diamine are substituted with a substituent selected from a fluoro group, a methyl group, a methoxy group, a trifluoromethyl group, or a trifluoromethoxy group. It may be. For the purpose of introducing branching, a part of the diamine may be replaced with triamines or tetraamines. Specific examples of such triamines include, for example, pararose aniline.
 一般式(1)で表される構造を有するポリイミド、及び、一般式(4)で表される構造を有するポリアミド酸を合成するのに使用可能なテトラカルボン酸二無水物としては、具体的には例えば、以下のものが挙げられる。 Specific examples of the tetracarboxylic dianhydride that can be used to synthesize the polyimide having the structure represented by the general formula (1) and the polyamic acid having the structure represented by the general formula (4) include For example, the following may be mentioned.
 ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、2,2-ビス[(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)スルフィド二無水物、ビス(2,3-ジカルボキシフェニル)スルホン二無水物、1,3-ビス(2,3-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(2,3-ジカルボキシフェノキシ)ベンゼン二無水物、及び1,2,5,6-ナフタレンテトラカルボン酸二無水物。 Pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, bis (3,4-di Carboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 2,2-bis (3,4-dicarboxy) Phenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 1,3-bis (3,4 -Dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy) biphenyl dianhydride, , 2-bis [(3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic acid Anhydride, ethylenetetracarboxylic dianhydride, butanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, 2,2 ', 3,3'-benzophenonetetracarboxylic dianhydride, 2,2' , 3,3′-biphenyltetracarboxylic dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) -1, 1,1,3,3,3-hexafluoropropane dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) sulfide Anhydride, bis (2,3-dicarboxyphenyl) sulfone dianhydride, 1,3-bis (2,3-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (2,3-dicarboxyphenoxy) ) Benzene dianhydride and 1,2,5,6-naphthalene tetracarboxylic dianhydride.
 上記例示したテトラカルボン酸二無水物は、適宜単独で、又は混合して用いることができる。
 また、上記テトラカルボン酸二無水物のいずれも、それらの芳香環上の水素原子の一部若しくは全てをフルオロ基、メチル基、メトキシ基、トリフルオロメチル基、又はトリフルオロメトキシ基から選ばれた置換基で置換して用いることもできる。
The tetracarboxylic dianhydrides exemplified above can be used alone or in combination as appropriate.
In addition, any of the above tetracarboxylic dianhydrides was selected from a fluoro group, a methyl group, a methoxy group, a trifluoromethyl group, or a trifluoromethoxy group for some or all of the hydrogen atoms on their aromatic rings. It can also be used after being substituted with a substituent.
 更に、架橋点となるエチニル基、ベンゾシクロブテン-4’-イル基、ビニル基、アリル基、シアノ基、イソシアネート基、ニトリロ基、及びイソプロペニル基を、上記酸二無水物の芳香環上の水素原子の一部若しくは全てに置換基として導入しても用いることができる。更にまた、好ましくは成形加工性を損なわない範囲内で、架橋点となるビニレン基、ビニリデン基、及びエチニリデン基を置換基ではなく、主鎖骨格中に組み込むこともできる。 Further, an ethynyl group, a benzocyclobuten-4′-yl group, a vinyl group, an allyl group, a cyano group, an isocyanate group, a nitrilo group, and an isopropenyl group that serve as a crosslinking point are formed on the aromatic ring of the acid dianhydride. Even if it introduce | transduces into some or all of a hydrogen atom as a substituent, it can be used. Furthermore, a vinylene group, a vinylidene group, and an ethynylidene group that serve as a crosslinking point may be incorporated in the main chain skeleton instead of a substituent, preferably within a range that does not impair the moldability.
 また、分岐を導入する目的で、テトラカルボン酸二無水物の一部をヘキサカルボン酸三無水物類、オクタカルボン酸四無水物類と代えてもよい。 Further, for the purpose of introducing branching, a part of tetracarboxylic dianhydride may be replaced with hexacarboxylic dianhydride or octacarboxylic dianhydride.
 また、特定化合物に耐熱性を付与するため、ポリイミド及びポリアミド酸を合成する際に、末端封止剤としてジカルボン酸無水物又はモノアミンを含めてもよい。ポリイミド及びポリアミド酸の末端をジカルボン酸無水物又はモノアミンで封止することで、一般式(2)又は一般式(3)で表される構造を有するポリイミド、及び、一般式(5)又は一般式(6)で表される構造を有するポリアミド酸を得ることができる。 Also, in order to impart heat resistance to the specific compound, a dicarboxylic acid anhydride or a monoamine may be included as a terminal blocking agent when synthesizing polyimide and polyamic acid. Polyimide having a structure represented by the general formula (2) or the general formula (3), and the general formula (5) or the general formula by sealing the ends of the polyimide and the polyamic acid with a dicarboxylic acid anhydride or a monoamine. A polyamic acid having a structure represented by (6) can be obtained.
 ジカルボン酸無水物としては、具体的には例えば、フタル酸無水物、2,3-ベンゾフェノンジカルボン酸無水物、3,4-ベンゾフェノンジカルボン酸無水物、2,3-ジカルボキシフェニルフェニルエーテル無水物、3,4-ジカルボキシフェニルフェニルエーテル無水物、2,3-ビフェニルジカルボン酸無水物、3,4-ビフェニルジカルボン酸無水物、2,3-ジカルボキシフェニルフェニルスルホン無水物、3,4-ジカルボキシフェニルフェニルスルホン無水物、2,3-ジカルボキシフェニルフェニルスルフィド無水物、3,4-ジカルボキシフェニルフェニルスルフィド無水物、1,2-ナフタレンジカルボン酸無水物、2,3-ナフタレンジカルボン酸無水物、1,8-ナフタレンジカルボン酸無水物、1,2-アントラセンジカルボン酸無水物、2,3-アントラセンジカルボン酸無水物,1,9-アントラセンジカルボン酸無水物が挙げられる。これらのジカルボン酸無水物は、アミン化合物又はテトラカルボン酸二無水物と反応性を有しない基で置換されていても差し支えない。これらは単独又は2種以上混合して用いることができる。これらの芳香族ジカルボン酸無水物の中で、好ましくはフタル酸無水物が使用される。 Specific examples of dicarboxylic acid anhydrides include phthalic acid anhydride, 2,3-benzophenone dicarboxylic acid anhydride, 3,4-benzophenone dicarboxylic acid anhydride, 2,3-dicarboxyphenyl phenyl ether anhydride, 3,4-dicarboxyphenyl phenyl ether anhydride, 2,3-biphenyl dicarboxylic acid anhydride, 3,4-biphenyl dicarboxylic acid anhydride, 2,3-dicarboxyphenyl phenyl sulfone anhydride, 3,4-dicarboxy Phenylphenyl sulfone anhydride, 2,3-dicarboxyphenyl phenyl sulfide anhydride, 3,4-dicarboxyphenyl phenyl sulfide anhydride, 1,2-naphthalenedicarboxylic acid anhydride, 2,3-naphthalenedicarboxylic acid anhydride, 1,8-naphthalenedicarboxylic anhydride, 1,2-anne Spiral dicarboxylic acid anhydride, 2,3-anthracene dicarboxylic acid anhydride, 1,9-anthracene dicarboxylic acid anhydride. These dicarboxylic acid anhydrides may be substituted with groups that are not reactive with amine compounds or tetracarboxylic dianhydrides. These can be used alone or in admixture of two or more. Of these aromatic dicarboxylic anhydrides, phthalic anhydride is preferably used.
 モノアミンとしては、具体的には例えば次のようなものが挙げられる。アニリン、o-トルイジン、m-トルイジン、p-トルイジン、2,3-キシリジン、2,6-キシリジン、3,4-キシリジン、3,5-キシリジン、o-クロロアニリン、m-クロロアニリン、p-クロロアニリン、o-ブロモアニリン、m-ブロモアニリン、p-ブロモアニリン、o-ニトロアニリン、p-ニトロアニリン、m-ニトロアニリン、o-アミノフェノール、p-アミノフェノール、m-アミノフェノール,o-アニシジン、m-アニシジン、p-アニシジン,o-フェネチジン、m-フェネチジン、p-フェネチジン、o-アミノベンズアルデヒド、p-アミノベンズアルデヒド、m-アミノベンズアルデヒド、o-アミノベンズニトリル、p-アミノベンズニトリル、m-アミノベンズニトリル,2-アミノビフェニル,3-アミノビフェニル、4-アミノビフェニル、2-アミノフェニルフェニルエーテル、3-アミノフェニルフェニルエーテル,4-アミノフェニルフェニルエーテル、2-アミノベンゾフェノン、3-アミノベンゾフェノン、4-アミノベンゾフェノン、2-アミノフェニルフェニルスルフィド、3-アミノフェニルフェニルスルフィド、4-アミノフェニルフェニルスルフィド、2-アミノフェニルフェニルスルホン、3-アミノフェニルフェニルスルホン、4-アミノフェニルフェニルスルホン、α-ナフチルアミン、β-ナフチルアミン,1-アミノ-2-ナフトール、5-アミノ-1-ナフトール、2-アミノ-1-ナフトール,4-アミノ-1-ナフロール、5-アミノ-2-ナフトール、7-アミノ-2-ナフトール、8-アミノ-1-ナフトール、8-アミノ-2-ナフトール、1-アミノアントラセン、2-アミノアントラセン、9-アミノアントラセン等。通常、これらの芳香族モノアミンの中で、好ましくはアニリンの誘導体が使用される。これらは単独で又は2種以上混合して用いることができる。 Specific examples of monoamines include the following. Aniline, o-toluidine, m-toluidine, p-toluidine, 2,3-xylidine, 2,6-xylidine, 3,4-xylidine, 3,5-xylidine, o-chloroaniline, m-chloroaniline, p- Chloroaniline, o-bromoaniline, m-bromoaniline, p-bromoaniline, o-nitroaniline, p-nitroaniline, m-nitroaniline, o-aminophenol, p-aminophenol, m-aminophenol, o- Anisidine, m-anisidine, p-anisidine, o-phenetidine, m-phenetidine, p-phenetidine, o-aminobenzaldehyde, p-aminobenzaldehyde, m-aminobenzaldehyde, o-aminobenzonitrile, p-aminobenzonitrile, m -Aminobenzonitrile, 2-aminobiphenyl , 3-aminobiphenyl, 4-aminobiphenyl, 2-aminophenylphenyl ether, 3-aminophenylphenyl ether, 4-aminophenylphenyl ether, 2-aminobenzophenone, 3-aminobenzophenone, 4-aminobenzophenone, 2-amino Phenyl phenyl sulfide, 3-aminophenyl phenyl sulfide, 4-aminophenyl phenyl sulfide, 2-aminophenyl phenyl sulfone, 3-aminophenyl phenyl sulfone, 4-aminophenyl phenyl sulfone, α-naphthylamine, β-naphthylamine, 1-amino -2-naphthol, 5-amino-1-naphthol, 2-amino-1-naphthol, 4-amino-1-naphthol, 5-amino-2-naphthol, 7-amino-2-naphthol, 8- Mino-1-naphthol, 8-amino-2-naphthol, 1-aminoanthracene, 2-aminoanthracene, 9-aminoanthracene and the like. Usually, among these aromatic monoamines, derivatives of aniline are preferably used. These can be used alone or in admixture of two or more.
