WO2011015469A1 - Device and method for measuring the motion speed of moved electrically conducting substances - Google Patents

Device and method for measuring the motion speed of moved electrically conducting substances Download PDF

Info

Publication number
WO2011015469A1
WO2011015469A1 PCT/EP2010/060727 EP2010060727W WO2011015469A1 WO 2011015469 A1 WO2011015469 A1 WO 2011015469A1 EP 2010060727 W EP2010060727 W EP 2010060727W WO 2011015469 A1 WO2011015469 A1 WO 2011015469A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically conductive
systems
measuring
magnetic
movement
Prior art date
Application number
PCT/EP2010/060727
Other languages
German (de)
French (fr)
Inventor
André THESS
Vitaly Minchenya
Christian Karcher
Yuri Kolesnikov
Bernard Knaepen
Axelle VIRÉ
Original Assignee
Technische Universität Ilmenau
Université Libre de Bruxelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Ilmenau, Université Libre de Bruxelles filed Critical Technische Universität Ilmenau
Priority to EP10737550A priority Critical patent/EP2462413A1/en
Publication of WO2011015469A1 publication Critical patent/WO2011015469A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/08Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring variation of an electric variable directly affected by the flow, e.g. by using dynamo-electric effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance
    • G01P5/22Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means

Definitions

  • the invention relates to a device and a method for measuring the flow velocity of electrically conductive fluids and for measuring the speed of movement of solid electrically conductive materials.
  • the object of the present invention is thus to overcome the disadvantages of the prior art and to provide an apparatus and a method by which the dependence of the measuring signal on the unknown or variable electrical conductivity is eliminated. According to the invention this object is achieved on the device side by the features of the first claim and method side by the features of the fifth claim.
  • Preferred further embodiments of the device according to the invention are characterized in the claims 2 to 4, while preferred embodiments of the method according to the invention are given in the claims 6 to 8.
  • the flows of liquid metals are often turbulent. Such a flow state is characterized by the presence of spatially and temporally disordered vortex structures, which are also referred to as vortex bales.
  • a generic speed measuring device is characterized in that two or more Lorentz force anemometry systems are arranged one behind the other in the main flow direction. Comparing the signals measured by these systems, for example, by calculating the cross-correlation function, this results in the time required for a vortex ball for passing through the distance between the systems.
  • FIG. 1 shows an electrically conductive liquid (5), which is moved with a medium velocity v and is delimited by a wall (6). However, the figure also applies if (5) is interpreted as a moving solid and the wall (6) is missing.
  • the magnetic systems (1) arranged in the vicinity of the moving substance generate an inhomogeneous magnetic field at the location of the substance.
  • Each of the magnet systems is each coupled to a force measuring system (2) which measures at least one directional component of the Lorentz force acting on the magnet system.
  • the force measuring systems to measure a plurality of the three force and several of the three torque components acting on each magnet system.
  • a particularly advantageous development of the speed measuring device can be realized for liquids. It consists in designing the first magnetic system in the direction of movement as a magnetic obstacle.
  • a magnetic obstacle is to be understood as meaning a spatially localized magnetic field whose intensity is so great that it generates a spatially periodic arrangement of vortices, a so-called vortex street, in the passing liquid.
  • a magnetic obstruction creates strong, periodic turbulence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

1. Device and method for measuring the flow rate of moved electrically conducting substances. 2.1 The aim of the present invention is to provide a device and a method for measuring the motion speed of moved electrically conducting substance, which eliminate the dependency of the measurement signal of a Lorentz force anemometer on electric conductivity. 2.2 This task is solved by arranging at least two Lorentz force anemometers one after the other and by comparing the force signals measured thereby. 2.3 The present invention may be applied especially in the field of metallurgy.

