WO2011020413A1 - 一种应用于无线中继的传输***及传输方法 - Google Patents

一种应用于无线中继的传输***及传输方法 Download PDF

Info

Publication number
WO2011020413A1
WO2011020413A1 PCT/CN2010/075772 CN2010075772W WO2011020413A1 WO 2011020413 A1 WO2011020413 A1 WO 2011020413A1 CN 2010075772 W CN2010075772 W CN 2010075772W WO 2011020413 A1 WO2011020413 A1 WO 2011020413A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
transmission
network
denb
data
Prior art date
Application number
PCT/CN2010/075772
Other languages
English (en)
French (fr)
Inventor
奚进
黄亚达
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011020413A1 publication Critical patent/WO2011020413A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to the field of wireless relay in a cellular wireless communication system, and more particularly to a transmission system and a transmission method applied to a wireless relay technology. Background technique
  • the cellular wireless communication system is mainly composed of a terminal (UE, User Equipment), a radio access network, and a core network.
  • FIG. 1 includes a base station, a terminal, and a core network.
  • a network composed of a base station or a network composed of a base station and a base station controller is called a radio access network
  • the radio access network is responsible for access layer transactions, such as management of radio resources.
  • Each base station can be connected to one or more core network nodes.
  • the core network is responsible for non-access layer transactions, such as location updates, and is the anchor point for the user plane.
  • a UE is a variety of devices that can communicate with cellular wireless communications, such as mobile phones or laptops.
  • wireless coverage of fixed base station networks is limited for a variety of reasons, such as blocking of wireless signals by various building structures, causing inevitable coverage gaps in wireless network coverage. .
  • the communication quality of the UE is poor at the cell edge, and the error rate of the wireless transmission is increased.
  • a wireless network node called a relay node
  • Relay is a station that has the function of relaying data and possibly controlling information over other links between other network nodes, also called relay nodes/relay stations.
  • the working principle of Relay is shown in Figure 2.
  • the UE directly served by the base station is called a macro UE, and the UE served by the relay is called a relay UE.
  • Network element The inter-interface link includes: a direct transmission link, an access link, and a backhaul link, where the direct transmission link is a radio link between the base station and the UE, and includes a direct transmission link between the uplink and the downlink;
  • the link is the link between the Relay and the UE, and includes the uplink and downlink access links.
  • the backhaul link is the wireless link between the base station and the Relay, and includes the uplink and downlink backhaul links.
  • Relay can relay data through multiple methods, such as directly amplifying the received base station to send wireless signals, or receiving the data sent by the base station for corresponding processing, which may be demodulated or decoded, and then forwarded to the UE, or the base station and The relay cooperates to send data to the UE, and the Relay also relays the data sent from the UE to the base station.
  • relay which has the following characteristics:
  • the UE cannot distinguish between the relay and the cell under the fixed base station. That is, from the perspective of the UE, there is no difference between the cell under the relay and the cell under the base station.
  • a cell may be referred to as a relay cell.
  • the relay cell has its own cell physical identity (PCI, physical cell identity), and broadcasts the same as the normal cell.
  • PCI physical cell identity
  • the relay cell can separately allocate the scheduling radio resource to the UE.
  • the radio resource scheduling of the base station participating in the relay is independent of each other.
  • the interface between the Relay cell and the Relay UE and the protocol stack are the same as those between the normal base station cell and the UE.
  • the base station of the relay is also referred to as a Donor base station, that is, a base station that the relay connects through the backhaul link.
  • the LTE system adopts a flattening architecture based on Internet Protocol (IP), as shown in FIG. 3, by an Evolved Universal Terrestrial Radio Access Network (E-UTRAN), an evolved data core.
  • IP Internet Protocol
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the node of the network EPC, Evolved Packet Core
  • the nodes of the EPC include: a mobility management unit (MME, Mobility Management Entity), a service gateway (S-GW, a Serving Gateway), and a packet data network gateway (P-GW, PDN Gateway).
  • the MME is responsible for control plane signaling, including mobility management, processing of non-access stratum signaling, and user mobility. Control plane management and other control plane related work; S-GW is responsible for UE user plane data transmission, forwarding and routing handover; P-GW is a node that connects EPC and packet data network such as the Internet, and is responsible for, for example, UE IP address allocation, IP data packets are filtered into service data flows (Service Data Flows) by service type and bound to corresponding transport bearers.
  • service data flows Service Data Flows
  • the nodes of the E-UTRAN include eNBs, and the eNBs are logically connected to each other through the X2 interface to support the mobility of the UEs in the entire network, and ensure seamless handover of users.
  • Each eNB is connected to the core network of the System Architecture Evolution (SAE) through the S1 interface, that is, it is connected to the MME through the control plane S1-MME interface, and is connected to the S-GW through the user plane S1-U interface, and the S1 interface supports Multipoint connection between eNB and MME and S-GW.
  • SAE System Architecture Evolution
  • the MME and the S-GW are connected by the SI 1 interface.
  • the S-GW and the P-GW are connected to each other by the S5 interface.
  • Each eNB is initially defined as a radio interface between the UTRAN and the UE to perform signaling and data transmission through the Uu interface.
  • the wireless interface between the relay and the eNB is the Un interface.
  • the interface between the relay and the UE and the eNB and the UE are the same, so it is also the Uu interface.
  • the access node of the transmission network is defined on the core network element, for example, the P-GW of the relay;
  • An architecture is: The access node of the transport network is defined on a donor base station (DeNB, Donor eNB), such as a local access gateway (LBO GW, Local Break Out GW) of the DeNB.
  • DeNB Donor eNB
  • LBO GW local access gateway
  • LBO GW Local Break Out GW
  • the access node is located in the network element of the core network
  • the handover is performed.
  • the signaling will reach the core network element through the relay and then route to the access network element. The reverse is still.
  • the data back-transmission path in the handover will be returned to the core network element by the core network element after reaching the Relay, and then can be routed to the access network element;
  • the access node is located in the DeNB
  • the transmission channel is established on the host base station for which the radio access is provided, when the handover itself is switched, a new transmission channel needs to be established in the target DeNB.
  • the transmission channels of multiple UEs nested in the channel need to be switched to the newly created transmission channel respectively, and the handover process is complicated. It can be seen that the relay can only access a single transmission channel.
  • Each of the two transmission channels has its own limitations, which is not conducive to the transmission of Relay data in scenarios such as handover. Therefore, at present, there is an urgent need for a transmission scheme in which the relay simultaneously accesses the core network and the DeNB through the above two transmission channels, so as to solve the problem of relay data transmission including the handover scenario.
  • the main object of the present invention is to provide a transmission system and a transmission method applied to a wireless relay, so that the Relay can simultaneously access the transmission network through the two transmission channels, thereby solving the problem including the handover scenario.
  • the problem of relay data transmission is to provide a transmission system and a transmission method applied to a wireless relay, so that the Relay can simultaneously access the transmission network through the two transmission channels, thereby solving the problem including the handover scenario.
  • a transmission system applied to a wireless relay comprising: a group of relay nodes (Relays) and a group of evolved base stations (eNBs), the eNB serving as a host base station (DeNB) of the RELAY, the system further The method includes: at least two transport network access nodes connected to the relay;
  • the relay is configured to be used by a transport network access node located on the core network and a transport network access node located on the DeNB, and simultaneously access the transport network, and respectively establish transmissions with different transport network access nodes. Transfer data is transmitted on the channel.
  • Each transmission channel has a transmission address, and the transmission address includes: an address assigned by the transmission network access node corresponding to the current transmission channel.
  • the manner of establishing a transmission channel includes: a manner of establishing a packet data network (PDN) connection between the relay and the transmission network access node.
  • PDN packet data network
  • the transport network access node includes: a packet data network gateway (P-GW), and the P-GW is optionally located on the core network or the DeNB;
  • the transmission channel includes: a user-level General Packet Radio Service Tunneling Protocol (GTPU) tunnel established within the DeNB and between the DeNB and the P-GW.
  • GTPU General Packet Radio Service Tunneling Protocol
  • the relay data includes: the user plane data of the relay itself; the relay data further includes: a common control signaling of the radio access network element provided by the relay, or a control plane dedicated signaling of the UE under the jurisdiction of the relay and User face data.
  • a transmission method applied to a wireless relay comprising: a relay accessing a transmission network access node located on a core network and a transmission network access node located on a DeNB, simultaneously accessing a transmission network, and being connected to a different transmission network Relay data is transmitted on the transmission channels established between the ingress nodes.
  • the method further includes: a transport network access node corresponding to the current transmission channel, responsible for allocating a transport address to the current transport channel.
  • the establishing, by the relay, the transmission channel between the access node and the different transmission network access node includes:
  • the transmission channel is established between the relay and the transmission network access node by establishing a PDN connection, and enters the transmission network.
  • the transport network access node includes: a P-GW; the transport channel includes: a GTPU tunnel;
  • the relay establishes the PDN connection with the P-GW located on the core network and the P-GW located on the DeNB, and is internal to the DeNB, and the P-GW of the DeNB to the core network and the P- located on the DeNB. Between the GWs, GTPU tunnels are established respectively.
  • the transmitting the relay data further includes: the common control signaling of the radio access network element provided by the relay is used as the user data of the relay, and is transmitted to the transmission network through the access node located in the DeNB or the core network, and arrives from the transmission network.
  • the core network controls the network element, or the access network element; when the access node that transmits the common control signaling is located on the DeNB, optionally, DeNB terminates and processes;
  • the transmitting the relay data further includes: the control plane dedicated signaling of the UE under the jurisdiction of the relay and the user plane data are used as the user data of the relay, and are transmitted to the transmission network through the access node located in the DeNB or the core network, and are transmitted from the transmission network.
  • the Relay of the present invention accesses the transmission network through the transmission network access node located on the core network and the transmission network access node located on the DeNB, and transmits the Relay on the transmission channel established between the access nodes and the different transmission network access nodes respectively. data.
  • the invention solves the limitation of the wireless relay system with only one transmission channel, so that the relay is compatible with the simultaneous access of the core network and the DeNB, that is, the relay passes through the transmission network access node located on the core network and is located at the DeNB.
  • the access node of the local transmission network accesses different transmission networks at the same time, so as to establish two transmission channels, thereby avoiding the limitations of the prior art that only one transmission channel can be used, thereby solving the problem.
  • the problem of relay data transmission including switching scenarios.
  • FIG. 1 is a schematic structural diagram of a cellular wireless communication system in the prior art
  • FIG. 2 is a schematic structural diagram of a Relay network in the prior art
  • FIG. 3 is a schematic structural diagram of an LTE network in the prior art
  • FIG. 4 is a schematic diagram of a network architecture of Examples 1, 2, and 3 of the present invention.