 これらモノアミン及び/又はジカルボン酸無水物は、単独又は2種以上混合して用いてもよい。これら末端封止剤の使用量としては、ジアミンとテトラカルボン酸二無水物の使用モル数の差の1~数倍のモノアミン(過剰成分がテトラカルボン酸二無水物)、あるいはジカルボン酸無水物(過剰成分がジアミン)であれば良いが、少なくとも一方の成分の0.01モル倍程度利用するのが一般的である。 These monoamines and / or dicarboxylic anhydrides may be used alone or in combination of two or more. The amount of these end-capping agents used is a monoamine (excess component is tetracarboxylic dianhydride) or dicarboxylic anhydride (excess component is 1 to several times the difference in the number of moles of diamine and tetracarboxylic dianhydride used). The excess component may be a diamine), but it is generally used at least about 0.01 mole times that of one component.
 上記の中でも、ポリイミド及びポリイミド前駆体は、ベンゼン環2個がケトン結合で結合した構造を有するジアミンと、ベンゼン環3個がエーテルで結合した構造を有するジアミンとを用いて合成することで、特定化合物の特性、すなわち、23℃以上300℃以下における最低粘度が10Pa・s以上10Pa・s以下を発現し易くなる。
 また、ポリイミド及びポリイミド前駆体の合成においては、ベンゼン環2個がケトン結合で結合した構造を有するジアミンと、ベンゼン環3個がエーテルで結合した構造を有するジアミンとは、10/0~6/4(「ベンゼン環3個がエーテルで結合した構造を有するジアミン」/「ベンゼン環2個がケトン結合で結合した構造を有するジアミン」)〔モル比〕で用いることが好ましく、更に好ましくは、8/2~6/4(「ベンゼン環3個がエーテルで結合した構造を有するジアミン」/「ベンゼン環2個がケトン結合で結合した構造を有するジアミン」)〔モル比〕である。
Among the above, the polyimide and the polyimide precursor are identified by synthesizing using a diamine having a structure in which two benzene rings are bonded by a ketone bond and a diamine having a structure in which three benzene rings are bonded by an ether. It becomes easy to express the characteristics of the compound, that is, the minimum viscosity at 23 ° C. or more and 300 ° C. or less of 10 Pa · s to 10 4 Pa · s.
In the synthesis of polyimide and polyimide precursor, a diamine having a structure in which two benzene rings are bonded by a ketone bond and a diamine having a structure in which three benzene rings are bonded by an ether are 10/0 to 6 / 4 (“diamine having a structure in which three benzene rings are bonded by ether” / “diamine having a structure in which two benzene rings are bonded by a ketone bond”) [molar ratio], more preferably 8 / 2 to 6/4 (“diamine having a structure in which three benzene rings are bonded by ether” / “diamine having a structure in which two benzene rings are bonded by a ketone bond”) [molar ratio].
 特に、ベンゼン環2個がケトン結合で結合した構造を有するジアミンを多くしたモル比で合成することにより、熱硬化性ポリイミド及び熱硬化性ポリイミド前駆体の23℃以上300℃以下における最低粘度を大きくすることができ、ベンゼン環3個がエーテルで結合した構造を有するジアミンを多くしたモル比にすることにより、前記粘度を小さくすることができる。 In particular, by synthesizing a diamine having a structure in which two benzene rings are bonded by a ketone bond, the minimum viscosity of the thermosetting polyimide and the thermosetting polyimide precursor at 23 ° C. or more and 300 ° C. or less is increased. The viscosity can be reduced by increasing the molar ratio of the diamine having a structure in which three benzene rings are bonded with ether.
 ベンゼン環2個がケトン結合で結合した構造を有するジアミンとしては、3,3’-ジアミノベンゾフェノンが好ましい。 As the diamine having a structure in which two benzene rings are bonded by a ketone bond, 3,3′-diaminobenzophenone is preferable.
 ベンゼン環3個がエーテルで結合した構造を有するジアミンとしては、1,3-ビス(3-アミノフェノキシ)ベンゼンが好ましい。 As the diamine having a structure in which three benzene rings are bonded with ether, 1,3-bis (3-aminophenoxy) benzene is preferable.
 上記ポリイミド又はポリアミド酸の合成反応は、通常、有機溶剤中で実施する。この反応に用いる有機溶剤としては、ポリイミド及びポリアミド酸を製造するのに問題がなく、しかも生成したポリイミド及びポリアミド酸を溶解できるものであればどのようなものでも利用でき、具体的には、アミド系の溶剤、エーテル系の溶剤、フェノール系の溶剤が例示でき、より具体的には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルメトキシアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-メチルカプロラクタム、1,2-ジメトキシエタン-ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、ビス[2-(2-メトキシエトキシ)エチル]エーテル、テトラヒドロフラン、1,3-ジオキサン、1,4-ジオキサン、ピリジン、ピコリン、ジメチルスルホキシド、ジメチルスルホン、テトラメチル尿素、ヘキサメチルホスホルアミド、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、クレゾール酸、o-クロロフェノール、m-クロロフェノール、p-クロロフェノール、アニソール等が挙げられ、これらは単独又は2種以上混合して使用することもできる。特にアミド系の溶剤が溶液の安定性、作業性としての利用の点から好ましい。 The synthesis reaction of the polyimide or polyamic acid is usually carried out in an organic solvent. Any organic solvent can be used as the organic solvent for this reaction as long as it has no problem in producing polyimide and polyamic acid, and can dissolve the produced polyimide and polyamic acid. Solvent, ether solvent, phenol solvent, and more specifically, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylmethoxy Acetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N-methylcaprolactam, 1,2-dimethoxyethane-bis (2-methoxyethyl) ether, 1,2-bis (2 -Methoxyethoxy) ethane, bis [2- (2-methoxyethoxy) ethyl] ether, tetrahydrofuran 1,3-dioxane, 1,4-dioxane, pyridine, picoline, dimethyl sulfoxide, dimethyl sulfone, tetramethylurea, hexamethylphosphoramide, phenol, o-cresol, m-cresol, p-cresol, cresolic acid, o-Chlorophenol, m-chlorophenol, p-chlorophenol, anisole and the like can be mentioned, and these can be used alone or in admixture of two or more. In particular, an amide-based solvent is preferable from the viewpoints of solution stability and workability.
 合成されたポリイミド又はポリアミド酸は、これらの有機溶剤に溶解させたままで特定接着剤として使用することができる。このような態様で使用する場合、ポリイミドの溶剤としては、クレゾール、N-メチルピロリドンが好ましく、ポリアミド酸の溶剤としてはN-メチルピロリドンが好ましい。なお、これらの有機溶剤は、合成されたポリイミド及びポリアミド酸を溶液として使用する際の溶媒としても使用することができる。 The synthesized polyimide or polyamic acid can be used as a specific adhesive while being dissolved in these organic solvents. When used in this manner, the polyimide solvent is preferably cresol or N-methylpyrrolidone, and the polyamic acid solvent is preferably N-methylpyrrolidone. In addition, these organic solvents can be used also as a solvent at the time of using the synthesized polyimide and polyamic acid as a solution.
 また、ポリイミド及びポリアミド酸を合成するにあたって有機塩基触媒を共存させることも可能である。有機塩基触媒としては、ピリジン、α-ピコリン、β-ピコリン、γ-ピコリン、キノリン、イソキノリン、トリエチルアミン等の第3級アミン類が用いられるが、特に好ましくはピリジン及びγ-ピコリンである。これら触媒の使用量としては、テトラカルボン酸二無水物の総量1モルに対し、0.001モル~0.50モルである。特に好ましくは0.01モル~0.1モルである。 It is also possible to coexist an organic base catalyst in synthesizing polyimide and polyamic acid. As the organic base catalyst, tertiary amines such as pyridine, α-picoline, β-picoline, γ-picoline, quinoline, isoquinoline and triethylamine are used, and pyridine and γ-picoline are particularly preferable. The amount of these catalysts used is 0.001 mol to 0.50 mol with respect to 1 mol of the total amount of tetracarboxylic dianhydride. Particularly preferred is 0.01 mol to 0.1 mol.
 ポリアミド酸を合成する際の反応温度は、-20~60℃、好ましくは0~40℃である。反応時間は、使用するテトラカルボン酸二無水物の種類、溶剤の種類及び反応温度等により異なるが、目安としては1~48時間であり、通常数時間から十数時間である。本願においては、この様な方法により得られたポリアミド酸を含有する有機溶剤溶液を、ポリアミド酸を含む特定接着剤溶液と呼ぶ。ポリアミド酸は、ポリイミドの前駆体であるため、このようにして得られたポリアミド酸を、ついで150℃~400℃に加熱脱水してイミド化することにより特定接着剤として用いる。 The reaction temperature when synthesizing the polyamic acid is −20 to 60 ° C., preferably 0 to 40 ° C. The reaction time varies depending on the type of tetracarboxylic dianhydride used, the type of solvent, the reaction temperature, and the like, but as a guideline it is 1 to 48 hours, usually several hours to several tens of hours. In the present application, the organic solvent solution containing the polyamic acid obtained by such a method is referred to as a specific adhesive solution containing the polyamic acid. Since the polyamic acid is a polyimide precursor, the polyamic acid thus obtained is then used as a specific adhesive by dehydration by heating to 150 ° C. to 400 ° C.
 また、ポリイミドを合成する際の反応温度は、100℃以上、好ましくは150℃~300℃であり、反応によって生じる水を抜き出しながら行うのが一般的である。イミド化に先立ち、その前駆体であるポリアミド酸を100℃以下の低温でまず合成し、ついで温度を100℃以上に上げてイミド化することも可能であるが、単にテトラカルボン酸二無水物とジアミンと、を混合した後、有機塩基存在下、すぐに100℃以上に昇温することでイミド化することもできる。反応時間は、使用するテトラカルボン酸二無水物の種類、溶剤の種類、有機塩基触媒の種類と量及び反応温度等により異なるが、目安としては、留出する水がほぼ理論量に達する(通常は、全てが回収されることとはならないため、70%~90%の回収率である。)まで反応することであり、通常数時間から10時間程度である。 Further, the reaction temperature at the time of synthesizing the polyimide is 100 ° C. or higher, preferably 150 ° C. to 300 ° C., and it is generally performed while extracting water generated by the reaction. Prior to imidization, it is possible to first synthesize the precursor polyamic acid at a low temperature of 100 ° C. or lower, and then raise the temperature to 100 ° C. or higher to imidize, but simply with tetracarboxylic dianhydride and After mixing with diamine, imidation can also be performed by immediately raising the temperature to 100 ° C. or higher in the presence of an organic base. The reaction time varies depending on the type of tetracarboxylic dianhydride used, the type of solvent, the type and amount of the organic base catalyst, the reaction temperature, etc., but as a guideline, the distilled water reaches almost the theoretical amount (usually Is a recovery rate of 70% to 90% because not all is recovered, and is usually about several hours to 10 hours.