Description

Vorrichtung und Verfahren zur Messung der  Apparatus and method for measuring the
Bewegungsgeschwindigkeit bewegter elektrisch leitfähiger  Movement speed of moving electrically conductive
Substanzen  substances
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Messung der Strömungsgeschwindigkeit elektrisch leitfähiger Fluide sowie zur Messung der Bewegungsgeschwindigkeit fester elektrisch leitfähiger Materialien. The invention relates to a device and a method for measuring the flow velocity of electrically conductive fluids and for measuring the speed of movement of solid electrically conductive materials.
Die genaue Messung von Strömungsgeschwindigkeiten und Durchflussmengen ist für metallurgische Prozesse, für die Züchtung von Halbleiter-Einkristallen sowie für die Herstellung von Glas von großer Bedeutung. Die genannten Substanzen sind während des Schmelzprozesses heiß und aggressiv, so dass sie Sonden oder Messfühler, mit denen sie in direktem mechanischem Kontakt stehen, beschädigen und zerstören. Aus diesem Grund sind berührungslose Verfahren, insbesondere magnetische Verfahren, für solche Messaufgaben besonders geeignet. The accurate measurement of flow velocities and flow rates is very important for metallurgical processes, for the growth of semiconductor monocrystals and for the production of glass. These substances are hot and aggressive during the melting process, damaging and destroying probes or probes with which they are in direct mechanical contact. For this reason, non-contact methods, in particular magnetic methods, are particularly suitable for such measuring tasks.
Aus den Druckschriften DE 33 47 190 Al, DE 43 16 344 Al und DE 19 22 311 C2 sind berührungslose elektromagnetische Strömungsmessverfahren bekannt, bei denen ein Magnetfeld (das sogenannte Primärfeld) in die Substanz eingekoppelt wird und die von Wirbelströmen induzierte Magnetfeldstörung (das sogenannte Sekundärfeld) als Maß für die Strömungsgeschwindigkeit dient. Die Messgenauigkeit solcher Systeme ist jedoch in einer elektromagnetisch gestörten Umgebung, die für metallurgische Betriebe typisch ist, stark eingeschränkt, da die Magnetfeldsensoren aufgrund ihrer geringen räumlichen Ausdehnung bereits durch kleinste parasitäre Fluktuationen des Magnetfeldes beeinträchtigt werden . From the documents DE 33 47 190 Al, DE 43 16 344 Al and DE 19 22 311 C2 contactless electromagnetic flow measuring methods are known in which a magnetic field (the so-called primary field) is coupled into the substance and induced by eddy currents magnetic field disturbance (the so-called secondary field ) serves as a measure of the flow velocity. However, the measurement accuracy of such systems is severely limited in an electromagnetically disturbed environment, which is typical for metallurgical operations, since the magnetic field sensors, due to their small spatial extent already by the smallest parasitic fluctuations of the magnetic field are impaired.
Die genannten Nachteile werden durch die in den Druckschriften JP 57199917 A, US 6538433 Bl, JP 07181195 A, WO 00/58695, WO 2007/033982 Al beschriebenen Messeinrichtungen und Verfahren teilweise überwunden. Sie sind dadurch gekennzeichnet, dass anstatt einer direkten Messung des Sekundärfeldes eine Messung der vom Sekundärfeld auf das magnetfelderzeugende System ausgeübten Lorentzkraft vorgenommen wird. Das Verfahren wird im Folgenden als Lorentzkraft-Anemometrie, die das Verfahren verkörpernde Messeinrichtung als Lorentzkraft-Anemometer bezeichnet. Trotz ihrer Vorzüge gegenüber den erstgenannten Messeinrichtungen besitzen