  • FIG. 5 is a schematic diagram of a relay access process according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a UE access and handover process according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic diagram of a network architecture of Embodiments 4 and 5 of the present invention.
  • the basic idea of the present invention is: the relay accesses the transmission network access node located on the core network and the transmission network access node located on the DeNB, simultaneously accesses the core network and the DeNB, and establishes separately with the access nodes of different transmission networks. Transfer data is transmitted on the transmission channel.
  • a transmission system for wireless relay comprising: a group of Relays and a group of eNBs, and the eNB acts as a DeNB of the Relay.
  • Relay, eNB and DeNB are both existing and will not be described in detail herein.
  • the system also includes: at least two transport network access nodes connected to the Relay.
  • the relay is used to access the transmission network through the transmission network access node located on the core network and the transmission network access node located on the DeNB, and is respectively established on the transmission channel established between the access nodes and the different transmission network access nodes. Transfer Relay data.
  • the transmission address of each transmission channel specifically includes: an address that is allocated by the transmission network access node corresponding to the current transmission channel.
  • the manner of establishing the transmission channel specifically includes: a method of establishing a packet data network (PDN) connection between the relay and the transmission network access node.
  • PDN packet data network
  • the transport network access node specifically includes: a P-GW, and the P-GW is optionally located on the core network, or on the DeNB.
  • the transmission channel specifically includes: a user-level General Packet Radio Service Tunneling Protocol (GTPU) tunnel established within the DeNB and between the DeNB and the S-GW/P-GW.
  • GTPU General Packet Radio Service Tunneling Protocol
  • the relay data specifically includes: public control signaling of the radio access network element provided by the relay, user plane data of the relay itself, or control plane dedicated signaling of the UE under the jurisdiction of the relay, and user plane data.
  • a transmission method applied to a wireless relay comprising: a relay accessing a transmission network access node located on a core network and a transmission network access node located on a DeNB, simultaneously accessing a transmission network, and being connected to a different transmission network Transmission on the transmission channel established between the ingress nodes Relay data.
  • the method further includes: a transport network access node corresponding to the current transport channel, responsible for allocating a transport address to the current transport channel.
  • the establishment of the transmission channel between the relay and the access node of the different transmission network specifically includes: RELAY and the transmission network access node respectively establish a transmission channel by establishing a PDN connection, and enter the transmission network.
  • the transmission network access node specifically includes: a P-GW; the transmission channel specifically includes: a GTPU tunnel.
  • the relay establishes a PDN connection with the S-GW/P-GW located on the core network and the P-GW located on the DeNB, and within the DeNB, and the P-GW of the DeNB to the core network and the P- located on the DeNB. Between the GWs, GTPU tunnels are established respectively.
  • transmitting Relay data further includes the following two cases:
  • the common control signaling of the radio access network element provided by the relay is used as the user data of the relay, and is transmitted to the transmission network through the access node located in the local DeNB or the core network, and reaches the core network control network from the transmission network.
  • Element, or access network element is used as the user data of the relay, and is transmitted to the transmission network through the access node located in the local DeNB or the core network, and reaches the core network control network from the transmission network.
  • the DeNB terminates and processes.
  • the invention mainly includes the following contents:
  • a group of relays that provide wireless access to the UE A group of eNBs that provide wireless access to the relay nodes. That is, the DeNB of the Relay.
  • the relay node has at least two access nodes to the transport network, one at the core network Inside, for example, P-GW; the other is located on the DeNB, and may also be referred to as a local transport network access node on the DeNB, such as an LBO P-GW.
  • the relay node establishes a transmission channel with different transmission network access nodes, and has different transmission addresses, such as IP addresses, on different channels, and the corresponding transmission network access node is responsible for allocating the transmission address.
  • the manner in which the transmission channel is established may be established by establishing a PDN connection with the P-GW and entering the transmission network through the P-GW.
  • the Relay establishes a PDN connection with the P-GWs located on the core network and the DeNB.
  • a GTPU tunnel is established between the DeNB and the DeNB to the P-GW.
  • the relay is used as the common control signaling for providing the radio access network element, for example, the public process of the S1 AP, and the public process of the X2AP can be transmitted as the relay user data to the transmission network through the relay access node, where
  • the access node includes a local or core network, and reaches the core network control network element from the transport network, such as the MME of the Relay or the access network element, such as an eNB; when the access node that transmits the common signaling is located on the local DeNB, Optionally, it can be terminated and processed by the DeNB.
  • control plane dedicated signaling of the UE under the relay node such as the SI AP dedicated process, the X2AP professional process, and the data can be transmitted as the relay user data to the transmission network through the relay access node, where
  • the access node includes a local or core network, and reaches the core network control network element from the transport network, such as the MME of the UE or the access network element, such as an eNB, or a transport network access network element where the UE is located in the core network, such as a UE.
  • P-GW the transport network
  • the relay can only access a single transmission channel, for example, when a data transmission problem occurs in the handover scenario and the handover is affected, With a selection mechanism, you can only use this transmission channel.
  • the respective transmission channels can be complementarily complementary. For example, on the basis of having two transmission channels at the same time, the channel selection mechanism can be realized. When a data transmission problem occurs, another transmission channel is enabled, thereby solving the problem of relay data transmission including the switching scenario.
  • the invention is illustrated by way of example below.
  • the relay has two transport network access nodes: one is a local LBO GW located on the DeNB, corresponding to the local transport channel 101 for the relay on the DeNB; the other is the Relay P-GW located in the core network, For simplicity, it is unified with the S-GW; correspondingly, a remote transmission channel 102 is established for the Relay between the DeNB and the Relay P-GW. Different transmission channels are transmitted by the radio bearer 103 on the Un interface between the Relay and the DeNB.
  • the direct interface between the relay and other eNBs X2 channel 1 1 1 , the signaling and data on the interface are used as the service data of the relay, and are transmitted from the relay to the corresponding eNB via the LBO GW on the DeNB through the local transmission channel 101.
  • the MME Mobility Management Entity
  • the UEs accessed by the Relay are transmitted through the remote transmission channel 102 from the Relay to the Relay's P-GW via the DeNB, and from the latter to the UE's respective P- GW.
  • the source relay and the target eNB When the UE is connected to the neighboring cell established by the eNB, the source relay and the target eNB perform the X2 handover process through the direct interface X2 channel 1 1 1 .
  • the backhaul path in the handover process also passes through the direct interface X2 channel 1 1 1 and reaches the target eNB through the DeNB.
  • the local transmission channel 101 is represented by a region filled with a broken line
  • the remote transmission channel 102 is represented by a region filled with a solid line
  • the radio bearer 103 is represented by a region filled with a thick solid line.
  • SI signaling channel 112 is represented by a padded fill of sparse dots
  • data channel 113 is represented by a hatched fill of the cross-hatching.
  • This example describes the access process of the above-mentioned instance 1 relay node.
  • For the architecture see the architecture of the example 1 as shown in Figure 4.
  • the flow of this example is shown in Figure 5, including the following steps:
  • Step 501 The relay is within the radio coverage of the DeNB, and establishes an RRC connection with the DeNB.
  • Step 502 The relay initiates an Attach request to the core network by using the non-access stratum signaling, where the request signaling is carried by the RRC message between the Relay and the DeNB on the air interface; the DeNB selects the MME for the Relay, and is carried by the S1 message. Passed between the DeNB and the selected MME.
  • Step 503 After receiving the Attach request in step 502, the MME selects the registration information of the relay, or the relay itself specifies the P-GW serving the relay located in the EPC. And the bearer establishment process is initiated between the MME and the P-GW.
  • the bearer includes at least one default bearer, and optionally includes a plurality of dedicated bearers.
  • the Relay P-GW assigns an IP address, ie IP-1, to the Relay during this process.
  • Step 504 Allocate resources for the bearer established in step 503 on the DeNB and the relay.
  • the RRC reconfiguration process is performed between the DeNB and the Relay by establishing a context procedure of the UE between the MME and the DeNB. And in the process, the response to the Attach request in step 502 is carried by the aforementioned message.
  • the IP_1 assigned in step 503 is notified to the Relay.
  • a transmission channel 1 is established between the Relay and the E-P-GW serving the Relay in the EPC, that is, the remote transmission channel 102 in the example 1, in this example, the transmission channel is relayed in the core.
  • the PDN connection established on the network P-GW is specified.
  • the Relay obtains the IP address IP_1 on the PDN connection.
  • the PDN connection has at least one default bearer, optionally with more than one dedicated bearer.
  • Step 505 The Relay downloads the configuration from the OAM. This process is used as the business data of Relay. Pass the default or dedicated bearer on channel 1. It is routed by the Relay to the P-GW of the Relay and sent by the P-GW to the OAM.
  • the cell can be established as an eNB and establish an S1 connection with at least one MME.
  • the establishment process is carried by the transmission channel 1 to provide wireless access to the UE.
  • Step 506 The Relay initiates a PDN establishment connection request to the core network by using non-access stratum signaling as the identity of the UE.
  • the request signaling is carried between the Relay and the DeNB by the RRC message on the air interface; and is carried between the DeNB and the MME by the S1 message.
  • the request indicates that the local PDN connection is required to be established.
  • Step 507 After receiving the PDN establishment connection request in step 506, the MME determines that the local P-GW needs to be selected, so selects the P-GW that resides on the DeNB.
  • a bearer setup procedure is initiated between the MME and the local P-GW.
  • the bearer includes at least one default bearer, and optionally includes multiple dedicated bearers.
  • the local P-GW allocates an IP address, that is, IP_2, to the relay during this process.
  • Step 508 Allocate resources for the bearer established in step 507 on the DeNB and the relay.
  • An RRC reconfiguration procedure is performed between the DeNB and the Relay by establishing an E-RAB setup procedure between the MME and the DeNB.
  • the aforementioned message carries a response to the PDN establishment connection request in step 506.
  • the IP_2 assigned in step 507 is notified to the Relay.
  • a transmission channel 2 is established between the Relay and the LBO GW residing in the DeNB, namely: the local transmission channel 101 in the example 1.
  • the transport channel is designated by the PDN connection established by the Relay on the LBO GW.
  • the Relay obtains the IP address IP_2 on the PDN connection.
  • the PDN connection has at least one default bearer, optionally with more than one dedicated bearer.
  • Step 509 Through configuration or dynamic monitoring, the Relay decision needs to establish a direct interface with eNB A or eNB B.
  • the Relay initiates a transport layer connection with the eNB A or the eNB B and the establishment of the X2 port.
  • the signaling of the establishment process is used as the relay data, and the default or dedicated bearer on the transmission channel 2 is used. Routed by the relay to the LBO GW on the DeNB, and sent by the LBO GW according to the transport layer address Target eNB.
  • This embodiment describes the handover process of the UE under the relay node in the foregoing Embodiment 1, and the handover process is performed by the cell under the jurisdiction of the relay node to the adjacent macro cell.
  • the architecture see the architecture of the first example shown in Figure 4.
