WO2011021484A1 - Glass ceramic composition, ceramic green sheet, and multilayered ceramic substrate - Google Patents

Glass ceramic composition, ceramic green sheet, and multilayered ceramic substrate Download PDF

Info

Publication number
WO2011021484A1
WO2011021484A1 PCT/JP2010/062677 JP2010062677W WO2011021484A1 WO 2011021484 A1 WO2011021484 A1 WO 2011021484A1 JP 2010062677 W JP2010062677 W JP 2010062677W WO 2011021484 A1 WO2011021484 A1 WO 2011021484A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ceramic
powder
less
particle diameter
Prior art date
Application number
PCT/JP2010/062677
Other languages
French (fr)
Japanese (ja)
Inventor
秋一 川田
和雄 岸田
裕一 飯田
哲雄 金森
隆裕 高田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2011527622A priority Critical patent/JP5633707B2/en
Publication of WO2011021484A1 publication Critical patent/WO2011021484A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62813Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0266Size distribution
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4664Adding a circuit layer by thick film methods, e.g. printing techniques or by other techniques for making conductive patterns by using pastes, inks or powders
    • H05K3/4667Adding a circuit layer by thick film methods, e.g. printing techniques or by other techniques for making conductive patterns by using pastes, inks or powders characterized by using an inorganic intermediate insulating layer