die bislang existierenden Lorentzkraft-Anemometer den Nachteil, dass sie nicht direkt die Strömungsgeschwindigkeit, sondern das Produkt aus Strömungsgeschwindigkeit und elektrischer Leitfähigkeit messen. Da bei zahlreichen Anwendungen die elektrische Leitfähigkeit einer strömenden Schmelze oder eines bewegten Festkörpers unbekannt ist und zudem von wechselnden Temperaturen und Materialzusammensetzungen beeinflusst wird, ist eine genaue Messung der gesuchten Strömungsgeschwindigkeit oft nicht möglich. The disadvantages mentioned are partially overcome by the measuring devices and methods described in the publications JP 57199917 A, US Pat. No. 6538433 Bl, JP 07181195 A, WO 00/58695, WO 2007/033982 A1. They are characterized in that instead of a direct measurement of the secondary field, a measurement of the Lorentz force exerted by the secondary field on the magnetic field generating system is made. The method is referred to below as Lorentz force anemometry, the measuring device embodying the method as Lorentz force anemometer. Despite their advantages over the former measuring devices, the existing Lorentz force anemometers have the disadvantage that they do not directly measure the flow velocity but the product of flow velocity and electrical conductivity. Since in many applications the electrical conductivity of a flowing melt or a moving solid is unknown and is also influenced by changing temperatures and material compositions, an accurate measurement of the sought flow rate is often not possible.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, die Nachteile aus dem Stand der Technik zu überwinden und eine Vorrichtung und ein Verfahren bereitzustellen, mit denen die Abhängigkeit des Messsignals von der unbekannten oder veränderlichen elektrischen Leitfähigkeit beseitigt wird. Erfindungsgemäß wird diese Aufgabe vorrichtungsseitig durch die Merkmale des ersten Patentanspruches und verfahrenseitig durch die Merkmale des fünften Patentanspruches gelöst. Bevorzugte weitere Ausgestaltungen der erfindungsgemäßen Vorrichtung sind in den Patentansprüchen 2 bis 4 gekennzeichnet, während bevorzugte Ausgestaltungen des erfindungsgemäßen Verfahrens in den Patentansprüchen 6 bis 8 angegeben sind. Die Strömungen von Flüssigmetallen sind häufig turbulent. Ein solcher Strömungszustand ist durch das Vorhandensein räumlich und zeitlich ungeordneter Wirbelstrukturen gekennzeichnet, die auch als Wirbelballen bezeichnet werden. Wie in der Druckschrift A. Thess, E. Votyakov, B. Knaepen, O. Zikanov, Theory of the Lorentz Force Flowmeter, New J. Phys . , vol. 9, 299, 2007, Seiten 1-27 nachgewiesen wurde, erzeugen diese Wirbelballen beim Vorbeilaufen an einem Lorentzkraft- Anemometer charakteristische instationäre Signale. Ferner können die Wirbelballen trotz des ungeordneten Charakters turbulenter Bewegung über längere Zeit hinweg formstabil mit der Hauptströmung mitgetragen werden. Als Lösung für die oben gestellten Aufgaben ist eine gattungsgemäße Geschwindigkeitsmessvorrichtung dadurch gekennzeichnet, dass zwei oder mehrere Lorentzkraft-Anemometriesysteme in Hauptströmungsrichtung hintereinander angeordnet sind. Vergleicht man die von diesen Systemen gemessenen Signale beispielsweise durch Berechnung der Kreuzkorrelationsfunktion, so ergibt sich daraus die Zeit, die ein Wirbelballen für das Durchlaufen des Abstandes zwischen den Systemen benötigt. Dividiert man diese Zeit durch den Abstand der hintereinander angeordneten Systeme, so ergibt sich daraus eine Größe, die zur mittleren Strömungsgeschwindigkeit proportional ist. Die vorstehenden Ausführungen lassen sich sinngemäß auf bewegte Festkörper übertragen. In einem Festkörper ist die elektrische Leitfähigkeit in der Regel räumlich nicht homogen. Diese Inhomogenitäten erzeugen bei der Relativbewegung bezüglich zweier hintereinander angeordneter Lorentzkraft-Anemometer ebenfalls charakteristische Signalmuster, die durch die oben genannten Methoden miteinander verglichen werden können. Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus dem folgenden, anhand von Figur 1 erläuterten Ausführungsbeispiel . The object of the present invention is thus to overcome the disadvantages of the prior art and to provide an apparatus and a method by which the dependence of the measuring signal on the unknown or variable electrical conductivity is eliminated. According to the invention this object is achieved on the device side by the features of the first claim and method side by the features of the fifth claim. Preferred further embodiments of the device according to the invention are characterized in the claims 2 to 4, while preferred embodiments of the method according to the invention are given in the claims 6 to 8. The flows of liquid metals are often turbulent. Such a flow state is characterized by the presence of spatially and temporally disordered vortex structures, which are also referred to as vortex bales. As in the references A. Thess, E. Votyakov, B. Knaepen, O. Zikanov, Theory of the Lorentz Force Flowmeter, New J. Phys. , vol. 9, 299, 2007, pages 1-27, these vortex bales produce characteristic transient signals as they pass a Lorentz force anemometer. Furthermore, the vortex bales despite the disordered character of turbulent motion over a long period of time can be supported dimensionally stable with the main flow. As a solution to the above objects, a generic speed measuring device is characterized in that two or more Lorentz force anemometry systems are arranged one behind the other in the main flow direction. Comparing the signals measured by these systems, for example, by calculating the cross-correlation function, this results in the time required for a vortex ball for passing through the distance between the systems. Dividing this time by the distance of the successively arranged systems, it results in a size that is the average Flow rate is proportional. The above statements can be analogously transferred to moving solids. In a solid, the electrical conductivity is usually not spatially homogeneous. These inhomogeneities also produce characteristic signal patterns in the relative movement with respect to two successively arranged Lorentz force anemometers, which can be compared with one another by the above-mentioned methods. Further details and advantages of the invention will become apparent from the following, with reference to Figure 1 illustrated embodiment.
Figur 1 - prinzipielle Ausführungsform der erfindungs- gemäßen Vorrichtung Figure 1 - basic embodiment of the inventive device
Figur 1 zeigt eine mit der mittleren Geschwindigkeit v bewegte, von einer Wand (6) begrenzte elektrisch leitfähige Flüssigkeit (5) . Die Figur gilt jedoch ebenso, wenn (5) als bewegter Festkörper interpretiert wird und die Wand (6) fehlt. Die in der Nähe der bewegten Substanz angeordneten Magnetsysteme (1) erzeugen am Ort der Substanz ein inhomogenes Magnetfeld. Jedes der Magnetsysteme ist mit je einem Kraftmesssystem (2) gekoppelt, welches mindestens je eine Richtungskomponente der auf das Magnetsystem wirkenden Lorentzkraft misst. Es liegt jedoch auch im Rahmen der Erfindung, die Kraftmesssysteme so auszulegen, dass sie mehrere der drei Kraft- und