WO2011018995A1 - 有機無機複合ヒドロゲルおよびその製造方法 - Google Patents

有機無機複合ヒドロゲルおよびその製造方法 Download PDF

Info

Publication number
WO2011018995A1
WO2011018995A1 PCT/JP2010/063371 JP2010063371W WO2011018995A1 WO 2011018995 A1 WO2011018995 A1 WO 2011018995A1 JP 2010063371 W JP2010063371 W JP 2010063371W WO 2011018995 A1 WO2011018995 A1 WO 2011018995A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
compound
inorganic composite
composite hydrogel
clay mineral
Prior art date
Application number
PCT/JP2010/063371
Other languages
English (en)
French (fr)
Inventor
和敏 原口
三惠子 深澤
Original Assignee
財団法人川村理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人川村理化学研究所 filed Critical 財団法人川村理化学研究所
Publication of WO2011018995A1 publication Critical patent/WO2011018995A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use

Definitions

  • the present invention relates to an organic / inorganic composite hydrogel in which an organic polymer and a clay mineral form a three-dimensional network, and an organic / inorganic composite hydrogel exhibiting degradability in water or in vivo.
  • Polymer hydrogels are organic polymer three-dimensional cross-linked products that contain water and swell, and as soft materials with swelling and rubber-like elasticity, such as medical / medicine, food, civil engineering, bioengineering, sports-related, etc. Widely used in the field.
  • a polymer hydrogel having a three-dimensional network formed by combining a water-soluble organic polymer and a layered clay mineral has characteristics such as excellent water absorption and extremely high extensibility.
  • a polymer of a water-soluble organic monomer having an amide bond is mainly used, and it has been difficult to apply it to polyethylene glycol, which is a polymer having excellent biocompatibility.
  • the synthesis of polyethylene glycol hydrogels has been performed using macromers that are structurally designed so that regular chemical crosslinks are formed.
  • Non-Patent Document 1 It has been reported that a greatly improved polyethylene glycol hydrogel can be obtained (see, for example, Non-Patent Document 1).
  • the resulting polyethylene glycol hydrogel exhibited about 280% stretch and about 50 kPa strength at a polymer concentration of 120 mg / ml (see Comparative Example 1). This is achieved by reacting two kinds of reactive four-chain polyethylene glycols by mixing to obtain a chemically crosslinked polyethylene glycol hydrogel having a uniform molecular weight between crosslinking points.
  • the mechanical properties of the obtained polyethylene glycol hydrogel are not yet sufficiently high for practical use, and it is desired to further improve the draw ratio and tensile strength and to control the mechanical properties over a wide range. It was.
  • a polymer material that gradually decomposes by being kept in a predetermined atmosphere For example, materials that are gradually decomposed and metabolized after being implanted in the living body, materials that decompose after use for a certain period of time in soil, materials that decompose gradually when placed in a high-temperature or high-humidity atmosphere, use for a certain period of time Examples include materials that later lose shape or mechanical strength due to decomposition, and materials that signal the end of use, and materials that can be decomposed correspondingly when the atmosphere changes.
  • the polymer material before decomposing needs to have excellent performance according to the purpose, especially high mechanical properties, flexibility, transparency, safety, processability to various shapes.
  • the decomposition conditions are not severe conditions such as high temperature and high pressure, but can be performed under mild conditions as much as possible.
  • the decomposition conditions are not severe conditions such as high temperature and high pressure, but can be performed under mild conditions as much as possible.
  • biodegradable polymers that are degraded by microorganisms and hydrolyzable polymers that are degraded in water or at high humidity.
  • biodegradable polymers that are degraded by microorganisms
  • hydrolyzable polymers that are degraded in water or at high humidity.
  • polylactic acid, polycaptolactone, polyglycolic acid, polydioxanone, modified polyvinyl alcohol, Polybutylene succinate, glycolic acid / lactic acid copolymer, lactide / caprolactone copolymer, cellulose, hyaluronic acid, cellulose acetate, starch, casein and the like are used.
  • polymer gels those using the above-mentioned polymers and polymer gels made of collagen, chitosan, proteins, etc. that are derived from living bodies and are absorbed by living bodies are known. However, it satisfies the above-mentioned high transparency, mechanical properties controlled in a wide range, flexibility, safety, biocompatibility, processability to various shapes, etc. as well as degradability under mild conditions, In addition, there is no one that satisfies all conditions such as non-toxicity after decomposition, and its development has been strongly demanded.
  • Non-Patent Document 2 An organic-inorganic composite gel composed of a monomer polymer and a layered peelable inorganic clay mineral has been reported (Patent Document 2, Non-Patent Document 2). However, although the obtained gel has excellent properties, it did not have degradability in water or in vivo. In addition, none of the polymer gels and organic / inorganic composite gels having excellent mechanical properties, flexibility, and transparency reported to others have been known (Non-Patent Documents 1, 3 to 5).
  • a protein is a string-like polymer in which amino acids are connected one-dimensionally, and the string is folded to create a specific three-dimensional structure.
  • the protein exhibits various functions. Typical examples are enzymes and antibodies.
  • Specific examples of functional proteins include amylase, protease, lipase, cellulase, oxidase, dehydrogenase, gelatin, collagen, fibronectin, albumin, IgG, macroglobulin, blood coagulation factor, monoclonal antibody, polyclonal antibody and the like.
  • protein functions are expressed on the basis of three-dimensional structures stabilized by non-covalent bonds such as hydrophobic interactions, van der Waals interactions, and hydrogen bonds. Deactivating the function has become a major issue.
  • Patent Document 3 a method for obtaining an improved protein by substituting amino acid residues in a protein
  • Patent Document 4 a method for obtaining a thermostable protein by obtaining a mutant enzyme
  • Patent Document 5 a protein using a cationic surfactant
  • sufficient results are not always obtained for effective heat resistance improvement.
  • Patent Document 2 US6710104 JP 2009-118749 A JP 2001-78786 A Special table 2004-500005
  • the problems to be solved by the present invention include excellent mechanical properties, flexibility, transparency, safety, and in particular, polyethylene glycol whose tensile strength and stretch ratio are greatly improved or controlled over a wide range is an organic component.
  • a polymer hydrogel and a method for producing the same are excellent mechanical properties, flexibility, transparency, safety, and in particular, polyethylene glycol whose tensile strength and stretch ratio are greatly improved or controlled over a wide range is an organic component.
  • Another object of the present invention is to provide a degradable organic material that satisfies the above-mentioned conditions, which solves the above-mentioned problems and has a property that can be decomposed in a mild atmosphere and that the decomposed components are also non-toxic.
  • An object of the present invention is to provide an inorganic composite hydrogel, a method for producing the same, and a biological implant material using the same.
  • Another object of the present invention is to provide an organic-inorganic composite hydrogel containing a protein that can increase the thermal stability of the protein and exhibit its function even at a higher temperature, a method for producing the same, and a method for stabilizing the protein. There is.
  • the present inventors have uniformly dispersed finely dispersed clay minerals in a cross-linked polyethylene glycol so that they form a three-dimensional network.
  • the organic / inorganic composite hydrogel is excellent in mechanical properties such as tensile strength and stretch ratio and controlled in a wide range while maintaining uniformity, and such an organic / inorganic composite. It has been found that the thermal stability of the protein is improved in the hydrogel containing the protein and the degradation product of the gel, and the present invention has been completed.
  • the present invention is characterized in that a polymer compound (A) having a branched structure or network structure in which a plurality of polyethylene glycol chains are chemically crosslinked is combined with a layered exfoliated clay mineral (B).
  • An organic-inorganic composite hydrogel is provided.
  • the present invention also provides an organic-inorganic composite hydrogel containing the protein (C) in the organic-inorganic composite hydrogel or a decomposition product thereof.
  • the present invention provides a living body implanting material using the organic-inorganic composite hydrogel.
  • the present invention also provides an aqueous dispersion of the clay mineral (B) by layering the clay mineral (B) in an aqueous medium.
  • a method for producing the organic-inorganic composite hydrogel described above is provided.
  • the present invention also provides a protein stabilization method characterized by improving the stability of the protein (C) by containing the protein (C) in the organic-inorganic composite hydrogel or the decomposition product thereof. To do.
  • the organic-inorganic composite hydrogel obtained by the present invention provides an organic / inorganic composite hydrogel having excellent uniformity and stretch mechanical properties by forming a three-dimensional network of layered exfoliated clay mineral and polyethylene glycol.
  • an organic / inorganic composite hydrogel comprising polyethylene glycol having excellent transparency, uniformity, stretching strength and elongation as an organic component can be obtained.
  • the organic-inorganic composite hydrogel of the present invention is degradable by using, as the polymer compound (A), a compound having an ester group at least in part and having a polyethylene glycol chain chemically cross-linked by an amide bond. Gel. This gel confirms that the degraded product is safe in biological testing. In this case, a degradable gel suitable for in vivo degradation can be obtained by changing the composition such as the content of clay minerals or ester groups.
  • the thermal stability of the protein is improved, and for example, the enzyme activity of the enzyme is maintained at a higher temperature for a long time.
  • the organic / inorganic composite hydrogel having the above characteristics can be obtained in various shapes including cylindrical, rod-like, film-like and thread-like, and is an artificial valve excellent in biocompatibility and flexibility, especially in the medical and pharmaceutical fields.
  • Artificial organ materials such as artificial blood vessels and artificial cartilage, therapeutic materials such as catheters, and single or other biocompatible materials and biodegradable materials, which can be embedded in a living body with excellent safety after degradation. It is used effectively as a material. In addition, it is also used in fields such as agriculture, industry, electronic materials, civil engineering, and packaging materials as various industrial materials having excellent elasticity.
  • FIG. 3 is a diagram showing stress-strain curves in a tensile test of organic / inorganic composite hydrogels obtained in Examples 1 to 4 and Comparative Example 1. It is a figure which shows the cytotoxicity test result of the decomposition solution of the hydrogel obtained in Example 9 and Comparative Example 4. It is a figure which shows the stress-strain curve by the extending
  • the polymer compound (A) used in the present invention is a polymer compound having a branched structure or network structure in which a plurality of polyethylene glycol chains are chemically crosslinked, and a plurality of linear polyethylene glycols are a plurality of crosslinked molecules. It has a structure connected by points or branch points. Such a structure can be used without particular limitation as long as the effects of the present invention are not impaired.
  • a part of the polymer chain has a functional group that causes an interaction with a clay mineral, such as a hydroxyl group, a carboxyl group, an amino group, a sulfonic acid group, an amide group, an ester group, or a quaternary ammonium ion.
  • a group into which one or a plurality of ionic groups such as a group is introduced is used.
  • the chemical cross-linking of the polymer compound (A) is based on an amide bond, and a compound having a structure having an ester group in a part of the molecular chain is preferable because it is excellent in decomposability. More specifically, it is a polymer compound having a branched structure or network structure in which a polyethylene glycol chain containing an ester group at least partially is chemically cross-linked by an amide bond, and a plurality of linear polyethylene glycols are plural. A compound having a structure connected by a crosslinking point or a branching point.
  • the polymer compound (A) used in the present invention includes a compound (a1) having a polyethylene glycol chain and a plurality of reactive functional groups (Q1) in the same molecule, and the reactive functional group (Q1) It can be produced by reacting a compound (a2) having a plurality of reactive functional groups (Q2) capable of reacting.
  • compound (a1) or compound (a2) for example, a compound represented by the following formula (4) or formula (5) can be used.
  • R is a group represented by the following formula (3), formula (6) to formula (11), and n is an integer of 1 or more. Further, the total of four n in one molecule is preferably 50 to 1000, more preferably 100 to 800, and particularly preferably 150 to 500.
  • the weight average molecular weight of the compounds represented by the above formulas (4) and (5) is preferably from 1,000 to 100,000, more preferably from 5,000 to 50,000, and particularly preferably from 5,000 to 40,000.
  • R is the type SUNBRIGHT PTE-050GS (weight average molecular weight 5000), PTE-100GS (weight average molecular weight 10,000), PTE-150GS (weight average molecular weight 15000), PTE-200GS (weight average molecular weight) of the above formula (3) 20000), PTE-400GS (weight average molecular weight 40000)
  • R is type PTE-100HS (weight average molecular weight 10000), PTE-200HS (weight average molecular weight 20000), PTE-400HS (weight average molecular weight 40000) of the above formula (6)
  • R is type PTE-100MA (weight average molecular weight 10000), PTE-200MA (weight average molecular weight 20000), PTE-400MA (weight average molecular weight 40000) of the above formula (8)
  • R is type PTE-100PA (weight average molecular weight 10,000), PTE-150PA (weight average molecular weight 15000), PTE-200PA (weight average molecular weight
  • any one of the groups represented by the above formulas (3) and (6) to (11) is selected as the reactive functional group (Q1), and can react with the reactive functional group (Q1).
  • Reactive functional group (Q2) is selected. And if the compound which has these reactive functional groups (Q1) and (Q2) is made to react as a compound (a1) and a compound (a2), respectively, the high molecular compound (A) which can be used by this invention will be manufactured. Can do.
  • any compound is selected from the compounds represented by the above formulas (4) and (5), and this is used as the compound (a1) having a reactive functional group (Q1).
  • Compound (a2) is a known compound (C) having a plurality of reactive functional groups (Q2) other than the compounds represented by 4) and formula (5) and having a plurality of reactive functional groups (Q2) capable of reacting with this reactive functional group (Q1).
  • the polymer compound (A) that can be used in the present invention can also be produced.
  • Examples of such a compound (C) include ethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, phenylenediamine, butanediamine, pentanediamine, and amino acids such as arginine, asparagine, lysine, and the like. Protein etc. are used.
  • polymer compound (A) used in the present invention more preferably, a compound that has been chemically cross-linked so that the molecular weight between cross-linking points is uniform is effectively used.
  • polyethylene glycol chemically cross-linked so that the molecular weight between the cross-linking points is uniform include, for example, two reactive 4-chain polyethylene glycols described in Non-Patent Documents 2 and 7 (amine end having an amine at the end)
  • examples thereof include polyethylene glycol obtained by mixing and reacting 4-chain polyethylene glycol (TAPEG) and polyethylene glycol having an N-hydroxysuccinimide glutarate terminal at the terminal (TNPEG). In this case, an amide group or an ester group exists in the polyethylene glycol chain.
  • the molecular weight between cross-linking points of chemical cross-linking is 1 ⁇ 2 of the molecular weight of the 4-chain polyethylene glycol, but the value is preferably 1000 to 50000, more preferably 2000 to 30000, and particularly preferably 3000 to 20000.
  • the value of the molecular weight between cross-linking points is less than 1000, the flexibility is insufficient or the draw ratio is reduced.
  • it is larger than 50000 the elastic modulus is too low or the handleability is deteriorated.
  • the compound (a1) is a compound represented by the following formula (1)
  • the compound (a2) is represented by the following formula (2). It is particularly preferable to use compounds which are both compounds and have a weight average molecular weight of 1,000 to 100,000.
  • n is an integer.
  • Y is a group represented by —CH 2 CH 2 CH 2 NH 2 , and n is an integer.
  • a swellable clay mineral that can be peeled in layers is used, and particularly preferably dispersed in water in a molecular (single layer) or within 1 to 10 layers for uniform dispersion.
  • Possible clay minerals are used.
  • water-swellable smectite or water-swellable mica is used.
  • water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, water-swellable synthetic mica, etc. Can be mentioned.
  • the layered exfoliated clay mineral (B) and the polymer compound (A) interact to form a three-dimensional network.
  • the interaction between the clay mineral and the polymer compound (A) is one or more of ionic bond, hydrogen bond, hydrophobic bond, coordination bond, and covalent bond.
  • the amide group and / or ester group of the polymer compound (A) and the clay mineral (B) form a three-dimensional network by hydrogen bonding.
  • organic or inorganic functional molecules and particles can be added for the purpose of improving or controlling physical properties, as long as such three-dimensional network formation is not hindered.
  • inorganic particles it is effective to use nanoparticles such as silica, titania, zirconia, palladium, silver, gold, and platinum together.
  • the mass ratio (B / A) of the clay mineral (B) to the polymer compound (A) is preferably 0.03 to 3, more preferably 0.04 to 1. .5, particularly preferably 0.05 to 0.5.
  • the mass ratio is 0.03 or less, improvement of mechanical properties tends to be insufficient, and when it is 3 or more, uniform fine dispersion of the clay mineral is often difficult.
  • any of simple proteins including oligopeptides and polypeptides and complex proteins such as glycoproteins, lipoproteins, and phosphorylated proteins can be used. These may be natural products derived from living organisms, artificial synthetic products, or products produced from bacterial cells or the like by DNA recombination. Furthermore, these are preferably functional proteins having some physiological activity, and examples thereof include serum proteins, enzymes, immunoactive substances, antithrombotic substances, cell adhesion factors, hormones, cytokines, bacteria, viruses and the like. .
  • functional proteins include amylase, protease, lipase, cellulase, peroxidase, oxidase, dehydrogenase, gelatin, collagen, fibronectin, albumin, IgG, macroglobulin, blood coagulation factor, monoclonal antibody, polyclonal antibody, etc. Is done. One or more of these are selected and used.
  • the content of the protein (C) used in the present invention in the organic / inorganic composite hydrogel can be uniformly dispersed but can be set according to the purpose within a concentration range.
  • the solvent used for the formation of the protein-containing organic / inorganic composite hydrogel gel of the present invention is water, but as long as the protein-containing gel is formed, it is miscible with water and mixed with water-soluble monomers, clay minerals and proteins in a uniform solution. It is also possible to include an organic solvent that is miscible with the water that forms. Further, as long as a uniform solution is formed, an aqueous solution containing a salt or the like can also be used.
  • organic solvent miscible with water examples include methanol, ethanol, propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, and a mixed solvent thereof.
  • the protein-containing organic / inorganic composite gel of the present invention is a gel containing water and protein in a three-dimensional network formed by complexing crosslinked polyethylene glycol chains and clay minerals. That is, proteins interact with each other (ionic interactions, hydrogen bonds, hydrophobic interactions, chelates) in a three-dimensional network formed by complexing crosslinked polyethylene glycol chains and clay minerals in water at the molecular level. It has the characteristics of being dispersed finely by the action of formation, polymer entanglement, etc.
  • protein stability is improved by supporting the protein in the organic / inorganic composite gel.
  • a protein (enzyme) -containing organic / inorganic composite gel is held in 37 ° C. water and the enzyme activity in the surrounding liquid is measured, the enzyme is simply placed in the 37 ° C. water. In comparison, high enzyme activity is observed over a long period of time. This means that the enzyme was stabilized by supporting the enzyme in the organic / inorganic composite gel and by supporting the enzyme in the degradation product. .
  • the organic / inorganic composite hydrogel in the present invention was uniform and transparent regardless of the inorganic content, and no aggregation of clay minerals was observed.
  • the final clay mineral content is measured by thermogravimetric analysis (TGA), and the fine dispersibility is measured by transmission electron microscope (TEM) observation.
  • TGA thermogravimetric analysis
  • TEM transmission electron microscope
  • the organic / inorganic composite hydrogel obtained in the present invention is characterized by not only exhibiting excellent mechanical properties but also controlling the mechanical properties in a wide range.
  • FIG. 1 change in stress / strain curve in the tensile test of the organic / inorganic composite hydrogel when the clay concentration is changed
  • the organic / inorganic composite hydrogel almost always exhibits a breaking elongation of 500% or more.
  • polyethylene glycol hydrogel not complexed with clay minerals it showed a large extensibility.
  • tensile strength and elastic modulus physical properties were controlled in a wide range including those showing higher tensile strength and elastic modulus than polyethylene glycol hydrogel.
  • the organic-inorganic composite hydrogel of the present invention is obtained by using a compound having an ester group at least partially and a polyethylene glycol chain chemically crosslinked by an amide bond as the polymer compound (A).
  • This degradable gel has the property of degrading in water, in an aqueous inorganic salt solution such as physiological saline, in an aqueous solution containing an organic compound such as protein, and in an atmosphere such as high humidity or in vivo.
  • Decomposition rate varies depending on the atmospheric conditions (eg, atmospheric composition, pH, temperature, and retention time), and also depends on the gel composition (eg, polymer compound composition, clay mineral content, liquid content, medium composition). Change.
  • decomposability is often high.
  • Degradability is particularly high when the pH of the atmosphere is strongly acidic (for example, pH 3 or lower) and strong alkali (pH 10 or higher).
  • pH 3 or lower for example, pH 3 or lower
  • strong alkali pH 10 or higher
  • the degradation of the present invention also occurs under mild conditions centering on pH 7 during this period. This is a characteristic of degradable gels.
  • the composition of the degradable gel in the present invention as a general tendency, the larger the amount of clay mineral, the higher the degradability, and the higher the liquid content, the higher the degradability.
  • the gel containing no ester group has no or very low decomposability, and preferably the molar ratio of the ester group to the amide bond is 0.1 to 2.
  • the molar ratio of the ester group to the amide bond is 0.1 or less, the decomposability is often insufficient, and when the ratio is 2 or more, it is often difficult to form a uniform gel with high mechanical properties.
  • water or an aqueous solution is used as the medium composition of the gel.
  • a gel containing phosphoric acid or pyrophosphoric acid is preferably used in order to improve the decomposability.
  • pyrophosphoric acid may be unsuitable for applications that place importance on the biological safety (eg, cytotoxicity) of degradation products, and water or aqueous solutions containing phosphoric acid are preferred, with water being particularly preferred. .
  • the degradation mechanism of the degradable gel in the present invention is not necessarily limited, but it is presumed that the degradation is mainly at the ester group and / or amide group, particularly at the ester group. Further, when the clay mineral (B) is not included, it is presumed that the interaction between these functional groups and the clay mineral works effectively on the decomposability because it has no or very low degradability.
  • the organic / inorganic composite hydrogel in the present invention is preferably prepared by previously mixing an aqueous solution of a compound having a polyethylene glycol chain and a plurality of reactive functional groups in the same molecule with a layered exfoliated clay mineral aqueous dispersion, A compounding technique is used that promotes the crosslinking reaction of the compound. More preferably, in order to obtain an organic / inorganic composite hydrogel having excellent uniformity and mechanical properties, the following is performed which is different from the conventionally reported method for synthesizing polyethylene glycol hydrogel (see Non-Patent Document 2). (1) Use a solution prepared by adding hydrochloric acid to sodium pyrophosphate to adjust the pH.
  • a buffer using pyrophosphate is more effectively used than a commonly used phosphate buffer.
  • the pH adjusted by adding hydrochloric acid to sodium pyrophosphate also known as sodium diphosphate
  • Pyrophosphate is a dimer of phosphoric acid that is generally used.
  • phosphorus pyrophosphate is used to stably delaminate clay minerals and to improve the mechanical properties of the resulting polyethylene glycol hydrogel and organic / inorganic composite hydrogel. Works more effectively than acids.
  • pyrophosphoric acid is not always necessary. In particular, when the safety of decomposition products is important, it is preferably removed by washing with water.
  • a method of combining polyethylene glycol and layered exfoliated clay mineral it is preferable to use a mixture of polymer compound (A) and layered exfoliated clay mineral in advance, more preferably layered exfoliated clay mineral is more stable. It can be mixed with one reactive 4-chain polyethylene glycol (in the case of Non-Patent Document 2, amine-terminated polyethylene glycol) and then mixed with another reactive 4-chain polyethylene glycol and reacted. Used. In the above reaction, the use of pyrophosphoric acid as a buffer and the clay mineral / polyethylene glycol mass ratio of 0.03 to 3 are used in combination, and organic and inorganic having both excellent uniformity and mechanical properties. A composite hydrogel is obtained.
  • the degradable gels obtained in the present invention have in-vivo safety and biocompatibility, and can be used as degradable biological implant materials and drug delivery systems.
  • the degradable gel in the present invention can be used in various shapes depending on the purpose such as columnar shape, rod shape, film shape, and thread shape at the time of embedding. And the clay mineral concentration and liquid content).
  • the degradable gel obtained in the present invention can be used alone or in combination with a synthetic or natural biocompatible material or biodegradable material having other particle, fiber, film, mesh, or coating forms. When combined, it is effectively used as a bio-implanting material excellent in handleability, mechanical properties, biocompatibility, biodegradability, and safety after degradation.
  • the degradable gel in the present invention it is also possible to include compounds that are significant for the living body in the degradable gel and to release them gradually along with the degradation.
  • it is effectively used as a material taking advantage of degradability in the medical / pharmaceutical field other than the bio-implantation field, and in other industrial fields (for example, fields such as agriculture, industry, electronic materials, civil engineering construction, and packaging materials).
  • Example 1 The clay mineral is washed with a water-swellable synthetic hectorite (trademark Laponite XLG, manufactured by Rockwood) having a composition of [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na + 0.66 Thereafter, it was lyophilized before use.
  • Reactive four-chain polyethylene glycol uses SUNBRIGHT PTE200GS (hereinafter abbreviated as PTE200GS) and SUNBRIGHT PTE200PA (weight average molecular weight 20000, hereinafter abbreviated as PTE200PA) (both manufactured by NOF Corporation) having a weight average molecular weight of 20000. It was.
  • Laponite XLG (0.064 g) was dispersed in 3 ml of an aqueous solution adjusted to pH 7.4 by adding hydrochloric acid to 100 mM sodium pyrophosphate (anhydrous) (also known as sodium diphosphate).
  • 240 mg of PTE200PA was added and mixed uniformly.
  • hydrochloric acid was added to 100 mM sodium pyrophosphate
  • 240 mg of PTE200GS was dissolved in 1 ml of an aqueous solution adjusted to pH 7.2.
  • the obtained PTE200PA / clay aqueous solution and PTE200GS aqueous solution were cooled in an ice bath, mixed, and stirred vigorously for 15 seconds.
  • the mixed solution was filled in an 80 ⁇ 50 ⁇ 1 mm glass container and reacted at 25 ° C. for 2 hours. As a result, a transparent and homogeneous hydrogel was obtained.
  • the obtained hydrogel was washed in 800 ml of water (20 ° C.) while changing water four times in the middle. As a result of fluorescent X-ray measurement, no outflow of polyethylene glycol and clay mineral was observed during the cleaning process. Further, after the hydrogel was dried, thermal mass analysis up to 800 ° C. (TG-DTA220 manufactured by Seiko Denshi Kogyo Co., Ltd .: air flow, temperature increase: 10 ° C./min) was performed to determine the clay content. The clay content (clay mineral / total solid content) was 12.8% by mass, which almost coincided with the calculated value (11.8% by mass) from the reaction solution composition.
  • Examples 2 to 4 The synthesis was performed in the same manner as in Example 1 except that 0.032 g (Example 2), 0.32 g (Example 3) and 0.64 g (Example 4) of clay mineral (Laponite XLG) were used. As a result, all have the same composition as calculated from the reaction solution composition, and the mass ratio of clay mineral / polyethylene glycol is 0.067 (Example 2), 0.67 (Example 3), 1.34 (Examples). 4) A uniform and transparent organic / inorganic composite hydrogel was obtained. However, Example 4 is translucent. The result of the tensile test measured in the same manner as in Example 1 is also shown in FIG. The elongation at break was controlled in a wide range from 700 to 1020%, the break strength from 50 to 170 kPa, and the elastic modulus from 28 to 12 kPa.
  • Example 9 The clay mineral is washed with a water-swellable synthetic hectorite (trademark Laponite XLG, manufactured by Rockwood) having a composition of [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na + 0.66 Thereafter, it was lyophilized before use.
  • Reactive four-chain polyethylene glycol uses SUNBRIGHT PTE200GS (hereinafter abbreviated as PTE200GS) and SUNBRIGHT PTE200PA (weight average molecular weight 20000, hereinafter abbreviated as PTE200PA) (both manufactured by NOF Corporation) having a weight average molecular weight of 20000. It was. Note that PTE200GS contains one ester group in a single chain.
  • Laponite XLG 0.64 g of Laponite XLG was dispersed in 30 ml of an aqueous solution adjusted to pH 7.4 by adding hydrochloric acid to 100 mM sodium pyrophosphate (anhydrous) (also known as sodium diphosphate).
  • hydrochloric acid was added to 100 mM sodium pyrophosphate
  • 2.4 g of PTE200GS was dissolved in 10 ml of an aqueous solution adjusted to pH 7.2.
  • the obtained PTE200PA / clay aqueous solution and PTE200GS aqueous solution were cooled in an ice bath, mixed, and stirred vigorously for 15 seconds.
  • the mixed solution was filled in several 80 ⁇ 50 ⁇ 2 mm glass containers and reacted at 25 ° C. for 2 hours.
  • two reactive 4-chain polyethylene glycols were chemically cross-linked by amide bonds, and a transparent and homogeneous hydrogel was obtained.
  • the obtained hydrogel was washed in 800 ml of water (20 ° C.) for 20 hours while changing water four times in the middle. As a result of fluorescent X-ray measurement, no outflow of polyethylene glycol and clay mineral was observed during the cleaning process. Further, after the hydrogel was dried, thermal mass analysis up to 800 ° C. (TG-DTA220 manufactured by Seiko Denshi Kogyo Co., Ltd .: air flow, temperature increase: 10 ° C./min) was performed to determine the clay content. The clay content (clay mineral / polymer) was 13.0% by mass, which almost coincided with the calculated value (13.4% by mass) from the reaction solution composition.
  • FT-IR Fourier transform infrared absorption spectrum
  • the obtained washed organic / inorganic composite gel was cut into a size of 5 ⁇ 5 ⁇ 2 mm, and was washed in water at 20 ° C. (Example 9), 37 ° C. (Example 10), and 60 ° C. (Example 11). (100 g water / 1 g gel), and after a certain period of time, it is filtered with a SUS filter (mesh # 400), and the mass fraction (percentage) of the recovered gel solids to the solids of the first gel Degradability was evaluated. As a result, the mass fraction of the gel collected in 125 days in Example 9, 16 days in Example 10, and 4 days in Example 11 was almost 0%, and the organic / inorganic composite gel was decomposed under these conditions.
  • the liquid obtained by decomposing the gel is added to the medium (5% FBS, 1% sodium pyruvate, 1% P / S, MEM) so that the gel component contained in the medium is 0 to 1000 ppm.
  • the cytotoxicity test was conducted using V79 cells (125 cells / 5 ml / dish). None of Examples 9 to 11 showed cytotoxicity (the cytotoxicity evaluation results of Example 9 are shown in FIG. 2).
  • Example 12 The organic / inorganic composite gel obtained by synthesizing in the same manner as in Example 9 except that 0.48 g of Laponite XLG was used was cut into 80 ⁇ 10 ⁇ 2 mm, and then put into a glass hermetic container (50 ml), and 60 ° C. 5 hours (Example 12) and 24 hours (Example 13), after holding in a thermostatic chamber, the sample was taken out and subjected to a stretching test in the same manner as in Example 9. As a result, as shown in FIG. 3, compared to the gel that was not held in the 60 ° C. hermetically sealed container, the strength and elastic modulus decreased in Example 12, and in Example 13, the shape of the gel began to collapse, In addition, it was weak and could not be stretched.
  • Example 14 to 16 An organic-inorganic composite gel washed with water was obtained in the same manner as in Example 9 except that 1.6 g (Examples 14 and 15) or 3.2 g (Example 16) of Laponite XLG was used. Thereafter, in the same manner as in Example 9, the mass fraction of the recovered gel was measured by keeping it in water at 37 ° C. in Example 14 and Example 16, and in 60 ° C. in Example 15. As a result, the mass fraction of the recovered gel was 0% in 12.5 days in Example 14, 2.4 days in Example 15, and 9 days in Example 16, and the gel was almost decomposed. Was observed.
  • Example 17 The organic / inorganic composite gel synthesized in Example 9 and washed with water was kept in 37 ° C. physiological saline instead of in water, and the gel was decomposed in the same manner as in Example 9. evaluated. As a result, the mass fraction of the collected gel became 0% after 7.5 days.
  • Example 18 The organic-inorganic composite gel obtained by synthesis in Example 9 was washed in water for 20 hours, then in Example 18 in a 100 mM phosphate buffer aqueous solution (pH 7.4), and in Example 19 100 mM pyrophosphate. It was immersed in a buffer aqueous solution (pH 7.4) for 4 hours. The obtained gel was held in 37 ° C. water in the same manner as in Example 10 to evaluate the degradability of the gel. As a result, the mass fraction of the gel recovered after 14 days in Example 18 and 13 days in Example 19 was 0%, confirming faster degradability than in the case of only water washing (Example 10). .
  • Comparative Example 3 it was observed that the gel was degraded after 10 days. As a result of performing the cytotoxicity test of the obtained degradation solution in the same manner as in Example 11, cytotoxicity was observed. .
  • the results of the cytotoxicity test in Comparative Example 3 are shown in FIG.
  • Example 20 Instead of SUNBRIGHT PTE200GS containing one ester group in one ethylene glycol chain, the same procedure as in Example 9 was used except that SUNRIGHT PTE200HS (made by NOF Corporation) having the same molecular weight and no ester group was used.
  • An organic / inorganic composite gel was prepared to produce the organic / inorganic composite gel of Example 20.
  • Example 20 Thereafter, in the same manner as in Example 9, the decomposability in water of the washed organic-inorganic composite gel was evaluated. As a result, the gel of Example 20 could not be confirmed to be decomposed by evaluation for one month.
  • Example 21 Comparative Example 7
  • Example 21 the organic / inorganic composite gel synthesized in Example 9 and washed with water was used.
  • Comparative Example 7 the gel synthesized in Comparative Example 1 and washed with water was used.
  • Example 21 when the sample was taken under the skin of the goat and taken out one month later, it was decomposed to such a degree that a slight amount of gel residue was seen, whereas in Comparative Example 7, the same shape in the initial stage of implantation was firmly observed. A gel was obtained.
  • Example 22 The clay mineral is washed with a water-swellable synthetic hectorite (trademark Laponite XLG, manufactured by Rockwood) having a composition of [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na + 0.66 Thereafter, it was lyophilized before use.
  • Reactive four-chain polyethylene glycol uses SUNBRIGHT PTE200GS (hereinafter abbreviated as PTE200GS) and SUNBRIGHT PTE200PA (weight average molecular weight 20000, hereinafter abbreviated as PTE200PA) (both manufactured by NOF Corporation) having a weight average molecular weight of 20000. It was.
  • Laponite XLG 0.16 g was dispersed in 3 ml of an aqueous solution adjusted to pH 7.4 by adding hydrochloric acid to 100 mM sodium pyrophosphate (anhydrous) (also known as sodium diphosphate).
  • hydrochloric acid 100 mM sodium pyrophosphate (anhydrous) (also known as sodium diphosphate).
  • HRP enzyme Horse radish peroxidase: hemeprotein: molecular weight 44000, EC No. 1.11.1.7
  • hydrochloric acid was added to 100 mM sodium pyrophosphate
  • 240 mg of PTE200GS was dissolved in 1 ml of an aqueous solution adjusted to pH 7.2.
  • 1 g of the obtained gel was cut out, put into 100 ml of water (37 ° C.) and held for 12 days. 200 ⁇ l of liquid was sampled at predetermined time intervals during 12 days, and enzyme activity was measured. In the measurement method, the sampled solution was kept at 37 ° C., and STE buffer (composition: 100 mM Tris-HCl, pH 8.0, 1 M NaCl, 10 mM EDTA) 5 ⁇ l, solution 45 ⁇ l, TMB (3, 3 ′, 5, 5 '-tetramethylbenzidine) substrate (50 ⁇ l) was added and reacted at 25 ° C. for 1 minute.
  • STE buffer composition: 100 mM Tris-HCl, pH 8.0, 1 M NaCl, 10 mM EDTA
  • Example 23, Comparative Example 10 The HRP enzyme-containing organic / inorganic composite gel obtained in Example 22 was transferred to a sealed container, and in Example 23, it was stored at 37 ° C. for 4 days. Thereafter, 1 g of the gel was immersed in 100 g of water (37 ° C.) and held for 1 day, and water was sampled to measure enzyme activity in the same manner as in Example 22. In Comparative Example 10, HRP was kept in 37 ° C. water for 4 days, and further kept in 37 ° C. water for 1 day, and then the water was sampled and the enzyme activity was similarly examined. In addition, the enzyme activity retention rate of Example 23 and Comparative Example 10 was displayed with the value measured before maintaining at 37 ° C. as 100%. Example 23 showed higher activity than Comparative Example 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 本発明は、力学的物性、柔軟性、透明性、特に、引っ張り強度や延伸倍率を改良することを目的としたポリエチレングリコールを有機成分とする高分子ヒドロゲル及びその製造方法に関する。 本発明の高分子ヒドロゲルは、穏和な雰囲気で分解する特性を有し、分解後の成分も毒性を有しない。したがって、生体埋め込み材料として使用することができる。 更に、本発明の高分子ヒドロゲル中にはタンパク質を包含させることができ、包含されたタンパク質は熱的に安定となり、より高い温度でも機能を発揮できる。 複数のポリエチレングリコール鎖が化学的に架橋された分岐構造又は網目構造を有する高分子化合物(A)と層状剥離した粘土鉱物(B)とが複合化している有機無機複合ヒドロゲルにより上記課題を達成した。

Description

有機無機複合ヒドロゲルおよびその製造方法
 本発明は、有機高分子と粘土鉱物が三次元網目を形成してなる有機・無機複合ヒドロゲル、及び水中や生体内などで分解性を示す有機無機複合ヒドロゲルに関する。
 高分子ヒドロゲルは有機高分子の三次元架橋物が水を含んで膨潤したものであり、膨潤性やゴム状弾性を有するソフトマテリアルとして、医療・医薬、食品、土木、バイオエンジニアリング、スポーツ関連などの分野で広く用いられている。
 これまでに本発明者らは、水溶性有機高分子と層状粘土鉱物とが複合化して形成された三次元網目を有する高分子ヒドロゲルが、優れた吸水性や極めて高い伸張性などの特徴を有することについて報告した(例えば特許文献1参照)。しかし、この方法においては、主にアミド結合を有する水溶性有機モノマーの重合体が用いられ、生体適合性などに優れた高分子であるポリエチレングリコールに適用することは困難であった。一方、近年、ポリエチレングリコールヒドロゲルの合成を、規則的な化学架橋が形成されるように構造設計したマクロマーを用いて行うことにより、従来のランダムに化学架橋した高分子ヒドロゲルと比べて、力学物性を大きく向上させたポリエチレングリコールヒドロゲルが得られることが報告されている(例えば、非特許文献1参照)。得られたポリエチレングリコールヒドロゲルは、120mg/mlのポリマー濃度において、約280%の延伸および約50kPaの強度を示した(比較例1参照)。これは、2種の反応性4本鎖ポリエチレングリコールを混合により反応させ、架橋点間分子量のそろった化学架橋型ポリエチレングリコールヒドロゲルとすることにより達成されたものである。しかし、得られたポリエチレングリコールヒドロゲルの力学物性は、実用上、まだ十分に高いものとなっておらず、延伸倍率や引っ張り強度を更に向上させることや広い範囲で力学物性を制御することが望まれていた。
 一方、所定の雰囲気に保持することにより徐々に分解していく高分子材料に関する要求が近年高まっている。例えば、生体内において埋め込んだ後、徐々に分解して代謝される材料、土中で一定期間使用後に分解していく材料、高温または高湿度雰囲気におくことにより徐々に分解する材料、一定時間使用後に分解のため形状または力学強度が失われ、使用終了の合図となる材料、雰囲気が変化した場合、それに対応して分解が促進される材料、などがあげられる。いずれの場合も、分解する前の高分子材料は目的に応じた優れた性能を有することが必要であり、特に、高い力学物性、柔軟性、透明性、安全性、種々の形状への加工性などを併せ持つことが望まれる。一方、分解条件は高温・高圧などの厳しい条件ではなく、出来るだけ穏和な条件で行えることが好ましく、例えば、水中、生理食塩水中、海水中、7前後のpH雰囲気、室温~数十℃、低~高湿度などの条件下で分解することがあげられる。
 これまで、多くの構造・組成の異なる高分子が分解性材料として提案され使用されてきた。例えば、微生物により分解される生分解性高分子や水中または高湿度で分解する加水分解性高分子があり、具体的には、ポリ乳酸、ポリカプトラクトン、ポリグリコール酸、ポリジオキサノン、変性ポリビニルアルコール、ポリブチレンサクシネート、グリコール酸/乳酸共重合体、ラクチド/カプロラクトン共重合体、セルロース、ヒアルロン酸、酢酸セルロース、デンプン、カゼインなどが用いられている。一方、高分子ゲルに関しては、上記高分子を用いたものや、生体由来で生体に吸収されていくコラーゲン、キトサン、タンパク質などからなる高分子ゲルが知られている。しかし、穏和な条件での分解性と共に、前記したような高い透明性、広い範囲で制御された力学物性、柔軟性、安全性、生体適合性、種々の形状への加工性などを満足し、且つ、分解後も毒性のないといった全ての条件を満足したものはなく、その開発が強く求められていた。
 本発明者らは、これまでかかる高い透明性、広い範囲で制御された力学物性、柔軟性、安全性、生体適合性、種々の形状への加工性を満足した高分子ゲルとして、水溶性有機モノマーの重合体と層状剥離可能な無機粘土鉱物からなる有機・無機複合ゲルを報告している(特許文献2,非特許文献2)。しかし、得られたゲルは優れた特性を有するが、水中や生体内での分解性は有していなかった。また、その他に報告されている優れた力学物性、柔軟性および透明性を有する高分子ゲルおよび有機・無機複合ゲルにおいても分解性を有するものは知られていなかった(非特許文献1、3~5)。
 ところで、タンパク質はアミノ酸が一次元的につながったひも状高分子であり、ひもは折れたたまれることにより特異的な立体構造をつくり、その結果、タンパク質は多彩な機能を発揮している。その代表例が酵素や抗体である。機能性タンパク質として、具体的には、アミラーゼ、プロテアーゼ、リパーゼ、セルラーゼ、オキシダーゼ、デヒドロゲナーゼ、ゼラチン、コラーゲン、フィブロネクチン、アルブミン、IgG、マクログロブリン、血液凝固因子、モノクロール抗体、ポリクローナル抗体などが例示される。
 このように、タンパク質の機能は疎水的相互作用、ファンデアワールス相互作用、水素結合など非共有結合により安定化された立体構造に基づき発現しているため、熱により立体構造が壊れやすく、加熱処理などにより、その機能を失活することが大きな課題となっている。
 これまで、タンパク質の耐熱性を向上させるために幾つかの方法が検討されている。例えば、タンパク質中のアミノ酸残基を置換して改良型タンパク質を得る方法(特許文献3)、突然変異酵素を取得して熱安定性タンパク質を得る方法(特許文献4)、カチオン界面活性剤によりタンパク質を熱安定化する方法(特許文献5)などが例示される。しかし、有効な耐熱性向上としては必ずしも十分な結果は得られていない。
特開2002-53629号公報 特許文献2 US6710104 特開2009-118749号 特開2001-78786号 特表2004-500005号
Takamasa Sakai, Takuro Matsunaga, Yuji Yamamoto, Chika Ito, Ryo Yoshida, Shigeki Suzuki, Nobuo Sasaki, Mitsuhiro Shibayama, Ung-il Chung, Macromolecules, 41, 5379-5384 (2008). K. Haraguchi, T. Takehisa, Adv. Mater. 2002, 14, 1120-1124. Y. Okumura, K. Ito, Adv. Mater. 2001, 13, 485-487. J.P.Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv.Mater.2003, 15, 1155-1158. M. Fukasawa, T. Sakai, U.I. Chung, K. Haraguchi, Macromolecules,doi.10.1021/ma100419c(2010)
 本発明が解決しようとする課題は、優れた力学物性、柔軟性、透明性、安全性を有し、特に、引っ張り強度や延伸倍率を大きく向上した、又は広い範囲で制御したポリエチレングリコールを有機成分とする高分子ヒドロゲル及びその製造方法を提供することにある。
 また、本発明の他の課題は、上記課題を解決すると共に、穏和な雰囲気で分解可能な特性を有し、且つ、分解後の成分も毒性のないという、全ての条件を満たす分解性の有機無機複合ヒドロゲル及びその製造方法、並びにそれを用いた生体埋め込み材料を提供することにある。
 また、本発明の他の課題は、タンパク質の熱安定性をあげ、より高い温度でも機能を発揮できるようなタンパク質を含有する有機無機複合ヒドロゲル及びその製造方法、並びにタンパク質の安定化方法を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意研究に取り組んだ結果、架橋されたポリエチレングリコール中に、層状剥離した粘土鉱物を均一に微細分散し、それらが三次元網目を形成するように複合化させる方法により、均一性を保持しつつ、引っ張り強度や延伸倍率などの力学物性に優れ、広い範囲でそれらが制御された有機・無機複合ヒドロゲルが得られること、及びそのような有機・無機複合ヒドロゲル中にタンパク質を含有させたもの、及びそのゲルの分解物において、タンパク質の熱安定性が向上することを見出し、本発明を完成するに至った。
 即ち本発明は、複数のポリエチレングリコール鎖が化学的に架橋された分岐構造又は網目構造を有する高分子化合物(A)と層状剥離した粘土鉱物(B)とが複合化していることを特徴とする有機無機複合ヒドロゲルを提供する。
 また、本発明は、上記の有機無機複合ヒドロゲル又はその分解物中にタンパク質(C)を含有している有機無機複合ヒドロゲルを提供する。
 また、本発明は、上記の有機無機複合ヒドロゲルを用いた生体埋め込み材料を提供する。
 また、本発明は、粘土鉱物(B)を水媒体中で層状剥離させることにより該粘土鉱物(B)の水分散液を製造し、
その層状剥離した粘土鉱物の存在下で、同一分子中にポリエチレングリコール鎖と複数の反応性官能基(Q1)とを有する化合物(a1)と、
該反応性官能基(Q1)と反応しうる複数の反応性官能基(Q2)を有する化合物(a2)とを反応させる、
ことを特徴とする上記の有機無機複合ヒドロゲルを製造する方法を提供する。
 また、本発明は、上記の有機無機複合ヒドロゲル又はその分解物中にタンパク質(C)を含有させることにより、該タンパク質(C)の安定性を向上させることを特徴とするタンパク質安定化方法を提供する。
 本発明により得られる有機無機複合ヒドロゲルは、層状に剥離した粘土鉱物とポリエチレングリコールが三次元網目を形成することで、均一性および延伸力学物性に優れた有機・無機複合ヒドロゲルが提供される。特に、調製条件の最適化により、透明性・均一性、延伸強度や伸びに優れたポリエチレングリコールを有機成分とする有機・無機複合ヒドロゲルが得られる。
 また、高分子化合物(A)として、少なくとも一部にエステル基を有し、且つポリエチレングリコール鎖がアミド結合により化学的に架橋された化合物を用いることにより、本発明の有機無機複合ヒドロゲルを分解性のゲルとすることができる。このゲルは分解後の生成物が生物学的試験において安全であることを確認している。この場合、粘土鉱物やエステル基の含有率などの組成変化により、生体内での分解に適した分解性ゲルを得ることができる。
 更に、本発明の有機無機複合ヒドロゲル又はその分解物中にタンパク質を含有させることにより、タンパク質の熱安定性が向上し、例えば、酵素の酵素活性がより高温で、長時間継続する効果が得られる。
 以上の様な特徴を有する有機・無機複合ヒドロゲルは、円柱状、棒状、フィルム状、糸状を初めとして各種形状で得られ、医療・医薬品分野、特に、生体適合性、柔軟性に優れた人工弁、人工血管、人工軟骨などの人工臓器用材料や、カテーテルなどの治療用材料、更に、単独またはその他の生体適合性材料や生分解性材料と複合化して、分解後安全性に優れた生体埋め込み材料として有効に用いられる。また、伸縮性に優れた各種工業材料として農業・工業・電子材料・土木建築・包装資材などの分野でも用いられる。
実施例1~4および比較例1で得られた有機・無機複合ヒドロゲルの引っ張り試験における応力-歪み曲線を示す図である。 実施例9および比較例4で得られたヒドロゲルの分解液の細胞毒性試験結果を示す図である。 実施例12、13で得られた分解実験を行ったゲルおよび分解前のゲルの延伸試験による応力-歪み曲線を示す図である。 実施例22および比較例8、比較例9における酵素(Horse radish peroxidase)の活性の時間変化を示す図である。 実施例23および比較例10における酵素(Horse radish peroxidase)の活性の変化を示す図である。