Definitions

  • the present invention relates to a glass ceramic composition, a ceramic green sheet containing the glass ceramic composition, and a multilayer ceramic substrate formed using the ceramic green sheet, and more particularly for densifying the multilayer ceramic substrate. It is about improvement.
  • Patent Document 1 discloses a glass ceramic composition comprising a mixture of ceramic powder made of alumina having an average particle size of 0.5 to 3 ⁇ m and glass powder made of borosilicate glass having an average particle size of 1 to 5 ⁇ m. Things are disclosed.
  • Patent Document 1 does not disclose a detailed particle size distribution for each of the ceramic powder and the glass powder. Therefore, when the particle size distribution of each of the ceramic powder and the glass powder is not appropriate, the following problems may be encountered.
  • the glass powder 1 has, for example, 90% passing particle diameter D90 or 99% passing particle diameter D99 larger than those of the ceramic powder 2, initially, as shown in FIG.
  • the ceramic powder 2 having a relatively small particle size may surround the relatively coarse glass powder 1 in some cases. Therefore, the enclosed glass powder 1 is sucked into the portion where the ceramic powder 2 is distributed by capillary action after the liquid phase is formed, and the pore 4 is generated in the glass portion 3 as shown in FIG. To do. Therefore, densification of the multilayer ceramic substrate is hindered.
  • the particle size of the ceramic powder is relatively large, the gap formed between the particles of the ceramic powder increases, and the contact between the particles of the ceramic powder and the particles of the glass powder decreases.
  • borosilicate glass has the property that when it becomes a liquid phase and alumina is dissolved therein, the viscosity of the glass is lowered and the fluidity is improved. Therefore, as described above, when the number of contact points between the ceramic powder particles made of alumina and the glass powder particles decreases, it becomes difficult to promote the fluidization of the glass. Therefore, many pores are generated in the multilayer ceramic substrate. As a result, in this case as well, densification of the multilayer ceramic substrate is hindered.
  • the pores as described above cause, for example, unwanted penetration of plating solution or moisture into the multilayer ceramic substrate, causing migration due to this, and lowering the insulation of the multilayer ceramic substrate, This causes problems such as reduced strength.
  • an object of the present invention is to provide a glass ceramic composition, a ceramic green sheet containing the glass ceramic composition, and a multilayer ceramic substrate formed using the ceramic green sheet, which can solve the problems described above. Is to try.
  • the present invention is first directed to a glass ceramic composition
  • a glass ceramic composition comprising a glass powder composed of CaO—SiO 2 —Al 2 O 3 —B 2 O 3 and a ceramic powder composed of Al 2 O 3.
  • each particle size distribution of the glass powder and the ceramic powder is selected as follows.
  • the 50% passing particle diameter D50 of the glass powder is less than 3.5 ⁇ m
  • the 99% passing particle diameter D99 of the glass powder is less than 15 ⁇ m
  • the 50% passing particle diameter D50 of the ceramic powder is less than 1.0 ⁇ m. And smaller than the 50% passing particle diameter D50 of the glass powder.
  • the 50% passing particle size D50 of the glass powder when the 50% passing particle size D50 of the glass powder is 1.0 ⁇ m or more and less than 2.5 ⁇ m, the 50% passing particle size D50 of the ceramic powder is 50% passing particle size of the glass powder. It is preferable that it is 1/2 or less of the diameter D50.
  • the 50% passing particle diameter D50 of the glass powder is 2.5 ⁇ m or more and less than 3.5 ⁇ m
  • the 50% passing particle diameter D50 of the ceramic powder is 1/3 or less of the 50% passing particle diameter D50 of the glass powder. Preferably there is.
  • the glass ceramic composition is obtained by further mixing anodized crystal pulverized powder.
  • the 50% passing particle diameter D50 of the anorthic crystal pulverized powder is 50% passing particle diameter D50 of the glass powder. Preferably it is smaller.
  • the present invention is also directed to a ceramic green sheet containing the glass ceramic composition according to the present invention described above.
  • the present invention is further directed to a multilayer ceramic substrate having a plurality of ceramic layers made of a sintered body of the above-mentioned ceramic green sheet.
  • the glass-ceramic composition according to the present invention first, since the 99% passing particle diameter D99 of the glass powder is less than 15 ⁇ m, the generation of huge pores of, for example, 10 ⁇ m or more can be suppressed.
  • the 50% passing particle diameter D50 of the glass powder is less than 3.5 ⁇ m
  • the 50% passing particle diameter D50 of the ceramic powder is less than 1.0 ⁇ m, which is smaller than the 50% passing particle diameter D50 of the glass powder. Therefore, many contacts are generated between the glass powder and the alumina powder. This is a situation where alumina easily dissolves when the borosilicate glass constituting the glass powder is in a liquid phase. Therefore, alumina dissolves in the glass that has become liquid phase in the firing step, and as a result, the viscosity of the glass decreases and the fluidity improves. Therefore, the rearrangement of the ceramic powder is promoted, and the glass can smoothly fill the gap of the ceramic powder.
  • FIG. 1 the structure of a multilayer ceramic substrate constructed using the glass ceramic composition according to the present invention will be described first.
  • the multilayer ceramic substrate 11 shown in FIG. 1 includes a plurality of laminated ceramic layers 12.
  • the multilayer ceramic substrate 11 is provided with various types of wiring conductors.
  • As the wiring conductor for example, inside the multilayer ceramic substrate 11, several internal conductor films 13 to 17 extending along a specific interface between the ceramic layers 12 and the specific ceramic layer 12 are penetrated in the thickness direction.
  • chip parts 21 to 23 are mounted on the upper surface of the multilayer ceramic substrate 11. In order to electrically connect and mechanically fix these chip components 21 to 23, the above-described external conductor film 19 is used.
  • a capacitor 24 is configured with the conductor film 13
  • a capacitor 25 is configured with the conductor film 14
  • an inductor 26 is configured with the conductor film 15.
  • the conductor film 16 functions as a ground electrode.
  • Such a multilayer ceramic substrate 11 is usually manufactured as follows.
  • a ceramic slurry containing a glass ceramic composition is prepared. More specifically, glass powder and ceramic powder are mixed with a binder and a solvent to prepare a ceramic slurry.
  • the ceramic green sheet which should become the above-mentioned ceramic layer 12 is produced by coating a ceramic slurry on a carrier film by a doctor blade method or the like and forming it into a sheet shape.
  • a through-hole penetrating in the thickness direction is formed in the ceramic green sheet, and a conductive paste mainly composed of silver or copper is filled therein to form the via-hole conductor 18.
  • a conductive paste mainly composed of silver or copper is printed by screen printing or the like to form the inner conductor films 13 to 17 and the outer conductor films 19 and 20.
  • a predetermined number of ceramic green sheets having the desired ones of the conductor films 13 to 17 and 19 and 20 are stacked in a predetermined order and pressed to produce a raw stacked body.
  • the raw laminate After cutting the raw laminate as necessary, it is fired at a temperature of 1050 ° C. or lower, for example, to sinter the ceramic green sheets, the conductor films 13 to 17, 19 and 20, and the via-hole conductor 18 Thus, the multilayer ceramic substrate 11 is obtained.
  • the glass ceramic composition according to the present invention is used as the glass ceramic composition contained in the ceramic slurry prepared in step (1) of the above production method.
  • the glass ceramic composition according to the present invention comprises a mixture of a glass powder made of CaO—SiO 2 —Al 2 O 3 —B 2 O 3 (borosilicate glass) and a ceramic powder made of Al 2 O 3 (alumina). It will be.
  • the mixing ratio of the glass powder and the ceramic powder is preferably 55 to 60% by weight for the glass powder and 40 to 45% by weight for the ceramic powder.
  • each particle size distribution of glass powder and ceramic powder is selected as follows.
  • the 50% passing particle diameter D50 of the glass powder is less than 3.5 ⁇ m, and the 99% passing particle diameter D99 of the glass powder is less than 15 ⁇ m.
  • the 50% passing particle diameter D50 of the ceramic powder is less than 1.0 ⁇ m and smaller than the 50% passing particle diameter D50 of the glass powder.
  • Sintering of the glass-ceramic composition is achieved by the glass becoming liquid phase, the ceramic powder as the filler being rearranged, and the liquid phase glass filling the gaps between the ceramic particles and densifying.
  • the particle size of the ceramic powder when the particle size of the ceramic powder is small, rearrangement tends to occur, and the sintered body of the glass ceramic composition tends to be densified.
  • the viscosity of the glass when alumina constituting the ceramic powder is dissolved into the liquid phase glass, the viscosity of the glass is lowered and the glass powder is likely to spread, which promotes rearrangement of the ceramic powder. Therefore, according to the present invention, as described above, since the particle size of the ceramic powder is reduced such that the 50% passing particle size D50 of the ceramic powder is less than 1.0 ⁇ m, the rearrangement is improved.
  • the densification of the sintered body is promoted by increasing the amount of alumina dissolved in the glass due to the increase in the interface between the ceramic powder and the glass.
  • the pores remaining in the sintered body are relatively generated in the gaps between the ceramic powders, but particularly large pores are considered to be caused by the coarse particles of the glass.
  • the ceramic powder 2 that is relatively fine particles adheres around the coarse glass powder 1 as shown in FIG.
  • the glass powder 1 has a core-shell structure in which the core is the core and the ceramic powder 2 is the shell, the surrounding shell tends to be thicker as the glass powder 1 contains larger coarse particles.
  • the glass powder 1 is absorbed by the capillary action between the surrounding ceramic powders 2 after the glass powder 1 is liquidified, and the glass part 3 constituting the central core is hollowed out. As a result, the pore 4 is left.
  • the multilayer ceramic substrate 11 including a plurality of ceramic layers 12 formed using the glass ceramic composition as described above, if the above-mentioned huge pores exist, the huge pores exist. Since the thickness of the ceramic layer 12 becomes extremely thin only at the location, electric field concentration is caused there, and dielectric breakdown tends to occur.
  • the glass powder is prevented from containing large coarse particles such that the 99% passing particle diameter D99 of the glass powder is less than 15 ⁇ m.
  • the generation of huge pores is suppressed, dielectric breakdown is less likely to occur, and the insulation reliability of the multilayer ceramic substrate can be improved.
  • the feature of the present invention is not limited to the fact that the 50% passing particle diameter D50 of the ceramic powder is less than 1.0 ⁇ m and the 99% passing particle diameter D99 of the glass powder is less than 15 ⁇ m as described above. Absent. If each of the ceramic powder and the glass powder is merely fine, in some cases, the sintered body is hardly densified, and various characteristics of the multilayer ceramic substrate may be deteriorated. The reason is as follows.
  • a crystalline phase such as wollastonite precipitates at a relatively low temperature at the glass-glass interface provided between the glass powders.
  • the crystal phase as described above is likely to precipitate at a relatively low temperature. Therefore, after the glass is softened, the flow of the glass is inhibited by crystallization before a sufficient flow occurs.
  • the ceramic powder 2 is finer than the glass powder 1, more specifically, the 50% passing particle diameter D50 of the ceramic powder 2 is 50% passing particle diameter of the glass powder 1. It is necessary to be smaller than D50.
  • the multilayer ceramic substrate 11 can be densified.
  • the multilayer ceramic substrate 11 is thus densified, it is possible to make it difficult for water or a plating solution to enter the multilayer ceramic substrate 11.
  • water or a plating solution is infiltrated into the multilayer ceramic substrate 11, if the inner conductor films 13 to 17 and the via-hole conductor 18 contain Ag as a conductive component, a short circuit failure due to Ag migration tends to occur.
  • it is possible to make it difficult for water or a plating solution to enter the multilayer ceramic substrate 11 it is difficult for such short-circuit defects to occur, and the reliability of the multilayer ceramic substrate 11 can be improved.
  • the amount of anorthite crystallized at the interface also increases.
  • the dielectric constant of the ceramic layer 12 can be increased.
  • this also contributes to the improvement of the strength of the multilayer ceramic substrate 11.
  • the ceramic powder when the glass powder 50% passing particle diameter D50 is 1.0 ⁇ m or more and less than 2.5 ⁇ m, the ceramic When the 50% passing particle diameter D50 of the powder is set to 1 ⁇ 2 or less of the 50% passing particle diameter D50 of the glass powder, while the 50% passing particle diameter D50 of the glass powder is 2.5 ⁇ m or more and less than 3.5 ⁇ m
  • the ceramic powder preferably has a 50% passing particle diameter D50 of 1/3 or less of the 50% passing particle diameter D50 of the glass powder.
  • the crystallization temperature can be adjusted depending on the content thereof, and the precipitated crystal phase for each production lot can be stabilized.
  • the 50% passing particle diameter D50 of the anosite crystal pulverized powder is smaller than the 50% passing particle diameter D50 of the glass powder.
  • the particle size of the anorthite crystal pulverized powder is larger than the particle size of the glass powder, the reaction between the glass powders is likely to occur, and for example, other crystal phases such as wollastonite are likely to precipitate, thereby inhibiting the flow of the glass. Because it is done.
  • the anorthite pulverized powder is more effective as it is finer, it is necessary to limit the particle size so that the added amount is easy to handle.
  • the passing particle diameter D50 of the anosite crystal pulverized powder is preferably 1 to 2 ⁇ m.
  • the mixing ratio of the anosite crystal pulverized powder is preferably 0.01% by weight to 1.0% by weight based on the total amount of the alumina powder and the glass powder.
  • Ceramic powders A1 to A4 made of alumina and glass powders G1 to G5 each having a particle size distribution as shown in Table 1 were prepared. Glass powders G1 to G5 having a composition containing 59% SiO 2 , 26.5% CaO, 8.7% B 2 O 3 , and 5.7% Al 2 O 3 , respectively, A pulverization step using a dry mill was performed. The glass powders G1 to G4 were obtained through a classification process using a classifier after the pulverization process. A classifier was not used for the glass powder G5.
  • anorsite crystal pulverized powder was prepared by pulverizing the sintered body. Specifically, the anorthite crystal pulverized powder was obtained by pulverizing a multilayer ceramic substrate prepared by firing a ceramic green sheet containing a ceramic composition composed of the ceramic powder and the glass powder.
  • the ceramic powder among the ceramic powders A1 to A4 shown in Table 1, those shown in the column of “Ceramic powder” in Table 2 are used, and for the glass powder, the glass powder G1 shown in Table 1 is used. Among G5, those shown in the column of “Glass Powder” in Table 2 were used. Further, the anosite crystal pulverized powder having a passing particle diameter D50 of 1.1 ⁇ m, a passing particle diameter D90 of 3.7 ⁇ m, and a passing particle diameter D99 of 8.1 ⁇ m was used.
  • PSZ boulder having a diameter of 5 mm, a toluene / alcohol mixed solvent, a dispersant and a plasticizer (DOA) were added to the polypot, followed by a dispersion treatment for 3 hours, and then an organic binder was added, followed by another 3 hours. Then, dispersion treatment was performed to obtain a slurry.
  • DOA plasticizer
  • a green sheet having a thickness of 50 ⁇ m was formed from the obtained slurry by a doctor blade method.
  • a conductor film having a thickness of 10 ⁇ m was formed on the green sheet, and then the green sheets were laminated to produce a green sheet laminate having a thickness of 600 ⁇ m.
  • the green sheet laminate has a thickness of 300 ⁇ m as a result of the subsequent firing step.
  • a capacitor is formed by facing the outer conductor film and the inner conductor film in the surface layer portion.
  • a first composite laminate was obtained by laminating three of the restraining green sheets above and below the green sheet laminate.
  • a green sheet laminate having a thickness of 1200 ⁇ m was produced by laminating the above green sheet, which was molded and did not have a conductor film formed thereon.
  • the green sheet laminate has a thickness of 600 ⁇ m as a result of the subsequent firing step.
  • a second composite laminate was obtained by laminating three of the restraining green sheets on the top and bottom of the green sheet laminate.
  • each of the first and second composite laminates is fired in the air to a temperature of 750 ° C., degreased, and then fired at a temperature of 890 ° C. in an N 2 atmosphere.
  • the constraining layer derived from the constraining green sheet was removed. In this way, the first multilayer ceramic substrate on which the conductor film is formed is obtained from the first composite laminate, and the second multilayer ceramic substrate on which the conductor film is not formed is obtained from the second composite laminate. It was.
  • the “maximum pore diameter” was determined by SEM observation of the first multilayer ceramic substrate.
  • the “bending strength” was obtained by performing a three-point bending test on the second multilayer ceramic substrate.
  • the “density” was obtained by applying the Archimedes method to the second multilayer ceramic substrate.
  • “Initial IR” was obtained by applying a DC voltage of 50 V to the portion constituting the capacitor in the first multilayer ceramic substrate and measuring the resistance value.
  • D50 is 1 for the ceramic powder while using any of the glass powders G1 to G3 that satisfy the condition that D50 is less than 3.5 ⁇ m and D99 is less than 15 ⁇ m.
  • maximum pore diameter is less than 10 ⁇ m
  • “crystallinity” is 1.1 or more
  • “bending strength” is 180 MPa or more
  • “ ⁇ ” is 7 or more
  • “initial IR” is 13 Log or more. I was able to.
  • Samples 8 and 9 since ceramic powder A4 having D50 of 1.0 ⁇ m or more was used, the glass-ceramic interface could not be increased, and “crystallinity”, “bending strength”, “ ⁇ ” and It was inferior in terms of “initial IR”. Samples 8 and 9 were inferior to samples 6 and 7 in terms of “crystallinity” and “bending strength” because ceramic powder A4 having a D50 larger than that of ceramic powder A3 was used. Sample 9 was also inferior to samples 6 and 7 in terms of “initial IR”.
  • the glass powder G2 having a larger particle diameter than the glass powder G1 used in the sample 8 was used, so that the “maximum pore diameter” was larger, and “crystallization” It was inferior in terms of “degree” and “bending strength”.
  • the external conductor film did not peel off because the particle size of the glass powder was larger in the sample 9 than in the sample 8, so that the flowability of the glass was low and the constraining layer This is presumably because the adhesion strength to the sample was not as strong as that of the sample 8.
  • Sample 10 uses ceramic powder A2 that satisfies the condition that D50 is less than 1.0 ⁇ m for the ceramic powder, and further satisfies the condition that D50 of ceramic powder A2 is smaller than D50 of glass powder G4. Since D50 of the glass powder G4 used is 3.5 ⁇ m or more and D99 is 15 ⁇ m or more, the “maximum pore diameter” is very large as 13.2 ⁇ m, and “crystallinity”, “bending strength” ”,“ ⁇ ”, and“ Initial IR ”were all inferior.
  • Sample 11 uses ceramic powder A2 that satisfies the condition that D50 is less than 1.0 ⁇ m for the ceramic powder, and further satisfies the condition that D50 of ceramic powder A2 is smaller than D50 of glass powder G5.
  • D50 of the used glass powder G5 is less than 3.5 ⁇ m, but since this glass powder G5 did not go through the classification step, D99 was 15 ⁇ m or more, and the “maximum pore diameter” was very large as 11.2 ⁇ m. Also, it was inferior in terms of “initial IR”.
  • Samples 1, 2, 6 and 8 use glass powder G1 having a D50 of 1.0 ⁇ m or more and less than 2.5 ⁇ m.
  • the results show good results in terms of “maximum pore diameter”, “crystallinity”, “bending strength” and “ ⁇ ”, Further, in terms of “initial IR”, a better result than that of the sample 6 was shown.
  • Samples 3, 4, 5, 7, 9, and 11 use glass powder G2, G3, or G5 having a D50 of 2.5 ⁇ m or more and less than 3.5 ⁇ m.
  • samples 3, 4, 5, 7, 9, and 11 samples 3, 4, 5 using ceramic powder A1 or A2 that satisfies the condition that D50 of ceramic powder is 1/3 or less of D50 of glass powder.
  • samples 3, 4, 5 show better results in terms of “crystallinity”, “bending strength” and “ ⁇ ” compared to samples 7 and 9 using ceramic powder A3 or A4 that does not satisfy the above conditions. It was.
  • FIG. 3 shows an SEM image obtained by photographing a cross section of the capacitor portion of the first multilayer ceramic substrate according to Sample 1.
  • FIG. 4 shows an SEM image obtained by photographing a cross section of the capacitor portion of the first multilayer ceramic substrate according to the sample 9. Comparing FIG. 3 and FIG. 4, it can be confirmed that according to the sample 1, the denseness is clearly improved as compared with the sample 9.