mehrere der drei Drehmomentkomponenten messen, die auf jedes Magnetsystem wirken. Es liegt ebenso im Rahmen der Erfindung, das Magnetsystem so auszulegen, dass es ein oszillierendes oder gepulstes Magnetfeld erzeugt. Eine besonders vorteilhafte Weiterbildung der Geschwindigkeitsmesseinrichtung lässt sich für Flüssigkeiten realisieren. Sie besteht darin, das in Bewegungsrichtung erste Magnetsystem als magnetisches Hindernis auszubilden. Unter einem magnetischen Hindernis ist ein räumlich lokalisiertes Magnetfeld zu verstehen, dessen Stärke so groß ist, dass es in der vorbeiströmenden Flüssigkeit eine räumlich periodische Anordnung von Wirbeln, eine sogenannte Wirbelstraße, erzeugt. Wie in der Druckschrift E. Votyakov, Y. Kolesnikov, O. Andreev, E. Zienicke, A. Thess, "Structure of the wake of a magnetic obstacle", Phys . Rev. Lett, vol. 98, 2007, 144504 gezeigt wurde, erzeugt ein magnetisches Hindernis starke, zeitlich periodische Verwirbelungen . Für den Fall, dass die auf natürliche Weise in der Strömung vorhandenen Wirbelballen nicht genügend stark ausgeprägt sind, um von den hintereinander liegenden Lorentzkraft- Anemometern detektiert zu werden, lassen sich solche Wirbel durch ein magnetisches Hindernis erzeugen. Diese Weiterbildung ist nur in Flüssigkeiten anwendbar, da in einem bewegten Festkörper keine inneren Bewegungen induziert werden können . FIG. 1 shows an electrically conductive liquid (5), which is moved with a medium velocity v and is delimited by a wall (6). However, the figure also applies if (5) is interpreted as a moving solid and the wall (6) is missing. The magnetic systems (1) arranged in the vicinity of the moving substance generate an inhomogeneous magnetic field at the location of the substance. Each of the magnet systems is each coupled to a force measuring system (2) which measures at least one directional component of the Lorentz force acting on the magnet system. However, it is also within the scope of the invention to design the force measuring systems to measure a plurality of the three force and several of the three torque components acting on each magnet system. It is also within the scope of the invention to design the magnet system to generate an oscillating or pulsed magnetic field. A particularly advantageous development of the speed measuring device can be realized for liquids. It consists in designing the first magnetic system in the direction of movement as a magnetic obstacle. A magnetic obstacle is to be understood as meaning a spatially localized magnetic field whose intensity is so great that it generates a spatially periodic arrangement of vortices, a so-called vortex street, in the passing liquid. As in E. Votyakov, Y. Kolesnikov, O. Andreev, E. Zienicke, A. Thess, "Structure of the wake of a magnetic obstacle", Phys. Rev. Lett, vol. 98, 2007, 144504, a magnetic obstruction creates strong, periodic turbulence. In the event that the naturally occurring in the flow vortex bales are not sufficiently pronounced to be detected by the successive Lorentz force anemometers, such vortices can be generated by a magnetic obstacle. This development is only applicable in liquids, since in a moving solid no internal movements can be induced.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
1 - Magnetsystem 1 - magnet system
2 - Kraftmesssystem  2 - force measuring system
3 - Auswerteeinheit  3 - evaluation unit
4 - Magnetfeldlinie  4 - magnetic field line
5 - bewegte elektrisch leitfähige Substanz 6 - Wand v - Bewegungsgeschwindigkeit  5 - moving electrically conductive substance 6 - wall v - movement speed