  • the flow of this example is shown in Figure 6, which includes the following steps:
  • Step 601 The UE is within the coverage of the relay and establishes an RRC connection with the relay.
  • Step 603 The MME of the UE receives the Attach request in the step 602 to select the S-GW/P-GW for the UE, and initiates a bearer setup procedure with the S-GW/P-GW.
  • the bearer includes at least one default bearer, and optionally includes multiple dedicated bearers.
  • Step 604 Allocate resources for the bearers established in step 603 on the air interface, that is, Uu and Un, and on the ground side.
  • An E-UTRAN Radio Access Bearer (E-RATB) is allocated between the MME and the Relay through a UE context establishment procedure. After the message arrives at the relay P-GW in the core network, it reaches the relay as the service data through the remote transmission channel 102 and the Unbearer 103.
  • the data radio bearer (DRB, Data Radio Bearer) of the Uu interface is allocated between the Relay and the UE through the RRC reconfiguration process. And in the process, the response to the Attach request in step 602 is carried by the aforementioned message.
  • DRB Data Radio Bearer
  • the user plane channel establishment of the UE for transmitting UE-related user plane data is completed.
  • part 121 is the DRB between the UE and the Relay, and is represented by a shadow padding of the sparse right slash;
  • 122 part is a GTPU tunnel between the Relay and the P-GW of the UE, to be sparse The shaded fill of the vertical line is represented.
  • 122 parts nested in Relay Within the remote transmission channel 102.
  • Step 605 The UE sends a measurement report to the relay, and the relay decides and triggers the handover process.
  • the handover request passes through the local transmission channel 101 and enters the transmission network from the DeNB to the target eNB.
  • Step 607 After receiving the handover request, the target eNB saves the corresponding context information and configuration information, and returns a handover response to the relay.
  • the handover response message should be carried at least.
  • the Uu configuration of the UE in the target cell such as a reconfiguration message, may carry the configuration information of the peer end of the reverse tunnel.
  • the handover response passes through the local transmission channel 101 and arrives at the Relay from the Unbearer 103.
  • the reverse tunnel 131 is established.
  • the portion of the reverse tunnel 131 between the Relay and the DeNB is nested in the local transmission channel 101.
  • the reverse tunnel 131 is represented by a shadow padding of dense dots.
  • Step 608 The UE initiates an RRC reconfiguration request to the relay according to the air interface configuration obtained in step 607, and obtains reconfiguration completion from the target eNB.
  • Step 609 The target eNB sends a path switch request to the MME of the UE, where the configuration needs to be switched to a new transmission channel, such as the destination address and the TEID of the transmission channel, if the transmission channel is still using the GTP-U tunnel.
  • the MME After receiving the request, the MME notifies the P-GW/S-GW of the UE to update the bearer, and modifies the configuration of the transport tunnel.
  • the downlink transmission tunnel end that is, the address of the target eNB, is notified to the P-GW/S-GW of the UE, and the latter returns the address of an uplink transmission tunnel end, which is returned by the MME to the target eNB.
  • part 141 is a DRB between the UE and the target eNB, and is represented by a shadow padding of a dense right slash; 142 is a GTPU tunnel between the target eNB and the P-GW of the UE, filled with a shadow of a dense vertical line Said.
  • Step 610 The final target eNB sends a UE release command to the Relay, and releases the reverse tunnel 131 after the data back propagation is completed.
  • the reverse tunnel 131 is indicated by a shadow padding of dense dots.
  • the Relay has two transport network access nodes: one is a local LBO GW located on the DeNB, corresponding to the local transport channel 201 for the Relay on the DeNB; the other is the Relay P-GW located in the core network, For simplicity, it is unified with the S-GW; correspondingly, a remote transmission channel 202 is established for the Relay between the DeNB and the Relay P-GW. Different transmission channels are transmitted by the radio bearer 203 on the Un interface between the Relay and the DeNB.
  • the direct interface X2 channel 211 between the Relay and other eNBs, the signaling and data on the interface are used as the traffic data of the R e a y, and are sent from the Relay through the LBO GW on the DeNB through the local transmission channel 201 to the corresponding eNB.
  • the S1 signaling channel 212 of the relay acts as the service data of the relay through the local transmission channel 201.
  • the common signaling can be terminated and processed by the DeNB, and the UE-specific dedicated signal is sent from the Relay to the respective MMEs of the UE via the LBO GW on the DeNB.
  • the UEs accessed by the Relay have their data channels 213 as the service data of the Relay through the remote transmission channel 202, from the Relay to the P-GW of the RELAY via the DeNB, and from the latter to the respective Ps of the UE by the transmission network. -GW.
  • the source relay and the target eNB perform the X2 handover procedure through the direct interface X2 channel 211.
  • the backhaul path in the handover process also passes through the direct interface X2 channel 211 and reaches the target eNB through the DeNB.
  • the access mode of the relay is the same as that of the second example. The only difference is that after the relay obtains the configuration parameters through OAM, the relay sends the SI setup through the local transmission channel 201. Send to the DeNB, and the DeNB processes the signaling and replies to the SI setup Rsp.
  • the local transmission channel 201 is represented by a region filled with a broken line; the remote transmission channel 202 is represented by a region filled with a solid line; and the radio bearer 203 is represented by a region filled with a thick solid line.
  • the direct interface X2 channel 211 is represented by a hatched fill of sparse left slashes; the S1 signaling channel 212 is represented by a padded fill of sparse dots; the data channel 213 is represented by a hatched fill of the cross lines.
  • This example describes the access procedure of the UE under the relay node in the above example 4, and the handover process is performed by the cell under the jurisdiction of the relay node to the adjacent macro cell.
  • the architecture see the architecture of the example shown in Figure 7.
  • the flow of this example is shown in Figure 8. The following steps are included:
  • Step 701 The UE is within the coverage of the relay and establishes an RRC connection with the relay.
  • Step 703 The MME of the UE receives the Attach request in step 702 to select the S-GW/P-GW for the UE, and initiates a bearer establishment procedure with the S-GW/P-GW.
  • the bearer includes at least one default bearer, and optionally includes multiple dedicated bearers.
  • Step 704 Allocate resources for the bearers established in step 703 on the air interface, that is, Uu and Un, and the ground side.
  • the E-UTRAN radio access bearer E-RAB is allocated between the MME and the Relay through the UE context establishment procedure flow. In this process, the Relay and the UE's P-GW will notify each other of the transport layer address and the GTPU tunnel identity TEID assigned to the UE.
  • the relay uses the transmission channel of the access node located in the core network, that is, the IP address associated with the remote transmission channel 202 as the transmission address, and optionally triggers the bearer change in the remote transmission channel 202.
  • the MME and the DeNB of the UE transmit signaling through the normal S1 interface, and transmit through the local transmission from the DeNB.
  • the track 201 and the Un bearer 203 arrive at the Relay.
  • the data radio bearer transmission DRB of the Uu interface is allocated between the Relay and the UE through an RRC reconfiguration process. And in the process, the response to the Attach request in step 702 is carried by the aforementioned message.
  • the user plane channel establishment of the UE for transmitting UE-related user plane data is completed.
  • 221 is a DRB between the UE and the Relay, and is represented by a shadow padding of a sparse right slash;
  • 222 is a GTPU tunnel between the Relay and the P-GW of the UE, to be sparse
  • the shaded fill of the vertical line is represented. Since Relay uses the transport address of the remote transport channel 202 to inform the UE's P-GW, the 222 portion is nested within the Relay's remote transport channel 202.
  • Step 705 The UE sends a measurement report to the Relay, and the Relay decides and triggers the handover process.
  • Step 706 The relay initiates a handover request to the target eNB, where the UE carries the context information and the configuration information of the backhaul channel.
  • the GTP-U tunnel protocol is used, and the IP address of the active end of the relevant configuration parameter is TEID of GTP-U.
  • the handover request passes through the local transmission channel 201 and enters the transmission network from the DeNB to the target eNB.
  • Step 707 After receiving the handover request, the target eNB saves the corresponding context information and configuration information, and returns a handover response to the relay.
  • the handover response message should be carried at least.
  • the Uu configuration of the UE in the target cell such as a reconfiguration message, may carry the configuration information of the peer end of the reverse tunnel.
  • the handover response passes through the local transmission channel 201 and arrives at the Relay from the Un bearer 203.
  • the reverse tunnel 231 is established.
  • the portion of the reverse tunnel 231 between the Relay and the DeNB is nested in the local transport channel 201.
  • the reverse tunnel 231 is represented by a shadow padding of dense dots.
  • Step 708 The UE initiates an RRC reconfiguration request to the relay according to the air interface configuration obtained in step 707, and obtains reconfiguration completion from the target eNB.
  • Step 709 The target eNB sends a path switch request to the MME of the UE, where the configuration needs to be switched to a new transmission channel, such as the transmission channel to the GTP-U tunnel still used.
  • the destination address and TEID of the input channel After receiving the request, the MME notifies the P-GW/S-GW of the UE to update the bearer, and modifies the configuration of the transport tunnel.
  • the downlink transmission tunnel end that is, the address of the target eNB, is notified to the P-GW/S-GW of the UE, and the latter returns an address of the uplink transmission tunnel end, which is returned by the MME to the target eNB.
  • part 241 is a DRB between the UE and the target eNB, and is represented by a shadow padding of a dense right slash; 242 is a GTPU tunnel between the target eNB and the P-GW of the UE, filled with a shadow of a dense vertical line Said.
  • Step 710 The last target eNB sends a UE release command to the Relay, and releases the reverse tunnel 231 after the data is retransmitted.
  • the Relay has two transport network access nodes: one is a local LBO GW located on the DeNB, corresponding to the local transport channel 301 for the Relay on the DeNB; the other is the Relay P-GW located in the core network, For simplicity, it is unified with the S-GW; correspondingly, a remote transmission channel 302 is established for the Relay between the DeNB and the Relay P-GW. Different transmission channels are transmitted by the radio bearer 303 on the Un interface between the Relay and the DeNB.
  • the direct interface X2 channel 311 between the Relay and other eNBs, the signaling and data on the interface are used as the traffic data of the R e a y, and are sent from the Relay through the LBO GW on the DeNB through the local transmission channel 301 to the corresponding eNB.
  • the UEs accessed by the Relay whose data channel 312 is used as the service data of the relay, are transmitted from the Relay to the corresponding UE P-GW through the LBO GW on the DeNB through the local transmission channel 301.
  • the S1 signaling channel 313 of the Relay is used as the service data of the Relay, and is transmitted from the Relay to the Relay's P-GW via the DeNB through the remote transmission channel 302, and the latter is transmitted from the latter.
  • the network arrives at the respective P-GW of the UE.
  • the local transmission channel 301 is represented by a region filled with a broken line
  • the remote transmission channel 302 is represented by a region filled with a solid line
  • the radio bearer 303 is represented by a region filled with a thick solid line.
  • the direct interface X2 channel 311 is represented by a hatched fill of sparse left slashes
  • the S1 signaling channel 313 is represented by a padded fill of sparse dots
  • the data channel 312 is represented by a hatched fill of the cross lines.
  • the above-mentioned radio access network is represented by a Radio Access Network, abbreviated as RAN; the relay station is represented by a Relay Node/Relay Station; the macro UE is represented by a Macro UE; the relay UE is represented by a Relay UE; and the direct transmission link is direct Link indicates; uplink is indicated by uplink, abbreviated as UL; downlink is indicated by downlink, abbreviated as DL; access link is represented by access link; backhaul link is represented by backhaul link; service data flow is represented by Service Data Flows; Un 7 It is wireless 7-load.
  • RAN Radio Access Network
  • the relay station is represented by a Relay Node/Relay Station
  • the macro UE is represented by a Macro UE
  • the relay UE is represented by a Relay UE
  • the direct transmission link is direct Link indicates; uplink is indicated by uplink, abbreviated as UL; downlink is indicated by downlink, abbreviated as DL; access