Abstract

Provided is a highly dense, multilayered ceramic substrate. The glass ceramic composition for forming a ceramic layer of the multilayered ceramic substrate is a mixture of a glass powder (1) comprising CaO-SiO2-Al2O3-B2O3 and a ceramic powder (2) comprising Al2O3. The passing particle size (D50) of 50% of the glass powder (1) contained in the glass ceramic composition is less than 3.5 µm, and the passing particle size (D99) of 99% of the glass powder (1) contained in the glass ceramic composition is less than 15 µm, while the passing particle size (D50) of 50% of the ceramic powder (2) contained in the glass ceramic composition is less than 1.0 µm, and is smaller than the passing particle size (D50) of 50% of the glass powder (1).

Description

ガラスセラミック組成物、セラミックグリーンシートおよび多層セラミック基板Glass ceramic composition, ceramic green sheet and multilayer ceramic substrate
 この発明は、ガラスセラミック組成物、このガラスセラミック組成物を含むセラミックグリーンシート、およびこのセラミックグリーンシートを用いて構成される多層セラミック基板に関するもので、特に、多層セラミック基板の緻密化を図るための改良に関するものである。 The present invention relates to a glass ceramic composition, a ceramic green sheet containing the glass ceramic composition, and a multilayer ceramic substrate formed using the ceramic green sheet, and more particularly for densifying the multilayer ceramic substrate. It is about improvement.
 多層セラミック基板を構成するために用いられるガラスセラミック組成物であって、この発明にとって興味あるものとして、たとえば特開平6-305770号公報(特許文献1)に記載されているものがある。すなわち、特許文献1には、平均粒径が0.5~3μmのアルミナからなるセラミック粉末と、平均粒径が1~5μmのホウケイ酸ガラスからなるガラス粉末とを混合してなる、ガラスセラミック組成物が開示されている。 A glass ceramic composition used for constituting a multilayer ceramic substrate, which is of interest to the present invention, is described in, for example, JP-A-6-305770 (Patent Document 1). That is, Patent Document 1 discloses a glass ceramic composition comprising a mixture of ceramic powder made of alumina having an average particle size of 0.5 to 3 μm and glass powder made of borosilicate glass having an average particle size of 1 to 5 μm. Things are disclosed.
 しかしながら、特許文献1には、セラミック粉末およびガラス粉末の各々に関して、詳細な粒度分布が開示されていない。そのため、セラミック粉末およびガラス粉末の各々の粒度分布が適切でない場合には、以下のような問題に遭遇することがあり得る。 However, Patent Document 1 does not disclose a detailed particle size distribution for each of the ceramic powder and the glass powder. Therefore, when the particle size distribution of each of the ceramic powder and the glass powder is not appropriate, the following problems may be encountered.
 図5を参照して説明すると、ガラス粉末1のたとえば90%通過粒径D90や99%通過粒径D99などがセラミック粉末2のそれらより大きい場合、当初、同図(1)に示すように、粒径の比較的小さいセラミック粉末2が比較的粗粒のガラス粉末1を囲む状態となることがある。そのため、囲まれたガラス粉末1は、液相化の後、毛管現象によりセラミック粉末2が分布している部分に吸われ、同図(2)に示すように、ガラス部3にポア4が発生する。よって、多層セラミック基板の緻密化が阻害される。 Referring to FIG. 5, when the glass powder 1 has, for example, 90% passing particle diameter D90 or 99% passing particle diameter D99 larger than those of the ceramic powder 2, initially, as shown in FIG. The ceramic powder 2 having a relatively small particle size may surround the relatively coarse glass powder 1 in some cases. Therefore, the enclosed glass powder 1 is sucked into the portion where the ceramic powder 2 is distributed by capillary action after the liquid phase is formed, and the pore 4 is generated in the glass portion 3 as shown in FIG. To do. Therefore, densification of the multilayer ceramic substrate is hindered.
 他方、セラミック粉末の粒径が比較的大きいと、セラミック粉末の粒子間にできる間隙が大きくなるとともに、セラミック粉末の粒子とガラス粉末の粒子との接点が少なくなる。ところで、ホウケイ酸ガラスには、これが液相化して、そこにアルミナが溶け込むことで、ガラスの粘度が低下し、流動性が向上するという性質がある。したがって、前述のように、アルミナからなるセラミック粉末の粒子とガラス粉末の粒子との接点が少なくなると、ガラスの流動化が促進されにくくなる。そのために、多層セラミック基板において、ポアが多く発生し、その結果、この場合にも、多層セラミック基板の緻密化が阻害される。 On the other hand, when the particle size of the ceramic powder is relatively large, the gap formed between the particles of the ceramic powder increases, and the contact between the particles of the ceramic powder and the particles of the glass powder decreases. By the way, borosilicate glass has the property that when it becomes a liquid phase and alumina is dissolved therein, the viscosity of the glass is lowered and the fluidity is improved. Therefore, as described above, when the number of contact points between the ceramic powder particles made of alumina and the glass powder particles decreases, it becomes difficult to promote the fluidization of the glass. Therefore, many pores are generated in the multilayer ceramic substrate. As a result, in this case as well, densification of the multilayer ceramic substrate is hindered.
 上述したようなポアは、多層セラミック基板内部へのたとえばめっき液や水分の不所望な浸入などを招き、これに起因したマイグレーションが生じ、多層セラミック基板の絶縁性が低下したり、多層セラミック基板の強度低下をもたらしたりする、といった問題を生じさせる。 The pores as described above cause, for example, unwanted penetration of plating solution or moisture into the multilayer ceramic substrate, causing migration due to this, and lowering the insulation of the multilayer ceramic substrate, This causes problems such as reduced strength.
特開平6-305770号公報JP-A-6-305770
 そこで、この発明の目的は、上述したような問題を解決し得る、ガラスセラミック組成物、このガラスセラミック組成物を含むセラミックグリーンシート、およびこのセラミックグリーンシートを用いて構成される多層セラミック基板を提供しようとすることである。 Accordingly, an object of the present invention is to provide a glass ceramic composition, a ceramic green sheet containing the glass ceramic composition, and a multilayer ceramic substrate formed using the ceramic green sheet, which can solve the problems described above. Is to try.
 この発明は、CaO-SiO-Al-Bからなるガラス粉末と、Alからなるセラミック粉末とを混合してなる、ガラスセラミック組成物にまず向けられるものであって、上述した技術的課題を解決するため、ガラス粉末およびセラミック粉末の各粒度分布が次のように選ばれることを特徴としている。 The present invention is first directed to a glass ceramic composition comprising a glass powder composed of CaO—SiO 2 —Al 2 O 3 —B 2 O 3 and a ceramic powder composed of Al 2 O 3. In order to solve the technical problem described above, each particle size distribution of the glass powder and the ceramic powder is selected as follows.
 すなわち、ガラス粉末の50%通過粒径D50が3.5μm未満であり、ガラス粉末の99%通過粒径D99が15μm未満であり、セラミック粉末の50%通過粒径D50が1.0μm未満であり、かつガラス粉末の50%通過粒径D50よりも小さい。 That is, the 50% passing particle diameter D50 of the glass powder is less than 3.5 μm, the 99% passing particle diameter D99 of the glass powder is less than 15 μm, and the 50% passing particle diameter D50 of the ceramic powder is less than 1.0 μm. And smaller than the 50% passing particle diameter D50 of the glass powder.
 この発明に係るガラスセラミック組成物において、ガラス粉末の50%通過粒径D50が1.0μm以上かつ2.5μm未満である場合、セラミック粉末の50%通過粒径D50はガラス粉末の50%通過粒径D50の1/2以下であることが好ましい。 In the glass ceramic composition according to the present invention, when the 50% passing particle size D50 of the glass powder is 1.0 μm or more and less than 2.5 μm, the 50% passing particle size D50 of the ceramic powder is 50% passing particle size of the glass powder. It is preferable that it is 1/2 or less of the diameter D50.
 他方、ガラス粉末の50%通過粒径D50が2.5μm以上かつ3.5μm未満である場合、セラミック粉末の50%通過粒径D50はガラス粉末の50%通過粒径D50の1/3以下であることが好ましい。 On the other hand, when the 50% passing particle diameter D50 of the glass powder is 2.5 μm or more and less than 3.5 μm, the 50% passing particle diameter D50 of the ceramic powder is 1/3 or less of the 50% passing particle diameter D50 of the glass powder. Preferably there is.
 また、ガラスセラミック組成物は、さらにアノーサイト結晶粉砕粉を混合してなることが好ましく、この場合、アノーサイト結晶粉砕粉の50%通過粒径D50は、上記ガラス粉末の50%通過粒径D50より小さいことが好ましい。 Moreover, it is preferable that the glass ceramic composition is obtained by further mixing anodized crystal pulverized powder. In this case, the 50% passing particle diameter D50 of the anorthic crystal pulverized powder is 50% passing particle diameter D50 of the glass powder. Preferably it is smaller.
 この発明は、また、上述したこの発明に係るガラスセラミック組成物を含む、セラミックグリーンシートにも向けられる。 The present invention is also directed to a ceramic green sheet containing the glass ceramic composition according to the present invention described above.
 この発明は、さらに、上述のセラミックグリーンシートの焼結体からなる複数のセラミック層を備える、多層セラミック基板にも向けられる。 The present invention is further directed to a multilayer ceramic substrate having a plurality of ceramic layers made of a sintered body of the above-mentioned ceramic green sheet.
 この発明に係るガラスセラミック組成物によれば、まず、ガラス粉末の99%通過粒径D99が15μm未満であるので、たとえば10μm以上といった巨大ポアの発生を抑制することができる。 According to the glass-ceramic composition according to the present invention, first, since the 99% passing particle diameter D99 of the glass powder is less than 15 μm, the generation of huge pores of, for example, 10 μm or more can be suppressed.
 また、ガラス粉末の50%通過粒径D50が3.5μm未満であり、かつセラミック粉末の50%通過粒径D50が1.0μm未満であって、ガラス粉末の50%通過粒径D50よりも小さいので、ガラス粉末とアルミナ粉末との間で多くの接点が生じる。これは、ガラス粉末を構成するホウケイ酸ガラスが液相化したとき、ここにアルミナが溶け込みやすい状況である。そのため、焼成工程において液相化したガラス中にアルミナが溶け込み、その結果、ガラスの粘度が低下し、流動性が向上する。したがって、セラミック粉末の再配列が促進されるとともに、ガラスがセラミック粉末の間隙を順調に埋めることができる。 Further, the 50% passing particle diameter D50 of the glass powder is less than 3.5 μm, and the 50% passing particle diameter D50 of the ceramic powder is less than 1.0 μm, which is smaller than the 50% passing particle diameter D50 of the glass powder. Therefore, many contacts are generated between the glass powder and the alumina powder. This is a situation where alumina easily dissolves when the borosilicate glass constituting the glass powder is in a liquid phase. Therefore, alumina dissolves in the glass that has become liquid phase in the firing step, and as a result, the viscosity of the glass decreases and the fluidity improves. Therefore, the rearrangement of the ceramic powder is promoted, and the glass can smoothly fill the gap of the ceramic powder.
 よって、このようなガラスセラミック組成物を用いれば、ポアの発生が抑制されかつ緻密性の高い多層セラミック基板を得ることができる。 Therefore, by using such a glass ceramic composition, it is possible to obtain a multi-layer ceramic substrate with suppressed pore generation and high density.
この発明に係るガラスセラミック組成物を用いて構成される多層セラミック基板の一例を図解的に示す断面図である。It is sectional drawing which shows typically an example of the multilayer ceramic substrate comprised using the glass-ceramic composition which concerns on this invention. この発明に係るガラスセラミック組成物に含まれるガラス粉末およびセラミック粉末を図解的に示す拡大断面図である。It is an expanded sectional view showing glass powder and ceramic powder contained in a glass ceramic composition concerning this invention schematically. 実験例において作製した、この発明の範囲内の試料1に係る多層セラミック基板の断面を撮影したSEM画像を示す図である。It is a figure which shows the SEM image which image | photographed the cross section of the multilayer ceramic substrate which concerns on the sample 1 produced in the example of experiment within the range of this invention. 実験例において作製した、この発明の範囲外の試料9に係る多層セラミック基板の断面を撮影したSEM画像を示す図である。It is a figure which shows the SEM image which image | photographed the cross section of the multilayer ceramic substrate which concerns on the sample 9 outside the scope of this invention produced in the experiment example. ガラス粉末の粗粒が存在した場合のポア発生の機序を説明するための断面図である。It is sectional drawing for demonstrating the mechanism of the pore generation | occurrence | production when the coarse grain of glass powder exists.