 この場合、イミド化反応によって生じる水はトルエン等の共沸剤を反応系に加えて、共沸により水を除去する方法が一般的で有効である。又は、まず前駆体であるポリアミド酸を合成した後、無水酢酸などのイミド化剤を用いて化学的にイミド化を行うことも可能である。本願においては、この様な方法により得られたポリイミドを含有する有機溶剤溶液を、ポリイミドを含有する特定接着剤溶液と呼ぶ。ポリイミドを含有する特定接着剤溶液は保存安定性が良好で、しかも被着体の接着面に塗布してから加熱乾燥した後、溶融状態の熱可塑性樹脂を射出成形等により接触することで充分な接着剥離強度が得られる。ここで乾燥の温度としては、溶媒の沸点によって異なり、特定はできないが、通常、150℃~300℃である。一方、成形は通常250℃~450℃の範囲の温度で実施する。 In this case, the water generated by the imidation reaction is generally effective by adding an azeotropic agent such as toluene to the reaction system and removing the water by azeotropy. Alternatively, it is also possible to first synthesize polyamic acid as a precursor and then chemically imidize it using an imidizing agent such as acetic anhydride. In this application, the organic solvent solution containing the polyimide obtained by such a method is called the specific adhesive solution containing a polyimide. The specific adhesive solution containing polyimide has good storage stability, and after applying to the adhesion surface of the adherend and heating and drying, it is sufficient to contact the molten thermoplastic resin by injection molding or the like. Adhesive peel strength is obtained. Here, the drying temperature varies depending on the boiling point of the solvent and cannot be specified, but is usually 150 ° C. to 300 ° C. On the other hand, the molding is usually carried out at a temperature in the range of 250 ° C to 450 ° C.
 なお、ポリイミドは、有機溶剤に溶解させた溶液としてではなく、公知の方法でフィルムに成形して使用してもよい。 Note that polyimide may be used after being formed into a film by a known method, not as a solution dissolved in an organic solvent.
 また、特定接着剤の接着性を向上させるために、上記成分に加えて、ジアミノシロキサンを特定接着剤に含めてもよい(特開平5-74245、5-98233、5-98234、5-98235、5-98236、5-98237、5-112760号公報等)。ジアミノシロキサンは、上記一般式(1)~一般式(6)(ただし、式中のXは構造(X1-5))で表される。従って、ジアミノシロキサンを併用する場合、ポリイミド及びポリアミド酸は、上記一般式(1)~一般式(6)において、Xが構造(X1-1)~構造(X1-4)のいずれか1つのものを用いる。 In addition to the above components, diaminosiloxane may be included in the specific adhesive in order to improve the adhesiveness of the specific adhesive (Japanese Patent Laid-Open Nos. 5-74245, 5-98233, 5-98234, 5-98235, 5-98236, 5-98237, and 5-112760 publications). The diaminosiloxane is represented by the above general formulas (1) to (6) (wherein X is a structure (X1-5)). Therefore, when diaminosiloxane is used in combination, the polyimide and polyamic acid are those in the general formulas (1) to (6), wherein X is any one of the structures (X1-1) to (X1-4). Is used.
 なお、ジアミノシロキサンは、一般式(1)~一般式(3)で表される構造を有するポリイミド化合物又は一般式(4)~一般式(6)で表される構造を有するポリアミド酸1モルに対して、通常0.10モル以下となる量で使用する。ジアミノシロキサンを0.1モル以下とすれば、特定接着剤が本来有する耐熱性が損なわれることがなく、また特定接着剤溶液が相分離を起こす等の保存安定性上の問題を生じることがない。 The diaminosiloxane is used in 1 mol of a polyimide compound having a structure represented by the general formula (1) to the general formula (3) or a polyamic acid having a structure represented by the general formula (4) to the general formula (6). On the other hand, it is usually used in an amount of 0.10 mol or less. When the diaminosiloxane is 0.1 mol or less, the heat resistance inherent to the specific adhesive is not impaired, and storage stability problems such as phase separation of the specific adhesive solution do not occur. .
 ポリイミドの分子量の指標としては一般的に対数粘度が用いられる。ポリイミドの対数粘度は、p-クロロフェノールとフェノールの混合溶媒(90:10)中、0.5g/dL濃度、35℃において通常0.01dl/g~5.0dl/gであり、好ましくは、0.10dl/g~0.50dl/gである。
 ポリアミド酸の分子量はゲル浸透クロマトグラフィー(GPC)で測定可能であり、ポリアミド酸の質量平均分子量は、通常4,000~30,000であり、好ましくは5,000~15,000である。
In general, logarithmic viscosity is used as an index of the molecular weight of polyimide. The logarithmic viscosity of polyimide is usually 0.01 dl / g to 5.0 dl / g at a concentration of 0.5 g / dl in a mixed solvent of p-chlorophenol and phenol (90:10) at 35 ° C., preferably 0.10 dl / g to 0.50 dl / g.
The molecular weight of the polyamic acid can be measured by gel permeation chromatography (GPC), and the mass average molecular weight of the polyamic acid is usually 4,000 to 30,000, preferably 5,000 to 15,000.
 また、これら特定接着剤は、目的に応じてカップリング剤、無機フィラー等を混合して使用することが可能である。
 カップリング剤は、接着性を向上させるために用いられ、その使用量は特定接着剤中、0.1質量%~5質量%である。0.1質量%以上使用することにより高い接着性が得られる。また、5質量%以下とすることにより耐熱性を維持することが可能になる。使用可能なカップリング剤としてはすでに公知のカップリング剤を使用することができる。具体的には、トリアルコキシシラン化合物、メチルジアルコキシシラン化合物が挙げられる。より具体的にはγ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-アミノエチル-γ-イミノプロピルメチルジメトキシシラン、N-アミノエチル-γ-イミノプロピルトリメトキシシラン、γ-メルカプトロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-メルカプトプピルルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、イソシアナートプロピルメチルジエトキシシラン、γ-イソシアナートプロピルトリエトキシシランなどが挙げられる。
In addition, these specific adhesives can be used by mixing a coupling agent, an inorganic filler and the like according to the purpose.
The coupling agent is used to improve adhesiveness, and the amount used is 0.1% by mass to 5% by mass in the specific adhesive. By using 0.1% by mass or more, high adhesiveness can be obtained. Moreover, it becomes possible to maintain heat resistance by setting it as 5 mass% or less. Already known coupling agents can be used as usable coupling agents. Specific examples include trialkoxysilane compounds and methyl dialkoxysilane compounds. More specifically, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-aminopropyl Methyldimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropyltrimethoxysilane, N-aminoethyl-γ-iminopropylmethyldimethoxysilane, N-aminoethyl-γ-iminopropyl Trimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-aminopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, isocyanate propylmethyldie Toxisilane, γ-isocyanatopropyltriethoxysilane and the like can be mentioned.
 無機フィラーは、溶液の粘性調整、成形体の熱応力低減等を目的として使用することが可能であり、公知の無機化合物の中から選択することができ特に制約は無く、具体的に例えば、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、珪酸ジルコニウム、酸化鉄、酸化チタン、酸化アルミニウム(アルミナ)、酸化亜鉛、二酸化珪素、チタン酸カリウム、カオリン、タルク、アスベスト粉、石英粉、雲母、ガラス繊維等が挙げられる。 The inorganic filler can be used for the purpose of adjusting the viscosity of the solution, reducing the thermal stress of the molded body, etc., and can be selected from known inorganic compounds without any particular restrictions. Calcium, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, aluminum oxide (alumina), zinc oxide, silicon dioxide, potassium titanate, kaolin, talc, asbestos powder, quartz powder, mica And glass fiber.
<熱可塑性樹脂>
 本発明の成形体の製造方法に用いる熱可塑性樹脂はエンジニアリングプラスチックであれば特に制限されず、例えば、汎用エンプラであれば、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレートが挙げられ、スーパーエンプラとしてポリサルホン、ポリレーテルサルホン、ポリフェニレンサルファイド、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリイミド、液晶性ポリマーが挙げられる。中でも、耐熱性が特に高いスーパーエンプラに好適で、更に好ましくは、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、ポリエーテルニトリル(PEN)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリアリレート(PAR)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、熱可塑性ポリイミド(PI)が挙げられ、更に好ましくは、ポリイミドの中で射出成形可能である熱可塑性ポリイミドを用いることがより好ましい。
 さらに、熱可塑性ポリイミドは、下記くり返し単位(A)を有することが好ましい。    
<Thermoplastic resin>
The thermoplastic resin used in the method for producing a molded article of the present invention is not particularly limited as long as it is an engineering plastic. For example, as a general-purpose engineering plastic, polyamide, polyacetal, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, and the like Examples of engineering plastics include polysulfone, polylatesulfone, polyphenylene sulfide, polyarylate, polyamideimide, polyetherimide, polyetheretherketone, polyimide, and liquid crystalline polymer. Among them, it is suitable for super engineering plastics having particularly high heat resistance, and more preferably polyphenylene sulfide (PPS), polyether ether ketone (PEEK), liquid crystal polymer (LCP), polyether nitrile (PEN), polysulfone (PSF), polysulfone. Examples include ether sulfone (PES), polyarylate (PAR), polyamideimide (PAI), polyetherimide (PEI), and thermoplastic polyimide (PI), and more preferably heat that can be injection molded in polyimide. It is more preferable to use a plastic polyimide.
Further, the thermoplastic polyimide preferably has the following repeating unit (A).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 くり返し単位(A)において、Lは、単結合、-SO-、-CO―、-C(CH-、-C(CF-、または-S―であり、R、R、R、およびRは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン化アルコキシ基またはハロゲン原子を表す。またJは、下記部分構造(j-1)~(j-4)からなる群より選ばれるいずれか1つを表す。 In the repeating unit (A), L is a single bond, —SO 2 —, —CO—, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, or —S—, and R 1 , R 2 , R 3 , and R 4 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, a halogenated alkyl group, a halogenated alkoxy group, or a halogen atom. J represents any one selected from the group consisting of the following partial structures (j-1) to (j-4).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 くり返し単位(A)におけるR~Rとして表されるアルキル基としては、メチル、エチル、t-ブチル、シクロヘキシル等が挙げられる。 Examples of the alkyl group represented by R 1 to R 4 in the repeating unit (A) include methyl, ethyl, t-butyl, cyclohexyl and the like.