Claims

Patentansprüche claims
1. Vorrichtung zur Messung der Bewegungsgeschwindigkeit v bewegter elektrisch leitfähiger Substanzen unter Ausnutzung der Lorentzkraft dadurch gekennzeichnet, dass sie mindestens zwei in der Nähe der bewegten elektrisch leitfähigen Substanz (5) positionierte Magnetsysteme (1), die bezüglich der Hauptbewegungsrichtung der elektrisch leitfähigen Substanz hintereinander angeordnet und jeweils mit einem Kraftmesssystem (2) gekoppelt sind und eine Auswerteeinheit (3) umfasst. 1. A device for measuring the speed of movement v moving electrically conductive substances using the Lorentz force characterized in that it at least two in the vicinity of the moving electrically conductive substance (5) positioned magnetic systems (1) arranged with respect to the main direction of movement of the electrically conductive substance behind the other and in each case with a force measuring system (2) are coupled and an evaluation unit (3).
2. Vorrichtung nach Anspruch 1 dadurch gekennzeichnet, dass die Magnetsysteme (1) aus Permanentmagneten oder Spulen aufgebaut sind. 2. Apparatus according to claim 1, characterized in that the magnet systems (1) are constructed from permanent magnets or coils.
3. Vorrichtung nach einem der Ansprüche 1 oder 2 dadurch gekennzeichnet, dass die elektrisch leitfähige Substanz (5) eine in einem Rohr oder einer Rinne befindliche bewegte elektrisch leitfähige Flüssigkeit ist. 3. Device according to one of claims 1 or 2, characterized in that the electrically conductive substance (5) is located in a pipe or a gutter moving electrically conductive liquid.
4. Vorrichtung nach einem der Ansprüche 1 oder 2 dadurch gekennzeichnet, dass die elektrisch leitfähige Substanz (5) ein bewegter elektrisch leitfähiger Festkörper ist. 4. Device according to one of claims 1 or 2, characterized in that the electrically conductive substance (5) is a moving electrically conductive solid.
5. Verfahren zur Messung der Bewegungsgeschwindigkeit v bewegter elektrisch leitfähiger Substanzen unter Ausnutzung der Lorentzkraft mit einer Vorrichtung nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass die Magnetsysteme (1) in der bewegten elektrischen Substanz (5) jeweils ein räumlich inhomogenes Magnetfeld (4) erzeugen, die Kraftmesssysteme (2) gleichzeitig jeweils eine Komponente der auf die Magnetsysteme (1) wirkenden Lorentzkräfte als Funktion der Zeit messen und in der Auswerteeinheit (3) die Bewegungsgeschwindigkeit v durch Berechnung der Kreuzkorrelationsfunktion zwischen den mit den Kraftmesssystemen (2) gemessenen Signalen ermittelt wird. 5. A method for measuring the speed of movement v moving electrically conductive substances using the Lorentz force with a device according to one of claims 1 to 4, characterized in that the magnetic systems (1) in the moving electrical substance (5) each have a spatially inhomogeneous magnetic field (4th ), the force measuring systems (2) simultaneously measuring one component of the Lorentz forces acting on the magnet systems (1) as a function of time and the movement speed v in the evaluation unit (3) by calculating the cross correlation function between the signals measured by the force measuring systems (2) is determined.
6. Verfahren nach Anspruch 5 dadurch gekennzeichnet, dass die Kraftmesssysteme (2) mehrere Komponenten der auf die Magnetsysteme (1) wirkenden Lorentzkräfte als Funktion der Zeit messen. 6. The method according to claim 5, characterized in that the force measuring systems (2) measure a plurality of components of the magnetic systems (1) acting Lorentz forces as a function of time.
7. Verfahren nach einem der Ansprüche 5 oder 6 dadurch gekennzeichnet, dass die Magnetsysteme (1) ein oszillierendes oder gepulstes Magnetfeld erzeugen. 7. The method according to any one of claims 5 or 6, characterized in that the magnetic systems (1) generate an oscillating or pulsed magnetic field.
8. Verfahren nach einem der Ansprüche 5 bis 7 mit einer Vorrichtung nach Anspruch 3 dadurch gekennzeichnet, dass die zur Bestimmung der Bewegungsgeschwindigkeit v dienenden räumlich inhomogenen Strömungsstrukturen mittels eines als magnetisches Hindernis ausgelegten Magnetsystems (1) erzeugt werden. 8. The method according to any one of claims 5 to 7 with a device according to claim 3, characterized in that serving to determine the speed of movement v spatially inhomogeneous flow structures by means of a designed as a magnetic obstacle magnet system (1) are generated.
PCT/EP2010/060727 2009-08-05 2010-07-23 Device and method for measuring the motion speed of moved electrically conducting substances WO2011015469A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10737550A EP2462413A1 (en) 2009-08-05 2010-07-23 Device and method for measuring the motion speed of moved electrically conducting substances

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009036703.9 2009-08-05
DE102009036703A DE102009036703A1 (en) 2009-08-05 2009-08-05 Apparatus and method for measuring the speed of movement of moving electrically conductive substances

Publications (1)

Publication Number Publication Date
WO2011015469A1 true WO2011015469A1 (en) 2011-02-10

Family

ID=42983982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/060727 WO2011015469A1 (en) 2009-08-05 2010-07-23 Device and method for measuring the motion speed of moved electrically conducting substances

Country Status (3)