 図1を参照して、まず、この発明に係るガラスセラミック組成物を用いて構成される多層セラミック基板の構造について説明する。 Referring to FIG. 1, the structure of a multilayer ceramic substrate constructed using the glass ceramic composition according to the present invention will be described first.
 図1に示した多層セラミック基板11は、複数の積層されたセラミック層12を備えている。また、多層セラミック基板11には、種々の形態の配線導体が設けられている。配線導体としては、たとえば、多層セラミック基板11の内部において、セラミック層12間の特定の界面に沿って延びるいくつかの内部導体膜13~17と、特定のセラミック層12を厚み方向に貫通するように延びるいくつかのビアホール導体18とがあり、また、多層セラミック基板11の外表面上では、多層セラミック基板11の上面および下面にそれぞれ形成されるいくつかの外部導体膜19および20がある。 The multilayer ceramic substrate 11 shown in FIG. 1 includes a plurality of laminated ceramic layers 12. The multilayer ceramic substrate 11 is provided with various types of wiring conductors. As the wiring conductor, for example, inside the multilayer ceramic substrate 11, several internal conductor films 13 to 17 extending along a specific interface between the ceramic layers 12 and the specific ceramic layer 12 are penetrated in the thickness direction. There are several via-hole conductors 18 extending to the outer surface of the multilayer ceramic substrate 11, and several outer conductor films 19 and 20 formed on the upper and lower surfaces of the multilayer ceramic substrate 11, respectively.
 多層セラミック基板11の上面には、いくつかのチップ部品21~23が搭載される。これらチップ部品21~23の電気的接続および機械的固定のために、上述した外部導体膜19が用いられる。 Several chip parts 21 to 23 are mounted on the upper surface of the multilayer ceramic substrate 11. In order to electrically connect and mechanically fix these chip components 21 to 23, the above-described external conductor film 19 is used.
 多層セラミック基板11の内部には、たとえば、コンデンサ24が導体膜13をもって構成され、コンデンサ25が導体膜14をもって構成され、インダクタ26が導体膜15をもって構成されている。また、導体膜16は、グラウンド電極として機能する。 In the multilayer ceramic substrate 11, for example, a capacitor 24 is configured with the conductor film 13, a capacitor 25 is configured with the conductor film 14, and an inductor 26 is configured with the conductor film 15. The conductor film 16 functions as a ground electrode.
 このような多層セラミック基板11は、通常、次のように製造される。 Such a multilayer ceramic substrate 11 is usually manufactured as follows.
 (1)ガラスセラミック組成物を含むセラミックスラリーを調製する。より具体的には、ガラス粉末およびセラミック粉末を、バインダおよび溶剤とともに混合して、セラミックスラリーを調製する。 (1) A ceramic slurry containing a glass ceramic composition is prepared. More specifically, glass powder and ceramic powder are mixed with a binder and a solvent to prepare a ceramic slurry.
 (2)ドクターブレード法等によって、キャリアフィルム上にセラミックスラリーを塗工し、シート状に成形することによって、前述のセラミック層12となるべきセラミックグリーンシートを作製する。 (2) The ceramic green sheet which should become the above-mentioned ceramic layer 12 is produced by coating a ceramic slurry on a carrier film by a doctor blade method or the like and forming it into a sheet shape.
 (3)セラミックグリーンシートに、厚み方向に貫通する貫通孔を開け、ここに銀や銅を主成分とする導電性ペーストを充填して、ビアホール導体18を形成する。 (3) A through-hole penetrating in the thickness direction is formed in the ceramic green sheet, and a conductive paste mainly composed of silver or copper is filled therein to form the via-hole conductor 18.
 (4)同じく銀や銅を主成分とする導電性ペーストをスクリーン印刷等によって印刷し、内部導体膜13~17ならびに外部導体膜19および20を形成する。 (4) Similarly, a conductive paste mainly composed of silver or copper is printed by screen printing or the like to form the inner conductor films 13 to 17 and the outer conductor films 19 and 20.
 (5)導体膜13~17ならびに19および20のうちの所望のものを有したセラミックグリーンシートを所定の順序で所定の枚数積層し、圧着して、生の積層体を作製する。 (5) A predetermined number of ceramic green sheets having the desired ones of the conductor films 13 to 17 and 19 and 20 are stacked in a predetermined order and pressed to produce a raw stacked body.
 (6)生の積層体を、必要に応じてカットした後、たとえば1050℃以下の温度で焼成することにより、セラミックグリーンシート、導体膜13~17ならびに19および20およびビアホール導体18を焼結させて、多層セラミック基板11を得る。 (6) After cutting the raw laminate as necessary, it is fired at a temperature of 1050 ° C. or lower, for example, to sinter the ceramic green sheets, the conductor films 13 to 17, 19 and 20, and the via-hole conductor 18 Thus, the multilayer ceramic substrate 11 is obtained.
 上述の製造方法の工程(1)において調製されるセラミックスラリーに含まれるガラスセラミック組成物として、この発明に係るガラスセラミック組成物が用いられる。 The glass ceramic composition according to the present invention is used as the glass ceramic composition contained in the ceramic slurry prepared in step (1) of the above production method.
 この発明に係るガラスセラミック組成物は、CaO-SiO-Al-B(ホウケイ酸ガラス)からなるガラス粉末と、Al(アルミナ)からなるセラミック粉末とを混合してなるものである。ここで、ガラス粉末とセラミック粉末との混合比率は、好ましくは、ガラス粉末が55~60重量%、セラミック粉末が40~45重量%となるようにされる。また、ガラス粉末およびセラミック粉末の各粒度分布は次のように選ばれる。 The glass ceramic composition according to the present invention comprises a mixture of a glass powder made of CaO—SiO 2 —Al 2 O 3 —B 2 O 3 (borosilicate glass) and a ceramic powder made of Al 2 O 3 (alumina). It will be. Here, the mixing ratio of the glass powder and the ceramic powder is preferably 55 to 60% by weight for the glass powder and 40 to 45% by weight for the ceramic powder. Moreover, each particle size distribution of glass powder and ceramic powder is selected as follows.
 ガラス粉末の50%通過粒径D50が3.5μm未満であり、ガラス粉末の99%通過粒径D99が15μm未満である。他方、セラミック粉末の50%通過粒径D50が1.0μm未満であり、かつガラス粉末の50%通過粒径D50よりも小さい。 The 50% passing particle diameter D50 of the glass powder is less than 3.5 μm, and the 99% passing particle diameter D99 of the glass powder is less than 15 μm. On the other hand, the 50% passing particle diameter D50 of the ceramic powder is less than 1.0 μm and smaller than the 50% passing particle diameter D50 of the glass powder.
 ガラスセラミック組成物の焼結は、ガラスが液相化することで、フィラーであるセラミック粉末が再配列し、さらに液相化したガラスがセラミック粒子の間隙を埋め、緻密化されることによって達成される。 Sintering of the glass-ceramic composition is achieved by the glass becoming liquid phase, the ceramic powder as the filler being rearranged, and the liquid phase glass filling the gaps between the ceramic particles and densifying. The
 ここで、セラミック粉末の粒径が小さいと、再配列が起こりやすくなり、ガラスセラミック組成物の焼結体が緻密化しやすい。また、液相化したガラスに、セラミック粉末を構成するアルミナが溶け出すと、ガラスの粘度が低下し、広がりやすくなるため、セラミック粉末の再配列を促進する。ゆえに、この発明によれば、前述のように、セラミック粉末の50%通過粒径D50が1.0μm未満であるというように、セラミック粉末の粒径が小さくされるので、再配列性の向上と、セラミック粉末とガラスとの界面の増加によるガラス中へのアルミナ溶解量の増加とにより、焼結体の緻密化が促進される。 Here, when the particle size of the ceramic powder is small, rearrangement tends to occur, and the sintered body of the glass ceramic composition tends to be densified. In addition, when alumina constituting the ceramic powder is dissolved into the liquid phase glass, the viscosity of the glass is lowered and the glass powder is likely to spread, which promotes rearrangement of the ceramic powder. Therefore, according to the present invention, as described above, since the particle size of the ceramic powder is reduced such that the 50% passing particle size D50 of the ceramic powder is less than 1.0 μm, the rearrangement is improved. The densification of the sintered body is promoted by increasing the amount of alumina dissolved in the glass due to the increase in the interface between the ceramic powder and the glass.
 他方、焼結体中に残るポアは、セラミック粉末の間隙で生じるものが比較的多いが、特に大きなポアに関しては、ガラスの粗粒が原因であると考えられる。 On the other hand, the pores remaining in the sintered body are relatively generated in the gaps between the ceramic powders, but particularly large pores are considered to be caused by the coarse particles of the glass.
 ガラス粉末に粗粒が含まれている場合、前述の図5(1)に示すように、比較的微粒であるセラミック粉末2が粗粒のガラス粉末1のまわりに付着することになる。ガラス粉末1がコアとなり、かつセラミック粉末2がシェルとなるコア-シェル構造を有する場合において、ガラス粉末1がより大きな粗粒を含むほど、まわりのシェルが厚くなりやすい。すると、図5(2)に示すように、ガラス粉末1は、これが液相化した後に、まわりのセラミック粉末2間に毛管作用により吸収され、中央のコアを構成するガラス部3が空洞化され、その結果、ポア4が残される。 When the glass powder contains coarse particles, the ceramic powder 2 that is relatively fine particles adheres around the coarse glass powder 1 as shown in FIG. When the glass powder 1 has a core-shell structure in which the core is the core and the ceramic powder 2 is the shell, the surrounding shell tends to be thicker as the glass powder 1 contains larger coarse particles. Then, as shown in FIG. 5 (2), the glass powder 1 is absorbed by the capillary action between the surrounding ceramic powders 2 after the glass powder 1 is liquidified, and the glass part 3 constituting the central core is hollowed out. As a result, the pore 4 is left.
 ガラス粉末1に含まれる粗粒が大きく、それゆえ、まわりのセラミック粉末2によって構成されるシェルが厚く、かつ強固であるほど、セラミック粉末2の再配列が起こりにくく、ガラス部3にポア4が残される。これが、時として10μm以上の径を有する巨大ポアの原因となる。 The larger the coarse particles contained in the glass powder 1, and the thicker and stronger the shell constituted by the surrounding ceramic powder 2, the less likely the rearrangement of the ceramic powder 2 occurs and the pores 4 are formed in the glass portion 3. Left behind. This sometimes causes huge pores having a diameter of 10 μm or more.
 再び図1を参照して説明すると、上記のようなガラスセラミック組成物を用いて構成された複数のセラミック層12を備える多層セラミック基板11において、上述した巨大ポアが存在すると、巨大ポアの存在する箇所だけ、セラミック層12の厚みが極端に薄くなるために、そこに電界集中を招き、絶縁破壊が起こりやすくなる。 Referring to FIG. 1 again, in the multilayer ceramic substrate 11 including a plurality of ceramic layers 12 formed using the glass ceramic composition as described above, if the above-mentioned huge pores exist, the huge pores exist. Since the thickness of the ceramic layer 12 becomes extremely thin only at the location, electric field concentration is caused there, and dielectric breakdown tends to occur.
 この発明では、前述したように、ガラス粉末の99%通過粒径D99が15μm未満であるというように、ガラス粉末に大きな粗粒が含まれないようにされる。これによって、巨大ポアの発生が抑制され、絶縁破壊が生じにくくなり、多層セラミック基板の絶縁信頼性を向上させることができる。 In the present invention, as described above, the glass powder is prevented from containing large coarse particles such that the 99% passing particle diameter D99 of the glass powder is less than 15 μm. As a result, the generation of huge pores is suppressed, dielectric breakdown is less likely to occur, and the insulation reliability of the multilayer ceramic substrate can be improved.
 ただし、この発明の特徴は、以上のように、セラミック粉末の50%通過粒径D50が1.0μm未満であり、かつガラス粉末の99%通過粒径D99が15μm未満であるということだけに留まらない。セラミック粉末およびガラス粉末の各々が単に細かいだけでは、場合により、焼結体の緻密化が生じにくく、また、多層セラミック基板の各種特性も低下することがある。その理由は次のとおりである。 However, the feature of the present invention is not limited to the fact that the 50% passing particle diameter D50 of the ceramic powder is less than 1.0 μm and the 99% passing particle diameter D99 of the glass powder is less than 15 μm as described above. Absent. If each of the ceramic powder and the glass powder is merely fine, in some cases, the sintered body is hardly densified, and various characteristics of the multilayer ceramic substrate may be deteriorated. The reason is as follows.
 焼成工程において、ガラス粉末相互間にもたらされるガラス-ガラス界面では、たとえばワラストナイト等の結晶相が比較的低温で析出する。ガラスが、特にアノーサイトを結晶として析出させ得る組成系を有する場合、上記のような結晶相の比較的低温での析出が生じやすい。そのため、ガラスの軟化後、十分な流動が生じないうちに、結晶化によりガラスの流動が阻害されることになる。 In the firing step, a crystalline phase such as wollastonite precipitates at a relatively low temperature at the glass-glass interface provided between the glass powders. In particular, when the glass has a composition system in which anorthite can be precipitated as crystals, the crystal phase as described above is likely to precipitate at a relatively low temperature. Therefore, after the glass is softened, the flow of the glass is inhibited by crystallization before a sufficient flow occurs.
 他方、前述したように、ホウケイ酸ガラスでは、アルミナが当該ガラス中に溶け込むことで、ガラスの粘度が低下し、流動性が向上する。そのために、多層セラミック基板の緻密化のためには、ガラス-アルミナ界面が多いことが望ましい。 On the other hand, as described above, in borosilicate glass, when alumina is dissolved in the glass, the viscosity of the glass is lowered and the fluidity is improved. Therefore, it is desirable that there are many glass-alumina interfaces for densification of the multilayer ceramic substrate.
 これらのことから、焼結体の緻密化を図るには、ガラス-ガラス界面を減らしながら、アルミナ-ガラス界面を増やす必要がある。そのためには、図2に示すように、セラミック粉末2がガラス粉末1よりも細かいこと、より具体的には、セラミック粉末2の50%通過粒径D50が、ガラス粉末1の50%通過粒径D50よりも小さいことが必要である。 For these reasons, it is necessary to increase the alumina-glass interface while reducing the glass-glass interface in order to increase the density of the sintered body. For that purpose, as shown in FIG. 2, the ceramic powder 2 is finer than the glass powder 1, more specifically, the 50% passing particle diameter D50 of the ceramic powder 2 is 50% passing particle diameter of the glass powder 1. It is necessary to be smaller than D50.
 以上のようにして、セラミック層12を構成するために、この発明に係るガラスセラミック組成物を用いれば、多層セラミック基板11の緻密化を図ることができる。そして、このように、多層セラミック基板11の緻密化が図られると、水やめっき液を多層セラミック基板11内部に浸入させにくくすることができる。仮に、水やめっき液を多層セラミック基板11内部に浸入した場合、内部導体膜13~17およびビアホール導体18が導電成分としてAgを含んでいると、Agのマイグレーションによるショート不良が生じやすくなるが、上述のように、水やめっき液を多層セラミック基板11内部に浸入させにくくすることができると、このようなショート不良も生じにくくなり、多層セラミック基板11の信頼性を向上させることができる。 As described above, if the glass ceramic composition according to the present invention is used to form the ceramic layer 12, the multilayer ceramic substrate 11 can be densified. When the multilayer ceramic substrate 11 is thus densified, it is possible to make it difficult for water or a plating solution to enter the multilayer ceramic substrate 11. If water or a plating solution is infiltrated into the multilayer ceramic substrate 11, if the inner conductor films 13 to 17 and the via-hole conductor 18 contain Ag as a conductive component, a short circuit failure due to Ag migration tends to occur. As described above, if it is possible to make it difficult for water or a plating solution to enter the multilayer ceramic substrate 11, it is difficult for such short-circuit defects to occur, and the reliability of the multilayer ceramic substrate 11 can be improved.
 また、多層セラミック基板11中にクラックが生じにくくすることができ、よって、多層セラミック基板11の強度を向上させることができる。 Further, it is possible to make it difficult for cracks to occur in the multilayer ceramic substrate 11, and thus the strength of the multilayer ceramic substrate 11 can be improved.
 また、アルミナ-ガラス界面が増えた結果、界面で結晶化するアノーサイト結晶量も増加する。その結果、このような結晶相はガラスよりも誘電率が高いため、セラミック層12の誘電率を高くすることができる。また、このような結晶相はガラスよりもクラック進行を抑制し得るので、このことも、多層セラミック基板11の強度向上に寄与する。 In addition, as a result of the increase in the alumina-glass interface, the amount of anorthite crystallized at the interface also increases. As a result, since such a crystal phase has a higher dielectric constant than glass, the dielectric constant of the ceramic layer 12 can be increased. Moreover, since such a crystal phase can suppress the progress of cracks compared to glass, this also contributes to the improvement of the strength of the multilayer ceramic substrate 11.
 多層セラミック基板11の一層の緻密化のためには、この発明に係るガラスセラミック組成物において、ガラス粉末の50%通過粒径D50が1.0μm以上かつ2.5μm未満である場合には、セラミック粉末の50%通過粒径D50をガラス粉末の50%通過粒径D50の1/2以下とし、他方、ガラス粉末の50%通過粒径D50が2.5μm以上かつ3.5μm未満である場合には、セラミック粉末の50%通過粒径D50をガラス粉末の50%通過粒径D50の1/3以下であることが好ましい。 In order to further densify the multilayer ceramic substrate 11, in the glass ceramic composition according to the present invention, when the glass powder 50% passing particle diameter D50 is 1.0 μm or more and less than 2.5 μm, the ceramic When the 50% passing particle diameter D50 of the powder is set to ½ or less of the 50% passing particle diameter D50 of the glass powder, while the 50% passing particle diameter D50 of the glass powder is 2.5 μm or more and less than 3.5 μm The ceramic powder preferably has a 50% passing particle diameter D50 of 1/3 or less of the 50% passing particle diameter D50 of the glass powder.
 さらに、上述の製造方法の工程(1)においてガラスセラミック組成物を含むセラミックスラリーを調製するにあたって、アノーサイト結晶粉砕粉を混合することが好ましい。ガラスセラミック組成物がアノーサイト結晶粉砕粉を含んでいると、その含有量によって結晶化温度を調整することができるとともに、製造ロット毎の析出結晶相を安定化させることができる。 Furthermore, in preparing the ceramic slurry containing the glass ceramic composition in the step (1) of the above-described production method, it is preferable to mix the anosite crystal pulverized powder. When the glass ceramic composition contains the anorthite pulverized powder, the crystallization temperature can be adjusted depending on the content thereof, and the precipitated crystal phase for each production lot can be stabilized.
 ここで、アノーサイト結晶粉砕粉の50%通過粒径D50は、ガラス粉末の50%通過粒径D50より小さいことが好ましい。アノーサイト結晶粉砕粉の粒径がガラス粉末の粒径よりも大きいと、ガラス粉末同士の反応が生じやすくなり、たとえばワラストナイト等の他の結晶相が析出しやすくなってガラスの流動が阻害されるからである。ただし、アノーサイト結晶粉砕粉は、微粒なほど効果が強いため、添加量の扱いやすい粒径にとどめる必要がある。より具体的には、アノーサイト結晶粉砕粉の通過粒径D50は1~2μmであることが好ましい。また、アノーサイト結晶粉砕粉の混合比率は、アルミナ粉末およびガラス粉末の合計量に対して外掛けで0.01重量%~1.0重量%であることが好ましい。 Here, it is preferable that the 50% passing particle diameter D50 of the anosite crystal pulverized powder is smaller than the 50% passing particle diameter D50 of the glass powder. When the particle size of the anorthite crystal pulverized powder is larger than the particle size of the glass powder, the reaction between the glass powders is likely to occur, and for example, other crystal phases such as wollastonite are likely to precipitate, thereby inhibiting the flow of the glass. Because it is done. However, since the anorthite pulverized powder is more effective as it is finer, it is necessary to limit the particle size so that the added amount is easy to handle. More specifically, the passing particle diameter D50 of the anosite crystal pulverized powder is preferably 1 to 2 μm. The mixing ratio of the anosite crystal pulverized powder is preferably 0.01% by weight to 1.0% by weight based on the total amount of the alumina powder and the glass powder.
 次に、この発明による効果を確認するために実施した実験例について説明する。 Next, experimental examples carried out to confirm the effects of the present invention will be described.
 [実験例]
 まず、表1に示すような粒度分布をそれぞれ有する、アルミナからなるセラミック粉末A1~A4およびガラス粉末G1~G5を準備した。ガラス粉末G1~G5については、SiOを59%、CaOを26.5%、Bを8.7%、およびAlを5.7%それぞれ含む組成を有するものを用い、乾式ミルによる粉砕工程を実施した。ガラス粉末G1~G4については、粉砕工程の後、分級機による分級工程を経て得た。ガラス粉末G5については分級機を用いなかった。
[Experimental example]
First, ceramic powders A1 to A4 made of alumina and glass powders G1 to G5 each having a particle size distribution as shown in Table 1 were prepared. Glass powders G1 to G5 having a composition containing 59% SiO 2 , 26.5% CaO, 8.7% B 2 O 3 , and 5.7% Al 2 O 3 , respectively, A pulverization step using a dry mill was performed. The glass powders G1 to G4 were obtained through a classification process using a classifier after the pulverization process. A classifier was not used for the glass powder G5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 他方、アノーサイトを結晶として析出させた焼結体を作製した後、これを粉砕することによって、アノーサイト結晶粉砕粉を用意した。具体的には、上記セラミック粉末と上記ガラス粉末からなるセラミック組成物を含むセラミックグリーンシートを焼成して作製した多層セラミック基板を粉砕することによってアノーサイト結晶粉砕粉とした。 On the other hand, after preparing a sintered body in which anorthite was precipitated as crystals, anorsite crystal pulverized powder was prepared by pulverizing the sintered body. Specifically, the anorthite crystal pulverized powder was obtained by pulverizing a multilayer ceramic substrate prepared by firing a ceramic green sheet containing a ceramic composition composed of the ceramic powder and the glass powder.
 次に、1000ミリリットルのポリポットに、上記セラミック粉末168.3gと上記ガラス粉末131.7gと上記アノーサイト結晶粉砕粉0.27gと投入した。ここで、セラミック粉末については、表1に示したセラミック粉末A1~A4のうち、表2の「セラミック粉末」の欄に示したものを用い、ガラス粉末については、表1に示したガラス粉末G1~G5のうち、表2の「ガラス粉末」の欄に示したものを用いた。また、アノーサイト結晶粉砕粉は、通過粒径D50が1.1μm、通過粒径D90が3.7μm、かつ、通過粒径D99が8.1μmのものを用いた。 Next, 168.3 g of the ceramic powder, 131.7 g of the glass powder, and 0.27 g of the anosite crystal pulverized powder were charged into a 1000 ml polypot. Here, for the ceramic powder, among the ceramic powders A1 to A4 shown in Table 1, those shown in the column of “Ceramic powder” in Table 2 are used, and for the glass powder, the glass powder G1 shown in Table 1 is used. Among G5, those shown in the column of “Glass Powder” in Table 2 were used. Further, the anosite crystal pulverized powder having a passing particle diameter D50 of 1.1 μm, a passing particle diameter D90 of 3.7 μm, and a passing particle diameter D99 of 8.1 μm was used.
 さらに、上記ポリポットに、直径5mmのPSZ玉石、トルエン/アルコール混合溶剤、分散剤および可塑剤(DOA)を投入した後、3時間、分散処理し、その後、有機バインダを添加した後、さらに3時間、分散処理し、スラリーを得た。 Further, PSZ boulder having a diameter of 5 mm, a toluene / alcohol mixed solvent, a dispersant and a plasticizer (DOA) were added to the polypot, followed by a dispersion treatment for 3 hours, and then an organic binder was added, followed by another 3 hours. Then, dispersion treatment was performed to obtain a slurry.
 次に、得られたスラリーから、ドクターブレード法にて、厚み50μmのグリーンシートを成形した。 Next, a green sheet having a thickness of 50 μm was formed from the obtained slurry by a doctor blade method.
 次に、上記グリーンシート上に、厚み10μmの導体膜を形成し、次いで、これらグリーンシートを積層することによって、厚み600μmのグリーンシート積層体を作製した。当該グリーンシート積層体は、後の焼成工程の結果、厚み300μmとなるものである。なお、このグリーンシート積層体は、その表層部分において、外部導体膜と内部導体膜との対向によってコンデンサを構成するものとした。 Next, a conductor film having a thickness of 10 μm was formed on the green sheet, and then the green sheets were laminated to produce a green sheet laminate having a thickness of 600 μm. The green sheet laminate has a thickness of 300 μm as a result of the subsequent firing step. In this green sheet laminate, a capacitor is formed by facing the outer conductor film and the inner conductor film in the surface layer portion.
 他方、上記グリーンシート積層体に含まれるセラミック粉末の焼結温度では実質的に焼結しない、D50が0.3μmのアルミナ粉末を含む、厚み100μmの拘束用グリーンシートを用意した。 On the other hand, a constraining green sheet having a thickness of 100 μm and containing alumina powder having a D50 of 0.3 μm, which does not substantially sinter at the sintering temperature of the ceramic powder included in the green sheet laminate, was prepared.
 次に、上記グリーンシート積層体の上下に上記拘束用グリーンシートを3枚ずつ積層してなる第1の複合積層体を得た。 Next, a first composite laminate was obtained by laminating three of the restraining green sheets above and below the green sheet laminate.
 他方、上記グリーンシートであって、これを成形したまま、そこに導体膜を形成していないものを積層することによって、厚み1200μmのグリーンシート積層体を作製した。当該グリーンシート積層体は、後の焼成工程の結果、厚み600μmとなるものである。 On the other hand, a green sheet laminate having a thickness of 1200 μm was produced by laminating the above green sheet, which was molded and did not have a conductor film formed thereon. The green sheet laminate has a thickness of 600 μm as a result of the subsequent firing step.