 くり返し単位(A)におけるR~Rとして表されるアルコキシ基としては、メトキシ、エトキシ等が挙げられる。 Examples of the alkoxy group represented by R 1 to R 4 in the repeating unit (A) include methoxy and ethoxy.
 くり返し単位(A)におけるR~Rとして表されるハロゲン化アルキル基としては、-CF、-C等が挙げられる。 Examples of the halogenated alkyl group represented by R 1 to R 4 in the repeating unit (A) include —CF 3 , —C 2 F 5 and the like.
 くり返し単位(A)におけるR~Rとして表されるハロゲン化アルコキシ基としては、-OCF、-OC等が挙げられる。 Examples of the halogenated alkoxy group represented by R 1 to R 4 in the repeating unit (A) include —OCF 3 and —OC 2 F 5 .
 くり返し単位(A)におけるR~Rとして表されるハロゲン原子としては、フッ素原子、塩素原子等が挙げられる。 Examples of the halogen atom represented by R 1 to R 4 in the repeating unit (A) include a fluorine atom and a chlorine atom.
 くり返し単位(A)は、下記くり返し単位(A-1)で表されることが好ましい。 The repeat unit (A) is preferably represented by the following repeat unit (A-1).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 熱可塑性ポリイミドは、くり返し単位(A-1)と、下記くり返し単位(B)とを有する共重合体であってもよい。 The thermoplastic polyimide may be a copolymer having repeating units (A-1) and the following repeating units (B).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 くり返し単位(A-1)と、くり返し単位(B)とを有する共重合体において、前記mとnは共重合比〔モル%〕を表し、m/n=4~99であることが好ましい。 In the copolymer having repeating units (A-1) and repeating units (B), m and n represent a copolymerization ratio [mol%], and m / n is preferably 4 to 99.
 ここで、くり返し単位(A-1)を有する熱可塑性ポリイミドは、次の方法で得ることができる。すなわちまず4,4’-ビス(3-アミノフェノキシ)ビフェニルと無水ピロメリット酸とを有機溶媒中で重合させてポリアミド酸を得る。
 このポリアミド酸の生成反応は通常、有機溶媒中で実施する。この反応に用いる有機溶媒としては、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルメトキシアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-メチルカプロラクタム、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、ビス{2-(2-メトキシエトキシ)エチル}エーテル、テトラヒドロフラン、1,3-ジオキサン、1,4-ジオキサン、ピリジン、ピコリン、ジメチルスルホキシド、ジメチルスルホン、テトラメチル尿素、ヘキサメチルホスホルアミド、m-クレゾール、P-クロロフェノール、アニソールなどが挙げられる。またこれらの有機溶剤は単独でも或いは2種以上混合して用いても差し支えない。
Here, the thermoplastic polyimide having the repeating unit (A-1) can be obtained by the following method. That is, 4,4′-bis (3-aminophenoxy) biphenyl and pyromellitic anhydride are first polymerized in an organic solvent to obtain a polyamic acid.
This polyamic acid production reaction is usually carried out in an organic solvent. Examples of the organic solvent used in this reaction include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, N-methyl-2-pyrrolidone, 1,3 -Dimethyl-2-imidazolidinone, N-methylcaprolactam, 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, bis {2- (2- Methoxyethoxy) ethyl} ether, tetrahydrofuran, 1,3-dioxane, 1,4-dioxane, pyridine, picoline, dimethyl sulfoxide, dimethyl sulfone, tetramethylurea, hexamethylphosphoramide, m-cresol, P-chlorophenol, Anisole etc. are mentioned. These organic solvents may be used alone or in combination of two or more.
 反応温度は通常200℃以下、好ましくは50℃以下である。
 反応圧力は特に限定されず、常圧で十分実施できる。
 反応時間は溶剤の種類および反応温度により異なり、通常、下記くり返し単位(a-1)を有するポリアミド酸の生成が完了するに十分な時間反応させる。通常4~24時間で十分である。このような反応により、くり返し単位(a-1)からなるポリアミド酸が得られる。
The reaction temperature is usually 200 ° C. or lower, preferably 50 ° C. or lower.
The reaction pressure is not particularly limited, and can be sufficiently carried out at normal pressure.
The reaction time varies depending on the type of solvent and the reaction temperature, and the reaction is usually carried out for a time sufficient to complete the production of the polyamic acid having the repeating unit (a-1) below. Usually 4 to 24 hours is sufficient. By such a reaction, a polyamic acid composed of repeating units (a-1) is obtained.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 ポリイミドの前駆体であるポリアミド酸の対数粘度は0.1~4.0dl/gであることが好ましく、より好ましくは0.3~2.5dl/gである。
 さらに得られたポリアミド酸を100℃~400℃に加熱してイミド化するか、または無水酢酸などのイミド化剤を用いて化学イミド化することにより下記くり返し単位(A-1)からなる対応するポリイミドが得られる。
The logarithmic viscosity of the polyamic acid which is the polyimide precursor is preferably 0.1 to 4.0 dl / g, more preferably 0.3 to 2.5 dl / g.
Further, the resulting polyamic acid is heated to 100 ° C. to 400 ° C. for imidization, or chemically imidized using an imidizing agent such as acetic anhydride, thereby corresponding to the following repeating unit (A-1). A polyimide is obtained.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 また、4,4’-ビス(3-アミノフェノキシ)ビフェニルと無水ピロメリット酸とを有機溶媒中に懸濁または溶解させた後加熱し、ポリイミドの前駆体であるポリアミド酸の生成と脱水イミド化とを同時に行なうことにより、くり返し単位(A-1)からなるポリイミドを得ることも可能である。すなわち、従来公知の手法を用いてフィルム状もしくは粉体状のくり返し単位(A-1)からなるポリイミドを得ることができる。 Further, 4,4′-bis (3-aminophenoxy) biphenyl and pyromellitic anhydride are suspended or dissolved in an organic solvent and then heated to produce polyamic acid which is a polyimide precursor and dehydration imidization. It is also possible to obtain a polyimide composed of repeating units (A-1) by simultaneously performing the above. That is, a polyimide composed of repeating units (A-1) in the form of a film or powder can be obtained using a conventionally known method.
 熱可塑性ポリイミドとして、下記くり返し単位(C)を有する熱可塑性ポリイミドも好適に用い得る。 As the thermoplastic polyimide, a thermoplastic polyimide having the following repeating unit (C) can also be suitably used.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 熱可塑性樹脂の重量平均分子量は、射出成形において、熱可塑性樹脂を射出し易い粘度とする観点から、選ぶ必要がある。 It is necessary to select the weight average molecular weight of the thermoplastic resin from the viewpoint of making the thermoplastic resin easy to be injected in the injection molding.
 熱可塑性樹脂は、市販品を用いてもよく、例えば、繰り返し単位(A-1)を有する熱可塑性樹脂である熱可塑性ポリイミド三井化学社製オーラムが挙げられ、更に、この熱可塑性ポリイミドをベースに無機フィラー、有機フィラー、各種充填を配合しコンパウンドした材料も本目的に供する。無機フィラーとしては、タルク、粘土、モンモロナイト、鉱物系の物例えば炭素繊維を配合したJCN3030などが挙げられる。
 本発明においては、これらの熱可塑性ポリイミド樹脂の原料となるエーテルジアミンやテトラカルボン酸二無水物は、一種または複数種を組み合わせて用いることができ、本発明の目的を損なわない限度において、他の共重合成分を含むことができる。また、異なるモノマーから得られた複数のポリイミド樹脂を、本発明の目的を損なわない限度において、任意にポリマーブレンドして用いてもよい。
As the thermoplastic resin, a commercially available product may be used, and examples thereof include thermoplastic polyimide Aurum, which is a thermoplastic resin having a repeating unit (A-1), and further, based on this thermoplastic polyimide. A material obtained by compounding an inorganic filler, an organic filler, and various fillers is also provided for this purpose. Examples of the inorganic filler include talc, clay, montmoronite, mineral-based materials such as JCN3030 blended with carbon fiber.
In the present invention, ether diamine and tetracarboxylic dianhydride as raw materials for these thermoplastic polyimide resins can be used singly or in combination of two or more, as long as the object of the present invention is not impaired. A copolymerization component can be included. In addition, a plurality of polyimide resins obtained from different monomers may be arbitrarily polymer blended as long as the object of the present invention is not impaired.
 本発明の熱可塑性樹脂を含む熱可塑性樹脂組成物としては、UL746Bで定義された長期連続使用温度が150℃以上であることが好ましく、更に好ましくは180℃以上であり、かつASTM D-648法に従って1.82Mpaの条件で測定した熱たわみ温度が200℃以上であることが好ましい。 The thermoplastic resin composition containing the thermoplastic resin of the present invention preferably has a long-term continuous use temperature defined by UL746B of 150 ° C. or higher, more preferably 180 ° C. or higher, and ASTM D-648 method. Accordingly, it is preferable that the thermal deflection temperature measured under the condition of 1.82 MPa is 200 ° C. or higher.
<被着体>
 本発明の成形体の製造方法に用いられる被着体は、特に制限されず、無機材料、及び有機材料を用いることができる。
<Adherent>
The adherend used in the method for producing a molded body of the present invention is not particularly limited, and inorganic materials and organic materials can be used.
 無機材料としては、純金属、合金等の金属、ガラス、セラミックス等の金属酸化物が挙げられる。
 金属及びその合金としては、アルミニウム、マグネシウム、鉄、錫、ニッケル、チタン、ステンレス鋼、銅等が挙げられる。また、それらに、鍍金等の処理を施した物を用いることもできる。性状は特に制限が無く、先にあげた製造方法が適用できればよく、塊状、棒状の物や、箔やフィルム状、線状の物も用いることができる。
Examples of the inorganic material include metals such as pure metals and alloys, and metal oxides such as glass and ceramics.
Examples of the metal and its alloy include aluminum, magnesium, iron, tin, nickel, titanium, stainless steel, and copper. Moreover, the thing which performed processing, such as plating, can also be used for them. The properties are not particularly limited, as long as the above-described production methods can be applied, and lump-shaped, rod-shaped materials, foils, film-shaped materials, and linear materials can also be used.
 有機材料としては、金型温度で変形しないものであれば、用いることができる。例えば、CFRP(炭素繊維強化樹脂;カーボン・ファイバー・リインフォースド・プラスチック)やSMC(シート・モールディング・コンパウンド)、BMC(バルク・モールディング・コンパウンド)等のコンポジット材料が挙げられる。 As the organic material, any material that does not deform at the mold temperature can be used. Examples thereof include composite materials such as CFRP (carbon fiber reinforced resin; carbon fiber reinforced plastic), SMC (sheet molding compound), and BMC (bulk molding compound).
