WO2011016299A1 - 硬脆材料の研削方法 - Google Patents

硬脆材料の研削方法 Download PDF

Info

Publication number
WO2011016299A1
WO2011016299A1 PCT/JP2010/060831 JP2010060831W WO2011016299A1 WO 2011016299 A1 WO2011016299 A1 WO 2011016299A1 JP 2010060831 W JP2010060831 W JP 2010060831W WO 2011016299 A1 WO2011016299 A1 WO 2011016299A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
drill
hole
hard
brittle material
Prior art date
Application number
PCT/JP2010/060831
Other languages
English (en)
French (fr)
Inventor
俊彦 平林
Original Assignee
旭栄研磨加工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭栄研磨加工株式会社 filed Critical 旭栄研磨加工株式会社
Publication of WO2011016299A1 publication Critical patent/WO2011016299A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/003Multipurpose machines; Equipment therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/009Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding profiled workpieces using a profiled grinding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • B24B27/0641Grinders for cutting-off for grinding holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/18Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by milling, e.g. channelling by means of milling tools

Definitions

  • the present invention relates to a method for grinding a hard and brittle material for punching a hard and brittle material such as glass.
  • a diamond drill that drills holes by contacting the hard and brittle materials while rotating the diamond wheel (grinding wheel) attached to the tip of a steel shank. Drill).
  • the diamond wheel is brought into contact with the hard and brittle material while rotating the shaft about the shank axis, and between the diamond wheel and the hard and brittle material. Perforation is performed by giving an eccentric motion (for example, see Patent Document 1).
  • the present invention has been made paying attention to such problems, and it is possible to shorten the grinding time of a hard and brittle material when forming a hole in the hard and brittle material using a grinding drill. It is an object of the present invention to provide a material grinding method.
  • the grinding method of the hard and brittle material of the present invention A grinding method for a hard and brittle material using a grinding drill having a grinding wheel portion for grinding on a shank acting as a rotating shaft, and forming a hole in a plane portion of a substantially flat hard and brittle material, A grinding surface is provided at least on the outer peripheral surface around the axis of the grinding wheel portion for grinding, and the shaft center of the shank of the grinding drill is inclined with respect to the normal of the flat portion of the hard and brittle material, The method includes a grinding step of grinding the hard and brittle material by applying the outer peripheral surface of the grindstone portion to the flat portion of the hard and brittle material and moving the grinding drill in the direction of the perpendicular.
  • the grinding surface of the outer peripheral surface of the grinding wheel part having a high peripheral speed due to shaft rotation is hard.
  • the brittle material comes into contact with the flat surface of the brittle material, the hard brittle material is ground by the outer peripheral surface around the axis of the grinding wheel portion, and the grinding speed between the grinding wheel portion and the hard brittle material is improved.
  • the grinding time for forming the hole in the flat portion of the material can be shortened.
  • a hole extending in the circumferential direction of the grinding wheel portion is formed by moving the grinding drill in the left-right direction of the axial center thereof.
  • the hard and brittle material is ground by the grinding surface on the outer peripheral surface of the grinding wheel portion having a high peripheral speed due to shaft rotation, and the grinding wheel portion and the hard portion are hardened.
  • the grinding method of the hard and brittle material of the present invention A grinding surface is provided at least in front of the grinding wheel portion, and a hole extending in the forward direction of the grinding wheel portion is formed by moving the grinding drill in the forward direction of the axis. It is a feature. According to this feature, since the hard and brittle material is ground by the grinding surface on the outer peripheral surface of the grinding wheel portion and the grinding surface in front of the grinding wheel portion, the grinding speed between the grinding wheel portion and the hard and brittle material is reduced. Thus, it is possible to easily form a hole having a shape extending in the forward direction in a hard and brittle material in a short time.
  • the grinding method of the hard and brittle material of the present invention In the grinding step, the grinding drill is penetrated through the hard and brittle material to form the through-hole portion, and then the shaft center of the shank of the grinding drill is set to a perpendicular to the flat portion of the hard and brittle material.
  • the inner peripheral surface of the through-hole portion is ground by the grinding surface of the outer peripheral surface of the grinding wheel portion that has a high peripheral speed due to shaft rotation.
  • the grinding speed between the grinding wheel and the hard and brittle material can be improved, the molding time of the through hole can be shortened, and both the grinding and molding processes are consistent.
  • grinding can be performed using the grinding surface of the outer peripheral surface of the grindstone portion, and the production of the hard and brittle material in which the through-hole portion is formed can be performed in a short time.
  • the grinding method of the hard and brittle material of the present invention In the grinding step, the hole is formed in a state where the shaft center of the shank of the grinding drill is tilted away from the hard and brittle material as it goes from the tip to the base of the shank. It is said. According to this feature, when grinding the hard and brittle material while moving the grinding drill in the direction of the normal of the flat portion of the hard and brittle material, the force applied from the base end side of the shank of the grinding drill is Therefore, the pressing force for pressing the grinding wheel portion against the hard and brittle material is improved, and the grinding time of the hard and brittle material can be shortened.
  • the grinding method of the hard and brittle material of the present invention has a substantially disk shape. According to this feature, the grinding surface of the outer peripheral surface of the disc-shaped grinding wheel portion is brought into contact with the hard and brittle material, and the slit-like hole extending in the circumferential direction of the grinding wheel portion, that is, the left and right direction, is formed in the hard and brittle material. Therefore, it is possible to reduce the amount of movement of the grinding drill in the left-right direction when forming the slit-shaped hole.
  • FIG. 1 is a front view showing a grinding device in Embodiment 1.
  • FIG. It is a side view which shows a grinding device. It is a top view which shows a glass plate. It is a top view which shows the motion of the drill for hole formation in a grinding process. It is a vertical side view which shows the motion of the hole formation drill before grinding in a grinding process. It is a vertical side view which shows the motion of the hole formation drill during grinding in a grinding process. It is a vertical front view which shows the motion of the hole formation drill during grinding in a grinding process. It is a vertical side view which shows the motion of the shaping
  • FIG. It is a vertical side view which shows the motion of the shaping
  • FIG. It is a vertical side view which shows the motion of the cylindrical drill during grinding in a grinding process. It is a vertical side view which shows the motion of the cylindrical drill during grinding in a formation process. It is a vertical side view which shows the motion of the ball-shaped drill before grinding in the grinding process in Example 3. It is a vertical side view which shows the motion of the ball-shaped drill during grinding in a grinding process. It is a vertical side view which shows the motion of the ball-shaped drill during grinding in a formation process.
  • Embodiments for carrying out the grinding method for hard and brittle materials according to the present invention will be described below based on examples.
  • Example 1 The grinding method for hard and brittle materials according to Example 1 will be described with reference to FIGS.
  • the left side of FIG. 2, FIG. 5, FIG. 6, FIG. 8, and FIG. 9 will be described as the front side (front side) of the grinding apparatus
  • the lower side of FIG. 3 will be described as the front side (front side) of the grinding apparatus. .
  • Reference numeral 1 in FIG. 1 is a grinding apparatus to which the present invention is applied.
  • This grinding apparatus 1 forms a through hole 3 as a hole in the present invention on a glass plate 2 as a hard and brittle material in the present invention. It is a machine tool used for the purpose of The glass plate 2 to be processed is used for a liquid crystal part of a touch panel type mobile phone (see FIG. 3).
  • the base part 4 is installed in the lower part of the grinding apparatus 1,
  • positioned is provided in this base part 4.
  • a support column 6 is provided on the rear side of the base unit 4 so as to stand upward.
  • Two drill support portions 10 are attached below the equipment portion 9, and the drill support portions 10 extend downward.
  • the drill support portion 10 is moved in the front-rear direction and the left-right direction by the equipment accommodated in the equipment portion 9.
  • the two drill support portions 10 are each provided with a drill elevating portion 11 that is moved up and down with respect to the drill support portion 10.
  • a drill forming device 13 for hole formation is supported by a drill lifting / lowering portion 11 attached to the right drill support portion 10 via a bracket 12.
  • a drilling device 14 for molding is supported via a bracket 12 on a drill lifting / lowering portion 11 attached to the left drill support portion 10.
  • the hole forming drill device 13 holds the hole forming drill 7 as the grinding drill in the present invention by the chuck 15, and the hole forming drill device 13 rotationally drives the hole forming drill 7 about its axis.
  • the motor unit 16 is provided.
  • the forming drill device 14 holds the forming drill 8 as the grinding drill in the present invention by the chuck 15, and the forming drill device 14 further rotates the motor around the axis of the forming drill 8. A portion 16 is provided.
  • the forming drill device 14 is attached to the bracket 12 so that the axis S of the forming drill 8 is vertical (see FIG. 8).
  • the hole forming drill device 13 is attached to the bracket 12 so that the axis S of the hole forming drill 7 is inclined and the tip of the hole forming drill 7 faces the front side of the grinding device 1 (FIG. 5). reference).
  • the grinding device 1 is provided with an operation panel (not shown), and a user gives an instruction to a control device (not shown) by operating the operation panel.
  • a control device (not shown) by operating the operation panel.
  • the grinding apparatus 1 of the present embodiment is an NC machine tool that can automatically perform the processing of the glass plate 2 without the user manually operating the drill apparatuses 13 and 14.
  • the glass plate 2 has a substantially flat plate shape, and a slit-like through-hole portion 3 in which a microphone portion of a mobile phone is disposed is formed in the front portion of the glass plate 2.
  • a slit-like through-hole portion 3 in which a speaker portion is disposed is formed at the rear portion of the plate 2.
  • part in which the through-hole part 3 in the glass plate 2 is formed is the flat plane part 17 in this invention.
  • the glass plate 2 is disposed on the work table 5 so that the front side of the glass plate 2 is the front side of the grinding apparatus 1 and the flat surface portion 17 of the glass plate 2 is horizontal.
  • the glass plate 2 is fixed by the fixed member 18.
  • a recess 19 is formed in the work table 5 at a position where the through hole 3 of the glass plate 2 is formed.
  • the glass plate 2 shown in FIGS. 5 and 6 corresponds to the AA cross-sectional view in FIG. Further, the glass plate 2 shown in FIG. 7 corresponds to the BB cross-sectional view in FIG.
  • the hole-forming drill 7 is provided with a shank 20 that acts as a rotating shaft, and the grinding wheel in the present invention for grinding the glass plate 2 is provided at the tip of the shank 20.
  • a grindstone portion 21 as a portion is provided.
  • the grindstone portion 21 has a substantially disk shape having a diameter larger than the diameter of the shank 20.
  • the center of the substantially disc-shaped grindstone portion 21 is connected to the tip of the shank 20 by a connecting member 22.
  • the surface facing the distal end side of the grindstone portion 21 is the front side of the grindstone portion 21, and the surface facing the proximal end side of the grindstone portion 21 is the back side of the grindstone portion 21.
  • Diamond abrasive grains are attached to the outer peripheral surface (the outer peripheral surface around the axis) of the grindstone 21, the peripheral portion on the front side of the grindstone portion 21, and the peripheral portion on the back side of the grindstone portion 21, and the grinding surface in the present invention.
  • the diamond wearing part 23 is formed.
  • the proximal end of the shank 20 is fixed to the chuck 15, and the chuck 15 is rotationally driven by the motor unit 16 while holding the hole forming drill 7.
  • the hole forming drill 7 is in a state in which the shaft center S of the shank 20 is inclined so that the tip surface (front surface) faces the front side of the grinding apparatus 1.
  • the axis S of the shank 20 of the drill 7 is inclined so as to be separated from the glass plate 2 as it goes from the distal end to the proximal end of the shank 20.
  • the axis S of the shank 20 of the hole forming drill 7 is tilted at a predetermined angle ⁇ with respect to the perpendicular P of the flat portion 17 of the glass plate 2.