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种应用于无线中继的传输***及传输方法 技术领域
本发明涉及蜂窝无线通讯***中的无线中继领域, 尤其涉及一种应用 于无线中继技术的传输***及传输方法。 背景技术
蜂窝无线通讯***主要由终端(UE, User Equipment )、 无线接入网和 核心网组成, 如图 1所示, 图 1 中包括基站、 终端和核心网。 其中, 由基 站组成的网络、 或由基站和基站控制器共同组成的网络都称为无线接入网, 无线接入网负责接入层事务, 比如无线资源的管理。 基站之间可以根据实 际情况存在物理或者逻辑上的连接,如图 1中的基站 1和基站 2或者基站 3。 每个基站可以和一个或者一个以上的核心网节点连接。 核心网负责非接入 层事务, 比如位置更新等, 并且是用户面的锚点。 UE是指可以与蜂窝无线 通讯进行网络通讯的各种设备, 比如移动电话或者笔记本电脑等。
在蜂窝无线通讯***中, 固定基站网络的无线覆盖由于各种各样的原 因受到限制, 比如各种建筑结构对无线信号的阻挡等原因, 造成在无线网 络的覆盖中无可避免的存在覆盖漏洞。 另外, 在小区的边缘地区, 由于无 线信号强度的减弱, 以及相邻小区的干扰, 导致 UE在小区边缘时, 通讯质 量较差, 无线传输的错误率抬高。 为了提高数据传输吞吐量, 群组移动性, 临时网络部署, 小区边缘地区的吞吐量以及新区域的覆盖, 有一种解决方 案是在蜂窝无线通讯***引入一种无线网络节点, 称为中继节点(Relay ) 。
Relay是具有在其他网络节点之间通过无线链路中继数据以及可能控 制信息功能的站点, 也叫中继节点 /中继站。 Relay的工作原理如图 2所示。 其中, 基站直接服务的 UE 叫宏 UE, Relay服务的 UE叫中继 UE。 各网元 间的接口链路包括: 直传链路、 接入链路和回程链路, 其中, 直传链路是 基站与 UE之间的无线链路, 包含上、 下行的直传链路; 接入链路是 Relay 与 UE之间的链路, 包含上、 下行的接入链路; 回程链路是基站与 Relay之 间的无线链路, 包含上、 下行的回程链路。
Relay可以通过多种方法中继数据, 比如直接放大接收到的基站发送无 线信号, 或者将基站发送的数据接收后进行对应的处理, 可以是解调或者 解码后, 再转发给 UE, 或者基站和中继合作向 UE发送数据, 相反 Relay 也会中继从 UE向基站发送的数据。
在众多的中继类型中, 有一种中继, 其特点如下:
UE无法区分 Relay和固定基站下的小区, 即从在 UE看来, Relay下的 小区艮基站下的小区没有区别, 此类小区可以称为 Relay小区。 Relay小区 和所有的小区一样有自己的小区物理标识 ( PCI, physical cell identity ) , 和 普通小区一样发送广播, 当 UE驻留在中继小区中, 中继小区可以单独分配 调度无线资源给 UE使用, 与参与中继的基站的无线资源调度相互独立。 Relay小区和 Relay UE之间的接口以及协议栈与普通基站小区和 UE之间相 同。 其中, 中继的基站又被称为 Donor基站, 即 Relay通过回程链路连接 的基站。
以下,基于长期演进 ( LTE, Long Term Evolution )蜂窝无线通讯***, 描述上述 Relay小区回程链路的接口规范。 LTE ***釆用基于互联网协议 ( IP, Internet Protocol )的扁平化架构, 如图 3所示, 由演进的通用地面无 线接入网 ( E-UTRAN, Evolved Universal Terrestrial Radio Access Network )、 演进型数据核心网 (EPC, Evolved Packet Core ) 的节点组成。 其中, EPC 的节点包括: 移动管理单元 ( MME, Mobility Management Entity ) 、 服务 网关( S-GW, Serving Gateway )、包数据网络网关( P-GW, PDN Gateway )。 MME负责控制面信令,包括移动性管理、非接入层信令的处理、用户的移动 管理上下文的管理等控制面相关工作; S-GW负责 UE用户面数据的传送、 转发和路由切换等; P-GW是连接 EPC和包数据网如互联网的节点, 负责 如 UE IP地址的分配、 IP数据包按业务类型过滤成业务数据流( Service Data Flows )并绑定到对应的传输承载等。
E-UTRAN的节点包括 eNB , eNB之间在逻辑上通过 X2接口互相连接, 用于支持 UE在整个网络内的移动性, 保证用户的无缝切换。 每个 eNB通 过 S1接口, 连接到***架构演进 ( SAE, System Architecture Evolution )核 心网, 即通过控制平面 S1-MME接口与 MME相连,通过用户平面 S1-U接 口与 S-GW相连, S1接口支持 eNB与 MME和 S-GW之间的多点连接。 MME和 S-GW之间由 SI 1接口相连, S-GW和 P-GW之间由 S5接口相连, 也可以合并到一个网元, 此时 S5 接口不存在。 每个 eNB通过 Uu接口, 最初定义为 UTRAN与 UE之间的无线接口与 UE进行信令和数据的传输。 引入 Relay后, Relay和 eNB之间的无线接口为 Un接口, Relay和 UE之间 和 eNB和 UE之间的接口相同, 所以也是 Uu接口。
在目前已有的中继***的节点架构中,对于 Relay数据进入传输网络的 节点,一种架构是:将传输网络的接入节点定义在核心网网元上,例如 Relay 的 P-GW; 另一种架构是: 将传输网络的接入节点定义在宿主基站(DeNB, Donor eNB )上, 比如 DeNB的本地接入网关 ( LBO GW, Local Break Out GW )。 但是, 这两种架构在数据的传递效率, 尤其是考虑到不同移动性需 求时都存在局限, 以下具体阐述。
一方面,对于接入节点位于核心网网元的架构, 由于所有 Relay传输的 数据都被封装在 Realy到核心网网元的这条传输通道中, 当 Relay管辖的某 个 UE发生切换时,切换信令将通过 Relay到达核心网网元后再路由到接入 网网元, 反向依然。 而切换中的数据反传路径将由核心网网元到达 Relay 后再从相同路径返回核心网网元, 然后才能路由到接入网元; 另一方面, 对于接入节点位于 DeNB的 LBO传输通道的架构, 由于这条传输通道建立 在为其提供无线接入的宿主基站之上, 所以在 Relay本身发生切换时,需要 在目标 DeNB建立新的传输通道,而嵌套在该通道内的多条 UE的传输通道 需要分别切换到新建传输通道, 切换流程复杂。 可见, Relay只能接入单一 的一条传输通道, 由于上述两条传输通道中, 每条传输通道都存在各自的 局限性, 不利于诸如切换等场景下的 Relay数据的传输。 因此, 目前, 迫切 需要一种 Relay通过上述两条传输通道同时接入到核心网和 DeNB的传输方 案, 以解决包括切换场景在内的 Relay数据传输的问题。 发明内容
有鉴于此, 本发明的主要目的在于提供一种应用于无线中继的传输系 统及传输方法,使 Relay通过上述两条传输通道能同时接入到传输网络,从 而解决了包括切换场景在内的 Relay数据传输的问题。
为达到上述目的, 本发明的技术方案是这样实现的:
一种应用于无线中继的传输***, 该***包括: 一组中继节点(Relay ) 和一组演进型基站( eNB ),所述 eNB作为所述 RELAY的宿主基站( DeNB ), 该***还包括: 与所述 Relay相连的至少两个传输网络接入节点;
其中, 所述 Relay, 用于通过位于核心网上的传输网络接入节点和位于 DeNB上的传输网络接入节点, 同时接入传输网络, 并在与不同传输网络接 入节点之间分别建立的传输通道上传输 Relay数据。
其中, 每条传输通道具有传输地址, 传输地址包括: 由与当前传输通 道相对应的传输网络接入节点负责分配的地址。
其中,传输通道的建立方式包括: 所述 Relay与所述传输网络接入节点 之间建立分组数据网络(PDN )连接的方式。
其中, 所述传输网络接入节点包括: 包数据网络网关(P-GW ) , 并且 P-GW可选的位于核心网上、 或 DeNB上; 所述传输通道包括: 在 DeNB内部, 以及在 DeNB与 P-GW之间建立 的用户层面的通用分组无线业务隧道协议(GTPU ) 隧道。
其中, 所述 Relay数据包括: Relay自身的用户面数据; 所述 Relay数 据还包括: Relay所提供的无线接入网元的公共控制信令、 或 Relay所管辖 的 UE的控制面专用信令及用户面数据。
一种应用于无线中继的传输方法, 该方法包括: Relay通过位于核心网 上的传输网络接入节点和位于 DeNB上的传输网络接入节点, 同时接入传 输网络, 并在与不同传输网络接入节点之间分别建立的传输通道上传输 Relay数据。
其中, 不同的传输通道具有不同的传输地址;
该方法进一步包括: 与当前传输通道相对应的传输网络接入节点, 负 责分配传输地址给当前传输通道。
其中, 所述 Relay, 在与不同传输网络接入节点之间建立所述传输通道 包括:
所述 Relay与所述传输网络接入节点之间, 分别通过建立 PDN连接的 方式建立所述传输通道, 并进入传输网络。
其中, 所述传输网络接入节点包括: P-GW; 所述传输通道包括: GTPU 隧道;
所述 Relay与位于核心网上的 P-GW和位于 DeNB上的 P-GW之间, 分别建立所述 PDN连接;并在 DeNB内部,以及 DeNB到核心网上的 P-GW 和位于 DeNB上的 P-GW之间, 分别建立 GTPU隧道。
其中, 传输所述 Relay数据进一步包括: Relay所提供的无线接入网元 的公共控制信令作为 Relay的用户数据,通过位于 DeNB或者核心网的接入 节点传输到传输网络, 并从传输网络到达核心网控制网元、 或接入网网元; 当传输所述公共控制信令的接入节点位于 DeNB 上时, 可选的, 由 DeNB终结并处理;