Country Link
EP (1) EP2462413A1 (en)
DE (1) DE102009036703A1 (en)
WO (1) WO2011015469A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017005210A1 (en) 2017-05-30 2018-12-20 Technische Universität Ilmenau Device for determining parameters of an electrically conductive substance and associated method
CN109580981A (en) * 2018-11-27 2019-04-05 东南大学 Air velocity transducer based on flexible inductance-silicon substrate inductance structure
CN110007110A (en) * 2019-04-22 2019-07-12 中国科学院大学 Method and device based on electromagnetic induction principle measurement high temperature fluent metal flow velocity
CN110441546A (en) * 2019-09-04 2019-11-12 中国电建集团中南勘测设计研究院有限公司 A kind of discharge structure flow rate of water flow measuring device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011056650B4 (en) * 2011-12-20 2014-02-20 Technische Universität Ilmenau Method and arrangement for determining the electrical conductivity of a material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967500A (en) * 1975-05-29 1976-07-06 The United States Of America As Represented By The United States Energy Research And Development Administration Magnetic transit-time flowmeter
JPS57199917A (en) 1981-06-03 1982-12-08 Hitachi Ltd Electromagnetic flowmeter for liquid metal
DE3347190A1 (en) 1983-12-27 1985-07-04 INTERATOM GmbH, 5060 Bergisch Gladbach INDUCTIVE PROBE FLOW MEASURING SYSTEM
DE4316344A1 (en) 1993-05-15 1994-11-17 Amepa Eng Gmbh Flow measuring device
JPH07181195A (en) 1993-12-24 1995-07-21 Kobe Steel Ltd Electromagnetic flow velocity sensor for molten metal and flow velocity measuring apparatus as well as flow velocity measuring method using it
WO2000058695A1 (en) 1999-03-25 2000-10-05 Mpc Metal Process Control Ab Method and device for measuring a parameter of a metal bed
DE19922311C2 (en) 1999-05-14 2001-06-07 Rossendorf Forschzent Method and arrangement for determining spatial velocity distributions in electrically conductive liquids
WO2007033982A1 (en) 2005-09-21 2007-03-29 Technische Universität Ilmenau Method and arrangement for the contactless inspection of moving electrically conductive substances

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155812A (en) * 1980-05-02 1981-12-02 Power Reactor & Nuclear Fuel Dev Corp Monitoring method for flow state of fluidic metal
DE102007039435A1 (en) * 2006-12-15 2008-06-19 Prüftechnik Dieter Busch AG Apparatus and method for detecting particles in a flowing liquid

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967500A (en) * 1975-05-29 1976-07-06 The United States Of America As Represented By The United States Energy Research And Development Administration Magnetic transit-time flowmeter
JPS57199917A (en) 1981-06-03 1982-12-08 Hitachi Ltd Electromagnetic flowmeter for liquid metal
DE3347190A1 (en) 1983-12-27 1985-07-04 INTERATOM GmbH, 5060 Bergisch Gladbach INDUCTIVE PROBE FLOW MEASURING SYSTEM
DE4316344A1 (en) 1993-05-15 1994-11-17 Amepa Eng Gmbh Flow measuring device
US5426983A (en) * 1993-05-15 1995-06-27 Amepa Engineering Gmbh Flow meter
JPH07181195A (en) 1993-12-24 1995-07-21 Kobe Steel Ltd Electromagnetic flow velocity sensor for molten metal and flow velocity measuring apparatus as well as flow velocity measuring method using it
WO2000058695A1 (en) 1999-03-25 2000-10-05 Mpc Metal Process Control Ab Method and device for measuring a parameter of a metal bed
US6538433B1 (en) 1999-03-25 2003-03-25 Mpc Metal Process Control Ab Method and apparatus for non-contact measuring of metal bed parameters
DE19922311C2 (en) 1999-05-14 2001-06-07 Rossendorf Forschzent Method and arrangement for determining spatial velocity distributions in electrically conductive liquids
WO2007033982A1 (en) 2005-09-21 2007-03-29 Technische Universität Ilmenau Method and arrangement for the contactless inspection of moving electrically conductive substances