  • the angle ⁇ formed by the perpendicular P of the flat portion 17 of the glass plate 2 and the axis S of the shank 20 is approximately 45 degrees.
  • the hole forming drill 7 is moved to the flat portion 17 at the rear of the glass plate 2. Is moved to the upper position.
  • the grindstone part 21 is rotationally driven by the motor part 16 centering on the axial center S of the shank 20.
  • the hole forming drill 7 is lowered in the vertical direction toward the flat portion 17 of the glass plate 2 while maintaining the inclination of the axis S of the shank 20.
  • the hole forming drill 7 When the hole forming drill 7 is lowered, the lower end portion of the disc-shaped grindstone portion 21 comes into contact with the glass plate 2, and the outer peripheral surface of the grindstone portion 21 and the diamond wearing portion 23 on the peripheral edge portion on the front side are used for the glass plate.
  • the rear flat surface portion 2 is ground.
  • the hole forming drill 7 moves in the front-rear direction and the left-right direction and draws a substantially rectangular locus in plan view, and descends while grinding the glass plate 2, and substantially squares.
  • a through-hole portion 3 ′ having a shape is formed. Note that the hole forming drill 7 does not move rearward from the position where the hole forming drill 7 first contacts the glass plate 2.
  • the inner peripheral surface 24 on the rear side of the substantially rectangular through-hole portion 3 ′ is ground in the vertical direction along with the lowering of the grindstone portion 21, and thus becomes a vertical vertical surface. Further, since the inner peripheral surface 25 on the front side of the through-hole portion 3 ′ is ground by the peripheral portion on the front side of the grindstone portion 21, it becomes an inclined surface inclined at the same angle as the inclination of the hole forming drill 7. .
  • the left and right inner peripheral surfaces 26 of the substantially rectangular through hole portion 3 ′ are ground by the outer peripheral surface of the disc-shaped grindstone portion 21, so that the curvature of the outer peripheral surface of the grindstone portion 21 is increased. Together, it is formed on an arc surface forming an arc shape.
  • the hole forming drill 7 of the present embodiment has a substantially disk shape, and the hole forming drill 7 is moved in the left-right direction of the axis S thereof, so that the through-hole extending in the left-right direction of the grindstone portion 21 is formed. Part 3 ′ is formed. Further, the hole-forming drill 7 is moved in the front direction of the axis thereof, whereby a through-hole portion 3 ′ extending in the front direction of the grindstone portion 21 is formed.
  • the shape of the through-hole portion 3 ′ formed by the hole-forming drill 7 is substantially rectangular in plan view, and the opening above the through-hole portion 3 ′ is the opening below the through-hole portion 3 ′. (See FIGS. 4, 6, and 7).
  • the through hole portion 3 ′ formed in the grinding process is formed smaller than the shape of the through hole portion 3 to be processed.
  • the shape of the through hole portion 3 to be processed is a slit shape extending in the left-right direction in plan view, and the left and right sides of the through hole portion 3 have an arc shape.
  • the hole forming drill 7 is moved to a position above the flat portion 17 in the front portion of the glass plate 2. And the flat part 17 of the front part of the glass plate 2 is ground, and the grinding process of the through-hole part 3 'of the front part of the glass plate 2 is started (refer FIG. 2).
  • the grinding process of the front through-hole portion 3 ′ of the glass plate 2 is the same as the above-described grinding process of the rear through-hole portion 3 ′ of the glass plate 2.
  • the shaft center S of the shank 20 of the hole forming drill 7 is tilted away from the glass plate 2 as it goes from the distal end to the proximal end of the shank 20, so that the shank 20 of the hole forming drill 7 and
  • the chuck 15 can be arranged away from the glass plate 2 while the distance between the chuck 15 holding the shank 20 is shortened and the grindstone 21 is firmly supported, and the other of the glass plate 2
  • the hole forming drill 7 is moved in order to form a hole in the portion, there is no possibility that the chuck 15 holding the hole forming drill 7 will come into contact with the glass plate 2.
  • the grindstone portion 21 is provided at the tip of the shank 20 and is formed to have a substantially disk shape having a diameter larger than the diameter of the shank 20, so that the shank 20 is separated from the glass plate 2, The grindstone portion 21 can be brought into contact with the glass plate 2, and the shank 20 does not interfere with the grinding operation.
  • the glass plate 2 shown in FIGS. 8 and 9 corresponds to the AA sectional view in FIG. Further, the glass plate 2 shown in FIG. 10 corresponds to the BB cross-sectional view in FIG.
  • the hole forming drill 7 and the forming drill 8 are moved to the right side in a front view, and the forming drill 8 is moved to the flat portion 17 at the rear portion of the glass plate 2. It moves to an upper position (refer FIG. 1) and the shaping
  • the forming drill 8 is provided with a shank 27 that acts as a rotating shaft, and the tip of the shank 27 is a grindstone as a grinding wheel portion for grinding in the present invention for forming the glass plate 2.
  • a portion 28 is provided.
  • the grinding wheel portion 28 is provided with a first molding portion 29 having a coarse diamond abrasive grain size and a second molding portion 30 having a diamond grain size finer than that of the first molding portion 29. 29 is provided on the tip side of the second molding part 30.
  • the first molded part 29 has a cylindrical part 31 having a cylindrical shape, and a tapered part 32 having a tapered surface is provided above and below the cylindrical part 31.
  • the tapered portion 32 is formed so that the diameter increases as the distance from the cylindrical portion 31 increases.
  • the second molding part has a cylindrical part 33 having a cylindrical shape, and a tapered part 34 having a tapered surface is provided above and below the cylindrical part 33.
  • the tapered portion 34 is formed such that the diameter increases as the distance from the cylindrical portion 33 increases.
  • the axis S of the shank 27 of the forming drill 8 is positioned so as to be parallel to the perpendicular P of the glass plate 2.
  • the grindstone portion 28 is driven to rotate about the axis S of the shank 27 by the motor portion 16.
  • the grindstone portion 28 is inserted into the through-hole portion 3 ′ at the rear portion of the glass plate 2, and the inner peripheral surfaces 24 to 26 are ground by the first forming portion 29.
  • the forming drill 8 moves linearly in plan view, and when grinding the left and right inner peripheral surfaces 26, By moving so as to draw an arc-shaped locus in plan view, the through-hole portion 3 to be processed is formed.
  • the first forming portion 29 of the forming drill 8 abuts on the inner peripheral surface 25 on the front side which is the inclined surface of the through-hole portion 3 ′, and the inner peripheral surface 25 on the front side is To be ground. Further, as shown in FIG. 10, the first forming portions 29 of the forming drill 8 abut on the left and right inner peripheral surfaces 26 of the through-hole portion 3 ', and the left and right inner peripheral surfaces 26 are ground.
  • the left and right inner peripheral surfaces 26 before molding have an arc shape (see the left inner peripheral surface 26 in FIG. 10), but the left and right inner peripheral surfaces 26 after molding. Has a shape corresponding to the outer peripheral surface of the first molding portion 29 (see the inner peripheral surface 26 on the right side of FIG. 10).
  • the inner peripheral surfaces 24 to 26 of the through hole portion 3 ′ are ground by the forming drill 8, the size thereof is widened, and the shape of the through hole portion 3 to be processed is formed.
  • the upper and lower taper portions 32 of the first molding portion 29 and the peripheral edges of the upper and lower openings of the through-hole portion 3 ′ are in contact with each other, and the peripheral edge of the through-hole portion 3 ′ is chamfered.
  • the inner peripheral surfaces 24 to 26 of the through-hole portion 3 ′ are formed in a shape corresponding to the outer peripheral surface of the first forming portion 29.
  • the forming drill 8 is lowered, and the grinding of the inner peripheral surfaces 24 to 26 by the second forming portion 30 is started.
  • the second molding part 30 With a finer grain size of diamond abrasive grains than the first molding part 29, the surfaces of the inner peripheral surfaces 24 to 26 can be finished more smoothly.
  • the forming drill 8 When the forming process of the through hole 3 ′ at the rear of the glass plate 2 by the forming drill 8 is completed, the forming drill 8 is moved to a position above the through hole 3 ′ at the front of the glass plate 2. Then, the inner peripheral surfaces 24 to 26 of the front through-hole portion 3 ′ of the glass plate 2 are ground, and the forming process of the front through-hole portion 3 ′ of the glass plate 2 is started.
  • the forming process of the through-hole part 3 ′ at the front part of the glass plate 2 is the same as the forming process of the through-hole part 3 ′ at the rear part of the glass plate 2 described above.
  • the diamond wearing portion 23 is provided on the outer peripheral surface around the axis of the grindstone portion 21, and the axis of the shank 20 of the hole forming drill 7 is used as the plane of the glass plate 2. Grinding of the glass plate 2 by moving the hole forming drill 7 in the direction of the vertical line P while bringing the outer peripheral surface of the grindstone portion 21 into contact with the flat surface portion 17 of the glass plate 2.
  • the axis S of the shank 20 of the hole forming drill 7 is tilted with respect to the perpendicular P of the flat surface portion 17 of the glass plate 2, so The diamond wearing portion 23 on the outer peripheral surface comes into contact with the flat portion 17 of the glass plate 2, and the glass plate 2 is ground by the outer peripheral surface around the axis of the grindstone portion 21, and grinding between the grindstone portion 21 and the glass plate 2 is performed.
  • Improve speed It is possible to shorten the grinding time of forming the through holes 3 'in the plane portion 17 of the scan plate 2.
  • the through-hole portion 3 ′ extending in the circumferential direction of the grindstone portion 21 is formed, so that the hole forming drill 7 is moved in the left-right direction.
  • the glass plate 2 is ground by the diamond mounting portion 23 on the outer peripheral surface of the grindstone portion 21 having a high peripheral speed due to shaft rotation, and the grinding speed between the grindstone portion 21 and the glass plate 2 is improved.
  • a through-hole portion 3 ′ extending in the left-right direction can be easily formed in the glass plate 2 in a short time.
  • a diamond wearing portion 23 is provided in front of the grindstone portion 21, and the through-hole portion 3 ′ extending in the forward direction of the grindstone portion 21 is formed by moving the hole forming drill 7 in the forward direction of the axis S thereof. Since the glass plate 2 is ground by the diamond wearing portion 23 on the outer peripheral surface of the grindstone portion 21 and the diamond wearing portion 23 in front of the grindstone portion 21 by forming, the grinding speed between the grindstone portion 21 and the glass plate 2 is increased.
  • the through-hole part 3 ′ having a shape extending in the forward direction can be easily formed in the glass plate 2 in a short time.
  • the hole forming drill 7 is penetrated through the glass plate 2 to form the through hole portion 3 ′, and then the axis S of the shank 27 of the forming drill 8 is connected to the perpendicular of the flat portion 17 of the glass plate 2.
  • the grindstone portion 28 of the forming drill 8 is inserted into the through hole portion 3 ′, and the outer peripheral surface of the grindstone portion 28 is applied to the inner peripheral surfaces 24 to 26 of the through hole portion 3 ′.
  • the inner peripheral surfaces 24 to 26 are ground, the grinding speed between the grindstone 28 and the glass plate 2 can be improved, the molding time of the through-hole 3 'can be shortened, and the grinding can be performed. Grinding is performed consistently using the outer peripheral surface of the grindstone 21 in both the process and the molding process. Bets can be, production of through-holes 3 is a glass plate 2 which is formed can be carried out in a short time.
  • the through-hole portion 3 ′ is formed in a state where the axis S of the shank 20 of the hole forming drill 7 is inclined so as to be separated from the glass plate 2 as it goes from the distal end to the proximal end of the shank 20.
  • the grindstone portion 21 has a substantially disc shape
  • the diamond wearing portion 23 on the outer peripheral surface of the disc-shaped grindstone portion 21 is in contact with the glass plate 2, and the circumferential direction of the grindstone portion 21, that is, the left-right direction.
  • Example 2 a method for grinding a hard and brittle material according to Example 2 will be described with reference to FIGS. Note that the same components as those shown in the first embodiment are denoted by the same reference numerals and redundant description is omitted.
  • the left side of FIGS. 11 to 13 will be described as the front side (front side) of the grinding apparatus.
  • the grinding device 1 in the first embodiment is provided with two drill devices 13 and 14 including a hole forming drill device 13 and a forming drill device 14.
  • a cylindrical drilling device 36 having a shaped drill 35 is provided.
  • the grinding device in the second embodiment is different from the grinding device 1 in the first embodiment in that the cylindrical drill device 36 is driven to swing in the front-rear direction.
  • the support state of the cylindrical drill 35 can be switched. That is, the grinding apparatus in the second embodiment can perform the grinding process and the forming process with the same drill apparatus.
