WO2011018887A1 - Hard carbon black and rubber composition - Google Patents

Hard carbon black and rubber composition Download PDF

Info

Publication number
WO2011018887A1
WO2011018887A1 PCT/JP2010/004898 JP2010004898W WO2011018887A1 WO 2011018887 A1 WO2011018887 A1 WO 2011018887A1 JP 2010004898 W JP2010004898 W JP 2010004898W WO 2011018887 A1 WO2011018887 A1 WO 2011018887A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon black
aggregate
hard carbon
area
dbp
Prior art date
Application number
PCT/JP2010/004898
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 栗原
康信 ▲桑▼田
剛司 鈴木
恭兵 秦
Original Assignee
新日化カーボン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日化カーボン株式会社 filed Critical 新日化カーボン株式会社
Priority to JP2011526684A priority Critical patent/JPWO2011018887A1/en
Priority to IN784DEN2012 priority patent/IN2012DN00784A/en
Priority to CN201080031800XA priority patent/CN102471608A/en
Publication of WO2011018887A1 publication Critical patent/WO2011018887A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values

Definitions

  • the present invention relates to hard carbon black having an excellent balance between wear resistance and low heat build-up.
  • carbon black for rubber compounding There are various types of carbon black for rubber compounding depending on the application and purpose, and the carbon black is classified according to various characteristics such as specific surface area and aggregate. Of these, carbon black for tire treads is required to achieve high wear resistance and low fuel consumption. Of the two required characteristics, the latter low fuel consumption is evaluated as low heat generation. As a carbon black for satisfying these required performances, for example, a high aggregate is effective, and a specific surface area is large to improve wear resistance, while on the other hand, to improve fuel efficiency. It is effective that the specific surface area is small. In other words, the balance between high wear resistance and low fuel consumption is a contradictory proposition.
  • Carbon black and a rubber composition containing the carbon black are desired.
  • the problem to be solved is that a hard carbon black having a very excellent low heat generation property while maintaining a high level of wear resistance has not yet been obtained.
  • the present inventors have found that the envelope area and projected area of the aggregate The present inventors have found that fuel consumption can be reduced when the index calculated from the above is lower than the value calculated from the DBP absorption amount.
  • the hard carbon black according to the present invention preferably further has a selective property of the following formula (3). 1.55 ⁇ D75 / D25 ⁇ 2.0 (3)
  • D75 is the 75% frequency value of the aggregate measured by centrifugal sedimentation
  • D25 is the 25% frequency value.
  • the hard carbon black according to the present invention is preferably characterized by having a CTAB adsorption specific surface area of 55 to 150 m 2 / g and a DBP absorption of 100 to 150 ml / 100 g.
  • the rubber composition according to the present invention is characterized in that 20 to 100 parts by mass of the above hard carbon black is blended with 100 parts by mass of rubber.
  • the hard carbon black according to the present invention has the selective property of the following formula (1), it can exhibit a very excellent low heat generation property while maintaining a high level of wear resistance. For this reason, it can be used suitably for applications such as compounded rubber for tire treads for passenger cars, which require a high level of wear resistance and very low fuel consumption.
  • CA is an index obtained by image analysis of a two-dimensional projection image of an aggregate by a transmission electron microscope, and is calculated by the following formula (2) from the envelope area and the projection area of the aggregate, and DBP is the DBP absorption amount.
  • the rubber composition according to the present invention uses the above-mentioned hard carbon black, it is suitable as a tire tread for passenger cars that requires a high level of wear resistance and a very excellent fuel economy.
  • FIG. 1 is a diagram schematically showing the relationship between the envelope area and the projected area in equation (2).
  • FIG. 2 is a graph showing the relationship between tan ⁇ (60 ° C.) and lambone 25% wear for the rubber compositions of Examples, Comparative Examples, and Reference Examples.
  • the hard carbon black according to the present embodiment has a selective characteristic of the following formula (1), that is, satisfies the condition of the formula (1).
  • CA is an index obtained by image analysis of a two-dimensional projection image of an aggregate by a transmission electron microscope, and is calculated by the following formula (2) from the envelope area and the projection area of the aggregate, and DBP is the DBP absorption amount. .
  • the hard carbon black according to the present embodiment is not limited in its production method, and is produced by a production method such as a thermal method that is a thermal decomposition method, an acetylene decomposition method, or a contact method that is an incomplete combustion method. However, it is more preferable that it is manufactured by a furnace method such as a gas furnace method or an oil furnace method.
  • the DBP absorption amount which is the variable on the right side of the above equation (1), is a factor that indicates the rubber occlusion capacity of carbon black when carbon black is blended with rubber, and the void volume inside the aggregate and the void between the aggregates. It is considered the sum of volume. The higher the DBP absorption, the greater the total void volume, and the easier it is to occlude rubber molecules.
  • the hard carbon black according to the present embodiment can satisfy the relationship of the formula (1), and can exhibit a very excellent low heat generation property while maintaining a high level of wear resistance. In other words, it has an excellent balance between wear resistance and low heat generation. For this reason, it can be suitably used for applications such as compound tires for vehicle tire treads, particularly passenger vehicle tire treads, which require a high level of wear resistance and excellent fuel efficiency.
  • the hard carbon black according to the present embodiment further has a selective characteristic represented by the following formula (3). 1.55 ⁇ D75 / D25 ⁇ 2.0 (3)
  • D75 is a 75% frequency value of the aggregate measured by the centrifugal sedimentation method
  • D25 is a 25% frequency value.
  • D75 / D25 is an index indicating the aggregate diameter distribution. The smaller the value, the sharper the aggregate diameter distribution, and the larger the value, the broader.
  • the hard carbon black according to the present embodiment satisfies the above formula (3), so that the balance between wear resistance and low heat build-up is more excellent.
  • D75 and D25 are measured in accordance with JIS K6217-6 “Carbon black for rubber—Basic characteristics—Part 6: Determination of aggregate distribution by disc centrifugal light precipitation method”.
  • the hard carbon black according to the present embodiment preferably has a CTAB adsorption specific surface area of 55 to 150 m 2 / g and a DBP absorption of 100 to 150 ml / 100 g.
  • the CTAB adsorption specific surface area is measured according to JIS K6217-3 “Carbon black for rubber—Basic characteristics—Part 3: Determination of specific surface area—CTAB adsorption method”.
  • the hard carbon black according to the present embodiment described above is continuously connected coaxially to a combustion chamber having an air inlet for supplying combustion air from the periphery of a fuel burner mounted in the axial direction of the furnace, for example.
  • a combustion chamber having an air inlet for supplying combustion air from the periphery of a fuel burner mounted in the axial direction of the furnace, for example.
  • an oil furnace furnace with two or three stages of narrow- and small-diameter reaction chambers with a raw material supply port, combustion of raw material supply location and supply volume, fuel oil and air, oxygen gas or a mixture thereof It can be manufactured by adjusting the supply amount of the working gas, the reaction stop time, and the like.
  • an oil furnace furnace consisting of two or three stages of narrow-diameter reaction chambers and wide-diameter reaction chambers, there are contracted and expanded flows of high-temperature and high-speed combustion gas due to the step shape.
  • the aggregate shape is determined by the collision frequency, collision strength, and collision direction of the carbon black particles. Therefore, to control the aggregate shape, the reaction point must be controlled in consideration of the contraction or expansion of the oil furnace. I must.
  • the hard carbon black considering the contracted flow and the expanded flow of the combustion gas due to the step shape, it is appropriately composed of the raw material supply location, supply amount, fuel amount, oxygen gas or a mixture thereof. It is effective to adjust the supply amount of combustion gas, reaction stop time, and the like. In particular, it is desirable to supply the raw material by dividing it into a narrow-diameter reaction chamber and a wide-diameter reaction chamber located upstream thereof.
  • the rubber used in the rubber composition is, for example, a diene synthetic rubber such as polybutadiene rubber, styrene butadiene rubber, isoprene rubber, or butyl rubber, natural rubber, or one or more of the diene synthetic rubber and natural rubber.
  • a diene synthetic rubber such as polybutadiene rubber, styrene butadiene rubber, isoprene rubber, or butyl rubber, natural rubber, or one or more of the diene synthetic rubber and natural rubber.
  • carbon black having the above characteristics and vulcanizing agent, vulcanization accelerator, vulcanization accelerator, vulcanization acceleration aid, anti-aging agent, softener, plasticizer and other necessary components are kneaded and vulcanized. .
  • the rubber composition according to the present embodiment can exhibit a very excellent low heat generation property while maintaining a high level of wear resistance. In other words, it has an excellent balance between wear resistance and low heat generation. For this reason, it can be used suitably for applications such as compounded rubber for tire treads for passenger cars, which require a high level of wear resistance and very low fuel consumption.
  • Examples 1 to 3 that satisfy the conditions defined in the present invention all have a very excellent fuel efficiency while maintaining a high level of wear resistance. Recognize.
  • Comparative Examples 1 to 5 that do not satisfy the conditions defined in the present invention are not as balanced in wear resistance and fuel consumption characteristics as the examples.
  • the CA is larger than (0.35 ⁇ DBP + 2), so that the fuel efficiency characteristics are not sufficiently improved as compared with Examples 1 and 2.
  • D75 / D25 is less than 1.55, so that the fuel efficiency is insufficient as compared with Example 2.

Abstract

Provided is a hard carbon black that maintains a high degree of abrasion resistance while exhibiting extremely low heat generation. The provided hard carbon black has the selective property given in formula (1). (1) CA < 0.35 × DBP + 2 Here, CA is an index derived by analyzing a two-dimensional projection of an aggregate, said projection obtained by a transmission electron microscope, and plugging the envelope area of the aggregate and the projected area into formula (2). DBP is the DBP absorption. (2) CA = (envelope area - projected area) / projected area × 100

Description

ハードカーボンブラック及びゴム組成物Hard carbon black and rubber composition
 本発明は、耐摩耗性と低発熱性のバランスに優れるハードカーボンブラックに関するものである。 The present invention relates to hard carbon black having an excellent balance between wear resistance and low heat build-up.
 ゴム配合用のカーボンブラックは、その用途、目的に応じて様々な種類があり、比表面積やアグリゲートなど各種特性により分類されている。
 これらのうち、タイヤトレッド用カーボンブラックについては高度の耐摩耗性と低燃費性を実現することが要求されている。この2つの要求特性のうち、後者の低燃費性については、低発熱性として評価される。
 これらの要求性能を満たすためのカーボンブラックとしては、例えば、高アグリゲートであることが有効であるとともに、耐摩耗性を向上させるには比表面積が大きく、一方、低燃費性を改善するには比表面積が小さいことが有効である。すなわち、高耐摩耗性と低燃費性の両立は二律背反する命題といえる。
There are various types of carbon black for rubber compounding depending on the application and purpose, and the carbon black is classified according to various characteristics such as specific surface area and aggregate.
Of these, carbon black for tire treads is required to achieve high wear resistance and low fuel consumption. Of the two required characteristics, the latter low fuel consumption is evaluated as low heat generation.
As a carbon black for satisfying these required performances, for example, a high aggregate is effective, and a specific surface area is large to improve wear resistance, while on the other hand, to improve fuel efficiency. It is effective that the specific surface area is small. In other words, the balance between high wear resistance and low fuel consumption is a contradictory proposition.
 耐摩耗性と低燃費性を高度にバランスさせるべく、カーボンブラックの様々な特性に着目し、多くの特許が出願されている。 Many patents have been filed with a focus on various characteristics of carbon black in order to achieve a high balance between wear resistance and fuel efficiency.
 例えば、特定の比表面積、アグリゲート範囲において、窒素吸着比表面積とCTAB吸着比表面積の関係、アグリゲート破壊指数、比着色力、ΔD50/Dst、水銀ポロシメーターにより測定される直径25nm~30nmの空隙総容積を規定したカーボンブラックが提案されている(特許文献1参照)。
 また、アグリゲートを透過型電子顕微鏡による2次元投影画像をもとに、指標化する提案もなされ、特許文献2では、窒素吸着比表面積が75~100m2/g、圧縮DBPが105~120ml/100gのハード系領域で、アグリゲートのストークスモード径(Dst)と透過型電子顕微鏡による2次元投影像を画像解析して得られるカーボンブラックアグリゲートの投影面積の円換算平均径(De)との間にDst≧0.62De+28.0の関係を満たす形状異方性の小さいカーボンブラック及びゴム組成物が提案されている(特許文献2参照)。
 また、CTAB吸着比表面積が110~160m2/g及び24M4DBP吸収量が90~140ml/100gの特定範囲において、凝集体パラメーター円形規則度(λ1)がλ1≦0.0027×(24M4DBP)+0.0778を満足するようなギザギザした形状を多く持ち、固有楕円離心率(λ2)がλ2≧-0.000444×(24M4DBP)+0.750を満足するような異方性の高いアグリゲートを有するカーボンブラックも提案されている(特許文献3参照)。
For example, in a specific surface area and aggregate range, the relationship between nitrogen adsorption specific surface area and CTAB adsorption specific surface area, aggregate destruction index, specific coloring power, ΔD50 / Dst, total pore size of 25 nm to 30 nm measured by mercury porosimeter Carbon black with a specified volume has been proposed (see Patent Document 1).
In addition, proposals have been made to index aggregates based on two-dimensional projection images obtained by a transmission electron microscope. In Patent Document 2, the nitrogen adsorption specific surface area is 75 to 100 m2 / g, and the compressed DBP is 105 to 120 ml / 100 g. Between the Stokes mode diameter (Dst) of the aggregate and the circle-converted average diameter (De) of the projected area of the carbon black aggregate obtained by image analysis of the two-dimensional projection image obtained by a transmission electron microscope. In addition, a carbon black and a rubber composition having a small shape anisotropy satisfying the relationship of Dst ≧ 0.62De + 28.0 have been proposed (see Patent Document 2).
In addition, the aggregate parameter circular regularity (λ1) satisfies λ1 ≦ 0.0027 × (24M4DBP) +0.0778 in the specific range of CTAB adsorption specific surface area of 110-160m2 / g and 24M4DBP absorption of 90-140ml / 100g. Carbon blacks with many such jagged shapes and high anisotropic anisotropies that satisfy the intrinsic elliptical eccentricity (λ2) satisfying λ2 ≧ −0.000444 × (24M4DBP) +0.750 have also been proposed ( (See Patent Document 3).
 しかしながら、近年の地球環境保全に関する関心から、省資源、省エネルギーに関する社会的要請がより一層高まっており、低燃費タイヤへの要求は益々高く、従来以上に耐摩耗性と低燃費性を高度にバランスさせたカーボンブラック及びそれを配合したゴム組成物が望まれている。 However, due to the recent interest in global environmental conservation, social demands for resource saving and energy saving are further increasing, and the demand for low fuel consumption tires is increasing, with a higher balance between wear resistance and fuel efficiency than ever before. Carbon black and a rubber composition containing the carbon black are desired.
特許3809230号公報Japanese Patent No. 3809230 特許3461396号公報Japanese Patent No. 3461396 特開2000-319539号公報JP 2000-319539 A
 解決しようとする問題点は、高水準の耐摩耗性を保持しながら、かつ非常に優れた低発熱性を有するハードカーボンブラックとして未だ十分なものが得られていない点である。 The problem to be solved is that a hard carbon black having a very excellent low heat generation property while maintaining a high level of wear resistance has not yet been obtained.
 本発明者らは、乗用車タイヤトレッド用として、高水準の耐摩耗性と低燃費性を兼備するカーボンブラックを提供するために、アグリゲート形状について鋭意検討した結果、アグリゲートの包絡面積と投影面積から算出される指標がDBP吸収量から算出される値よりも低い場合に低燃費化が図れることを見出し、本発明に至った。 As a result of intensive studies on the aggregate shape in order to provide a carbon black having both a high level of wear resistance and low fuel consumption for use in passenger car tire treads, the present inventors have found that the envelope area and projected area of the aggregate The present inventors have found that fuel consumption can be reduced when the index calculated from the above is lower than the value calculated from the DBP absorption amount.
 すなわち、本発明に係るハードカーボンブラックは、下記式(1)の選択的特性を有することを特徴とする。
     CA<0.35×DBP+2            (1)
 ここでCAは透過型電子顕微鏡によるアグリゲートの二次元投影画像を画像解析し、アグリゲートの包絡面積と投影面積から下記式(2)で計算される指標であり、DBPはDBP吸収量である
     CA=(包絡面積-投影面積)/投影面積×100  (2)
That is, the hard carbon black according to the present invention has a selective characteristic represented by the following formula (1).
CA <0.35 × DBP + 2 (1)
Here, CA is an index obtained by image analysis of a two-dimensional projection image of an aggregate by a transmission electron microscope, and is calculated by the following formula (2) from the envelope area and the projection area of the aggregate, and DBP is the DBP absorption amount. CA = (envelope area−projected area) / projected area × 100 (2)
 また、本発明に係るハードカーボンブラックは、好ましくは、さらに下記式(3)の選択的特性を有することを特徴とする。
     1.55<D75/D25<2.0         (3)
 ここで、D75は遠心沈降法で測定したアグリゲートの75%頻度値であり、D25は25%頻度値である
In addition, the hard carbon black according to the present invention preferably further has a selective property of the following formula (3).
1.55 <D75 / D25 <2.0 (3)
Here, D75 is the 75% frequency value of the aggregate measured by centrifugal sedimentation, and D25 is the 25% frequency value.
 また、本発明に係るハードカーボンブラックは、好ましくは、CTAB吸着比表面積が55~150m/gおよびDBP吸収量が100~150ml/100gであることを特徴とする。 The hard carbon black according to the present invention is preferably characterized by having a CTAB adsorption specific surface area of 55 to 150 m 2 / g and a DBP absorption of 100 to 150 ml / 100 g.
 また、本発明に係るゴム組成物は、ゴム100質量部に対して上記のハードカーボンブラックを20~100質量部を配合してなることを特徴とする。 Further, the rubber composition according to the present invention is characterized in that 20 to 100 parts by mass of the above hard carbon black is blended with 100 parts by mass of rubber.
 本発明に係るハードカーボンブラックは、下記式(1)の選択的特性を有するので、高水準の耐摩耗性を保持しながら、かつ非常に優れた低発熱性を発現することができる。また、このため、高水準の耐摩耗性と非常に優れた低燃費性を求められる乗用車用タイヤトレッドの配合ゴム等の用途に好適に用いることができる。
     CA<0.35×DBP+2            (1)
 ここでCAは透過型電子顕微鏡によるアグリゲートの二次元投影画像を画像解析し、アグリゲートの包絡面積と投影面積から下記式(2)で計算される指標であり、DBPはDBP吸収量である
     CA=(包絡面積-投影面積)/投影面積×100  (2)
 また、本発明に係るゴム組成物は、上記のハードカーボンブラックを用いるので、高水準の耐摩耗性と非常に優れた低燃費性を求められる乗用車用タイヤトレッドとして好適である。
Since the hard carbon black according to the present invention has the selective property of the following formula (1), it can exhibit a very excellent low heat generation property while maintaining a high level of wear resistance. For this reason, it can be used suitably for applications such as compounded rubber for tire treads for passenger cars, which require a high level of wear resistance and very low fuel consumption.
CA <0.35 × DBP + 2 (1)
Here, CA is an index obtained by image analysis of a two-dimensional projection image of an aggregate by a transmission electron microscope, and is calculated by the following formula (2) from the envelope area and the projection area of the aggregate, and DBP is the DBP absorption amount. CA = (envelope area−projected area) / projected area × 100 (2)
Moreover, since the rubber composition according to the present invention uses the above-mentioned hard carbon black, it is suitable as a tire tread for passenger cars that requires a high level of wear resistance and a very excellent fuel economy.
図1は式(2)中の包絡面積と投影面積の関係を模式的に示す図である。FIG. 1 is a diagram schematically showing the relationship between the envelope area and the projected area in equation (2). 図2は実施例、比較例及び参考例のゴム組成物についてtanδ(60℃)とランボーン25%摩耗の関係を示したグラフ図である。FIG. 2 is a graph showing the relationship between tan δ (60 ° C.) and lambone 25% wear for the rubber compositions of Examples, Comparative Examples, and Reference Examples.
 本発明の実施の形態(以下、本実施の形態例という。)について、以下に説明する。 Embodiments of the present invention (hereinafter referred to as “examples of the present embodiment”) will be described below.
 本実施の形態例に係るハードカーボンブラックは、下記式(1)の選択的特性を有するもの、すなわち、式(1)の条件を満たすものである。
     CA<0.35×DBP+2            (1)
 ここでCAは透過型電子顕微鏡によるアグリゲートの二次元投影画像を画像解析し、アグリゲートの包絡面積と投影面積から下記式(2)で計算される指標であり、DBPはDBP吸収量である。
     CA=(包絡面積-投影面積)/投影面積×100  (2)
 本実施の形態例に係るハードカーボンブラックは、その製造方法を限定するものではなく、熱分解法であるサーマル法もしくはアセチレン分解法または不完全燃焼法であるコンタクト法等の製法で製造されるものであってもよいが、ガスファーネス法やオイルファーネス法等のファーネス法の製法で製造されるものであることがより好ましい。
The hard carbon black according to the present embodiment has a selective characteristic of the following formula (1), that is, satisfies the condition of the formula (1).
CA <0.35 × DBP + 2 (1)
Here, CA is an index obtained by image analysis of a two-dimensional projection image of an aggregate by a transmission electron microscope, and is calculated by the following formula (2) from the envelope area and the projection area of the aggregate, and DBP is the DBP absorption amount. .
CA = (envelope area−projected area) / projected area × 100 (2)
The hard carbon black according to the present embodiment is not limited in its production method, and is produced by a production method such as a thermal method that is a thermal decomposition method, an acetylene decomposition method, or a contact method that is an incomplete combustion method. However, it is more preferable that it is manufactured by a furnace method such as a gas furnace method or an oil furnace method.
 以下、上式(1)の技術的意義について説明する。
 カーボンブラックをゴムに配合すると、カーボンブラック表面のゴム分子は物理吸着等によってカーボンブラック表面に固着し、ゴム分子間の絡み合いも相俟って、カーボンブラック表面には分子運動性の乏しいゴム分子層が形成される。
 この運動性の乏しいゴム分子の容積が増えるほど、モジュラスや耐摩耗性などの機械的強度が向上する。一方、このようなカーボンブラック表面近傍の運動性の乏しいゴム分子は変形時に分子間摩擦による発熱が高いものと考えられる。したがって、一般にカーボンブラックの比表面積が増大するほど分子運動性の乏しいゴム層の容積が増え、耐摩耗性が向上するものの発熱が高く、燃費特性が損なわれる結果となる。
 上式(1)の右辺の変数であるDBP吸収量は、カーボンブラックがゴムに配合されたときのカーボンブラックのゴム吸蔵能力を示すファクターであり、アグリゲート内部の空隙容積並びにアグリゲート間の空隙容積の総和と考えられる。DBP吸収量が高いほど空隙容積の総和が大きいためにゴム分子を吸蔵しやすい。
 ところで、高アグリゲート化はアグリゲート内部の空隙容積を増大させることによってアグリゲート内部にゴム分子を多く吸蔵し、変形に対してアグリゲート構造によって吸蔵したゴム分子の変形を和らげることにより発熱を抑制する効果があると考えられる。しかしながら、過度の高アグリゲート化は加工性の悪化をもたらすため実施には限界がある。
Hereinafter, the technical significance of the above formula (1) will be described.
When carbon black is blended with rubber, rubber molecules on the surface of carbon black are fixed to the surface of carbon black by physical adsorption, etc., and entanglement between the rubber molecules is combined, resulting in a rubber molecular layer with poor molecular mobility on the surface of carbon black. Is formed.
As the volume of the rubber molecule having poor mobility increases, the mechanical strength such as modulus and wear resistance is improved. On the other hand, it is considered that such rubber molecules having poor mobility near the surface of the carbon black generate high heat due to intermolecular friction during deformation. Therefore, in general, as the specific surface area of carbon black increases, the volume of the rubber layer having poor molecular mobility increases, and although the wear resistance is improved, the heat generation is high and the fuel efficiency characteristics are impaired.
The DBP absorption amount, which is the variable on the right side of the above equation (1), is a factor that indicates the rubber occlusion capacity of carbon black when carbon black is blended with rubber, and the void volume inside the aggregate and the void between the aggregates. It is considered the sum of volume. The higher the DBP absorption, the greater the total void volume, and the easier it is to occlude rubber molecules.
By the way, high aggregation suppresses heat generation by increasing the void volume inside the aggregate to store more rubber molecules inside the aggregate and softening the deformation of the rubber molecules stored by the aggregate structure against deformation. It is thought that there is an effect to do. However, excessively high aggregation brings about deterioration of workability, so there is a limit to implementation.
 このような背景のもと、アグリゲート形状の視点から低燃費性について考察した結果、DBP吸収量が同等レベルのカーボンブラックであっても、アグリゲート内部の空隙容積とアグリゲート間の空隙容積の割合を制御することにより、カーボンブラックで運動性を抑制されるゴム分子の容積を耐摩耗性が維持できる程度に少なくできれば、カーボンブラックで運動性を抑制されないゴム分子の容積が相対的に大きくなり、発熱が抑制され、低燃費性を改善できることに想達した。
 具体的には、上記の観点から、アグリゲートの包絡面積から投影面積を差し引いたアグリゲート内部の空隙面積を投影面積で除したアグリゲート単位投影面積あたりの空隙面積の割合をアグリゲート内部の空隙容積の割合を示す指標としてDBP吸収量との関係及び耐摩耗性、低発熱性の関係を鋭意検討した結果、アグリゲート単位投影面積あたりの空隙面積の割合とDBP吸収量との関係において、アグリゲート単位投影面積あたりの空隙面積の割合がDBP吸収量から算出される値より低い場合に耐摩耗性を維持しながら優れた低燃費性が図れることを見出した。
Against this background, as a result of considering fuel efficiency from the viewpoint of aggregate shape, even if the carbon black has the same level of DBP absorption, the void volume inside the aggregate and the void volume between aggregates By controlling the ratio, if the volume of rubber molecules whose mobility is suppressed by carbon black can be reduced to such an extent that abrasion resistance can be maintained, the volume of rubber molecules whose mobility is not suppressed by carbon black will become relatively large. The idea is that heat generation is suppressed and fuel efficiency can be improved.
Specifically, from the above point of view, the ratio of the void area per aggregate unit projected area obtained by dividing the void area inside the aggregate by subtracting the projected area from the envelope area of the aggregate by the projected area is the void inside the aggregate. As a result of intensive studies on the relationship between the DBP absorption amount and the wear resistance and low heat build-up as an index indicating the volume ratio, the relationship between the gap area ratio per aggregate unit projected area and the DBP absorption amount It was found that excellent fuel efficiency can be achieved while maintaining wear resistance when the ratio of the void area per gate unit projected area is lower than the value calculated from the DBP absorption amount.
 上式(1)のDBP吸収量は、JIS K6217-4「ゴム用カーボンブラック-基本特性-第4部:オイル吸収量の求め方(圧縮試料を含む)」に準拠して測定される。
 また、上式(2)のアグリゲートの包絡面積と投影面積は、以下の方法で求められる。
 乾燥させたカーボンブラック試料1mgを試験管に入れ、クロロホルム2mlを加え、3分間超音波で分散させる。分散させた試料をカーボンブラック支持膜に固定し、透過型電子顕微鏡(直接倍率60000倍)で撮影する。得られた二次元投影画像を画像解析装置(NIRECO社製LUZEX-F)にかけ、1000個のアグリゲートについて測定することにより、包絡面積、投影面積の個数平均値、包絡面積と投影面積から計算される指標(CA)が求められる。
 ここで、包絡面積と投影面積の関係を図1に模式的に示す。図1中、グレーの星形形状物は1つのアグリゲートを模式的に示したものである。
The DBP absorption amount of the above formula (1) is measured in accordance with JIS K6217-4 “Carbon black for rubber—Basic characteristics—Part 4: Determination of oil absorption amount (including compressed sample)”.
Further, the envelope area and the projected area of the aggregate of the above formula (2) can be obtained by the following method.
Place 1 mg of the dried carbon black sample in a test tube, add 2 ml of chloroform, and disperse with ultrasound for 3 minutes. The dispersed sample is fixed to a carbon black support film and photographed with a transmission electron microscope (direct magnification 60000 times). The obtained two-dimensional projection image is applied to an image analyzer (LUZEX-F manufactured by NIRECO), and 1000 aggregates are measured to calculate the envelope area, the number average value of the projected areas, the envelope area and the projected area. Index (CA) is required.
Here, the relationship between the envelope area and the projected area is schematically shown in FIG. In FIG. 1, the gray star-shaped object is a schematic representation of one aggregate.
 アグリゲート内部の空隙容積及びアグリゲート間の空隙容積の総和であるDBP吸収量と、アグリゲート内部の空隙容積の割合であるCAに関して、既存カーボンブラックはCA>0.35×DBP+2.7を満たしていた。本発明者らはDBP吸収量に対して相対的に低いCAを示すカーボンブラックの開発を行い、CA<0.35×DBP+2の関係を満たす場合に耐摩耗性を維持しながら優れた低燃費性を示すことを見出した。
 上式(1)において、CAが(0.35×DBP+2)で算出される値よりも大きいときには、耐摩耗性と低発熱性や低燃費性のバランスが悪くなるおそれがあり、特に、十分な低発熱性や低燃費性が得られないおそれがある。
The existing carbon black satisfies CA> 0.35 × DBP + 2.7 with respect to the DBP absorption amount, which is the sum of the void volume inside the aggregate and between the aggregates, and the CA, which is the ratio of the void volume inside the aggregate. . The present inventors have developed a carbon black that exhibits a relatively low CA with respect to the DBP absorption amount, and exhibit excellent fuel efficiency while maintaining wear resistance when the relationship of CA <0.35 × DBP + 2 is satisfied. I found out.
In the above formula (1), when CA is larger than the value calculated by (0.35 × DBP + 2), there is a risk that the balance between wear resistance, low heat generation and fuel efficiency may be deteriorated. There is a risk that the performance and fuel efficiency will not be obtained.
 本実施の形態例に係るハードカーボンブラックは、式(1)の関係を満足することにより、高水準の耐摩耗性を保持しながら、かつ非常に優れた低発熱性を発現することができる。言い換えれば、耐摩耗性と低発熱性のバランスに優れる。また、このため、高水準の耐摩耗性と非常に優れた低燃費性を求められる車両用タイヤトレッド、特に乗用車用タイヤトレッドの配合ゴム等の用途に好適に用いることができる。 The hard carbon black according to the present embodiment can satisfy the relationship of the formula (1), and can exhibit a very excellent low heat generation property while maintaining a high level of wear resistance. In other words, it has an excellent balance between wear resistance and low heat generation. For this reason, it can be suitably used for applications such as compound tires for vehicle tire treads, particularly passenger vehicle tire treads, which require a high level of wear resistance and excellent fuel efficiency.
 本実施の形態例に係るハードカーボンブラックは、さらに下記式(3)の選択的特性を有することが好ましい。
     1.55<D75/D25<2.0         (3)
 ここで、D75は遠心沈降法で測定したアグリゲートの75%頻度値であり、D25は25%頻度値である。D75/D25はアグリゲート径分布を示す指標であり、値が小さいほどアグリゲート径分布がシャープで、値が大きいほどブロードである。
 本実施の形態例に係るハードカーボンブラックは、上式(3)を満足することにより、耐摩耗性と低発熱性のバランスがより優れる。
 D75及びD25は、JIS K6217-6「ゴム用カーボンブラック-基本特性-第6部:ディスク遠心光沈降法による凝集体分布の求め方」に準拠して測定される。
It is preferable that the hard carbon black according to the present embodiment further has a selective characteristic represented by the following formula (3).
1.55 <D75 / D25 <2.0 (3)
Here, D75 is a 75% frequency value of the aggregate measured by the centrifugal sedimentation method, and D25 is a 25% frequency value. D75 / D25 is an index indicating the aggregate diameter distribution. The smaller the value, the sharper the aggregate diameter distribution, and the larger the value, the broader.
The hard carbon black according to the present embodiment satisfies the above formula (3), so that the balance between wear resistance and low heat build-up is more excellent.
D75 and D25 are measured in accordance with JIS K6217-6 “Carbon black for rubber—Basic characteristics—Part 6: Determination of aggregate distribution by disc centrifugal light precipitation method”.
 D75/D25が1.55以下の場合には低発熱性や低燃費性が悪化するおそれがあり、2.0以上の場合には耐摩耗性が悪化するおそれがある。 ∙ When D75 / D25 is 1.55 or less, low heat build-up and low fuel consumption may be deteriorated. When D75 / D25 is 2.0 or more, wear resistance may be deteriorated.
 また、本実施の形態例に係るハードカーボンブラックは、CTAB吸着比表面積が55~150m/g及びDBP吸収量が100~150ml/100gであることが好ましい。
 CTAB吸着比表面積は、JIS K6217-3「ゴム用カーボンブラック-基本特性-第3部:比表面積の求め方-CTAB吸着法」に準拠して測定される。
The hard carbon black according to the present embodiment preferably has a CTAB adsorption specific surface area of 55 to 150 m 2 / g and a DBP absorption of 100 to 150 ml / 100 g.
The CTAB adsorption specific surface area is measured according to JIS K6217-3 “Carbon black for rubber—Basic characteristics—Part 3: Determination of specific surface area—CTAB adsorption method”.
 CTAB吸着比表面積が55m2/g未満では耐摩耗性が低下するおそれがあり、一方、150m2/gを超えるときにおいてもゴム中のカーボンブラックの分散性が悪化して耐摩耗性が低下するおそれがある。
 DBP吸収量が100ml/100g未満では必要なモジュラスが得られないおそれがあり、一方、150ml/100gを超えるとゴム組成物の粘度が高くなり、加工性が悪化するおそれがある。
If the CTAB adsorption specific surface area is less than 55 m 2 / g, the wear resistance may be lowered. On the other hand, if it exceeds 150 m 2 / g, the dispersibility of carbon black in the rubber is deteriorated and the wear resistance is lowered. There is a fear.
If the DBP absorption amount is less than 100 ml / 100 g, the required modulus may not be obtained. On the other hand, if the DBP absorption amount exceeds 150 ml / 100 g, the viscosity of the rubber composition increases and the processability may deteriorate.
 以上説明した本実施の形態例に係るハードカーボンブラックは、例えば、炉の軸方向に装着した燃料バーナーの周囲から燃焼用空気を供給する空気導入口を有する燃焼室に引き続き、同軸的に連設された原料供給口を有する2~3段階の狭径反応室と広径反応室からなるオイルファーネス炉を用い、原料の供給箇所や供給量、燃料油及び空気、酸素ガス又はその混合物からなる燃焼用ガスの供給量、反応停止時間等を調整することによって製造することができる。
 2~3段階の狭径反応室と広径反応室からなるオイルファーネス炉ではその段差形状によって、高温高速の燃焼ガスの縮流と拡大流れが存在する。一方、アグリゲート形状はカーボンブラック粒子同士の衝突頻度や衝突強度、衝突方向で決まるため、アグリゲート形状を制御するにはオイルファーネス炉の縮流や拡大流れを考慮して反応ポイントを制御しなければならない。
 本実施の形態例に係るハードカーボンブラックを製造するには、段差形状による燃焼ガスの縮流及び拡大流れを考慮し、適宜、原料供給箇所や供給量、燃料量、酸素ガス又はその混合物からなる燃焼用ガスの供給量、反応停止時間等を調整することが有効である。特に、狭径反応室とその上流に位置する広径反応室で分割して原料を供給することが望ましい。
The hard carbon black according to the present embodiment described above is continuously connected coaxially to a combustion chamber having an air inlet for supplying combustion air from the periphery of a fuel burner mounted in the axial direction of the furnace, for example. Using an oil furnace furnace with two or three stages of narrow- and small-diameter reaction chambers with a raw material supply port, combustion of raw material supply location and supply volume, fuel oil and air, oxygen gas or a mixture thereof It can be manufactured by adjusting the supply amount of the working gas, the reaction stop time, and the like.
In an oil furnace furnace consisting of two or three stages of narrow-diameter reaction chambers and wide-diameter reaction chambers, there are contracted and expanded flows of high-temperature and high-speed combustion gas due to the step shape. On the other hand, the aggregate shape is determined by the collision frequency, collision strength, and collision direction of the carbon black particles. Therefore, to control the aggregate shape, the reaction point must be controlled in consideration of the contraction or expansion of the oil furnace. I must.
In order to manufacture the hard carbon black according to this embodiment, considering the contracted flow and the expanded flow of the combustion gas due to the step shape, it is appropriately composed of the raw material supply location, supply amount, fuel amount, oxygen gas or a mixture thereof. It is effective to adjust the supply amount of combustion gas, reaction stop time, and the like. In particular, it is desirable to supply the raw material by dividing it into a narrow-diameter reaction chamber and a wide-diameter reaction chamber located upstream thereof.
 つぎに、本実施の形態例に係るゴム組成物は、ゴム100質量部に対して上記本実施の形態例に係るハードカーボンブラックを20~100質量部を配合したものである。 Next, the rubber composition according to this embodiment is obtained by blending 20 to 100 parts by mass of hard carbon black according to this embodiment with respect to 100 parts by mass of rubber.
 ゴム組成物に使用されるゴムは、例えば、ポリブタジエンゴム、スチレンブタジエンゴム、イソプレンゴム、ブチルゴム等のジエン系合成ゴム、天然ゴム又は前記ジエン系合成ゴムと天然ゴムのいずれか1種又は2種以上を配合する。配合に際しては、上記特性を備えたカーボンブラックと加硫剤、加硫促進剤、加硫促進助剤、老化防止剤、軟化剤、可塑剤等の適宜必要な成分とともに混錬し加硫処理する。
 ゴム100質量部に対するカーボンブラックの配合比率が20質量部を下廻ると配合ゴムにモジュラス等の強度が十分に付与されず、一方、100重量部を超えると配合物の粘度が上昇するため混錬加工性が著しく減退する。
The rubber used in the rubber composition is, for example, a diene synthetic rubber such as polybutadiene rubber, styrene butadiene rubber, isoprene rubber, or butyl rubber, natural rubber, or one or more of the diene synthetic rubber and natural rubber. Is blended. When blending, carbon black having the above characteristics and vulcanizing agent, vulcanization accelerator, vulcanization accelerator, vulcanization acceleration aid, anti-aging agent, softener, plasticizer and other necessary components are kneaded and vulcanized. .
If the compounding ratio of carbon black to 100 parts by mass of rubber is less than 20 parts by mass, the compounded rubber will not have sufficient strength such as modulus, whereas if it exceeds 100 parts by mass, the viscosity of the compound will increase, so kneading. Workability is significantly reduced.
 本実施の形態例に係るゴム組成物は、高水準の耐摩耗性を保持しながら、かつ非常に優れた低発熱性を発現することができる。言い換えれば、耐摩耗性と低発熱性のバランスに優れる。また、このため、高水準の耐摩耗性と非常に優れた低燃費性を求められる乗用車用タイヤトレッドの配合ゴム等の用途に好適に用いることができる。 The rubber composition according to the present embodiment can exhibit a very excellent low heat generation property while maintaining a high level of wear resistance. In other words, it has an excellent balance between wear resistance and low heat generation. For this reason, it can be used suitably for applications such as compounded rubber for tire treads for passenger cars, which require a high level of wear resistance and very low fuel consumption.
 以下、本発明の実施例を比較例と対比して説明する。かかる実施例は本発明の一態様を示すものであり、本発明はこれによって限定されるものではなく本発明の範囲で任意に変更できる。 Hereinafter, examples of the present invention will be described in comparison with comparative examples. These examples show one embodiment of the present invention, and the present invention is not limited thereto and can be arbitrarily changed within the scope of the present invention.
(実施例1~3及び比較例1~4)
 炉の軸方向に装着した燃料バーナーの周囲から燃焼用空気を供給する空気導入口を有する燃焼室(内径900mm、長さ2100mm)に引き続き、半角15°のテ-パ角を有する縮小テ-パ部、円筒直管部(内径530mm、長さ400mm)、炉軸に対して直角方向に原料が供給できる原料供給口を供えた第1反応室(内径370mm、長さ3700mm)、第2反応室(内径254mm、長さ500mm)、半角15°のテ-パ角を有する第3反応室(長さ900mm)及び複数の反応停止用冷却水スプレー装置(QWNo.1~QWNo.8)を備えた反応停止部(内径420mm)からなるファーネス炉を用いた。尚、原料供給口は、第1反応室に4箇所(FNo.1~FNo.4)、第2反応室に1箇所(FNo.5)、第3反応室に3箇所(FNo.6~FNo.8)設置されている。
 原料に比重1.05(100/4℃)、BMCI 150、エングラー粘度(70/20℃)1.32、トルエン不溶分0.02%の石炭系原料油を、燃料に比重0.96(15/4℃)、灰分0.001%、エングラー粘度(40/20℃)1.11、トルエン不溶分0.007%の炭化水素油を用いて、原料供給箇所(第1段及び第2段の2段供給または1段供給)、原料供給量、燃料油供給量、燃焼空気供給量、反応停止箇所を変更して実施例1~3、比較例1~5のカーボンブラックを製造した。
 このようにして得られたカーボンブラックの製造条件と特性値を表1、表2に示した。また、表3には参考例1~3として市販用カーボンブラック(参考例1:N220 (新日化カーボン社製ニテロン#300)、参考例2:N234 (新日化カーボン社製ニテロン#300IH)、参考例3:N339 (新日化カーボン社製ニテロン#200IS))の特性を示した。
(Examples 1 to 3 and Comparative Examples 1 to 4)
Reduced taper with a taper angle of 15 ° half-width following a combustion chamber (inner diameter 900mm, length 2100mm) with an air inlet for supplying combustion air from around the fuel burner installed in the axial direction of the furnace Part, cylindrical straight pipe (inner diameter 530mm, length 400mm), first reaction chamber (inner diameter 370mm, length 3700mm), second reaction chamber with a raw material supply port that can supply raw material in a direction perpendicular to the furnace axis (Inner diameter 254mm, length 500mm), equipped with a third reaction chamber (length 900mm) with a taper angle of 15 ° half-width and multiple cooling water spray devices (QWNo.1 to QWNo.8) A furnace having a reaction stop (inner diameter: 420 mm) was used. In addition, there are 4 feed ports in the first reaction chamber (FNo. 1 to FNo. 4), 1 in the second reaction chamber (FNo. 5), and 3 in the third reaction chamber (FNo. 6 to FNo. .8) Is installed.
Coal feedstock with specific gravity 1.05 (100/4 ° C), BMCI 150, Engler viscosity (70/20 ° C) 1.32 and toluene insoluble content 0.02% for fuel, 0.96 (15/4 ° C) specific gravity, 0.001% for ash Using hydrocarbon oil with an Engler viscosity (40/20 ° C) of 1.11 and a toluene insoluble content of 0.007%, raw material supply location (first and second stage two-stage supply or one-stage supply), raw material supply amount, fuel Carbon blacks of Examples 1 to 3 and Comparative Examples 1 to 5 were manufactured by changing the oil supply amount, the combustion air supply amount, and the reaction stop point.
The production conditions and characteristic values of the carbon black thus obtained are shown in Tables 1 and 2. Table 3 also shows commercially available carbon black (Reference Example 1: N220 (Niteron Carbon # 300 Niteron # 300), Reference Example 2: N234 (Nippon Nikkei Carbon Niteron # 300IH) as Reference Examples 1 to 3. , Reference Example 3: Characteristics of N339 (Niteron # 200IS manufactured by Nikka Chemical Co., Ltd.) were shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 実施例、比較例、参考例の各カーボンブラックを表4に示すASTM D3192に準拠した配合で、混錬を行い、加硫条件145℃、30分で加硫を行ってゴム組成物とした。 The carbon blacks of Examples, Comparative Examples, and Reference Examples were kneaded with the blending based on ASTM D3192 shown in Table 4, and vulcanized at 145 ° C. for 30 minutes to obtain a rubber composition.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 ゴム組成物の耐摩耗性と燃費特性の評価を下記条件で行い、その結果を表5及び図2に示した。
 ここで、耐摩耗性、燃費特性は参考例1(ニテロン#300)を100とした時の対比指数で示した。耐摩耗性の対比指数が高いほど摩耗が少なく耐摩耗性が優れていることを示す。燃費特性は対比指数が小さいほど発熱が小さく低燃費性が優れていることを示す。
(1)摩耗特性の評価
 耐摩耗性の評価は岩本製作所社製ランボーン摩耗試験機を用いてスリップ率25%で下記の通りで行った。
装置    : 岩本製作所社製 単連ランボーン摩耗試験機
砥石    : 外径305mm、粒GC、粒度80、結合度K
サンプル : 外径49mm、内径23mm、幅5mm
砂     : カ-ボランダム90メッシュ
サンプル速度 : 50.8m/分(330rpm)
落砂量   : 15g/分
スリップ率 : 25%
荷重     : 3.5kg
(2)燃費特性の評価
 燃費特性の評価は東洋精機社製粘弾性スペクトロメーターを用いて60℃の損失正接(以下、tanδ(60℃)で示す)を測定した。
装置  : 東洋精機社製粘弾性スペクトロメーター
サンプル : 長さ20mm、幅5mm、厚さ2mm
測定温度 : 60℃
周波数  : 20Hz
初期ひずみ :
10%
振幅     : 2%
The rubber composition was evaluated for wear resistance and fuel consumption characteristics under the following conditions, and the results are shown in Table 5 and FIG.
Here, the wear resistance and fuel consumption characteristics are shown as a contrast index when Reference Example 1 (Niteron # 300) is set to 100. Higher wear resistance contrast index indicates less wear and better wear resistance. The fuel consumption characteristics indicate that the smaller the contrast index, the smaller the heat generation and the better the fuel efficiency.
(1) Evaluation of wear characteristics The wear resistance was evaluated by using a Lambone abrasion tester manufactured by Iwamoto Seisakusho Co., Ltd. at a slip rate of 25% as follows.
Equipment: Iwamoto Seisakusho single continuous lambone abrasion tester whetstone: outer diameter 305mm, grain GC, grain size 80, bond strength K
Sample: Outer diameter 49mm, Inner diameter 23mm, Width 5mm
Sand: Carborundum 90 mesh Sample speed: 50.8m / min (330rpm)
Sandfall rate: 15 g / min Slip rate: 25%
Load: 3.5kg
(2) Evaluation of fuel consumption characteristics Evaluation of fuel consumption characteristics was performed by measuring a loss tangent at 60 ° C (hereinafter referred to as tan δ (60 ° C)) using a viscoelastic spectrometer manufactured by Toyo Seiki Co., Ltd.
Equipment: Toyo Seiki Viscoelastic Spectrometer Sample: Length 20mm, Width 5mm, Thickness 2mm
Measurement temperature: 60 ℃
Frequency: 20Hz
Initial strain:
Ten%
Amplitude: 2%
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5及び図2に示した通り、本発明で規定した条件を満たす実施例1~3はすべて高水準の耐摩耗性を保持しながら、非常に優れた低燃費性を有していることがわかる。一方、本発明で規定した条件を満たしていない比較例1~5は実施例ほど耐摩耗性と燃費特性がバランスしていない。比較例1、3はD75/D25を満足しているもののCAが(0.35×DBP+2)より大きいため実施例1、2と比較すると燃費特性の改善が不十分である。比較例2はCAが(0.35×DBP+2)から算出される値よりも小さく要件を満足しているもののD75/D25が1.55未満のため実施例2と比較すると低燃費性が不十分である。比較例4、5はD75/D25が1.55未満でかつCAが(0.35×DBP+2)より大きいため実施例3に比べて十分な燃費特性が得られていない。 As shown in Table 5 and FIG. 2, Examples 1 to 3 that satisfy the conditions defined in the present invention all have a very excellent fuel efficiency while maintaining a high level of wear resistance. Recognize. On the other hand, Comparative Examples 1 to 5 that do not satisfy the conditions defined in the present invention are not as balanced in wear resistance and fuel consumption characteristics as the examples. Although Comparative Examples 1 and 3 satisfy D75 / D25, the CA is larger than (0.35 × DBP + 2), so that the fuel efficiency characteristics are not sufficiently improved as compared with Examples 1 and 2. In Comparative Example 2, although CA is smaller than the value calculated from (0.35 × DBP + 2) and satisfies the requirement, D75 / D25 is less than 1.55, so that the fuel efficiency is insufficient as compared with Example 2. In Comparative Examples 4 and 5, since D75 / D25 is less than 1.55 and CA is greater than (0.35 × DBP + 2), sufficient fuel consumption characteristics are not obtained as compared with Example 3.

Claims (5)

  1.  下記式(1)の選択的特性を有することを特徴とするハードカーボンブラック。
         CA<0.35×DBP+2            (1)
     ここでCAは透過型電子顕微鏡によるアグリゲートの二次元投影画像を画像解析し、アグリゲートの包絡面積と投影面積から下記式(2)で計算される指標であり、DBPはDBP吸収量である
         CA=(包絡面積-投影面積)/投影面積×100  (2)
    Hard carbon black characterized by having a selective property of the following formula (1).
    CA <0.35 × DBP + 2 (1)
    Here, CA is an index obtained by image analysis of a two-dimensional projection image of an aggregate by a transmission electron microscope, and is calculated by the following formula (2) from the envelope area and the projection area of the aggregate, and DBP is the DBP absorption amount. CA = (envelope area−projected area) / projected area × 100 (2)
  2.  さらに下記式(3)の選択的特性を有することを特徴とする請求項1記載のハードカーボンブラック。
         1.55<D75/D25<2.0         (3)
     ここで、D75は遠心沈降法で測定したアグリゲートの75%頻度値であり、D25は25%頻度値である
    The hard carbon black according to claim 1, further having a selective characteristic of the following formula (3).
    1.55 <D75 / D25 <2.0 (3)
    Here, D75 is the 75% frequency value of the aggregate measured by centrifugal sedimentation, and D25 is the 25% frequency value.
  3.  CTAB吸着比表面積が55~150m/gおよびDBP吸収量が100~150ml/100gであることを特徴とする請求項1記載のハードカーボンブラック。 The hard carbon black according to claim 1, having a CTAB adsorption specific surface area of 55 to 150 m 2 / g and a DBP absorption of 100 to 150 ml / 100 g.
  4.  CTAB吸着比表面積が55~150m/gおよびDBP吸収量が100~150ml/100gであることを特徴とする請求項2記載のハードカーボンブラック。 The hard carbon black according to claim 2, having a CTAB adsorption specific surface area of 55 to 150 m 2 / g and a DBP absorption of 100 to 150 ml / 100 g.
  5.  ゴム100質量部に対して請求項1~4のいずれか1項に記載のハードカーボンブラックを20~100質量部を配合してなることを特徴とするゴム組成物。 A rubber composition comprising 20 to 100 parts by mass of hard carbon black according to any one of claims 1 to 4 per 100 parts by mass of rubber.
PCT/JP2010/004898 2009-08-12 2010-08-04 Hard carbon black and rubber composition WO2011018887A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011526684A JPWO2011018887A1 (en) 2009-08-12 2010-08-04 Hard carbon black and rubber composition
IN784DEN2012 IN2012DN00784A (en) 2009-08-12 2010-08-04
CN201080031800XA CN102471608A (en) 2009-08-12 2010-08-04 Hard carbon black and rubber composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-187000 2009-08-12
JP2009187000 2009-08-12

Publications (1)

Publication Number Publication Date
WO2011018887A1 true WO2011018887A1 (en) 2011-02-17

Family

ID=43586070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004898 WO2011018887A1 (en) 2009-08-12 2010-08-04 Hard carbon black and rubber composition

Country Status (4)

Country Link
JP (1) JPWO2011018887A1 (en)
CN (1) CN102471608A (en)
IN (1) IN2012DN00784A (en)
WO (1) WO2011018887A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023538A (en) * 2011-07-19 2013-02-04 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2017525825A (en) * 2014-08-29 2017-09-07 オリオン エンジニアード カーボンズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Process for controlling the porosity of carbon black
WO2019130803A1 (en) * 2017-12-26 2019-07-04 Toyo Tire株式会社 Rubber composition, pneumatic tire, production method for wet rubber masterbatch, and production method for rubber composition
JP2019112585A (en) * 2017-12-26 2019-07-11 Toyo Tire株式会社 Rubber composition and pneumatic tire
JP2019112586A (en) * 2017-12-26 2019-07-11 Toyo Tire株式会社 Method of producing rubber wet master batch and method of producing rubber composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103408973A (en) * 2013-08-22 2013-11-27 龙星化工股份有限公司 Low-themogenesis super-wear-resisting carbon black and production technology thereof
CN108961335A (en) * 2018-07-11 2018-12-07 四川理工学院 The measurement method of carbon black aggregate spacing in a kind of rubber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370126A (en) * 1991-06-17 1992-12-22 Tokai Carbon Co Ltd Rubber composition
JPH06256576A (en) * 1993-03-04 1994-09-13 Tokai Carbon Co Ltd Rubber composition
JPH08169983A (en) * 1994-12-16 1996-07-02 Tokai Carbon Co Ltd Rubber composition for tire tread
JPH1036704A (en) * 1996-07-22 1998-02-10 Nippon Steel Chem Co Ltd Carbon black and rubber composition
JP2003096332A (en) * 2001-09-27 2003-04-03 Tokai Carbon Co Ltd Hard carbon black

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256580A (en) * 1993-03-08 1994-09-13 Tokai Carbon Co Ltd Rubber composition
JP3585017B2 (en) * 1997-04-14 2004-11-04 株式会社ブリヂストン Rubber composition and pneumatic tire using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370126A (en) * 1991-06-17 1992-12-22 Tokai Carbon Co Ltd Rubber composition
JPH06256576A (en) * 1993-03-04 1994-09-13 Tokai Carbon Co Ltd Rubber composition
JPH08169983A (en) * 1994-12-16 1996-07-02 Tokai Carbon Co Ltd Rubber composition for tire tread
JPH1036704A (en) * 1996-07-22 1998-02-10 Nippon Steel Chem Co Ltd Carbon black and rubber composition
JP2003096332A (en) * 2001-09-27 2003-04-03 Tokai Carbon Co Ltd Hard carbon black

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023538A (en) * 2011-07-19 2013-02-04 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2017525825A (en) * 2014-08-29 2017-09-07 オリオン エンジニアード カーボンズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Process for controlling the porosity of carbon black
JP2020033569A (en) * 2014-08-29 2020-03-05 オリオン エンジニアード カーボンズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Process for controlling porosity of carbon blacks
US10907049B2 (en) 2014-08-29 2021-02-02 Orion Engineered Carbons Gmbh Process for controlling the porosity of carbon blacks
JP7000398B2 (en) 2014-08-29 2022-01-19 オリオン エンジニアード カーボンズ ゲゼルシャフト ミット ベシュレンクテル ハフツング The process of controlling the porosity of carbon black
WO2019130803A1 (en) * 2017-12-26 2019-07-04 Toyo Tire株式会社 Rubber composition, pneumatic tire, production method for wet rubber masterbatch, and production method for rubber composition
JP2019112585A (en) * 2017-12-26 2019-07-11 Toyo Tire株式会社 Rubber composition and pneumatic tire
JP2019112586A (en) * 2017-12-26 2019-07-11 Toyo Tire株式会社 Method of producing rubber wet master batch and method of producing rubber composition
JP7022582B2 (en) 2017-12-26 2022-02-18 Toyo Tire株式会社 A method for producing a rubber wet masterbatch and a method for producing a rubber composition.
JP7154008B2 (en) 2017-12-26 2022-10-17 Toyo Tire株式会社 Rubber composition and pneumatic tire

Also Published As

Publication number Publication date
CN102471608A (en) 2012-05-23
IN2012DN00784A (en) 2015-06-26
JPWO2011018887A1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
WO2011018887A1 (en) Hard carbon black and rubber composition
TWI744504B (en) Carbon and elastomer integration
JP3810098B2 (en) Rubber composition
JP5659594B2 (en) Rubber composition for tire tread
JP5981918B2 (en) Carbon black, rubber composition and pneumatic tire
JP2000080302A (en) Hard-based high structure carbon black and rubber composition blended with carbon black
JP2012158662A (en) Rubber composition for tire tread
JP2011037995A (en) Hard carbon black
JP2012158627A (en) Hard carbon black
JP2005272604A (en) Rubber composition for bead and pneumatic tire
US8278385B2 (en) Rubber composite and tire using the same
JP5771686B2 (en) Rubber composition and tire
JP3809230B2 (en) Carbon black and rubber composition
JP2003292821A (en) Carbon black and its rubber composition
JP2000319539A (en) Carbon black and rubber composition
JP5467738B2 (en) Rubber composition and tire using the same
JP3517756B2 (en) Rubber composition for tire tread
JP2012158661A (en) Rubber composition for tire tread
JP2003096332A (en) Hard carbon black
JPH1036703A (en) Carbon black and rubber composition
JP6034545B2 (en) Carbon black for tire tread
JP3316267B2 (en) Rubber composition for tire tread
JP3929838B2 (en) Carbon black and rubber composition thereof
JP3806447B2 (en) Rubber composition for tire tread
JP2002327134A (en) Carbon black for tire tread rubber

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080031800.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808072

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011526684

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 784/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808072

Country of ref document: EP

Kind code of ref document: A1