 中でも、無機材料が好ましく、金属がより好ましく、合金が更に好ましい。
 合金としては、アルミ合金、マグネシウム合金、鉄合金等が挙げられ、中でも、軽量化が図られ、且つ、比較的安価に入手することが可能である観点から、アルミニウム合金が好ましい。
 被着体は、被着体表面に接着層を形成する前に公知の洗浄方法、すなわち、エチルアルコール、メチルエチルケトン、ヘキサン、トリクレン等の溶剤を用いて脱脂する等のクリーニングを行って、少なくとも接着層を形成する側の被着体表面を洗浄しておくことが好ましい。
Among these, inorganic materials are preferable, metals are more preferable, and alloys are more preferable.
Examples of the alloy include an aluminum alloy, a magnesium alloy, an iron alloy, and the like. Among these, an aluminum alloy is preferable from the viewpoint of weight reduction and availability at a relatively low cost.
The adherend is subjected to a known cleaning method, i.e., degreasing using a solvent such as ethyl alcohol, methyl ethyl ketone, hexane, or trichrene, before forming the adhesive layer on the surface of the adherend. It is preferable to wash the surface of the adherend on the side where the film is formed.
 成形体
 本発明の成形体の製造方法により製造される成形体は、熱可塑性樹脂と被着体、特に金属との接着性に優れ、高温接着強度が高いので、エネルギー産業機器、電気電子部品、輸送機器部品、構造部品、医療材用などの種々の分野で利用することができる。
本発明の成形体としては、長期連続使用温度が150℃以上であり、かつASTM D-648法に従って1.82Mpaの条件で測定した熱たわみ温度が200℃以上である熱可塑性樹脂組成物(A)と、被着体(B)とが、架橋性基を含み、かつ、23℃以上300℃以下における最低粘度が10Pa・s以上10Pa・s以下であるポリイミド及びポリイミド前駆体の少なくとも一方(C)を含有する接着層を介して接合されている成形体が特に好ましい。
Molded body The molded body produced by the method for producing a molded body of the present invention is excellent in adhesion between a thermoplastic resin and an adherend, particularly a metal, and has high high-temperature adhesive strength. It can be used in various fields such as transportation equipment parts, structural parts, and medical materials.
The molded article of the present invention has a thermoplastic resin composition (A) having a long-term continuous use temperature of 150 ° C. or higher and a thermal deflection temperature of 200 ° C. or higher measured under the condition of 1.82 Mpa according to ASTM D-648 method. ) And the adherend (B) include a crosslinkable group and have a minimum viscosity of 10 Pa · s to 10 4 Pa · s at 23 ° C. to 300 ° C., and at least one of polyimide precursors A molded body joined through an adhesive layer containing (C) is particularly preferred.
 前記熱可塑性樹脂組成物(A)としてはポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、ポリエーテルニトリル(PEN)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリアリレート(PAR)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)及び熱可塑性ポリイミド(PI)から選ばれる少なくとも1種の熱可塑性樹脂を含む組成物を挙げることができる。 Examples of the thermoplastic resin composition (A) include polyphenylene sulfide (PPS), polyether ether ketone (PEEK), liquid crystal polymer (LCP), polyether nitrile (PEN), polysulfone (PSF), and polyether sulfone (PES). And a composition containing at least one thermoplastic resin selected from polyarylate (PAR), polyamideimide (PAI), polyetherimide (PEI), and thermoplastic polyimide (PI).
 前記被着体(B)としては金属またはセラミックスが好ましい。 The adherend (B) is preferably a metal or ceramic.
 前記(C)としては一般式(1)に示す構造を有し、X及びYが芳香族構造を含むポリイミドが好ましい。 The (C) is preferably a polyimide having the structure represented by the general formula (1), wherein X and Y include an aromatic structure.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
前記成形体の好ましい例として絶縁電線、絶縁ワイヤ、絶縁ケーブルまたは絶縁コードを例示することができる。前記絶縁電線等は、鋼線等の導体周上に、前記熱可塑性樹脂組成物(A)からなる層を、前記(C)を含有する接着層を介して押出成形等で被覆することにより製造することができる。導体は単数の金属線でもよく、または複数の金属線を撚り合わせたものでもよい。前記導体は化学的表面処理および物理的表面処理を予めほどこしてもよい。 As a preferable example of the molded body, an insulated wire, an insulated wire, an insulated cable, or an insulated cord can be exemplified. The insulated wire or the like is manufactured by coating a layer made of the thermoplastic resin composition (A) on the circumference of a conductor such as a steel wire by extrusion molding or the like through an adhesive layer containing the (C). can do. The conductor may be a single metal wire or may be a twist of a plurality of metal wires. The conductor may be subjected to chemical surface treatment and physical surface treatment in advance.
 以下、本実施形態を実施例により更に具体的に説明するが、本実施形態はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」、「%」はいずれも質量基準である。 Hereinafter, the present embodiment will be described in more detail with reference to examples. However, the present embodiment is not limited to the following examples as long as the gist of the present embodiment is not exceeded. Unless otherwise specified, “part” and “%” are based on mass.
<接着剤の調製>
-接着剤A2の調製-
 攪拌器、還流冷却器および窒素導入管を備えた容器に対して、1,3-ビス(3,3’-アミノフェノキシ)ベンゼン81.86g〔0.28mol〕、3,3’-ジアミノベンゾフェノン14.86g〔0.07mol〕、3,4、3’,4’-ビフェニルテトラカルボン酸二無水物92.68g〔0.32mol〕、4-フェニルエチニル無水フタル酸17.38g〔0.07mol〕、m-クレゾール593gを装入し、室温で2時間攪拌した。その後、200℃で4時間反応し、さらに、無水フタル酸を5.18g〔0.035mol〕を投入し、さらに2時間反応し、室温まで冷却した。ここにメタノール600g添加後、濾過してポリイミドを得た。このポリイミドは1,3-ビス(3,3’-アミノフェノキシ)ベンゼンと3,3’-ジアミノベンゾフェノンのモル比は8/2からなり、架橋性官能基としてフェニルエチニル基を有する。このポリイミドをNメチルピロリドンで固形分15%に希釈した物を接着剤A2とした。
<Preparation of adhesive>
-Preparation of adhesive A2-
81.86 g [0.28 mol] of 1,3-bis (3,3′-aminophenoxy) benzene, 3,3′-diaminobenzophenone 14 with respect to a vessel equipped with a stirrer, a reflux condenser and a nitrogen inlet tube .86 g [0.07 mol], 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride 92.68 g [0.32 mol], 4-phenylethynyl phthalic anhydride 17.38 g [0.07 mol], 593 g of m-cresol was charged and stirred at room temperature for 2 hours. Then, it reacted at 200 degreeC for 4 hours, Furthermore, 5.18 g [0.035 mol] of phthalic anhydride was thrown in, and also it reacted for 2 hours, and cooled to room temperature. Here, 600 g of methanol was added, followed by filtration to obtain a polyimide. This polyimide has a molar ratio of 1,3-bis (3,3′-aminophenoxy) benzene and 3,3′-diaminobenzophenone of 8/2 and has a phenylethynyl group as a crosslinkable functional group. A product obtained by diluting this polyimide with N-methylpyrrolidone to a solid content of 15% was designated as adhesive A2.
-接着剤A1、及びA3~A5の調製-
 接着剤A2の調製において、1,3-ビス(3,3’-アミノフェノキシ)ベンゼンと3,3’-ジアミノベンゾフェノンのモル比を9/1、7/3、6/4、及び5/5にした以外は、接着剤A2と同様に調製したものを、それぞれ接着剤A1、接着剤A3、接着剤A4、及び接着剤A5として得た。
-Preparation of adhesives A1 and A3-A5-
In the preparation of adhesive A2, the molar ratios of 1,3-bis (3,3′-aminophenoxy) benzene and 3,3′-diaminobenzophenone were 9/1, 7/3, 6/4, and 5/5. Except having been used, what was prepared similarly to adhesive A2 was obtained as adhesive A1, adhesive A3, adhesive A4, and adhesive A5, respectively.
-接着剤M2の調製-
 攪拌器、還流冷却器および窒素導入管を備えた容器に対して、1,3-ビス(3,3’-アミノフェノキシ)ベンゼン81.86g〔0.28mol〕、3,3’-ジアミノベンゾフェノン14.86g〔0.07mol〕、3,4,3’,4’-ビフェニルテトラカルボン酸二無水物92.68g〔0.32mol〕、無水マレイン酸6.87g〔0.07mol〕、m-クレゾール593gを装入し、室温で2時間攪拌した。その後、200℃で4時間反応し、さらに、無水フタル酸を5.18g〔0.035mol〕を投入し、さらに2時間反応し、室温まで冷却した。ここにメタノール600g添加後、濾過してポリイミドを得た。このポリイミドは1,3-ビス(3,3’-アミノフェノキシ)ベンゼンと3,3’-ジアミノベンゾフェノンのモル比は8/2からなり、架橋性官能基としてマレイミド基を有する。このポリイミドをNメチルピロリドンで固形分15%に希釈した物を接着剤M2とした。
-Preparation of adhesive M2-
81.86 g [0.28 mol] of 1,3-bis (3,3′-aminophenoxy) benzene, 3,3′-diaminobenzophenone 14 with respect to a vessel equipped with a stirrer, a reflux condenser and a nitrogen inlet tube .86 g [0.07 mol], 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride 92.68 g [0.32 mol], maleic anhydride 6.87 g [0.07 mol], m-cresol 593 g And stirred at room temperature for 2 hours. Then, it reacted at 200 degreeC for 4 hours, Furthermore, 5.18 g [0.035 mol] of phthalic anhydride was thrown in, and also it reacted for 2 hours, and cooled to room temperature. Here, 600 g of methanol was added, followed by filtration to obtain a polyimide. This polyimide has a molar ratio of 1,3-bis (3,3′-aminophenoxy) benzene and 3,3′-diaminobenzophenone of 8/2, and has a maleimide group as a crosslinkable functional group. A product obtained by diluting this polyimide with N-methylpyrrolidone to a solid content of 15% was used as an adhesive M2.
-接着剤E2の調製-
 接着剤M2の調製において無水マレイン酸6.87g〔0.07mol〕を4-エチニルフタル酸12.05g〔0.07mol〕した以外は、同様に調製し、架橋性官能基としてエチニル基を有するポリイミドからなる接着剤E2を得た。
-Preparation of adhesive E2-
A polyimide having an ethynyl group as a crosslinkable functional group was prepared in the same manner except that 6.87 g [0.07 mol] of maleic anhydride was changed to 12.05 g [0.07 mol] of 4-ethynylphthalic acid in the preparation of the adhesive M2. An adhesive E2 was obtained.