  • a cylindrical drill 35 as a grinding drill in the present invention is provided with a grindstone portion 38 as a grinding grindstone portion in the present invention having a cylindrical shape at the tip of a shank 37.
  • the surface facing the tip side of the grindstone portion 38 is the front side of the grindstone portion 38, and diamond abrasive grains are formed on the front portion and the outer peripheral portion of the grindstone portion 38 of the cylindrical drill 35.
  • the cylindrical drill 35 is in a state in which the shaft center S of the shank 37 is inclined so that the front end surface (front surface) thereof faces the front side of the grinding apparatus, and the shaft center S of the shank 37 of the cylindrical drill 35 is
  • the glass plate 2 is tilted at a predetermined angle ⁇ with respect to the normal P of the flat portion 17 of the glass plate 2.
  • the angle ⁇ formed by the perpendicular P of the flat portion 17 of the glass plate 2 and the axis S of the shank 37 in Example 2 is approximately 45 degrees.
  • the glass plate 2 shown in FIGS. 11 and 12 corresponds to the AA cross-sectional view in FIG.
  • the cylindrical drill 35 moves to a position above the flat portion 17 at the rear portion of the glass plate 2, and the grindstone portion 38 is centered on the axis S of the shank 37 as shown in FIG.
  • the motor unit 16 is rotationally driven. Further, the cylindrical drill 35 is lowered in the vertical direction toward the flat portion 17 of the glass plate 2 while maintaining the inclination of the axis S of the shank 37.
  • the cylindrical drill 35 When the cylindrical drill 35 is lowered, the lower end portion of the cylindrical grindstone portion 38 comes into contact with the glass plate 2, and the flat portion 17 at the rear of the glass plate 2 is ground by the front portion and the outer peripheral portion of the grindstone portion 38. Is done. Since the grindstone portion 38 has a cylindrical shape, the front portion of the grindstone portion 38 is perpendicular to the axis S of the shank 37.
  • the cylindrical drill 35 moves in the front-rear direction and also in the left-right direction, and descends while grinding the glass plate 2 while drawing a substantially rectangular locus in plan view. Is done.
  • the inner peripheral surface 24 on the rear side of the through-hole portion 3 ′ is ground by the outer peripheral portion of the grindstone portion 38, so that it is inclined at the same angle as the axis S of the cylindrical drill 35. It becomes an inclined surface. Further, the inner peripheral surface 25 on the front side of the through-hole portion 3 ′ is ground by the front portion of the grindstone portion 38, and thus becomes an inclined surface inclined at the same angle as the inclination of the cylindrical drill 35.
  • left and right inner peripheral surfaces are ground by the outer peripheral portion of the cylindrical grinding wheel portion 38, they are formed into circular arc surfaces having an arc shape in accordance with the curvature of the outer peripheral portion of the grinding stone portion 38. .
  • the cylindrical drill 35 of the second embodiment has a cylindrical shape, and the cylindrical drill 35 is moved in the left-right direction of the axis S thereof, whereby the through-hole portion 3 ′ extending in the left-right direction of the grindstone portion 38. Is formed. Further, the cylindrical drill 35 is moved in the forward direction of its axis, thereby forming a through-hole portion 3 ′ extending in the forward direction of the grindstone portion 38.
  • the opening on the upper side of the through hole 3 ′ formed by the cylindrical drill 35 is larger than the opening on the lower side of the through hole 3 ′ (see FIG. 12).
  • the through hole portion 3 ′ formed in the grinding process is formed smaller than the shape of the through hole portion 3 to be processed.
  • the cylindrical drill 35 When the grinding process of the through-hole portion 3 ′ at the rear portion of the glass plate 2 by the cylindrical drill 35 is completed, the cylindrical drill 35 is moved to a position above the flat portion 17 at the front portion of the glass plate 2. And the flat part 17 of the front part of the glass plate 2 is ground, and the grinding process of the through-hole part 3 'of the front part of the glass plate 2 is started.
  • the grinding process of the front through-hole portion 3 ′ of the glass plate 2 is the same as the above-described grinding process of the rear through-hole portion 3 ′ of the glass plate 2.
  • the glass plate 2 shown in FIG. 13 corresponds to the AA cross-sectional view in FIG.
  • the cylindrical drill 35 When the grinding process of the flat portion 17 at the front portion of the glass plate 2 is completed, the cylindrical drill 35 is once raised, and the axis S of the shank 37 becomes perpendicular to the perpendicular P of the flat portion 17 of the glass plate 2. Thus, the inclination is changed, and the forming process of the through-hole portion 3 ′ in the front portion of the glass plate 2 is started.
  • the cylindrical drill 35 When the cylindrical drill 35 is lowered, the grindstone 38 is inserted into the front through-hole 3 ′ of the glass plate 2, and the front and rear inner peripheral surfaces 24, 25 and the left and right inner peripheral surfaces are the outer periphery of the grindstone 38. It is ground by the part.
  • the cylindrical drill 35 moves linearly in a plan view when grinding the inner peripheral surface 24 on the rear side and the inner peripheral surface 25 on the front side, and is flat when grinding the left and right inner peripheral surfaces.
  • the through-hole part 3 to be processed is formed by moving so as to draw a circular arc-shaped locus in view.
  • the outer peripheral portion of the cylindrical drill 35 abuts against the front and rear inner peripheral surfaces 24 and 25 that are inclined surfaces of the through-hole portion 3 ′, and the inner peripheral surfaces 24 and 25 are ground. The Further, the outer peripheral portion of the cylindrical drill 35 comes into contact with the left and right inner peripheral surfaces (not shown) of the through-hole portion 3 ′, and the left and right inner peripheral surfaces are ground.
  • the cylindrical drill 35 grinds the front and rear inner peripheral surfaces 24, 25 and the left and right inner peripheral surfaces of the through-hole portion 3 ′ to increase the size of the through-hole portion 3 ′ and shape the through-hole portion 3 to be processed.
  • the cylindrical drill 35 is moved to a position above the rear through-hole portion 3 ′ of the glass plate 2. Then, the inner peripheral surface 24 of the through hole portion 3 ′ at the rear portion of the glass plate 2 is ground, and the forming process of the through hole portion 3 ′ at the rear portion of the glass plate 2 is started.
  • the forming process of the through-hole part 3 ′ at the rear part of the glass plate 2 is the same as the forming process of the through-hole part 3 ′ at the front part of the glass plate 2 described above.
  • FIGS. 14 to 16 will be described as the front side (front side) of the grinding apparatus.
  • the grinding device 1 in the first embodiment is provided with two drill devices 13 and 14, that is, a hole forming drill device 13 and a forming drill device 14.
  • One ball drilling device 40 having a shaped drill 39 is provided.
  • the grinding device in the third embodiment is different from the grinding device 1 in the first embodiment in that the ball-type drill device 40 is driven to swing in the front-rear direction.
  • the support state of the ball drill 39 can be switched. That is, the grinding apparatus in Example 3 can perform the grinding process and the forming process with the same drill apparatus.
  • a ball-shaped drill 39 as a grinding drill in the present invention is provided with a grindstone portion 42 as a grinding wheel portion in the present invention having a ball shape at the tip of a shank 41.
  • the grindstone portion 42 is provided with diamond abrasive grains, which is a grinding surface in the present invention.
  • the ball-shaped drill 39 is in a state in which the shaft center S of the shank 41 is inclined so that the front end portion (front portion) thereof faces the front side of the grinding apparatus, and the shaft center S of the shank 41 of the ball-shaped drill 39. Is tilted at a predetermined angle ⁇ with respect to the normal P of the flat portion 17 of the glass plate 2.
  • angle (theta) which the perpendicular line P of the plane part 17 of the glass plate 2 in Example 3 and the axial center S of the grindstone part 42 make is about 45 degree
  • the glass plate 2 shown in FIGS. 14 and 15 corresponds to the AA cross-sectional view in FIG.
  • the ball-shaped drill 39 moves to a position above the flat portion 17 at the rear portion of the glass plate 2, and the grindstone portion 42 is centered on the axis S of the shank 41 as shown in FIG.
  • the motor unit 16 is rotationally driven. Further, the ball-shaped drill 39 is lowered in the vertical direction toward the flat portion 17 of the glass plate 2 while maintaining the inclination of the axis S of the shank 41.
  • the ball-shaped drill 39 moves in the front-rear direction and also in the left-right direction in the same manner as the cylindrical drill 35 in the second embodiment, and draws a substantially rectangular locus in plan view.
  • the glass plate 2 is lowered while grinding.
  • the front and rear inner peripheral surfaces 24 and 25 and the left and right inner peripheral surfaces (not shown) of the through-hole portion 3 ′ are ground by a ball-shaped grindstone portion 42. It is formed in the circular arc surface which makes
  • the ball-shaped drill 39 of the third embodiment has a ball shape, and when the ball-shaped drill 39 is moved in the left-right direction of the axis, the through-hole portion 3 ′ extending in the left-right direction of the grindstone portion 42 is formed. It is formed. Further, the ball-shaped drill 39 is moved in the forward direction of the axial center thereof, so that a through-hole portion 3 ′ extending in the forward direction of the grindstone portion 42 is formed.
  • the opening on the upper side of the through hole 3 ′ formed by the ball-shaped drill 39 is larger than the opening on the lower side of the through hole 3 ′ (see FIG. 12).
  • the through hole portion 3 ′ formed in the grinding process is formed smaller than the shape of the through hole portion 3 to be processed.
  • the ball-shaped drill 39 When the grinding process of the through-hole portion 3 ′ at the rear portion of the glass plate 2 by the ball-shaped drill 39 is completed, the ball-shaped drill 39 is moved to a position above the flat portion 17 at the front portion of the glass plate 2. And the flat part 17 of the front part of the glass plate 2 is ground, and the grinding process of the through-hole part 3 'of the front part of the glass plate 2 is started.
  • the grinding process of the front through-hole portion 3 ′ of the glass plate 2 is the same as the above-described grinding process of the rear through-hole portion 3 ′ of the glass plate 2.
  • the glass plate 2 shown in FIG. 16 corresponds to the AA cross-sectional view in FIG.
  • the ball-shaped drill 39 rises once, and the axis S of the shank 41 becomes perpendicular to the perpendicular P of the flat portion 17 of the glass plate 2.
  • the inclination is changed, and the forming process of the through-hole portion 3 ′ in the front portion of the glass plate 2 is started.
  • the ball-shaped drill 39 is lowered, the grindstone portion 42 is inserted into the front through-hole portion 3 ′ of the glass plate 2, and the front and rear inner peripheral surfaces 24, 25 and the left and right inner peripheral surfaces are the outer periphery of the grindstone portion 42. It is ground by the part.
  • the ball-shaped drill 39 moves linearly in plan view when grinding the front and rear inner peripheral surfaces 24, 25, and has a circular arc-shaped locus in plan view when grinding the left and right inner peripheral surfaces.
  • the through-hole part 3 to be processed is formed by moving as drawn.
  • the outer peripheral portion of the ball-shaped drill 39 is in contact with the front and rear inner peripheral surfaces 24, 25 and the left and right inner peripheral surfaces which are the arc surfaces of the through-hole portion 3 ′. 25 and the left and right inner peripheral surfaces are ground.
  • the ball-shaped drill 39 grinds the front and rear inner peripheral surfaces 24, 25 and the left and right inner peripheral surfaces of the through-hole portion 3 ′ to widen the size, and the grindstone portion 42 includes the front and rear inner peripheral surfaces 24, 25 is ground in contact with the left and right inner peripheral surfaces while moving in the vertical direction, and is formed into the shape of the through-hole portion 3 intended for processing.
  • the front and rear inner peripheral surfaces 24, 25 and the left and right inner peripheral surfaces of the through-hole portion 3 ' are formed into vertical surfaces that are perpendicular to each other.
  • the ball-shaped drill 39 is moved to a position above the through-hole portion 3 ′ at the rear of the glass plate 2. Then, the front and rear inner peripheral surfaces 24, 25 and the left and right inner peripheral surfaces of the rear through-hole portion 3 ′ of the glass plate 2 are ground, and a forming process of the rear through-hole portion 3 ′ of the glass plate 2 is started.
  • the forming process of the through-hole part 3 ′ at the rear part of the glass plate 2 is the same as the forming process of the through-hole part 3 ′ at the front part of the glass plate 2 described above.
  • the predetermined angle ⁇ at which the drills 7, 35, and 39 are inclined in the grinding process is approximately 45 degrees.
  • the predetermined angle ⁇ is not limited to approximately 45 degrees, and is approximately 90 degrees.
  • the drills 7, 35, 39 may be tilted at a predetermined angle ⁇ , or the drills 7, 35, 39 may be tilted at a predetermined angle ⁇ greater than that, or the drill 7 may be tilted at a predetermined angle ⁇ smaller than about 45 degrees.
  • 35, 39 may be tilted.
  • the molded part may be formed, and the molded part may be used to form and finish the through-hole part 3 in the molding process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

【課題】研削用ドリルを用いて硬脆材料に孔部を形成する際に、硬脆材料の研削時間を短縮させることができる硬脆材料の研削方法を提供すること。【解決手段】回転軸として作用するシャンク(20)に研削用砥石部(21)を備える研削用ドリル(7)を用いて、略平板状をなす硬脆材料(2)が有する平面部(17)に孔部(3)を形成する硬脆材料(2)の研削方法であて、研削用砥石部(21)の少なくとも軸周りの外周面に研削面(23)が設けられ、研削用ドリル(7)のシャンク(20)の軸心を、硬脆材料(2)の平面部(17)の垂線(P)に対して傾けた状態とし、研削用砥石部(21)の外周面を硬脆材料(2)の平面部(17)に当てるとともに、研削用ドリル(7)を垂線(P)の方向に移動させて硬脆材料(2)の研削を行う研削工程を含む。

Description

硬脆材料の研削方法
 本発明は、ガラス等の硬脆材料に孔開け加工を施すための硬脆材料の研削方法に関する。
 従来、硬脆材料に孔を開ける工具としては、鋼製のシャンクの先端に取り付けたダイヤモンド砥石部(研削用砥石部)を回転させながら硬脆材料に接触させることで孔を開けるダイヤモンドドリル(研削用ドリル)がある。また、このようなドリルを用いて研削作業をする際に、ダイヤモンド砥石部をシャンクの軸心を中心として軸回転させながら硬脆材料に接触させるとともに、ダイヤモンド砥石部と硬脆材料との間に偏心運動を与えることで穿孔を行うようにしている(例えば、特許文献1参照)。
特開2005-199619号公報(5頁及び7頁、図1及び図18)
 しかしながら、特許文献1に記載のドリルにあっては、ダイヤモンド砥石部(研削用砥石部)をシャンクの軸心を中心として軸回転させた際に、ダイヤモンド砥石部における外周部は速い周速度となっているが、ダイヤモンド砥石部における軸心部は軸回転による周速度は殆ど無くなっており、このダイヤモンド砥石部の軸心部により研削される部位は、ダイヤモンド砥石部の外周部により研削される部位と比較して研削速度が低下され、硬脆材料に孔開け加工に要する加工時間が長くなる問題がある。
 本発明は、このような問題点に着目してなされたもので、研削用ドリルを用いて硬脆材料に孔部を形成する際に、硬脆材料の研削時間を短縮させることができる硬脆材料の研削方法を提供することを目的とする。
 前記課題を解決するために、本発明の硬脆材料の研削方法は、
 回転軸として作用するシャンクに研削用砥石部を備える研削用ドリルを用いて、略平板状をなす硬脆材料が有する平面部に孔部を形成する硬脆材料の研削方法であって、
 前記研削用砥石部の少なくとも軸周りの外周面に研削面が設けられ、前記研削用ドリルのシャンクの軸心を、前記硬脆材料の平面部の垂線に対して傾けた状態とし、前記研削用砥石部の外周面を前記硬脆材料の平面部に当てるとともに、前記研削用ドリルを前記垂線の方向に移動させて前記硬脆材料の研削を行う研削工程を含むことを特徴としている。
 この特徴によれば、研削用ドリルのシャンクの軸心を、硬脆材料の平面部の垂線に対して傾けることで、軸回転による周速度が速い研削用砥石部の外周面の研削面が硬脆材料の平面部に当たるようになり、この研削用砥石部の軸周りの外周面により硬脆材料が研削され、研削用砥石部と硬脆材料との間の研削速度を向上させて、硬脆材料の平面部に孔部を形成する研削時間を短縮させることができる。
 本発明の硬脆材料の研削方法は、
 前記研削用ドリルを、その軸心の左右方向に移動させることにより、前記研削用砥石部の周方向に延びる孔部を形成することを特徴としている。
 この特徴によれば、研削用ドリルが左右方向に移動される際に、軸回転による周速度が速い研削用砥石部の外周面の研削面により硬脆材料が研削され、研削用砥石部と硬脆材料との間の研削速度を向上させて、左右方向に延びる形状の孔部を硬脆材料に短時間で容易に形成できる。
 本発明の硬脆材料の研削方法は、
 前記研削用砥石部の少なくとも正面に研削面が設けられ、前記研削用ドリルを、その軸心の前方向に移動させることにより、前記研削用砥石部の前方向に延びる孔部を形成することを特徴としている。
 この特徴によれば、研削用砥石部の外周面の研削面及び研削用砥石部の正面の研削面により硬脆材料が研削されるため、研削用砥石部と硬脆材料との間の研削速度を向上させて、前方向に延びる形状の孔部を硬脆材料に短時間で容易に形成できる。
 本発明の硬脆材料の研削方法は、
 前記研削工程にて、前記研削用ドリルを前記硬脆材料に貫通させて前記貫通孔部を形成した後、研削用ドリルのシャンクの軸心を、前記硬脆材料の平面部の垂線に対して略平行状態とし、該研削用ドリルの研削用砥石部を前記貫通孔部に挿通するとともに、該研削用砥石部の外周面を前記貫通孔部の内周面に当てて研削を行う成形工程を含むことを特徴としている。
 この特徴によれば、研削工程にて貫通された貫通孔部を成形する際に、軸回転による周速度が速い研削用砥石部の外周面の研削面により貫通孔部の内周面が研削されるようになり、研削用砥石部と硬脆材料との間の研削速度を向上させて、貫通孔部の成形時間を短縮させることができ、かつ研削工程と成形工程との両工程にて一貫して砥石部の外周面の研削面を利用して研削を行うことができ、貫通孔部が形成された硬脆材料の製造を短時間で行うことができる。
 本発明の硬脆材料の研削方法は、
 前記研削工程にて、前記研削用ドリルのシャンクの軸心が該シャンクの先端から基端にゆくに従って前記硬脆材料から離れるように傾けられた状態で、前記孔部が形成されることを特徴としている。
 この特徴によれば、研削用ドリルを硬脆材料の平面部の垂線の方向に移動させながら前記硬脆材料の研削を行う際に、研削用ドリルのシャンクの基端側から加えられる力がシャンクに沿って先端側に伝達され易くなり、研削用砥石部を硬脆材料に押し付ける押圧力が向上され、硬脆材料の研削時間を短縮させることができる。
 本発明の硬脆材料の研削方法は、
 前記研削用砥石部は、略円盤状をなしていることを特徴としている。
 この特徴によれば、円盤状の研削用砥石部の外周面の研削面が硬脆材料に接触され、この研削用砥石部の周方向、すなわち左右方向に延びるスリット状の孔部を硬脆材料に容易に形成でき、スリット状の孔部を形成する際の研削用ドリルの左右方向の移動量が少なくても済むようになる。
実施例1における研削装置を示す正面図である。 研削装置を示す側面図である。 ガラス板を示す平面図である。 研削工程における孔形成用ドリルの動きを示す平面図である。 研削工程における研削前の孔形成用ドリルの動きを示す縦断側面図である。 研削工程における研削中の孔形成用ドリルの動きを示す縦断側面図である。 研削工程における研削中の孔形成用ドリルの動きを示す縦断正面図である。 成形工程における研削前の成形用ドリルの動きを示す縦断側面図である。 成形工程における研削中の成形用ドリルの動きを示す縦断側面図である。 成形工程における研削中の成形用ドリルの動きを示す縦断正面図である。 実施例2における研削工程における研削前の円柱形ドリルの動きを示す縦断側面図である。 研削工程における研削中の円柱形ドリルの動きを示す縦断側面図である。 成形工程における研削中の円柱形ドリルの動きを示す縦断側面図である。 実施例3における研削工程における研削前のボール形ドリルの動きを示す縦断側面図である。 研削工程における研削中のボール形ドリルの動きを示す縦断側面図である。 成形工程における研削中のボール形ドリルの動きを示す縦断側面図である。
 本発明に係る硬脆材料の研削方法を実施するための形態を実施例に基づいて以下に説明する。
 実施例1に係る硬脆材料の研削方法につき、図1から図10を参照して説明する。以下、図2、図5、図6、図8、図9の紙面左側を研削装置の正面側(前方側)とし、図3の紙面下側を研削装置の正面側(前方側)として説明する。
 図1の符号1は、本発明の適用された研削装置であり、この研削装置1は、本発明における硬脆材料としてのガラス板2に、本発明における孔部としての貫通孔部3を形成する目的で使用される工作機械である。加工対象となるガラス板2は、タッチパネル式の携帯電話の液晶部に用いられるようになっている(図3参照)。
 図1及び図2に示すように、研削装置1の下部には、基台部4が設置されており、この基台部4に、ガラス板2が配置される作業台5が設けられている。基台部4の後部側には、上方に立設される支柱6が設けられている。支柱6の上部には、後述する孔形成用ドリル7及び成形用ドリル8を移動動作させる機材が収容された機材部9が設けられている。
 機材部9の下方に2本のドリル支持部10が取り付けられ、このドリル支持部10が下方に延設されている。ドリル支持部10は、機材部9に収容された機材によって前後方向及び左右方向に移動動作されるようになっている。
 2本のドリル支持部10には、このドリル支持部10に対して昇降されるドリル昇降部11がそれぞれ取り付けられている。右側のドリル支持部10に取り付けられたドリル昇降部11には、ブラケット12を介して孔形成用ドリル装置13が支持されている。左側のドリル支持部10に取り付けられたドリル昇降部11には、ブラケット12を介して成形用ドリル装置14が支持されている。
 孔形成用ドリル装置13は、チャック15によって本発明における研削用ドリルとしての孔形成用ドリル7を保持し、更に、孔形成用ドリル装置13は、孔形成用ドリル7をその軸周りに回転駆動させるモーター部16を有している。また、成形用ドリル装置14は、チャック15によって本発明における研削用ドリルとしての成形用ドリル8を保持し、更に、成形用ドリル装置14は、成形用ドリル8をその軸周りに回転駆動させるモーター部16を有している。
 成形用ドリル装置14は、成形用ドリル8の軸心Sが垂直になるようにブラケット12に取り付けられている(図8参照)。孔形成用ドリル装置13は、孔形成用ドリル7の軸心Sが傾けられて、孔形成用ドリル7の先端が研削装置1の正面側に向くようにブラケット12に取り付けられている(図5参照)。
 この研削装置1には、操作パネル(図示略)が設けられており、使用者は、操作パネルを操作することで制御装置(図示略)に指示を与えるようになっており、この制御装置は、モーター部16とドリル昇降部11と機材部9とを駆動させることで、ガラス板2の加工作業が自動で行われる。すなわち、本実施例の研削装置1は、使用者がドリル装置13,14を手動で操作しなくてもガラス板2の加工作業を自動で行うことができるNC工作機械となっている。
 図3に示すように、ガラス板2は、略平板状をなしており、ガラス板2の前部には、携帯電話のマイク部が配置されるスリット状の貫通孔部3が形成され、ガラス板2の後部には、スピーカー部が配置されるスリット状の貫通孔部3が形成されるようになっている。尚、ガラス板2における貫通孔部3が形成される部位は、平坦な本発明における平面部17となっている。
 図1及び2に示すように、ガラス板2の前部側が、研削装置1の正面側になるように配置され、ガラス板2の平面部17が水平をなすように、作業台5に設けられた固定部材18によってガラス板2が固定されている。作業台5には、ガラス板2の貫通孔部3が形成される位置に凹部19が形成されている。
 先ず、図4から図7を参照して、孔形成用ドリル7を用いて貫通孔部3’を開ける研削工程について説明する。尚、図5及び図6に示されたガラス板2は、図3におけるA-A断面図に対応している。また、図7に示されたガラス板2は、図3におけるB-B断面図に対応している。
 図4及び図5に示すように、孔形成用ドリル7には、回転軸として作用するシャンク20が設けられており、シャンク20の先端には、ガラス板2を研削する本発明における研削用砥石部としての砥石部21が設けられている。この砥石部21は、シャンク20の直径よりも大きな直径を有する略円盤状をなしている。略円盤状の砥石部21の中心が、シャンク20の先端に接続部材22によって接続されている。
 更に尚、本実施例では、砥石部21の先端側を向く面が、砥石部21の正面側となっており、砥石部21の基端側を向く面が、砥石部21の背面側となっている。砥石部21の外周面(軸周りの外周面)と、砥石部21の正面側の周縁部と、砥石部21の背面側の周縁部には、ダイヤモンド砥粒が着装されて本発明における研削面としてのダイヤモンド着装部23が形成されている。
 シャンク20の基端はチャック15に固定されており、チャック15は、孔形成用ドリル7を保持したままモーター部16によって回転駆動される。図5に示すように、孔形成用ドリル7は、その先端面(正面)が研削装置1の正面側に向くようにシャンク20の軸心Sが傾けられた状態となっており、孔形成用ドリル7のシャンク20の軸心Sは、シャンク20の先端から基端にゆくに従ってガラス板2から離れるように傾けた状態となっている。
 すなわち、ガラス板2の平面部17の垂線Pに対して、孔形成用ドリル7のシャンク20の軸心Sが、所定角度θで傾けられた状態となっている。本実施例におけるガラス板2の平面部17の垂線Pとシャンク20の軸心Sとがなす角度θは略45度となっている。
 使用者が作業台5にガラス板2を配置し、使用者が操作パネル(図示略)を操作して、研削作業を開始すると、孔形成用ドリル7が、ガラス板2の後部の平面部17の上方位置に移動される。
 そして、図5に示すように、砥石部21はシャンク20の軸心Sを中心に、モーター部16によって回転駆動される。更に、シャンク20の軸心Sの傾きを維持した状態で、孔形成用ドリル7はガラス板2の平面部17に向かって垂直方向に降下される。
 孔形成用ドリル7が降下されると、円盤状をなす砥石部21の下端部がガラス板2に当接して、砥石部21の外周面及び正面側の周縁部のダイヤモンド着装部23によってガラス板2の後部の平面部17が研削される。
 このとき、孔形成用ドリル7の軸回転の軸心Sが傾けられていることで、軸回転による周速度が速い砥石部21の外周面によりガラス板2の平面部17が研削されるようになっている。尚、貫通前の状態の貫通孔部3’内では、孔形成用ドリル7の研削による切粉が発生するようになっているが、この切粉は孔形成用ドリル7の回転の方向に沿って一方向に移動されるようになり、切粉は貫通孔部3’の外部に排出されるようになっている。そのため、貫通前の状態の貫通孔部3’内に切粉が溜まることがなくなり、この切粉によって孔形成用ドリル7の研削が阻害されるようなことがなくなる。
 図4に示すように、孔形成用ドリル7は、前後方向と左右方向に移動して平面視で略四角形状の軌跡を描く動作をしつつ、ガラス板2を研削しながら降下し、略四角形状の貫通孔部3’が形成される。尚、孔形成用ドリル7の動作は、孔形成用ドリル7が最初にガラス板2に当接した位置よりも後方側に移動しないようになっている。
 そして、図6に示すように、略四角形状の貫通孔部3’の後方側の内周面24は、砥石部21の降下とともに垂直方向に研削されるため、垂直をなす垂直面となる。また、貫通孔部3’の前方側の内周面25は、砥石部21の正面側の周縁部によって研削されるため、孔形成用ドリル7の傾きと同じ角度に傾けられた傾斜面となる。
 図7に示すように、略四角形状の貫通孔部3’の左右の内周面26は、円盤状をなす砥石部21の外周面によって研削されるため、砥石部21の外周面の曲率に合わせて円弧形状をなす円弧面に形成される。
 本実施例の孔形成用ドリル7は、略円盤状をなしているとともに、孔形成用ドリル7がその軸心Sの左右方向に移動されることにより、砥石部21の左右方向に延びる貫通孔部3’が形成される。また、孔形成用ドリル7は、その軸心の前方向に移動されることにより、砥石部21の前方向に延びる貫通孔部3’が形成される。
 尚、孔形成用ドリル7により形成された貫通孔部3’の形状は、平面視で略長方形状となり、貫通孔部3’の上方側の開口は、貫通孔部3’の下方側の開口よりも大きくなっている(図4、図6、図7参照)。研削工程にて形成される貫通孔部3’は、加工目的とする貫通孔部3の形状よりも小さく形成される。加工目的とする貫通孔部3の形状は、平面視において左右方向に延びるスリット状となっており、この貫通孔部3の左右は円弧形状をなしている。
 孔形成用ドリル7によるガラス板2の後部の貫通孔部3’の研削工程が終了すると、孔形成用ドリル7がガラス板2の前部の平面部17の上方位置に移動される。そして、ガラス板2の前部の平面部17が研削されて、ガラス板2の前部の貫通孔部3’の研削工程が開始される(図2参照)。このガラス板2の前部の貫通孔部3’の研削工程は、前述したガラス板2の後部の貫通孔部3’の研削工程と同一工程となっている。
 孔形成用ドリル7のシャンク20の軸心Sは、シャンク20の先端から基端にゆくに従ってガラス板2から離れるように傾けた状態となっていることで、孔形成用ドリル7のシャンク20と、シャンク20を保持するチャック15との間の距離を短くして砥石部21を強固に支持しつつ、チャック15をガラス板2から離間させて配置することができ、かつガラス板2の他の部位に孔部を形成するために孔形成用ドリル7を移動させる際に、孔形成用ドリル7を保持するチャック15がガラス板2に接触する虞がなくなる。
 砥石部21は、シャンク20の先端に設けられてシャンク20の直径よりも大きな直径を有する略円盤状をなすように形成されていることで、シャンク20をガラス板2から離間させた状態で、砥石部21をガラス板2に接触させることができ、シャンク20が研削作業の邪魔にならなくなる。
 次に、図8から図10を参照して、成形用ドリル8を用いて貫通孔部3’を成形する成形工程について説明する。尚、図8及び図9に示されたガラス板2は、図3におけるA-A断面図に対応している。また、図10に示されたガラス板2は、図3におけるB-B断面図に対応している。
 孔形成用ドリル7による研削工程が終了すると、孔形成用ドリル7と成形用ドリル8は連動して正面視で右側に移動され、成形用ドリル8が、ガラス板2の後部の平面部17の上方位置に移動され(図1参照)、成形用ドリル8による成形工程が開始される。
 図8に示すように、成形用ドリル8には、回転軸として作用するシャンク27が設けられており、シャンク27の先端には、ガラス板2を成形する本発明における研削用砥石部としての砥石部28が設けられている。この砥石部28には、ダイヤモンド砥粒の粒度が粗い第1成形部29と、第1成形部29よりもダイヤモンド砥粒の粒度が細かい第2成形部30が設けられており、第1成形部29は、第2成形部30よりも先端側に設けられている。
 第1成形部29は、円柱形状をなす円柱部31を有し、円柱部31の上下には、テーパ面を有するテーパ部32が設けられている。このテーパ部32は、円柱部31から離れるほど直径が大きくなるように形成されている。同様に、第2成形部は、円柱形状をなす円柱部33を有し、円柱部33の上下には、テーパ面を有するテーパ部34が設けられている。このテーパ部34は、円柱部33から離れるほど直径が大きくなるように形成されている。
 成形用ドリル8のシャンク27の軸心Sは、ガラス板2の垂線Pに対して平行になるように位置している。砥石部28はシャンク27の軸心Sを中心に、モーター部16によって回転駆動される。成形用ドリル8が降下されると、砥石部28がガラス板2の後部の貫通孔部3’に挿通され、内周面24~26が第1成形部29によって研削される。
 成形用ドリル8は、後方側の内周面24と前方側の内周面25を研削する際には、平面視において直線状に移動し、左右の内周面26を研削する際には、平面視において円弧形状の軌跡を描くように移動して、加工目的とする貫通孔部3が形成される。
 図9に示すように、成形用ドリル8の第1成形部29が、貫通孔部3’の傾斜面となっている前方側の内周面25に当接し、前方側の内周面25が研削される。また、図10に示すように、成形用ドリル8の第1成形部29が、貫通孔部3’の左右の内周面26に当接し、左右の内周面26が研削される。
 尚、貫通孔部3’において、成形前の左右の内周面26は、円弧形状をなしているが(図10の左側の内周面26を参照)、成形後の左右の内周面26は、第1成形部29の外周面と対応した形状をなしている(図10の右側の内周面26を参照)。
 成形用ドリル8によって貫通孔部3’の内周面24~26が研削されて、その大きさが広げられ、加工目的とする貫通孔部3の形状に成形される。第1成形部29の上下のテーパ部32と、貫通孔部3’の上下の開口の周縁とが当接し、貫通孔部3’の周縁の面取りが行われる。断面視において、貫通孔部3’の内周面24~26は、第1成形部29の外周面と対応した形状に成形される。
 次に、成形用ドリル8を降下させ、第2成形部30による内周面24~26の研削が開始される。第1成形部29よりもダイヤモンド砥粒の粒度が細かい第2成形部30を用いて研削することにより、内周面24~26の表面をより滑らかに仕上げることができる。
 成形用ドリル8によるガラス板2の後部の貫通孔部3’の成形工程が終了すると、成形用ドリル8がガラス板2の前部の貫通孔部3’の上方位置に移動される。そして、ガラス板2の前部の貫通孔部3’の内周面24~26が研削されて、ガラス板2の前部の貫通孔部3’の成形工程が開始される。このガラス板2の前部の貫通孔部3’の成形工程は、前述したガラス板2の後部の貫通孔部3’の成形工程と同一工程となっている。
 以上、本実施例における硬脆材料の研削方法では、砥石部21の軸周りの外周面にダイヤモンド着装部23が設けられ、孔形成用ドリル7のシャンク20の軸心を、ガラス板2の平面部17の垂線Pに対して傾けた状態とし、砥石部21の外周面をガラス板2の平面部17に当てるとともに、孔形成用ドリル7を垂線Pの方向に移動させてガラス板2の研削を行う研削工程を含むことにより、孔形成用ドリル7のシャンク20の軸心Sを、ガラス板2の平面部17の垂線Pに対して傾けることで、軸回転による周速度が速い砥石部の外周面のダイヤモンド着装部23がガラス板2の平面部17に当たるようになり、この砥石部21の軸周りの外周面によりガラス板2が研削され、砥石部21とガラス板2との間の研削速度を向上させて、ガラス板2の平面部17に貫通孔部3’を形成する研削時間を短縮させることができる。
 また、孔形成用ドリル7を、その軸心Sの左右方向に移動させることにより、砥石部21の周方向に延びる貫通孔部3’を形成することで、孔形成用ドリル7が左右方向に移動される際に、軸回転による周速度が速い砥石部21の外周面のダイヤモンド着装部23によりガラス板2が研削され、砥石部21とガラス板2との間の研削速度を向上させて、左右方向に延びる形状の貫通孔部3’をガラス板2に短時間で容易に形成できる。
 また、砥石部21の正面にダイヤモンド着装部23が設けられ、孔形成用ドリル7を、その軸心Sの前方向に移動させることにより、砥石部21の前方向に延びる貫通孔部3’を形成することで、砥石部21の外周面のダイヤモンド着装部23及び砥石部21の正面のダイヤモンド着装部23によりガラス板2が研削されるため、砥石部21とガラス板2との間の研削速度を向上させて、前方向に延びる形状の貫通孔部3’をガラス板2に短時間で容易に形成できる。
 研削工程にて、孔形成用ドリル7をガラス板2に貫通させて貫通孔部3’を形成した後、成形用ドリル8のシャンク27の軸心Sを、ガラス板2の平面部17の垂線Pに対して略平行状態とし、成形用ドリル8の砥石部28を貫通孔部3’に挿通するとともに、砥石部28の外周面を貫通孔部3’の内周面24~26に当てて研削を行う成形工程を含むことで、研削工程にて貫通された貫通孔部3’を成形する際に、軸回転による周速度が速い砥石部28の外周面の研削面により貫通孔部3’の内周面24~26が研削されるようになり、砥石部28とガラス板2との間の研削速度を向上させて、貫通孔部3’の成形時間を短縮させることができ、かつ研削工程と成形工程との両工程にて一貫して砥石部21の外周面を利用して研削を行うことができ、貫通孔部3が形成されたガラス板2の製造を短時間で行うことができる。
 また、研削工程にて、孔形成用ドリル7のシャンク20の軸心Sがシャンク20の先端から基端にゆくに従ってガラス板2から離れるように傾けられた状態で、貫通孔部3’が形成されることで、孔形成用ドリル7をガラス板2の平面部17の垂線Pの方向に移動させながらガラス板2の研削を行う際に、孔形成用ドリル7のシャンク20の基端側から加えられる力がシャンク20に沿って先端側に伝達され易くなり、砥石部21をガラス板2に押し付ける押圧力が向上され、ガラス板2の研削時間を短縮させることができる。
 また、砥石部21は、略円盤状をなしていることで、円盤状の砥石部21の外周面のダイヤモンド着装部23がガラス板2に接触され、この砥石部21の周方向、すなわち左右方向に延びるスリット状の貫通孔部3’をガラス板2に容易に形成でき、スリット状の貫通孔部3を形成する際の孔形成用ドリル7の左右方向の移動量が少なくても済むようになる。
 次に、実施例2に係る硬脆材料の研削方法につき、図11から図13を参照して説明する。尚、前記実施例1に示される構成部分と同一構成部分に付いては同一符号を付して重複する説明を省略する。以下、図11から図13の紙面左側を研削装置の正面側(前方側)として説明する。
 前述した実施例1における研削装置1には、孔形成用ドリル装置13と成形用ドリル装置14との2つのドリル装置13,14が設けられているが、実施例2における研削装置には、円柱形ドリル35を有する1つの円柱形ドリル装置36が設けられている。
 更に、実施例2における研削装置は、実施例1の研削装置1と異なり、円柱形ドリル装置36が前後方向に揺動駆動されるようになっており、この円柱形ドリル装置36の揺動駆動により、円柱形ドリル35の軸心Sが所定角度θで傾けられた状態と(図11参照)、円柱形ドリル35の軸心Sが垂直な状態と(図13参照)、との間で、円柱形ドリル35の支持状態を切り換えられるようになっている。すなわち実施例2における研削装置は、研削工程と成形工程を同一のドリル装置で行うことができるようになっている。
 図11に示すように、本発明における研削用ドリルとしての円柱形ドリル35は、シャンク37の先端に円柱形状をなす本発明における研削用砥石部としての砥石部38が設けられている。尚、実施例2では、砥石部38の先端側を向く面が、砥石部38の正面側となっており、円柱形ドリル35の砥石部38の正面部及び外周部には、ダイヤモンド砥粒が着装されており、本発明における研削面となっている。
 円柱形ドリル35は、その先端面(正面)が研削装置の正面側に向くようにシャンク37の軸心Sが傾けられた状態となっており、円柱形ドリル35のシャンク37の軸心Sは、ガラス板2の平面部17の垂線Pに対して所定角度θで傾けられた状態となっている。尚、実施例2におけるガラス板2の平面部17の垂線Pとシャンク37の軸心Sとがなす角度θは略45度となっている。
 先ず、図11及び図12を参照して、円柱形ドリル35を用いて貫通孔部3’を開ける研削工程について説明する。尚、図11及び図12に示されたガラス板2は、図3におけるA-A断面図に対応している。
 研削作業が開始されると、円柱形ドリル35が、ガラス板2の後部の平面部17の上方位置に移動して、図11に示すように、砥石部38はシャンク37の軸心Sを中心に、モーター部16によって回転駆動される。更に、シャンク37の軸心Sの傾きを維持した状態で、円柱形ドリル35はガラス板2の平面部17に向かって垂直方向に降下される。
 円柱形ドリル35が降下されると、円柱形状をなす砥石部38の下端部がガラス板2に当接して、砥石部38の正面部及び外周部によってガラス板2の後部の平面部17が研削される。尚、砥石部38は円柱形状をなしているため、砥石部38の正面部は、シャンク37の軸心Sに対して垂直をなしている。
 図12に示すように、円柱形ドリル35は、前後方向に移動するとともに左右方向にも移動して、平面視で略四角形状の軌跡を描く動作をしつつ、ガラス板2を研削しながら降下される。
 そして、図12に示すように、貫通孔部3’の後方側の内周面24は、砥石部38の外周部によって研削されるため、円柱形ドリル35の軸心Sと同じ角度に傾けられた傾斜面となる。また、貫通孔部3’の前方側の内周面25は、砥石部38の正面部によって研削されるため、円柱形ドリル35の傾きと同じ角度に傾けられた傾斜面となる。
 また、左右の内周面(図示略)は、円柱形状をなす砥石部38の外周部によって研削されるため、砥石部38の外周部の曲率に合わせて円弧形状をなす円弧面に形成される。
 実施例2の円柱形ドリル35は、円柱形状をなしているとともに、円柱形ドリル35がその軸心Sの左右方向に移動されることにより、砥石部38の左右方向に延びる貫通孔部3’が形成される。また、円柱形ドリル35は、その軸心の前方向に移動されることにより、砥石部38の前方向に延びる貫通孔部3’が形成される。
 尚、円柱形ドリル35により形成された貫通孔部3’の上方側の開口は、貫通孔部3’の下方側の開口よりも大きくなっている(図12参照)。研削工程にて形成される貫通孔部3’は、加工目的とする貫通孔部3の形状よりも小さく形成される。
 円柱形ドリル35によるガラス板2の後部の貫通孔部3’の研削工程が終了すると、円柱形ドリル35がガラス板2の前部の平面部17の上方位置に移動される。そして、ガラス板2の前部の平面部17が研削されて、ガラス板2の前部の貫通孔部3’の研削工程が開始される。このガラス板2の前部の貫通孔部3’の研削工程は、前述したガラス板2の後部の貫通孔部3’の研削工程と同一工程となっている。
 次に、図13を参照して、円柱形ドリル35を用いて貫通孔部3’を成形する成形工程について説明する。尚、図13に示されたガラス板2は、図3におけるA-A断面図に対応している。
 ガラス板2の前部の平面部17の研削工程が終了すると、円柱形ドリル35は、一旦上昇し、シャンク37の軸心Sがガラス板2の平面部17の垂線Pに対して垂直になるように傾きが変えられ、ガラス板2の前部の貫通孔部3’の成形工程が開始される。円柱形ドリル35が降下されると、砥石部38がガラス板2の前部の貫通孔部3’に挿通され、前後の内周面24,25及び左右の内周面が砥石部38の外周部によって研削される。
 円柱形ドリル35は、後方側の内周面24と前方側の内周面25を研削する際には、平面視において直線状に移動し、左右の内周面を研削する際には、平面視において円弧形状の軌跡を描くように移動して、加工目的とする貫通孔部3が形成される。
 図13に示すように、円柱形ドリル35の外周部が、貫通孔部3’の傾斜面となっている前後の内周面24,25に当接し、これら内周面24,25が研削される。また、円柱形ドリル35の外周部が、貫通孔部3’の左右の内周面(図示略)に当接し、左右の内周面が研削される。
 円柱形ドリル35によって貫通孔部3’の前後の内周面24,25及び左右の内周面が研削されて、その大きさが広げられ、加工目的とする貫通孔部3の形状に成形される。断面視において、貫通孔部3’の前後の内周面24,25及び左右の内周面は、砥石部38の外周部と対応した形状に成形される。
 円柱形ドリル35によるガラス板2の前部の貫通孔部3’の成形工程が終了すると、円柱形ドリル35がガラス板2の後部の貫通孔部3’の上方位置に移動される。そして、ガラス板2の後部の貫通孔部3’の内周面24が研削されて、ガラス板2の後部の貫通孔部3’の成形工程が開始される。このガラス板2の後部の貫通孔部3’の成形工程は、前述したガラス板2の前部の貫通孔部3’の成形工程と同一工程となっている。
 次に、実施例3に係る硬脆材料の研削方法につき、図14から図16を参照して説明する。尚、前記実施例1に示される構成部分と同一構成部分に付いては同一符号を付して重複する説明を省略する。以下、図14から図16の紙面左側を研削装置の正面側(前方側)として説明する。
 前述した実施例1における研削装置1には、孔形成用ドリル装置13と成形用ドリル装置14との2つのドリル装置13,14が設けられているが、実施例3における研削装置には、ボール形ドリル39を有する1つのボール形ドリル装置40が設けられている。
 更に、実施例3における研削装置は、実施例1の研削装置1と異なり、ボール形ドリル装置40が前後方向に揺動駆動されるようになっており、このボール形ドリル装置40の揺動駆動により、ボール形ドリル39の軸心Sが所定角度θで傾けられた状態と(図14参照)、ボール形ドリル39の軸心Sが垂直な状態と(図16参照)、との間で、ボール形ドリル39の支持状態を切り換えられるようになっている。すなわち実施例3における研削装置は、研削工程と成形工程を同一のドリル装置で行うことができるようになっている。
 図14に示すように、本発明における研削用ドリルとしてのボール形ドリル39は、シャンク41の先端にボール形状をなす本発明における研削用砥石部としての砥石部42が設けられている。砥石部42には、ダイヤモンド砥粒が着装されており、本発明における研削面となっている。
 ボール形ドリル39は、その先端部(正面部)が研削装置の正面側に向くようにシャンク41の軸心Sが傾けられた状態となっており、ボール形ドリル39のシャンク41の軸心Sは、ガラス板2の平面部17の垂線Pに対して所定角度θで傾けられた状態となっている。尚、実施例3におけるガラス板2の平面部17の垂線Pと砥石部42の軸心Sとがなす角度θは略45度となっている。
 先ず、図14及び図15を参照して、ボール形ドリル39を用いて貫通孔部3’を開ける研削工程について説明する。尚、図14及び図15に示されたガラス板2は、図3におけるA-A断面図に対応している。
 研削作業が開始されると、ボール形ドリル39が、ガラス板2の後部の平面部17の上方位置に移動して、図14に示すように、砥石部42はシャンク41の軸心Sを中心に、モーター部16によって回転駆動される。更に、シャンク41の軸心Sの傾きを維持した状態で、ボール形ドリル39はガラス板2の平面部17に向かって垂直方向に降下される。
 ボール形ドリル39が降下されると、ボール形状をなす砥石部42の下端部がガラス板2に当接して、砥石部42によってガラス板2の後部の平面部17が研削される。
 図15に示すように、ボール形ドリル39は、実施例2における円柱形ドリル35と同様に、前後方向に移動するとともに左右方向にも移動して、平面視で略四角形状の軌跡を描く動作をしつつ、ガラス板2を研削しながら降下される。
 そして、図15に示すように、貫通孔部3’の前後の内周面24,25と左右の内周面(図示略)は、ボール形状をなす砥石部42によって研削されるため、砥石部42の外周部の曲率に合わせて円弧形状をなす円弧面に形成される。
 実施例3のボール形ドリル39は、ボール形状をなしているとともに、ボール形ドリル39がその軸心の左右方向に移動されることにより、砥石部42の左右方向に延びる貫通孔部3’が形成される。また、ボール形ドリル39は、その軸心の前方向に移動されることにより、砥石部42の前方向に延びる貫通孔部3’が形成される。
 尚、ボール形ドリル39により形成された貫通孔部3’の上方側の開口は、貫通孔部3’の下方側の開口よりも大きくなっている(図12参照)。研削工程にて形成される貫通孔部3’は、加工目的とする貫通孔部3の形状よりも小さく形成される。
 ボール形ドリル39によるガラス板2の後部の貫通孔部3’の研削工程が終了すると、ボール形ドリル39がガラス板2の前部の平面部17の上方位置に移動される。そして、ガラス板2の前部の平面部17が研削されて、ガラス板2の前部の貫通孔部3’の研削工程が開始される。このガラス板2の前部の貫通孔部3’の研削工程は、前述したガラス板2の後部の貫通孔部3’の研削工程と同一工程となっている。
 次に、図16を参照して、ボール形ドリル39を用いて貫通孔部3’を成形する成形工程について説明する。尚、図16に示されたガラス板2は、図3におけるA-A断面図に対応している。
 ガラス板2の前部の平面部17の研削工程が終了すると、ボール形ドリル39は、一旦上昇し、シャンク41の軸心Sがガラス板2の平面部17の垂線Pに対して垂直になるように傾きが変えられ、ガラス板2の前部の貫通孔部3’の成形工程が開始される。ボール形ドリル39が降下されると、砥石部42がガラス板2の前部の貫通孔部3’に挿通され、前後の内周面24,25及び左右の内周面が砥石部42の外周部によって研削される。
 ボール形ドリル39は、前後の内周面24,25を研削する際には、平面視において直線状に移動し、左右の内周面を研削する際には、平面視において円弧形状の軌跡を描くように移動して、加工目的とする貫通孔部3が形成される。
 図16に示すように、ボール形ドリル39の外周部が、貫通孔部3’の円弧面となっている前後の内周面24,25と左右の内周面に当接し、内周面24,25と左右の内周面が研削される。
 ボール形ドリル39によって貫通孔部3’の前後の内周面24,25と左右の内周面が研削されて、その大きさが広げられるとともに、砥石部42は、前後の内周面24,25と左右の内周面と当接して上下方向にも移動しながら研削され、加工目的とする貫通孔部3の形状に成形される。断面視において、貫通孔部3’の前後の内周面24,25と左右の内周面は、垂直をなす垂直面に成形される。
 ボール形ドリル39によるガラス板2の前部の貫通孔部3’の成形工程が終了すると、ボール形ドリル39がガラス板2の後部の貫通孔部3’の上方位置に移動される。そして、ガラス板2の後部の貫通孔部3’の前後の内周面24,25と左右の内周面が研削されて、ガラス板2の後部の貫通孔部3’の成形工程が開始される。このガラス板2の後部の貫通孔部3’の成形工程は、前述したガラス板2の前部の貫通孔部3’の成形工程と同一工程となっている。
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 例えば、前記実施例1~3では、研削工程におけるドリル7,35,39が傾く所定角度θを、略45度としているが、この所定角度θは略45度に限ることなく、略90度の所定角度θでドリル7,35,39を傾けてもよいし、それ以上の所定角度θでドリル7,35,39を傾けるようにしてもよし、略45度よりも小さい所定角度θでドリル7,35,39を傾けるようにしてもよい。
 また、例えば、前記実施例2及び3のドリル35,39の砥石部38,42の基端側の部位に、実施例1の成形用ドリル8の第1及び第2成形部29,30と同様の成形部を形成し、この成形部を用いて成形工程において、貫通孔部3の成形及び仕上げを行うようにしてもよい。
1        研削装置
2        ガラス板(硬脆材料)
3,3’     貫通孔部(孔部)
7        孔形成用ドリル(研削用ドリル)
8        成形用ドリル(研削用ドリル)
17       平面部
20       シャンク
21       砥石部
23       ダイヤモンド着装部(研削面)
24,25,26 内周面
27       シャンク
28       砥石部
29       第1成形部(研削面)
30       第2成形部(研削面)
35       円柱形ドリル(研削用ドリル)
36       円柱形ドリル装置
37       シャンク
38       砥石部(研削面)
39       ボール形ドリル(研削用ドリル)
40       ボール形ドリル装置
41       シャンク
42       砥石部(研削面)

Claims (6)

  1.  回転軸として作用するシャンクに研削用砥石部を備える研削用ドリルを用いて、略平板状をなす硬脆材料が有する平面部に孔部を形成する硬脆材料の研削方法であって、
     前記研削用砥石部の少なくとも軸周りの外周面に研削面が設けられ、前記研削用ドリルのシャンクの軸心を、前記硬脆材料の平面部の垂線に対して傾けた状態とし、前記研削用砥石部の外周面を前記硬脆材料の平面部に当てるとともに、前記研削用ドリルを前記垂線の方向に移動させて前記硬脆材料の研削を行う研削工程を含むことを特徴とする硬脆材料の研削方法。
  2.  前記研削用ドリルを、その軸心の左右方向に移動させることにより、前記研削用砥石部の周方向に延びる孔部を形成することを特徴とする請求項1に記載の硬脆材料の研削方法。
  3.  前記研削用砥石部の少なくとも正面に研削面が設けられ、前記研削用ドリルを、その軸心の前方向に移動させることにより、前記研削用砥石部の前方向に延びる孔部を形成することを特徴とする請求項1または2に記載の硬脆材料の研削方法。
  4.  前記研削工程にて、前記研削用ドリルを前記硬脆材料に貫通させて前記貫通孔部を形成した後、研削用ドリルのシャンクの軸心を、前記硬脆材料の平面部の垂線に対して略平行状態とし、該研削用ドリルの研削用砥石部を前記貫通孔部に挿通するとともに、該研削用砥石部の外周面を前記貫通孔部の内周面に当てて研削を行う成形工程を含むことを特徴とする請求項1ないし3のいずれかに記載の硬脆材料の研削方法。
  5.  前記研削工程にて、前記研削用ドリルのシャンクの軸心が該シャンクの先端から基端にゆくに従って前記硬脆材料から離れるように傾けられた状態で、前記孔部が形成されることを特徴とする請求項1ないし4のいずれかに記載の硬脆材料の研削方法。
  6.  前記研削用砥石部は、略円盤状をなしていることを特徴とする請求項1ないし5のいずれかに記載の硬脆材料の研削方法。
PCT/JP2010/060831 2009-08-03 2010-06-25 硬脆材料の研削方法 WO2011016299A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009180319A JP5400518B2 (ja) 2009-08-03 2009-08-03 硬脆材料の研削方法
JP2009-180319 2009-08-03

Publications (1)

Publication Number Publication Date
WO2011016299A1 true WO2011016299A1 (ja) 2011-02-10

Family

ID=43544201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060831 WO2011016299A1 (ja) 2009-08-03 2010-06-25 硬脆材料の研削方法

Country Status (2)

Country Link
JP (1) JP5400518B2 (ja)
WO (1) WO2011016299A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3006176A1 (en) * 2014-10-10 2016-04-13 Biesse S.p.A. Device and method for forming a hole through a glass plate, and a drilling tool used therein
EP3330233A4 (en) * 2015-07-31 2019-03-13 Corning Precision Materials Co., Ltd. METHOD AND APPARATUS FOR CUTTING GLASS LAMINATE

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017166090A1 (en) 2016-03-30 2017-10-05 Panasonic Intellectual Property Corporation Of America Base station, terminal, and communication method
KR20180036846A (ko) * 2016-09-30 2018-04-10 엘지디스플레이 주식회사 기판 가공 장치 및 이를 이용한 표시장치
CN106881658A (zh) * 2017-02-09 2017-06-23 刘云龙 一种流量控制阀制作工艺中的打孔设备
CN110509441B (zh) * 2019-09-06 2020-09-01 南京溧水高新创业投资管理有限公司 一种墙板打孔装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699341A (ja) * 1992-09-21 1994-04-12 Mitsubishi Materials Corp ワーク加工装置
JP2002222778A (ja) * 2001-01-25 2002-08-09 Nec Kyushu Ltd 半導体装置の製造装置及びその製造方法
JP2004148454A (ja) * 2002-10-31 2004-05-27 Japan Science & Technology Agency マイクロレンズアレイの成形型の研削方法およびその装置
JP2006035362A (ja) * 2004-07-26 2006-02-09 Nippon Sheet Glass Co Ltd 研削加工用砥石、およびそれを用いた研削加工方法
JP2009125878A (ja) * 2007-11-26 2009-06-11 Morioka Seiko Instruments Inc キャピラリーの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222788A (ja) * 2001-01-29 2002-08-09 Tokyo Electron Ltd 基板洗浄具及び基板洗浄装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699341A (ja) * 1992-09-21 1994-04-12 Mitsubishi Materials Corp ワーク加工装置
JP2002222778A (ja) * 2001-01-25 2002-08-09 Nec Kyushu Ltd 半導体装置の製造装置及びその製造方法
JP2004148454A (ja) * 2002-10-31 2004-05-27 Japan Science & Technology Agency マイクロレンズアレイの成形型の研削方法およびその装置
JP2006035362A (ja) * 2004-07-26 2006-02-09 Nippon Sheet Glass Co Ltd 研削加工用砥石、およびそれを用いた研削加工方法
JP2009125878A (ja) * 2007-11-26 2009-06-11 Morioka Seiko Instruments Inc キャピラリーの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3006176A1 (en) * 2014-10-10 2016-04-13 Biesse S.p.A. Device and method for forming a hole through a glass plate, and a drilling tool used therein
EP3330233A4 (en) * 2015-07-31 2019-03-13 Corning Precision Materials Co., Ltd. METHOD AND APPARATUS FOR CUTTING GLASS LAMINATE

Also Published As

Publication number Publication date
JP2011031508A (ja) 2011-02-17
JP5400518B2 (ja) 2014-01-29

Similar Documents

Publication Publication Date Title
WO2011016299A1 (ja) 硬脆材料の研削方法
US20060009134A1 (en) Grinding wheel, grinding apparatus and grinding method
JP2016047561A (ja) 研削装置
TWI834865B (zh) 保持面形成方法
JP2007054896A (ja) 研削方法及び研削装置
JP5943766B2 (ja) 研削装置
JP5456550B2 (ja) レンズ加工装置
JP2011224697A (ja) 研磨パッドの修正方法
JP2009095947A (ja) 研削装置及びウェーハの研削方法
JP2009090390A (ja) 工作物外径面および平面のセンタレス研削方法およびセンタレス研削装置
JPH1058320A (ja) 研削装置および研磨装置
JP2020199596A (ja) 研削方法
JPH1094949A (ja) ドリル研削装置
JP2000271844A (ja) ハーフトロイダルcvtディスクのトラクション面研削方法
JP2000024899A (ja) ハ―フトロイダルcvtディスクのトラクション面研削方法
JP3192069U (ja) 両頭研削装置
JP4851654B2 (ja) 研削盤
JP5549391B2 (ja) 研削盤
JP4549471B2 (ja) 板状物研削装置及び板状物研削方法
CN110634737B (zh) 磨削磨具的修锐方法和修锐用晶片
JP2002144199A (ja) 薄板円板状ワークの平面研削方法および平面研削盤
JP5168929B2 (ja) 被圧入ワークの製造方法
JPH06328361A (ja) 研削盤における砥石磨耗補正装置
JP2004202656A (ja) 研磨用ポリッシャのツルーイング方法
JP2002127009A (ja) 研削装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806299

Country of ref document: EP

Kind code of ref document: A1