 次に、上記グリーンシート積層体の上下に上記拘束用グリーンシートを3枚ずつ積層してなる第2の複合積層体を得た。 Next, a second composite laminate was obtained by laminating three of the restraining green sheets on the top and bottom of the green sheet laminate.
 次に、上記第1および第2の複合積層体の各々を、750℃の温度まで大気中で焼成し、脱脂を行ない、その後、N雰囲気下において、890℃の温度で焼成し、次いで、拘束用グリーンシートに由来する拘束層を除去した。このようにして、導体膜が形成された第1の多層セラミック基板を第1の複合積層体から得るとともに、導体膜が形成されていない第2の多層セラミック基板を第2の複合積層体から得た。 Next, each of the first and second composite laminates is fired in the air to a temperature of 750 ° C., degreased, and then fired at a temperature of 890 ° C. in an N 2 atmosphere. The constraining layer derived from the constraining green sheet was removed. In this way, the first multilayer ceramic substrate on which the conductor film is formed is obtained from the first composite laminate, and the second multilayer ceramic substrate on which the conductor film is not formed is obtained from the second composite laminate. It was.
 次に、上記第1または第2の多層セラミック基板について、表2に示すように、「最大ポア径」、「結晶化度」、「抗折強度」、「密度」、「ε」および「初期IR」をそれぞれ評価した。評価方法の詳細は以下のとおりである。 Next, for the first or second multilayer ceramic substrate, as shown in Table 2, “maximum pore diameter”, “crystallinity”, “bending strength”, “density”, “ε”, and “initial” IR "was evaluated respectively. Details of the evaluation method are as follows.
 「最大ポア径」については、第1の多層セラミック基板をSEM観察することにより求めた。 The “maximum pore diameter” was determined by SEM observation of the first multilayer ceramic substrate.
 「結晶化度」については、第2の多層セラミック基板における析出結晶相をXRDにて確認し、結晶量の目安として得られたプロファイルから、2θ=28.0°のアノーサイト由来のピーク強度と2θ=25.6°のアルミナ由来のピーク強度との比を求め、これを結晶化度とした。 As for the “crystallinity”, the precipitated crystal phase in the second multilayer ceramic substrate was confirmed by XRD, and from the profile obtained as a measure of the amount of crystal, the peak intensity derived from anorthite of 2θ = 28.0 ° and The ratio with the peak intensity derived from alumina at 2θ = 25.6 ° was determined, and this was defined as the crystallinity.
 「抗折強度」については、第2の多層セラミック基板に対して3点曲げ試験を実施することによって求めた。 The “bending strength” was obtained by performing a three-point bending test on the second multilayer ceramic substrate.
 「密度」については、第2の多層セラミック基板に対してアルキメデス法を適用することによって求めた。 The “density” was obtained by applying the Archimedes method to the second multilayer ceramic substrate.
 「ε」(誘電率)については、第2の多層セラミック基板に対して摂動法を適用することによって測定した。 “Ε” (dielectric constant) was measured by applying a perturbation method to the second multilayer ceramic substrate.
 「初期IR」については、第1の多層セラミック基板におけるコンデンサを構成する部分に対して50Vの直流電圧を印加して抵抗値を測定することによって求めた。 “Initial IR” was obtained by applying a DC voltage of 50 V to the portion constituting the capacitor in the first multilayer ceramic substrate and measuring the resistance value.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、ガラス粉末について、D50が3.5μm未満でありかつD99が15μm未満であるという条件を満たす、ガラス粉末G1~G3のいずれかを用いながら、セラミック粉末について、D50が1.0μm未満であるという条件を満たす、セラミック粉末A1およびA2のいずれかを用い、さらに、セラミック粉末のD50がガラス粉末のD50よりも小さい、試料1~5によれば、「最大ポア径」、「結晶化度」、「抗折強度」、「ε」および「初期IR」のいずれについても良好な結果を示した。具体的には、「最大ポア径」を10μm未満、「結晶化度」を1.1以上、「抗折強度」を180MPa以上、「ε」を7以上、「初期IR」を13Log以上とすることができた。 As can be seen from Table 2, D50 is 1 for the ceramic powder while using any of the glass powders G1 to G3 that satisfy the condition that D50 is less than 3.5 μm and D99 is less than 15 μm. Using either ceramic powder A1 or A2 that satisfies the condition of less than 0.0 μm, and D50 of the ceramic powder is smaller than D50 of the glass powder, according to Samples 1 to 5, “maximum pore diameter”, Good results were shown for all of “crystallinity”, “bending strength”, “ε” and “initial IR”. Specifically, “maximum pore diameter” is less than 10 μm, “crystallinity” is 1.1 or more, “bending strength” is 180 MPa or more, “ε” is 7 or more, and “initial IR” is 13 Log or more. I was able to.
 これらに対して、試料6および7では、D50が1.0μm以上のセラミック粉末A3を用いたため、ガラス-セラミック界面を多くすることができず、「結晶化度」、「抗折強度」、「ε」および「初期IR」の点で劣っていた。試料6および7間で比較すると、試料7では、試料6で用いたガラス粉末G1に比べて粒径の大きいガラス粉末G2を用いたため、「最大ポア径」がより大きくなった。 On the other hand, in Samples 6 and 7, since the ceramic powder A3 having D50 of 1.0 μm or more was used, the glass-ceramic interface could not be increased, and “crystallinity”, “bending strength”, “ It was inferior in terms of “ε” and “initial IR”. Comparing between samples 6 and 7, in sample 7, since the glass powder G2 having a larger particle diameter than that of the glass powder G1 used in sample 6 was used, the “maximum pore diameter” was larger.
 また、試料8および9では、D50が1.0μm以上のセラミック粉末A4を用いたため、ガラス-セラミック界面を多くすることができず、「結晶化度」、「抗折強度」、「ε」および「初期IR」の点で劣っていた。試料8および9では、上記セラミック粉末A3よりもさらにD50の大きいセラミック粉末A4を用いたため、試料6および7に比べて、「結晶化度」および「抗折強度」の点でより劣っていた。また、試料9では、「初期IR」の点でも、試料6および7でより劣っていた。 In Samples 8 and 9, since ceramic powder A4 having D50 of 1.0 μm or more was used, the glass-ceramic interface could not be increased, and “crystallinity”, “bending strength”, “ε” and It was inferior in terms of “initial IR”. Samples 8 and 9 were inferior to samples 6 and 7 in terms of “crystallinity” and “bending strength” because ceramic powder A4 having a D50 larger than that of ceramic powder A3 was used. Sample 9 was also inferior to samples 6 and 7 in terms of “initial IR”.
 試料8および9間で比較すると、試料9では、試料8で用いたガラス粉末G1に比べて粒径の大きいガラス粉末G2を用いたため、「最大ポア径」がより大きくなり、また、「結晶化度」および「抗折強度」の点でより劣っていた。 Comparing between the samples 8 and 9, in the sample 9, the glass powder G2 having a larger particle diameter than the glass powder G1 used in the sample 8 was used, so that the “maximum pore diameter” was larger, and “crystallization” It was inferior in terms of “degree” and “bending strength”.
 なお、試料8では、「初期IR」のデータが記載されていないが、これは、拘束層を除去する際に外部導体膜が剥がれてしまい、測定不能になったという意味である。その理由は、多層セラミック基板のセラミック層のためのグリーンシートに含まれるセラミック粉末A4のD50が2.7μmであり、これが、拘束用グリーンシートに含まれるアルミナのD50である0.3μmに比べて相当大きいため、外部導体膜が多層セラミック基板側よりも拘束層側に密着してしまい、拘束層の除去工程で外部導体膜が剥離したためであると推測される。他方、同じセラミック粉末A4を用いた試料9において外部導体膜の剥離が生じなかったのは、試料9では、試料8よりもガラス粉末の粒径が大きいため、ガラスの流動性が低く、拘束層との密着力が試料8ほどは強くならなかったからであると推測される。 In the sample 8, “initial IR” data is not described, but this means that the external conductor film is peeled off when the constraining layer is removed, which makes measurement impossible. The reason is that D50 of the ceramic powder A4 contained in the green sheet for the ceramic layer of the multilayer ceramic substrate is 2.7 μm, which is compared with 0.3 μm which is D50 of alumina contained in the constraining green sheet. Since it is considerably large, it is assumed that the external conductor film is in close contact with the constraining layer side rather than the multilayer ceramic substrate side, and the external conductor film is peeled off in the constraining layer removing step. On the other hand, in the sample 9 using the same ceramic powder A4, the external conductor film did not peel off because the particle size of the glass powder was larger in the sample 9 than in the sample 8, so that the flowability of the glass was low and the constraining layer This is presumably because the adhesion strength to the sample was not as strong as that of the sample 8.
 試料10では、セラミック粉末について、D50が1.0μm未満であるという条件を満たす、セラミック粉末A2を用い、さらに、セラミック粉末A2のD50がガラス粉末G4のD50よりも小さい、という条件を満たすが、用いたガラス粉末G4のD50が3.5μm以上であり、かつD99が15μm以上であるため、「最大ポア径」が13.2μmと非常に大きく、また、「結晶化度」、「抗折強度」、「ε」および「初期IR」のいずれの点についても劣っていた。 Sample 10 uses ceramic powder A2 that satisfies the condition that D50 is less than 1.0 μm for the ceramic powder, and further satisfies the condition that D50 of ceramic powder A2 is smaller than D50 of glass powder G4. Since D50 of the glass powder G4 used is 3.5 μm or more and D99 is 15 μm or more, the “maximum pore diameter” is very large as 13.2 μm, and “crystallinity”, “bending strength” ”,“ Ε ”, and“ Initial IR ”were all inferior.
 試料11では、セラミック粉末について、D50が1.0μm未満であるという条件を満たす、セラミック粉末A2を用い、さらに、セラミック粉末A2のD50がガラス粉末G5のD50よりも小さい、という条件を満たすとともに、用いたガラス粉末G5のD50が3.5μm未満であるが、このガラス粉末G5は分級工程を経なかったために、D99が15μm以上となり、「最大ポア径」が11.2μmと非常に大きく、また、「初期IR」の点でも劣っていた。 Sample 11 uses ceramic powder A2 that satisfies the condition that D50 is less than 1.0 μm for the ceramic powder, and further satisfies the condition that D50 of ceramic powder A2 is smaller than D50 of glass powder G5. D50 of the used glass powder G5 is less than 3.5 μm, but since this glass powder G5 did not go through the classification step, D99 was 15 μm or more, and the “maximum pore diameter” was very large as 11.2 μm. Also, it was inferior in terms of “initial IR”.
 また、試料1、2、6および8では、D50が1.0μm以上かつ2.5μm未満であるガラス粉末G1を用いている。これらの試料1、2、6および8の場合、セラミック粉末のD50がガラス粉末のD50の1/2以下であるという条件を満たすセラミック粉末A1またはA2を用いた試料1および2によれば、上記条件を満たさないセラミック粉末A3またはA4を用いた試料6および8に比べて、「最大ポア径」、「結晶化度」、「抗折強度」および「ε」の点で良好な結果を示し、また、「初期IR」の点では、試料6に比べて良好な結果を示した。 Samples 1, 2, 6 and 8 use glass powder G1 having a D50 of 1.0 μm or more and less than 2.5 μm. In the case of these samples 1, 2, 6 and 8, according to the samples 1 and 2 using the ceramic powder A1 or A2 that satisfies the condition that the D50 of the ceramic powder is 1/2 or less of the D50 of the glass powder, Compared with samples 6 and 8 using ceramic powder A3 or A4 that does not satisfy the conditions, the results show good results in terms of “maximum pore diameter”, “crystallinity”, “bending strength” and “ε”, Further, in terms of “initial IR”, a better result than that of the sample 6 was shown.
 また、試料3、4、5、7、9および11では、D50が2.5μm以上かつ3.5μm未満であるガラス粉末G2、G3またはG5を用いている。これら試料3、4、5、7、9および11の場合、セラミック粉末のD50がガラス粉末のD50の1/3以下であるという条件を満たすセラミック粉末A1またはA2を用いた試料3、4、5および11によれば、上記条件を満たさないセラミック粉末A3またはA4を用いた試料7および9に比べて、「結晶化度」、「抗折強度」および「ε」の点で良好な結果を示した。 Samples 3, 4, 5, 7, 9, and 11 use glass powder G2, G3, or G5 having a D50 of 2.5 μm or more and less than 3.5 μm. In the case of these samples 3, 4, 5, 7, 9, and 11, samples 3, 4, 5 using ceramic powder A1 or A2 that satisfies the condition that D50 of ceramic powder is 1/3 or less of D50 of glass powder. And 11 show better results in terms of “crystallinity”, “bending strength” and “ε” compared to samples 7 and 9 using ceramic powder A3 or A4 that does not satisfy the above conditions. It was.
 図3には、上記試料1に係る第1の多層セラミック基板のコンデンサ部分の断面を撮影したSEM画像が示されている。他方、図4には、上記試料9に係る第1の多層セラミック基板のコンデンサ部分の断面を撮影したSEM画像が示されている。図3と図4とを比較すれば、試料1によれば、試料9に比べて、明らかに緻密性が向上していることを確認することができる。 FIG. 3 shows an SEM image obtained by photographing a cross section of the capacitor portion of the first multilayer ceramic substrate according to Sample 1. On the other hand, FIG. 4 shows an SEM image obtained by photographing a cross section of the capacitor portion of the first multilayer ceramic substrate according to the sample 9. Comparing FIG. 3 and FIG. 4, it can be confirmed that according to the sample 1, the denseness is clearly improved as compared with the sample 9.
1 ガラス粉末
2 セラミック粉末
11 多層セラミック基板
12 セラミック層
1 Glass powder 2 Ceramic powder 11 Multilayer ceramic substrate 12 Ceramic layer