-接着剤K2の調製-
 接着剤M2の調製において無水マレイン酸6.87g〔0.07mol〕を5-(3-フェニルプロピノイル)イソベンゾフラン-1,3-ジオン19.34g〔0.07mol〕した以外は、同様に調製し、架橋性官能基としてフェニルプロピノイル基を有するポリイミドからなる接着剤K2を得た。
-Preparation of adhesive K2-
The adhesive M2 was prepared in the same manner except that 6.87 g [0.07 mol] of maleic anhydride was changed to 19.34 g [0.07 mol] of 5- (3-phenylpropinoyl) isobenzofuran-1,3-dione. An adhesive K2 made of polyimide having a phenylpropinoyl group as a crosslinkable functional group was obtained.
-接着剤Sの調製-
 攪拌器、還流冷却器および窒素導入管を備えた容器に対して、1,3-ビス(3,3’-アミノフェノキシ)ベンゼン92.09g〔0.315mol〕、3,4、3’,4’-ビフェニルテトラカルボン酸二無水物102.98g〔0.35mol〕、m-クレゾール593gを装入し、室温で2時間攪拌した。その後、200℃で4時間反応し、120℃まで冷却する。ここに3-アミノプロピルトリメトキシシラン8.27g〔0.035mol〕、1,3-ビス(3,3’-アミノフェノキシ)ベンゼン10.23g〔0.035mol〕を加え200℃で2時間反応させ、さらに、無水フタル酸を10.37g〔0.07mol〕を投入し、さらに2時間反応し、室温まで冷却した。ここにメタノール600g添加後、濾過してポリイミドを得た。このポリイミドは架橋性官能基としてアルコキシシリル基を有する。このポリイミドをNメチルピロリドンで固形分15%に希釈した物を接着剤Sとした。
-Preparation of adhesive S-
1,3-bis (3,3′-aminophenoxy) benzene 92.09 g [0.315 mol], 3,4, 3 ′, 4 against a vessel equipped with a stirrer, reflux condenser and nitrogen inlet tube 102.98 g [0.35 mol] of '-biphenyltetracarboxylic dianhydride and 593 g of m-cresol were charged and stirred at room temperature for 2 hours. Then, it reacts at 200 degreeC for 4 hours, and cools to 120 degreeC. To this was added 8.27 g [0.035 mol] of 3-aminopropyltrimethoxysilane and 10.23 g [0.035 mol] of 1,3-bis (3,3′-aminophenoxy) benzene and allowed to react at 200 ° C. for 2 hours. Furthermore, 10.37 g [0.07 mol] of phthalic anhydride was added, and the reaction was further continued for 2 hours, followed by cooling to room temperature. Here, 600 g of methanol was added, followed by filtration to obtain a polyimide. This polyimide has an alkoxysilyl group as a crosslinkable functional group. An adhesive S was obtained by diluting this polyimide with N-methylpyrrolidone to a solid content of 15%.
-接着剤N4の調製-
 攪拌器、還流冷却器および窒素導入管を備えた容器に対して、1,3-ビス(3,3’-アミノフェノキシ)ベンゼン61.39g〔0.21mol〕、3,3’-ジアミノベンゾフェノン29.72g〔0.14mol〕、3,4,3’,4’-ビフェニルテトラカルボン酸二無水物94.74g〔0.32mol〕、無水フタル酸を8.29g〔0.056mol〕、m-クレゾール593gを装入し、室温で2時間攪拌した。その後、200℃で4時間反応し、さらに、無水フタル酸を4.15g〔0.028mol〕を投入し、さらに2時間反応し、室温まで冷却した。ここにメタノール600g添加後、濾過してポリイミドを得た。このポリイミドは1,3-ビス(3,3‘-アミノフェノキシ)ベンゼンと3,3’-ジアミノベンゾフェノンのモル比は6/4であり、架橋性官能基を有しない。このポリイミドをNメチルピロリドンで固形分15%に希釈した物を接着剤N4とした。
-Preparation of adhesive N4-
61.39 g (0.21 mol) of 1,3-bis (3,3′-aminophenoxy) benzene, 3,3′-diaminobenzophenone 29 against a vessel equipped with a stirrer, reflux condenser and nitrogen inlet tube .72 g [0.14 mol], 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride 94.74 g [0.32 mol], phthalic anhydride 8.29 g [0.056 mol], m-cresol 593 g was charged and stirred at room temperature for 2 hours. Thereafter, the reaction was carried out at 200 ° C. for 4 hours. Further, 4.15 g [0.028 mol] of phthalic anhydride was added, the reaction was further conducted for 2 hours, and the mixture was cooled to room temperature. Here, 600 g of methanol was added, followed by filtration to obtain a polyimide. This polyimide has a molar ratio of 1,3-bis (3,3′-aminophenoxy) benzene and 3,3′-diaminobenzophenone of 6/4 and has no crosslinkable functional group. A product obtained by diluting this polyimide with N-methylpyrrolidone to a solid content of 15% was used as an adhesive N4.
 接着剤A1~接着剤A5、接着剤S、接着剤M2、接着剤E2、接着剤N4及び接着剤K2の配合成分の一部を下記表1に示す。 Table 1 below shows some of the blended components of adhesives A1 to A5, adhesive S, adhesive M2, adhesive E2, adhesive N4, and adhesive K2.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
<接着剤の物性測定>
-接着剤の溶融粘度の測定-
 調製した接着剤にメタノールを添加し、ろ過して得られたポリイミド0.3gを用いて、直径20mm×厚さ1mmのペレットを成形した。得られたペレットを、Haake社製ReoStress-RS600を用いて、測定周波数0.46Hzで、23から400℃まで昇温速度5℃/minで昇温し、23℃以上300℃以下の範囲における最低溶融粘度〔Pa・s〕を求め、表2に示した。
<Measurement of physical properties of adhesive>
-Measurement of adhesive melt viscosity-
Methanol was added to the prepared adhesive, and pellets having a diameter of 20 mm and a thickness of 1 mm were formed using 0.3 g of polyimide obtained by filtration. The obtained pellet was heated at a measuring frequency of 0.46 Hz from 23 to 400 ° C. at a heating rate of 5 ° C./min using Haake's Reo Stress-RS600, and the lowest in the range of 23 ° C. to 300 ° C. The melt viscosity [Pa · s] was determined and shown in Table 2.
-接着剤のガラス転移温度(Tg)の測定-
 調製した接着剤を、平均乾燥膜厚が30μmになるように、アルミニウム合金の金属片に塗布し、接着層を形成した。その後、該金属片を200℃で2時間加熱し、更に、340℃で2時間加熱して、金属片表面に固化した接着層が形成されたTg測定用の試験片を得た。得られた試験片を用いて示差熱走査熱量計(SII製DSC6200)を用いて、相転移にかかる吸熱ピークから接着剤のTgを測定し、表2に示した。
-Measurement of glass transition temperature (Tg) of adhesive-
The prepared adhesive was applied to a metal piece of an aluminum alloy so that the average dry film thickness was 30 μm to form an adhesive layer. Thereafter, the metal piece was heated at 200 ° C. for 2 hours and further heated at 340 ° C. for 2 hours to obtain a test piece for Tg measurement in which a solidified adhesive layer was formed on the surface of the metal piece. Using the obtained test piece, the differential thermal scanning calorimeter (DSC6200, manufactured by SII) was used to measure the Tg of the adhesive from the endothermic peak related to the phase transition.
<被着体>
 被着体として、アルミニウム合金A5052材を用いた。図7A及び図7Bに、前記被着体52(アルミニウム合金A5052材)の形状を示す(図7Aは被着体52の上面図を示し、図7Bは被着体52の側面図を示す)。被着体52は、長さ63.5mm、幅12.3mm、厚み3mmの平板である。被着体52の一端から12mmまでの面は厚みが、被着体52の厚み(3mm)の半分(1.5mm)であり、他端から10mmの位置に直径5mmの孔が空いている。なお、被着体52の一端から12mmまでの厚みの薄い面のうち、段差のある側の面58を「接着樹脂塗布面58」と称する。
<Adherent>
As the adherend, an aluminum alloy A5052 material was used. 7A and 7B show the shape of the adherend 52 (aluminum alloy A5052 material) (FIG. 7A shows a top view of the adherend 52 and FIG. 7B shows a side view of the adherend 52). The adherend 52 is a flat plate having a length of 63.5 mm, a width of 12.3 mm, and a thickness of 3 mm. The surface from one end of the adherend 52 to 12 mm is half the thickness (1.5 mm) of the adherend 52 (3 mm), and a hole having a diameter of 5 mm is formed at a position 10 mm from the other end. Of the thin surfaces from one end of the adherend 52 to 12 mm, the surface 58 having a step is referred to as an “adhesive resin application surface 58”.
<熱可塑性樹脂>
 被着体に接合させるエンジニアリングプラスチックの熱可塑性樹脂として、熱可塑性ポリイミドと炭素繊維から構成される三井化学社製、オーラムJCN3030を(繰返し単位(A-1)、長期連続使用温度=260℃、熱たわみ温度=248℃)用いた。
<Thermoplastic resin>
As an engineering plastic thermoplastic resin to be bonded to the adherend, Aurum JCN3030 (repetition unit (A-1), long-term continuous use temperature = 260 ° C., manufactured by Mitsui Chemicals, Inc. made of thermoplastic polyimide and carbon fiber, heat Deflection temperature = 248 ° C.).
〔実施例1〕
 次のようにして、アルミニウム合金とエンジニアリングプラスチックとを接合した成形体1を製造した。
 なお、図8Aに、実施例および比較例により製造された成形体60の上面図を示し、図8Bに、成形体60の側面図を示した。図8A及び図8Bにおいて、被着体52の接着樹脂塗布面58には、固化後の熱可塑性樹脂層54であるエンジニアリングプラスチックが形成されている。
[Example 1]
A molded body 1 in which an aluminum alloy and an engineering plastic were joined was produced as follows.
In addition, the top view of the molded object 60 manufactured by the Example and the comparative example was shown in FIG. 8A, and the side view of the molded object 60 was shown in FIG. 8B. 8A and 8B, an engineering plastic that is the thermoplastic resin layer 54 after solidification is formed on the adhesive resin application surface 58 of the adherend 52.
 まず、被着体(図7A及び図7Bに示す被着体52)であるアルミニウム合金A5052材を、メチルエチルケトンで洗浄し、脱脂した。ついで、熱可塑性樹脂を接合する被着体の接着樹脂塗布面(図7A及び図7Bに示す接着樹脂塗布面58)に、接着剤A2を平均乾燥膜厚が30μmになるように塗布し、200℃で2時間乾燥して(接合前処理)、接着層を形成した被着体(「試験片」という)を得た。(接着層形成工程)。 First, an aluminum alloy A5052 material, which is an adherend (adherent 52 shown in FIGS. 7A and 7B), was washed with methyl ethyl ketone and degreased. Next, the adhesive A2 is applied to the adhesive resin application surface (adhesive resin application surface 58 shown in FIGS. 7A and 7B) of the adherend to which the thermoplastic resin is bonded so that the average dry film thickness is 30 μm. Drying was carried out at 0 ° C. for 2 hours (pre-bonding treatment) to obtain an adherend (referred to as “test piece”) on which an adhesive layer was formed. (Adhesive layer forming step).
 その後、試験片を射出成形の金型に装着し、型締めをした後に、オーラムJCN3030を充填したシリンダーを用意して、金型温度200℃、射出樹脂温415℃、射出圧力150MPa、射出時間0.6秒の条件の下、オーラムJCN3030を金型内に射出した。その後、保持圧75MPa×5秒、25秒で金型温まで冷却し、型開きし、アルミニウム合金/エンジニアリングプラスチック接着体である成形体1を得た(成形工程)。 Thereafter, the test piece was mounted on an injection mold, and after clamping, a cylinder filled with Aurum JCN3030 was prepared. Mold temperature 200 ° C., injection resin temperature 415 ° C., injection pressure 150 MPa, injection time 0 Aurum JCN3030 was injected into the mold under the condition of .6 seconds. Thereafter, the holding pressure was 75 MPa × 5 seconds, and the mold was cooled to the mold temperature in 25 seconds, and the mold was opened to obtain a molded body 1 that was an aluminum alloy / engineering plastic adhesive (molding step).
〔実施例2~実施例9、及び比較例1~比較例3〕
 成形体1の製造において、接着剤と接合前処理を、表2に示す内容に変更した以外は同様に行った。
[Examples 2 to 9 and Comparative Examples 1 to 3]
In the production of the molded body 1, the same procedure was performed except that the adhesive and pre-bonding treatment were changed to the contents shown in Table 2.
〔比較例2〕
 大成プラス社製NMT(ナノ・モールディング・テクノロジー)処理を施したアルミニウム合金試験片に接着樹脂を塗布しない以外は、実施例と同様にオーラムJCN3030をインサート成型した。
[Comparative Example 2]
Aurum JCN3030 was insert-molded in the same manner as in the example except that the adhesive resin was not applied to an aluminum alloy test piece subjected to NMT (Nano Molding Technology) treatment manufactured by Taisei Plus.
〔比較例3〕
 東亜電化社製TRI処理を施したアルミニウム合金試験片に接着樹脂を塗布しない以外は、実施例と同様にオーラムJCN3030をインサート成型した。
[Comparative Example 3]
Aurum JCN3030 was insert-molded in the same manner as in the example except that the adhesive resin was not applied to the aluminum alloy test piece subjected to TRI treatment manufactured by Toa Denka Co., Ltd.
〔実施例10〕
 実施例1において射出成形用樹脂としてPEEK(450CA30 Victrex社製、長期連続使用温度=220℃、熱たわみ温度=315℃)を用い、金型温度190℃、射出樹脂温395℃、射出圧力150MPa、射出時間0.6秒の条件の下、PEEKを金型内に射出した。その後、保持圧75MPa×5秒、25秒で金型温まで冷却し、型開きし、アルミニウム合金/エンジニアリングプラスチック接着体である成形体10を得た。
Example 10
In Example 1, PEEK (manufactured by 450CA30 Victrex, long-term continuous use temperature = 220 ° C., thermal deflection temperature = 315 ° C.) was used as the resin for injection molding, mold temperature 190 ° C., injection resin temperature 395 ° C., injection pressure 150 MPa, PEEK was injected into the mold under conditions of an injection time of 0.6 seconds. Thereafter, the mold was cooled to a mold temperature in a holding pressure of 75 MPa × 5 seconds for 25 seconds, and the mold was opened to obtain a molded body 10 which was an aluminum alloy / engineering plastic adhesive.
〔実施例11〕
接着剤をK2に変更した以外は、実施例1と同様に行った。
Example 11
The same operation as in Example 1 was performed except that the adhesive was changed to K2.
<評価>
-接着強度の測定-
 得られたアルミニウム合金/エンジニアリングプラスチック成形体を東洋精機製測定機(ストログラフ)にて引張試験を行った。測定条件は2000kg用ロードセルを用いて試験片の両端をチャック間107mmで支持し、速度2mm/min、常態接着強度として温度23℃及び高温接着強度として温度150℃(余熱10分)で行い、結果を表2にまとめた。
<Evaluation>
-Measurement of adhesive strength-
The obtained aluminum alloy / engineering plastic molding was subjected to a tensile test using a measuring machine (Strograph) manufactured by Toyo Seiki. Measurement conditions were as follows. Both ends of the test piece were supported at 107 mm between chucks using a load cell for 2000 kg, the speed was 2 mm / min, the normal adhesive strength was 23 ° C., and the high temperature adhesive strength was 150 ° C. (remaining heat 10 minutes). Are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表2中、「架橋性基」とは、各接着剤に含まれるポリイミドが有する官能性官能基である。「最低粘度」とは、各接着剤固化物の23℃以上300℃以下の範囲における最低溶融粘度〔Pa・s〕であり、「Tg」は、各接着剤固化物のガラス転移温度〔℃〕である。「前処理」とは、接着剤を被着体の接着面に塗布乾燥した条件(接合前処理の条件)であり、例えば、「200℃×2時間」は、200℃で2時間乾燥したことを意味する。「接着強度評価」欄における「常態」は、23℃における成形体の接着強度〔kgf〕を表し、「高温」は、150℃における成形体の接着強度〔kgf〕を表す。 In Table 2, “crosslinkable group” is a functional functional group possessed by the polyimide contained in each adhesive. The “minimum viscosity” is the minimum melt viscosity [Pa · s] in the range of 23 ° C. or more and 300 ° C. or less of each adhesive solidified product, and “Tg” is the glass transition temperature [° C] of each adhesive solidified product. It is. “Pretreatment” is a condition in which an adhesive is applied and dried on the adhesion surface of the adherend (bonding pretreatment conditions). For example, “200 ° C. × 2 hours” means that the adhesive is dried at 200 ° C. for 2 hours. Means. “Normal” in the “Adhesive strength evaluation” column represents the adhesive strength [kgf] of the molded body at 23 ° C., and “High temperature” represents the adhesive strength [kgf] of the molded body at 150 ° C.
 表2からわかるように、比較例では、アルミニウム合金とエンジニアリングプラスチックとを接合することができなかった。実施例では、アルミニウム合金とエンジニアリングプラスチックとを接合することができ、常態接着強度及び高温接着強度に優れたアルミニウム合金/エンジニアリングプラスチック成形体を得ることができた。
 実施例3と実施例4の成形体においては、接着強度評価において、アルミニウム合金とエンジニアリングプラスチックとの接合状態を維持したまま、樹脂部であるエンジニアリングプラスチックが破断した。
As can be seen from Table 2, in the comparative example, the aluminum alloy and the engineering plastic could not be joined. In the examples, an aluminum alloy and an engineering plastic could be joined, and an aluminum alloy / engineering plastic molded article excellent in normal-state adhesive strength and high-temperature adhesive strength could be obtained.
In the molded bodies of Example 3 and Example 4, in the adhesive strength evaluation, the engineering plastic as the resin part was broken while maintaining the joined state between the aluminum alloy and the engineering plastic.
〔実施例12〕
-押出鋼線被覆-
 図9に示される断面を有する、導体70が接着剤71および熱可塑性樹脂72で被覆されてなる成形体を製造した。本実施例では、導体70として鋼線を使用した。
 0.3mmの鋼線に予め接着剤E2を乾燥膜厚20μmになるように塗工した後、オーラムPL450C(荷重たわみ温度238℃)を押出し成型機を用いて膜厚50μmになるように被覆し、鋼線の回りが接着層を介してオーラムで被覆された鋼線(成形体)を得た。
Example 12
-Extruded steel wire coating-
A molded body having a cross section shown in FIG. 9 and having a conductor 70 covered with an adhesive 71 and a thermoplastic resin 72 was manufactured. In this embodiment, a steel wire is used as the conductor 70.
After applying adhesive E2 to a 0.3 mm steel wire in advance so that the dry film thickness is 20 μm, Aurum PL450C (load deflection temperature 238 ° C.) is coated using an extruder to a film thickness of 50 μm. A steel wire (molded body) was obtained in which the periphery of the steel wire was covered with aurum via an adhesive layer.
 2 被着体
 4 接着層(固化前)
 6 熱可塑性樹脂
 8 空間
10 成形体
14 接着層(固化後)
16 熱可塑性樹脂層(固化後)
20 金型
22 キャビティ
24 キャビティ
30 シリンダー
52 被着体
54 熱可塑性樹脂層(固化後)
58 接着樹脂塗布面
60 成形体
70 導体(鋼線)
71 接着剤
72 熱可塑性樹脂
2 Substrate 4 Adhesive layer (before solidification)
6 Thermoplastic resin 8 Space 10 Molded body 14 Adhesive layer (after solidification)
16 Thermoplastic resin layer (after solidification)
20 Mold 22 Cavity 24 Cavity 30 Cylinder 52 Substrate 54 Thermoplastic resin layer (after solidification)
58 Adhesive resin coated surface 60 Molded body 70 Conductor (steel wire)
71 Adhesive 72 Thermoplastic Resin

Claims (12)

  1.  23℃以上300℃以下における最低粘度が10Pa・s以上10Pa・s以下であるポリイミド及びポリイミド前駆体の少なくとも一方を含有する接着層が被着体表面に形成された被着体の前記接着層上に、加熱溶融した熱可塑性樹脂を接触させ、前記被着体と前記熱可塑性樹脂とを前記接着層を介して接合する成形工程を有する成形体の製造方法。 The adhesion of an adherend in which an adhesive layer containing at least one of a polyimide and a polyimide precursor having a minimum viscosity of 10 Pa · s to 10 4 Pa · s at 23 ° C to 300 ° C is formed on the adherend surface. The manufacturing method of the molded object which has a shaping | molding process which contacts the said adherend and the said thermoplastic resin through the said contact bonding layer by making the thermoplastic resin heat-melted on a layer contact.
  2.  23℃以上300℃以下における最低粘度が10Pa・s以上10Pa・s以下であるポリイミド及びポリイミド前駆体の少なくとも一方を含有する接着層を、被着体表面に形成する接着層形成工程と、前記接着層上に、加熱溶融した熱可塑性樹脂を接触させ、前記被着体と前記熱可塑性樹脂とを前記接着層を介して接合する成形工程を有する請求項1記載の成形体の製造方法。 An adhesive layer forming step of forming an adhesive layer containing at least one of a polyimide and a polyimide precursor having a minimum viscosity of 10 Pa · s or more and 10 4 Pa · s or less at 23 ° C. or more and 300 ° C. or less; The manufacturing method of the molded object of Claim 1 which has the shaping | molding process which contacts the said adherend and the said thermoplastic resin through the said adhesive layer by making the thermoplastic resin heat-melted into contact on the said adhesive layer.
  3.  前記接着層が固化した固化接着層のガラス転移温度が150℃以上である請求項1又は2に記載の成形体の製造方法。 The method for producing a molded body according to claim 1 or 2, wherein the solidified adhesive layer obtained by solidifying the adhesive layer has a glass transition temperature of 150 ° C or higher.
  4.  前記成形工程を、射出成形または押出成形により行なう請求項1~3のいずれか1項に記載の成形体の製造方法。 The method for producing a molded body according to any one of claims 1 to 3, wherein the molding step is performed by injection molding or extrusion molding.
  5.  前記ポリイミド及び前記ポリイミド前駆体の少なくとも一方が、架橋性基を少なくとも1つ含有する請求項1~4のいずれか1項に記載の成形体の製造方法。 The method for producing a molded article according to any one of claims 1 to 4, wherein at least one of the polyimide and the polyimide precursor contains at least one crosslinkable group.
  6.  前記被着体が、金属またはセラミックスである請求項1~5のいずれか1項に記載の成形体の製造方法。   The method for producing a molded body according to any one of claims 1 to 5, wherein the adherend is a metal or a ceramic.
  7.  前記被着体表面に、化学的表面処理および物理的表面処理の少なくとも一方が施されている請求項1~6のいずれか1項に記載の成形体の製造方法。 The method for producing a molded body according to any one of claims 1 to 6, wherein at least one of a chemical surface treatment and a physical surface treatment is applied to the surface of the adherend.
  8.  長期連続使用温度が150℃以上であり、かつASTM D-648法に従って1.82Mpaの条件で測定した熱たわみ温度が200℃以上である熱可塑性樹脂組成物(A)と、被着体(B)とが、架橋性基を含み、かつ、23℃以上300℃以下における最低粘度が10Pa・s以上10Pa・s以下であるポリイミド及びポリイミド前駆体の少なくとも一方(C)を含有する接着層を介して接合されている成形体。 A thermoplastic resin composition (A) having a long-term continuous use temperature of 150 ° C. or higher and a heat deflection temperature measured by 1.82 Mpa according to ASTM D-648 method of 200 ° C. or higher; ) Includes a crosslinkable group and contains at least one of polyimide and a polyimide precursor (C) having a minimum viscosity of 10 Pa · s to 10 4 Pa · s at 23 ° C. to 300 ° C. Formed body joined via.
  9.  熱可塑性樹脂組成物(A)がポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、ポリエーテルニトリル(PEN)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリアリレート(PAR)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)及び熱可塑性ポリイミド(PI)から選ばれる少なくとも1種の熱可塑性樹脂を含む請求項8に記載の成形体。 The thermoplastic resin composition (A) is polyphenylene sulfide (PPS), polyether ether ketone (PEEK), liquid crystal polymer (LCP), polyether nitrile (PEN), polysulfone (PSF), polyether sulfone (PES), poly The molded article according to claim 8, comprising at least one thermoplastic resin selected from arylate (PAR), polyamideimide (PAI), polyetherimide (PEI), and thermoplastic polyimide (PI).
  10.  被着体(B)が金属またはセラミックスである請求項8または9に記載の成形体。 The molded body according to claim 8 or 9, wherein the adherend (B) is a metal or a ceramic.
  11. 前記(C)が一般式(1)に示す構造を有し、X及びYが芳香族構造を含むポリイミドである請求項8~10のいずれか1項に記載の成形体。
    Figure JPOXMLDOC01-appb-C000001
    The molded body according to any one of claims 8 to 10, wherein (C) has a structure represented by the general formula (1), and X and Y are polyimides containing an aromatic structure.
    Figure JPOXMLDOC01-appb-C000001
  12. 前記成形体が絶縁電線、絶縁ワイヤ、絶縁ケーブルまたは絶縁コードであり、前記被着体(B)が導体であり、該導体周上に、前記熱可塑性樹脂組成物(A)からなる層が、前記(C)を含有する接着層を介して被覆されている請求項8~11のいずれか1項に記載の成形体。 The molded body is an insulated wire, an insulated wire, an insulated cable or an insulated cord, the adherend (B) is a conductor, and a layer made of the thermoplastic resin composition (A) is formed on the circumference of the conductor. The molded body according to any one of claims 8 to 11, which is coated with an adhesive layer containing (C).
PCT/JP2010/064024 2009-08-19 2010-08-19 Molded product and production method thereof WO2011021671A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009190390 2009-08-19
JP2009-190390 2009-08-19

Publications (1)

Publication Number Publication Date
WO2011021671A1 true WO2011021671A1 (en) 2011-02-24

Family

ID=43607121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064024 WO2011021671A1 (en) 2009-08-19 2010-08-19 Molded product and production method thereof

Country Status (1)

Country Link
WO (1) WO2011021671A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044731B1 (en) * 2015-05-27 2016-12-14 中西金属工業株式会社 Manufacturing method of insert molded product
EP3135451A1 (en) * 2015-08-31 2017-03-01 Nakanishi Metal Works Co., Ltd. Manufacturing method of a protective cover for a bearing device having a sensor holder part

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889327U (en) * 1982-10-14 1983-06-17 ダイセル化学工業株式会社 Polyamide resin coated anti-corrosion iron wire
JPS5958032A (en) * 1982-09-29 1984-04-03 Dainippon Ink & Chem Inc Bonding for polyphenylene sulfide formed product
JPS63286338A (en) * 1987-05-19 1988-11-24 Toray Ind Inc Molded object connecting metal to resin
JPH04275137A (en) * 1991-03-01 1992-09-30 Bridgestone Corp Synthetic resin product equipped with bearing
JPH11140330A (en) * 1997-11-07 1999-05-25 Jsr Corp Thermoplastic resin composition, resin molding, and composite molded article
JP2000248253A (en) * 1998-12-28 2000-09-12 Mitsui Chemicals Inc Heat resistant adhesive
JP2001323067A (en) * 2000-05-19 2001-11-20 Mitsui Chemicals Inc Cross-linking group-containing polyimide precursor, cross- linking group-containing polyimide, and heat-resistant adhesive
JP2007015604A (en) * 2005-07-08 2007-01-25 Nsk Ltd Reduction gear for electric power steering device, and method for manufacture thereof
JP2008081577A (en) * 2006-09-27 2008-04-10 Toyobo Co Ltd Adhesive sheet, metal-laminated sheet, and printed wiring board
WO2008114642A1 (en) * 2007-03-20 2008-09-25 Kaneka Corporation Film and flexible metal-clad laminate
JP2009012205A (en) * 2007-07-02 2009-01-22 Tosoh Corp Composite and method for manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958032A (en) * 1982-09-29 1984-04-03 Dainippon Ink & Chem Inc Bonding for polyphenylene sulfide formed product
JPS5889327U (en) * 1982-10-14 1983-06-17 ダイセル化学工業株式会社 Polyamide resin coated anti-corrosion iron wire
JPS63286338A (en) * 1987-05-19 1988-11-24 Toray Ind Inc Molded object connecting metal to resin
JPH04275137A (en) * 1991-03-01 1992-09-30 Bridgestone Corp Synthetic resin product equipped with bearing
JPH11140330A (en) * 1997-11-07 1999-05-25 Jsr Corp Thermoplastic resin composition, resin molding, and composite molded article
JP2000248253A (en) * 1998-12-28 2000-09-12 Mitsui Chemicals Inc Heat resistant adhesive
JP2001323067A (en) * 2000-05-19 2001-11-20 Mitsui Chemicals Inc Cross-linking group-containing polyimide precursor, cross- linking group-containing polyimide, and heat-resistant adhesive
JP2007015604A (en) * 2005-07-08 2007-01-25 Nsk Ltd Reduction gear for electric power steering device, and method for manufacture thereof
JP2008081577A (en) * 2006-09-27 2008-04-10 Toyobo Co Ltd Adhesive sheet, metal-laminated sheet, and printed wiring board
WO2008114642A1 (en) * 2007-03-20 2008-09-25 Kaneka Corporation Film and flexible metal-clad laminate
JP2009012205A (en) * 2007-07-02 2009-01-22 Tosoh Corp Composite and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044731B1 (en) * 2015-05-27 2016-12-14 中西金属工業株式会社 Manufacturing method of insert molded product
EP3135451A1 (en) * 2015-08-31 2017-03-01 Nakanishi Metal Works Co., Ltd. Manufacturing method of a protective cover for a bearing device having a sensor holder part

Similar Documents

Publication Publication Date Title
JP7170072B2 (en) Composite bearing with polyimide matrix
TWI387623B (en) Reactive monomer and resin composition including them
TWI652286B (en) Polyimine resin composition and laminated film, and manufacturing method of semiconductor device
KR101950260B1 (en) Resin composition, cured film, laminated film, and method for manufacturing semiconductor device
TW200813128A (en) Thermosetting polyimide resin composition
TWI320053B (en)
TW201006868A (en) Linear precursor of polyimide, linear polyimide and thermal cured material thereof, and processes for producing them
JP5589742B2 (en) Polyamic acid varnish, polyimide varnish, production method thereof, and connection structure
JPWO2008096441A1 (en) Thermosetting resin composition containing compound having carbon-carbon triple bond, low temperature curing method and product thereof
WO2011021671A1 (en) Molded product and production method thereof
JP2943953B2 (en) Heat resistant adhesive
JPH11222522A (en) Polyamic acid copolymer, polyimide copolymer and heat-resistant adhesive
JP2001323067A (en) Cross-linking group-containing polyimide precursor, cross- linking group-containing polyimide, and heat-resistant adhesive
JP4357724B2 (en) Processed and secondary processed products of polyimide coated metal sheet
JPH0525452A (en) Heat-resistant adhesive
JP3356096B2 (en) Polyimide siloxane used as an essential component of adhesives
KR101598667B1 (en) Glass-polymer composite substrate and method for manufacturing same
JPH0423879A (en) Heat-resistant imide adhesive
JP3779334B2 (en) Heat-resistant adhesive, film with heat-resistant adhesive layer, and method for producing thermoplastic resin
JPH11217435A (en) Polyamic acid copolymer, polyimide copolymer, and heat-resistant adhesive
JP2001323062A (en) Cross-linking group-containing polyimide precursor, cross- linking group-containing polyimide, and heat-resistant adhesive
JP2002060488A (en) Method for manufacturing polyamic acid and polyimide, and adhesive tape obtained by using them
JP2001323065A (en) Cross-linking group-containing polyimide precursor, cross- linking group-containing polyimide and heat-resistant adhesive
JP4168562B2 (en) Polyimide board and process for producing the same
JPH047384A (en) Heat-resistant resin adhesive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10810012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10810012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP