WO2011013492A1 - Brightness-improving film, composite polarizer, and liquid-crystal display device - Google Patents

Brightness-improving film, composite polarizer, and liquid-crystal display device Download PDF

Info

Publication number
WO2011013492A1
WO2011013492A1 PCT/JP2010/061557 JP2010061557W WO2011013492A1 WO 2011013492 A1 WO2011013492 A1 WO 2011013492A1 JP 2010061557 W JP2010061557 W JP 2010061557W WO 2011013492 A1 WO2011013492 A1 WO 2011013492A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
film
polarized light
resin layer
Prior art date
Application number
PCT/JP2010/061557
Other languages
French (fr)
Japanese (ja)
Inventor
昌和 齊藤
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2011524722A priority Critical patent/JPWO2011013492A1/en
Publication of WO2011013492A1 publication Critical patent/WO2011013492A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133543Cholesteric polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/12Biaxial compensators

Definitions

  • the present invention relates to a brightness enhancement film, a composite polarizing plate, and a liquid crystal display device.
  • a TN (Twisted Nematic) type liquid crystal display device usually includes a light source, a pair of polarizing plates, and a liquid crystal panel provided between the polarizing plates.
  • Various proposals for improving the performance of such a liquid crystal display device have been made.
  • techniques for providing an optical compensation film (retardation plate) between a liquid crystal panel and a polarizing plate have been proposed for the purpose of improving the viewing angle (Patent Documents 1 and 2).
  • FIG. 4 is a diagram schematically showing a display surface of a conventional liquid crystal display device.
  • the normal direction with respect to the display surface 9U ′ is a front direction A
  • a direction inclined by an angle ⁇ at a predetermined azimuth angle from the front direction A is an inclination direction B.
  • the image viewed when viewing the display surface 9U ′ from the tilt direction B appears to be colored more yellow than the image viewed when viewing the display surface 9U ′ from the front direction A. It was.
  • the display surface 9U ′ is a rectangle like many commercially available liquid crystal display devices
  • the display surface 9U ′ is viewed from an azimuth angle parallel to the long side direction X of the rectangle
  • the display surface 9U ′ was often colored yellow. Under the present circumstances, even if it was a case where it sees from the any inclination direction B parallel to the said long side direction X, it was colored yellow.
  • the present invention was devised in view of the above, and is a brightness enhancement film that can prevent a phenomenon that a liquid crystal display device is colored yellow when viewed from a tilt direction at a predetermined azimuth angle.
  • An object is to provide a polarizing plate and a liquid crystal display device.
  • the present inventors have intensively studied, and as a result, found that the coloring in the tilt direction B is remarkable in the liquid crystal display device provided with the optical compensation film. .
  • the brightness enhancement film combining the quarter wavelength plate having the predetermined Nz coefficient and the cholesteric resin layer is blue in a direction inclined with respect to the normal direction of the light exit surface at a predetermined azimuth angle. It has been found that there is a tendency to emit colored light. Therefore, the knowledge that the coloration of the liquid crystal display device can be eliminated by combining the liquid crystal display device provided with the optical compensation film and the brightness enhancement film so that both colors are weakened each other.
  • the present invention was completed. That is, the gist of the present invention is the following [1] to [4].
  • a cholesteric resin layer that emits left-handed circularly polarized light that becomes narrower as the spiral pitch of molecules in the thickness direction approaches the light-emitting surface, and Nz ⁇ 0.9 (where Nz (nx ⁇ nz) / (nx Where nx represents the refractive index in the slow axis direction in the plane, ny represents the refractive index in the direction perpendicular to the slow axis in the plane, and nz represents the thickness direction in the thickness direction.
  • a brightness enhancement film comprising a quarter-wave plate satisfying a refractive index.
  • the cholesteric resin layer that emits left circularly polarized light that becomes narrower as the spiral pitch of molecules in the thickness direction approaches the light emitting side, and receives the left circularly polarized light emitted from the cholesteric resin layer and emits linearly polarized light, Nz ⁇ 0.9 (where Nz (nx ⁇ nz) / (nx ⁇ ny), where nx represents the refractive index in the slow axis direction in the plane, and ny represents the slow index in the plane.
  • a composite polarizing plate comprising a dichroic absorption polarizing plate having a transmission axis direction and an optical compensation film in this order.
  • Nz (nx ⁇ nz) / (nx ⁇ ny), where nx represents the refractive index in the slow axis direction in the plane, and ny represents the slow index in the plane.
  • a liquid crystal display device comprising a dichroic absorption polarizing plate having a transmission axis direction, an optical compensation film, and a TN liquid crystal panel in this order.
  • the composite polarizing plate, and the liquid crystal display device of the present invention it is possible to prevent a phenomenon that the liquid crystal display device appears to be colored yellow when viewed from a tilt direction at a predetermined azimuth angle.
  • FIG. 1 is an exploded vertical cross-sectional view schematically showing a cross section of the liquid crystal display device according to one embodiment of the present invention, taken along a plane perpendicular to the longitudinal direction of the linear light source.
  • FIG. 2 is an exploded view of a liquid crystal display device according to an embodiment of the present invention.
  • the cholesteric liquid crystal layer, a quarter-wave plate, a pair of dichroic absorption polarizing plates, an optical compensation film, and a liquid crystal panel It is a disassembled perspective view which shows typically a mode seen from.
  • FIG. 1 is an exploded vertical cross-sectional view schematically showing a cross section of the liquid crystal display device according to one embodiment of the present invention, taken along a plane perpendicular to the longitudinal direction of the linear light source.
  • FIG. 2 is an exploded view of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 3 shows a cholesteric liquid crystal layer obtained by disassembling a liquid crystal display device configured in the same manner as the liquid crystal display device according to an embodiment of the present invention except that the Nz coefficient of the quarter wave plate is less than 0.9.
  • FIG. 2 is an exploded perspective view schematically showing a state in which a quarter-wave plate, a pair of dichroic absorption polarizing plates, an optical compensation film, and a liquid crystal panel are viewed obliquely from above.
  • FIG. 4 is a diagram schematically showing a display surface of a conventional liquid crystal display device.
  • FIG. 1 is an exploded vertical cross-sectional view schematically showing a cross section of the liquid crystal display device according to one embodiment of the present invention, taken along a plane perpendicular to the longitudinal direction of the linear light source.
  • FIG. 2 is an exploded view of a liquid crystal display device according to an embodiment of the present invention.
  • the cholesteric liquid crystal layer, a quarter-wave plate, a pair of dichroic absorption polarizing plates, an optical compensation film, and a liquid crystal panel It is a disassembled perspective view which shows typically a mode seen from.
  • the liquid crystal display device 100 includes a light source 1 that is a linear light source and a reflector 2 that reflects light from the light source 1.
  • the liquid crystal display device 100 includes a composite polarizing plate 6 including a brightness enhancement film 3, a dichroic absorption polarizing plate 4 and an optical compensation film 5, a liquid crystal panel 7, an optical compensation film 8, and a dichroic absorption type.
  • a polarizing plate 9 is provided in this order from the side closer to the light source 1.
  • the brightness enhancement film 3 includes a cholesteric liquid crystal layer 31 and a quarter wavelength plate 32 in this order from the side closer to the light source 1.
  • an observer visually recognizes light emitted from the dichroic absorption polarizing plate 9 to the outside. It functions as a display surface 9U.
  • the liquid crystal display device 100 will be described in a state where the display surface 9U is placed horizontally upward. Therefore, the “upper” side of each layer represents the side closer to the display surface 9U, the “lower” side represents the side farther from the display surface 9U, and the “horizontal” direction represents a direction parallel to the display surface 9U. . Further, the direction of the component is “parallel” may include an error within a range that does not impair the effect of the present invention, for example, within a range of ⁇ 5 °. Furthermore, in this embodiment, as shown in FIG. 2, the display surface 9U is formed in a rectangular shape, and the long side direction X of the rectangular shape coincides with the horizontal direction in FIGS.
  • the light source 1 is a linear light source having an elongated shape.
  • the light source 1 is supported by an appropriate support member (not shown) so as to be separated from other members such as the reflector 2 and the brightness enhancement film 3.
  • the reflector 2 is a member that reflects and diffuses incident light.
  • this reflecting plate 2 for example, a known white reflecting sheet or the like can be used.
  • the brightness enhancement film 3 is an optical member including a cholesteric resin layer 31 and a quarter wavelength plate 32.
  • the brightness enhancement film 3 has a function of transmitting predetermined polarized light out of incident light and reflecting other polarized light.
  • the brightness enhancement film 3 emits a part of incident light to the dichroic absorption polarizing plate 4 as polarized light necessary for image display, and reflects the other light.
  • the polarized light reflected by the brightness enhancement film 3 is diffused and reflected again by other members such as the reflector 2, and at least a part of the polarized light is incident on the brightness enhancement film 3 again after changing the polarization state. Yes.
  • the brightness enhancement film 3 between the light source 1 and the dichroic absorption polarizing plate 4 a large amount of polarized light necessary for image display can be supplied. As a result, the brightness of the liquid crystal display device 100 can be increased. Further improvement is possible.
  • the cholesteric resin layer 31 provided on the brightness enhancement film 3 is a circularly polarized light separating element that emits left circularly polarized light out of the incident light component to the quarter-wave plate 32 and reflects other polarized light. Therefore, in the brightness enhancement film 3 according to the present embodiment, only the left circularly polarized light is selectively transmitted in the cholesteric resin layer 31 and the other polarized light is reflected.
  • the left circularly polarized light means that the electric field vector of light is seen in the light traveling direction as shown by an arrow A 31 in FIG. 2 (here, the light source 1 is the back, and upwards toward the display surface 9U). (See) This refers to circularly polarized light that is clockwise.
  • the helical pitch of molecules in the thickness direction becomes narrower as it approaches the light emission side. That is, the spiral pitch of the molecules constituting the cholesteric resin layer 31 is wider as it is closer to the light source 1, and is narrower as it is closer to the display surface 9U. Thereby, the cholesteric resin layer 31 can function as a circularly polarized light separating element in a wide wavelength range.
  • the quarter-wave plate 32 is an optical element that receives the left circularly polarized light emitted from the cholesteric resin layer 31 and converts it into linearly polarized light. Therefore, the left circularly polarized light transmitted through the cholesteric resin layer 31 is converted into linearly polarized light by the quarter wavelength plate 32, and is converted from the upper surface (light emitting surface) 32U of the quarter wavelength plate 32 as linearly polarized light necessary for image display. Light is emitted to the chromatic absorption polarizing plate 4.
  • the slow axis direction A 32 of the quarter-wave plate 32 of the present embodiment is parallel to the long side direction X of the rectangle of the display surface 9U.
  • the polarization direction Y of the linearly polarized light emitted from the quarter-wave plate 32 is parallel to the direction rotated 45 ° clockwise as viewed upward from the slow axis direction A 32 of the quarter-wave plate 32. It is supposed to be.
  • the quarter wavelength plate 32 of this embodiment has an Nz coefficient of 0.9 or more, and is usually 0.9 to 5.5, preferably 0.9 to 4.5, more preferably 0.95 to 2.5.
  • nx represents the refractive index in the slow axis direction in the plane of the quarter wavelength plate 32
  • ny represents the refractive index in the direction perpendicular to the slow axis in the plane of the quarter wavelength plate 32
  • nz represents the refractive index in the thickness direction of the quarter-wave plate 32.
  • the 1 ⁇ 4 wavelength plate 32 out of the polarized light emitted in the direction inclined with respect to the normal direction of the upper surface 32U of the 1 ⁇ 4 wavelength plate 32. to Idemitsu parallel azimuthal direction as a 32 of the slow axis of the polarization L32, it can be colored blue.
  • the quarter-wave plate 32 responds to the light transmitted obliquely through the cholesteric resin layer 31 in the slow axis direction. This is presumably because blue light can be efficiently converted into linearly polarized light.
  • Dichroic absorptive polarizer 4 is transmitted through the predetermined transmission axis direction A 4 a linearly polarized light of a polarization direction parallel, a polarizer that absorbs other polarization.
  • the dichroic absorption polarizing plate 4 has a transmission axis direction A 4 parallel to the polarization direction Y of linearly polarized light emitted from the quarter-wave plate 32.
  • the dichroic absorption type polarizing plate 4 has a transmission axis direction A parallel to a direction rotated clockwise by 45 ° from the slow axis direction A 32 of the quarter wavelength plate 32 when viewed upward. 4 .
  • the linearly polarized light emitted from the quarter wavelength plate 32 passes through the dichroic absorption polarizing plate 4 and is emitted to the optical compensation film 5.
  • the optical compensation film 5 is an optical element having a function of widening the viewing angle on the display surface 9U.
  • the linearly polarized light emitted from the dichroic absorption type polarizing plate 4 is given a predetermined phase difference (also referred to as retardation) by the optical compensation film 5 and is emitted to the liquid crystal panel 7.
  • the liquid crystal panel 7 of the present embodiment is a TN type liquid crystal panel, and is an optical element that rotates polarized light emitted from the optical compensation film 5 in accordance with an applied voltage. The light transmitted through the liquid crystal panel 7 is emitted to the optical compensation film 8.
  • the optical compensation film 8 is an optical element having a function of widening the viewing angle on the display surface 9U, like the optical compensation film 5.
  • the linearly polarized light emitted from the liquid crystal panel 7 is given a predetermined phase difference by the optical compensation film 8 and is emitted to the dichroic absorption polarizing plate 9.
  • Dichroic absorptive polarizer 9 similarly to the dichroic absorptive polarizer 4, is transmitted through the predetermined transmission axis direction A 9 a linearly polarized light of a polarization direction parallel polarizer that absorbs other polarization It is.
  • the dichroic absorption polarizing plate 9 has the transmission axis direction A 9 in a direction orthogonal to the transmission axis direction A 4 of the dichroic absorption polarizing plate 4.
  • the light rotated by the liquid crystal panel 7 is transmitted through the dichroic absorption polarizing plate 9 and emitted from the display surface 9U, but the light not rotated is absorbed by the dichroic absorption polarizing plate 9. It is like that.
  • the liquid crystal display device 100 of the present embodiment is configured as described above, light emitted from the light source 1 passes through the dichroic absorption polarizing plate 9 according to the voltage applied to the liquid crystal panel 7. An image or the like is displayed on the display surface 9U by being absorbed by the dichroic absorption type polarizing plate 9. At this time, the function of the brightness enhancement film 3 can increase the brightness of the light emitted from the display surface 9U.
  • FIG. 3 shows a disassembled liquid crystal display device having the same configuration as that of the liquid crystal display device of the present embodiment except that the Nz coefficient of the quarter-wave plate 32 ′ is less than 0.9.
  • FIG. 4 is an exploded perspective view schematically showing a quarter-wave plate, a pair of dichroic absorption polarizing plates, an optical compensation film, and a liquid crystal panel as viewed obliquely from above.
  • the same elements as those in FIG. 2 are denoted by the same reference numerals.
  • the display surface 9U ′ is viewed from a direction inclined with respect to the front direction (normal direction) of the display surface 9U ′ at an azimuth angle parallel to the long-side direction X of the display surface 9U ′.
  • the display surface 9U ′ was colored yellow. This is considered because the yellow component contained in the light L9 emitted from the display surface 9U ′ in a direction inclined with respect to the front direction of the display surface 9U ′ at an azimuth angle parallel to the long side direction X is strong.
  • FIG. 1 shows that the yellow component contained in the light L9 emitted from the display surface 9U ′ in a direction inclined with respect to the front direction of the display surface 9U ′ at an azimuth angle parallel to the long side direction X.
  • light is emitted from the upper surface 32U in a direction inclined with respect to the normal direction of the upper surface 32U of the quarter-wave plate 32 at an azimuth angle parallel to the long side direction X.
  • the blue component contained in the light L32 can be strengthened. Therefore, in the liquid crystal display device 100 of the present embodiment, the light whose blue component is strengthened and the light whose yellow component is strong are mixed and emitted from the display surface 9U. It is possible to prevent a phenomenon in which the display surface 9U appears to be colored yellow.
  • the brightness enhancement film, composite polarizing plate and liquid crystal display device of the present invention may be further modified.
  • the optical axis of each optical element may be set in a different direction from the above embodiment.
  • the brightness enhancement film of the present invention has a tendency to emit blue light in the direction of the slow axis of the quarter-wave plate, it is applied when this brightness enhancement film is applied to a liquid crystal display device.
  • the azimuth angle direction in which the liquid crystal display device emits yellow light from the display surface is parallel to the slow axis direction of the quarter wavelength plate of the brightness enhancement film. Thereby, yellow coloring of a liquid crystal display device can be stably prevented by the brightness enhancement film of the present invention.
  • a point light source may be used as the light source, or a point light source and a line light source may be used in combination.
  • components such as a cholesteric liquid crystal layer 31, a quarter wave plate 32, a dichroic absorption polarizing plate 4, an optical compensation film 5, a liquid crystal panel 7, an optical compensation film 8, and a dichroic absorption polarizing plate 9 May be integrated in any combination. In that case, you may adhere
  • the brightness enhancement film, the composite polarizing plate, and the liquid crystal display device can each further include other components in addition to those described above.
  • an optical element for improving luminance and luminance uniformity may be appropriately arranged. Examples of such an optical element include a light guide plate, a light diffusion plate, a prism sheet, and a light diffusion sheet.
  • a protective film may be provided on each optical element in order to protect each optical element.
  • a housing for configuring the liquid crystal display device, a power supply device, and the like can be provided as appropriate.
  • each component Next, a preferable example of each component in the liquid crystal display device of the present invention will be described more specifically.
  • the cholesteric resin layer has molecular axes aligned in a certain direction on one plane, but the molecular axis direction is slightly shifted on the next plane, and further on the next plane It has a structure in which the angle of the molecular axis is shifted (twisted) as it moves on a plane in which molecules are arranged in a certain direction.
  • the structure in which the direction of the molecular axis is twisted becomes an optically chiral structure.
  • numerator is a molecule
  • the cholesteric resin layer has a circularly polarized light separation function. That is, it has a function of reflecting left-handed or right-handed circularly polarized light in a specific wavelength region and transmitting other circularly-polarized light.
  • a material that emits left-handed circularly polarized light with respect to the quarter-wave plate is used.
  • a cholesteric resin layer that exhibits this circularly polarized light separation function over the entire wavelength region of visible light is preferable.
  • a cholesteric resin layer having a circularly polarized light separation function with respect to light in a wavelength region of 400 nm to 750 nm is preferable.
  • a cholesteric resin layer having a circularly polarized light separation function for light in any wavelength region of blue (wavelength 410 to 470 nm), green (wavelength 520 to 580 nm), and red (wavelength 600 to 660 nm) is preferable.
  • the wavelength that exhibits the circularly polarized light separation function depends on the helical pitch of the chiral structure in the cholesteric resin layer.
  • the spiral pitch of the chiral structure is the distance in the plane normal direction until the molecular axis direction gradually shifts in the chiral structure as it advances along the plane and then returns to the original molecular axis direction again. .
  • the spiral pitch of the chiral structure is made narrower as it approaches the light-emitting side surface in the thickness direction of the cholesteric resin layer.
  • the cholesteric resin layer is preferably a non-liquid crystalline resin layer. This is because the non-liquid crystalline resin layer does not change the cholesteric regularity due to the ambient temperature or electric field.
  • the non-liquid crystalline cholesteric resin layer can be obtained, for example, by aligning the compound in a cholesteric liquid crystal phase and then polymerizing it in a composition layer containing a liquid crystalline and polymerizable compound.
  • Suitable cholesteric resin layers include, for example, (i) a cholesteric resin layer in which the helical pitch of the chiral structure is changed stepwise, and (ii) a continuous change in the helical pitch of the chiral structure.
  • a cholesteric resin layer etc. are mentioned.
  • a cholesteric resin layer in which the spiral pitch of the chiral structure is changed stepwise includes, for example, a cholesteric resin layer having a spiral pitch of a chiral structure that exhibits a circularly polarized light separation function with light in a blue wavelength region, and a green wavelength
  • a cholesteric resin layer having a chiral helical spiral pitch that exhibits a circularly polarized light separating function with light in the wavelength range and a cholesteric resin layer having a chiral helical spiral pitch that exhibits a circularly polarized light separating function with light in the red wavelength range Can be obtained.
  • cholesteric resin layers having center wavelengths of 470 nm, 550 nm, 640 nm, and 770 nm of the circularly polarized light to be reflected are respectively produced, and these cholesteric resin layers are arbitrarily selected, and the order of the central wavelengths of the reflected light is 3 to It can be obtained by laminating seven layers.
  • the rotation directions of the circularly polarized light reflected by the respective cholesteric resin layers are the same.
  • the stacking order of the cholesteric resin layers having different spiral pitch sizes in the chiral structure is set in the ascending or descending order according to the spiral pitch size of the chiral structure, thereby obtaining a liquid crystal display device having a wide viewing angle. Therefore, it is preferable.
  • the lamination of these cholesteric resin layers may be merely overlaid, or may be fixed via an adhesive or an adhesive.
  • the cholesteric resin layer in which the spiral pitch of the chiral structure is continuously changed is not particularly limited by the manufacturing method.
  • a cholesteric liquid crystal composition containing a polymerizable liquid crystal compound for forming a cholesteric resin layer is preferably applied on another layer such as an alignment film to form a liquid crystal layer. And then a method of curing the liquid crystal layer by light irradiation and / or heating treatment at least once.
  • Preferable embodiments of the cholesteric liquid crystal composition include a cholesteric liquid crystal composition (X) described in detail below.
  • the material referred to as a liquid crystal composition here for convenience includes not only a mixture of two or more substances but also a material made of a single substance.
  • the cholesteric liquid crystal composition (X) contains a compound represented by the following general formula (1) and a specific rod-like liquid crystal compound. Each of these components will be described in turn.
  • R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 20 carbon atoms, or a linear or branched group having 1 to 20 carbon atoms.
  • (meth) acryl means acryl and methacryl.
  • the alkyl group and alkylene oxide group may not be substituted and may be substituted with one or more halogen atoms. Furthermore, when two or more substituents are present in each of the alkyl group and the alkylene oxide group, they may be the same or different.
  • the halogen atom, hydroxyl group, carboxyl group, (meth) acryl group, epoxy group, mercapto group, isocyanate group, amino group, and cyano group may be an alkyl group having 1 to 2 carbon atoms and / or an alkylene oxide. It may be bonded to a group.
  • R 1 and R 2 include a halogen atom, a hydroxyl group, a carboxyl group, a (meth) acryl group, an epoxy group, a mercapto group, an isocyanate group, an amino group, and a cyano group.
  • At least one of R 1 and R 2 is preferably a reactive group.
  • a reactive group as R 1 and / or R 2 , the compound represented by the general formula (1) is fixed in the liquid crystal layer at the time of curing, and a stronger film can be formed.
  • the reactive group include a carboxyl group, a (meth) acryl group, an epoxy group, a mercapto group, an isocyanate group, and an amino group.
  • a 1 and A 2 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, 4,4′-biphenylene group, 4 , 4′-bicyclohexylene group and a group selected from the group consisting of 2,6-naphthylene group.
  • the 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, 4,4′-biphenylene group, 4,4′-bicyclohexylene group, and 2,6-naphthylene group are May be unsubstituted, substituted with one or more substituents such as a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, and a halogenated alkyl group. May be. Furthermore, when two or more substituents are present in each of A 1 and A 2 , they may be the same or different.
  • a 1 and A 2 include a 1,4-phenylene group, a 4,4′-biphenylene group, and a 2,6-naphthylene group.
  • aromatic ring skeletons are relatively rigid as compared with the alicyclic skeletons, have high affinity with the mesogens of rod-like liquid crystalline compounds described later, and have higher alignment uniformity.
  • Particularly preferable examples of Z include a single bond, —OCO—, and —CH ⁇ N—N ⁇ CH—.
  • At least one of the compounds represented by the general formula (1) preferably has liquid crystallinity, and preferably has chirality.
  • the cholesteric liquid crystal composition (X) preferably contains a mixture of a plurality of optical isomers as the compound represented by the general formula (1). For example, a mixture of plural kinds of enantiomers and / or diastereomers can be contained.
  • At least one of the compounds represented by the general formula (1) preferably has a melting point in the range of 50 ° C to 150 ° C.
  • the intrinsic birefringence value ⁇ n is preferably high.
  • a high ⁇ n liquid crystal that is, a liquid crystal compound having a high ⁇ n
  • ⁇ n as the cholesteric liquid crystal composition (X) can be improved, and a broadband circularly polarized light separating element can be produced.
  • At least one ⁇ n of the compound represented by the general formula (1) is preferably 0.18 or more, more preferably 0.22 or more.
  • particularly preferable compounds represented by the general formula (1) include the following compounds (A1) to (A9).
  • “*” represents a chiral center.
  • examples of the rod-like liquid crystalline compound that the cholesteric liquid crystal composition (X) has include a compound represented by the general formula (2).
  • R 3 and R 4 are reactive groups, each independently (meth) acrylic group, (thio) epoxy group, oxetane group, thietanyl group, aziridinyl group, pyrrole group, vinyl group. , An allyl group, a fumarate group, a cinnamoyl group, an oxazoline group, a mercapto group, an iso (thio) cyanate group, an amino group, a hydroxyl group, a carboxyl group, and an alkoxysilyl group.
  • (thio) epoxy means epoxy and thioepoxy
  • iso (thio) cyanate means isocyanate and isothiocyanate.
  • D 3 and D 4 each independently represent a divalent saturated carbonization such as a single bond, a linear or branched methylene group having 1 to 20 carbon atoms, and an alkylene group. And a group selected from the group consisting of a hydrogen group and a linear or branched alkylene oxide group having 1 to 20 carbon atoms.
  • M represents a mesogenic group.
  • M include azomethines, azoxys, phenyls, biphenyls, terphenyls, naphthalenes, anthracenes, benzoic acid esters, cyclohexanecarboxylic acid, which may be unsubstituted or have a substituent.
  • Examples of the substituent that the mesogenic group M may have include a halogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, a cyano group, a nitro group, —O—R 5 , — O—C ( ⁇ O) —R 5 , —C ( ⁇ O) —O—R 5 , —O—C ( ⁇ O) —O—R 5 , —NR 5 —C ( ⁇ O) —R 5 , —C ( ⁇ O) —NR 5 R 6 or —O—C ( ⁇ O) —NR 5 R 6 is represented.
  • R 5 and R 6 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group includes —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C. ( ⁇ O) —O—, —NR 7 —C ( ⁇ O) —, —C ( ⁇ O) —NR 7 —, —NR 7 —, or —C ( ⁇ O) — may be present. (However, the case where two or more of —O— and —S— are adjacent to each other is excluded).
  • R 7 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Examples of the substituent in the “optionally substituted alkyl group having 1 to 10 carbon atoms” include a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, and 1 to 6 carbon atoms.
  • Examples thereof include an oxy group and an alkoxycarbonyloxy group having 2 to 7 carbon atoms.
  • the rod-like liquid crystal compound preferably has an asymmetric structure.
  • the asymmetric structure is a structure in which R 3 -C 3 -D 3 -C 5 -and -C 6 -D 4 -C 4 -R 4 are different from each other in the general formula (2) with the mesogenic group M as the center. That means.
  • alignment uniformity can be further improved.
  • the ⁇ n value of the rod-like liquid crystalline compound is usually 0.18 or more, preferably 0.22 or more.
  • the absorption edge on the long wavelength side of the ultraviolet absorption spectrum may extend to the visible range, but it is desirable even if the absorption edge of the spectrum extends to the visible range. It can be used as long as the optical performance is not adversely affected.
  • a circularly polarized light separating element having high optical performance for example, circularly polarized light separation characteristics
  • the rod-like liquid crystalline compound preferably has at least two reactive groups in one molecule.
  • reactive groups include epoxy groups, thioepoxy groups, oxetane groups, thietanyl groups, aziridinyl groups, pyrrole groups, fumarate groups, cinnamoyl groups, isocyanate groups, isothiocyanate groups, amino groups, hydroxyl groups, carboxyl groups, alkoxysilyls.
  • the rod-like liquid crystalline compound may have one type of reactive group or two or more types of reactive groups in combination at any ratio.
  • a stable cured product can be obtained when the cholesteric liquid crystal composition (X) is cured.
  • a compound having one or less reactive group in one molecule when used, when the cholesteric liquid crystal composition is cured, a crosslinked cured product cannot be obtained, so that a film strength that can withstand practical use cannot be obtained.
  • a cross-linking agent described later is used, the film strength tends to be insufficient and practical use tends to be difficult.
  • the film strength that can withstand practical use is HB or more, preferably H or more, in terms of pencil hardness (JIS K5400). If the film strength is lower than HB, the film is easily scratched and lacks handling properties.
  • the upper limit of preferable pencil hardness is not particularly limited as long as it does not adversely affect the optical performance and durability test.
  • the weight ratio of (total weight of the compound represented by the general formula (1)) / (total weight of the rod-like liquid crystal compound) is preferably 0.05 or more. 1 or more is more preferable, 0.15 or more is particularly preferable, 1 or less is preferable, 0.65 or less is more preferable, and 0.45 or less is particularly preferable. If the weight ratio is too small, the alignment uniformity may be insufficient. On the other hand, if the weight ratio is too large, the alignment uniformity decreases, the stability of the liquid crystal phase decreases, or ⁇ n as a liquid crystal composition is low. In some cases, the desired optical performance (for example, circularly polarized light separation characteristics) cannot be obtained.
  • the total weight indicates the weight when one kind is used, and indicates the total weight when two or more kinds are used.
  • the molecular weight of the compound represented by the general formula (1) is preferably less than 600, and the molecular weight of the rod-like liquid crystalline compound is preferably 600 or more.
  • the molecular weight of the compound represented by the general formula (1) is less than 600, the rod-like liquid crystalline compound having a molecular weight larger than that can enter the gap, and the alignment uniformity can be improved.
  • the cholesteric liquid crystal composition such as the cholesteric liquid crystal composition (X) can optionally contain a crosslinking agent in order to improve the film strength after curing and the durability.
  • a crosslinking agent As the cross-linking agent, the liquid crystal layer coated with the liquid crystal composition reacts simultaneously when cured, or heat treatment is performed after curing to accelerate the reaction, or the reaction proceeds spontaneously due to moisture. Those that can increase the density and do not deteriorate the alignment uniformity can be appropriately selected and used.
  • fever, moisture etc. can be used conveniently as a crosslinking agent, for example.
  • crosslinking agent examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 2- (2-vinyloxyethoxy).
  • Polyfunctional acrylate compounds such as ethyl acrylate; Epoxy compounds such as glycidyl (meth) acrylate, ethylene glycol diglycidyl ether, glycerin triglycidyl ether, pentaerythritol tetraglycidyl ether; 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane, trimethylolpropane-tri- ⁇ -aziridinyl Aziridine compounds such as pionate; isocyanate compounds such as isocyanurate type isocyanate, biuret type isocyanate and adduct type isocyanate derived from hexamethylene diisocyanate, hexamethylene diisocyanate; polyoxazoline compound having an oxazoline group in the side chain; vinyltrimethoxysilane; N
  • the blending ratio of the crosslinking agent is preferably such that the concentration of the crosslinking agent in the cured film obtained by curing the cholesteric liquid crystal composition is 0.1 to 15% by weight. If the blending ratio of the crosslinking agent is less than 0.1% by weight, the effect of improving the crosslinking density may not be obtained. Conversely, if it exceeds 15% by weight, the stability of the liquid crystal layer may be lowered.
  • the cholesteric liquid crystal composition can optionally contain a photopolymerization initiator (also referred to as a photoinitiator).
  • a photopolymerization initiator for example, a known compound that generates radicals or acids by ultraviolet rays or visible rays can be used.
  • benzoin benzylmethyl ketal
  • benzophenone biacetyl
  • acetophenone Michler's ketone
  • benzyl benzylisobutyl ether
  • tetramethylthiuram mono (di) sulfide 2,2-azobisisobutyronitrile
  • 2,2- Azobis-2,4-dimethylvaleronitrile benzoyl peroxide, di-tert-butyl peroxide, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- ( 4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-diethylthioxanthone, methylbenzoylformate, 2,2- Ethoxyacetophenone, ⁇ -ionone, ⁇
  • one type of photopolymerization initiator may be used, or two or more types may be used in combination at any ratio.
  • the curability can be controlled by using a known photosensitizer or a tertiary amine compound as a polymerization accelerator in combination.
  • the blending ratio of the photopolymerization initiator is preferably 0.03 to 7% by weight in the cholesteric liquid crystal composition.
  • the blending amount of the photopolymerization initiator is less than 0.03% by weight, the degree of polymerization is lowered and the film strength may be lowered.
  • the content is more than 7% by weight, the liquid crystal phase may become unstable because the alignment of the liquid crystal is inhibited.
  • the cholesteric liquid crystal composition can optionally contain a surfactant.
  • a surfactant those not inhibiting the orientation can be appropriately selected and used.
  • the nonionic surfactant etc. which contain a siloxane and a fluorinated alkyl group in a hydrophobic group part can be used conveniently.
  • oligomers having two or more hydrophobic group moieties in one molecule are particularly suitable.
  • surfactants examples include PF-151N, PF-636, PF-6320, PF-656, PF-6520, PF-3320, PF-651, and PF-652 from PolyFox, OMNOVA; FTX-209F, FTX-208G, FTX-204D, and KH-40 manufactured by Seimi Chemical Co., Ltd. can be used.
  • 1 type of surfactant may be used and it may use it combining 2 or more types by arbitrary ratios.
  • the mixing ratio of the surfactant is preferably such that the concentration of the surfactant in the cured film obtained by curing the cholesteric liquid crystal composition is 0.05% by weight to 3% by weight.
  • the blending ratio of the surfactant is less than 0.05% by weight, the alignment regulating force at the air interface is lowered and alignment defects may occur.
  • the content is more than 3% by weight, an excessive surfactant may enter between the liquid crystal molecules, thereby reducing the alignment uniformity.
  • the cholesteric liquid crystal composition can optionally contain a chiral agent.
  • the chiral agent include JP-A-2005-289881, JP-A-2004-115414, JP-A-2003-66214, JP-A-2003-313187, JP-A-2003-342219, It is possible to appropriately use those described in Kaikai 2000-290315, JP-A-6-072962, U.S. Pat. No. 6,468,444, International Publication No. 98/00428, JP-A-2007-176870, and the like. it can. Specific examples thereof include, for example, LC756, a PASF color produced by BASF. Note that one type of chiral agent may be used, or two or more types may be used in combination at any ratio.
  • the concentration of the chiral agent should be in a range that does not deteriorate the desired optical performance.
  • a specific content of the chiral agent is usually 1% by weight to 60% by weight in the cholesteric liquid crystal composition.
  • the cholesteric liquid crystal composition can further contain other optional components as necessary.
  • the other optional components include a solvent, a polymerization inhibitor for improving pot life, an antioxidant for improving durability, an ultraviolet absorber, and a light stabilizer.
  • these arbitrary components may use one type and may use it combining two or more types by arbitrary ratios. These optional components can be contained in a range that does not deteriorate the desired optical performance.
  • a cholesteric liquid crystal composition such as the cholesteric liquid crystal composition (X) is applied onto another layer such as an alignment film to obtain a liquid crystal layer, and then the liquid crystal is subjected to light irradiation and / or heating treatment at least once.
  • a cholesteric resin layer can be obtained by curing the layer.
  • the application may be performed by a known method such as an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, or a bar coating method.
  • an alignment treatment is performed as necessary.
  • the alignment treatment may be performed, for example, by heating the liquid crystal layer at 50 to 150 ° C. for 0.5 to 10 minutes. By performing the alignment treatment, the liquid crystal layer can be aligned well.
  • the curing step can be performed by one or more times of light irradiation, heating treatment, or a combination thereof.
  • the heating condition is, for example, a temperature of usually 40 ° C. or higher, preferably 50 ° C. or higher, usually 200 ° C. or lower, preferably 140 ° C. or lower, usually 1 second or longer, preferably 5 seconds or longer, usually 3 minutes or shorter, preferably Is performed in 120 seconds or less.
  • the light used for the light irradiation includes not only visible light but also ultraviolet rays and other electromagnetic waves.
  • the light irradiation may be performed, for example, by irradiating light having a wavelength of 200 to 500 nm for 0.01 second to 3 minutes.
  • a circularly polarized light separating element having a wide reflection band by alternately repeating weak ultraviolet irradiation of 0.01 to 50 mJ / cm 2 and heating a plurality of times.
  • a relatively strong ultraviolet ray of, for example, 50 to 10,000 mJ / cm 2 is irradiated to completely polymerize the liquid crystalline compound to form a cholesteric resin layer.
  • the expansion of the reflection band and the irradiation with strong ultraviolet rays may be performed in the air, or a part or all of the process may be performed in an atmosphere in which the oxygen concentration is controlled (for example, in a nitrogen atmosphere). .
  • the step of applying and curing the cholesteric liquid crystal composition on the other layers such as the alignment film is not limited to one time, and two or more cholesteric resin layers can be formed by repeating the application and curing a plurality of times. .
  • two or more cholesteric resin layers can be formed by repeating the application and curing a plurality of times.
  • the dry film thickness of the cholesteric resin layer is preferably 3.0 ⁇ m or more, more preferably 3.5 ⁇ m or more, preferably 10.0 ⁇ m or less, more preferably 8 ⁇ m or less.
  • the dry film thickness of the cholesteric resin layer is less than 3.0 ⁇ m, the reflectance tends to decrease.
  • the said dry film thickness points out the sum total of the film thickness of each layer, when a cholesteric resin layer is two or more layers, and points out the film thickness when a cholesteric resin layer is one layer.
  • the cholesteric resin layer may be provided with a transparent resin base material as a support.
  • a transparent resin substrate for example, a substrate having a thickness of 1 mm and a total light transmittance of 80% or more can be used.
  • Specific examples include alicyclic olefin polymers, chain olefin polymers such as polyethylene and polypropylene, triacetyl cellulose, polyvinyl alcohol, polyimide, polyarylate, polyester, polycarbonate, polysulfone, polyethersulfone, modified acrylic polymer, epoxy resin. , A single layered or laminated film made of a synthetic resin such as polystyrene or acrylic resin.
  • those made of an alicyclic olefin polymer or a chain olefin polymer are preferable, and those made of an alicyclic olefin polymer are particularly preferable from the viewpoints of transparency, low hygroscopicity, dimensional stability, lightness, and the like.
  • the material of a transparent resin base material may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
  • An alignment film can be provided on the transparent resin substrate.
  • the cholesteric liquid crystal composition applied thereon can be aligned in a desired direction.
  • the alignment film is subjected to a corona discharge treatment or the like on the surface of the transparent resin substrate, if necessary, and then a solution obtained by dissolving the alignment film material in water or a solvent, for example, reverse gravure coating, direct gravure coating, It can form by apply
  • the material of the alignment film examples include cellulose, silane coupling agent, polyimide, polyamide, polyvinyl alcohol, epoxy acrylate, silanol oligomer, polyacrylonitrile, phenol resin, polyoxazole, and cyclized polyisoprene.
  • Polyamide is particularly preferred.
  • the material of the alignment film may be used alone or in combination of two or more in any combination and ratio.
  • modified polyamide examples include those obtained by modifying an aromatic polyamide or an aliphatic polyamide. Of these, a modified aliphatic polyamide is preferred. Specific examples include nylon-6, nylon-66, nylon-12, ternary to quaternary copolymer nylon, fatty acid polyamide, or fatty acid block copolymer (eg, polyether ester amide, polyester amide). And the like added. Examples of the modification include terminal amino modification, carboxyl modification, hydroxyl modification and the like, and modification in which a part of the amide group is alkylaminated or N-alkoxyalkylated.
  • N-alkoxyalkylated modified polyamide examples include N-methoxymethylated part of the amide group of copolymer nylon such as nylon-6, nylon-66, or nylon-12.
  • the weight average molecular weight of the modified polyamide is preferably 5000 or more, more preferably 10,000 or more, preferably 500,000 or less, more preferably 200,000 or less.
  • the thickness of the alignment film may be a film thickness that provides desired alignment uniformity of the liquid crystal layer. Specifically, 0.001 ⁇ m or more is preferable, 0.01 ⁇ m or more is more preferable, 5 ⁇ m or less is preferable, and 2 ⁇ m or less is more preferable.
  • a polarization separation element having a transparent resin substrate, an alignment film, and a cholesteric resin layer in this order can be obtained.
  • stretching a resin film can be used, for example.
  • the thermoplastic resin used for the stretched film is not particularly limited as long as it is a transparent resin.
  • resin used for a stretched film may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Among these, a resin having a positive intrinsic birefringence value is preferable, and an alicyclic olefin polymer is more preferable.
  • the alicyclic olefin polymer suitably used for the stretched film is an amorphous polymer having a cycloalkane structure in the main chain and / or side chain. From the viewpoint of mechanical strength and heat resistance, a polymer containing a cycloalkane structure in the main chain is preferred.
  • examples of the cycloalkane structure include monocyclic rings and polycyclic rings (condensed polycyclic rings, bridged rings, etc.).
  • the number of carbon atoms constituting one unit of the cycloalkane structure is not particularly limited, but is usually in the range of 4 to 30, preferably 5 to 20, more preferably 5 to 15, and the resin film. The mechanical strength, heat resistance, and moldability of these are highly balanced and suitable. Examples of the alicyclic olefin polymer include those described in JP-A No. 05-310845, JP-A No. 05-097978, and US Pat. No. 6,511,756.
  • the thermoplastic resin used for the stretched film has a glass transition temperature of preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and preferably 250 ° C. or lower.
  • the absolute value of the photoelastic coefficient of the thermoplastic resin is preferably 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably 7 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and particularly preferably 4 ⁇ 10 ⁇ 12 Pa ⁇ 1. It is as follows.
  • in-plane retardation Re (nx ⁇ ny) ⁇ d (where nx represents the refractive index in the in-plane slow axis direction, and ny represents the in-plane slow axis. Represents a refractive index in a direction orthogonal to, and d represents a film thickness.
  • the thermoplastic resin used for the stretched film is, for example, a colorant such as a pigment or dye, a fluorescent brightener, a dispersant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, an antistatic agent, an antioxidant, a lubricant, or a solvent.
  • the compounding agent such as may be appropriately blended.
  • a compounding agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the compounding agent is not particularly limited, and is usually 0 to 5% by weight in the thermoplastic resin.
  • the average thickness of the stretched film is preferably 30 to 80 ⁇ m, more preferably 30 to 60 ⁇ m, and particularly preferably 30 to 50 ⁇ m from the viewpoint of mechanical strength and the like. Moreover, since the thickness unevenness in the width direction of the stretched film affects the availability of winding, it is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less.
  • the said average thickness measures a stretched film by a 50 mm space
  • the thickness unevenness is a value obtained by subtracting the minimum value from the maximum value of each measurement value.
  • the stretched film has a residual volatile component content of preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and still more preferably 0.02% by weight or less. If the content of residual volatile components is large, the optical characteristics may change over time.
  • Rth ((nx + ny) / 2 ⁇ nz) ⁇ d;
  • ny represents the refractive index in the direction perpendicular to the slow axis in the plane
  • nz represents the refractive index in the thickness direction
  • d represents the average thickness of the film.
  • the volatile component is a substance having a molecular weight of 200 or less contained in a trace amount in the film, and examples thereof include residual monomers and solvents.
  • the content of the volatile component can be quantified by dissolving the film in chloroform and analyzing it by gas chromatography as the total of substances having a molecular weight of 200 or less contained in the film.
  • the stretched film has a saturated water absorption rate of preferably 0.03% by weight or less, more preferably 0.02% by weight or less, and particularly preferably 0.01% by weight or less.
  • the saturated water absorption is within the above range, the temporal change of the in-plane retardation Re and the thickness direction retardation Rth can be reduced, and further, a brightness enhancement film, a composite polarizing plate, and a liquid crystal display device provided with this stretched film Degradation can be suppressed, and the displayed image can be kept in a good state for a long time.
  • the saturated water absorption is determined by immersing a film specimen in water at 23 ° C. for 24 hours in accordance with JIS K7209, and measuring the change in mass of the specimen, that is, the difference in mass before and after immersion. , A value expressed as a percentage before immersion.
  • the stretched film is obtained, for example, by stretching a long resin film made of a thermoplastic resin.
  • the stretching method is not particularly limited, such as longitudinal stretching, lateral stretching, sequential biaxial stretching, simultaneous biaxial stretching, and oblique stretching.
  • the method can be used.
  • continuous processing such as a roll toe roll, is possible in bonding with a polarizing plate, it is preferable to use diagonal stretch.
  • the oblique stretching method is not particularly limited as long as it is continuously stretched in a direction of 1 to 50 ° with respect to the width direction, and the orientation axis of the polymer is inclined to a desired angle. Can be adopted.
  • the stretching machine used for the oblique stretching is not particularly limited, and a conventionally known tenter stretching machine that can add feed force, pulling force, or take-up force at different speeds in the horizontal or vertical direction can be used.
  • the tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but is not particularly limited as long as a long film can be continuously obliquely stretched. These types of stretching machines can be used.
  • Examples of the oblique stretching method include, for example, JP-A-50-83482, JP-A-2-113920, JP-A-3-182701, JP-A-2000-9912, JP-A-2002-86554, The methods described in JP 2002-22944 A and International Publication No. 2007/111313 can be used.
  • thermoplastic resin constituting the long unstretched film used for producing the stretched film are the same as those described for the stretched film.
  • the long unstretched film can be obtained by a known method such as a cast molding method, an extrusion molding method, an inflation molding method, or the like. Of these, the extrusion method is preferable because it has a small amount of residual volatile components and is excellent in dimensional stability.
  • This unstretched film may be a single layer or a laminated film of two or more layers.
  • the laminated film can be obtained by a known method such as a coextrusion molding method, a film lamination method, or a coating method. Of these, the coextrusion method is preferred.
  • the maximum value-minimum value is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less.
  • a nematic resin layer can be used as the quarter wave plate used in the present invention.
  • a nematic liquid crystal composition containing a rod-like liquid crystalline compound having a polymerizable group for forming a nematic resin layer is preferably applied on another layer such as an alignment film. And a method of curing the liquid crystal layer by light irradiation and / or heating treatment at least once.
  • the rod-like liquid crystalline compound includes, in addition to the rod-like liquid crystalline compound contained in the cholesteric liquid crystal composition (X), JP-A-2002-030042, JP-A-2004-204190, JP-A-2005-263789, Conventionally known rod-like liquid crystalline compounds having a polymerizable group described in JP 2007-119415 A and JP 2007-186430 A can be used.
  • a rod-shaped liquid crystalline compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the nematic liquid crystal composition can optionally contain a crosslinking agent and a photopolymerization initiator in order to improve the film strength after curing and the durability.
  • a crosslinking agent and a photopolymerization initiator those similar to those used in the cholesteric liquid crystal composition can be used in the same manner.
  • a crosslinking agent and a photoinitiator may each be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the nematic liquid crystal composition can optionally contain a surfactant.
  • a surfactant those similar to those used in the cholesteric liquid crystal composition can be used in the same manner.
  • surfactant may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the nematic liquid crystal composition can further contain other optional components as necessary.
  • the other optional components include a solvent, a polymerization inhibitor for improving pot life, an antioxidant for improving durability, an ultraviolet absorber, and a light stabilizer.
  • these arbitrary components may use one type and may use it combining two or more types by arbitrary ratios. These optional components can be contained in a range that does not deteriorate the desired optical performance.
  • the method for producing the nematic liquid crystal composition is not particularly limited, and can be produced by mixing the above-described components.
  • a nematic liquid crystal composition is applied on another layer such as an alignment film to obtain a liquid crystal layer, and then the nematic resin layer is cured by light irradiation and / or heating treatment at least once. Can be obtained.
  • the application may be performed by a known method such as an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, or a bar coating method.
  • an alignment treatment is performed as necessary.
  • the alignment treatment may be performed, for example, by heating the liquid crystal layer at 50 to 150 ° C. for 0.5 to 10 minutes. By performing the alignment treatment, the liquid crystal layer can be aligned well.
  • the curing step can be performed by one or more times of light irradiation, heating treatment, or a combination thereof.
  • the heating condition is, for example, a temperature of usually 40 ° C. or higher, preferably 50 ° C. or higher, usually 200 ° C. or lower, preferably 140 ° C. or lower, usually 1 second or longer, preferably 5 seconds or longer, usually 3 minutes or shorter, preferably Is performed in 120 seconds or less.
  • the film thickness of the nematic resin layer can be appropriately determined according to the target optical characteristics.
  • the quarter-wave plate used in the present invention can have an in-plane retardation Re of approximately 1 ⁇ 4 wavelength of transmitted light.
  • the wavelength range of the transmitted light can be set to a desired range, specifically, for example, 400 nm to 700 nm.
  • the in-plane retardation Re is approximately 1 ⁇ 4 wavelength of the transmitted light means that the Re value is ⁇ 65 nm from the 1 ⁇ 4 value of the center value in the center value of the wavelength range of the transmitted light, preferably ⁇ It means 30 nm, more preferably in the range of ⁇ 10 nm.
  • the quarter wave plate used in the present invention has an Nz coefficient of 0.9 or more, and is usually 0.9 to 5.5, preferably 0.9 to 4.5, more preferably 0.95 to 2.5. It is.
  • Dichroic absorption polarizing plate examples include an iodine polarizing film, a dye polarizing film using a dichroic dye, and a polyene polarizing film.
  • the iodine-based polarizing film and the dye-based polarizing film are usually produced using a polyvinyl alcohol film.
  • the polarization axis of the dichroic absorption type polarizing plate corresponds to a direction perpendicular to the stretching direction of the film.
  • a transparent protective film is provided on the dichroic absorption polarizing plate.
  • This transparent protective film is usually provided on both surfaces of the dichroic absorption polarizing plate.
  • an optically isotropic polymer film is used as the transparent protective film.
  • that a protective film is transparent means that the light transmittance is 80% or more.
  • the optical isotropy specifically has an in-plane retardation (Re) of preferably 10 nm or less, and more preferably 5 nm or less.
  • the thickness direction retardation (Rth) is preferably 40 nm or less, and more preferably 20 nm or less.
  • the transparent protective film usually a cellulose ester film, preferably a triacetyl cellulose film is used.
  • the cellulose ester film is preferably formed by, for example, a solvent cast method.
  • the thickness of the transparent protective film is usually 20 ⁇ m or more, preferably 50 ⁇ m or more, and is usually 500 ⁇ m or less, preferably 200 ⁇ m or less.
  • optical compensation film for example, a stretched birefringent film, an optically anisotropic layer formed from liquid crystalline molecules, and the like can be used. Among these, an optically anisotropic layer formed from liquid crystalline molecules is preferable.
  • a liquid crystal molecule may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • suitable liquid crystal molecules rod-like liquid crystal molecules or discotic liquid crystal molecules are preferable, and discotic liquid crystal molecules are particularly preferable.
  • rod-like liquid crystalline molecules examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenyls. Examples include pyrimidines, phenyldioxanes, tolans, alkenylcyclohexylbenzonitriles and the like. Further, not only low-molecular liquid crystalline molecules but also high-molecular liquid crystalline molecules can be used. The high-molecular liquid crystalline molecule is a polymer having a side chain corresponding to the low-molecular liquid crystalline molecule. An optical compensation sheet using polymer liquid crystalline molecules is described in JP-A-5-53016.
  • discotic liquid crystalline molecules have been described in various documents (for example, C. Destrade et al., Mol. Crysr. Liq. Cryst., Vol. 71, page 111 (1981); No. 22, Chemistry of liquid crystals, Chapter 5, Chapter 10 Section 2 (1994); B. Kohne et al., Angew. Chem. Soc. Chem. Comm., Page 1794 (1985); J. Zhang et al., J. Am. Chem. Soc., vol. 116, page 2655 (1994)).
  • the discotic liquid crystal molecules are preferably aligned with an average inclination angle of 5 ° to 45 °. Moreover, it is preferable to change the inclination angle of the discotic liquid crystalline molecules with the distance between the discotic liquid crystalline molecules and the dichroic absorption polarizing plate.
  • the discotic liquid crystalline molecules are preferably fixed in the alignment state by a polymerization reaction.
  • the polymerization reaction of discotic liquid crystalline molecules is described in JP-A-8-27284.
  • a discotic liquid crystalline molecule having a discotic core also referred to as a discotic core
  • a polymerizable group bonded as a substituent is used.
  • the discotic liquid crystalline molecule is preferably a compound represented by the following formula (3).
  • D (-LQ) n formula (3)
  • D represents a discotic core
  • L represents a divalent linking group
  • Q represents a polymerizable group
  • n represents an integer of 4 to 12.
  • LQ means a combination of a divalent linking group (L) and a polymerizable group (Q).
  • the divalent linking group (L) is selected from the group consisting of an alkylene group, an alkenylene group, an arylene group, —CO—, —NH—, —O—, —S—, and combinations thereof. It is preferable that it is a bivalent coupling group.
  • the divalent linking group (L) includes at least two divalent groups selected from the group consisting of an alkylene group, an alkenylene group, an arylene group, —CO—, —NH—, —O—, and —S—. More preferably, it is a combined group.
  • the divalent linking group (L) is a group formed by combining at least two divalent groups selected from the group consisting of an alkylene group, an alkenylene group, an arylene group, —CO— and —O—.
  • the alkylene group preferably has 1 to 12 carbon atoms.
  • the alkenylene group preferably has 2 to 12 carbon atoms.
  • the number of carbon atoms in the arylene group is preferably 6-10.
  • the alkylene group, alkenylene group and arylene group may have a substituent (for example, an alkyl group, a halogen atom, a cyano, an alkoxy group, an acyloxy group, etc.).
  • divalent linking group (L) examples are shown below.
  • the left side is bonded to the discotic core (D), and the right side is bonded to the polymerizable group (Q).
  • AL represents an alkylene group or an alkenylene group
  • AR represents an arylene group.
  • L14 -O-AL-O-CO-NH-AL- L15: -O-AL-S-AL- L16: -O-CO-AL-AR-O-AL-O-CO- L17: -O-CO-AR-O-AL-CO- L18: -O-CO-AR-O-AL-O-CO- L19: -O-CO-AR-O-AL-O-AL-O-CO- L20: -O-CO-AR-O-AL-O-AL-O-CO- L21: -S-AL- L22: -S-AL-O- L23: -S-AL-O-CO- L24: -S-AL-S-AL- L25: -S-AR-AL-
  • the polymerizable group (Q) of the above formula (3) may be determined according to the type of polymerization reaction. Examples of the polymerizable group (Q) are shown below.
  • the polymerizable group (Q) is preferably an unsaturated polymerizable group (Q1 to Q7), an epoxy group (Q8) or an aziridinyl group (Q9), and is an unsaturated polymerizable group, among those exemplified above.
  • the ethylenically unsaturated polymerizable group (Q1 to Q6) is particularly preferable.
  • n represents an integer of 4 or more and 12 or less. Specific numerical values are determined according to the type of the disk-shaped core (D).
  • the combination of the divalent linking group (L) and the polymerizable group (Q) in the compound represented by the formula (3) may be different but is preferably the same.
  • discotic liquid crystalline molecule may be used alone, or two or more types may be used in combination at any ratio.
  • a discotic liquid crystalline molecule having polymerizability hereinafter referred to as “polymerizable discotic liquid crystalline molecule” as appropriate
  • a non-polymerizable discotic liquid crystalline molecule can be used in combination.
  • the non-polymerizable discotic liquid crystalline molecule is preferably a compound in which the polymerizable group (Q) of the compound represented by the formula (3) is changed to a hydrogen atom or an alkyl group. That is, the non-polymerizable discotic liquid crystalline molecule is preferably a compound represented by the following formula (4).
  • D (-LR) n formula (4)
  • D represents a discotic core
  • L represents a divalent linking group
  • R represents a hydrogen atom or an alkyl group
  • n represents an integer of 4 to 12.
  • An example of the discotic core (D) of the formula (4) is the same as the example of the compound represented by the formula (3) except that LQ (or QL) is changed to LR (or RL).
  • the example of a bivalent coupling group (L) is the same as the example of a compound represented by said Formula (3).
  • the alkyl group represented by R preferably has 1 to 40 carbon atoms, and more preferably 1 to 30 carbon atoms.
  • a chain alkyl group is preferred to a cyclic alkyl group, and a linear alkyl group is preferred to a branched chain alkyl group.
  • R is particularly preferably a hydrogen atom or a linear alkyl group having 1 to 30 carbon atoms.
  • the optically anisotropic layer preferably contains a chiral agent.
  • a chiral agent is generally an optically active compound containing an asymmetric carbon atom.
  • the chiral agent for example, various natural or synthetic compounds containing an asymmetric carbon atom can be used.
  • a chiral agent may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • an asymmetric carbon atom was introduced into the linking group (L) of the discotic liquid crystalline molecule represented by the above formula (3) or (4).
  • Examples include discotic compounds having a molecular structure. Specific examples include compounds in which an asymmetric carbon atom is introduced into AL (alkylene group or alkenylene group) contained in the linking group (L).
  • AL * containing an asymmetric carbon atom examples include the left side and the right side is bonded to the polymerizable group (Q), the hydrogen atom or the alkyl group (R).
  • the carbon atom (C) indicated with an asterisk ( * ) represents an asymmetric carbon atom.
  • the optical activity may be either S-form or R-form.
  • a polymerizable group may be introduced into the chiral agent.
  • the same polymerizable group (Q) as that of the discotic liquid crystalline molecule can be applied.
  • the chiral agent can be fixed in the optically anisotropic layer by a polymerization reaction after aligning the discotic liquid crystalline molecules.
  • the amount of chiral agent used is sufficient to stabilize the orientation state of the discotic liquid crystalline molecules.
  • the specific amount of the chiral agent is usually 0.005% by weight or more, preferably 0.01% by weight or more, more preferably 0.02% by weight or more, particularly preferably 0.005% by weight or more of the amount of the discotic liquid crystalline molecules. It is 0.5% by weight or more and usually 0.2% by weight or less.
  • an optically anisotropic layer For example, a liquid crystalline molecule, a polymerization initiator (it is also called a polymerization initiator), a chiral agent, and arbitrary additives (for example, a plasticizer, a monomer, surface activity) And a liquid crystal composition containing an agent, a cellulose ester, a 1,3,5-triazine compound, etc.) can be produced by coating on the alignment film.
  • the optically anisotropic layer manufactured using the alignment film may be used with the alignment film, the alignment film may be peeled off and used.
  • the alignment film may be, for example, a rubbing treatment of an organic compound (preferably a polymer), oblique deposition of an inorganic compound, formation of a layer having a microgroove, or an organic compound (eg, ⁇ --) by the Langmuir-Blodgett method (LB film).
  • LB film Langmuir-Blodgett method
  • accumulation of tricosanoic acid, dioctadecylmethylammonium chloride, methyl stearylate, etc. an alignment film in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known.
  • an alignment film formed by a polymer rubbing treatment is particularly preferable.
  • the rubbing treatment is carried out by rubbing the surface of the polymer layer several times in a certain direction with paper or cloth.
  • the polymer constituting the alignment film it is preferable to use a polymer that does not reduce the surface energy of the alignment film (normal alignment film polymer).
  • the liquid crystal composition may contain a solvent.
  • a solvent an organic solvent is preferably used.
  • organic solvents include amide solvents such as N, N-dimethylformamide; sulfoxide solvents such as dimethyl sulfoxide; heterocyclic compound solvents such as pyridine; hydrocarbon solvents such as benzene and hexane; alkyl halide solvents such as chloroform and dichloromethane.
  • Ester solvents such as methyl acetate and butyl acetate; ketone solvents such as acetone and methyl ethyl ketone; ether solvents such as tetrahydrofuran and 1,2-dimethoxyethane;
  • a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the liquid crystal composition can be applied by, for example, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, or a die coating method.
  • the dichroic liquid crystalline molecules are more preferably fixed in a state of being substantially uniformly aligned by a chiral agent, and it is particularly preferable that the liquid crystalline molecules are fixed by a polymerization reaction.
  • the polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator, and among them, the photopolymerization reaction is preferable.
  • photopolymerization initiator examples include ⁇ -carbonyl compounds (see US Pat. No. 2,367,661 and US Pat. No. 2,367,670), acyloin ether (see US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics, and the like.
  • Group acyloin compounds see US Pat. No. 2,722,512
  • polynuclear quinone compounds see US Pat. Nos. 3,046,127 and 2,951,758
  • combinations of triarylimidazole dimers and p-aminophenyl ketone US Patent No. 3549367
  • acridine and phenazine compounds see JP-A-60-105667, US Pat. No.
  • a photoinitiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the photopolymerization initiator used is usually 0.01% by weight or more, preferably 0.5% by weight or more, and usually 20% by weight or less, preferably 5% by weight or less, based on the solid content of the liquid crystal composition.
  • the irradiation energy is usually 20 mJ / cm 2 or more, preferably 100 mJ / cm 2 or more, and usually 50 J / cm 2 or less, preferably 800 mJ / cm 2 or less.
  • light irradiation may be performed under heating conditions.
  • the thickness of the optical compensation film is usually 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and usually 20 ⁇ m or less, preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
  • a TN liquid crystal panel is used as the liquid crystal panel.
  • This liquid crystal panel usually has a structure in which liquid crystalline molecules are encapsulated between a pair of substrates, and is provided with an electrode layer for applying a voltage to the encapsulated liquid crystalline molecules.
  • the present invention is not limited to this as long as it is a liquid crystal panel of a type.
  • the display surface of the liquid crystal display device was visually observed from the left-right direction of the display surface from a polar angle of 60 ° with respect to the normal direction of the display surface.
  • the left-right direction of the display surface refers to the left-right direction along the long side direction of the display surface formed in a rectangular shape. “Excellent” if yellow color is not confirmed, “Good” if yellow color is almost not confirmed, “Yes” if weak yellow color is confirmed, “Yes” if strong yellow color is confirmed “Bad”.
  • Example 1 (1) Production of Cholesteric Resin Layer A corona discharge treatment was performed on one side of a sheet-like substrate [trade name “Zeonor ZF14-100” manufactured by Nippon Zeon Co., Ltd.] so that the wetting index was 56 mN / m.
  • Polyvinyl alcohol [trade name “Poval PVA203” manufactured by Kuraray Co., Ltd.] was applied to the corona discharge treated surface with a # 2 wire bar and dried at 120 ° C. for 5 minutes to produce a dry film having a thickness of 0.2 ⁇ m. . By rubbing the dry film in one direction, a substrate having an alignment film was obtained.
  • a cholesteric liquid crystal composition was prepared by mixing 0.04 part of a surfactant [trade name “KH40” manufactured by Seimi Chemical Co., Ltd.] and 60.00 parts of cyclopentanone (solvent). This cholesteric liquid crystal composition was applied to the surface having the alignment film of the transparent resin substrate having the alignment film prepared above by using # 10 bar. The coating film is subjected to an orientation treatment at 100 ° C.
  • cholesteric resin layer having a dry film thickness of 5.3 ⁇ m, and has a layer structure of substrate-alignment film-cholesteric resin layer.
  • a substrate-circularly polarized light separating element laminate was obtained. The obtained cholesteric resin layer emitted left circularly polarized light.
  • thermoplastic norbornene resin which is a kind of alicyclic olefin polymer [manufactured by Nippon Zeon Co., Ltd., trade name “ZEONOR1420”, glass transition point 137 ° C.] at 100 ° C. for 5 hours.
  • the pellets were supplied to an extruder, melted in the extruder, passed through a polymer pipe and a polymer filter, extruded from a T die onto a casting drum, cooled, and an unstretched film having a thickness of 130 ⁇ m and a width of 1200 mm was obtained. .
  • This unstretched film is continuously supplied to a float-type longitudinal stretching machine as it is, and first stretched at a stretching temperature of 140 ° C. and a stretch ratio of 1.3 times to obtain a first stretched film, which is wound around a winding core. It was. Further, the first stretched film is pulled out from the core, and the second stretch is performed at a stretching temperature of 145 ° C. and a stretching ratio of 1.7 times so that the orientation angle of the film is 45 ° with respect to the winding direction with a tenter stretching machine. Then, 180 mm at both ends of the film was trimmed to obtain a long stretched film having a width of 1340 mm, that is, a ZEONOR stretched film as a quarter wavelength plate. The obtained ZEONOR stretched film had optical characteristics of Re: 140 nm, Rth: 154 nm, and Nz coefficient: 1.60.
  • the produced cholesteric resin layer and the ZEONOR stretched film were bonded together with the produced adhesive layer to produce a brightness enhancement film.
  • the produced brightness enhancement film is produced in the production of a brightness enhancement film on the backlight side polarizer of a TN drive liquid crystal display [manufactured by I-O DATA, trade name “LCD-DTV191X”]. Bonding was performed using the adhesive layer.
  • the polarizer of the liquid crystal display includes a dichroic absorption polarizing plate and a wide view film as an optical compensation film. At the time of bonding, the slow axis of the quarter-wave plate was made to coincide with the horizontal direction of the display surface.
  • the light guide plate, prism sheet, diffusion sheet, cholesteric resin layer, quarter wavelength plate, dichroic absorption polarizing plate, optical compensation film, liquid crystal panel, optical compensation film, and dichroic absorption polarization A liquid crystal display device provided with a plate was prepared.
  • Example 2 Rod-like liquid crystalline compound [manufactured by BASF, LC242] 38.76 parts, 1.20 parts of photopolymerization initiator [trade name “IRG907” manufactured by Ciba Specialty Chemicals, Inc.]
  • a nematic liquid crystal composition was prepared by mixing 0.04 part of a surfactant [trade name “KH40” manufactured by Seimi Chemical Co., Ltd.] and 60.00 part of 2-butanone (solvent). This nematic liquid crystal composition was applied to the surface having the alignment film of the transparent resin substrate having the alignment film prepared in Example 1 using a # 2 bar. The coating film is subjected to orientation treatment at 100 ° C.
  • the LC1 / 4 wavelength plate had optical characteristics of Re: 140 nm, Rth: 70 nm, and Nz coefficient: 1.00.
  • a liquid crystal display device was prepared in the same manner as in Example 1 except that an LC 1/4 wavelength plate was used as the 1/4 wavelength plate.
  • the TN drive liquid crystal display was used without being equipped with a brightness enhancement film. That is, a liquid crystal display device including a light guide plate, a prism sheet, a diffusion sheet, a dichroic absorption polarizing plate, an optical compensation film, a liquid crystal panel, an optical compensation film, and a dichroic absorption polarizing plate was prepared from the light source side.
  • a liquid crystal display device was prepared in the same manner as in Example 1 except that a reflective polarizer DBEFD (manufactured by 3M) was used as the brightness enhancement film. That is, a liquid crystal display device including a light guide plate, a prism sheet, a diffusion sheet, DBEFD, a dichroic absorption polarizing plate, an optical compensation film, a liquid crystal panel, an optical compensation film, and a dichroic absorption polarizing plate was prepared from the light source side. . Note that DBEFD does not have a quarter-wave plate.
  • Rubber particles were produced according to Example 3 of JP-B-55-27576.
  • This rubber particle has a spherical three-layer structure
  • the core inner layer is a crosslinked polymer of methyl methacrylate and a small amount of allyl methacrylate
  • the inner layer is composed of butyl acrylate and styrene as main components and a small amount of acrylic acid.
  • It is a soft elastic copolymer obtained by crosslinking and copolymerizing allyl
  • the outer layer is a hard polymer of methyl methacrylate and a small amount of ethyl acrylate.
  • the average particle size of the inner layer was 0.19 ⁇ m, and the particle size including the outer layer was 0.22 ⁇ m.
  • the film was obliquely stretched by 8 times to obtain a two-kind three-layer quarter-wave plate.
  • the two-type three-layer quarter-wave plate had optical characteristics of Re: 140 nm, Rth: -85 nm, and Nz coefficient: -0.11.
  • a liquid crystal display device was prepared in the same manner as in Example 1 except that a two-type three-layer quarter-wave plate was used as the quarter-wave plate.
  • the cholesteric resin layer is a cholesteric resin layer that emits right-handed circularly polarized light extracted from a circularly polarized light separating element [manufactured by Nitto Denko Corporation, trade name “NIPOCS”].
  • a liquid crystal display device was prepared in the same manner as in Example 1 except that it coincided with the vertical direction (the short side direction of the rectangle of the display surface).
  • Example 2 Using the transparent adhesive layer prepared in Example 1, the vertically aligned resin layer and the ZEONOR stretched film prepared in EXAMPLE 1 were bonded together, and the substrate-alignment film-vertical alignment resin layer-transparent adhesive layer-ZEONOR stretched film were bonded together.
  • a ZEONOR stretched film with a vertically aligned resin layer having the layer structure of was obtained.
  • the ZEONOR stretched film with a vertically aligned resin layer had optical characteristics of Re: 140 nm, Rth: -4 nm, and Nz coefficient: 0.47.
  • a liquid crystal display device was prepared in the same manner as in Example 1 except that a ZEONOR stretched film with a vertical alignment resin layer was used as the quarter wavelength plate.
  • the liquid crystal display devices of Examples 1 and 2 have high luminance, and yellow coloration is observed even when the display surface of the liquid crystal display device is viewed obliquely at the azimuth angle in the left-right direction. There wasn't.
  • the Nz coefficient of the quarter wave plate is less than 0.9.
  • the cholesteric resin layer emits right circularly polarized light (Comparative Example 4)
  • yellow coloring was confirmed at least when the display surface was viewed obliquely in the left-right direction. .
  • the brightness enhancement film, the composite polarizing plate, and the liquid crystal display device of the present invention can prevent a phenomenon that the display surface of the liquid crystal display device is colored yellow when viewed from the tilt direction at the azimuth angle in the horizontal direction. It was done.
  • the slow axis direction of the quarter wavelength plate is a direction that coincides with the vertical direction of the display surface of the liquid crystal display device. This is because the slow axis direction of the quarter wavelength plate is Since the direction to be set is determined in accordance with the optical axis of the optical element included in the liquid crystal display device to be applied, another example is a brightness enhancement film having a cholesteric resin layer that emits right circularly polarized light as in Comparative Example 4. And by applying to the same liquid crystal display device as in the comparative example, the direction naturally coincides with the vertical direction of the display surface. In this case, it is assumed that the light emitted from the quarter-wave plate emits blue light in the vertical direction of the display surface.
  • the present invention can be used for a display device, and is particularly suitable for a liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

Provided is a brightness-improving film (3) configured of: a cholesteric resin layer (31) which emits left circularly polarized light and in which the width-direction helical pitch of the molecule decreases toward the light emission surface; and a quarter-wave plate (32) that satisfies Nz≥0.9 (Nz=(nx-nz)/(nx-ny), wherein nx indicates the refractive index in the in-plane slow-axis direction, ny indicates the refractive index in the direction perpendicular to the in-plane slow axis, and nz indicates the refractive index in the thickness direction). Due to this configuration, the brightness-improving film is capable of preventing the phenomenon in which when the screen of a liquid-crystal display device is viewed from a direction that is oblique at a given angle, the images look yellowish.

Description

輝度向上フィルム、複合偏光板及び液晶表示装置Brightness improving film, composite polarizing plate, and liquid crystal display device
 本発明は、輝度向上フィルム、複合偏光板及び液晶表示装置に関する。 The present invention relates to a brightness enhancement film, a composite polarizing plate, and a liquid crystal display device.
 TN(Twisted Nematic)型の液晶表示装置は、通常、光源と、一対の偏光板と、当該偏光板の間に設けられた液晶パネルとを備える。このような液晶表示装置については従来から性能改善のために様々な提案がなされている。例えば視野角の改善等を目的として、液晶パネルと偏光板との間に光学補償フィルム(位相差板)を設ける技術が提案されている(特許文献1,2)。 A TN (Twisted Nematic) type liquid crystal display device usually includes a light source, a pair of polarizing plates, and a liquid crystal panel provided between the polarizing plates. Various proposals for improving the performance of such a liquid crystal display device have been made. For example, techniques for providing an optical compensation film (retardation plate) between a liquid crystal panel and a polarizing plate have been proposed for the purpose of improving the viewing angle (Patent Documents 1 and 2).
特開平9-189811号公報Japanese Patent Laid-Open No. 9-189811 特開2006-235122号公報JP 2006-235122 A
 しかしながら、従来の液晶表示装置では、正面方向に対して傾斜した角度から表示面を見た場合、ある一定の方位角から見たときに表示面が黄色に着色して見えることがあった。この点について図を用いて説明する。
 図4は、従来の液晶表示装置の表示面を模式的に示す図である。図4に示すように、表示面9U’に対する法線方向を正面方向A、正面方向Aから所定の方位角において角度θだけ傾斜した方向を傾斜方向Bとする。この場合、正面方向Aから表示面9U’を見た場合に視認される映像よりも、傾斜方向Bから表示面9U’を見た場合に視認される映像の方が、黄色に着色して見えていた。また、市販の多くの液晶表示装置のように表示面9U’の形状が長方形となっている場合は、その長方形の長辺方向Xに平行な方位角から表示面9U’を見たときに、表示面9U’が黄色に着色することが多かった。この際、前記長辺方向Xに平行な左右いずれの傾斜方向Bから見た場合であっても黄色に着色していた。
However, in the conventional liquid crystal display device, when the display surface is viewed from an angle inclined with respect to the front direction, the display surface may appear colored yellow when viewed from a certain azimuth angle. This point will be described with reference to the drawings.
FIG. 4 is a diagram schematically showing a display surface of a conventional liquid crystal display device. As shown in FIG. 4, the normal direction with respect to the display surface 9U ′ is a front direction A, and a direction inclined by an angle θ at a predetermined azimuth angle from the front direction A is an inclination direction B. In this case, the image viewed when viewing the display surface 9U ′ from the tilt direction B appears to be colored more yellow than the image viewed when viewing the display surface 9U ′ from the front direction A. It was. Further, when the shape of the display surface 9U ′ is a rectangle like many commercially available liquid crystal display devices, when the display surface 9U ′ is viewed from an azimuth angle parallel to the long side direction X of the rectangle, The display surface 9U ′ was often colored yellow. Under the present circumstances, even if it was a case where it sees from the any inclination direction B parallel to the said long side direction X, it was colored yellow.
 本発明は、上記に鑑みて創案されたものであって、液晶表示装置の表示面を所定の方位角において傾斜方向から見た場合に黄色に着色して見える現象を防止できる輝度向上フィルム、複合偏光板及び液晶表示装置を提供することを目的とする。 The present invention was devised in view of the above, and is a brightness enhancement film that can prevent a phenomenon that a liquid crystal display device is colored yellow when viewed from a tilt direction at a predetermined azimuth angle. An object is to provide a polarizing plate and a liquid crystal display device.
 上述した課題を解決して目的を達成するために、本発明者は鋭意検討した結果、前記の傾斜方向Bへの着色は、光学補償フィルムを備えた液晶表示装置において顕著であることを見出した。さらに、所定のNz係数を有する1/4波長板とコレステリック樹脂層とを組み合わせた輝度向上フィルムが、所定の方位角においては、その出光面の法線方向に対して傾斜した方向へ、青色に着色した光を出す傾向があることを見出した。そこで、前記の光学補償フィルムを備えた液晶表示装置と輝度向上フィルムとを、両者が有する着色が互いに弱めあうようにして組み合わせることにより、液晶表示装置の着色を解消することができるとの知見を得て、本発明を完成させた。
 すなわち、本発明は、以下の〔1〕~〔4〕を要旨とする。
In order to solve the above-described problems and achieve the object, the present inventors have intensively studied, and as a result, found that the coloring in the tilt direction B is remarkable in the liquid crystal display device provided with the optical compensation film. . Further, the brightness enhancement film combining the quarter wavelength plate having the predetermined Nz coefficient and the cholesteric resin layer is blue in a direction inclined with respect to the normal direction of the light exit surface at a predetermined azimuth angle. It has been found that there is a tendency to emit colored light. Therefore, the knowledge that the coloration of the liquid crystal display device can be eliminated by combining the liquid crystal display device provided with the optical compensation film and the brightness enhancement film so that both colors are weakened each other. The present invention was completed.
That is, the gist of the present invention is the following [1] to [4].
 〔1〕厚み方向における分子の螺旋ピッチが出光側の面に近づくにつれて狭くなる、左円偏光を出光するコレステリック樹脂層と、Nz≧0.9(ただし、Nz=(nx-nz)/(nx-ny)である。ここで、nxはその面内の遅相軸方向の屈折率を表し、nyはその面内の遅相軸に直交する方向の屈折率を表し、nzはその厚み方向の屈折率を表す。)を満たす1/4波長板とを備える輝度向上フィルム。
 〔2〕厚み方向における分子の螺旋ピッチが出光側に近づくにつれて狭くなる、左円偏光を出光するコレステリック樹脂層と、前記コレステリック樹脂層から出光した左円偏光を受光して直線偏光を出光する、Nz≧0.9(ただし、Nz=(nx-nz)/(nx-ny)である。ここで、nxはその面内の遅相軸方向の屈折率を表し、nyはその面内の遅相軸に直交する方向の屈折率を表し、nzはその厚み方向の屈折率を表す。)を満たす1/4波長板と、前記1/4波長板が出光する直線偏光の偏光方向と平行な透過軸方向を有する二色性吸収型偏光板と、光学補償フィルムとを、この順に備える複合偏光板。
 〔3〕厚み方向における分子の螺旋ピッチが出光側に近づくにつれて狭くなる、左円偏光を出光するコレステリック樹脂層と、前記コレステリック樹脂層から出光した左円偏光を受光して直線偏光を出光する、Nz≧0.9(ただし、Nz=(nx-nz)/(nx-ny)である。ここで、nxはその面内の遅相軸方向の屈折率を表し、nyはその面内の遅相軸に直交する方向の屈折率を表し、nzはその厚み方向の屈折率を表す。)を満たす1/4波長板と、前記1/4波長板が出光する直線偏光の偏光方向と平行な透過軸方向を有する二色性吸収型偏光板と、光学補償フィルムと、TN型の液晶パネルとを、この順に備える液晶表示装置。
 〔4〕長方形の表示面を有し、前記表示面の長方形の長辺方向と、前記1/4波長板の遅相軸方向とが平行である、〔3〕記載の液晶表示装置。
[1] A cholesteric resin layer that emits left-handed circularly polarized light that becomes narrower as the spiral pitch of molecules in the thickness direction approaches the light-emitting surface, and Nz ≧ 0.9 (where Nz = (nx−nz) / (nx Where nx represents the refractive index in the slow axis direction in the plane, ny represents the refractive index in the direction perpendicular to the slow axis in the plane, and nz represents the thickness direction in the thickness direction. A brightness enhancement film comprising a quarter-wave plate satisfying a refractive index.
[2] The cholesteric resin layer that emits left circularly polarized light that becomes narrower as the spiral pitch of molecules in the thickness direction approaches the light emitting side, and receives the left circularly polarized light emitted from the cholesteric resin layer and emits linearly polarized light, Nz ≧ 0.9 (where Nz = (nx−nz) / (nx−ny), where nx represents the refractive index in the slow axis direction in the plane, and ny represents the slow index in the plane. A refractive index in a direction perpendicular to the phase axis, and nz represents a refractive index in the thickness direction.) And a parallel direction to the polarization direction of the linearly polarized light emitted from the quarter-wave plate. A composite polarizing plate comprising a dichroic absorption polarizing plate having a transmission axis direction and an optical compensation film in this order.
[3] A cholesteric resin layer that emits left circularly polarized light that becomes narrower as the spiral pitch of molecules in the thickness direction approaches the light emitting side, and receives left circularly polarized light emitted from the cholesteric resin layer and emits linearly polarized light. Nz ≧ 0.9 (where Nz = (nx−nz) / (nx−ny), where nx represents the refractive index in the slow axis direction in the plane, and ny represents the slow index in the plane. A refractive index in a direction perpendicular to the phase axis, and nz represents a refractive index in the thickness direction.) And a parallel direction to the polarization direction of the linearly polarized light emitted from the quarter-wave plate. A liquid crystal display device comprising a dichroic absorption polarizing plate having a transmission axis direction, an optical compensation film, and a TN liquid crystal panel in this order.
[4] The liquid crystal display device according to [3], which has a rectangular display surface, and a long side direction of the rectangular shape of the display surface is parallel to a slow axis direction of the quarter-wave plate.
 本発明の輝度向上フィルム、複合偏光板及び液晶表示装置によれば、液晶表示装置の表示面を所定の方位角において傾斜方向から見た場合に黄色に着色して見える現象を防止できる。 According to the brightness enhancement film, the composite polarizing plate, and the liquid crystal display device of the present invention, it is possible to prevent a phenomenon that the liquid crystal display device appears to be colored yellow when viewed from a tilt direction at a predetermined azimuth angle.
図1は、本発明の一実施形態に係る液晶表示装置を分解し、さらに線状光源の長手方向に垂直な平面で切った断面を模式的に示す分解縦断面図である。FIG. 1 is an exploded vertical cross-sectional view schematically showing a cross section of the liquid crystal display device according to one embodiment of the present invention, taken along a plane perpendicular to the longitudinal direction of the linear light source. 図2は、本発明の一実施形態に係る液晶表示装置を分解し、そのコレステリック液晶層、1/4波長板、一対の二色性吸収型偏光板及び光学補償フィルム並びに液晶パネルを、斜め上方から見た様子を模式的に示す分解斜視図である。FIG. 2 is an exploded view of a liquid crystal display device according to an embodiment of the present invention. The cholesteric liquid crystal layer, a quarter-wave plate, a pair of dichroic absorption polarizing plates, an optical compensation film, and a liquid crystal panel It is a disassembled perspective view which shows typically a mode seen from. 図3は、1/4波長板のNz係数が0.9未満であること以外は本発明の一実施形態に係る液晶表示装置と同様に構成された液晶表示装置を分解し、そのコレステリック液晶層、1/4波長板、一対の二色性吸収型偏光板及び光学補償フィルム並びに液晶パネルを、斜め上方から見た様子を模式的に示す分解斜視図である。FIG. 3 shows a cholesteric liquid crystal layer obtained by disassembling a liquid crystal display device configured in the same manner as the liquid crystal display device according to an embodiment of the present invention except that the Nz coefficient of the quarter wave plate is less than 0.9. FIG. 2 is an exploded perspective view schematically showing a state in which a quarter-wave plate, a pair of dichroic absorption polarizing plates, an optical compensation film, and a liquid crystal panel are viewed obliquely from above. 図4は、従来の液晶表示装置の表示面を模式的に示す図である。FIG. 4 is a diagram schematically showing a display surface of a conventional liquid crystal display device.
 以下に、本発明の好ましい実施形態を、図面を参照して説明する。ただし、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and can be arbitrarily modified and implemented without departing from the gist of the present invention.
〔実施形態〕
 図1は、本発明の一実施形態に係る液晶表示装置を分解し、さらに線状光源の長手方向に垂直な平面で切った断面を模式的に示す分解縦断面図である。図2は、本発明の一実施形態に係る液晶表示装置を分解し、そのコレステリック液晶層、1/4波長板、一対の二色性吸収型偏光板及び光学補償フィルム並びに液晶パネルを、斜め上方から見た様子を模式的に示す分解斜視図である。
Embodiment
FIG. 1 is an exploded vertical cross-sectional view schematically showing a cross section of the liquid crystal display device according to one embodiment of the present invention, taken along a plane perpendicular to the longitudinal direction of the linear light source. FIG. 2 is an exploded view of a liquid crystal display device according to an embodiment of the present invention. The cholesteric liquid crystal layer, a quarter-wave plate, a pair of dichroic absorption polarizing plates, an optical compensation film, and a liquid crystal panel It is a disassembled perspective view which shows typically a mode seen from.
 図1に示すように、液晶表示装置100は、線状光源である光源1と、光源1からの光を反射する反射板2とを備える。また、液晶表示装置100は、輝度向上フィルム3、二色性吸収型偏光板4及び光学補償フィルム5を備える複合偏光板6と、液晶パネル7と、光学補償フィルム8と、二色性吸収型偏光板9とを、光源1に近い方からこの順に備える。また、輝度向上フィルム3は、コレステリック液晶層31と1/4波長板32とを、光源1に近い方からこの順に備える。このような構成の液晶表示装置100においては二色性吸収型偏光板9から外部へ発せられた光を観察者が視認することになるため、二色性吸収型偏光板9の図中上面が表示面9Uとして機能するようになっている。 As shown in FIG. 1, the liquid crystal display device 100 includes a light source 1 that is a linear light source and a reflector 2 that reflects light from the light source 1. In addition, the liquid crystal display device 100 includes a composite polarizing plate 6 including a brightness enhancement film 3, a dichroic absorption polarizing plate 4 and an optical compensation film 5, a liquid crystal panel 7, an optical compensation film 8, and a dichroic absorption type. A polarizing plate 9 is provided in this order from the side closer to the light source 1. The brightness enhancement film 3 includes a cholesteric liquid crystal layer 31 and a quarter wavelength plate 32 in this order from the side closer to the light source 1. In the liquid crystal display device 100 having such a configuration, an observer visually recognizes light emitted from the dichroic absorption polarizing plate 9 to the outside. It functions as a display surface 9U.
 なお、本実施形態では、液晶表示装置100を、その表示面9Uが水平に上向きなるように置いた状態で説明する。したがって、各層の「上」側は、より表示面9Uに近い側を、「下」側は、より表示面9Uに遠い側を、また「水平」方向は表示面9Uに平行な方向をそれぞれ表す。また、構成要素の方向が「平行」とは、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。
 さらに、本実施形態においては、図2に示すように表示面9Uは長方形に形成され、その長方形の長辺方向Xは図1及び図2の左右方向に一致しているものとする。
In the present embodiment, the liquid crystal display device 100 will be described in a state where the display surface 9U is placed horizontally upward. Therefore, the “upper” side of each layer represents the side closer to the display surface 9U, the “lower” side represents the side farther from the display surface 9U, and the “horizontal” direction represents a direction parallel to the display surface 9U. . Further, the direction of the component is “parallel” may include an error within a range that does not impair the effect of the present invention, for example, within a range of ± 5 °.
Furthermore, in this embodiment, as shown in FIG. 2, the display surface 9U is formed in a rectangular shape, and the long side direction X of the rectangular shape coincides with the horizontal direction in FIGS.
 図1に示すように、光源1は、細長い形状を有する線状光源である。光源1は適切な支持部材(不図示)で支持されることにより、反射板2及び輝度向上フィルム3等の他の部材とは離隔して設けられている。 As shown in FIG. 1, the light source 1 is a linear light source having an elongated shape. The light source 1 is supported by an appropriate support member (not shown) so as to be separated from other members such as the reflector 2 and the brightness enhancement film 3.
 反射板2は入射した光を反射及び拡散する部材である。この反射板2としては、例えば既知の白色の反射シート等を用いることができる。 The reflector 2 is a member that reflects and diffuses incident light. As this reflecting plate 2, for example, a known white reflecting sheet or the like can be used.
 輝度向上フィルム3は、コレステリック樹脂層31及び1/4波長板32を備える光学部材である。この輝度向上フィルム3は、入射した光のうち所定の偏光を透過させ、その他の偏光を反射する機能を有する。かかる輝度向上フィルム3は、入射した光のうち一部を画像表示に必要な偏光として二色性吸収型偏光板4へ出光し、それ以外の光は反射するようになっている。輝度向上フィルム3において反射した偏光は、反射板2などの他の部材において再び拡散及び反射し、そのうちの少なくとも一部は偏光状態を変化させてから再び輝度向上フィルム3に入射するようになっている。したがって、光源1と二色性吸収型偏光板4との間に輝度向上フィルム3を備えることにより、画像表示に必要な偏光を多く供給することができ、その結果、液晶表示装置100の輝度をさらに向上させることが可能になっている。 The brightness enhancement film 3 is an optical member including a cholesteric resin layer 31 and a quarter wavelength plate 32. The brightness enhancement film 3 has a function of transmitting predetermined polarized light out of incident light and reflecting other polarized light. The brightness enhancement film 3 emits a part of incident light to the dichroic absorption polarizing plate 4 as polarized light necessary for image display, and reflects the other light. The polarized light reflected by the brightness enhancement film 3 is diffused and reflected again by other members such as the reflector 2, and at least a part of the polarized light is incident on the brightness enhancement film 3 again after changing the polarization state. Yes. Therefore, by providing the brightness enhancement film 3 between the light source 1 and the dichroic absorption polarizing plate 4, a large amount of polarized light necessary for image display can be supplied. As a result, the brightness of the liquid crystal display device 100 can be increased. Further improvement is possible.
 輝度向上フィルム3に設けられたコレステリック樹脂層31は、入射した光の成分のうち左円偏光を1/4波長板32へ出光し、他の偏光を反射する円偏光分離素子である。したがって、本実施形態に係る輝度向上フィルム3では、コレステリック樹脂層31において左円偏光のみを選択的に透過させ、それ以外の偏光を反射させるようになっている。ここで左円偏光とは、図2に矢印A31で示すように、光の電界ベクトルが、光の進行方向に見て(ここでは、光源1を背にし、表示面9Uに向かって上向きに見て)時計回りである円偏光のことをいう。 The cholesteric resin layer 31 provided on the brightness enhancement film 3 is a circularly polarized light separating element that emits left circularly polarized light out of the incident light component to the quarter-wave plate 32 and reflects other polarized light. Therefore, in the brightness enhancement film 3 according to the present embodiment, only the left circularly polarized light is selectively transmitted in the cholesteric resin layer 31 and the other polarized light is reflected. Here, the left circularly polarized light means that the electric field vector of light is seen in the light traveling direction as shown by an arrow A 31 in FIG. 2 (here, the light source 1 is the back, and upwards toward the display surface 9U). (See) This refers to circularly polarized light that is clockwise.
 またコレステリック樹脂層31においては、厚み方向における分子の螺旋ピッチが、出光側に近づくにつれて狭くなるようになっている。すなわち、コレステリック樹脂層31を構成する分子の螺旋ピッチが、光源1に近いほど広く、表示面9Uに近いほど狭くなっている。これにより、コレステリック樹脂層31は広い波長範囲において円偏光分離素子として機能できるようになっている。 Further, in the cholesteric resin layer 31, the helical pitch of molecules in the thickness direction becomes narrower as it approaches the light emission side. That is, the spiral pitch of the molecules constituting the cholesteric resin layer 31 is wider as it is closer to the light source 1, and is narrower as it is closer to the display surface 9U. Thereby, the cholesteric resin layer 31 can function as a circularly polarized light separating element in a wide wavelength range.
 1/4波長板32はコレステリック樹脂層31から出光した左円偏光を受光して直線偏光に変換する光学素子である。したがって、コレステリック樹脂層31を透過した左円偏光は1/4波長板32において直線偏光に変換され、画像表示に必要な直線偏光として、1/4波長板32の上面(出光面)32Uから二色性吸収型偏光板4に出光するようになっている。
 ここで、図2に示すように、本実施形態の1/4波長板32の遅相軸の方向A32は、表示面9Uの長方形の長辺方向Xに対して平行になっている。したがって、1/4波長板32から出光する直線偏光の偏光方向Yは、1/4波長板32の遅相軸の方向A32から、上向きに見て時計回りに45°回転した方向と平行になるようになっている。
The quarter-wave plate 32 is an optical element that receives the left circularly polarized light emitted from the cholesteric resin layer 31 and converts it into linearly polarized light. Therefore, the left circularly polarized light transmitted through the cholesteric resin layer 31 is converted into linearly polarized light by the quarter wavelength plate 32, and is converted from the upper surface (light emitting surface) 32U of the quarter wavelength plate 32 as linearly polarized light necessary for image display. Light is emitted to the chromatic absorption polarizing plate 4.
Here, as shown in FIG. 2, the slow axis direction A 32 of the quarter-wave plate 32 of the present embodiment is parallel to the long side direction X of the rectangle of the display surface 9U. Therefore, the polarization direction Y of the linearly polarized light emitted from the quarter-wave plate 32 is parallel to the direction rotated 45 ° clockwise as viewed upward from the slow axis direction A 32 of the quarter-wave plate 32. It is supposed to be.
 さらに本実施形態の1/4波長板32は、そのNz係数が0.9以上であり、通常0.9~5.5、好ましくは0.9~4.5、より好ましくは0.95~2.5である。ここでNz係数とは、Nz=(nx-nz)/(nx-ny)で表される数値をいう。また、nxは、1/4波長板32の面内の遅相軸方向の屈折率を表し、nyは1/4波長板32の面内の遅相軸に直交する方向の屈折率を表し、nzは1/4波長板32の厚み方向の屈折率を表す。1/4波長板32のNz係数が前記のように大きいことにより、1/4波長板32の上面32Uの法線方向に対して傾斜した方向に出光する偏光のうち、1/4波長板32の遅相軸の方向A32と平行な方位角方向に出光する偏光L32を、青色に着色させることができる。
 なお、偏光L32を前記のように青色に着色させることができる理由は定かではないが、1/4波長板32は遅相軸方向において、コレステリック樹脂層31を斜めに透過してきた光に対して、青色の光を効率よく直線偏光に変換できるためであると推察される。
Further, the quarter wavelength plate 32 of this embodiment has an Nz coefficient of 0.9 or more, and is usually 0.9 to 5.5, preferably 0.9 to 4.5, more preferably 0.95 to 2.5. Here, the Nz coefficient is a numerical value represented by Nz = (nx−nz) / (nx−ny). Further, nx represents the refractive index in the slow axis direction in the plane of the quarter wavelength plate 32, ny represents the refractive index in the direction perpendicular to the slow axis in the plane of the quarter wavelength plate 32, nz represents the refractive index in the thickness direction of the quarter-wave plate 32. As the Nz coefficient of the ¼ wavelength plate 32 is large as described above, the ¼ wavelength plate 32 out of the polarized light emitted in the direction inclined with respect to the normal direction of the upper surface 32U of the ¼ wavelength plate 32. to Idemitsu parallel azimuthal direction as a 32 of the slow axis of the polarization L32, it can be colored blue.
Although the reason why the polarized light L32 can be colored blue as described above is not clear, the quarter-wave plate 32 responds to the light transmitted obliquely through the cholesteric resin layer 31 in the slow axis direction. This is presumably because blue light can be efficiently converted into linearly polarized light.
 二色性吸収型偏光板4は、所定の透過軸方向Aと平行な偏光方向の直線偏光を透過させ、それ以外の偏光を吸収する偏光子である。ただし、二色性吸収型偏光板4は1/4波長板32から出光した直線偏光の偏光方向Yと平行な透過軸方向Aを有しているものとする。本実施形態では、二色性吸収型偏光板4は、1/4波長板32の遅相軸の方向A32から、上向きに見て時計回りに45°回転した方向と平行な透過軸方向Aを有している。これにより、1/4波長板32から出光した直線偏光は、二色性吸収型偏光板4を透過して光学補償フィルム5に出光するようになっている。 Dichroic absorptive polarizer 4 is transmitted through the predetermined transmission axis direction A 4 a linearly polarized light of a polarization direction parallel, a polarizer that absorbs other polarization. However, it is assumed that the dichroic absorption polarizing plate 4 has a transmission axis direction A 4 parallel to the polarization direction Y of linearly polarized light emitted from the quarter-wave plate 32. In the present embodiment, the dichroic absorption type polarizing plate 4 has a transmission axis direction A parallel to a direction rotated clockwise by 45 ° from the slow axis direction A 32 of the quarter wavelength plate 32 when viewed upward. 4 . Thereby, the linearly polarized light emitted from the quarter wavelength plate 32 passes through the dichroic absorption polarizing plate 4 and is emitted to the optical compensation film 5.
 光学補償フィルム5は表示面9Uにおける視野角を広げる機能を有する光学素子である。二色性吸収型偏光板4から出光した直線偏光は、光学補償フィルム5により所定の位相差(レターデーションともいう。)を与えられて、液晶パネル7に出光するようになっている。 The optical compensation film 5 is an optical element having a function of widening the viewing angle on the display surface 9U. The linearly polarized light emitted from the dichroic absorption type polarizing plate 4 is given a predetermined phase difference (also referred to as retardation) by the optical compensation film 5 and is emitted to the liquid crystal panel 7.
 本実施形態の液晶パネル7はTN型の液晶パネルであり、印加される電圧に応じて、光学補償フィルム5から出光した偏光を旋光させる光学素子である。液晶パネル7を透過した光は、光学補償フィルム8に出光するようになっている。 The liquid crystal panel 7 of the present embodiment is a TN type liquid crystal panel, and is an optical element that rotates polarized light emitted from the optical compensation film 5 in accordance with an applied voltage. The light transmitted through the liquid crystal panel 7 is emitted to the optical compensation film 8.
 光学補償フィルム8は、光学補償フィルム5と同様に、表示面9Uにおける視野角を広げる機能を有する光学素子である。液晶パネル7から出光した直線偏光は、光学補償フィルム8により所定の位相差を与えられて、二色性吸収型偏光板9に出光するようになっている。 The optical compensation film 8 is an optical element having a function of widening the viewing angle on the display surface 9U, like the optical compensation film 5. The linearly polarized light emitted from the liquid crystal panel 7 is given a predetermined phase difference by the optical compensation film 8 and is emitted to the dichroic absorption polarizing plate 9.
 二色性吸収型偏光板9は、二色性吸収型偏光板4と同様に、所定の透過軸方向Aと平行な偏光方向の直線偏光を透過させ、それ以外の偏光を吸収する偏光子である。ただし、二色性吸収型偏光板9は、二色性吸収型偏光板4の透過軸方向Aに対して直交する方向に、その透過軸方向Aを有している。これにより、液晶パネル7により旋光された光は二色性吸収型偏光板9を透過して表示面9Uから出光するが、旋光されなかった光は二色性吸収型偏光板9に吸収されるようになっている。 Dichroic absorptive polarizer 9, similarly to the dichroic absorptive polarizer 4, is transmitted through the predetermined transmission axis direction A 9 a linearly polarized light of a polarization direction parallel polarizer that absorbs other polarization It is. However, the dichroic absorption polarizing plate 9 has the transmission axis direction A 9 in a direction orthogonal to the transmission axis direction A 4 of the dichroic absorption polarizing plate 4. Thereby, the light rotated by the liquid crystal panel 7 is transmitted through the dichroic absorption polarizing plate 9 and emitted from the display surface 9U, but the light not rotated is absorbed by the dichroic absorption polarizing plate 9. It is like that.
 本実施形態の液晶表示装置100は以上のように構成されているため、光源1から発せられた光が液晶パネル7に印加される電圧に応じて二色性吸収型偏光板9を透過したり二色性吸収型偏光板9に吸収されたりして、表示面9Uに画像等が表示される。
 この際、輝度向上フィルム3の機能により、表示面9Uから発せられる光の輝度を高めることができる。
Since the liquid crystal display device 100 of the present embodiment is configured as described above, light emitted from the light source 1 passes through the dichroic absorption polarizing plate 9 according to the voltage applied to the liquid crystal panel 7. An image or the like is displayed on the display surface 9U by being absorbed by the dichroic absorption type polarizing plate 9.
At this time, the function of the brightness enhancement film 3 can increase the brightness of the light emitted from the display surface 9U.
 さらに、本実施形態の液晶表示装置100では、表示面9Uを長辺方向Xに平行な方位角において傾斜方向から見た場合に着色して見える現象を防止することが可能である。この点について、表示面を前記の傾斜方向から見た場合に黄色に着色して見える液晶表示装置と対比させて説明する。
 図3は、1/4波長板32’のNz係数が0.9未満であること以外は本実施形態の液晶表示装置と同様に構成された液晶表示装置を分解し、そのコレステリック液晶層、1/4波長板、一対の二色性吸収型偏光板及び光学補償フィルム、並びに液晶パネルを斜め上方から見た様子を模式的に示す分解斜視図である。なお、図3において、図2と同様の要素は、同様の符号で示す。
Furthermore, in the liquid crystal display device 100 of the present embodiment, it is possible to prevent a phenomenon in which the display surface 9U appears to be colored when viewed from the tilt direction at an azimuth angle parallel to the long side direction X. This point will be described in comparison with a liquid crystal display device that looks yellow when the display surface is viewed from the tilt direction.
FIG. 3 shows a disassembled liquid crystal display device having the same configuration as that of the liquid crystal display device of the present embodiment except that the Nz coefficient of the quarter-wave plate 32 ′ is less than 0.9. FIG. 4 is an exploded perspective view schematically showing a quarter-wave plate, a pair of dichroic absorption polarizing plates, an optical compensation film, and a liquid crystal panel as viewed obliquely from above. In FIG. 3, the same elements as those in FIG. 2 are denoted by the same reference numerals.
 図3に示す液晶表示装置では、表示面9U’の長辺方向Xに平行な方位角において表示面9U’の正面方向(法線方向)に対して傾斜した方向から表示面9U’を見たときに、表示面9U’は黄色に着色して見えていた。これは、長辺方向Xに平行な方位角において表示面9U’の正面方向に対して傾斜した方向に表示面9U’から出光する光L9に含まれる黄色の成分が強くなっていたためと考えられる。
 これに対して本実施形態では、図2に示すように、長辺方向Xに平行な方位角において1/4波長板32の上面32Uの法線方向に対して傾斜した方向に上面32Uから出光する光L32に含まれる青色の成分を強くすることができる。したがって、本実施形態の液晶表示装置100では前記の青色の成分が強くなった光と黄色の成分が強くなった光とが混ざり合って表示面9Uから出光することになるため、前記したように表示面9Uが黄色に着色して見える現象を防止することができる。
In the liquid crystal display device shown in FIG. 3, the display surface 9U ′ is viewed from a direction inclined with respect to the front direction (normal direction) of the display surface 9U ′ at an azimuth angle parallel to the long-side direction X of the display surface 9U ′. Occasionally, the display surface 9U ′ was colored yellow. This is considered because the yellow component contained in the light L9 emitted from the display surface 9U ′ in a direction inclined with respect to the front direction of the display surface 9U ′ at an azimuth angle parallel to the long side direction X is strong. .
On the other hand, in the present embodiment, as shown in FIG. 2, light is emitted from the upper surface 32U in a direction inclined with respect to the normal direction of the upper surface 32U of the quarter-wave plate 32 at an azimuth angle parallel to the long side direction X. The blue component contained in the light L32 can be strengthened. Therefore, in the liquid crystal display device 100 of the present embodiment, the light whose blue component is strengthened and the light whose yellow component is strong are mixed and emitted from the display surface 9U. It is possible to prevent a phenomenon in which the display surface 9U appears to be colored yellow.
 以上、本発明の一実施形態について説明したが、本発明の輝度向上フィルム、複合偏光板及び液晶表示装置は更に変更して実施してもよい。
 例えば、液晶表示装置が表示装置として機能する限り、各光学素子の光軸は前記実施形態と異なる方向に設定してもよい。ただし、本発明の輝度向上フィルムは、1/4波長板の遅相軸の方向において青色の光を出光する傾向を有するため、この輝度向上フィルムを液晶表示装置に適用する場合には、適用する液晶表示装置が表示面から黄色に着色した光を出光する方位角方向と、輝度向上フィルムの1/4波長板の遅相軸の方向とが平行になるようにすることが好ましい。これにより、液晶表示装置の黄色の着色を、本発明の輝度向上フィルムによって安定して防止できる。
Although one embodiment of the present invention has been described above, the brightness enhancement film, composite polarizing plate and liquid crystal display device of the present invention may be further modified.
For example, as long as the liquid crystal display device functions as a display device, the optical axis of each optical element may be set in a different direction from the above embodiment. However, since the brightness enhancement film of the present invention has a tendency to emit blue light in the direction of the slow axis of the quarter-wave plate, it is applied when this brightness enhancement film is applied to a liquid crystal display device. It is preferable that the azimuth angle direction in which the liquid crystal display device emits yellow light from the display surface is parallel to the slow axis direction of the quarter wavelength plate of the brightness enhancement film. Thereby, yellow coloring of a liquid crystal display device can be stably prevented by the brightness enhancement film of the present invention.
 さらに、例えば、光源としては点光源を用いてもよく、点光源と線光源とを組み合わせて用いてもよい。
 また、例えば、コレステリック液晶層31、1/4波長板32、二色性吸収型偏光板4、光学補償フィルム5、液晶パネル7、光学補償フィルム8及び二色性吸収型偏光板9といった構成要素は、任意の組み合わせで一体化してもよい。その場合、適切な粘着層により接着して一体化してもよい。
Further, for example, a point light source may be used as the light source, or a point light source and a line light source may be used in combination.
Further, for example, components such as a cholesteric liquid crystal layer 31, a quarter wave plate 32, a dichroic absorption polarizing plate 4, an optical compensation film 5, a liquid crystal panel 7, an optical compensation film 8, and a dichroic absorption polarizing plate 9 May be integrated in any combination. In that case, you may adhere | attach and integrate with a suitable adhesion layer.
 さらに、例えば、輝度向上フィルム、複合偏光板及び液晶表示装置は、それぞれ、前述した以外にも他の構成要素をさらに含むことができる。例えば、輝度および輝度均斉度を向上させるための光学素子を適宜配置してもよい。このような光学素子としては、例えば、導光板、光拡散板、プリズムシート、光拡散シート等が挙げられる。また、例えば各光学素子を保護するために光学素子それぞれに保護膜を設けてもよい。さらに、液晶表示装置を構成するための筐体、通電装置等を適宜備えることができる。 Furthermore, for example, the brightness enhancement film, the composite polarizing plate, and the liquid crystal display device can each further include other components in addition to those described above. For example, an optical element for improving luminance and luminance uniformity may be appropriately arranged. Examples of such an optical element include a light guide plate, a light diffusion plate, a prism sheet, and a light diffusion sheet. Further, for example, a protective film may be provided on each optical element in order to protect each optical element. Furthermore, a housing for configuring the liquid crystal display device, a power supply device, and the like can be provided as appropriate.
 〔各構成要素〕
 次に、本発明の液晶表示装置における各構成要素の好ましい例をより具体的に説明する。
[Each component]
Next, a preferable example of each component in the liquid crystal display device of the present invention will be described more specifically.
(1)コレステリック樹脂層
 コレステリック樹脂層は、一平面上では分子軸が一定の方向に並んでいるが、次の平面では分子軸の方向が少し角度をなしてずれ、さらに次の平面ではさらに角度がずれるという具合に、分子が一定方向に配列している平面を進むに従って分子軸の角度がずれて(ねじれて)いく構造を有する。このように分子軸の方向がねじれてゆく構造は光学的にカイラルな構造となる。なお、前記の分子は、コレステリック樹脂層に含まれる分子であり、通常、液晶性化合物の分子、又は、前記液晶性化合物等から得られる重合体の分子のことを指す。
(1) Cholesteric resin layer The cholesteric resin layer has molecular axes aligned in a certain direction on one plane, but the molecular axis direction is slightly shifted on the next plane, and further on the next plane It has a structure in which the angle of the molecular axis is shifted (twisted) as it moves on a plane in which molecules are arranged in a certain direction. Thus, the structure in which the direction of the molecular axis is twisted becomes an optically chiral structure. In addition, the said molecule | numerator is a molecule | numerator contained in a cholesteric resin layer, and generally points out the molecule | numerator of the polymer obtained from the molecule | numerator of a liquid crystalline compound or the said liquid crystalline compound.
 コレステリック樹脂層は、円偏光分離機能を有する。すなわち、ある特定波長域の左回転若しくは右回転の円偏光を反射し、それ以外の円偏光を透過する機能を有する。本発明においては、1/4波長板に対して左円偏光を出光するものを用いるようにする。また、コレステリック樹脂層としては、この円偏光分離機能を可視光の全波長領域にわたって発揮するコレステリック樹脂層が好ましい。具体的には、400nm~750nmの波長領域の光について円偏光分離機能を有するコレステリック樹脂層が好ましい。例えば、青色(波長410~470nm)、緑色(波長520~580nm)、赤色(波長600~660nm)のいずれの波長域の光についても円偏光分離機能を有するコレステリック樹脂層が好ましい。 The cholesteric resin layer has a circularly polarized light separation function. That is, it has a function of reflecting left-handed or right-handed circularly polarized light in a specific wavelength region and transmitting other circularly-polarized light. In the present invention, a material that emits left-handed circularly polarized light with respect to the quarter-wave plate is used. Further, as the cholesteric resin layer, a cholesteric resin layer that exhibits this circularly polarized light separation function over the entire wavelength region of visible light is preferable. Specifically, a cholesteric resin layer having a circularly polarized light separation function with respect to light in a wavelength region of 400 nm to 750 nm is preferable. For example, a cholesteric resin layer having a circularly polarized light separation function for light in any wavelength region of blue (wavelength 410 to 470 nm), green (wavelength 520 to 580 nm), and red (wavelength 600 to 660 nm) is preferable.
 円偏光分離機能を発揮する波長は、コレステリック樹脂層におけるカイラル構造の螺旋ピッチに依存する。カイラル構造の螺旋ピッチとは、カイラル構造において分子軸の方向が平面を進むに従って少しずつ角度がずれていき、そして再びもとの分子軸方向に戻るまでの平面法線方向の距離のことである。このカイラル構造の螺旋ピッチの大きさを変えることによって、円偏光分離機能を発揮する波長を変えることができる。本発明においては、前記のカイラル構造の螺旋ピッチを、コレステリック樹脂層の厚み方向において、出光側の面に近づくにつれて狭くなるようにする。 The wavelength that exhibits the circularly polarized light separation function depends on the helical pitch of the chiral structure in the cholesteric resin layer. The spiral pitch of the chiral structure is the distance in the plane normal direction until the molecular axis direction gradually shifts in the chiral structure as it advances along the plane and then returns to the original molecular axis direction again. . By changing the size of the spiral pitch of this chiral structure, the wavelength at which the circularly polarized light separating function is exhibited can be changed. In the present invention, the spiral pitch of the chiral structure is made narrower as it approaches the light-emitting side surface in the thickness direction of the cholesteric resin layer.
 コレステリック樹脂層は、非液晶性の樹脂層であることが好ましい。非液晶性の樹脂層であると、周囲の温度や電界などによってコレステリック規則性が変化しないからである。非液晶性のコレステリック樹脂層は、例えば、液晶性を有し且つ重合性を有する化合物を含む組成物の層において、かかる化合物をコレステリック液晶相に配向させてから重合させることにより得ることができる。 The cholesteric resin layer is preferably a non-liquid crystalline resin layer. This is because the non-liquid crystalline resin layer does not change the cholesteric regularity due to the ambient temperature or electric field. The non-liquid crystalline cholesteric resin layer can be obtained, for example, by aligning the compound in a cholesteric liquid crystal phase and then polymerizing it in a composition layer containing a liquid crystalline and polymerizable compound.
 好適なコレステリック樹脂層としては、例えば、(i)カイラル構造の螺旋ピッチの大きさを段階的に変化させたコレステリック樹脂層、(ii)カイラル構造の螺旋ピッチの大きさを連続的に変化させたコレステリック樹脂層等が挙げられる。 Suitable cholesteric resin layers include, for example, (i) a cholesteric resin layer in which the helical pitch of the chiral structure is changed stepwise, and (ii) a continuous change in the helical pitch of the chiral structure. A cholesteric resin layer etc. are mentioned.
 (i)カイラル構造の螺旋ピッチを段階的に変化させたコレステリック樹脂層は、例えば、青色の波長域の光で円偏光分離機能を発揮するカイラル構造の螺旋ピッチを有するコレステリック樹脂層、緑色の波長域の光で円偏光分離機能を発揮するカイラル構造の螺旋ピッチを有するコレステリック樹脂層、及び、赤色の波長域の光で円偏光分離機能を発揮するカイラル構造の螺旋ピッチを有するコレステリック樹脂層を積層することによって得ることができる。また、反射される円偏光の中心波長が470nm、550nm、640nm、及び770nmであるコレステリック樹脂層をそれぞれ作製し、これらのコレステリック樹脂層を任意に選択し、反射光の中心波長の順序で3~7層積層することによって得ることができる。カイラル構造の螺旋ピッチの大きさが異なるコレステリック樹脂層を積層する場合には、各コレステリック樹脂層で反射する円偏光の回転方向が同じであることが好ましい。また、カイラル構造の螺旋ピッチの大きさが異なるコレステリック樹脂層の積層順序は、カイラル構造の螺旋ピッチの大きさで、昇順又は降順になるようにすることが、視野角の広い液晶表示装置を得るために好ましい。これらコレステリック樹脂層の積層は、単に重ね置いただけでもよいし、粘着剤や接着剤を介して固着させてもよい。 (I) A cholesteric resin layer in which the spiral pitch of the chiral structure is changed stepwise includes, for example, a cholesteric resin layer having a spiral pitch of a chiral structure that exhibits a circularly polarized light separation function with light in a blue wavelength region, and a green wavelength A cholesteric resin layer having a chiral helical spiral pitch that exhibits a circularly polarized light separating function with light in the wavelength range and a cholesteric resin layer having a chiral helical spiral pitch that exhibits a circularly polarized light separating function with light in the red wavelength range Can be obtained. Further, cholesteric resin layers having center wavelengths of 470 nm, 550 nm, 640 nm, and 770 nm of the circularly polarized light to be reflected are respectively produced, and these cholesteric resin layers are arbitrarily selected, and the order of the central wavelengths of the reflected light is 3 to It can be obtained by laminating seven layers. When the cholesteric resin layers having different spiral pitch sizes in the chiral structure are laminated, it is preferable that the rotation directions of the circularly polarized light reflected by the respective cholesteric resin layers are the same. Moreover, the stacking order of the cholesteric resin layers having different spiral pitch sizes in the chiral structure is set in the ascending or descending order according to the spiral pitch size of the chiral structure, thereby obtaining a liquid crystal display device having a wide viewing angle. Therefore, it is preferable. The lamination of these cholesteric resin layers may be merely overlaid, or may be fixed via an adhesive or an adhesive.
 (ii)カイラル構造の螺旋ピッチの大きさを連続的に変化させたコレステリック樹脂層は、その製法によって特に制限されない。コレステリック樹脂層の製法の好ましい例としては、コレステリック樹脂層を形成するための重合性液晶性化合物を含有するコレステリック液晶組成物を、好ましくは配向膜等の他の層上に塗布して液晶層を得、次いで1回以上の、光照射及び/又は加温処理により当該液晶層を硬化する方法が挙げられる。当該コレステリック液晶組成物の好ましい態様としては、下記に詳述するコレステリック液晶組成物(X)が挙げられる。なお、ここで便宜上液晶組成物と称する材料は、2以上の物質の混合物のみならず、単一の物質からなる材料をも包含する。 (Ii) The cholesteric resin layer in which the spiral pitch of the chiral structure is continuously changed is not particularly limited by the manufacturing method. As a preferred example of the method for producing a cholesteric resin layer, a cholesteric liquid crystal composition containing a polymerizable liquid crystal compound for forming a cholesteric resin layer is preferably applied on another layer such as an alignment film to form a liquid crystal layer. And then a method of curing the liquid crystal layer by light irradiation and / or heating treatment at least once. Preferable embodiments of the cholesteric liquid crystal composition include a cholesteric liquid crystal composition (X) described in detail below. Note that the material referred to as a liquid crystal composition here for convenience includes not only a mixture of two or more substances but also a material made of a single substance.
 前記コレステリック液晶組成物(X)は、下記一般式(1)で表される化合物、及び特定の棒状液晶性化合物を含有する。これら各成分について順次説明する。
 R-A-Z-A-R  (1)
The cholesteric liquid crystal composition (X) contains a compound represented by the following general formula (1) and a specific rod-like liquid crystal compound. Each of these components will be described in turn.
R 1 -A 1 -ZA 2 -R 2 (1)
 一般式(1)において、R及びRはそれぞれ独立して、炭素原子数1~20個の直鎖状又は分岐鎖状のアルキル基、炭素原子数1~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基、水素原子、ハロゲン原子、ヒドロキシル基、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基からなる群より選択される基を表す。ここで、(メタ)アクリルとは、アクリル及びメタクリルの意味である。 In the general formula (1), R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 20 carbon atoms, or a linear or branched group having 1 to 20 carbon atoms. Represents a group selected from the group consisting of a chain alkylene oxide group, a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a (meth) acryl group, an epoxy group, a mercapto group, an isocyanate group, an amino group, and a cyano group. . Here, (meth) acryl means acryl and methacryl.
 前記アルキル基及びアルキレンオキサイド基は、置換されていなくてもよく、ハロゲン原子で1つ以上置換されていてもよい。さらに、アルキル基及びアルキレンオキサイド基のそれぞれにおいて、2以上の置換基が存在する場合、それらは同一でも異なっていてもよい。
 また、前記ハロゲン原子、ヒドロキシル基、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基は、炭素原子数1~2個のアルキル基及び/又はアルキレンオキサイド基と結合していてもよい。
The alkyl group and alkylene oxide group may not be substituted and may be substituted with one or more halogen atoms. Furthermore, when two or more substituents are present in each of the alkyl group and the alkylene oxide group, they may be the same or different.
The halogen atom, hydroxyl group, carboxyl group, (meth) acryl group, epoxy group, mercapto group, isocyanate group, amino group, and cyano group may be an alkyl group having 1 to 2 carbon atoms and / or an alkylene oxide. It may be bonded to a group.
 R及びRとして好ましい例としては、ハロゲン原子、ヒドロキシル基、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基が挙げられる。 Preferred examples of R 1 and R 2 include a halogen atom, a hydroxyl group, a carboxyl group, a (meth) acryl group, an epoxy group, a mercapto group, an isocyanate group, an amino group, and a cyano group.
 R及びRの少なくとも一方は反応性基であることが好ましい。R及び/又はRとして反応性基を有することにより、前記一般式(1)で表される化合物が硬化時に液晶層中に固定され、より強固な膜を形成することができる。ここで反応性基とは、例えば、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、及びアミノ基を挙げることができる。 At least one of R 1 and R 2 is preferably a reactive group. By having a reactive group as R 1 and / or R 2 , the compound represented by the general formula (1) is fixed in the liquid crystal layer at the time of curing, and a stronger film can be formed. Here, examples of the reactive group include a carboxyl group, a (meth) acryl group, an epoxy group, a mercapto group, an isocyanate group, and an amino group.
 一般式(1)において、A及びAはそれぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、4,4’-ビフェニレン基、4,4’-ビシクロヘキシレン基、及び2,6-ナフチレン基からなる群より選択される基を表す。前記1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、4,4’-ビフェニレン基、4,4’-ビシクロヘキシレン基、及び2,6-ナフチレン基は、置換されていなくてもよく、ハロゲン原子、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、炭素原子数1~10個のアルキル基、ハロゲン化アルキル基等の置換基で1つ以上置換されていてもよい。さらに、A及びAのそれぞれにおいて、2以上の置換基が存在する場合、それらは同一でも異なっていてもよい。 In the general formula (1), A 1 and A 2 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, 4,4′-biphenylene group, 4 , 4′-bicyclohexylene group and a group selected from the group consisting of 2,6-naphthylene group. The 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, 4,4′-biphenylene group, 4,4′-bicyclohexylene group, and 2,6-naphthylene group are May be unsubstituted, substituted with one or more substituents such as a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, and a halogenated alkyl group. May be. Furthermore, when two or more substituents are present in each of A 1 and A 2 , they may be the same or different.
 A及びAとして特に好ましいものとしては、1,4-フェニレン基、4,4’-ビフェニレン基、及び2,6-ナフチレン基が挙げられる。これらの芳香環骨格は脂環式骨格と比較して比較的剛直であり、後述する棒状液晶性化合物のメソゲンとの親和性が高く、配向均一能がより高くなる。 Particularly preferable examples of A 1 and A 2 include a 1,4-phenylene group, a 4,4′-biphenylene group, and a 2,6-naphthylene group. These aromatic ring skeletons are relatively rigid as compared with the alicyclic skeletons, have high affinity with the mesogens of rod-like liquid crystalline compounds described later, and have higher alignment uniformity.
 一般式(1)において、Zは単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH-、-OCH-、-CH=N-N=CH-、-NHCO-、-OCOO-、-CHCOO-、及び-CHOCO-からなる群より選択される。Zとして特に好ましいものとしては、単結合、-OCO-及び-CH=N-N=CH-が挙げられる。 In the general formula (1), Z represents a single bond, —O—, —S—, —SS—, —CO—, —CS—, —OCO—, —CH 2 —, —OCH 2 —, —CH. = N-N = CH -, - NHCO -, - OCOO -, - CH 2 COO-, and is selected from the group consisting of -CH 2 OCO-. Particularly preferable examples of Z include a single bond, —OCO—, and —CH═N—N═CH—.
 一般式(1)で表される化合物は、少なくとも一種が液晶性を有することが好ましく、また、キラリティを有することが好ましい。また、コレステリック液晶組成物(X)は、一般式(1)で表される化合物として、複数の光学異性体の混合物を含有することが好ましい。例えば、複数種類のエナンチオマー及び/又はジアステレオマーの混合物を含有することができる。一般式(1)で表される化合物の少なくとも一種は、その融点が、50℃~150℃の範囲内であることが好ましい。 At least one of the compounds represented by the general formula (1) preferably has liquid crystallinity, and preferably has chirality. The cholesteric liquid crystal composition (X) preferably contains a mixture of a plurality of optical isomers as the compound represented by the general formula (1). For example, a mixture of plural kinds of enantiomers and / or diastereomers can be contained. At least one of the compounds represented by the general formula (1) preferably has a melting point in the range of 50 ° C to 150 ° C.
 一般式(1)で表される化合物が液晶性を有する場合には、固有複屈折値Δnが高いことが好ましい。高Δn液晶(即ち、高いΔnを有する液晶性化合物)を含有させることによって、コレステリック液晶組成物(X)としてのΔnを向上させることができ、広帯域の円偏光分離素子を作製することができる。一般式(1)で表される化合物の少なくとも一種のΔnは、好ましくは0.18以上、より好ましくは0.22以上である。 When the compound represented by the general formula (1) has liquid crystallinity, the intrinsic birefringence value Δn is preferably high. By containing a high Δn liquid crystal (that is, a liquid crystal compound having a high Δn), Δn as the cholesteric liquid crystal composition (X) can be improved, and a broadband circularly polarized light separating element can be produced. At least one Δn of the compound represented by the general formula (1) is preferably 0.18 or more, more preferably 0.22 or more.
 一般式(1)で表される化合物として特に好ましい具体例としては、例えば、下記の化合物(A1)~(A9)が挙げられる。なお、化合物(A3)において、「*」はキラル中心を表す。 Specific examples of particularly preferable compounds represented by the general formula (1) include the following compounds (A1) to (A9). In the compound (A3), “*” represents a chiral center.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一方、前記コレステリック液晶組成物(X)が有する棒状液晶性化合物としては、例えば、一般式(2)で表される化合物を挙げることができる。
 R-C-D-C-M-C-D-C-R  (2)
On the other hand, examples of the rod-like liquid crystalline compound that the cholesteric liquid crystal composition (X) has include a compound represented by the general formula (2).
R 3 -C 3 -D 3 -C 5 -MC 6 -D 4 -C 4 -R 4 (2)
 一般式(2)において、R及びRは反応性基であり、それぞれ独立して、(メタ)アクリル基、(チオ)エポキシ基、オキセタン基、チエタニル基、アジリジニル基、ピロール基、ビニル基、アリル基、フマレート基、シンナモイル基、オキサゾリン基、メルカプト基、イソ(チオ)シアネート基、アミノ基、ヒドロキシル基、カルボキシル基、及びアルコキシシリル基からなる群より選択される基を表す。なお、(チオ)エポキシとはエポキシ及びチオエポキシの意味であり、イソ(チオ)シアネートとはイソシアネート及びイソチオシアネートの意味である。 In the general formula (2), R 3 and R 4 are reactive groups, each independently (meth) acrylic group, (thio) epoxy group, oxetane group, thietanyl group, aziridinyl group, pyrrole group, vinyl group. , An allyl group, a fumarate group, a cinnamoyl group, an oxazoline group, a mercapto group, an iso (thio) cyanate group, an amino group, a hydroxyl group, a carboxyl group, and an alkoxysilyl group. In addition, (thio) epoxy means epoxy and thioepoxy, and iso (thio) cyanate means isocyanate and isothiocyanate.
 一般式(2)において、D及びDは、それぞれ独立して、単結合、炭素原子数1~20個の直鎖状又は分岐鎖状のメチレン基及びアルキレン基等の二価の飽和炭化水素基、並びに、炭素原子数1~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基からなる群より選択される基を表す。 In the general formula (2), D 3 and D 4 each independently represent a divalent saturated carbonization such as a single bond, a linear or branched methylene group having 1 to 20 carbon atoms, and an alkylene group. And a group selected from the group consisting of a hydrogen group and a linear or branched alkylene oxide group having 1 to 20 carbon atoms.
 一般式(2)において、C~Cは、それぞれ独立して、単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH-、-OCH-、-CH=N-N=CH-、-NHCO-、-OCOO-、-CHCOO-、及び-CHOCO-からなる群より選択される基を表す。 In the general formula (2), C 3 to C 6 are each independently a single bond, —O—, —S—, —SS—, —CO—, —CS—, —OCO—, —CH. 2 -, - OCH 2 -, - CH = N-N = CH -, - NHCO -, - OCOO -, - CH 2 COO-, and represents a group selected from the group consisting of -CH 2 OCO-.
 一般式(2)において、Mはメソゲン基を表す。Mの具体例を挙げると、非置換又は置換基を有していてもよい、アゾメチン類、アゾキシ類、フェニル類、ビフェニル類、ターフェニル類、ナフタレン類、アントラセン類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、及びアルケニルシクロヘキシルベンゾニトリル類の群から選択された2~4個の骨格を、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH-、-OCH-、-CH=N-N=CH-、-NHCO-、-OCOO-、-CHCOO-、及び-CHOCO-等の結合基によって結合されて形成される基が挙げられる。 In the general formula (2), M represents a mesogenic group. Specific examples of M include azomethines, azoxys, phenyls, biphenyls, terphenyls, naphthalenes, anthracenes, benzoic acid esters, cyclohexanecarboxylic acid, which may be unsubstituted or have a substituent. 2-4 skeletons selected from the group of acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, phenyldioxanes, tolanes, and alkenylcyclohexylbenzonitriles, O—, —S—, —S—S—, —CO—, —CS—, —OCO—, —CH 2 —, —OCH 2 —, —CH═N—N═CH—, —NHCO—, — OCOO -, - CH 2 COO-, and a group formed by a linked by linking groups -CH 2 OCO- such like
 前記のメソゲン基Mが有しうる置換基としては、例えば、ハロゲン原子、置換基を有してもよい炭素原子数1~10のアルキル基、シアノ基、ニトロ基、-O-R、-O-C(=O)-R、-C(=O)-O-R、-O-C(=O)-O-R、-NR-C(=O)-R、-C(=O)-NR、または-O-C(=O)-NRを表す。
 ここで、R及びRは、水素原子又は炭素原子数1~10のアルキル基を表す。R及びRがアルキル基である場合、当該アルキル基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、または-C(=O)-が介在していてもよい(ただし、-O-および-S-がそれぞれ2以上隣接して介在する場合を除く。)。ここで、Rは、水素原子または炭素原子数1~6のアルキル基を表す。前記「置換基を有してもよい炭素原子数1~10個のアルキル基」における置換基としては、ハロゲン原子、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、炭素原子数1~6個のアルコキシ基、炭素原子数2~8個のアルコキシアルコキシ基、炭素原子数3~15個のアルコキシアルコキシアルコキシ基、炭素原子数2~7個のアルコキシカルボニル基、炭素原子数2~7個のアルキルカルボニルオキシ基、炭素原子数2~7個のアルコキシカルボニルオキシ基等が挙げられる。
Examples of the substituent that the mesogenic group M may have include a halogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, a cyano group, a nitro group, —O—R 5 , — O—C (═O) —R 5 , —C (═O) —O—R 5 , —O—C (═O) —O—R 5 , —NR 5 —C (═O) —R 5 , —C (═O) —NR 5 R 6 or —O—C (═O) —NR 5 R 6 is represented.
Here, R 5 and R 6 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. When R 5 and R 6 are alkyl groups, the alkyl group includes —O—, —S—, —O—C (═O) —, —C (═O) —O—, —O—C. (═O) —O—, —NR 7 —C (═O) —, —C (═O) —NR 7 —, —NR 7 —, or —C (═O) — may be present. (However, the case where two or more of —O— and —S— are adjacent to each other is excluded). Here, R 7 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Examples of the substituent in the “optionally substituted alkyl group having 1 to 10 carbon atoms” include a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, and 1 to 6 carbon atoms. Alkoxy group, alkoxy alkoxy group having 2 to 8 carbon atoms, alkoxy alkoxy alkoxy group having 3 to 15 carbon atoms, alkoxycarbonyl group having 2 to 7 carbon atoms, alkylcarbonyl having 2 to 7 carbon atoms Examples thereof include an oxy group and an alkoxycarbonyloxy group having 2 to 7 carbon atoms.
 前記の棒状液晶性化合物は非対称構造であることが好ましい。ここで非対称構造とは、一般式(2)において、メソゲン基Mを中心としてR-C-D-C-と-C-D-C-Rとが異なる構造のことをいう。該棒状液晶性化合物として、非対称構造のものを用いることにより、配向均一性をより高めることができる。 The rod-like liquid crystal compound preferably has an asymmetric structure. Here, the asymmetric structure is a structure in which R 3 -C 3 -D 3 -C 5 -and -C 6 -D 4 -C 4 -R 4 are different from each other in the general formula (2) with the mesogenic group M as the center. That means. By using a rod-like liquid crystal compound having an asymmetric structure, alignment uniformity can be further improved.
 前記の棒状液晶性化合物は、そのΔn値が、通常0.18以上、好ましくは0.22以上である。Δn値が0.30以上の棒状液晶性化合物を用いると、紫外線吸収スペクトルの長波長側の吸収端が可視域に及ぶ場合があるが、該スペクトルの吸収端が可視域に及んでも所望する光学的性能に悪影響を及ぼさない限り、使用可能である。このような高いΔn値を有することにより、高い光学的性能(例えば、円偏光分離特性)を有する円偏光分離素子を実現できる。 The Δn value of the rod-like liquid crystalline compound is usually 0.18 or more, preferably 0.22 or more. When a rod-like liquid crystalline compound having an Δn value of 0.30 or more is used, the absorption edge on the long wavelength side of the ultraviolet absorption spectrum may extend to the visible range, but it is desirable even if the absorption edge of the spectrum extends to the visible range. It can be used as long as the optical performance is not adversely affected. By having such a high Δn value, a circularly polarized light separating element having high optical performance (for example, circularly polarized light separation characteristics) can be realized.
 前記の棒状液晶性化合物は、1分子中に少なくとも2つ以上の反応性基を有することが好ましい。反応性基としては、例えば、エポキシ基、チオエポキシ基、オキセタン基、チエタニル基、アジリジニル基、ピロール基、フマレート基、シンナモイル基、イソシアネート基、イソチオシアネート基、アミノ基、ヒドロキシル基、カルボキシル基、アルコキシシリル基、オキサゾリン基、メルカプト基、ビニル基、アリル基、メタクリル基、及びアクリル基等が挙げられる。なお、棒状液晶性化合物は1種類の反応性基を有しても良く、2種類以上の反応性基を任意の比率で組み合わせて有していても良い。これらの反応性基を有することにより、コレステリック液晶組成物(X)を硬化させた際に、安定した硬化物を得ることができる。逆に、1分子中に反応性基が1つ以下の化合物を用いると、コレステリック液晶組成物を硬化させた際に、架橋した硬化物が得られないため実用に耐えうる膜強度が得られないことがある。後述する架橋剤を使用した場合でも、膜強度が不足し実用は困難になる傾向がある。なお実用に耐えうる膜強度とは、鉛筆硬度(JIS K5400)でHB以上、好ましくはH以上である。膜強度がHBより低いと傷がつきやすくハンドリング性に欠ける。好ましい鉛筆硬度の上限は、光学的性能や耐久性試験に悪影響を及ぼさなければ特に限定されない。 The rod-like liquid crystalline compound preferably has at least two reactive groups in one molecule. Examples of reactive groups include epoxy groups, thioepoxy groups, oxetane groups, thietanyl groups, aziridinyl groups, pyrrole groups, fumarate groups, cinnamoyl groups, isocyanate groups, isothiocyanate groups, amino groups, hydroxyl groups, carboxyl groups, alkoxysilyls. Group, oxazoline group, mercapto group, vinyl group, allyl group, methacryl group, acrylic group and the like. The rod-like liquid crystalline compound may have one type of reactive group or two or more types of reactive groups in combination at any ratio. By having these reactive groups, a stable cured product can be obtained when the cholesteric liquid crystal composition (X) is cured. Conversely, when a compound having one or less reactive group in one molecule is used, when the cholesteric liquid crystal composition is cured, a crosslinked cured product cannot be obtained, so that a film strength that can withstand practical use cannot be obtained. Sometimes. Even when a cross-linking agent described later is used, the film strength tends to be insufficient and practical use tends to be difficult. The film strength that can withstand practical use is HB or more, preferably H or more, in terms of pencil hardness (JIS K5400). If the film strength is lower than HB, the film is easily scratched and lacks handling properties. The upper limit of preferable pencil hardness is not particularly limited as long as it does not adversely affect the optical performance and durability test.
 前記コレステリック液晶組成物(X)において、(前記一般式(1)で表される化合物の合計重量)/(棒状液晶性化合物の合計重量)の重量比は、0.05以上が好ましく、0.1以上がより好ましく、0.15以上が特に好ましく、また、1以下が好ましく、0.65以下がより好ましく、0.45以下が特に好ましい。前記重量比が小さすぎると配向均一性が不十分となる場合があり、また逆に大きすぎると配向均一性が低下したり、液晶相の安定性が低下したり、液晶組成物としてのΔnが低下して所望の光学的性能(例えば、円偏光分離特性)が得られない場合がある。なお、合計重量とは、1種を用いた場合にはその重量を示し、2種以上用いた場合には合計の重量を示す。 In the cholesteric liquid crystal composition (X), the weight ratio of (total weight of the compound represented by the general formula (1)) / (total weight of the rod-like liquid crystal compound) is preferably 0.05 or more. 1 or more is more preferable, 0.15 or more is particularly preferable, 1 or less is preferable, 0.65 or less is more preferable, and 0.45 or less is particularly preferable. If the weight ratio is too small, the alignment uniformity may be insufficient. On the other hand, if the weight ratio is too large, the alignment uniformity decreases, the stability of the liquid crystal phase decreases, or Δn as a liquid crystal composition is low. In some cases, the desired optical performance (for example, circularly polarized light separation characteristics) cannot be obtained. The total weight indicates the weight when one kind is used, and indicates the total weight when two or more kinds are used.
 コレステリック液晶組成物(X)において、前記一般式(1)で表される化合物の分子量が600未満であることが好ましく、前記棒状液晶性化合物の分子量が600以上であることが好ましい。一般式(1)で表される化合物の分子量が600未満であることにより、それよりも分子量の大きい棒状液晶性化合物の隙間に入り込むことができ、配向均一性を向上させることができる。 In the cholesteric liquid crystal composition (X), the molecular weight of the compound represented by the general formula (1) is preferably less than 600, and the molecular weight of the rod-like liquid crystalline compound is preferably 600 or more. When the molecular weight of the compound represented by the general formula (1) is less than 600, the rod-like liquid crystalline compound having a molecular weight larger than that can enter the gap, and the alignment uniformity can be improved.
 前記のコレステリック液晶組成物(X)等のコレステリック液晶組成物は、硬化後の膜強度向上や耐久性向上のために、任意に架橋剤を含有することができる。当該架橋剤としては、液晶組成物を塗布した液晶層の硬化時に同時に反応したり、硬化後に熱処理を行って反応を促進したり、湿気により自然に反応が進行したりして、液晶層の架橋密度を高めることができ、かつ配向均一性を悪化させないものを適宜選択し用いることができる。また架橋剤は、例えば紫外線、熱、湿気等で硬化するものが好適に使用できる。 The cholesteric liquid crystal composition such as the cholesteric liquid crystal composition (X) can optionally contain a crosslinking agent in order to improve the film strength after curing and the durability. As the cross-linking agent, the liquid crystal layer coated with the liquid crystal composition reacts simultaneously when cured, or heat treatment is performed after curing to accelerate the reaction, or the reaction proceeds spontaneously due to moisture. Those that can increase the density and do not deteriorate the alignment uniformity can be appropriately selected and used. Moreover, what can harden | cure with an ultraviolet-ray, a heat | fever, moisture etc. can be used conveniently as a crosslinking agent, for example.
 架橋剤の具体例としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、2-(2-ビニロキシエトキシ)エチルアクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート等のアジリジン化合物;ヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネートから誘導されるイソシアヌレート型イソシアネート、ビウレット型イソシアネート、アダクト型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等のアルコキシシラン化合物;などが挙げられる。なお、架橋剤は1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度や耐久性向上に加えて生産性を向上させることができる。
Specific examples of the crosslinking agent include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 2- (2-vinyloxyethoxy). ) Polyfunctional acrylate compounds such as ethyl acrylate; Epoxy compounds such as glycidyl (meth) acrylate, ethylene glycol diglycidyl ether, glycerin triglycidyl ether, pentaerythritol tetraglycidyl ether; 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane, trimethylolpropane-tri-β-aziridinyl Aziridine compounds such as pionate; isocyanate compounds such as isocyanurate type isocyanate, biuret type isocyanate and adduct type isocyanate derived from hexamethylene diisocyanate, hexamethylene diisocyanate; polyoxazoline compound having an oxazoline group in the side chain; vinyltrimethoxysilane; N- (2-aminoethyl) 3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, N- (1 , 3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine and the like alkoxysilane compounds; In addition, 1 type may be used for a crosslinking agent and it may use it combining 2 or more types by arbitrary ratios.
Moreover, a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement.
 前記架橋剤の配合割合は、コレステリック液晶組成物を硬化して得られる硬化膜中における架橋剤の濃度が0.1~15重量%となるようにすることが好ましい。架橋剤の配合割合が0.1重量%より少ないと架橋密度向上の効果が得られない可能性があり、逆に15重量%より多いと液晶層の安定性を低下させる可能性がある。 The blending ratio of the crosslinking agent is preferably such that the concentration of the crosslinking agent in the cured film obtained by curing the cholesteric liquid crystal composition is 0.1 to 15% by weight. If the blending ratio of the crosslinking agent is less than 0.1% by weight, the effect of improving the crosslinking density may not be obtained. Conversely, if it exceeds 15% by weight, the stability of the liquid crystal layer may be lowered.
 コレステリック液晶組成物は、任意に光重合開始剤(光開始剤ともいう。)を含有することができる。当該光重合開始剤としては、例えば、紫外線又は可視光線によってラジカル又は酸を発生させる公知の化合物が使用できる。具体例を挙げると、ベンゾイン、ベンジルメチルケタール、ベンゾフェノン、ビアセチル、アセトフェノン、ミヒラーケトン、ベンジル、ベンジルイソブチルエーテル、テトラメチルチウラムモノ(ジ)スルフィド、2,2-アゾビスイソブチロニトリル、2,2-アゾビス-2,4-ジメチルバレロニトリル、ベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイド、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジエチルチオキサントン、メチルベンゾイルフォーメート、2,2-ジエトキシアセトフェノン、β-アイオノン、β-ブロモスチレン、ジアゾアミノベンゼン、α-アミルシンナックアルデヒド、p-ジメチルアミノアセトフェノン、p-ジメチルアミノプロピオフェノン、2-クロロベンゾフェノン、pp′-ジクロロベンゾフェノン、pp′-ビスジエチルアミノベンゾフェノン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-プロピルエーテル、ベンゾインn-ブチルエーテル、ジフェニルスルフィド、ビス(2,6-メトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、アントラセンベンゾフェノン、α-クロロアントラキノン、ジフェニルジスルフィド、ヘキサクロルブタジエン、ペンタクロルブタジエン、オクタクロロブテン、1-クロルメチルナフタリン、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(o-ベンゾイルオキシム)]や1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(o-アセチルオキシム)などのカルバゾールオキシム化合物、(4-メチルフェニル)[4-(2-メチルプロピル)フェニル]ヨードニウムヘキサフルオロフォスフェート、3-メチル-2-ブチニルテトラメチルスルホニウムヘキサフルオロアンチモネート、ジフェニル-(p-フェニルチオフェニル)スルホニウムヘキサフルオロアンチモネート等が挙げられる。なお、所望する物性に応じて光重合開始剤は1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。さらに、必要に応じて公知の光増感剤や重合促進剤としての三級アミン化合物を併用して硬化性をコントロールすることもできる。 The cholesteric liquid crystal composition can optionally contain a photopolymerization initiator (also referred to as a photoinitiator). As the photopolymerization initiator, for example, a known compound that generates radicals or acids by ultraviolet rays or visible rays can be used. Specific examples include benzoin, benzylmethyl ketal, benzophenone, biacetyl, acetophenone, Michler's ketone, benzyl, benzylisobutyl ether, tetramethylthiuram mono (di) sulfide, 2,2-azobisisobutyronitrile, 2,2- Azobis-2,4-dimethylvaleronitrile, benzoyl peroxide, di-tert-butyl peroxide, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- ( 4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-diethylthioxanthone, methylbenzoylformate, 2,2- Ethoxyacetophenone, β-ionone, β-bromostyrene, diazoaminobenzene, α-amylcinnackaldehyde, p-dimethylaminoacetophenone, p-dimethylaminopropiophenone, 2-chlorobenzophenone, pp'-dichlorobenzophenone, pp ' -Bisdiethylaminobenzophenone, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-propyl ether, benzoin n-butyl ether, diphenyl sulfide, bis (2,6-methoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, 2,4,6-trimethylbenzoyldiphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2-methyl 1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, anthracenebenzophenone, α-chloroanthraquinone, diphenyldisulfide, hexachlorobutadiene, pentachlorobutadiene, octachlorobutene, 1-chloromethylnaphthalene, 1,2-octanedione, 1- [4- (phenylthio) -2- (o-benzoyloxime) ] And 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] ethanone 1- (o-acetyloxime), (4-methylphenyl) [4- (2-Methylpropyl) phenyl] iodonium hexafluorophosphate , 3-methyl-2-butynyl tetramethyl hexafluoroantimonate, diphenyl - (p-phenylthiophenyl) sulfonium hexafluoroantimonate, and the like. In addition, according to the desired physical property, one type of photopolymerization initiator may be used, or two or more types may be used in combination at any ratio. Further, if necessary, the curability can be controlled by using a known photosensitizer or a tertiary amine compound as a polymerization accelerator in combination.
 該光重合開始剤の配合割合はコレステリック液晶組成物中0.03~7重量%であることが好ましい。光重合開始剤の配合量が0.03重量%より少ないと重合度が低くなり膜強度が低下する場合がある。逆に7重量%より多いと、液晶の配向を阻害して液晶相が不安定になる場合がある。 The blending ratio of the photopolymerization initiator is preferably 0.03 to 7% by weight in the cholesteric liquid crystal composition. When the blending amount of the photopolymerization initiator is less than 0.03% by weight, the degree of polymerization is lowered and the film strength may be lowered. On the other hand, when the content is more than 7% by weight, the liquid crystal phase may become unstable because the alignment of the liquid crystal is inhibited.
 コレステリック液晶組成物は、任意に界面活性剤を含有することができる。当該界面活性剤としては、配向を阻害しないものを適宜選択して使用することができる。当該界面活性剤の例を挙げると、疎水基部分にシロキサン、フッ化アルキル基を含有するノニオン系界面活性剤等が好適に使用できる。中でも、1分子中に2個以上の疎水基部分を持つオリゴマーが特に好適である。これらの界面活性剤としては、例えば、OMNOVA社PolyFoxのPF-151N、PF-636、PF-6320、PF-656、PF-6520、PF-3320、PF-651、PF-652;ネオス社フタージェントのFTX-209F、FTX-208G、FTX-204D;セイミケミカル社サーフロンのKH-40等を用いることができる。なお、界面活性剤は1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The cholesteric liquid crystal composition can optionally contain a surfactant. As the surfactant, those not inhibiting the orientation can be appropriately selected and used. When the example of the said surfactant is given, the nonionic surfactant etc. which contain a siloxane and a fluorinated alkyl group in a hydrophobic group part can be used conveniently. Of these, oligomers having two or more hydrophobic group moieties in one molecule are particularly suitable. Examples of these surfactants include PF-151N, PF-636, PF-6320, PF-656, PF-6520, PF-3320, PF-651, and PF-652 from PolyFox, OMNOVA; FTX-209F, FTX-208G, FTX-204D, and KH-40 manufactured by Seimi Chemical Co., Ltd. can be used. In addition, 1 type of surfactant may be used and it may use it combining 2 or more types by arbitrary ratios.
 界面活性剤の配合割合は、コレステリック液晶組成物を硬化して得られる硬化膜中における界面活性剤の濃度が0.05重量%~3重量%となるようにすることが好ましい。界面活性剤の配合割合が0.05重量%より少ないと空気界面における配向規制力が低下して配向欠陥が生じる場合がある。逆に3重量%より多い場合には、過剰の界面活性剤が液晶性分子間に入り込み、配向均一性を低下させる場合がある。 The mixing ratio of the surfactant is preferably such that the concentration of the surfactant in the cured film obtained by curing the cholesteric liquid crystal composition is 0.05% by weight to 3% by weight. When the blending ratio of the surfactant is less than 0.05% by weight, the alignment regulating force at the air interface is lowered and alignment defects may occur. On the other hand, when the content is more than 3% by weight, an excessive surfactant may enter between the liquid crystal molecules, thereby reducing the alignment uniformity.
 コレステリック液晶組成物は、任意にカイラル剤を含有することができる。前記カイラル剤の具体例としては、特開2005-289881号公報、特開2004-115414号公報、特開2003-66214号公報、特開2003-313187号公報、特開2003-342219号公報、特開2000-290315号公報、特開平6-072962号公報、米国特許第6468444号公報、国際公開第98/00428号、特開2007-176870号公報、等に掲載されるものを適宜使用することができる。その具体例を挙げると、例えばBASF社パリオカラーのLC756が挙げられる。なおカイラル剤は1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The cholesteric liquid crystal composition can optionally contain a chiral agent. Specific examples of the chiral agent include JP-A-2005-289881, JP-A-2004-115414, JP-A-2003-66214, JP-A-2003-313187, JP-A-2003-342219, It is possible to appropriately use those described in Kaikai 2000-290315, JP-A-6-072962, U.S. Pat. No. 6,468,444, International Publication No. 98/00428, JP-A-2007-176870, and the like. it can. Specific examples thereof include, for example, LC756, a PASF color produced by BASF. Note that one type of chiral agent may be used, or two or more types may be used in combination at any ratio.
 カイラル剤の濃度は、所望する光学的性能を低下させない範囲とする。具体的なカイラル剤の含有割合は、前記コレステリック液晶組成物中、通常1重量%~60重量%である。 The concentration of the chiral agent should be in a range that does not deteriorate the desired optical performance. A specific content of the chiral agent is usually 1% by weight to 60% by weight in the cholesteric liquid crystal composition.
 コレステリック液晶組成物は、必要に応じてさらに他の任意成分を含有することができる。当該他の任意成分としては、溶媒、ポットライフ向上のための重合禁止剤、耐久性向上のための酸化防止剤、紫外線吸収剤、光安定化剤等を挙げられる。なお、これらの任意成分は、1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの任意成分は、所望する光学的性能を低下させない範囲で含有させることができる。
The cholesteric liquid crystal composition can further contain other optional components as necessary. Examples of the other optional components include a solvent, a polymerization inhibitor for improving pot life, an antioxidant for improving durability, an ultraviolet absorber, and a light stabilizer. In addition, these arbitrary components may use one type and may use it combining two or more types by arbitrary ratios.
These optional components can be contained in a range that does not deteriorate the desired optical performance.
 コレステリック液晶組成物の製造方法は、特に限定されず、上記各成分を混合することにより製造することができる。 The method for producing the cholesteric liquid crystal composition is not particularly limited, and can be produced by mixing the above components.
 前記コレステリック液晶組成物(X)等のコレステリック液晶組成物を、配向膜等の他の層上に塗布して液晶層を得、次いで1回以上の、光照射及び/又は加温処理により当該液晶層を硬化することにより、コレステリック樹脂層を得ることができる。塗布は、公知の方法、例えば押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、バーコーティング法等により実施すればよい。 A cholesteric liquid crystal composition such as the cholesteric liquid crystal composition (X) is applied onto another layer such as an alignment film to obtain a liquid crystal layer, and then the liquid crystal is subjected to light irradiation and / or heating treatment at least once. A cholesteric resin layer can be obtained by curing the layer. The application may be performed by a known method such as an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, or a bar coating method.
 前記塗布により得られた液晶層を硬化する前に、必要に応じて、配向処理を施す。配向処理は、例えば液晶層を50~150℃で0.5~10分間加温することにより行えばよい。当該配向処理を施すことにより、液晶層を良好に配向させることができる。 ¡Before curing the liquid crystal layer obtained by the application, an alignment treatment is performed as necessary. The alignment treatment may be performed, for example, by heating the liquid crystal layer at 50 to 150 ° C. for 0.5 to 10 minutes. By performing the alignment treatment, the liquid crystal layer can be aligned well.
 前記硬化の工程は、1回以上の光照射、加温処理又はこれらの組み合わせにより行うことができる。加温条件は、例えば、温度が通常40℃以上、好ましくは50℃以上で、通常200℃以下、好ましくは140℃以下において、通常1秒以上、好ましくは5秒以上、通常3分以下、好ましくは120秒以下の時間で行う。
 また、前記の光照射に用いる光とは、可視光のみならず紫外線及びその他の電磁波をも含む。光照射は、例えば波長200~500nmの光を0.01秒~3分照射することにより行えばよい。また、例えば0.01~50mJ/cmの微弱な紫外線照射と加温とを複数回交互に繰り返し、反射帯域の広い円偏光分離素子を得ることもできる。上記の微弱な紫外線照射等による反射帯域の拡張を行った後に、例えば50~10,000mJ/cmの比較的強い紫外線を照射し、液晶性化合物を完全に重合させ、コレステリック樹脂層とすることができる。上記の反射帯域の拡張及び強い紫外線の照射は、空気下で行ってもよく、又はその工程の一部又は全部を、酸素濃度を制御した雰囲気(例えば、窒素雰囲気下)中で行うこともできる。
The curing step can be performed by one or more times of light irradiation, heating treatment, or a combination thereof. The heating condition is, for example, a temperature of usually 40 ° C. or higher, preferably 50 ° C. or higher, usually 200 ° C. or lower, preferably 140 ° C. or lower, usually 1 second or longer, preferably 5 seconds or longer, usually 3 minutes or shorter, preferably Is performed in 120 seconds or less.
Moreover, the light used for the light irradiation includes not only visible light but also ultraviolet rays and other electromagnetic waves. The light irradiation may be performed, for example, by irradiating light having a wavelength of 200 to 500 nm for 0.01 second to 3 minutes. Further, for example, it is also possible to obtain a circularly polarized light separating element having a wide reflection band by alternately repeating weak ultraviolet irradiation of 0.01 to 50 mJ / cm 2 and heating a plurality of times. After the reflection band is expanded by the above-mentioned weak ultraviolet irradiation, etc., a relatively strong ultraviolet ray of, for example, 50 to 10,000 mJ / cm 2 is irradiated to completely polymerize the liquid crystalline compound to form a cholesteric resin layer. Can do. The expansion of the reflection band and the irradiation with strong ultraviolet rays may be performed in the air, or a part or all of the process may be performed in an atmosphere in which the oxygen concentration is controlled (for example, in a nitrogen atmosphere). .
 前記の配向膜等の他の層上へのコレステリック液晶組成物の塗布及び硬化の工程は、1回に限られず、塗布及び硬化を複数回繰り返し2層以上のコレステリック樹脂層を形成することもできる。ただし、1回のみのコレステリック液晶組成物の塗布及び硬化によっても、良好に配向した前記の棒状液晶性化合物を含み、かつ5μm以上といった厚みのコレステリック樹脂層を容易に形成することはできる。 The step of applying and curing the cholesteric liquid crystal composition on the other layers such as the alignment film is not limited to one time, and two or more cholesteric resin layers can be formed by repeating the application and curing a plurality of times. . However, even by applying and curing the cholesteric liquid crystal composition only once, it is possible to easily form a cholesteric resin layer containing the well-aligned rod-like liquid crystalline compound and having a thickness of 5 μm or more.
 コレステリック樹脂層の乾燥膜厚は、好ましくは3.0μm以上、より好ましくは3.5μm以上であり、好ましくは10.0μm以下、より好ましくは8μm以下である。コレステリック樹脂層の乾燥膜厚が3.0μmより薄いと反射率が低下する傾向がある。なお、前記乾燥膜厚は、コレステリック樹脂層が2以上の層である場合は各層の膜厚の合計を指し、コレステリック樹脂層が1層である場合にはその膜厚を指す。 The dry film thickness of the cholesteric resin layer is preferably 3.0 μm or more, more preferably 3.5 μm or more, preferably 10.0 μm or less, more preferably 8 μm or less. When the dry film thickness of the cholesteric resin layer is less than 3.0 μm, the reflectance tends to decrease. In addition, the said dry film thickness points out the sum total of the film thickness of each layer, when a cholesteric resin layer is two or more layers, and points out the film thickness when a cholesteric resin layer is one layer.
 コレステリック樹脂層には、支持体として透明樹脂基材を設けてもよい。透明樹脂基材としては、例えば1mm厚で全光透過率80%以上の基材を使用することができる。具体例を挙げると、脂環式オレフィンポリマー、ポリエチレンやポリプロピレンなどの鎖状オレフィンポリマー、トリアセチルセルロース、ポリビニルアルコール、ポリイミド、ポリアリレート、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、変性アクリルポリマー、エポキシ樹脂、ポリスチレン、アクリル樹脂等の合成樹脂からなる単層又は積層のフィルム等が挙げられる。これらの中でも、脂環式オレフィンポリマー又は鎖状オレフィンポリマーからなるものが好ましく、透明性、低吸湿性、寸法安定性、軽量性などの観点から、脂環式オレフィンポリマーからなるものが特に好ましい。なお、透明樹脂基材の材料は、1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用してもよい。 The cholesteric resin layer may be provided with a transparent resin base material as a support. As the transparent resin substrate, for example, a substrate having a thickness of 1 mm and a total light transmittance of 80% or more can be used. Specific examples include alicyclic olefin polymers, chain olefin polymers such as polyethylene and polypropylene, triacetyl cellulose, polyvinyl alcohol, polyimide, polyarylate, polyester, polycarbonate, polysulfone, polyethersulfone, modified acrylic polymer, epoxy resin. , A single layered or laminated film made of a synthetic resin such as polystyrene or acrylic resin. Among these, those made of an alicyclic olefin polymer or a chain olefin polymer are preferable, and those made of an alicyclic olefin polymer are particularly preferable from the viewpoints of transparency, low hygroscopicity, dimensional stability, lightness, and the like. In addition, the material of a transparent resin base material may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
 前記の透明樹脂基材の上に、配向膜を設けることができる。配向膜を設けることにより、その上に塗布されたコレステリック液晶組成物を所望の方向に配向させることができる。配向膜は、透明樹脂基材表面上に、必要に応じてコロナ放電処理等を施した後、配向膜の材料を水又は溶剤に溶解させた溶液等を、例えばリバースグラビアコーティング、ダイレクトグラビアコーティング、ダイコーティング、バーコーティング等の公知の方法を用いて塗布し、乾燥させ、その後乾燥塗膜にラビング処理を施すことにより形成することができる。前記配向膜の材料としては、例えば、セルロース、シランカップリング剤、ポリイミド、ポリアミド、ポリビニルアルコール、エポキシアクリレート、シラノールオリゴマー、ポリアクリロニトリル、フェノール樹脂、ポリオキサゾール、環化ポリイソプレンなどが挙げられるが、変性ポリアミドが特に好ましい。なお、配向膜の材料は、1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用してもよい。 An alignment film can be provided on the transparent resin substrate. By providing the alignment film, the cholesteric liquid crystal composition applied thereon can be aligned in a desired direction. The alignment film is subjected to a corona discharge treatment or the like on the surface of the transparent resin substrate, if necessary, and then a solution obtained by dissolving the alignment film material in water or a solvent, for example, reverse gravure coating, direct gravure coating, It can form by apply | coating and drying using well-known methods, such as die coating and bar coating, and giving a rubbing process to a dry coating film after that. Examples of the material of the alignment film include cellulose, silane coupling agent, polyimide, polyamide, polyvinyl alcohol, epoxy acrylate, silanol oligomer, polyacrylonitrile, phenol resin, polyoxazole, and cyclized polyisoprene. Polyamide is particularly preferred. In addition, the material of the alignment film may be used alone or in combination of two or more in any combination and ratio.
 前記変性ポリアミドとしては、例えば、芳香族ポリアミド又は脂肪族ポリアミドに変性を加えたものが挙げられる。中でも、脂肪族ポリアミドに変性を加えたものが好ましい。具体例を挙げると、ナイロン-6、ナイロン-66、ナイロン-12、3元ないし4元共重合ナイロン、脂肪酸系ポリアミド、又は脂肪酸系ブロック共重合体(例えばポリエーテルエステルアミド、ポリエステルアミド)に変性を加えたもの等が挙げられる。当該変性としては、例えば、末端アミノ変性、カルボキシル変性、ヒドロキシル変性などの変性、並びにアミド基の一部をアルキルアミノ化又はN-アルコキシアルキル化する変性が挙げられる。N-アルコキシアルキル化変性ポリアミドとしては、例えば、ナイロン-6、ナイロン-66、又はナイロン-12等の共重合ナイロンのアミド基の一部をN-メトキシメチル化したものが挙げられる。前記変性ポリアミドの重量平均分子量は、好ましくは5000以上、より好ましくは10000以上であり、好ましくは500000以下、より好ましくは200000以下である。 Examples of the modified polyamide include those obtained by modifying an aromatic polyamide or an aliphatic polyamide. Of these, a modified aliphatic polyamide is preferred. Specific examples include nylon-6, nylon-66, nylon-12, ternary to quaternary copolymer nylon, fatty acid polyamide, or fatty acid block copolymer (eg, polyether ester amide, polyester amide). And the like added. Examples of the modification include terminal amino modification, carboxyl modification, hydroxyl modification and the like, and modification in which a part of the amide group is alkylaminated or N-alkoxyalkylated. Examples of the N-alkoxyalkylated modified polyamide include N-methoxymethylated part of the amide group of copolymer nylon such as nylon-6, nylon-66, or nylon-12. The weight average molecular weight of the modified polyamide is preferably 5000 or more, more preferably 10,000 or more, preferably 500,000 or less, more preferably 200,000 or less.
 配向膜の厚さは、所望する液晶層の配向均一性が得られる膜厚であればよい。具体的には、0.001μm以上が好ましく、0.01μm以上がより好ましく、5μm以下が好ましく、2μm以下がより好ましい。 The thickness of the alignment film may be a film thickness that provides desired alignment uniformity of the liquid crystal layer. Specifically, 0.001 μm or more is preferable, 0.01 μm or more is more preferable, 5 μm or less is preferable, and 2 μm or less is more preferable.
 前記配向膜上へ、上に既に述べた方法でコレステリック樹脂層を設けることにより、透明樹脂基材、配向膜、コレステリック樹脂層をこの順に有する偏光分離素子を得ることができる。 By providing a cholesteric resin layer on the alignment film by the method described above, a polarization separation element having a transparent resin substrate, an alignment film, and a cholesteric resin layer in this order can be obtained.
(2)1/4波長板
 本発明に用いる1/4波長板としては、例えば、樹脂フィルムを延伸してなる延伸フィルムを用いることができる。延伸フィルムに用いる熱可塑性樹脂としては、透明樹脂であれば特に制限されず、ポリカーボネート樹脂、ポリエーテルスルホン樹脂、ポリエチレンテレフタレート樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリスルホン樹脂、ポリアリレート樹脂、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ジアセチルセルロース、トリアセチルセルロース、ポリスチレン樹脂、ポリアクリル樹脂、脂環式オレフィンポリマーなどが挙げられる。なお、延伸フィルムに用いる樹脂は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。これらの中でも固有複屈折値が正である樹脂が好ましく、脂環式オレフィンポリマーがより好ましい。
(2) 1/4 wavelength plate As a 1/4 wavelength plate used for this invention, the stretched film formed by extending | stretching a resin film can be used, for example. The thermoplastic resin used for the stretched film is not particularly limited as long as it is a transparent resin. Polycarbonate resin, polyether sulfone resin, polyethylene terephthalate resin, polyimide resin, polymethyl methacrylate resin, polysulfone resin, polyarylate resin, polyethylene resin, Examples include polyvinyl chloride resin, diacetyl cellulose, triacetyl cellulose, polystyrene resin, polyacrylic resin, and alicyclic olefin polymer. In addition, resin used for a stretched film may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Among these, a resin having a positive intrinsic birefringence value is preferable, and an alicyclic olefin polymer is more preferable.
 延伸フィルムに好適に用いられる脂環式オレフィンポリマーは、主鎖及び/または側鎖にシクロアルカン構造を有する非晶性の重合体である。機械的強度や耐熱性などの観点から、主鎖にシクロアルカン構造を含有する重合体が好適である。また、シクロアルカン構造としては、単環、多環(縮合多環、橋架け環など)が挙げられる。シクロアルカン構造の一単位を構成する炭素原子数は、格別な制限はないが、通常4~30個、好ましくは5~20個、より好ましくは5~15個の範囲であるときに、樹脂フィルムの機械的強度、耐熱性、及び成形性の諸特性が高度にバランスされ好適である。脂環式オレフィンポリマーとしては、例えば、特開平05-310845号公報、特開平05-097978号公報、米国特許第6,511,756号公報に記載されているものが挙げられる。 The alicyclic olefin polymer suitably used for the stretched film is an amorphous polymer having a cycloalkane structure in the main chain and / or side chain. From the viewpoint of mechanical strength and heat resistance, a polymer containing a cycloalkane structure in the main chain is preferred. In addition, examples of the cycloalkane structure include monocyclic rings and polycyclic rings (condensed polycyclic rings, bridged rings, etc.). The number of carbon atoms constituting one unit of the cycloalkane structure is not particularly limited, but is usually in the range of 4 to 30, preferably 5 to 20, more preferably 5 to 15, and the resin film. The mechanical strength, heat resistance, and moldability of these are highly balanced and suitable. Examples of the alicyclic olefin polymer include those described in JP-A No. 05-310845, JP-A No. 05-097978, and US Pat. No. 6,511,756.
 延伸フィルムに用いる熱可塑性樹脂は、ガラス転移温度が、好ましくは80℃以上、より好ましくは100℃以上であり、好ましくは250℃以下である。また、熱可塑性樹脂の光弾性係数の絶対値は、好ましくは10×10-12Pa-1以下、より好ましくは7×10-12Pa-1以下、特に好ましくは4×10-12Pa-1以下である。光弾性係数Cは、複屈折をΔn、応力をσとしたとき、C=Δn/σで表される値である。光弾性係数がこのような範囲にある透明樹脂を用いると、延伸フィルムの面内レターデーション(正面方向のレターデーションともいう。)Reのバラツキを小さくすることができる。
 なお、面内レターデーションReは、式I:Re=(nx-ny)×d(式中、nxはその面内の遅相軸方向の屈折率を表し、nyはその面内の遅相軸に直交する方向の屈折率を表し、dは膜厚を表す。)で表される値である。
The thermoplastic resin used for the stretched film has a glass transition temperature of preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and preferably 250 ° C. or lower. The absolute value of the photoelastic coefficient of the thermoplastic resin is preferably 10 × 10 −12 Pa −1 or less, more preferably 7 × 10 −12 Pa −1 or less, and particularly preferably 4 × 10 −12 Pa −1. It is as follows. The photoelastic coefficient C is a value represented by C = Δn / σ where birefringence is Δn and stress is σ. When a transparent resin having a photoelastic coefficient in such a range is used, variation in in-plane retardation (also referred to as retardation in the front direction) Re of the stretched film can be reduced.
The in-plane retardation Re is represented by the formula I: Re = (nx−ny) × d (where nx represents the refractive index in the in-plane slow axis direction, and ny represents the in-plane slow axis. Represents a refractive index in a direction orthogonal to, and d represents a film thickness.
 延伸フィルムに用いる熱可塑性樹脂は、例えば、顔料や染料のごとき着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、紫外線吸収剤、帯電防止剤、酸化防止剤、滑剤、溶剤などの配合剤が適宜配合されたものであってもよい。なお、配合剤は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。前記配合剤の配合量は、特に制限されず、熱可塑性樹脂中で通常0~5重量%である。 The thermoplastic resin used for the stretched film is, for example, a colorant such as a pigment or dye, a fluorescent brightener, a dispersant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, an antistatic agent, an antioxidant, a lubricant, or a solvent. The compounding agent such as may be appropriately blended. In addition, a compounding agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. The amount of the compounding agent is not particularly limited, and is usually 0 to 5% by weight in the thermoplastic resin.
 延伸フィルムの平均厚みは、機械的強度などの観点から、好ましくは30~80μm、さらに好ましくは30~60μm、特に好ましくは30~50μmである。また、延伸フィルムの幅方向の厚みムラは巻き取りの可否に影響を与えるため、好ましくは3μm以下、より好ましくは2μm以下である。前記平均厚みは、市販の厚み測定装置を用いて、延伸フィルムを幅方向に50mm間隔で測定し、その平均値を平均厚みとする。また、厚みムラは、各測定値の最大値から最小値を差し引いた値とする。 The average thickness of the stretched film is preferably 30 to 80 μm, more preferably 30 to 60 μm, and particularly preferably 30 to 50 μm from the viewpoint of mechanical strength and the like. Moreover, since the thickness unevenness in the width direction of the stretched film affects the availability of winding, it is preferably 3 μm or less, more preferably 2 μm or less. The said average thickness measures a stretched film by a 50 mm space | interval in the width direction using a commercially available thickness measuring apparatus, and makes the average value an average thickness. The thickness unevenness is a value obtained by subtracting the minimum value from the maximum value of each measurement value.
 延伸フィルムは、残留揮発性成分の含有量が、好ましくは0.1重量%以下、より好ましくは0.05重量%以下、さらに好ましくは0.02重量%以下である。残留揮発性成分の含有量が多いと経時的に光学特性が変化するおそれがある。揮発性成分の含有量を上記範囲にすることにより、寸法安定性が向上し、面内レターデーションReや厚み方向レターデーションRth(Rth=((nx+ny)/2-nz)×d;nxはその面内の遅相軸方向の屈折率を表し、nyはその面内で前記遅相軸に直交する方向の屈折率を表し、nzは厚さ方向の屈折率を表し、dはフィルムの平均厚みを表す。)の経時変化を小さくすることができ、さらにこの延伸フィルムを備える輝度向上フィルム、複合偏光板、液晶表示装置の劣化を抑制でき、表示画像を長期間良好な状態に保つことができる。
 なお、揮発性成分は、フィルム中に微量含まれる分子量200以下の物質であり、例えば、残留単量体や溶媒などが挙げられる。揮発性成分の含有量は、フィルム中に含まれる分子量200以下の物質の合計として、フィルムをクロロホルムに溶解させてガスクロマトグラフィーにより分析することにより定量することができる。
The stretched film has a residual volatile component content of preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and still more preferably 0.02% by weight or less. If the content of residual volatile components is large, the optical characteristics may change over time. By adjusting the content of the volatile component to the above range, the dimensional stability is improved, and in-plane retardation Re and thickness direction retardation Rth (Rth = ((nx + ny) / 2−nz) × d; The refractive index in the slow axis direction in the plane is represented, ny represents the refractive index in the direction perpendicular to the slow axis in the plane, nz represents the refractive index in the thickness direction, and d represents the average thickness of the film. )), The deterioration of the brightness enhancement film, the composite polarizing plate and the liquid crystal display device provided with the stretched film can be suppressed, and the display image can be kept in a good state for a long time. .
The volatile component is a substance having a molecular weight of 200 or less contained in a trace amount in the film, and examples thereof include residual monomers and solvents. The content of the volatile component can be quantified by dissolving the film in chloroform and analyzing it by gas chromatography as the total of substances having a molecular weight of 200 or less contained in the film.
 延伸フィルムは、飽和吸水率が、好ましくは0.03重量%以下、さらに好ましくは0.02重量%以下、特に好ましくは0.01重量%以下である。飽和吸水率が上記範囲であると、前記面内レターデーションReや厚み方向レターデーションRthの経時変化を小さくすることができ、さらにはこの延伸フィルムを備える輝度向上フィルム、複合偏光板、液晶表示装置の劣化を抑制でき、表示画像を長期間良好な状態に保つことができる。
 飽和吸水率は、JIS K7209に準拠して、フィルムの試験片を23℃の水中に24時間、浸漬し、試験片の質量変化、すなわち、浸漬前と浸漬後の質量の差を測定して求め、浸漬前の百分率として表される値である。
The stretched film has a saturated water absorption rate of preferably 0.03% by weight or less, more preferably 0.02% by weight or less, and particularly preferably 0.01% by weight or less. When the saturated water absorption is within the above range, the temporal change of the in-plane retardation Re and the thickness direction retardation Rth can be reduced, and further, a brightness enhancement film, a composite polarizing plate, and a liquid crystal display device provided with this stretched film Degradation can be suppressed, and the displayed image can be kept in a good state for a long time.
The saturated water absorption is determined by immersing a film specimen in water at 23 ° C. for 24 hours in accordance with JIS K7209, and measuring the change in mass of the specimen, that is, the difference in mass before and after immersion. , A value expressed as a percentage before immersion.
 延伸フィルムは、例えば、熱可塑性樹脂からなる長尺の樹脂フィルムを延伸することにより得られる。目的の光学特性を持つ延伸フィルムを得ることができるのであれば、延伸方法は、縦延伸、横延伸、逐次二軸延伸、同時二軸延伸、斜め延伸など、特に制限されず、従来公知の延伸方法を用いることができる。なかでも、偏光板との貼り合わせにおいて、ロールトウロールなどの連続処理が可能であることから、斜め延伸を用いることが好ましい。 The stretched film is obtained, for example, by stretching a long resin film made of a thermoplastic resin. As long as a stretched film having the desired optical properties can be obtained, the stretching method is not particularly limited, such as longitudinal stretching, lateral stretching, sequential biaxial stretching, simultaneous biaxial stretching, and oblique stretching. The method can be used. Especially, since continuous processing, such as a roll toe roll, is possible in bonding with a polarizing plate, it is preferable to use diagonal stretch.
 斜め延伸の方法としては、その幅方向に対して1~50°の方向に連続的に延伸して、ポリマーの配向軸を所望の角度に傾斜させるものであれば特に制約されず、公知の方法を採用することができる。また、斜め延伸に用いる延伸機は特に制限されず、横または縦方向に左右異なる速度の送り力若しくは引張り力または引取り力を付加できるようにした従来公知のテンター延伸機を使用することができる。また、テンター式延伸機には、横一軸延伸機、同時二軸延伸機などがあるが、長尺のフィルムを連続的に斜め延伸処理することができるものであれば、特に制約されず、種々のタイプの延伸機を使用することができる。 The oblique stretching method is not particularly limited as long as it is continuously stretched in a direction of 1 to 50 ° with respect to the width direction, and the orientation axis of the polymer is inclined to a desired angle. Can be adopted. Further, the stretching machine used for the oblique stretching is not particularly limited, and a conventionally known tenter stretching machine that can add feed force, pulling force, or take-up force at different speeds in the horizontal or vertical direction can be used. . In addition, the tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but is not particularly limited as long as a long film can be continuously obliquely stretched. These types of stretching machines can be used.
 斜め延伸の方法としては、例えば、特開昭50-83482号公報、特開平2-113920号公報、特開平3-182701号公報、特開2000-9912号公報、特開2002-86554号公報、特開2002-22944号公報、国際公開第2007/111313号に記載された方法を用いることができる。 Examples of the oblique stretching method include, for example, JP-A-50-83482, JP-A-2-113920, JP-A-3-182701, JP-A-2000-9912, JP-A-2002-86554, The methods described in JP 2002-22944 A and International Publication No. 2007/111313 can be used.
 延伸フィルムの作製に用いる長尺の未延伸フィルムを構成する熱可塑性樹脂は、延伸フィルムで説明したものと同様のものが挙げられる。
 長尺の未延伸フィルムは、公知の方法、例えば、キャスト成形法、押出成形法、インフレーション成形法などによって得ることができる。これらのうち押出成形法が残留揮発性成分量が少なく、寸法安定性にも優れるので好ましい。この未延伸フィルムは、単層若しくは2層以上の積層フィルムであってもよい。
 積層フィルムは共押出成形法、フィルムラミネーション法、塗布法などの公知の方法で得ることができる。これらのうち共押出成形法が好ましい。
 延伸後の光学特性を均一にするため未延伸フィルムの厚みムラは極力小さくすることが好ましく、最大値-最小値の値で3μm以下が好ましく、2μm以下がより好ましい。
Examples of the thermoplastic resin constituting the long unstretched film used for producing the stretched film are the same as those described for the stretched film.
The long unstretched film can be obtained by a known method such as a cast molding method, an extrusion molding method, an inflation molding method, or the like. Of these, the extrusion method is preferable because it has a small amount of residual volatile components and is excellent in dimensional stability. This unstretched film may be a single layer or a laminated film of two or more layers.
The laminated film can be obtained by a known method such as a coextrusion molding method, a film lamination method, or a coating method. Of these, the coextrusion method is preferred.
In order to make the optical properties after stretching uniform, it is preferable to reduce the thickness unevenness of the unstretched film as much as possible, and the maximum value-minimum value is preferably 3 μm or less, more preferably 2 μm or less.
 本発明に用いる1/4波長板としては、例えば、ネマチック樹脂層を用いることもできる。ネマチック樹脂層の製法の好ましい例としては、ネマチック樹脂層を形成するための、重合性基を有する棒状液晶性化合物を含有するネマチック液晶組成物を、好ましくは配向膜等の他の層上に塗布して液晶層を得、次いで1回以上の、光照射及び/又は加温処理により当該液晶層を硬化する方法が挙げられる。 As the quarter wave plate used in the present invention, for example, a nematic resin layer can be used. As a preferred example of the method for producing a nematic resin layer, a nematic liquid crystal composition containing a rod-like liquid crystalline compound having a polymerizable group for forming a nematic resin layer is preferably applied on another layer such as an alignment film. And a method of curing the liquid crystal layer by light irradiation and / or heating treatment at least once.
 棒状液晶性化合物は、前記コレステリック液晶組成物(X)に含有される棒状液晶性化合物のほか、特開2002-030042号公報、特開2004-204190号公報、特開2005-263789号公報、特開2007-119415号公報、特開2007-186430号公報などに記載された従来公知の重合性基を有する棒状液晶性化合物を用いることができる。なお、棒状液晶性化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The rod-like liquid crystalline compound includes, in addition to the rod-like liquid crystalline compound contained in the cholesteric liquid crystal composition (X), JP-A-2002-030042, JP-A-2004-204190, JP-A-2005-263789, Conventionally known rod-like liquid crystalline compounds having a polymerizable group described in JP 2007-119415 A and JP 2007-186430 A can be used. In addition, a rod-shaped liquid crystalline compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 ネマチック液晶組成物は、硬化後の膜強度向上や耐久性向上のために、任意に架橋剤や光重合開始剤を含有することができる。架橋剤と光重合開始剤としては、前記コレステリック液晶組成物に用いたものと同様なものを、同様な用法にて用いることができる。なお、架橋剤及び光重合開始剤は、それぞれ、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The nematic liquid crystal composition can optionally contain a crosslinking agent and a photopolymerization initiator in order to improve the film strength after curing and the durability. As the crosslinking agent and the photopolymerization initiator, those similar to those used in the cholesteric liquid crystal composition can be used in the same manner. In addition, a crosslinking agent and a photoinitiator may each be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 ネマチック液晶組成物は、任意に界面活性剤を含有することができる。界面活性剤としては、前記コレステリック液晶組成物に用いたものと同様なものを、同様な用法にて用いることができる。なお、界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The nematic liquid crystal composition can optionally contain a surfactant. As the surfactant, those similar to those used in the cholesteric liquid crystal composition can be used in the same manner. In addition, surfactant may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 ネマチック液晶組成物は、必要に応じてさらに他の任意成分を含有することができる。当該他の任意成分としては、溶媒、ポットライフ向上のための重合禁止剤、耐久性向上のための酸化防止剤、紫外線吸収剤、光安定化剤等を挙げられる。なお、これらの任意成分は、1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの任意成分は、所望する光学的性能を低下させない範囲で含有させることができる。
The nematic liquid crystal composition can further contain other optional components as necessary. Examples of the other optional components include a solvent, a polymerization inhibitor for improving pot life, an antioxidant for improving durability, an ultraviolet absorber, and a light stabilizer. In addition, these arbitrary components may use one type and may use it combining two or more types by arbitrary ratios.
These optional components can be contained in a range that does not deteriorate the desired optical performance.
 ネマチック液晶組成物の製造方法は、特に限定されず、上記各成分を混合することにより製造することができる。 The method for producing the nematic liquid crystal composition is not particularly limited, and can be produced by mixing the above-described components.
 ネマチック液晶組成物を、配向膜等の他の層上に塗布して液晶層を得、次いで1回以上の、光照射及び/又は加温処理により当該液晶層を硬化することにより、ネマチック樹脂層を得ることができる。塗布は、公知の方法、例えば押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、バーコーティング法等により実施すればよい。 A nematic liquid crystal composition is applied on another layer such as an alignment film to obtain a liquid crystal layer, and then the nematic resin layer is cured by light irradiation and / or heating treatment at least once. Can be obtained. The application may be performed by a known method such as an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, or a bar coating method.
 前記塗布により得られた液晶層を硬化する前に、必要に応じて、配向処理を施す。配向処理は、例えば液晶層を50~150℃で0.5~10分間加温することにより行えばよい。当該配向処理を施すことにより、液晶層を良好に配向させることができる。 ¡Before curing the liquid crystal layer obtained by the application, an alignment treatment is performed as necessary. The alignment treatment may be performed, for example, by heating the liquid crystal layer at 50 to 150 ° C. for 0.5 to 10 minutes. By performing the alignment treatment, the liquid crystal layer can be aligned well.
 前記硬化の工程は、1回以上の光照射、加温処理又はこれらの組み合わせにより行うことができる。加温条件は、例えば、温度が通常40℃以上、好ましくは50℃以上で、通常200℃以下、好ましくは140℃以下において、通常1秒以上、好ましくは5秒以上、通常3分以下、好ましくは120秒以下の時間で行う。 The curing step can be performed by one or more times of light irradiation, heating treatment, or a combination thereof. The heating condition is, for example, a temperature of usually 40 ° C. or higher, preferably 50 ° C. or higher, usually 200 ° C. or lower, preferably 140 ° C. or lower, usually 1 second or longer, preferably 5 seconds or longer, usually 3 minutes or shorter, preferably Is performed in 120 seconds or less.
 ネマチック樹脂層の膜厚は、目的の光学特性に応じて、適宜決定することができる。 The film thickness of the nematic resin layer can be appropriately determined according to the target optical characteristics.
 本発明に用いる1/4波長板は、その面内レターデーションReを透過光の略1/4波長とすることができる。ここで、透過光の波長範囲は所望の範囲とすることができ、具体的には例えば400nm~700nmである。また、面内レターデーションReが透過光の略1/4波長であるとは、Re値が、透過光の波長範囲の中心値において、中心値の1/4の値から±65nm、好ましくは±30nm、より好ましくは±10nmの範囲であることをいう。このようなレターデーション値を有することにより、偏光変換機能、即ち円偏光を直線偏光に変換する機能を発現することができる。 The quarter-wave plate used in the present invention can have an in-plane retardation Re of approximately ¼ wavelength of transmitted light. Here, the wavelength range of the transmitted light can be set to a desired range, specifically, for example, 400 nm to 700 nm. Further, the in-plane retardation Re is approximately ¼ wavelength of the transmitted light means that the Re value is ± 65 nm from the ¼ value of the center value in the center value of the wavelength range of the transmitted light, preferably ± It means 30 nm, more preferably in the range of ± 10 nm. By having such a retardation value, a polarization conversion function, that is, a function of converting circularly polarized light into linearly polarized light can be exhibited.
 本発明に用いる1/4波長板は、Nz係数が0.9以上であり、通常0.9~5.5、好ましくは0.9~4.5、より好ましくは0.95~2.5である。 The quarter wave plate used in the present invention has an Nz coefficient of 0.9 or more, and is usually 0.9 to 5.5, preferably 0.9 to 4.5, more preferably 0.95 to 2.5. It is.
(3)二色性吸収型偏光板
 二色性吸収型偏光板としては、例えば、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜、ポリエン系偏光膜などが挙げられる。
 ヨウ素系偏光膜及び染料系偏光膜は、通常、ポリビニルアルコール系フィルムを用いて製造される。この場合、二色性吸収型偏光板の偏光軸は、フィルムの延伸方向に垂直な方向に相当する。
(3) Dichroic absorption polarizing plate Examples of the dichroic absorption polarizing plate include an iodine polarizing film, a dye polarizing film using a dichroic dye, and a polyene polarizing film.
The iodine-based polarizing film and the dye-based polarizing film are usually produced using a polyvinyl alcohol film. In this case, the polarization axis of the dichroic absorption type polarizing plate corresponds to a direction perpendicular to the stretching direction of the film.
 通常、二色性吸収型偏光板には透明保護膜が設けられる。この透明保護膜は、通常、二色性吸収型偏光板の両面に設けられる。
 透明保護膜としては、例えば、光学的等方性のポリマーフィルムが用いられる。なお保護膜が透明であるとは、光透過率が80%以上であることを意味する。また光学的等方性とは、具体的には、面内レターデーション(Re)が10nm以下であることが好ましく、5nm以下であることがさらに好ましい。また、厚み方向のレターデーション(Rth)は、40nm以下であることが好ましく、20nm以下であることがさらに好ましい。
Usually, a transparent protective film is provided on the dichroic absorption polarizing plate. This transparent protective film is usually provided on both surfaces of the dichroic absorption polarizing plate.
As the transparent protective film, for example, an optically isotropic polymer film is used. In addition, that a protective film is transparent means that the light transmittance is 80% or more. The optical isotropy specifically has an in-plane retardation (Re) of preferably 10 nm or less, and more preferably 5 nm or less. The thickness direction retardation (Rth) is preferably 40 nm or less, and more preferably 20 nm or less.
 透明保護膜としては、通常はセルロースエステルフィルム、好ましくはトリアセチルセルロースフィルムが用いられる。セルロースエステルフィルムは、例えば、ソルベントキャスト法により形成することが好ましい。
 透明保護膜の厚さは、通常20μm以上、好ましくは50μm以上であり、通常500μm以下、好ましくは200μm以下である。
As the transparent protective film, usually a cellulose ester film, preferably a triacetyl cellulose film is used. The cellulose ester film is preferably formed by, for example, a solvent cast method.
The thickness of the transparent protective film is usually 20 μm or more, preferably 50 μm or more, and is usually 500 μm or less, preferably 200 μm or less.
(4)光学補償フィルム
 光学補償フィルムとしては、例えば、延伸複屈折フィルム、液晶性分子から形成された光学異方性層などを用いることができる。中でも、液晶性分子から形成された光学異方性層が好ましい。
 液晶性分子は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。液晶性分子のうち好適なものの例を挙げると、棒状液晶性分子またはディスコティック液晶性分子が好ましく、ディスコティック液晶性分子が特に好ましい。
(4) Optical compensation film As the optical compensation film, for example, a stretched birefringent film, an optically anisotropic layer formed from liquid crystalline molecules, and the like can be used. Among these, an optically anisotropic layer formed from liquid crystalline molecules is preferable.
A liquid crystal molecule may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. As examples of suitable liquid crystal molecules, rod-like liquid crystal molecules or discotic liquid crystal molecules are preferable, and discotic liquid crystal molecules are particularly preferable.
 棒状液晶性分子としては、例えば、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、アルケニルシクロヘキシルベンゾニトリル類などが挙げられる。また、低分子液晶性分子だけではなく、高分子液晶性分子も用いることができる。高分子液晶性分子は、前記の低分子液晶性分子に相当する側鎖を有するポリマーである。高分子液晶性分子を用いた光学補償シートについては、特開平5-53016号公報に記載がある。 Examples of rod-like liquid crystalline molecules include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenyls. Examples include pyrimidines, phenyldioxanes, tolans, alkenylcyclohexylbenzonitriles and the like. Further, not only low-molecular liquid crystalline molecules but also high-molecular liquid crystalline molecules can be used. The high-molecular liquid crystalline molecule is a polymer having a side chain corresponding to the low-molecular liquid crystalline molecule. An optical compensation sheet using polymer liquid crystalline molecules is described in JP-A-5-53016.
 一方、ディスコティック液晶性分子は、様々な文献(例えば、C. Destrade et al., Mol. Crysr. Liq. Cryst., vol. 71, page 111 (1981) ;日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B. Kohne et al., Angew. Chem. Soc. Chem. Comm., page 1794 (1985);J. Zhang et al., J. Am. Chem. Soc., vol. 116, page 2655 (1994))に記載されている。
 ディスコティック液晶性分子は、5°~45°の平均傾斜角で配向させたものが好ましい。また、ディスコティック液晶性分子の傾斜角は、ディスコティック液晶性分子と二色性吸収型偏光板との距離に伴って変化させることが好ましい。
On the other hand, discotic liquid crystalline molecules have been described in various documents (for example, C. Destrade et al., Mol. Crysr. Liq. Cryst., Vol. 71, page 111 (1981); No. 22, Chemistry of liquid crystals, Chapter 5, Chapter 10 Section 2 (1994); B. Kohne et al., Angew. Chem. Soc. Chem. Comm., Page 1794 (1985); J. Zhang et al., J. Am. Chem. Soc., vol. 116, page 2655 (1994)).
The discotic liquid crystal molecules are preferably aligned with an average inclination angle of 5 ° to 45 °. Moreover, it is preferable to change the inclination angle of the discotic liquid crystalline molecules with the distance between the discotic liquid crystalline molecules and the dichroic absorption polarizing plate.
 ディスコティック液晶性分子は、重合反応により配向状態を固定することが好ましい。ディスコティック液晶性分子の重合反応については、特開平8-27284号公報に記載がある。
 ディスコティック液晶性分子を重合により固定するためには、通常、ディスコティック液晶性分子として、円盤状コア(ディスコティックコアともいう。)に、置換基として重合性基を結合させたものを用いる。ただし、円盤状コアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる傾向がある。そこで、円盤状コアと重合性基との間に、連結基を導入することが好ましい。この観点から、ディスコティック液晶性分子は、下記式(3)で表わされる化合物であることが好ましい。
The discotic liquid crystalline molecules are preferably fixed in the alignment state by a polymerization reaction. The polymerization reaction of discotic liquid crystalline molecules is described in JP-A-8-27284.
In order to fix the discotic liquid crystalline molecules by polymerization, generally, a discotic liquid crystalline molecule having a discotic core (also referred to as a discotic core) and a polymerizable group bonded as a substituent is used. However, when a polymerizable group is directly connected to the disk-shaped core, it tends to be difficult to maintain the orientation state in the polymerization reaction. Therefore, it is preferable to introduce a linking group between the discotic core and the polymerizable group. From this viewpoint, the discotic liquid crystalline molecule is preferably a compound represented by the following formula (3).
 D(-L-Q)  式(3)
 式(3)中、Dは円盤状コアを表し、Lは二価の連結基を表し、Qは重合性基を表し、nは4~12の整数を表す。
D (-LQ) n formula (3)
In formula (3), D represents a discotic core, L represents a divalent linking group, Q represents a polymerizable group, and n represents an integer of 4 to 12.
 上記式(3)の円盤状コア(D)の例を以下に示す。なお、以下の各例において、LQ(またはQL)は、二価の連結基(L)と重合性基(Q)との組み合わせを意味する。 Examples of the disk-shaped core (D) of the above formula (3) are shown below. In each of the following examples, LQ (or QL) means a combination of a divalent linking group (L) and a polymerizable group (Q).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(3)において、二価の連結基(L)は、アルキレン基、アルケニレン基、アリーレン基、-CO-、-NH-、-O-、-S-およびそれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。中でも、二価の連結基(L)は、アルキレン基、アルケニレン基、アリーレン基、-CO-、-NH-、-O-および-S-からなる群より選ばれる二価の基を少なくとも二つ組み合わせた基であることがさらに好ましい。さらにその中でも、二価の連結基(L)は、アルキレン基、アルケニレン基、アリーレン基、-CO-および-O-からなる群より選ばれる二価の基を少なくとも二つ組み合わせた基であることが特に好ましい。ここで、アルキレン基の炭素原子数は1~12であることが好ましい。アルケニレン基の炭素原子数は2~12であることが好ましい。アリーレン基の炭素原子数は6~10であることが好ましい。アルキレン基、アルケニレン基およびアリーレン基は、置換基(例えば、アルキル基、ハロゲン原子、シアノ、アルコキシ基、アシルオキシ基等)を有していてもよい。 In the above formula (3), the divalent linking group (L) is selected from the group consisting of an alkylene group, an alkenylene group, an arylene group, —CO—, —NH—, —O—, —S—, and combinations thereof. It is preferable that it is a bivalent coupling group. Among these, the divalent linking group (L) includes at least two divalent groups selected from the group consisting of an alkylene group, an alkenylene group, an arylene group, —CO—, —NH—, —O—, and —S—. More preferably, it is a combined group. Among them, the divalent linking group (L) is a group formed by combining at least two divalent groups selected from the group consisting of an alkylene group, an alkenylene group, an arylene group, —CO— and —O—. Is particularly preferred. Here, the alkylene group preferably has 1 to 12 carbon atoms. The alkenylene group preferably has 2 to 12 carbon atoms. The number of carbon atoms in the arylene group is preferably 6-10. The alkylene group, alkenylene group and arylene group may have a substituent (for example, an alkyl group, a halogen atom, a cyano, an alkoxy group, an acyloxy group, etc.).
 二価の連結基(L)の例を以下に示す。なお、以下の例示においては左側が円盤状コア(D)に結合し、右側が重合性基(Q)に結合するように示している。またALはアルキレン基またはアルケニレン基を意味し、ARはアリーレン基を意味する。 Examples of the divalent linking group (L) are shown below. In the following examples, the left side is bonded to the discotic core (D), and the right side is bonded to the polymerizable group (Q). AL represents an alkylene group or an alkenylene group, and AR represents an arylene group.
 L1:-AL-CO-O-AL-
 L2:-AL-CO-O-AL-O-
 L3:-AL-CO-O-AL-O-AL-
 L4:-AL-CO-O-AL-O-CO-
 L5:-CO-AR-O-AL-
 L6:-CO-AR-O-AL-O-
 L7:-CO-AR-O-AL-O-CO-
 L8:-CO-NH-AL-
 L9:-NH-AL-O-
 L10:-NH-AL-O-CO-
 L11:-O-AL-
 L12:-O-AL-O-
 L13:-O-AL-O-CO-
L1: -AL-CO-O-AL-
L2: -AL-CO-O-AL-O-
L3: -AL-CO-O-AL-O-AL-
L4: -AL-CO-O-AL-O-CO-
L5: -CO-AR-O-AL-
L6: -CO-AR-O-AL-O-
L7: -CO-AR-O-AL-O-CO-
L8: -CO-NH-AL-
L9: -NH-AL-O-
L10: —NH—AL—O—CO—
L11: -O-AL-
L12: -O-AL-O-
L13: -O-AL-O-CO-
 L14:-O-AL-O-CO-NH-AL-
 L15:-O-AL-S-AL-
 L16:-O-CO-AL-AR-O-AL-O-CO-
 L17:-O-CO-AR-O-AL-CO-
 L18:-O-CO-AR-O-AL-O-CO-
 L19:-O-CO-AR-O-AL-O-AL-O-CO-
 L20:-O-CO-AR-O-AL-O-AL-O-AL-O-CO-
 L21:-S-AL-
 L22:-S-AL-O-
 L23:-S-AL-O-CO-
 L24:-S-AL-S-AL-
 L25:-S-AR-AL-
L14: -O-AL-O-CO-NH-AL-
L15: -O-AL-S-AL-
L16: -O-CO-AL-AR-O-AL-O-CO-
L17: -O-CO-AR-O-AL-CO-
L18: -O-CO-AR-O-AL-O-CO-
L19: -O-CO-AR-O-AL-O-AL-O-CO-
L20: -O-CO-AR-O-AL-O-AL-O-AL-O-CO-
L21: -S-AL-
L22: -S-AL-O-
L23: -S-AL-O-CO-
L24: -S-AL-S-AL-
L25: -S-AR-AL-
 上記式(3)の重合性基(Q)は、重合反応の種類に応じて決定すればよい。重合性基(Q)の例を以下に示す。 The polymerizable group (Q) of the above formula (3) may be determined according to the type of polymerization reaction. Examples of the polymerizable group (Q) are shown below.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 重合性基(Q)は、前記の例示したものの中でも、不飽和重合性基(Q1~Q7)、エポキシ基(Q8)またはアジリジニル基(Q9)であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基(Q1~Q6)であることが特に好ましい。 The polymerizable group (Q) is preferably an unsaturated polymerizable group (Q1 to Q7), an epoxy group (Q8) or an aziridinyl group (Q9), and is an unsaturated polymerizable group, among those exemplified above. The ethylenically unsaturated polymerizable group (Q1 to Q6) is particularly preferable.
 式(3)において、nは4以上12以下の整数を表す。具体的な数値は、円盤状コア(D)の種類に応じて決定される。なお、式(3)で表わされる化合物における二価の連結基(L)と重合性基(Q)との組み合わせは、異なっていてもよいが、同一であることが好ましい。 In the formula (3), n represents an integer of 4 or more and 12 or less. Specific numerical values are determined according to the type of the disk-shaped core (D). The combination of the divalent linking group (L) and the polymerizable group (Q) in the compound represented by the formula (3) may be different but is preferably the same.
 ディスコティック液晶性分子は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。例えば、上述したように重合性を有するディスコティック液晶性分子(以下、適宜「重合性ディスコティック液晶性分子」という。)と非重合性ディスコティック液晶性分子とを併用することができる。
 非重合性ディスコティック液晶性分子は、式(3)で表される化合物の重合性基(Q)を、水素原子またはアルキル基に変更した化合物であることが好ましい。すなわち、非重合性ディスコティック液晶性分子は、下記式(4)で表わされる化合物であることが好ましい。
One type of discotic liquid crystalline molecule may be used alone, or two or more types may be used in combination at any ratio. For example, as described above, a discotic liquid crystalline molecule having polymerizability (hereinafter referred to as “polymerizable discotic liquid crystalline molecule” as appropriate) and a non-polymerizable discotic liquid crystalline molecule can be used in combination.
The non-polymerizable discotic liquid crystalline molecule is preferably a compound in which the polymerizable group (Q) of the compound represented by the formula (3) is changed to a hydrogen atom or an alkyl group. That is, the non-polymerizable discotic liquid crystalline molecule is preferably a compound represented by the following formula (4).
 D(-L-R)  式(4)
 式(4)中、Dは円盤状コアを表し、Lは二価の連結基を表し、Rは水素原子またはアルキル基を表し、nは4~12の整数を表す。
 式(4)の円盤状コア(D)の例は、LQ(またはQL)をLR(またはRL)に変更する以外は、前記の式(3)で表される化合物の例と同様である。
 また、二価の連結基(L)の例も、前記の式(3)で表される化合物の例と同様である。
D (-LR) n formula (4)
In formula (4), D represents a discotic core, L represents a divalent linking group, R represents a hydrogen atom or an alkyl group, and n represents an integer of 4 to 12.
An example of the discotic core (D) of the formula (4) is the same as the example of the compound represented by the formula (3) except that LQ (or QL) is changed to LR (or RL).
Moreover, the example of a bivalent coupling group (L) is the same as the example of a compound represented by said Formula (3).
 式(4)において、Rのアルキル基は、炭素原子数が1~40であることが好ましく、1~30であることがさらに好ましい。環状アルキル基よりも鎖状アルキル基の方が好ましく、分岐を有する鎖状アルキル基よりも直鎖状アルキル基の方が好ましい。Rは、水素原子または炭素原子数が1~30の直鎖状アルキル基であることが特に好ましい。 In the formula (4), the alkyl group represented by R preferably has 1 to 40 carbon atoms, and more preferably 1 to 30 carbon atoms. A chain alkyl group is preferred to a cyclic alkyl group, and a linear alkyl group is preferred to a branched chain alkyl group. R is particularly preferably a hydrogen atom or a linear alkyl group having 1 to 30 carbon atoms.
 光学異方性層には、カイラル剤を含有させることが好ましい。カイラル剤は、一般に不斉炭素原子を含む光学活性化合物である。カイラル剤としては、例えば、不斉炭素原子を含む様々な天然または合成化合物を使用できる。なお、カイラル剤は、1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用してもよい。 The optically anisotropic layer preferably contains a chiral agent. A chiral agent is generally an optically active compound containing an asymmetric carbon atom. As the chiral agent, for example, various natural or synthetic compounds containing an asymmetric carbon atom can be used. In addition, a chiral agent may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
 中でも光学異方性層に好適に含有させるカイラル剤としては、前記の式(3)又は式(4)で表されるディスコティック液晶性分子の連結基(L)に不斉炭素原子を導入した分子構造を有するディスコティック化合物が挙げられる。具体例としては、連結基(L)に含まれるAL(アルキレン基またはアルケニレン基)に、不斉炭素原子を導入した化合物が挙げられる。 Among them, as a chiral agent suitably contained in the optically anisotropic layer, an asymmetric carbon atom was introduced into the linking group (L) of the discotic liquid crystalline molecule represented by the above formula (3) or (4). Examples include discotic compounds having a molecular structure. Specific examples include compounds in which an asymmetric carbon atom is introduced into AL (alkylene group or alkenylene group) contained in the linking group (L).
 以下に、不斉炭素原子を含むAL*の例を以下に挙げる。以下の例示においては左側が円盤状コア(D)に結合し、右側が重合性基(Q)又は水素原子若しくはアルキル基(R)に結合するように示している。また、印を付して示す炭素原子(C)は不斉炭素原子を表す。なお、光学活性は、S体とR体のいずれでも構わない。 Examples of AL * containing an asymmetric carbon atom are listed below. In the following examples, the left side is bonded to the discotic core (D), and the right side is bonded to the polymerizable group (Q), the hydrogen atom or the alkyl group (R). In addition, the carbon atom (C) indicated with an asterisk ( * ) represents an asymmetric carbon atom. The optical activity may be either S-form or R-form.
 AL*1:-CHCH-CHCH-CHCHCH
 AL*2:-CHCHCH-CHCH-CHCH
 AL*3:-CH-CHCH-CHCHCHCH
 AL*4:-CHCH-CHCHCHCHCH
 AL*5:-CHCHCHCH-CHCH-CH
 AL*6:-CHCHCHCHCH-CHCH
 AL*7:-CHCH-CHCHCHCH
 AL*8:-CH-CHCH-CHCHCH
 AL*9:-CHCH-CHCH-CHCH
 AL*10:-CHCHCH-CHCH-CH
 AL*11:-CHCHCHCH-CHCH
 AL*12:-CHCH-CHCHCH
 AL*13:-CH-CHCH-CHCH
 AL*14:-CHCH-CHCH-CH
 AL*15:-CHCHCH-CHCH
AL * 1: —CH 2 CH 2 —C * HCH 3 —CH 2 CH 2 CH 2
AL * 2: —CH 2 CH 2 CH 2 —C * HCH 3 —CH 2 CH 2
AL * 3: —CH 2 —C * HCH 3 —CH 2 CH 2 CH 2 CH 2
AL * 4: —C * HCH 3 —CH 2 CH 2 CH 2 CH 2 CH 2
AL * 5: —CH 2 CH 2 CH 2 CH 2 —C * HCH 3 —CH 2
AL * 6: —CH 2 CH 2 CH 2 CH 2 CH 2 —C * HCH 3
AL * 7: —C * HCH 3 —CH 2 CH 2 CH 2 CH 2
AL * 8: —CH 2 —C * HCH 3 —CH 2 CH 2 CH 2
AL * 9: —CH 2 CH 2 —C * HCH 3 —CH 2 CH 2
AL * 10: —CH 2 CH 2 CH 2 —C * HCH 3 —CH 2
AL * 11: —CH 2 CH 2 CH 2 CH 2 —C * HCH 3
AL * 12: —C * HCH 3 —CH 2 CH 2 CH 2
AL * 13: —CH 2 —C * HCH 3 —CH 2 CH 2
AL * 14: —CH 2 CH 2 —C * HCH 3 —CH 2
AL * 15: —CH 2 CH 2 CH 2 —C * HCH 3
 AL*16:-CH-CHCH
 AL*17:-CHCH-CH
 AL*18:-CHCH-CHCHCHCHCHCH
 AL*19:-CH-CHCH-CHCHCHCHCH
 AL*20:-CHCH-CHCH-CHCHCHCH
 AL*21:-CHCHCH-CHCH-CHCHCH
 AL*22:-CHCH-CHCHCHCHCHCHCH
 AL*23:-CH-CHCH-CHCHCHCHCHCH
 AL*24:-CHCH-CHCH-CHCHCHCHCH
 AL*25:-CHCHCH-CHCH-CHCHCHCH
 AL*26:-CHCH-(CH
 AL*27:-CH-CHCH-(CH
 AL*28:-CH-CHCHCH
 AL*29:-CH-CHCHCH-CH
 AL*30:-CH-CHCHCH-CHCH
AL * 16: —CH 2 —C * HCH 3
AL * 17: —C * HCH 3 —CH 2
AL * 18: —C * HCH 3 —CH 2 CH 2 CH 2 CH 2 CH 2 CH 2
AL * 19: —CH 2 —C * HCH 3 —CH 2 CH 2 CH 2 CH 2 CH 2
AL * 20: —CH 2 CH 2 —C * HCH 3 —CH 2 CH 2 CH 2 CH 2
AL * 21: —CH 2 CH 2 CH 2 —C * HCH 3 —CH 2 CH 2 CH 2
AL * 22: —C * HCH 3 —CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2
AL * 23: —CH 2 —C * HCH 3 —CH 2 CH 2 CH 2 CH 2 CH 2 CH 2
AL * 24: —CH 2 CH 2 —C * HCH 3 —CH 2 CH 2 CH 2 CH 2 CH 2
AL * 25: —CH 2 CH 2 CH 2 —C * HCH 3 —CH 2 CH 2 CH 2 CH 2
AL * 26: —C * HCH 3 — (CH 2 ) 8
AL * 27: —CH 2 —C * HCH 3 — (CH 2 ) 8
AL * 28: —CH 2 —C * HCH 2 CH 3
AL * 29: —CH 2 —C * HCH 2 CH 3 —CH 2
AL * 30: —CH 2 —C * HCH 2 CH 3 —CH 2 CH 2
 AL*31:-CH-CHCHCH-CHCHCHCH
 AL*32:-CH-CH(n-C)-CHCH
 AL*33:-CH-CH(n-C)-CHCHCHCH
 AL*34:-CH-CH(OCOCH)-CHCH
 AL*35:-CH-CH(OCOCH)-CHCHCHCH
 AL*36:-CH-CHF-CHCH
 AL*37:-CH-CHF-CHCHCHCH
 AL*38:-CH-CHCl-CHCH
 AL*39:-CH-CHCl-CHCHCHCH
 AL*40:-CH-CHOCH-CHCH
 AL*41:-CH-CHOCH-CHCHCHCH
 AL*42:-CH-CHCN-CHCH
 AL*43:-CH-CHCN-CHCHCHCH
 AL*44:-CH-CHCF-CHCH
 AL*45:-CH-CHCF-CHCHCHCH
AL * 31: —CH 2 —C * HCH 2 CH 3 —CH 2 CH 2 CH 2 CH 2
AL * 32: —CH 2 —C * H (nC 3 H 7 ) —CH 2 CH 2
AL * 33: —CH 2 —C * H (nC 3 H 7 ) —CH 2 CH 2 CH 2 CH 2
AL * 34: —CH 2 —C * H (OCOCH 3 ) —CH 2 CH 2
AL * 35: —CH 2 —C * H (OCOCH 3 ) —CH 2 CH 2 CH 2 CH 2
AL * 36: —CH 2 —C * HF—CH 2 CH 2
AL * 37: —CH 2 —C * HF—CH 2 CH 2 CH 2 CH 2
AL * 38: —CH 2 —C * HCl—CH 2 CH 2
AL * 39: —CH 2 —C * HCl—CH 2 CH 2 CH 2 CH 2
AL * 40: —CH 2 —C * HOCH 3 —CH 2 CH 2
AL * 41: —CH 2 —C * HOCH 3 —CH 2 CH 2 CH 2 CH 2
AL * 42: —CH 2 —C * HCN—CH 2 CH 2
AL * 43: —CH 2 —C * HCN—CH 2 CH 2 CH 2 CH 2
AL * 44: —CH 2 —C * HCF 3 —CH 2 CH 2
AL * 45: —CH 2 —C * HCF 3 —CH 2 CH 2 CH 2 CH 2
 カイラル剤には重合性基を導入してもよい。重合性基としては、ディスコティック液晶性分子と同様の重合性基(Q)が適用できる。重合性基を導入すると、ディスコティック液晶性分子を配向させた後に、さらに重合反応によってカイラル剤を光学異方性層内で固定することができる。 A polymerizable group may be introduced into the chiral agent. As the polymerizable group, the same polymerizable group (Q) as that of the discotic liquid crystalline molecule can be applied. When a polymerizable group is introduced, the chiral agent can be fixed in the optically anisotropic layer by a polymerization reaction after aligning the discotic liquid crystalline molecules.
 カイラル剤の量は、ディスコティック液晶性分子の配向状態を安定化させるために充分な量で使用する。具体的なカイラル剤の量は、ディスコティック液晶性分子の量の、通常0.005重量%以上、好ましくは0.01重量%以上、より好ましくは0.02重量%以上、特に好ましくは0.05重量%以上であり、通常0.2重量%以下である。 The amount of chiral agent used is sufficient to stabilize the orientation state of the discotic liquid crystalline molecules. The specific amount of the chiral agent is usually 0.005% by weight or more, preferably 0.01% by weight or more, more preferably 0.02% by weight or more, particularly preferably 0.005% by weight or more of the amount of the discotic liquid crystalline molecules. It is 0.5% by weight or more and usually 0.2% by weight or less.
 光学異方性層の製造方法に制限はないが、例えば、液晶性分子、重合開始剤(重合性開始剤ともいう。)、カイラル剤及び任意の添加剤(例えば、可塑剤、モノマー、界面活性剤、セルロースエステル、1,3,5-トリアジン化合物など)を含む液晶組成物を、配向膜の上に塗布することで製造できる。なお、配向膜を用いて製造した光学異方性層は、配向膜とともに使用してもよいが、配向膜を剥がして使用してもよい。 Although there is no restriction | limiting in the manufacturing method of an optically anisotropic layer, For example, a liquid crystalline molecule, a polymerization initiator (it is also called a polymerization initiator), a chiral agent, and arbitrary additives (for example, a plasticizer, a monomer, surface activity) And a liquid crystal composition containing an agent, a cellulose ester, a 1,3,5-triazine compound, etc.) can be produced by coating on the alignment film. In addition, although the optically anisotropic layer manufactured using the alignment film may be used with the alignment film, the alignment film may be peeled off and used.
 配向膜は、例えば、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例えば、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル等)の累積など手段で設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。中でも、ポリマーのラビング処理により形成する配向膜が特に好ましい。ラビング処理は、ポリマー層の表面を、紙や布で一定方向に、数回こすることにより実施する。配向膜を構成するポリマーとしては、配向膜の表面エネルギーを低下させないポリマー(通常の配向膜用ポリマー)を用いることが好ましい。 The alignment film may be, for example, a rubbing treatment of an organic compound (preferably a polymer), oblique deposition of an inorganic compound, formation of a layer having a microgroove, or an organic compound (eg, ω--) by the Langmuir-Blodgett method (LB film). For example, accumulation of tricosanoic acid, dioctadecylmethylammonium chloride, methyl stearylate, etc.). Furthermore, an alignment film in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known. Among these, an alignment film formed by a polymer rubbing treatment is particularly preferable. The rubbing treatment is carried out by rubbing the surface of the polymer layer several times in a certain direction with paper or cloth. As the polymer constituting the alignment film, it is preferable to use a polymer that does not reduce the surface energy of the alignment film (normal alignment film polymer).
 液晶組成物には溶媒を含ませてもよい。溶媒としては有機溶媒が好ましく用いられる。有機溶媒の例としては、N,N-ジメチルホルムアミド等のアミド溶媒;ジメチルスルホキシド等のスルホキシド溶媒;ピリジン等のヘテロ環化合物溶媒;ベンゼン、ヘキサン等の炭化水素溶媒;クロロホルム、ジクロロメタン等のアルキルハライド溶媒;酢酸メチル、酢酸ブチル等のエステル溶媒;アセトン、メチルエチルケトン等のケトン溶媒;テトラヒドロフラン、1,2-ジメトキシエタン等のエーテル溶媒などが挙げられる。なお、溶媒は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The liquid crystal composition may contain a solvent. As the solvent, an organic solvent is preferably used. Examples of organic solvents include amide solvents such as N, N-dimethylformamide; sulfoxide solvents such as dimethyl sulfoxide; heterocyclic compound solvents such as pyridine; hydrocarbon solvents such as benzene and hexane; alkyl halide solvents such as chloroform and dichloromethane. Ester solvents such as methyl acetate and butyl acetate; ketone solvents such as acetone and methyl ethyl ketone; ether solvents such as tetrahydrofuran and 1,2-dimethoxyethane; In addition, a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 液晶組成物の塗布は、例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法などの方法により実施できる。 The liquid crystal composition can be applied by, for example, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, or a die coating method.
 ディコスティック液晶性分子は、カイラル剤により実質的に均一に配向している状態で固定されていることがさらに好ましく、重合反応により液晶性分子が固定されていることが特に好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれるが、中でも光重合反応が好ましい。 The dichroic liquid crystalline molecules are more preferably fixed in a state of being substantially uniformly aligned by a chiral agent, and it is particularly preferable that the liquid crystalline molecules are fixed by a polymerization reaction. The polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator, and among them, the photopolymerization reaction is preferable.
 光重合開始剤としては、例えば、α-カルボニル化合物(米国特許2367661号明細書、米国特許第2367670号明細書参照)、アシロインエーテル(米国特許2448828号明細書参照)、α-炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書参照)、多核キノン化合物(米国特許第3046127号明細書、米国特許第2951758号明細書参照)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書参照)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許4239850号明細書参照)、オキサジアゾール化合物(米国特許4212970号明細書参照)などが挙げられる。なお、光重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the photopolymerization initiator include α-carbonyl compounds (see US Pat. No. 2,367,661 and US Pat. No. 2,367,670), acyloin ether (see US Pat. No. 2,448,828), α-hydrocarbon substituted aromatics, and the like. Group acyloin compounds (see US Pat. No. 2,722,512), polynuclear quinone compounds (see US Pat. Nos. 3,046,127 and 2,951,758), combinations of triarylimidazole dimers and p-aminophenyl ketone (US) Patent No. 3549367), acridine and phenazine compounds (see JP-A-60-105667, US Pat. No. 4,239,850), oxadiazole compounds (see US Pat. No. 4,221,970) and the like. In addition, a photoinitiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 光重合開始剤の使用量は、液晶組成物の固形分の通常0.01重量%以上、好ましくは0.5重量%以上であり、通常20重量%以下、好ましくは5重量%以下である。なお、液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、通常20mJ/cm以上、好ましくは100mJ/cm以上であり、通常50J/cm以下、好ましくは800mJ/cm以下である。また、光重合反応を促進するため、加熱条件下で光照射を実施してもよい。 The amount of the photopolymerization initiator used is usually 0.01% by weight or more, preferably 0.5% by weight or more, and usually 20% by weight or less, preferably 5% by weight or less, based on the solid content of the liquid crystal composition. In addition, it is preferable to use ultraviolet rays for light irradiation for polymerization of liquid crystalline molecules. The irradiation energy is usually 20 mJ / cm 2 or more, preferably 100 mJ / cm 2 or more, and usually 50 J / cm 2 or less, preferably 800 mJ / cm 2 or less. In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions.
 光学補償フィルムの厚さは、通常0.1μm以上、好ましくは0.5μm以上、より好ましくは1μm以上であり、通常20μm以下、好ましくは15μm以下、より好ましくは10μm以下である。 The thickness of the optical compensation film is usually 0.1 μm or more, preferably 0.5 μm or more, more preferably 1 μm or more, and usually 20 μm or less, preferably 15 μm or less, more preferably 10 μm or less.
(5)TN型の液晶パネル
 本発明においては液晶パネルとしてはTN型の液晶パネルを用いる。この液晶パネルは、通常、一対の基板の間に液晶性分子が封入された構造を有しており、封入された液晶性分子に電圧を印加するための電極層を備えるものを用いるが、TN型の液晶パネルであれば本発明はこれに限定されるものではない。
(5) TN liquid crystal panel In the present invention, a TN liquid crystal panel is used as the liquid crystal panel. This liquid crystal panel usually has a structure in which liquid crystalline molecules are encapsulated between a pair of substrates, and is provided with an electrode layer for applying a voltage to the encapsulated liquid crystalline molecules. The present invention is not limited to this as long as it is a liquid crystal panel of a type.
 以下、実施例を挙げて本発明について更に具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。なお、以下の説明において量の単位として「部」という場合、特に断らない限り「重量部」を意味する。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and can be arbitrarily modified without departing from the gist of the present invention. In the following description, the term “parts” as a unit of quantity means “parts by weight” unless otherwise specified.
〔評価方法〕
(1)Nz係数の測定方法
 波長550nmにおけるNz係数を、自動複屈折計[王子計測器社製、商品名「KOBRA-21ADH」]により測定した。
〔Evaluation methods〕
(1) Method of measuring Nz coefficient The Nz coefficient at a wavelength of 550 nm was measured with an automatic birefringence meter [manufactured by Oji Scientific Instruments, trade name “KOBRA-21ADH”].
(2)面内位相差Re及び厚さ方向の位相差Rthの測定方法
 波長550nmにおける面内位相差Re及び厚さ方向の位相差Rthを、自動複屈折計により測定した。
(2) Measuring method of in-plane retardation Re and thickness direction retardation Rth In-plane retardation Re and thickness direction retardation Rth at a wavelength of 550 nm were measured by an automatic birefringence meter.
(3)輝度向上率の評価方法
 LCD視野角特性測定評価装置[オートロニック・メルシャス社製、商品名「コノスコープ」(ConoScope,autronic-MELCHERS GmbH, Karlsruhe, Germany)]を用いて輝度を測定し、比較例1の輝度を1としてその比率を測定した。
(3) Evaluation Method of Luminance Improvement Measure the luminance using an LCD viewing angle characteristic measurement and evaluation apparatus [trade name “Conoscope” (ConoScope, autonic-MELCHERS GmbH, Karlsruhe, Germany)] The ratio was measured with the luminance of Comparative Example 1 as 1.
(4)着色の評価方法
 液晶表示装置の表示面を、表示面の左右方向から、表示面の法線方向に対して極角60°の向きから目視にて観察した。ここで表示面の左右方向とは、長方形状に形成された表示面の長辺方向にそった左右の方向をいう。黄色の着色が確認されないものを「優」、黄色の着色がほぼ確認されないものを「良」、弱い黄色の着色が確認されるものを「可」、強い黄色の着色が確認されるものを「不良」とした。
(4) Coloring Evaluation Method The display surface of the liquid crystal display device was visually observed from the left-right direction of the display surface from a polar angle of 60 ° with respect to the normal direction of the display surface. Here, the left-right direction of the display surface refers to the left-right direction along the long side direction of the display surface formed in a rectangular shape. "Excellent" if yellow color is not confirmed, "Good" if yellow color is almost not confirmed, "Yes" if weak yellow color is confirmed, "Yes" if strong yellow color is confirmed “Bad”.
〔実施例1〕
(1)コレステリック樹脂層の作製
 シート状基材[日本ゼオン社製、商品名「ゼオノアZF14-100」]の片面に、濡れ指数が56mN/mになるようにコロナ放電処理を施した。このコロナ放電処理面に、ポリビニルアルコール[クラレ社製、商品名「ポバールPVA203」]を#2ワイヤーバーにて塗布し、120℃で5分間乾燥し、膜厚0.2μmの乾膜を作製した。該乾膜を一方向にラビング処理することで、配向膜を有する基材を得た。
[Example 1]
(1) Production of Cholesteric Resin Layer A corona discharge treatment was performed on one side of a sheet-like substrate [trade name “Zeonor ZF14-100” manufactured by Nippon Zeon Co., Ltd.] so that the wetting index was 56 mN / m. Polyvinyl alcohol [trade name “Poval PVA203” manufactured by Kuraray Co., Ltd.] was applied to the corona discharge treated surface with a # 2 wire bar and dried at 120 ° C. for 5 minutes to produce a dry film having a thickness of 0.2 μm. . By rubbing the dry film in one direction, a substrate having an alignment film was obtained.
 下記に示す棒状液晶性化合物29.1部、
 化合物(A2)7.28部、
 光重合開始剤[チバスペシャリティ・ケミカルズ社製、商品名「IRG907」]1.20部、
 カイラル剤[BASF社製、商品名「LC756」]2.38部、
 界面活性剤[セイミケミカル製、商品名「KH40」]0.04部、及び
 シクロペンタノン(溶媒)60.00部
を混合し、コレステリック液晶組成物を調製した。このコレステリック液晶組成物を、上記で調製した配向膜を有する透明樹脂基材の配向膜を有する面に♯10バーを用いて塗布した。塗膜を100℃で5分間配向処理し、当該塗膜に対して0.1~45mJ/cmの微弱な紫外線の照射処理と、それに続く100℃で1分間の加温処理からなるプロセスを2回繰り返した後、窒素雰囲気下で800mJ/cmの紫外線を照射して、乾燥膜厚5.3μmのコレステリック樹脂層を形成し、基材-配向膜-コレステリック樹脂層の層構成を有する、基材-円偏光分離素子積層体を得た。なお、得られたコレステリック樹脂層は左円偏光を出射するものであった。
29.1 parts of a rod-like liquid crystalline compound shown below,
7.28 parts of compound (A2),
1.20 parts of photopolymerization initiator [trade name “IRG907” manufactured by Ciba Specialty Chemicals, Inc.]
2.38 parts of chiral agent [trade name “LC756” manufactured by BASF Corporation]
A cholesteric liquid crystal composition was prepared by mixing 0.04 part of a surfactant [trade name “KH40” manufactured by Seimi Chemical Co., Ltd.] and 60.00 parts of cyclopentanone (solvent). This cholesteric liquid crystal composition was applied to the surface having the alignment film of the transparent resin substrate having the alignment film prepared above by using # 10 bar. The coating film is subjected to an orientation treatment at 100 ° C. for 5 minutes, and the coating film is subjected to a process of irradiation with weak ultraviolet rays of 0.1 to 45 mJ / cm 2 and subsequent heating treatment at 100 ° C. for 1 minute. After repeating twice, ultraviolet rays of 800 mJ / cm 2 are irradiated in a nitrogen atmosphere to form a cholesteric resin layer having a dry film thickness of 5.3 μm, and has a layer structure of substrate-alignment film-cholesteric resin layer. A substrate-circularly polarized light separating element laminate was obtained. The obtained cholesteric resin layer emitted left circularly polarized light.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 (2)1/4波長板の作製
 脂環式オレフィンポリマーの一種である熱可塑性ノルボルネン樹脂のペレット[日本ゼオン社製、商品名「ZEONOR1420」、ガラス転移点137℃]を100℃で5時間乾燥した。
 前記ペレットを押出機に供給し、押出機内で溶融させ、ポリマーパイプ及びポリマーフィルターを経て、Tダイからキャスティングドラム上にシート状に押出し、冷却し、厚み130μm、幅1200mmの未延伸フィルムを得た。
 この未延伸フィルムを、そのまま連続してフロート方式の縦延伸機に供給し、延伸温度140℃、延伸倍率1.3倍で第一延伸を行い、第一延伸フィルムを得、巻き芯に巻きとった。
 更に、第一延伸フィルムを巻き芯から引き出し、テンター延伸機でフィルムの配向角が巻き取り方向に対して45°となるように、延伸温度145℃、延伸倍率1.7倍で、第二延伸を行い、フィルム両端180mmをトリミングして、幅1340mmの長尺延伸フィルム、すなわち1/4波長板としてゼオノア延伸フィルムを得た。得られたゼオノア延伸フィルムは、Re:140nm、Rth:154nm、Nz係数:1.60の光学特性を有するものであった。
(2) Production of 1/4 wavelength plate Drying pellets of thermoplastic norbornene resin which is a kind of alicyclic olefin polymer [manufactured by Nippon Zeon Co., Ltd., trade name “ZEONOR1420”, glass transition point 137 ° C.] at 100 ° C. for 5 hours. did.
The pellets were supplied to an extruder, melted in the extruder, passed through a polymer pipe and a polymer filter, extruded from a T die onto a casting drum, cooled, and an unstretched film having a thickness of 130 μm and a width of 1200 mm was obtained. .
This unstretched film is continuously supplied to a float-type longitudinal stretching machine as it is, and first stretched at a stretching temperature of 140 ° C. and a stretch ratio of 1.3 times to obtain a first stretched film, which is wound around a winding core. It was.
Further, the first stretched film is pulled out from the core, and the second stretch is performed at a stretching temperature of 145 ° C. and a stretching ratio of 1.7 times so that the orientation angle of the film is 45 ° with respect to the winding direction with a tenter stretching machine. Then, 180 mm at both ends of the film was trimmed to obtain a long stretched film having a width of 1340 mm, that is, a ZEONOR stretched film as a quarter wavelength plate. The obtained ZEONOR stretched film had optical characteristics of Re: 140 nm, Rth: 154 nm, and Nz coefficient: 1.60.
 (3)輝度向上フィルムの製造
 アクリル酸エステル共重合体[綜研化学社製、商品名「SKダイン2094」、固形分率25%、溶媒:酢酸エチル/2-ブタノン=93/7]400部と、
 多官能エポキシ架橋剤[綜研化学社製、商品名「E-AX」]1.1部
との混合物を、ポリエチレンテレフタラートセパレータ[リンテック社製、商品名「PET50AL」]に、ギャップ200μmのブレードを用いて塗布し、100℃で2分乾燥し、セパレータ/膜厚20μmの粘着層(透明粘着層)を作製した。
(3) Production of brightness enhancement film Acrylic ester copolymer [manufactured by Soken Chemical Co., Ltd., trade name “SK Dyne 2094”, solid content rate 25%, solvent: ethyl acetate / 2-butanone = 93/7] ,
Multi-functional epoxy crosslinker [trade name “E-AX” manufactured by Soken Chemical Co., Ltd.] 1.1 parts of the mixture, polyethylene terephthalate separator [product name “PET50AL” manufactured by Lintec Co., Ltd.] blade with a gap of 200 μm And dried at 100 ° C. for 2 minutes to prepare a separator / 20 μm thick adhesive layer (transparent adhesive layer).
 作製した粘着層により、先に作製したコレステリック樹脂層と、ゼオノア延伸フィルムとを貼り合わせ、輝度向上フィルムを製造した。 The produced cholesteric resin layer and the ZEONOR stretched film were bonded together with the produced adhesive layer to produce a brightness enhancement film.
 (4)液晶表示装置の製造
 作製した輝度向上フィルムを、TN駆動液晶ディスプレイ[I-O DATA社製、商品名「LCD-DTV191X」]のバックライト側偏光子に、輝度向上フィルムの製造において作製した粘着層を用いて貼合した。なお、この液晶ディスプレイの偏光子は二色性吸収型偏光板と、光学補償フィルムとしてワイドビューフィルムとを備えるものである。貼り合わせの際、1/4波長板の遅相軸は表示面の左右方向と一致するようにした。これにより、光源側から導光板、プリズムシート、拡散シート、コレステリック樹脂層、1/4波長板、二色性吸収型偏光板、光学補償フィルム、液晶パネル、光学補償フィルム及び二色性吸収型偏光板を備える液晶表示装置を用意した。
(4) Production of liquid crystal display device The produced brightness enhancement film is produced in the production of a brightness enhancement film on the backlight side polarizer of a TN drive liquid crystal display [manufactured by I-O DATA, trade name “LCD-DTV191X”]. Bonding was performed using the adhesive layer. The polarizer of the liquid crystal display includes a dichroic absorption polarizing plate and a wide view film as an optical compensation film. At the time of bonding, the slow axis of the quarter-wave plate was made to coincide with the horizontal direction of the display surface. Thus, from the light source side, the light guide plate, prism sheet, diffusion sheet, cholesteric resin layer, quarter wavelength plate, dichroic absorption polarizing plate, optical compensation film, liquid crystal panel, optical compensation film, and dichroic absorption polarization A liquid crystal display device provided with a plate was prepared.
 〔実施例2〕
 棒状液晶性化合物[BASF社製、LC242]38.76部、
 光重合開始剤[チバスペシャリティ・ケミカルズ社製、商品名「IRG907」]1.20部、
 界面活性剤[セイミケミカル製、商品名「KH40」]0.04部、及び
 2-ブタノン(溶媒)60.00部
を混合し、ネマチック液晶組成物を調製した。このネマチック液晶組成物を実施例1で調製した配向膜を有する透明樹脂基材の配向膜を有する面に#2バーを用いて塗布した。塗膜を100℃で3分間配向処理し、窒素雰囲気下で500mJ/cmの紫外線を照射して、乾燥膜厚1.0μmのネマチック樹脂層を形成し、基材-配向膜-ネマチック樹脂層の層構成を有する、LC1/4波長板を得た。なお、LC1/4波長板は、Re:140nm、Rth:70nm、Nz係数:1.00の光学特性を有するものであった。
 1/4波長板として、LC1/4波長板を用いたほかは、実施例1と同様にして、液晶表示装置を用意した。
[Example 2]
Rod-like liquid crystalline compound [manufactured by BASF, LC242] 38.76 parts,
1.20 parts of photopolymerization initiator [trade name “IRG907” manufactured by Ciba Specialty Chemicals, Inc.]
A nematic liquid crystal composition was prepared by mixing 0.04 part of a surfactant [trade name “KH40” manufactured by Seimi Chemical Co., Ltd.] and 60.00 part of 2-butanone (solvent). This nematic liquid crystal composition was applied to the surface having the alignment film of the transparent resin substrate having the alignment film prepared in Example 1 using a # 2 bar. The coating film is subjected to orientation treatment at 100 ° C. for 3 minutes, irradiated with ultraviolet rays of 500 mJ / cm 2 in a nitrogen atmosphere to form a nematic resin layer having a dry film thickness of 1.0 μm, and a substrate-alignment film-nematic resin layer An LC1 / 4 wave plate having the layer structure was obtained. The LC1 / 4 wavelength plate had optical characteristics of Re: 140 nm, Rth: 70 nm, and Nz coefficient: 1.00.
A liquid crystal display device was prepared in the same manner as in Example 1 except that an LC 1/4 wavelength plate was used as the 1/4 wavelength plate.
 〔比較例1〕
 TN駆動液晶ディスプレイに輝度向上フィルムを搭載せずに用いた。つまり、光源側から導光板、プリズムシート、拡散シート、二色性吸収型偏光板、光学補償フィルム、液晶パネル、光学補償フィルム及び二色性吸収型偏光板を備える液晶表示装置を用意した。
[Comparative Example 1]
The TN drive liquid crystal display was used without being equipped with a brightness enhancement film. That is, a liquid crystal display device including a light guide plate, a prism sheet, a diffusion sheet, a dichroic absorption polarizing plate, an optical compensation film, a liquid crystal panel, an optical compensation film, and a dichroic absorption polarizing plate was prepared from the light source side.
 〔比較例2〕
 輝度向上フィルムとして反射型偏光子DBEFD(スリーエム社製)を用いたこと以外は実施例1と同様にして、液晶表示装置を用意した。つまり、光源側から導光板、プリズムシート、拡散シート、DBEFD、二色性吸収型偏光板、光学補償フィルム、液晶パネル、光学補償フィルム及び二色性吸収型偏光板を備える液晶表示装置を用意した。なお、DBEFDは1/4波長板を有していない。
[Comparative Example 2]
A liquid crystal display device was prepared in the same manner as in Example 1 except that a reflective polarizer DBEFD (manufactured by 3M) was used as the brightness enhancement film. That is, a liquid crystal display device including a light guide plate, a prism sheet, a diffusion sheet, DBEFD, a dichroic absorption polarizing plate, an optical compensation film, a liquid crystal panel, an optical compensation film, and a dichroic absorption polarizing plate was prepared from the light source side. . Note that DBEFD does not have a quarter-wave plate.
 〔比較例3〕
 メタクリル酸メチル97.8重量%とアクリル酸メチル2.2重量%とからなるモノマー組成物を、バルク重合法により重合させ、樹脂ペレットを得た。
[Comparative Example 3]
A monomer composition composed of 97.8% by weight of methyl methacrylate and 2.2% by weight of methyl acrylate was polymerized by a bulk polymerization method to obtain resin pellets.
 特公昭55-27576号公報の実施例3に準じて、ゴム粒子を製造した。このゴム粒子は、球形3層構造を有し、芯内層が、メタクリル酸メチル及び少量のメタクリル酸アリルの架橋重合体であり、内層が、主成分としてのアクリル酸ブチルとスチレン及び少量のアクリル酸アリルとを架橋共重合させた軟質の弾性共重合体であり、外層が、メタクリル酸メチル及び少量のアクリル酸エチルの硬質重合体である。また、内層の平均粒子径は0.19μmであり、外層をも含めた粒径は0.22μmであった。 Rubber particles were produced according to Example 3 of JP-B-55-27576. This rubber particle has a spherical three-layer structure, the core inner layer is a crosslinked polymer of methyl methacrylate and a small amount of allyl methacrylate, and the inner layer is composed of butyl acrylate and styrene as main components and a small amount of acrylic acid. It is a soft elastic copolymer obtained by crosslinking and copolymerizing allyl, and the outer layer is a hard polymer of methyl methacrylate and a small amount of ethyl acrylate. The average particle size of the inner layer was 0.19 μm, and the particle size including the outer layer was 0.22 μm.
 上記樹脂ペレット70重量部と、上記ゴム粒子30重量部とを混合し、二軸押出機で溶融混練して、メタクリル酸エステル重合体組成物(ガラス転移温度105℃)を得た。 70 parts by weight of the resin pellets and 30 parts by weight of the rubber particles were mixed and melt kneaded with a twin screw extruder to obtain a methacrylic acid ester polymer composition (glass transition temperature 105 ° C.).
 上記メタクリル酸エステル重合体組成物(b層)、及びスチレン無水マレイン酸共重合体(ガラス転移温度130℃)(a層)を温度280℃で共押出成形することにより、b層/a層/b層の三層構造で、各層が45/70/45(μm)の平均厚みを有する複層フィルムを得た。この積層フィルムを、テンター延伸機で、遅相軸がMD方向(Machine Direction方向。フィルムの流れ方向を指す。)に対して45°傾いた方向になるように、延伸温度134℃、延伸倍率1.8倍で斜め延伸し、2種3層1/4波長板を得た。2種3層1/4波長板は、Re:140nm、Rth:-85nm、Nz係数:-0.11の光学特性を有するものであった。
 1/4波長板として、2種3層1/4波長板を用いたほかは、実施例1と同様にして、液晶表示装置を用意した。
By coextruding the methacrylic acid ester polymer composition (b layer) and the styrene maleic anhydride copolymer (glass transition temperature 130 ° C.) (a layer) at a temperature of 280 ° C., b layer / a layer / A multilayer film having an average thickness of 45/70/45 (μm) with a three-layer structure of b layers was obtained. The laminated film was stretched at a stretching temperature of 134 ° C. and a stretching ratio of 1 with a tenter stretching machine so that the slow axis was inclined at 45 ° with respect to the MD direction (Machine Direction direction, indicating the film flow direction). The film was obliquely stretched by 8 times to obtain a two-kind three-layer quarter-wave plate. The two-type three-layer quarter-wave plate had optical characteristics of Re: 140 nm, Rth: -85 nm, and Nz coefficient: -0.11.
A liquid crystal display device was prepared in the same manner as in Example 1 except that a two-type three-layer quarter-wave plate was used as the quarter-wave plate.
 〔比較例4〕
 コレステリック樹脂層を、円偏光分離素子[日東電工社製、商品名「NIPOCS」]から取り出した右円偏光を出射するコレステリック樹脂層とし、また、1/4波長板の遅相軸は表示面の上下方向(表示面の長方形の短辺方向)と一致するようにしたこと以外は実施例1と同様にして、液晶表示装置を用意した。
[Comparative Example 4]
The cholesteric resin layer is a cholesteric resin layer that emits right-handed circularly polarized light extracted from a circularly polarized light separating element [manufactured by Nitto Denko Corporation, trade name “NIPOCS”]. A liquid crystal display device was prepared in the same manner as in Example 1 except that it coincided with the vertical direction (the short side direction of the rectangle of the display surface).
 〔比較例5〕
 棒状液晶性化合物[DIC社製、商品名「UCL018」]20.00部、
 光重合開始剤[BASF社製、商品名「ルシリンTPO」]0.04部、
 ヒンダードアミン[三共ライフテック社製、商品名「LS-765」]0.02部、及び
 シクロペンタノン(溶媒)80.00部
を混合し垂直配向液晶組成物を調製した。この垂直配向液晶組成物を、実施例1で調製した配向膜を有する透明樹脂基材の配向膜を有する面に#4バーを用いて塗布した。塗膜を65℃で2分間配向処理し、窒素雰囲気下で800mJ/cmの紫外線を照射して、乾燥膜厚1.4μmの垂直配向樹脂層を得た。
[Comparative Example 5]
20.00 parts of a rod-like liquid crystal compound [manufactured by DIC, trade name “UCL018]]
0.04 part of a photopolymerization initiator [BASF, trade name “Lucirin TPO”]
A vertically aligned liquid crystal composition was prepared by mixing 0.02 part of a hindered amine [manufactured by Sankyo Lifetech Co., Ltd., trade name “LS-765”] and 80.00 part of cyclopentanone (solvent). This vertically aligned liquid crystal composition was applied to the surface having the alignment film of the transparent resin substrate having the alignment film prepared in Example 1 using a # 4 bar. The coating film was subjected to orientation treatment at 65 ° C. for 2 minutes, and irradiated with 800 mJ / cm 2 of ultraviolet light in a nitrogen atmosphere to obtain a vertically oriented resin layer having a dry film thickness of 1.4 μm.
 実施例1において作製した透明粘着層により、垂直配向樹脂層と、実施例1において作製されたゼオノア延伸フィルムとを貼り合わせ、基材-配向膜-垂直配向樹脂層-透明粘着層-ゼオノア延伸フィルムの層構成を有する、垂直配向樹脂層付ゼオノア延伸フィルムを得た。なお、垂直配向樹脂層付ゼオノア延伸フィルムは、Re:140nm、Rth:-4nm、Nz係数:0.47の光学特性を有するものであった。
 1/4波長板として、垂直配向樹脂層付ゼオノア延伸フィルムを用いたほかは、実施例1と同様にして、液晶表示装置を用意した。
Using the transparent adhesive layer prepared in Example 1, the vertically aligned resin layer and the ZEONOR stretched film prepared in EXAMPLE 1 were bonded together, and the substrate-alignment film-vertical alignment resin layer-transparent adhesive layer-ZEONOR stretched film were bonded together. A ZEONOR stretched film with a vertically aligned resin layer having the layer structure of was obtained. The ZEONOR stretched film with a vertically aligned resin layer had optical characteristics of Re: 140 nm, Rth: -4 nm, and Nz coefficient: 0.47.
A liquid crystal display device was prepared in the same manner as in Example 1 except that a ZEONOR stretched film with a vertical alignment resin layer was used as the quarter wavelength plate.
〔評価結果〕
 前記の実施例及び比較例で用意した液晶表示装置のそれぞれについて、前述の要領で輝度向上率及び表示面の着色を評価した。結果を下記表1に示す。
〔Evaluation results〕
About each of the liquid crystal display device prepared by the said Example and comparative example, the brightness improvement rate and the coloring of the display surface were evaluated in the above-mentioned way. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表1から明らかなように、実施例1,2の液晶表示装置は輝度が高く、且つ、液晶表示装置の表示面を左右方向の方位角において斜めから見た場合であっても黄色の着色はなかった。これに対し、比較例のようの輝度向上フィルムがない場合(比較例1)、1/4波長板がない場合(比較例2)、1/4波長板のNz係数が0.9未満である場合(比較例3,5)、およびコレステリック樹脂層が右円偏光を出光する場合(比較例4)には、少なくとも表示面を左右方向において斜めから見た場合には黄色の着色が確認された。これにより、本発明の輝度向上フィルム、複合偏光板及び液晶表示装置により、液晶表示装置の表示面を左右方向の方位角において傾斜向から見た場合に黄色に色づいて見える現象を防止できることが確認された。
 なお、比較例4において1/4波長板の遅相軸方向は液晶表示装置の表示面の上下方向に一致する方向になっているが、これは、1/4波長板の遅相軸方向は適用しようとする液晶表示装置が備える光学素子の光軸に合わせて設定すべき方向が決まるため、比較例4のように右円偏光を出光するコレステリック樹脂層を有する輝度向上フィルムを他の実施例及び比較例と同様の液晶表示装置に適用することにより自ずと表示面の上下方向と一致する方向になったものである。この場合、1/4波長板から出光する光は表示面の上下方向において青色の光を発していると推察される。
As is clear from Table 1, the liquid crystal display devices of Examples 1 and 2 have high luminance, and yellow coloration is observed even when the display surface of the liquid crystal display device is viewed obliquely at the azimuth angle in the left-right direction. There wasn't. On the other hand, when there is no brightness enhancement film as in the comparative example (Comparative Example 1), when there is no quarter wave plate (Comparative Example 2), the Nz coefficient of the quarter wave plate is less than 0.9. In the case (Comparative Examples 3 and 5), and when the cholesteric resin layer emits right circularly polarized light (Comparative Example 4), yellow coloring was confirmed at least when the display surface was viewed obliquely in the left-right direction. . This confirms that the brightness enhancement film, the composite polarizing plate, and the liquid crystal display device of the present invention can prevent a phenomenon that the display surface of the liquid crystal display device is colored yellow when viewed from the tilt direction at the azimuth angle in the horizontal direction. It was done.
In Comparative Example 4, the slow axis direction of the quarter wavelength plate is a direction that coincides with the vertical direction of the display surface of the liquid crystal display device. This is because the slow axis direction of the quarter wavelength plate is Since the direction to be set is determined in accordance with the optical axis of the optical element included in the liquid crystal display device to be applied, another example is a brightness enhancement film having a cholesteric resin layer that emits right circularly polarized light as in Comparative Example 4. And by applying to the same liquid crystal display device as in the comparative example, the direction naturally coincides with the vertical direction of the display surface. In this case, it is assumed that the light emitted from the quarter-wave plate emits blue light in the vertical direction of the display surface.
 本発明は表示装置に用いることができ、特に液晶表示装置に用いて好適である。 The present invention can be used for a display device, and is particularly suitable for a liquid crystal display device.
 1 光源
 2 反射板
 3 輝度向上フィルム
 4,9 二色性吸収型偏光板
 5,8 光学補償フィルム
 6 複合偏光板
 7 液晶パネル
 9U,9U’ 表示面
 31 コレステリック樹脂層
 32 1/4波長板
 32U 1/4波長板の上面(出光面)
 A 正面方向
 B 傾斜方向
DESCRIPTION OF SYMBOLS 1 Light source 2 Reflector 3 Brightness improvement film 4,9 Dichroism absorption polarizing plate 5,8 Optical compensation film 6 Composite polarizing plate 7 Liquid crystal panel 9U, 9U 'Display surface 31 Cholesteric resin layer 32 1/4 wavelength plate 32U 1 / 4 wave plate top surface (light-emitting surface)
A Front direction B Inclination direction

Claims (4)

  1.  厚み方向における分子の螺旋ピッチが出光側の面に近づくにつれて狭くなる、左円偏光を出光するコレステリック樹脂層と、
     Nz≧0.9(ただし、Nz=(nx-nz)/(nx-ny)である。ここで、nxはその面内の遅相軸方向の屈折率を表し、nyはその面内の遅相軸に直交する方向の屈折率を表し、nzはその厚み方向の屈折率を表す。)を満たす1/4波長板と
    を備える輝度向上フィルム。
    A cholesteric resin layer that emits left-handed circularly polarized light that narrows as the helical pitch of molecules in the thickness direction approaches the surface on the light-emitting side;
    Nz ≧ 0.9 (where Nz = (nx−nz) / (nx−ny), where nx represents the refractive index in the slow axis direction in the plane, and ny represents the slow index in the plane. A brightness enhancement film comprising: a quarter-wave plate satisfying a refractive index in a direction perpendicular to the phase axis, and nz representing a refractive index in the thickness direction.
  2.  厚み方向における分子の螺旋ピッチが出光側に近づくにつれて狭くなる、左円偏光を出光するコレステリック樹脂層と、
     前記コレステリック樹脂層から出光した左円偏光を受光して直線偏光を出光する、Nz≧0.9(ただし、Nz=(nx-nz)/(nx-ny)である。ここで、nxはその面内の遅相軸方向の屈折率を表し、nyはその面内の遅相軸に直交する方向の屈折率を表し、nzはその厚み方向の屈折率を表す。)を満たす1/4波長板と、
     前記1/4波長板が出光する直線偏光の偏光方向と平行な透過軸方向を有する二色性吸収型偏光板と、
     光学補償フィルムとを、
    この順に備える複合偏光板。
    A cholesteric resin layer that emits left-handed circularly polarized light that narrows as the helical pitch of molecules in the thickness direction approaches the light-emitting side;
    Nz ≧ 0.9 (where Nz = (nx−nz) / (nx−ny)), where nx is the number of the left circularly polarized light emitted from the cholesteric resin layer and receives linearly polarized light. Represents the refractive index in the slow axis direction in the plane, ny represents the refractive index in the direction perpendicular to the slow axis in the plane, and nz represents the refractive index in the thickness direction). The board,
    A dichroic absorption polarizing plate having a transmission axis direction parallel to the polarization direction of linearly polarized light emitted from the quarter-wave plate;
    An optical compensation film,
    A composite polarizing plate provided in this order.
  3.  厚み方向における分子の螺旋ピッチが出光側に近づくにつれて狭くなる、左円偏光を出光するコレステリック樹脂層と、
     前記コレステリック樹脂層から出光した左円偏光を受光して直線偏光を出光する、Nz≧0.9(ただし、Nz=(nx-nz)/(nx-ny)である。ここで、nxはその面内の遅相軸方向の屈折率を表し、nyはその面内の遅相軸に直交する方向の屈折率を表し、nzはその厚み方向の屈折率を表す。)を満たす1/4波長板と、
     前記1/4波長板が出光する直線偏光の偏光方向と平行な透過軸方向を有する二色性吸収型偏光板と、
     光学補償フィルムと、
     TN型の液晶パネルとを、
    この順に備える液晶表示装置。
    A cholesteric resin layer that emits left-handed circularly polarized light that narrows as the helical pitch of molecules in the thickness direction approaches the light-emitting side;
    Nz ≧ 0.9 (where Nz = (nx−nz) / (nx−ny)), where nx is the number of the left circularly polarized light emitted from the cholesteric resin layer and receives linearly polarized light. Represents the refractive index in the slow axis direction in the plane, ny represents the refractive index in the direction perpendicular to the slow axis in the plane, and nz represents the refractive index in the thickness direction). The board,
    A dichroic absorption polarizing plate having a transmission axis direction parallel to the polarization direction of linearly polarized light emitted from the quarter-wave plate;
    An optical compensation film;
    With TN type liquid crystal panel,
    A liquid crystal display device provided in this order.
  4.  長方形の表示面を有し、
     前記表示面の長方形の長辺方向と、前記1/4波長板の遅相軸方向とが平行である、請求項3記載の液晶表示装置。
    Having a rectangular display surface,
    The liquid crystal display device according to claim 3, wherein a long side direction of the rectangle of the display surface is parallel to a slow axis direction of the quarter-wave plate.
PCT/JP2010/061557 2009-07-29 2010-07-07 Brightness-improving film, composite polarizer, and liquid-crystal display device WO2011013492A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011524722A JPWO2011013492A1 (en) 2009-07-29 2010-07-07 Brightness improving film, composite polarizing plate, and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-176917 2009-07-29
JP2009176917 2009-07-29

Publications (1)

Publication Number Publication Date
WO2011013492A1 true WO2011013492A1 (en) 2011-02-03

Family

ID=43529155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061557 WO2011013492A1 (en) 2009-07-29 2010-07-07 Brightness-improving film, composite polarizer, and liquid-crystal display device

Country Status (3)

Country Link
JP (1) JPWO2011013492A1 (en)
TW (1) TW201109748A (en)
WO (1) WO2011013492A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015199209A1 (en) * 2014-06-27 2017-04-27 富士フイルム株式会社 Brightness-enhancement film transfer material, transfer material production method, brightness-enhancement film, optical sheet member manufacturing method using transfer material, and optical sheet member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11150503B2 (en) * 2015-12-17 2021-10-19 Zeon Corporation Liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315548A (en) * 2002-04-24 2003-11-06 Nitto Denko Corp Optical element, surface light source device, and liquid crystal display
JP2004318066A (en) * 2003-03-31 2004-11-11 Nitto Denko Corp Manufacturing method of wide band cholesteric liquid crystal film, circular polarizing plate, linear polarizing element, illuminating device and liquid crystal display
JP2004326128A (en) * 1998-03-05 2004-11-18 Nitto Denko Corp Circularly polarized light separating layer, optical element, illuminator and liquid crystal display device
JP2006098946A (en) * 2004-09-30 2006-04-13 Nitto Denko Corp Optical element, polarizing element, lighting device, and liquid crystal display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004326128A (en) * 1998-03-05 2004-11-18 Nitto Denko Corp Circularly polarized light separating layer, optical element, illuminator and liquid crystal display device
JP2003315548A (en) * 2002-04-24 2003-11-06 Nitto Denko Corp Optical element, surface light source device, and liquid crystal display
JP2004318066A (en) * 2003-03-31 2004-11-11 Nitto Denko Corp Manufacturing method of wide band cholesteric liquid crystal film, circular polarizing plate, linear polarizing element, illuminating device and liquid crystal display
JP2006098946A (en) * 2004-09-30 2006-04-13 Nitto Denko Corp Optical element, polarizing element, lighting device, and liquid crystal display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015199209A1 (en) * 2014-06-27 2017-04-27 富士フイルム株式会社 Brightness-enhancement film transfer material, transfer material production method, brightness-enhancement film, optical sheet member manufacturing method using transfer material, and optical sheet member

Also Published As

Publication number Publication date
TW201109748A (en) 2011-03-16
JPWO2011013492A1 (en) 2013-01-07

Similar Documents

Publication Publication Date Title
US8048495B2 (en) Cholesteric liquid crystal composition, circular polarization separator sheet and use thereof
JP6114728B2 (en) Projected image display member and projected image display system
KR100762158B1 (en) Method of producing elliptically polarizing plate and image display using the elliptically polarizing plate
JP6441899B2 (en) Composition, light reflecting film, brightness enhancement film, backlight unit, and liquid crystal display device
JP4737629B2 (en) Elliptical polarizing plate and image display device using the same
JPWO2016052367A1 (en) Projected image display member and projected image display system
JP5532974B2 (en) Composition for forming liquid crystal layer, circularly polarized light separating sheet and method for producing the same, brightness enhancement film, and liquid crystal display device
US20170261666A1 (en) Mirror with image display function
JP2006163343A (en) Elliptical polarization plate and picture display device using it
JP2008282009A (en) Optical anisotropic film and liquid crystal display device
WO2017033468A1 (en) Optical element, production method for optical element, and liquid crystal display device
KR20080103430A (en) Optical film, optical compensation film, polarization plate and liquid crystal display device
JP2006201746A (en) Elliptic polarizing plate and image display device using the same
JP2011161887A (en) Roll body of long film
JP2017015897A (en) Image projection system and projection surface member
JP2014174468A (en) Circularly polarizing layer, laminate of circularly polarizing layer, spectacles, and 3d image appreciation system
JP2011186158A (en) Film, film roll and method for manufacturing film
JP2017068111A (en) Polarizing plate and liquid crystal display
JP2017122776A (en) Mirror with image display function and half mirror
JP2009104065A (en) Luminance enhancing film and liquid crystal display device
JP2008225429A (en) Circularly polarized separation sheet and manufacturing method therefor, and liquid crystal display using the same
JP5540630B2 (en) Composition for forming liquid crystal layer, circularly polarized light separating sheet and method for producing the same, brightness enhancement film, and liquid crystal display device
WO2011013492A1 (en) Brightness-improving film, composite polarizer, and liquid-crystal display device
JP2009175550A (en) Luminance improving film and liquid crystal display device
WO2018207851A1 (en) Organic el image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011524722

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804239

Country of ref document: EP

Kind code of ref document: A1