Claims (7)

  1.  CaO-SiO-Al-Bからなるガラス粉末と、Alからなるセラミック粉末とを混合してなる、ガラスセラミック組成物であって、
     ガラス粉末の50%通過粒径D50が3.5μm未満であり、
     ガラス粉末の99%通過粒径D99が15μm未満であり、
     セラミック粉末の50%通過粒径D50が1.0μm未満であり、かつガラス粉末の50%通過粒径D50よりも小さい、
    ガラスセラミック組成物。
    A glass ceramic composition comprising a glass powder composed of CaO—SiO 2 —Al 2 O 3 —B 2 O 3 and a ceramic powder composed of Al 2 O 3 , comprising:
    The 50% passing particle size D50 of the glass powder is less than 3.5 μm,
    99% passing particle size D99 of the glass powder is less than 15 μm,
    The 50% passing particle diameter D50 of the ceramic powder is less than 1.0 μm and smaller than the 50% passing particle diameter D50 of the glass powder.
    Glass ceramic composition.
  2.  ガラス粉末の50%通過粒径D50が1.0μm以上かつ2.5μm未満であり、セラミック粉末の50%通過粒径D50はガラス粉末の50%通過粒径D50の1/2以下である、請求項1に記載のガラスセラミック組成物。 The 50% particle size D50 of the glass powder is 1.0 μm or more and less than 2.5 μm, and the 50% particle size D50 of the ceramic powder is ½ or less of the 50% particle size D50 of the glass powder, Item 2. The glass ceramic composition according to Item 1.
  3.  ガラス粉末の50%通過粒径D50が2.5μm以上かつ3.5μm未満であり、セラミック粉末の50%通過粒径D50はガラス粉末の50%通過粒径D50の1/3以下である、請求項1に記載のガラスセラミック組成物。 The 50% passing particle diameter D50 of the glass powder is 2.5 μm or more and less than 3.5 μm, and the 50% passing particle diameter D50 of the ceramic powder is 1/3 or less of the 50% passing particle diameter D50 of the glass powder. Item 2. The glass ceramic composition according to Item 1.
  4.  さらにアノーサイト結晶粉砕粉を混合してなる、請求項1ないし3のいずれかに記載のガラスセラミック組成物。 The glass ceramic composition according to any one of claims 1 to 3, further comprising a anosite crystal pulverized powder.
  5.  アノーサイト結晶粉砕粉の50%通過粒径D50は、ガラス粉末の50%通過粒径D50より小さい、請求項4に記載のガラスセラミック組成物。 The glass ceramic composition according to claim 4, wherein the 50% passing particle diameter D50 of the anosite crystal pulverized powder is smaller than the 50% passing particle diameter D50 of the glass powder.
  6.  請求項1ないし5のいずれかに記載のガラスセラミック組成物を含む、セラミックグリーンシート。 A ceramic green sheet comprising the glass ceramic composition according to any one of claims 1 to 5.
  7.  請求項6に記載のセラミックグリーンシートの焼結体からなる複数のセラミック層を備える、多層セラミック基板。 A multilayer ceramic substrate comprising a plurality of ceramic layers made of a sintered body of the ceramic green sheet according to claim 6.
PCT/JP2010/062677 2009-08-18 2010-07-28 Glass ceramic composition, ceramic green sheet, and multilayered ceramic substrate WO2011021484A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011527622A JP5633707B2 (en) 2009-08-18 2010-07-28 Glass ceramic composition, ceramic green sheet and multilayer ceramic substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-189190 2009-08-18
JP2009189190 2009-08-18

Publications (1)

Publication Number Publication Date
WO2011021484A1 true WO2011021484A1 (en) 2011-02-24

Family

ID=43606939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062677 WO2011021484A1 (en) 2009-08-18 2010-07-28 Glass ceramic composition, ceramic green sheet, and multilayered ceramic substrate

Country Status (2)

Country Link
JP (1) JP5633707B2 (en)
WO (1) WO2011021484A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099944A1 (en) * 2011-12-27 2013-07-04 株式会社村田製作所 Multilayer ceramic substrate and electronic component using same
JPWO2014196348A1 (en) * 2013-06-05 2017-02-23 株式会社村田製作所 Composition for ceramic substrate and ceramic circuit component
JP2020174210A (en) * 2016-12-08 2020-10-22 株式会社村田製作所 Multilayer ceramic substrate and electronic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555407A (en) * 1991-08-29 1993-03-05 Nec Corp Multilayer glass ceramic substrate and manufacture thereof
JP2001010868A (en) * 1999-06-22 2001-01-16 Murata Mfg Co Ltd Composition for ceramic substrate and ceramic circuit part
JP2001010858A (en) * 1999-06-22 2001-01-16 Murata Mfg Co Ltd Composition for ceramic substrate and ceramic circuit part
JP2008074679A (en) * 2006-09-22 2008-04-03 Ngk Spark Plug Co Ltd Multilayer ceramic component and its production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083014A (en) * 2004-09-16 2006-03-30 Toray Ind Inc Ceramic sintered compact and ceramic multilayer substrate using the same
JP4863975B2 (en) * 2007-02-06 2012-01-25 三菱電機株式会社 Ceramic powder for green sheet and multilayer ceramic substrate
JP2009158523A (en) * 2007-12-25 2009-07-16 Kyocera Corp Wiring board and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555407A (en) * 1991-08-29 1993-03-05 Nec Corp Multilayer glass ceramic substrate and manufacture thereof
JP2001010868A (en) * 1999-06-22 2001-01-16 Murata Mfg Co Ltd Composition for ceramic substrate and ceramic circuit part
JP2001010858A (en) * 1999-06-22 2001-01-16 Murata Mfg Co Ltd Composition for ceramic substrate and ceramic circuit part
JP2008074679A (en) * 2006-09-22 2008-04-03 Ngk Spark Plug Co Ltd Multilayer ceramic component and its production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099944A1 (en) * 2011-12-27 2013-07-04 株式会社村田製作所 Multilayer ceramic substrate and electronic component using same
JPWO2014196348A1 (en) * 2013-06-05 2017-02-23 株式会社村田製作所 Composition for ceramic substrate and ceramic circuit component
US9607765B2 (en) 2013-06-05 2017-03-28 Murata Manufacturing Co., Ltd. Composition for ceramic substrates and ceramic circuit component
JP2020174210A (en) * 2016-12-08 2020-10-22 株式会社村田製作所 Multilayer ceramic substrate and electronic apparatus
JP7309666B2 (en) 2016-12-08 2023-07-18 株式会社村田製作所 Multilayer ceramic substrate and electronic device

Also Published As

Publication number Publication date
JP5633707B2 (en) 2014-12-03
JPWO2011021484A1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
EP1981320B1 (en) Conductive paste, multilayer ceramic substrate and method for manufacturing multilayer ceramic substrate
JP4840935B2 (en) Ceramic multilayer substrate
WO1993008672A1 (en) Manufacture of multilayer ceramic part, and multilayer ceramic part
CN115119394A (en) Laminate and electronic component
US20070109720A1 (en) Dielectric paste, capacitor-embedded glass-ceramic multilayer substrate, electronic component and method of manufacturing capacitor-embedded glass-ceramic multilayer substrate
WO2010092969A1 (en) Low temperature cofired ceramic material and ceramic substrate
WO2020129945A1 (en) Layered body and electronic component
JP5120406B2 (en) Ceramic electronic component and method for manufacturing ceramic electronic component
JP5633707B2 (en) Glass ceramic composition, ceramic green sheet and multilayer ceramic substrate
US8231961B2 (en) Low temperature co-fired ceramic material, low temperature co-fired ceramic body, and multilayer ceramic substrate
JP3467873B2 (en) Method for manufacturing multilayer ceramic substrate
JP2002110444A (en) Conductive paste and laminated ceramic electronic part
JP4844317B2 (en) Ceramic electronic component and manufacturing method thereof
WO2001056047A1 (en) Conductor pattern built in multilayer board, multilayer board having built-in conductor pattern, and method of manufacturing multilayer board
JP7352651B2 (en) M7 LTCC-Silver System and Related Dielectric Compositions for High Frequency Applications
JPH0795630B2 (en) Composite monolithic ceramic parts
CN109074956B (en) Ceramic electronic component and method for manufacturing ceramic electronic component
JP5093091B2 (en) Ceramic substrate
JP2007081351A (en) Via paste for laminated electronic component, laminated electronic component using the same and its manufacturing method
JP3330817B2 (en) Multilayer ceramic parts
JPH06338686A (en) Manufacture of multilayer substrate
JP5533120B2 (en) Manufacturing method of multilayer ceramic substrate
JP5153118B2 (en) Dielectric paste, glass ceramic multilayer wiring board, electronic device, and method for manufacturing glass ceramic multilayer wiring board
CN116981648A (en) Glass ceramic material, laminate, and electronic component
JP2009007217A (en) Ceramic composition and ceramic wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809829

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011527622

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809829

Country of ref document: EP

Kind code of ref document: A1