 本発明で用いる高分子化合物(A)としては、複数のポリエチレングリコール鎖が化学的に架橋された分岐構造、又は網目構造を有する高分子化合物であり、複数の直鎖状ポリエチレングリコールが複数の架橋点、又は分岐点により結ばれた構造を有する。このような構造であれば、本発明の効果を損なわない限り特に限定なく使用可能である。特に、好ましくは、その高分子鎖の一部に、粘土鉱物との相互作用を生じる官能基、例えば、水酸基、カルボキシル基、アミノ基、スルホン酸基、アミド基、エステル基や、4級アンモニウムイオン基などのイオン性基の一種または複数種を導入したものが用いられる。
 中でも、高分子化合物(A)の化学的架橋がアミド結合によるものであり、分子鎖の一部にエステル基を有する構造の化合物は分解性に優れているため好ましい。より具体的には、少なくとも一部にエステル基を含むポリエチレングリコール鎖がアミド結合により化学的に架橋された分岐構造、又は網目構造を有する高分子化合物であり、複数の直鎖状ポリエチレングリコールが複数の架橋点、又は分岐点により結ばれた構造を有する化合物である。
 更に、本発明で用いる高分子化合物(A)としては、同一分子中にポリエチレングリコール鎖と複数の反応性官能基(Q1)とを有する化合物(a1)と、該反応性官能基(Q1)と反応しうる複数の反応性官能基(Q2)を有する化合物(a2)とを反応させることにより製造することができる。
 上記化合物(a1)又は化合物(a2)として、例えば、下記式(4)又は式(5)で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 上記式(4)及び式(5)中、Rは下記式(3)、式(6)~式(11)で表される基であり、nは1以上の整数である。また、1分子中の4つのnの合計は、50~1000が好ましく、100~800がより好ましく、150~500が特に好ましい。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 上記式(4)及び式(5)で表される化合物の重量平均分子量は1000~100000であることが好ましく、5000~50000であることがより好ましく、5000~40000であることが特に好ましい。
 そのような化合物の市販品としては、
(1)Rが上記式(3)のタイプ
SUNBRIGHT PTE-050GS(重量平均分子量5000)、PTE-100GS(重量平均分子量10000)、PTE-150GS(重量平均分子量15000)、PTE-200GS(重量平均分子量20000)、PTE-400GS(重量平均分子量40000)
(2)Rが上記式(6)のタイプ
PTE-100HS(重量平均分子量10000)、PTE-200HS(重量平均分子量20000)、PTE-400HS(重量平均分子量40000)
(3)Rが上記式(8)のタイプ
PTE-100MA(重量平均分子量10000)、PTE-200MA(重量平均分子量20000)、PTE-400MA(重量平均分子量40000)
(4)Rが上記式(9)のタイプ
PTE-100PA(重量平均分子量10000)、PTE-150PA(重量平均分子量15000)、PTE-200PA(重量平均分子量20000)、PTE-400PA(重量平均分子量40000)
(5)Rが上記式(11)のタイプ
PTE-050SH(重量平均分子量5000)、PTE-100SH(重量平均分子量10000)、PTE-200SH(重量平均分子量20000)
等がある。
 上記式(3)、式(6)~式(11)で表される基の中からいずれかの基を反応性官能基(Q1)として選択し、この反応性官能基(Q1)と反応可能な反応性官能基(Q2)を選択する。そして、これらの反応性官能基(Q1)及び(Q2)を有する化合物をそれぞれ化合物(a1)、化合物(a2)として反応させれば本発明で使用可能な高分子化合物(A)を製造することができる。
 また、上記式(4)及び式(5)で表される化合物の中から、いずれかの化合物を選択し、これを反応性官能基(Q1)を有する化合物(a1)として用い、上記式(4)及び式(5)で表される化合物以外であり、この反応性官能基(Q1)と反応可能な複数の反応性官能基(Q2)を有する公知の化合物(C)を化合物(a2)として用いても本発明で使用可能な高分子化合物(A)を製造することができる。
 このような化合物(C)としては、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、フェニレンジアミン、ブタンジアミン、ペンタンジアミン、またアルギニン、アスパラギン、リジンなどのアミノ酸およびこれらを含有するタンパク質等が用いられる。
 本発明で使用する高分子化合物(A)としては、より好ましくは、架橋点間分子量が均一になるように化学架橋されているものが有効に用いられる。架橋点間分子量が均一になるように化学架橋されたポリエチレングリコールの例としては、例えば、非特許文献2、7に記載の2種の反応性4本鎖ポリエチレングリコール(末端にアミンを有するアミン末端4本鎖ポリエチレングリコール(TAPEG)および末端にN-ヒドロキシサクシイミドグルタレイト末端を有するポリエチレングリコール(TNPEG))を混合し反応させて得られるポリエチレングリコールがあげられる。この場合、ポリエチレングリコール鎖中には、アミド基やエステル基が存在する。また、化学架橋の架橋点間分子量は4本鎖ポリエチレングリコールの分子量の1/2となるが、その値は好ましくは1000~50000、より好ましくは2000~30000、特に好ましくは3000~20000である。架橋点間分子量の値が1000より小さいと柔軟性が不足したり、延伸倍率が小さくなる。また、50000より大きいと、弾性率が低すぎたり、取り扱い性が悪くなったりする。
 本発明では、非特許文献2、7に記載のポリエチレングリコールの如く、化合物(a1)として下記式(1)で表される化合物であり、化合物(a2)として下記式(2)で表される化合物であり、共に重量平均分子量が1000~100000である化合物を使用することが特に好ましい。
Figure JPOXMLDOC01-appb-C000013
(式中、Xは下記式(3)
Figure JPOXMLDOC01-appb-C000014
で表される基であり、nは整数である。)
Figure JPOXMLDOC01-appb-C000015
(式中、Yは-CH2CH2CH2NH2で表される基であり、nは整数である。)
 上記式(1)で表される化合物と式(2)で表される化合物の架橋反応を下記の反応式で示した。
Figure JPOXMLDOC01-appb-C000016
 本発明で用いられる粘土鉱物(B)としては、層状に剥離可能な膨潤性粘土鉱物が用いられ、特に好ましくは水中で分子状(単一層)又は1~10層以内に層状剥離して均一分散可能な粘土鉱物が用いられる。例えば、水膨潤性スメクタイトや水膨潤性雲母などが用いられ、具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。
 本発明においては、層状剥離した粘土鉱物(B)と前記高分子化合物(A)が相互作用して三次元網目を形成していることが好ましい。粘土鉱物と高分子化合物(A)間の相互作用は、効果的な三次元網目を形成できれば、イオン結合、水素結合、疎水結合、配位結合、共有結合などのいずれか一つまたは複数であって良い。特に好ましくは、高分子化合物(A)の有するアミド基および/またはエステル基と粘土鉱物(B)が水素結合により三次元網目を形成しているものである。
 なお、かかる三次元網目形成を妨げない限り、または物性を向上させ、または制御する目的で、有機または無機の各種機能性分子や粒子を添加しておくことは可能である。例えば無機粒子としては、シリカ、チタニア、ジルコニア、パラジウム、銀、金、白金などのナノ粒子を共存させることは有効に用いられる。
 本発明における有機・無機複合ヒドロゲルは、高分子化合物(A)に対する粘土鉱物(B)の質量比(B/A)が0.03~3であることが好ましく、より好ましくは0.04~1.5、特に好ましくは0.05~0.5である。質量比が0.03以下では機械的性質の向上が不十分となりやすく、3以上では粘土鉱物の均一微細分散が困難となってくる場合が多い。
 本発明で用いられるタンパク質(C)としては、オリゴペプチドやポリペプチドを含む単純タンパク質と、糖タンパク質、リポタンパク質、リン酸化タンパク質などの複合タンパク質のいずれもが使用できる。これらは生体由来の天然物、人工的な合成物、もしくはDNA組み替えによって細菌細胞等からの産出物のいずれであっても良い。さらに、これらは何らかの生理活性を有する機能性タンパク質であることが好ましく、例えば、血清タンパク質、酵素、免疫活性物質、抗血栓性物質、細胞接着性因子、ホルモン、サイトカイン、細菌、ウイルスなどが挙げられる。
 機能性タンパク質として、具体的には、アミラーゼ、プロテアーゼ、リパーゼ、セルラーゼ、ペルオキシダーゼ、オキシダーゼ、デヒドロゲナーゼ、ゼラチン、コラーゲン、フィブロネクチン、アルブミン、IgG、マクログロブリン、血液凝固因子、モノクロール抗体、ポリクローナル抗体などが例示される。これらの中から、一種または複数が選択して用いられる。
 本発明で用いられるタンパク質(C)の有機・無機複合ヒドロゲル中での含有量は均一分散が出来るは濃度範囲で目的に応じて設定できる。
 本発明のタンパク質含有有機・無機複合ヒドロゲルゲルの形成に用いる溶媒は、水であるが、タンパク質含有ゲルの形成が行われる限り、水と混和し、水溶性モノマーや粘土鉱物およびタンパク質と均一溶液を形成する水と混和する有機溶剤を含むことも可能である。また、均一溶液を形成する限り、塩などを含む水溶液も使用可能である。
 水と混和する有機溶剤としては、メタノール、エタノール、プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド及びそれらの混合溶媒が挙げられる。
 本発明のタンパク質含有有機・無機複合ゲルは、架橋されたポリエチレングリコール鎖と粘土鉱物とが複合化して形成された三次元網目中に水とタンパク質を含有するゲルである。即ち、架橋されたポリエチレングリコール鎖と粘土鉱物が水中で分子レベルで複合化することにより形成された三次元網目の中にタンパク質が各種相互作用(イオン性相互作用、水素結合、疎水相互作用、キレート形成、高分子絡み合いなど)の働きで微細に分散して旦持された特徴を有する。
 本発明において、タンパク質を有機・無機複合ゲルの中に担持させることにより、タンパク質の安定性が向上する。具体的には、例えば、タンパク質(酵素)含有有機・無機複合ゲルを37℃水中に保持して、周囲の液中における酵素活性を測定すると、単に酵素を37℃水中に入れておいたのに比較して高い酵素活性が長時間に渡って観測される。このことは、有機・無機複合ゲルの中に酵素を担持させておくことにより、また、その分解物の中に酵素を担持させておくことにより、酵素の安定化が図られたことを意味する。
 本発明における有機・無機複合ヒドロゲルは、無機含有率によらず均一で、透明性を有し、粘土鉱物の凝集は観測されなかった。最終的な粘土鉱物の含有率は熱重量分析(TGA)により、また微細分散性は透過型電子顕微鏡(TEM)観察により測定される。本発明では、用いた粘土の全量が複合体に含まれていることがTGAにより確認され、且つ1層または2~10層以内の層状剥離した粘土層が均一に分散しているのがTEMにより確認された。
 本発明で得られた有機・無機複合ヒドロゲルは、優れた力学物性を示すだけでなく、その力学物性を広い範囲で制御できることが特徴である。例えば図1(クレイ濃度を変化させた場合の有機・無機複合ヒドロゲルの引っ張り試験における応力・歪み曲線変化)に示すように、有機・無機複合ヒドロゲルはほとんどの場合500%以上の破断伸びを示し、粘土鉱物との複合化を行っていないポリエチレングリコールヒドロゲルに比べて大きな伸張性を示した。また、引っ張り強度や弾性率については、ポリエチレングリコールヒドロゲルより高い引っ張り強度や弾性率を示すものを含め、広い範囲で物性が制御された。
 また、上記の通り、高分子化合物(A)として、少なくとも一部にエステル基を有し、且つポリエチレングリコール鎖がアミド結合により化学的に架橋された化合物を用いて、本発明の有機無機複合ヒドロゲルを分解性ゲルとすることができる。この分解性ゲルは、水中、生理食塩水などの無機塩水溶液中、タンパク質などの有機化合物を含有する水溶液中、および高湿度や生体内などの雰囲気において分解する性質を有する。分解速度は保持される雰囲気の条件(例えば、雰囲気組成、pH、温度および保持時間)により変化するほか、ゲルの組成(例:高分子化合物組成、粘土鉱物量、含液率、媒体組成)により変化する。雰囲気の条件としては、一般的に温度が高いほど、時間が長いほど分解性が高くなる。また、水よりも生理食塩水を用いると分解性が高い場合が多い。雰囲気のpHは強酸性(例えば、pH3以下)および強アルカリ(pH10以上)とした場合に特に分解性が高くなるが、この間のpH7を中心とした穏和な条件でも分解が生じることが本発明の分解性ゲルの特徴である。一方、本発明における分解性ゲルの組成に関しては、一般的傾向として、粘土鉱物量が大きいほど分解性が高く、含液率が大きいほど分解性が高い。また、本発明では、エステル基を含まないゲルは分解性がないか極めて低く、好ましくは、アミド結合に対するエステル基のモル比が0.1~2である。アミド結合に対するエステル基のモル比が0.1以下では分解性が不十分となる場合が多く、また、その比が2以上では均一で高力学物性のゲルが形成しにくくなる場合が多い。一方、ゲルの媒体組成としては、水または水溶液が用いられるが、例えば、分解性を高めるためにはリン酸やピロリン酸を含むものが好ましく用いられる。しかし、分解生成物の生物学的安全性(例:細胞毒性)を重要視する用途に対しては、ピロリン酸は不適な場合があり、水またはリン酸を含む水溶液が好ましく、特に水が好ましい。
 本発明における分解性ゲルの分解機構としては、必ずしも限定されないが、エステル基および/またはアミド基の所での分解、特にエステル基での分解が主たる機構として推定される。また、粘土鉱物(B)を含まない場合は、分解性がないか極めて低いため、これらの官能基と粘土鉱物との相互作用が分解性に効果的に働いていると推定される。
 本発明における有機・無機複合ヒドロゲルは、好ましくは、同一分子中にポリエチレングリコール鎖と複数の反応性官能基とを有する化合物の水溶液と層状剥離した粘土鉱物水分散液を予め混合し、次いで、該化合物の架橋反応を進める複合化手法が用いられる。より好ましくは、優れた均一性・機械的性質を有する有機・無機複合ヒドロゲルを得るために、従来報告されているポリエチレングリコールヒドロゲルの合成法(非特許文献2参照)と異なる以下のことを行う。
(1)ピロリン酸ナトリウムに塩酸を添加してpHを調整した液をバッファーとして用いること。
(2)予め層状剥離させた粘土鉱物水分散液に上記の化合物(a1)及び化合物(a2)のいずれか片方を添加し、その後、他方の化合物を溶解させること。
(3)層状剥離した粘土鉱物を粘土鉱物の質量/化合物(a1)及び化合物(a2)の合計質量が0.03~3となるようにすること。
更に好ましくは、
(4)有機・無機複合ヒドロゲルを合成後に洗浄によりピロリン酸を除くことを行う。
 ここでバッファーとしては、ピロリン酸を用いたものが、一般的に使われるリン酸バッファーより有効に用いられる。具体的には、ピロリン酸ナトリウム(別名:二リン酸ナトリウム)に塩酸を添加してpHを調整したものがバッファーとして用いられる。ピロリン酸は、一般に用いられるリン酸の二量体であるが、粘土鉱物を安定して層状剥離させるため、また得られるポリエチレングリコールヒドロゲル及び有機・無機複合ヒドロゲルの力学物性を向上させるために、リン酸より有効に働く。最終的に有機・無機複合ヒドロゲルが得られた後は、ピロリン酸は必ずしも必要でなく、特に、分解生成物の安全性を重要視する場合は、水洗浄により除去することが好ましい。
 ポリエチレングリコールと層状剥離した粘土鉱物を複合化する手法としては、好ましくは高分子化合物(A)と層状剥離した粘土鉱物を予め混合して用いること、より好ましくは層状剥離した粘土鉱物がより安定に存在する片方の反応性4本鎖ポリエチレングリコール(非特許文献2の場合は、アミン末端ポリエチレングリコール)と混合させ、次いで、もう一種の反応性4本鎖ポリエチレングリコールを混合して、反応させることが用いられる。且つ、上記反応において、ピロリン酸をバッファーとすること、粘土鉱物/ポリエチレングリコールの質量比を0.03~3とすることが併せて用いられ、優れた均一性と機械的性質を併せ持つ有機・無機複合ヒドロゲルが得られる。
 更に、本発明で得られる分解性ゲルは、生体内における安全性、生体適合性を有するものが多く、分解性生体埋め込み材料やドラッグデリバリーシステムとして用いることが可能である。本発明における分解性ゲルは、埋め込みに際して円柱状、棒状、フィルム状、糸状を初めとして目的に応じた種々の形状で用いることが可能であり、その埋め込み初期における力学物性もゲル組成(高分子化合物や粘土鉱物の濃度、含液率)によって広範囲に制御することが可能である。また、本発明で得られた分解性ゲルは、単独で用いられるほか、他の粒子、繊維、フィルム、メッシュ、被覆などの形態を有する、合成または天然の生体適合性材料や生分解性材料と複合化して、取り扱い性、力学物性、生体適合性、生体内分解性、分解後安全性に優れた生体埋め込み材料として有効に用いられる。更に、本発明における分解性ゲルでは、生体にとって有意な化合物を分解性ゲル中に含ませておき、分解と共にそれらを徐放することも可能である。一方、生体埋め込み以外分野における医療・医薬品分野、および他の産業分野(例えば、農業・工業・電子材料・土木建築・包装資材などの分野)で分解性を生かした材料として有効に用いられる。
 次いで本発明を実施例により、より具体的に説明するが、もとより本発明は、以下に示す実施例にのみ限定されるものではない。
(実施例1)
 粘土鉱物には、[Mg5.34Li0.66Si20(OH)]Na 0.66の組成を有する水膨潤性合成ヘクトライト(商標ラポナイトXLG、ロックウッド社製)を洗浄後、凍結乾燥して用いた。反応性4本鎖ポリエチレングリコールは、重量平均分子量20000の、SUNBRIGHT PTE200GS(以下、PTE200GSと略す)、およびSUNBRIGHT PTE200PA(重量平均分子量20000、以下、PTE200PAと略す)(共に日本油脂株式会社製)を用いた。100mMのピロリン酸ナトリウム(無水)(別名:二リン酸ナトリウム)に塩酸を添加することでpHを7.4に調整した水溶液3mlにラポナイトXLG0.064gを分散させた。次いで、PTE200PA240mgを加え、均一に混合した。別途、100mMのピロリン酸ナトリウムに塩酸を添加し、pHを7.2に調整した水溶液1mlにPTE200GS240mgを溶解した。次いで、得られたPTE200PA/クレイ水溶液とPTE200GS水溶液を氷浴中で冷却後、混合し、15秒間強く攪拌した。混合した溶液を80×50×1mmのガラス容器に充填し、25℃で2時間反応させた。その結果、透明・均質なヒドロゲルが得られた。
 得られたヒドロゲルを800mlの水中(20℃)で、途中4回水を換えながら洗浄を行った。蛍光X線測定の結果、洗浄過程でポリエチレングリコールおよび粘土鉱物の流出は観測されなかった。また、ヒドロゲルを乾燥後、800℃までの熱質量分析(セイコー電子工業株式会社製TG-DTA220:空気流通下、昇温:10℃/分)を行い、粘土含有率を求めた。粘土含有率(粘土鉱物/全固形分量)は12.8質量%で反応溶液組成からの計算値(11.8質量%)とほぼ一致した。またKBr法によるフーリエ変換赤外線吸収スペクトル(FT-IR)の測定において、ポリエチレングリコールと粘土鉱物の特性ピークが確認された。乾燥したヒドロゲルをエポキシ樹脂中に包埋後、厚さ約50mmの超薄切片を作製し、透過型電子顕微鏡観察を行った(日本電子株式会社製JEM-2200FSを使用)ところ、1~数nmの厚みの層状粘土が微細且つ均一に分散しているのが観察された。乾燥物のX線回折測定(理学電機社製RX-7を使用:CuKα線)を行ったところ、低角側に大きなピークは観測されなかった。以上の結果より、本実施例で得られたヒドロゲルは、ポリエチレングリコールと層状剥離した粘土鉱物が複合化された有機・無機複合ヒドロゲル(ポリエチレングリコール量=120mg/mL-HO、粘土鉱物量=16mg/mL-HO、(粘土鉱物/ポリエチレングリコール)の質量比=0.13)であると結論された。更に、得られた有機・無機複合ヒドロゲルを80×10×2mmに切断して、引っ張り試験を卓上型万能試験機AGS-H(島津製作所製)を用い、評点間距離=30mm、引っ張り速度=100mm/分にて行った。結果を図1に示す。有機・無機複合ヒドロゲルは、優れた力学物性(弾性率=30kPa、強度=300kPa、破断伸び=950%)を示した。これは比較例1で示した、ポリエチレングリコールヒドロゲルの値(弾性率=20kPa、強度=52kPa、破断伸び=280%)に比べて大きく向上しているのが確認された。
(実施例2~4)
 粘土鉱物(ラポナイトXLG)を0.032g(実施例2)、0.32g(実施例3)および0.64g(実施例4)用いる以外は実施例1と同様な方法で合成を行った。その結果、いずれも反応溶液組成からの計算値と同じ組成で、粘土鉱物/ポリエチレングリコールの質量比が0.067(実施例2)、0.67(実施例3)、 1.34 (実施例4)である、均一、透明な有機・無機複合ヒドロゲルが得られた。但し、実施例4は半透明。実施例1と同様にして測定した引っ張り試験の結果を図1に併せて示す。破断伸びは700~1020%、破断強度は50~170kPa、弾性率は28~12kPaまでの広い範囲で制御された。
(実施例5)
 200mMのピロリン酸水溶液に塩酸を添加してpHを7.4に調整した水溶液1mlにPTE200PA240mgを加え溶解させた後、ラポナイトXLG0.16gをHO2mlに分散させた水溶液を加え、混合したことを除くと実施例1と同様にして有機・無機複合ヒドロゲルを調製した。得られた有機・無機複合ヒドロゲルは半透明で、実施例1と同様にして測定した力学物性は、弾性率=14kPa、強度=90kPa、破断伸び=820%であった。
(実施例6)
 100mMのピロリン酸水溶液に塩酸を添加してpHを7.2に調整した水溶液3mlにラポナイトXLG0.064gを分散させた。次いで、PTE200GS240mgを添加してPTE200GS/粘土鉱物水溶液を調製した。別途、PTE200PA240mgをpH7.4に調整した100mMのピロリン酸水溶液1mlに溶解した。両液を用いて実施例1と同様にしてヒドロゲルを合成した結果、均一・半透明の有機・無機複合ヒドロゲルが得られた。実施例1と同様にして測定した力学物性は、弾性率=18kPa、強度=120kPa、破断伸び=730%であった。
(実施例7)
 バッファーとしてピロリン酸の代わりにリン酸を用いることを除くと実施例1と同様にして、有機・無機複合ヒドロゲルを調製した。得られたヒドロゲルは、均一だが半透明(薄白濁)であった。実施例1と同様にして測定した力学物性は、弾性率=24kPa、強度=80kPa、破断伸び=550%であった。
(実施例8)
 粘土鉱物と共に、シリカのナノ粒子(スノーテックス、日産化学社製)を0.08g用いることを除くと実施例2と同様にして、有機・無機複合ヒドロゲルを調製した。得られたヒドロゲルは、均一・透明であった。実施例1と同様にして測定した力学物性は、弾性率=27kPa、強度=220kPa、破断伸び=810%であった。
(実施例9)
 粘土鉱物には、[Mg5.34Li0.66Si20(OH)]Na 0.66の組成を有する水膨潤性合成ヘクトライト(商標ラポナイトXLG、ロックウッド社製)を洗浄後、凍結乾燥して用いた。反応性4本鎖ポリエチレングリコールは、重量平均分子量20000の、SUNBRIGHT PTE200GS(以下、PTE200GSと略す)、およびSUNBRIGHT PTE200PA(重量平均分子量20000、以下、PTE200PAと略す)(共に日本油脂株式会社製)を用いた。なお、PTE200GSには、一本鎖に一個のエステル基を含んでいる。100mMのピロリン酸ナトリウム(無水)(別名:二リン酸ナトリウム)に塩酸を添加することでpHを7.4に調整した水溶液30mlにラポナイトXLG0.64gを分散させた。次いで、PTE200PA2.4gを加え、均一に混合した。別途、100mMのピロリン酸ナトリウムに塩酸を添加し、pHを7.2に調整した水溶液10mlにPTE200GS2.4gを溶解した。次いで、得られたPTE200PA/クレイ水溶液とPTE200GS水溶液を氷浴中で冷却後、混合し、15秒間強く攪拌した。混合した溶液を80×50×2mmのガラス容器数個に充填し、25℃で2時間反応させた。その結果、二つの反応性4本鎖ポリエチレングリコールがアミド結合により化学的に架橋され、透明・均質なヒドロゲルが得られた。得られた有機・無機複合ヒドロゲルを80×10×2mmに切断して、引っ張り試験を卓上型万能試験機AGS-H(島津製作所製)を用い、評点間距離=30mm、引っ張り速度=100mm/分にて行った。有機・無機複合ヒドロゲルは、優れた力学物性(弾性率=30kPa、強度=300kPa、破断伸び=950%)を示した。これは比較例1で示した、ポリエチレングリコールヒドロゲルの値(弾性率=20kPa、強度=52kPa、破断伸び=280%)に比べて大きく向上しているのが確認された。
 得られたヒドロゲルを800mlの水中(20℃)で、途中4回水を換えながら20時間、洗浄を行った。蛍光X線測定の結果、洗浄過程でポリエチレングリコールおよび粘土鉱物の流出は観測されなかった。また、ヒドロゲルを乾燥後、800℃までの熱質量分析(セイコー電子工業株式会社製TG-DTA220:空気流通下、昇温:10℃/分)を行い、粘土含有率を求めた。粘土含有率(粘土鉱物/高分子)は13.0質量%で反応溶液組成からの計算値(13.4質量%)とほぼ一致した。またKBr法によるフーリエ変換赤外線吸収スペクトル(FT-IR)の測定において、ポリエチレングリコールとエステル基とアミド結合と粘土鉱物の特性ピークが確認された。乾燥したヒドロゲルをエポキシ樹脂中に包埋後、厚さ約50mmの超薄切片を作製し、透過型電子顕微鏡観察を行った(日本電子株式会社製JEM-2200FSを使用)ところ、1~数nmの厚みの層状粘土が微細且つ均一に分散しているのが観察された。乾燥物のX線回折測定(理学電機社製RX-7を使用:CuKα線)を行ったところ、低角側に大きなピークは観測されなかった。以上の結果より、本実施例で得られたヒドロゲルは、エステル基を含有するポリエチレングリコール鎖がアミド結合により化学的に架橋された高分子化合物と層状剥離した粘土鉱物が複合化された有機・無機複合ヒドロゲル(ポリエチレングリコール量=120mg/mL-HO、粘土鉱物量=16mg/mL-HO、(粘土鉱物/ポリエチレングリコール)の質量比=0.13)であると結論された。また、アミド結合に対するエステル基のモル比は1である。
 得られた有機・無機複合ゲルの洗浄物を5×5×2mmの大きさに切断し、20℃(実施例9)、37℃(実施例10)、60℃(実施例11)の水中(100g水/1gゲル)に保持して、一定時間後、SUSフィルター(メッシュ#400)でろ過して、最初のゲルの固形分に対する回収したゲルの固形分の質量分率(パーセント)からゲルの分解性を評価した。その結果、実施例9では125日、実施例10では16日、実施例11では4日で回収されたゲルの質量分率がほぼ0%となり、有機・無機複合ゲルがこれらの条件で分解するのが確認された。また、ゲルが分解して得られた液体を培地中に含まれるゲル成分が0~1000ppmとなるように培地(5%FBS、1%ピルビン酸Na、1%P/S、MEM)に添加し、V79細胞(125セル/5ml/ヂィッシュ)を用いて細胞毒性試験を行った。実施例9~11のいずれの場合も、細胞毒性は示さなかった(実施例9の細胞毒性評価結果を図2に示す)。
(実施例12、13)
 ラポナイトXLGを0.48g用いる以外は実施例9と同様な方法で合成して得られた有機・無機複合ゲルを80×10×2mmに切断した後、ガラス密閉容器(50ml)に入れ、60℃で5時間(実施例12)および24時間(実施例13)、恒温器中で保持した後、取りだして実施例9と同様な方法で延伸試験を行った。その結果、図3に示すように、60℃密閉容器中で保持しなかったゲルに比べて、実施例12では強度および弾性率が低下し、実施例13では、ゲルの形状が崩れ始めており、また、弱くて延伸試験が出来なかった。
(実施例14~16)
 ラポナイトXLGを1.6g(実施例14、15)、または3.2g(実施例16)用いる以外は実施例9と同様にし、水で洗浄した有機・無機複合ゲルを得た。その後、実施例9と同様な方法で、実施例14と実施例16では37℃、実施例15では60℃の水中に保持して、回収されたゲルの質量分率を測定した。その結果、実施例14では12.5日、実施例15では2.4日、実施例16では9日で、回収されたゲルの質量分率が0%となり、ゲルがほぼ分解されているのが観測された。
(実施例17)
 実施例9で合成し、水で洗浄して得られた有機・無機複合ゲルを、水中の代わりに37℃の生理食塩水中に保持して、実施例9と同様な方法でゲルの分解性を評価した。その結果、7.5日後に、回収されたゲルの質量分率が0%となった。
(実施例18、19)
 実施例9で合成して得られた有機・無機複合ゲルを、水中で20時間洗浄した後、実施例18では100mMのリン酸バッファー水溶液(pH7.4)中、実施例19では100mMのピロリン酸バッファー水溶液(pH7.4)中に4時間、浸漬した。得られたゲルを、実施例10と同様な方法で、37℃水中に保持してゲルの分解性を評価した。その結果、実施例18では14日後、実施例19では13日後に回収されたゲルの質量分率が0%となって、水洗浄のみの場合(実施例10)より早い分解性が確認された。
(比較例1~3)
 粘土鉱物を用いないこと、バッファーとしてリン酸を等量だけ用いることを除くと、実施例9と同様にして、エステル基を含むポリエチレングリコールヒドロゲルを調製した。得られたヒドロゲルは透明・均一であった。引っ張り試験測定の結果、弾性率=20kPa、強度=52kPa、破断伸び=280%であった。比較例1では実施例9、比較例2では実施例10、比較例3では実施例11と同様にして、ゲルの分解性を評価した。その結果、比較例1および比較例2ではいずれも一ヶ月間の評価で分解はほとんど確認できなかった。一方、比較例3では、10日後にゲルが分解しているのが観測されたが、得られた分解液の細胞毒性試験を実施例11と同様にして行った結果、細胞毒性が観測された。比較例3での細胞毒性試験結果を図2に示す。
(実施例20)
 一本のエチレングリコール鎖中にエステル基を1個ずつ含んでいるSUNBRIGHT PTE200GSの代わりに、同じ分子量でエステル基を含まないSUNRIGHT PTE200HS(日本油脂株式会社製)を用いる以外は実施例9と同様にして有機・無機複合ゲルを調製し、実施例20の有機・無機複合ゲルを製造した。実施例1と同様にして得られた有機・無機複合ヒドロゲルの力学物性を測定した。その結果、優れた力学物性(弾性率=22kPa、強度=125kPa、破断伸び=800%)を示した。
 その後、実施例9と同様にして、洗浄された有機・無機複合ゲルの水中での分解性を評価した。その結果、実施例20のゲルは一ヶ月間の評価で分解は確認できなかった。
(実施例21、比較例7)
 実施例21では、実施例9で合成し、水で洗浄して得られた有機・無機複合ゲルを、比較例7では、比較例1で合成し、水で洗浄して得られたゲルを用い、やぎの皮下に埋め込んで1ヶ月後の取りだした所、実施例21では、わずかのゲル残渣が見られる程度に分解していたのに対し、比較例7では、埋め込み初期の同等の形のしっかりとしたゲルが得られた。
(実施例22)
 粘土鉱物には、[Mg5.34Li0.66Si20(OH)]Na 0.66の組成を有する水膨潤性合成ヘクトライト(商標ラポナイトXLG、ロックウッド社製)を洗浄後、凍結乾燥して用いた。反応性4本鎖ポリエチレングリコールは、重量平均分子量20000の、SUNBRIGHT PTE200GS(以下、PTE200GSと略す)、およびSUNBRIGHT PTE200PA(重量平均分子量20000、以下、PTE200PAと略す)(共に日本油脂株式会社製)を用いた。100mMのピロリン酸ナトリウム(無水)(別名:二リン酸ナトリウム)に塩酸を添加することでpHを7.4に調整した水溶液3mlにラポナイトXLG0.16gを分散させた。次いで、PTE200PA240mgとHRP酵素(Horse radish peroxidase:hemeprotein:分子量44000、EC No. 1.11.1.7) 320μgを加え、均一に混合した。別途、100mMのピロリン酸ナトリウムに塩酸を添加し、pHを7.2に調整した水溶液1mlにPTE200GS240mgを溶解した。次いで、得られたPTE200PA/クレイ/HRP水溶液とPTE200GS水溶液を氷浴中で冷却後、混合し、15秒間強く攪拌した。混合した溶液を80mm×50mm×1mmのガラス容器に充填し、25℃で2時間反応させた。その結果、透明・均質なヒドロゲルが得られた。
 得られたゲルを1g切り出し、100mlの水中(37℃)に入れ、12日間保持した。12日の間の所定の時間毎に200μlずつ液を採取し、酵素活性を測定した。測定方法は、サンプリングした溶液を37℃にしておき、96ウェルプレートにSTEバッファー(組成:100mMTris-HCl、pH8.0、1MNaCl、10mMEDTA)5μl、溶液45μl、TMB(3,3',5,5'-tetramethylbenzidine)基質50μlを添加し、25℃で1分間反応させた後、1N-塩酸50μlを添加して酵素反応を停止させ、次いで、プレートリーダーで450nmの吸光度を測定し、サンプリングした溶液1μLあたりの吸光度(ABS/μL溶液)で、酵素活性を評価した。
 結果を図4に示す。比較例8(HRPを37℃水中で分散して保持)や比較例9(HRPを37℃のクレイ水溶液に分散して保持)と比べて高い活性を示し、有機・無機複合ゲルの分解物中に含まれた酵素は熱安定性が向上しているのがわかった。
(比較例8)
 HRP酵素を有機・無機複合ゲル中に担持させず、100mlの水中(37℃)に0.8μgのHRP(実施例22でのHRP担持量と一緒)を入れ、12日間保持し、その間の所定の時間で200μlずつ採取し、実施例22と同様の方法で酵素活性を評価した。その結果を図4に示す。低い酵素活性を示した。
(比較例9)
 HRP酵素を有機・無機複合ゲル中に担持させず、クレイ3.81gを含む100mlのクレイ水溶液中(37℃)に0.8μgのHRP(実施例22でのHRP担持量と一緒)を入れ、12日間保持し、その間の所定の時間で200μlずつ採取し、実施例22と同様の方法で酵素活性を評価した。その結果を図4に示す。酵素活性は殆ど示さなかった。
(実施例23、比較例10)
 実施例22で得られたHRP酵素含有有機・無機複合ゲルを密閉容器に移し、実施例23では37℃で4日間保存した。その後、ゲル1gを100gの水中(37℃)に浸漬して1日間保持し、水をサンプリングして実施例22と同様な方法により酵素活性を測定した。また比較例10ではHRPを37の℃水中にて4日間保持し、その後、更に、37℃の水中で1日間保持した後、水をサンプリングして同様に酵素活性を調べた。なお、実施例23および比較例10の酵素活性保持率は、37℃で保持する前に測定した値を100%として表示した。実施例23は比較例10と比べて高い活性を示した。

Claims (14)

  1.  複数のポリエチレングリコール鎖が化学的に架橋された分岐構造又は網目構造を有する高分子化合物(A)と層状剥離した粘土鉱物(B)とが複合化していることを特徴とする有機無機複合ヒドロゲル。
  2. 前記高分子化合物(A)と層状剥離した粘土鉱物(B)の質量比((B)/(A))が0.03~3である請求項1記載の有機無機複合ヒドロゲル。
  3. 前記層状剥離した粘土鉱物(B)が水膨潤性無機粘土鉱物である請求項1又は2に記載の有機無機複合ヒドロゲル。
  4. 前記高分子化合物(A)の化学的架橋がアミド結合によるものであり、且つ、(A)と(B)が三次元網目を形成している請求項1~3のいずれかに記載の有機無機複合ヒドロゲル。
  5. 前記高分子化合物(A)がエステル基を有し、前記アミド結合に対するエステル基のモル比が、0.1~2である請求項4記載の有機無機複合ヒドロゲル。
  6. 前記高分子化合物(A)が、同一分子中にポリエチレングリコール鎖と複数の反応性官能基(Q1)とを有する化合物(a1)と、該反応性官能基(Q1)と反応しうる複数の反応性官能基(Q2)を有する化合物(a2)とを反応させた化合物である請求項1、2又は3記載の有機無機複合ヒドロゲル。
  7. 前記化合物(a1)が下記式(1)で表される化合物であり、化合物(a2)が下記式(2)で表される化合物であり、共に重量平均分子量が1000~100000である請求項6記載の有機無機複合ヒドロゲル。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは下記式(3)
    Figure JPOXMLDOC01-appb-C000002
    で表される基であり、nは整数である。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Yは-CH2CH2CH2NH2で表される基であり、nは整数である。)
  8.  請求項1~7のいずれかに記載の有機無機複合ヒドロゲル又はその分解物中にタンパク質(C)を含有している有機無機複合ヒドロゲル。
  9. 請求項1~8のいずれかに記載の有機無機複合ヒドロゲルを用いた生体埋め込み材料。
  10.  粘土鉱物(B)を水媒体中で層状剥離させることにより該粘土鉱物(B)の水分散液を製造し、その層状剥離した粘土鉱物の存在下で、同一分子中にポリエチレングリコール鎖と複数の反応性官能基(Q1)とを有する化合物(a1)と、
    該反応性官能基(Q1)と反応しうる複数の反応性官能基(Q2)を有する化合物(a2)とを反応させる、ことを特徴とする請求項1~7のいずれかに記載の有機無機複合ヒドロゲルの製造方法。
  11.  更に、タンパク質(C)の存在下で、前記化合物(a1)と、化合物(a2)とを反応させる工程を行なう請求項8記載の有機無機複合ヒドロゲルの製造方法。
  12.  前記化合物(a1)と化合物(a2)の反応をピロリン酸の存在下で行なう請求項10又は11記載の有機無機複合ヒドロゲルの製造方法。
  13.  前記粘土鉱物(B)の水分散液に前記化合物(a1)及び化合物(a2)のいずれか片方を添加し、その後、他方の化合物を添加して反応させる請求項10~12のいずれかに記載の有機無機複合ヒドロゲルの製造方法。
  14.  複数のポリエチレングリコール鎖が化学的に架橋された分岐構造又は網目構造を有する高分子化合物(A)と層状剥離した粘土鉱物(B)とが複合化した有機無機複合ヒドロゲル又はその分解物中にタンパク質(C)を含有させることにより、該タンパク質(C)の安定性を向上させることを特徴とするタンパク質安定化方法。
PCT/JP2010/063371 2009-08-11 2010-08-06 有機無機複合ヒドロゲルおよびその製造方法 WO2011018995A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009186469 2009-08-11
JP2009-186469 2009-08-11
JP2010-110121 2010-05-12
JP2010110121A JP4704506B2 (ja) 2009-08-11 2010-05-12 有機無機複合ヒドロゲルおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2011018995A1 true WO2011018995A1 (ja) 2011-02-17

Family

ID=43586172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063371 WO2011018995A1 (ja) 2009-08-11 2010-08-06 有機無機複合ヒドロゲルおよびその製造方法

Country Status (2)

Country Link
JP (1) JP4704506B2 (ja)
WO (1) WO2011018995A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164003A1 (ja) * 2017-03-09 2018-09-13 日産化学株式会社 温度応答性ヒドロゲル及びその製造方法
WO2019088289A1 (ja) * 2017-11-06 2019-05-09 国立大学法人群馬大学 自己支持性を有するハイドロゲル及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014046124A1 (ja) 2012-09-18 2016-08-18 国立研究開発法人理化学研究所 ヒドロゲルの接着方法
JP2014224194A (ja) * 2013-05-16 2014-12-04 日産化学工業株式会社 カチオン型水溶性高分子およびそれよりなるハイドロゲル
JP6182019B2 (ja) * 2013-08-21 2017-08-16 国立研究開発法人国立循環器病研究センター 高分子化造影剤
JP6458953B2 (ja) * 2013-11-20 2019-01-30 日産化学株式会社 ヒドロゲルの接着方法
JP6435557B2 (ja) * 2017-08-10 2018-12-12 日産化学株式会社 カチオン型水溶性高分子およびそれよりなるハイドロゲル
JP7106850B2 (ja) 2017-12-07 2022-07-27 株式会社リコー 超音波検査用ファントム及びその製造方法
JP7205819B2 (ja) * 2018-08-01 2023-01-17 学校法人甲南学園 生体組織修復剤
JP7466840B2 (ja) 2020-07-31 2024-04-15 株式会社リコー ハイドロゲル立体造形用組成物、ハイドロゲル立体造形物の造形方法、及びハイドロゲル立体造形用組成物セット

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510375A (ja) * 1998-01-07 2003-03-18 デビオ ルシェルシュ ファルマシュティーク ソシエテ アノニム 分解性のヘテロ二官能性ポリ(エチレングリコール)アクリレート及びそれから誘導されるゲル及び複合体
JP2006028446A (ja) * 2004-07-21 2006-02-02 Dainippon Ink & Chem Inc 有機・無機複合高分子ゲル及びその製造方法
JP2007204527A (ja) * 2006-01-31 2007-08-16 Kawamura Inst Of Chem Res 高分子複合ゲル及びその製造方法
JP2008100941A (ja) * 2006-10-18 2008-05-01 Toyama Prefecture ポリグリセロールデンドリマーの3次元架橋物及び3次元架橋方法、並びにこれを用いたヒドロゲル、薬物送達システム
JP2009256629A (ja) * 2008-03-17 2009-11-05 Kawamura Inst Of Chem Res 有機無機複合ヒドロゲル及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510375A (ja) * 1998-01-07 2003-03-18 デビオ ルシェルシュ ファルマシュティーク ソシエテ アノニム 分解性のヘテロ二官能性ポリ(エチレングリコール)アクリレート及びそれから誘導されるゲル及び複合体
JP2006028446A (ja) * 2004-07-21 2006-02-02 Dainippon Ink & Chem Inc 有機・無機複合高分子ゲル及びその製造方法
JP2007204527A (ja) * 2006-01-31 2007-08-16 Kawamura Inst Of Chem Res 高分子複合ゲル及びその製造方法
JP2008100941A (ja) * 2006-10-18 2008-05-01 Toyama Prefecture ポリグリセロールデンドリマーの3次元架橋物及び3次元架橋方法、並びにこれを用いたヒドロゲル、薬物送達システム
JP2009256629A (ja) * 2008-03-17 2009-11-05 Kawamura Inst Of Chem Res 有機無機複合ヒドロゲル及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUKASAWA, M. ET AL.: "Synthesis and Mechanical Properties of a Nanocomposite Gel Consisting of a Tetra-PEG/Clay Network", MACROMOLECULES, vol. 43, no. 9, 15 April 2010 (2010-04-15), pages 4370 - 4378 *
LEE, W. ET AL.: "Effect of Bentonite on the Physical Properties and Drug-Release Behavior of Poly(AA-co-PEGMEA)/Bentonite Nanocomposite Hydrogels for Mucoadhesive", J APPL POLYM SCI, vol. 91, no. 5, 2004, pages 2934 - 2941, XP002453766 *
SAKAI, T. ET AL.: "Design and Fabrication of a High-Strength Hydrogel with Ideally Homogeneous Network Structure from Tetrahedron-like Macromonomers", MACROMOLECULES, vol. 41, no. 14, 2008, pages 5379 - 5384 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164003A1 (ja) * 2017-03-09 2018-09-13 日産化学株式会社 温度応答性ヒドロゲル及びその製造方法
WO2019088289A1 (ja) * 2017-11-06 2019-05-09 国立大学法人群馬大学 自己支持性を有するハイドロゲル及びその製造方法

Also Published As

Publication number Publication date
JP4704506B2 (ja) 2011-06-15
JP2011057962A (ja) 2011-03-24

Similar Documents

Publication Publication Date Title
WO2011018995A1 (ja) 有機無機複合ヒドロゲルおよびその製造方法
Wahid et al. Bacterial cellulose and its potential for biomedical applications
Pourjavadi et al. Injectable chitosan/κ-carrageenan hydrogel designed with au nanoparticles: A conductive scaffold for tissue engineering demands
Zhao et al. Epichlorohydrin-cross-linked hydroxyethyl cellulose/soy protein isolate composite films as biocompatible and biodegradable implants for tissue engineering
Zhuang et al. Anti-degradation gelatin films crosslinked by active ester based on cellulose
Kouser et al. Modified halloysite nanotubes with Chitosan incorporated PVA/PVP bionanocomposite films: Thermal, mechanical properties and biocompatibility for tissue engineering
Pandis et al. Chitosan–silica hybrid porous membranes
Kouser et al. Functionalization of halloysite nanotube with chitosan reinforced poly (vinyl alcohol) nanocomposites for potential biomedical applications
Yan et al. Fabrication of injectable hydrogels based on poly (l-glutamic acid) and chitosan
Yu et al. Preparation, characterization, and antibacterial properties of biofilms comprising chitosan and ε-polylysine
Teng et al. Weak hydrogen bonds lead to self-healable and bioadhesive hybrid polymeric hydrogels with mineralization-active functions
Sun et al. Covalently crosslinked hyaluronic acid‐chitosan hydrogel containing dexamethasone as an injectable scaffold for soft tissue engineering
Ghanbari et al. In vitro study of alginate–gelatin scaffolds incorporated with silica NPs as injectable, biodegradable hydrogels
Tomé et al. Bioactive transparent films based on polysaccharides and cholinium carboxylate ionic liquids
Panwar et al. Tunable, conductive, self-healing, adhesive and injectable hydrogels for bioelectronics and tissue regeneration applications
Chen et al. Enhanced skin adhesive property of hydrophobically modified poly (vinyl alcohol) films
Zhang et al. A highly transparent, elastic, injectable sericin hydrogel induced by ultrasound
KR20160072652A (ko) 단백질-고분자-그래핀 옥사이드 나노복합체 및 이를 포함하는 필름
Zhou et al. Sustainable, high-performance, and biodegradable plastics made from chitin
WO2012105685A1 (ja) キトサン誘導体から得られるヒドロゲル
Islam et al. Fabrication and performance characteristics of tough hydrogel scaffolds based on biocompatible polymers
Lv et al. Crosslinked starch nanofibers with high mechanical strength and excellent water resistance for biomedical applications
Medvecky Microstructure and properties of polyhydroxybutyrate‐chitosan‐nanohydroxyapatite composite scaffolds
Wang et al. Formation of composite hydrogel of carboxymethyl konjac glucomannan/gelatin for sustained release of EGCG
Zhang et al. pH-responsive injectable polysaccharide hydrogels with self-healing, enhanced mechanical properties based on POSS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808178

Country of ref document: EP

Kind code of ref document: A1