或者, 传输所述 Relay数据进一步包括: Relay所管辖的 UE的控制面 专用信令及用户面数据作为 Relay的用户数据,通过位于 DeNB或者核心网 的接入节点传输到传输网络, 并从传输网络到达核心网控制网元、 接入网 网元、 或 UE位于核心网的传输网络接入网元。
本发明的 Relay通过位于核心网上的传输网络接入节点和位于 DeNB 上的传输网络接入节点, 同时接入传输网络, 并在与不同传输网络接入节 点之间分别建立的传输通道上传输 Relay数据。
釆用本发明, 解决了只有一条传输通道的无线中继***的局限性, 使 Relay兼容核心网和 DeNB的同时接入, 也就是说, Relay通过位于核心网 上的传输网络接入节点和位于 DeNB上的本地传输网络的接入节点, 同时 接入不同的传输网络, 以便建立两条传输通道, 避免了现有技术中只能釆 用单一的一条传输通道所各自存在的局限性, 从而解决了包括切换场景在 内的 Relay数据传输的问题。 附图说明
图 1为现有技术中蜂窝无线通讯***的结构示意图;
图 2为现有技术中 Relay网络的结构示意图;
图 3为现有技术中 LTE网络的架构示意图;
图 4 为本发明实例 1、 2、 3的网络架构示意图;
图 5 为本发明实例 2的 Relay接入流程示意图;
图 6为本发明实例 3的 UE接入及切换流程示意图;
图 7为本发明实施例 4、 5的网络架构示意图;
图 8为本发明实例 5的 UE接入及切换流程示意图;
图 9为本发明实例 6的网络架构示意图。 具体实施方式
本发明的基本思想是: Relay通过位于核心网上的传输网络接入节点和 位于 DeNB上的传输网络接入节点, 同时接入核心网和 DeNB ,并在与不同 传输网络接入节点之间分别建立的传输通道上传输 Relay数据。
下面结合附图对技术方案的实施作进一步的详细描述。
一种应用于无线中继的传输***,该***包括:一组 Relay和一组 eNB , 且 eNB作为 Relay的 DeNB。 这里, Relay、 eNB和 DeNB都是现有的, 这 里不作具体阐述。该***还包括: 与 Relay相连的至少两个传输网络接入节 点。其中, Relay,用于通过位于核心网上的传输网络接入节点和位于 DeNB 上的传输网络接入节点, 同时接入传输网络, 并在与不同传输网络接入节 点之间分别建立的传输通道上传输 Relay数据。
这里, 每条传输通道具有的传输地址具体包括: 由与当前传输通道相 对应的传输网络接入节点负责分配的地址。
这里, 传输通道的建立方式具体包括: Relay与传输网络接入节点之间 建立分组数据网络(PDN )连接的方式。
这里, 传输网络接入节点具体包括: P-GW, 并且 P-GW可选的位于核 心网上、 或 DeNB上。 传输通道具体包括: 在 DeNB 内部, 以及在 DeNB 与 S-GW/P-GW之间建立的用户层面的通用分组无线业务隧道协议( GTPU ) 隧道。
这里, Relay数据具体包括: Relay所提供的无线接入网元的公共控制 信令、 Relay自身的用户面数据、 或 Relay所管辖的 UE的控制面专用信令 及用户面数据。
一种应用于无线中继的传输方法, 该方法包括: Relay通过位于核心网 上的传输网络接入节点和位于 DeNB上的传输网络接入节点, 同时接入传 输网络, 并在与不同传输网络接入节点之间分别建立的传输通道上传输 Relay数据。
这里, 不同的传输通道具有不同的传输地址。 该方法进一步包括: 与 当前传输通道相对应的传输网络接入节点, 负责分配传输地址给当前传输 通道。
这里, Relay在与不同传输网络接入节点之间建立传输通道具体包括: RELAY与传输网络接入节点之间, 分别通过建立 PDN连接的方式建立传 输通道, 并进入传输网络。
这里,传输网络接入节点具体包括: P-GW; 传输通道具体包括: GTPU 隧道。 Relay与位于核心网上的 S-GW/P-GW和位于 DeNB上的 P-GW之间, 分别建立 PDN连接; 并在 DeNB内部, 以及 DeNB到核心网上的 P-GW和 位于 DeNB上的 P-GW之间, 分别建立 GTPU隧道。
这里, 传输 Relay数据进一步包括以下两种情况:
第一种情况: Relay所提供的无线接入网元的公共控制信令作为 Relay 的用户数据, 通过位于本地 DeNB或者核心网的接入节点传输到传输网络, 并从传输网络到达核心网控制网元、 或接入网网元。
其中, 当传输公共控制信令的接入节点位于本地 DeNB上时, 可选的, 由 DeNB终结并处理。
第二种情况: Relay所管辖的 UE的控制面专用信令及用户面数据作为 Relay的用户数据,通过位于本地 DeNB或者核心网的接入节点传输到传输 网络, 并从传输网络到达核心网控制网元、接入网网元、 或 UE位于核心网 的传输网络接入网元。
本发明主要包括以下内容:
一组 Relay, 为 UE提供无线接入。 一组 eNB, 为中继节点提供无线接 入。 即所述 Relay的 DeNB。
中继节点同时具有至少两个到传输网络的接入节点, 一个位于核心网 内, 比如 P-GW; 另一个位于 DeNB上, 也可以称为 DeNB上的本地传输 网络接入节点, 比如 LBO P-GW。
更进一步的, 中继节点与不同的传输网络接入节点建立传输通道, 在 不同的通道上具有不同的传输地址, 比如 IP地址, 分别由对应的传输网络 接入节点负责分配该传输地址。
更进一步的, 传输通道的建立方式可以通过和 P-GW建立 PDN连接的 方式,通过 P-GW进入传输网络。在这种方式下 Relay会分别和位于核心网 和 DeNB上的 P-GW建立 PDN连接。并在 DeNB内部,以及 DeNB到 P-GW 之间建立 GTPU隧道。
更进一步的,针对 Relay作为提供无线接入网元的公共控制信令, 比如 S 1 AP公共流程、 X2AP公共流程可以作为 Relay的用户数据通过 Relay的 接入节点传递到传输网, 这里, Relay的接入节点包括本地或者核心网, 并 从传输网络到达核心网控制网元, 比如 Relay的 MME、 或接入网网元, 比 如 eNB; 当传递公共信令的接入节点位于本地 DeNB上时, 可选的, 可以 由 DeNB终结并处理。
更进一步的, 中继节点所管辖的 UE的控制面专用信令, 比如 SI AP 专用流程、 X2AP专业流程及数据可以作为 Relay的用户数据通过 Relay的 接入节点传递到传输网, 这里, Relay的接入节点包括本地或者核心网, 并 从传输网络到达核心网控制网元, 比如 UE的 MME、 或接入网网元, 比如 eNB、 或 UE位于核心网的传输网络接入网元, 比如 UE的 P-GW。
综上所述, 对比现有技术和本发明可知: 现有技术中, 由于 Relay只能 接入单一的一条传输通道, 因此, 例如在切换场景下出现了数据传输问题 而影响到切换时, 不具备选择机制, 只能釆用这一条传输通道。 而本发明, 由于同时釆用两条传输通道, 可以对各自传输通道进行优势互补, 比如, 在同时具备两条传输通道的基础上, 能实现通道选择机制, 在一条传输通 道出现数据传输问题时, 启用另一条传输通道, 从而, 可以解决包括切换 场景在内的 Relay数据传输的问题。
以下对本发明进行举例阐述。
实例 1 :
本实例描述了本发明中的一种网络架构, 如图 4所示。 其中, Relay具 有两个传输网络接入节点: 一个是位于 DeNB上的本地 LBO GW, 对应的 在 DeNB上为 Relay建立本地传输通道 101;另一个为位于核心网内的 Relay P-GW , 图中为简便与 S-GW合一; 对应的在 DeNB与 Relay P-GW之间为 Relay建立远端传输通道 102。不同的传输通道在 Relay与 DeNB之间的 Un 接口上都由无线承载 103传输。
Relay与其他 eNB之间的直接接口 X2通道 1 1 1 , 该接口上的信令及数 据作为 Relay的业务数据,通过本地传输通道 101从 Relay经由 DeNB上的 LBO GW, 发送到相应的 eNB。
由 Relay接入的 UE, 它们的 S 1信令通道 1 12作为 Relay的业务数据, 通过远端传输通道 102从 Relay经由 DeNB路由到 Relay的 P-GW, 并从后 者由传输网络到达 UE各自的 MME上。
由 Relay接入的 UE, 它们的数据通道 1 13作为 Relay的业务数据通过 远端传输通道 102 , 从 Relay经由 DeNB路由到 Relay的 P-GW, 并从后者 由传输网络到达 UE各自的 P-GW上。
当 UE由 Relay所建小区接入切换到 eNB所建邻接小区接入时,源 Relay 和目标 eNB之间通过直接接口 X2通道 1 1 1进行 X2切换流程。在切换过程 中的的反传路径也是通过直接接口 X2通道 1 1 1 ,经过 DeNB到达目标 eNB。
这里, 需要指出的是, 图 4中, 本地传输通道 101 以虚线所填充的区 域表示; 远端传输通道 102 以中实线所填充的区域表示; 无线承载 103 以 粗实线所填充的区域表示;直接接口 X2通道 1 1 1以稀疏的左斜线的阴影填 充表示; SI信令通道 112以稀疏的点的阴影填充表示; 数据通道 113以交 叉线的阴影填充表示。
实例 2:
本实例描述了上述实例 1 中继节点的接入过程, 架构参见如图 4所述 实例 1的架构, 本实例的流程如图 5所示, 包括以下步骤:
步骤 501 : Relay在 DeNB无线覆盖范围内, 并与该 DeNB建立 RRC 连接。
步骤 502: Relay通过非接入层信令向核心网发起 Attach请求, 该请求 信令在空口上由 RRC消息携带在 Relay与 DeNB之间传递; 由 DeNB为 Relay选择 MME , 并由 S 1消息携带在 DeNB与所选 MME之间传递。
步骤 503: MME在收到步骤 502中的 Attach请求后通过 Relay的注册 信息选择,或由 Relay自己指定位于 EPC内的服务于 Relay的 P-GW。并在 MME和该 P-GW之间发起承载建立流程。承载至少包括一条默认承载, 可 选的包括多条专用承载。 Relay的 P-GW在此过程中为 Relay分配 IP地址, 即 IP—1。
步骤 504: 在 DeNB和 Relay上为步骤 503建立的承载分配资源。 在 MME和 DeNB之间通过建立 UE的上下文流程, 在 DeNB到 Relay之间通 过 RRC重配流程。 并在此过程中, 由前述消息携带对步骤 502中的 Attach 请求的响应。 并将步骤 503中分配的 IP_1通知 Relay。
在上述步骤正常完成之后, 在 Relay和 EPC内服务于 Relay的 P-GW 之间建立了传输通道 1 , 即: 实例 1中的远端传输通道 102 , 在本实例中该 传输通道由 Relay在核心网 P-GW上建立的 PDN连接指定。 Relay在该 PDN 连接上获得 IP地址 IP_1。 该 PDN连接至少具有一个默认承载, 可选的具 有多于一个的专用承载。
步骤 505: Relay从 OAM下载配置。 该流程作为 Relay的业务数据, 通过传输通道 1上的默认或者专用承载。 由 Relay路由到 Relay的 P-GW, 并由 P-GW发向 OAM。
Relay成功获得配置后, 可以以 eNB 的身份建立小区, 并与至少一个 MME建立 S1连接, 建立流程由传输通道 1承载, 为 UE提供无线接入。
步骤 506: Relay以 UE的身份, 通过非接入层信令向核心网发起 PDN 建立连接请求。 该请求信令在空口上由 RRC消息携带在 Relay与 DeNB之 间传递; 由 S1消息携带在 DeNB与 MME之间传递。 该请求中指示所需建 立的为本地 PDN连接。
步骤 507: MME在收到步骤 506中的 PDN建立连接请求后,判断需要 选择本地 P-GW,所以选择驻留在 DeNB上的 P-GW。在 MME和本地 P-GW 之间发起承载建立流程。 承载至少包括一条默认承载, 可选的包括多条专 用承载。 本地 P-GW在此过程中为 Relay分配 IP地址, 即 IP_2。
步骤 508: 在 DeNB和 Relay上为步骤 507建立的承载分配资源。 在 MME和 DeNB之间通过建立 E-RAB建立流程, 在 DeNB到 Relay之间通 过 RRC重配流程。 并在此过程中, 由前述消息携带对步骤 506中的 PDN 建立连接请求的响应。 并将步骤 507中分配的 IP_2通知 Relay。
在上述步骤正常完成之后, 在 Relay和驻留于 DeNB的 LBO GW之间 建立了传输通道 2, 即: 实例 1中的本地传输通道 101。 在本实例中该传输 通道由 Relay在 LBO GW上建立的 PDN连接指定。 Relay在该 PDN连接上 获得 IP地址 IP_2。 该 PDN连接至少具有一个默认承载, 可选的具有多于 一个的专用承载。
步骤 509: 通过配置或动态监测, Relay决策需要与 eNB A或 eNB B 建立直接接口。 Relay发起与 eNB A或 eNB B的传输层连接和 X2口的建立。 建立流程的信令作为 Relay的数据,使用传输通道 2上的默认或者专用承载。 由 Relay路由到 DeNB上的 LBO GW, 并由 LBO GW根据传输层地址发向 标 eNB。
实施例 3:
本实施例描述了上述实施例 1中 UE在中继节点下的接入过程,并由中 继节点所辖小区切换至邻接宏小区下的切换过程。 架构参见如图 4所述实 例 1的架构, 本实例的流程如图 6所示, 包括以下步骤:
步骤 601 : UE在 Relay无线覆盖范围内,并与该 Relay建立 RRC连接。 步骤 602: UE通过非接入层信令向核心网发起 Attach请求, 该请求信 令在空口, 即 Uu上由 RRC消息携带在 UE与 Relay之间传递; 由 Relay为 UE选择 MME并由 S1消息携带, Relay将 S1消息作为业务数据, 通过 Un 承载 103进入 Relay的远端传输通道 102到达核心网内 Relay的 P-GW, 并 由传输网络到达所选 MME。
步骤 603: UE的 MME在收到步骤 602中的 Attach请求为 UE选择 S-GW/P-GW, 并发起和 S-GW/P-GW之间的承载建立流程。 承载至少包括 一条默认承载, 可选的包括多条专用承载。
步骤 604: 在空口, 即 Uu和 Un, 以及地面侧为步骤 603建立的承载 分配资源。 在 MME 和 Relay之间通过 UE 上下文建立流程流程分配 E-UTRAN无线接入承载 (E-RAB, E-UTRAN Radio Access Bearer ) 。 信 令到达核心网内 Relay的 P-GW后, 作为业务数据通过远端传输通道 102 和 Un承载 103到达 Relay。 在 Relay和 UE之间通过 RRC重配流程分配 Uu口的数据无线承载传输(DRB , Data Radio Bearer ) 。 并在此过程中, 由前述消息携带对步骤 602中的 Attach请求的响应。
在上述步骤之后,用于传输 UE相关的用户面数据的 UE的用户面通道 建立完成。 当 UE通过 Relay接入时, 其中, 121部分为 UE与 Relay之间 的 DRB,以稀疏的右斜线的阴影填充表示; 122部分为 Relay与 UE的 P-GW 之间的 GTPU隧道, 以稀疏的竖线的阴影填充表示。 122部分嵌套在 Relay 远端传输通道 102之内。
步骤 605: UE向 Relay发送测量报告, Relay决策并触发切换过程, 步骤 606: Relay向目标 eNB发起切换请求, 其中携带 UE的上下文信 息, 以及反传通道的配置信息, 在 LTE***中釆用的是 GTP-U隧道协议, 相关的配置参数有源端的 IP地址和 GTP-U的隧道端点标识( TEID, Tunnel End ID )。 切换请求通过本地传输通道 101 , 从 DeNB进入传输网络到达目 标 eNB。
步骤 607: 目标 eNB收到切换请求, 并接纳后, 保存对应的上下文信 息和配置信息, 并向 Relay 回复切换应答。 切换应答消息至少应该携带, UE在目标小区的 Uu配置, 如重配置消息, 可以携带反传隧道的对端配置 信息。 切换应答通过本地传输通道 101 , 从 Un承载 103到达 Relay。
源 Relay收到切换应答后, 反传隧道 131建立完成。 反传隧道 131在 Relay与 DeNB之间的部分嵌套在本地传输通道 101中。其中,反传隧道 131 以密集的点的阴影填充表示。
步骤 608: UE根据步骤 607中获得的空口配置, 向 Relay发起 RRC重 配置请求, 并从目标 eNB获得重配置完成。
步骤 609: 目标 eNB发送路径切换请求给 UE的 MME, 其中携带需要 切换到新的传输通道的配置, 如传输通道到仍然使用 GTP-U隧道的, 则传 输通道的目的端地址和 TEID。 MME收到请求后会通知 UE的 P-GW/S-GW 更新承载, 修改传输隧道的配置。 在该过程中将下行的传输隧道端, 即目 标 eNB的地址通知 UE的 P-GW/S-GW,后者则会返回一个上行传输隧道端 的地址, 由 MME返回给目标 eNB。
在上述步骤之后, UE新的用户面通道建立完成。 其中, 141 部分为 UE与目标 eNB之间的 DRB, 以密集的右斜线的阴影填充表示; 142部分 为目标 eNB与 UE的 P-GW之间的 GTPU隧道, 以密集的竖线的阴影填充 表示。
步骤 610: 最后目标 eNB发送 UE释放命令至 Relay, 并在数据反传完 毕之后将反传隧道 131进行释放。 其中, 反传隧道 131以密集的点的阴影 填充表示。
实例 4:
本实例描述了本发明的另一种网络架构, 如图 7所示。 其中, Relay具 有两个传输网络接入节点: 一个是位于 DeNB上的本地 LBO GW, 对应的 在 DeNB上为 Relay建立本地传输通道 201;另一个为位于核心网内的 Relay P-GW , 图中为简便与 S-GW合一; 对应的在 DeNB与 Relay P-GW之间为 Relay建立远端传输通道 202。不同的传输通道在 Relay与 DeNB之间的 Un 接口上都由无线承载 203传输。
所述 Relay与其他 eNB之间的直接接口 X2通道 211 ,该接口上的信令 及数据作为 Reiay的业务数据, 通过本地传输通道 201从 Relay经由 DeNB 上的 LBO GW, 发送到相应的 eNB。
所述 Relay的 S1信令通道 212作为 Relay的业务数据, 通过本地传输 通道 201。 对于公共信令可以由 DeNB终结并处理, 对于 UE相关的专用信 令从 Relay经由 DeNB上的 LBO GW到达 UE各自的 MME上。
由所述 Relay接入的 UE, 它们的数据通道 213作为 Relay的业务数据 通过远端传输通道 202, 从 Relay经由 DeNB路由到 RELAY的 P-GW, 并 从后者由传输网络到达 UE各自的 P-GW上。
当 UE由 Relay所建小区接入切换到 eNB所建邻接小区接入时,源 Relay 和目标 eNB之间通过直接接口 X2通道 211进行 X2切换流程。在切换过程 中的的反传路径也是通过直接接口 X2通道 211 ,经过 DeNB到达目标 eNB。
在本架构下 Relay的接入方式与实例 2基本相同, 唯一的区别在于在 Relay通过 OAM获得配置参数后, Relay通过本地传输通道 201将 SI setup 发到 DeNB , 并由 DeNB对该信令进行处理, 并回复 SI setup Rsp。
这里, 需要指出的是, 图 7中, 本地传输通道 201 以虚线所填充的区 域表示; 远端传输通道 202 以中实线所填充的区域表示; 无线承载 203 以 粗实线所填充的区域表示;直接接口 X2通道 211以稀疏的左斜线的阴影填 充表示; S1信令通道 212以稀疏的点的阴影填充表示; 数据通道 213以交 叉线的阴影填充表示。
实例 5:
本实例描述了上述实例 4中 UE在中继节点下的接入过程,并由中继节 点所辖小区切换至邻接宏小区下的切换过程。 架构参加参见如图 7所述实 例 4的架构, 本实例的流程如图 8所示, 包括以下步骤:
步骤 701 : UE在 Relay无线覆盖范围内,并与该 Relay建立 RRC连接。 步骤 702: UE通过非接入层信令向核心网发起 Attach请求, 该请求信 令在空口, 即 Uu上由 RRC消息携带在 UE与 Relay之间传递; Relay由 S1消息携带该信令并作为业务数据,通过 Un承载 203进入 Relay的本地传 输通道 201到达 DeNB, 再由 DeNB为 UE选择 MME并转发。
步骤 703: UE的 MME在收到步骤 702中的 Attach请求为 UE选择 S-GW/P-GW, 并发起和 S-GW/P-GW之间的承载建立流程。 承载至少包括 一条默认承载, 可选的包括多条专用承载。
步骤 704: 在空口, 即 Uu和 Un, 以及地面侧为步骤 703建立的承载 分配资源。 在 MME 和 Relay之间通过 UE 上下文建立流程流程分配 E-UTRAN无线接入承载 E-RAB。在这个过程中 Relay和 UE的 P-GW会互 相通知传输层地址以及各自为 UE分配的 GTPU隧道标识 TEID。其中 Relay 会使用接入节点位于核心网的传输通道, 即远端传输通道 202关联的 IP地 址作为传输地址, 并可选的触发远端传输通道 202 中的承载更改。 UE 的 MME和 DeNB通过正常的 S1接口传递信令, 并从 DeNB通过本地传输通 道 201和 Un承载 203到达 Relay。 在 Relay和 UE之间通过 RRC重配流程 分配 Uu口的数据无线承载传输 DRB。 并在此过程中, 由前述消息携带对 步骤 702中的 Attach请求的响应。
在上述步骤之后,用于传输 UE相关的用户面数据的 UE的用户面通道 建立完成。 当 UE通过 Relay接入时, 其中, 221部分为 UE与 Relay之间 的 DRB,以稀疏的右斜线的阴影填充表示; 222部分为 Relay与 UE的 P-GW 之间的 GTPU隧道, 以稀疏的竖线的阴影填充表示。 由于 Relay使用了远 端传输通道 202的传输地址通知 UE的 P-GW,所以 , 222部分嵌套在 Relay 的远端传输通道 202之内。
步骤 705: UE向 Relay发送测量报告, Relay决策并触发切换过程。 步骤 706: Relay向目标 eNB发起切换请求, 其中携带 UE的上下文信 息, 以及反传通道的配置信息, 在 LTE***中釆用的是 GTP-U隧道协议, 相关的配置参数有源端的 IP地址和 GTP-U的 TEID。 切换请求通过本地传 输通道 201 , 从 DeNB进入传输网络到达目标 eNB。
步骤 707: 目标 eNB收到切换请求, 并接纳后, 保存对应的上下文信 息和配置信息, 并向 Relay 回复切换应答。 切换应答消息至少应该携带, UE在目标小区的 Uu配置, 如重配置消息, 可以携带反传隧道的对端配置 信息。 切换应答通过本地传输通道 201 , 从 Un承载 203到达 Relay。
源 Relay收到切换应答后, 反传隧道 231建立完成。 反传隧道 231在 Relay与 DeNB之间的部分嵌套在本地传输通道 201中。其中,反传隧道 231 以密集的点的阴影填充表示。
步骤 708: UE根据步骤 707中获得的空口配置, 向 Relay发起 RRC重 配置请求, 并从目标 eNB获得重配置完成。
步骤 709: 目标 eNB发送路径切换请求给 UE的 MME, 其中携带需要 切换到新的传输通道的配置, 如传输通道到仍然使用 GTP-U隧道的, 则传 输通道的目的端地址和 TEID。 MME收到请求后会通知 UE的 P-GW/S-GW 更新承载, 修改传输隧道的配置。 在该过程中将下行的传输隧道端, 即目 标 eNB的地址通知 UE的 P-GW/S-GW,后者则会返回一个上行传输隧道端 的地址, 由 MME返回给目标 eNB。
在上述步骤之后, UE新的用户面通道建立完成。 其中, 241 部分为 UE与目标 eNB之间的 DRB , 以密集的右斜线的阴影填充表示; 242部分 为目标 eNB与 UE的 P-GW之间的 GTPU隧道, 以密集的竖线的阴影填充 表示。
步骤 710: 最后目标 eNB发送发送 UE释放命令至 Relay, 并在数据反 传完毕之后将反传隧道 231进行释放。
实例 6:
本实例描述了本发明的另一种网络架构, 如图 9所示。 其中, Relay具 有两个传输网络接入节点: 一个是位于 DeNB上的本地 LBO GW, 对应的 在 DeNB上为 Relay建立本地传输通道 301;另一个为位于核心网内的 Relay P-GW , 图中为简便与 S-GW合一; 对应的在 DeNB与 Relay P-GW之间为 Relay建立远端传输通道 302。不同的传输通道在 Relay与 DeNB之间的 Un 接口上都由无线承载 303传输。
所述 Relay与其他 eNB之间的直接接口 X2通道 311 ,该接口上的信令 及数据作为 Reiay的业务数据, 通过本地传输通道 301从 Relay经由 DeNB 上的 LBO GW, 发送到相应的 eNB。
由所述 Relay接入的 UE, 它们的数据通道 312作为 Relay的业务数据 通过本地传输通道 301 ,从 Relay经由 DeNB上的 LBO GW,发送到相应的 UE P-GW„
所述 Relay的 S1信令通道 313作为 Relay的业务数据, 通过远端传输 通道 302, 从 Relay经由 DeNB路由到 Relay的 P-GW, 并从后者由传输网 络到达 UE各自的 P-GW上。
这里, 需要指出的是, 图 9中, 本地传输通道 301 以虚线所填充的区 域表示; 远端传输通道 302 以中实线所填充的区域表示; 无线承载 303 以 粗实线所填充的区域表示;直接接口 X2通道 311以稀疏的左斜线的阴影填 充表示; S1信令通道 313以稀疏的点的阴影填充表示; 数据通道 312以交 叉线的阴影填充表示。
这里, 以上涉及到的无线接入网以 Radio Access Network表示, 缩写为 RAN; 中继站以 Relay Node/Relay Station表示; 宏 UE以 Macro UE表示; 中继 UE以 Relay UE表示;直传链路以 direct link表示;上行以 uplink表示, 缩写为 UL; 下行以 downlink表示, 缩写为 DL; 接入链路以 access link表 示; 回程链路以 backhaul link表示; 业务数据流以 Service Data Flows表示; Un 7 载即为无线 7 载。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、一种应用于无线中继的传输***,该***包括:一组中继节点( Relay ) 和一组演进型基站( eNB ) ,所述 eNB作为所述 Relay的宿主基站( DeNB ) , 其特征在于,该***还包括: 与所述 Relay相连的至少两个传输网络接入节 点;
其中, 所述 Relay, 用于通过位于核心网上的传输网络接入节点和位于 DeNB上的传输网络接入节点, 同时接入传输网络, 并在与不同传输网络接 入节点之间分别建立的传输通道上传输 Relay数据。
2、 根据权利要求 1所述的***, 其特征在于, 每条传输通道具有传输 地址, 传输地址包括: 由与当前传输通道相对应的传输网络接入节点负责 分配的地址。
3、 根据权利要求 1所述的***, 其特征在于, 传输通道的建立方式包 括: 所述 Relay与所述传输网络接入节点之间建立分组数据网络( PDN )连 接的方式。
4、 根据权利要求 1所述的***, 其特征在于, 所述传输网络接入节点 包括包数据网络网关( P-GW ) ,并且 P-GW可选的位于核心网上、或 DeNB 上;
所述传输通道包括: 在 DeNB内部, 以及在 DeNB与 P-GW之间建立 的用户层面的通用分组无线业务隧道协议(GTPU ) 隧道。
5、 根据权利要求 1至 4任一项所述的***, 其特征在于, 所述 Relay 数据包括: Relay 自身的用户面数据; 所述 Relay数据还包括: Relay所提 供的无线接入网元的公共控制信令、或 Relay所管辖的 UE的控制面专用信 令及用户面数据。
6、 一种应用于无线中继的传输方法, 其特征在于, 该方法包括: Relay 通过位于核心网上的传输网络接入节点和位于 DeNB上的传输网络接入节 点, 同时接入传输网络, 并在与不同传输网络接入节点之间分别建立的传 输通道上传输 Relay数据。
7、 根据权利要求 6所述的方法, 其特征在于, 不同的传输通道具有不 同的传输地址;
该方法进一步包括: 与当前传输通道相对应的传输网络接入节点, 负 责分配传输地址给当前传输通道。
8、 根据权利要求 6所述的方法, 其特征在于, 所述 Relay在与不同传 输网络接入节点之间建立所述传输通道包括:
所述 Relay与所述传输网络接入节点之间, 分别通过建立 PDN连接的 方式建立所述传输通道, 并进入传输网络。
9、 根据权利要求 8所述的方法, 其特征在于, 所述传输网络接入节点 包括 P-GW; 所述传输通道包括 GTPU隧道;
所述 Relay与位于核心网上的 P-GW和位于 DeNB上的 P-GW之间, 分别建立所述 PDN连接;并在 DeNB内部,以及 DeNB到核心网上的 P-GW 和位于 DeNB上的 P-GW之间, 分别建立 GTPU隧道。
10、 根据权利要求 6至 8任一项所述的方法, 其特征在于, 传输所述 Relay数据进一步包括: Relay所提供的无线接入网元的公共控制信令作为 Relay的用户数据,通过位于 DeNB或者核心网的接入节点传输到传输网络, 并从传输网络到达核心网控制网元、 或接入网网元;
当传输所述公共控制信令的接入节点位于 DeNB 上时, 可选的, 由 DeNB终结并处理;
或者, 传输所述 Relay数据进一步包括: Relay所管辖的 UE的控制面 专用信令及用户面数据作为 Relay的用户数据,通过位于 DeNB或者核心网 的接入节点传输到传输网络, 并从传输网络到达核心网控制网元、 接入网 网元、 或 UE位于核心网的传输网络接入网元。
PCT/CN2010/075772 2009-08-17 2010-08-06 一种应用于无线中继的传输***及传输方法 WO2011020413A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910163464.3 2009-08-17
CN200910163464.3A CN101998449B (zh) 2009-08-17 2009-08-17 一种应用于无线中继的传输***及传输方法

Publications (1)

Publication Number Publication Date
WO2011020413A1 true WO2011020413A1 (zh) 2011-02-24

Family

ID=43606642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075772 WO2011020413A1 (zh) 2009-08-17 2010-08-06 一种应用于无线中继的传输***及传输方法

Country Status (2)

Country Link
CN (1) CN101998449B (zh)
WO (1) WO2011020413A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811497A (zh) * 2011-06-03 2012-12-05 ***通信集团公司 一种接入网络的方法、终端及***
CN103297947B (zh) * 2012-02-22 2018-06-26 中兴通讯股份有限公司 一种实现本地ip业务的方法及***
CN102821170A (zh) * 2012-08-15 2012-12-12 中兴通讯股份有限公司 一种地址分配方法及宿主基站
CN103813298B (zh) * 2012-11-09 2017-06-06 华为技术有限公司 回程网络承载管理方法及设备
CN103096507B (zh) * 2013-02-21 2016-09-21 北京邮电大学 一种数据通道的建立方法及装置
CN104468312B (zh) * 2014-11-20 2019-03-15 中兴通讯股份有限公司 一种无线中继站及其接入核心网的方法和***
CN111278024B (zh) * 2018-12-04 2023-03-24 中兴通讯股份有限公司 本端gtpu节点信息上报方法、装置及存储介质
CN114760643A (zh) * 2020-12-29 2022-07-15 比亚迪股份有限公司 数据传输方法及通信***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009092155A1 (en) * 2008-01-22 2009-07-30 Nortel Networks Limited Path selection for a wireless system with relays
US20100103861A1 (en) * 2008-10-24 2010-04-29 Qualcomm Incorporated Cell relay packet routing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562091B2 (ja) * 2003-12-30 2010-10-13 ノキア コーポレイション 非対称データリンクを備えた中継基地局を利用する通信システム
US20090185429A1 (en) * 2008-01-22 2009-07-23 Hsin Chang Lin Non-volatile memory with single floating gate and method for operating the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009092155A1 (en) * 2008-01-22 2009-07-30 Nortel Networks Limited Path selection for a wireless system with relays
US20100103861A1 (en) * 2008-10-24 2010-04-29 Qualcomm Incorporated Cell relay packet routing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"LTE-A RAN3 Baseline Document", 3GPP TSG RAN WG3 MEETING #64 R3-091447, 4 May 2009 (2009-05-04) - 8 May 2009 (2009-05-08), SAN FRANCISCO, USA. *
"Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);Relay architectures for E-UTRA (LTE-Advanced)(Release 9)", 3GPPTR 36.806 VO.1.0 (2009-09) 3RD GENERATION PARTNERSHIP PROJECT, 1 October 2009 (2009-10-01), pages 6 *

Also Published As

Publication number Publication date
CN101998449B (zh) 2015-07-22
CN101998449A (zh) 2011-03-30

Similar Documents

Publication Publication Date Title
US8730918B2 (en) Handover method based on mobile relay and mobile wireless relay system
US10015832B2 (en) System and method for communications in communications systems with relay nodes
US9380637B2 (en) Relay communication system supporting multiple hops and access method thereof
JP6177428B2 (ja) 小セルラー基地局アクセスシステム及びそのネットワークアクセスを実現する方法
EP2427002B1 (en) Method, device and system for transmitting relay data
WO2011000193A1 (zh) 一种无线中继***中终端的移动性管理方法及***
EP2605588B1 (en) Method for obtaining interface information of neighbor evolved nodeb/relay node, and wireless relay system
US9538438B2 (en) Method and apparatus for transferring bearing in layered network
EP2432266A1 (en) Method, donor enb and radio relay system for realizing service flows transmission of mobile terminal
WO2014026543A1 (zh) 一种数据转发方法及设备
WO2011020413A1 (zh) 一种应用于无线中继的传输***及传输方法
WO2011023101A1 (zh) 一种无线连接的gtp-u实体间传输数据的方法和装置
WO2010124641A1 (zh) 一种长期演进***及其数据传输方法
WO2015068457A1 (ja) 移動通信システム、ゲートウェイ装置、コアネットワーク装置、通信方法
WO2014000684A1 (zh) 一种进行切换的方法、***和设备
WO2011098001A1 (zh) 切换小区时避免路径转换的方法、***和设备
WO2012034454A1 (zh) 一种un接口的承载复用方法及***
TW201322789A (zh) 用於行動中繼交遞之方法及設備
WO2023113680A1 (en) Radio access nodes and methods for setting up a connection in a wireless communications network
JP2019029964A (ja) 多重無線伝送技術が適用された無線バックホールシステムにおけるデータルーティング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809546

Country of ref document: EP

Kind code of ref document: A1