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DRUCKSCHRIFT A. THESS; E. VOTYAKOV; B. KNAEPEN; O. ZIKANOV: "Theory of the Lorentz Force Flowmeter", NEW J. PHYS., vol. 9, no. 299, 2007, pages 1 - 27
DRUCKSCHRIFT E. VOTYAKOV; Y. KOLESNIKOV; O. ANDREEV; E. ZIENICKE; A. THESS: "Structure of the wake of a magnetic obstacle", PHYS. REV. LETT, vol. 98, 2007, pages 144504
THESS A ET AL: "Lorentz force velocimetry", PHYSICAL REVIEW LETTERS, AMERICAN PHYSICAL SOCIETY, NEW YORK, US, vol. 96, no. 16, 28 April 2006 (2006-04-28), pages 164501/1 - 4, XP002414987, ISSN: 0031-9007, DOI: DOI:10.1103/PHYSREVLETT.96.164501 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017005210A1 (en) 2017-05-30 2018-12-20 Technische Universität Ilmenau Device for determining parameters of an electrically conductive substance and associated method
CN109580981A (en) * 2018-11-27 2019-04-05 东南大学 Air velocity transducer based on flexible inductance-silicon substrate inductance structure
CN109580981B (en) * 2018-11-27 2020-03-31 东南大学 Wind speed sensor based on flexible inductor-silicon-based inductor structure
CN110007110A (en) * 2019-04-22 2019-07-12 中国科学院大学 Method and device based on electromagnetic induction principle measurement high temperature fluent metal flow velocity
CN110441546A (en) * 2019-09-04 2019-11-12 中国电建集团中南勘测设计研究院有限公司 A kind of discharge structure flow rate of water flow measuring device and method

Also Published As

Publication number Publication date
DE102009036703A1 (en) 2011-02-17
EP2462413A1 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
DE102005046910B4 (en) Method and arrangement for non-contact inspection of moving electrically conductive substances
DE102007023840B4 (en) Thermal mass flow meter and method of operation
Meinhart et al. On the existence of uniform momentum zones in a turbulent boundary layer
WO2011015469A1 (en) Device and method for measuring the motion speed of moved electrically conducting substances
EP0046965B1 (en) Method and device for determining mass flow dynamically and independent of fluid density
EP2227677B1 (en) Measuring system for a medium flowing in a process line
Andreev et al. Corrected Article:“Experimental study of liquid metal channel flow under the influence of a nonuniform magnetic field”[Phys. Fluids 18, 065108 (2006)]
DE102006034296A1 (en) Measuring system for detecting measured variable, particularly mass flow, volume flow, flow rate, density, viscosity, has measuring sensor, with particularly straight measuring tube, which serves to guide medium which is to be measured
DE112016003356T5 (en) Graphical magnetic sensor based on graphene for nanometer scale fluid flow analysis
EP4078100B1 (en) Method of operating a magnetic inductive flowmeter
WO2012034874A2 (en) Method and device for determining the flow rate by means of oriented magnetic particles and use thereof
WO2016041723A1 (en) Magnetoinductive flowmeter having a four-coil magnetic system
WO2006136482A1 (en) Magnetically inductive flowmeter
EP3891475B1 (en) Magnetic inductive flowmeter
EP1249687A2 (en) Magnetic-inductive flow sensor and magnetic-inductive flow measuring method
WO2017012811A1 (en) Flowmeter based on the vortex flow measurement principle
DE102007053105B4 (en) Method and device for volume flow measurement of fluids in pipelines
DE102008055032A1 (en) Arrangement and method for multiphase flow measurement
DE102015008995B4 (en) Method and device for the non-invasive determination of the flow velocity, the volume flow or the electrical conductivity of a flowing fluid
EP1431716A1 (en) Electromagnetic flowmeter
DE102006018623B4 (en) Method and arrangement for contactless measurement of the flow of electrically conductive media
DE2636327A1 (en) NON-CONTACT PROBE FOR VERTEBRAL RELEASE FLOW METER
DE102011056650B4 (en) Method and arrangement for determining the electrical conductivity of a material
DE102014005430A1 (en) Method and device for contactless determination of the electrical conductivity of an electrically conductive substance
DE2605195C3 (en) Thermal probe for measuring the direction and the magnitude of the speed of a flowing medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10737550

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010737550

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010737550

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE