WO2011013220A1 - Positioning system and positioning method - Google Patents

Positioning system and positioning method Download PDF

Info

Publication number
WO2011013220A1
WO2011013220A1 PCT/JP2009/063509 JP2009063509W WO2011013220A1 WO 2011013220 A1 WO2011013220 A1 WO 2011013220A1 JP 2009063509 W JP2009063509 W JP 2009063509W WO 2011013220 A1 WO2011013220 A1 WO 2011013220A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
positioning
reference signal
base stations
unit
Prior art date
Application number
PCT/JP2009/063509
Other languages
French (fr)
Japanese (ja)
Inventor
健一 水垣
大輔 前田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2009/063509 priority Critical patent/WO2011013220A1/en
Priority to JP2011524577A priority patent/JPWO2011013220A1/en
Publication of WO2011013220A1 publication Critical patent/WO2011013220A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a method for measuring the position of a node (terminal) having a wireless transmission function, a position measurement system using the method, and a base station (AP) used as a wireless base station in the system.
  • node position measuring method there is a method in which a node receives signals transmitted from a plurality of base stations and calculates the position of the node from the difference in reception times.
  • the reception time difference between the signals transmitted from the base station to the node (signal propagation time differences T1-T2 and T3-T2 from each base station to the node) is calculated, and the optical speed is calculated as the propagation time difference.
  • the time difference at which the signal transmitted from the node is received by the base station (the difference in reception time Ti ⁇ T1 of each base station) is calculated, and the reception time difference is multiplied by the speed of light, so that Difference in signal propagation distance to base station ⁇
  • a method has been proposed (for example, see Non-Patent Document 1).
  • Patent Document 2 discloses a method for realizing TDOA without synchronization between base stations by using a reference station.
  • Patent Document 2 describes a case where the difference between the reception times of two base stations A (120A) and B (120B) is measured in the positioning system shown in FIG.
  • the node 100 transmits a positioning signal S101.
  • Base station A and base station B measure reception times Ta1 and Tb1 of positioning signal S101 transmitted by node 100, respectively.
  • the reference station 110a monitors the positioning signal S101 transmitted by the node 100 in the normal state, and is in a standby state in which the positioning signal S101 can be received.
  • the reference station 110a transmits a reference signal S111a to the base station A and the base station B in order to set a common reference time for the base station A and the base station B.
  • the base station A and the base station B measure the reception times Ta2 and Tb2 of the reference signal S111a, respectively.
  • the reception times Ta2 and Tb2 of the measured reference signal S111a are transmitted to the position calculation server 130 via the network 140.
  • the times Ta4 and Tb4 (times backed by the times Ta3 and Tb3 from the times Ta2 and Tb2, respectively) are times when the reference station 120 transmits the reference signal. Since the times Ta4 and Tb4 are the same time, the times of the base station A and the base station B can be synchronized with reference to the Ta4 and Tb4.
  • the position calculation server 130 obtains a difference (Ta4-Ta1, Tb4-Tb1) between the positioning signal reception times Ta1 and Tb1 using the times Ta4 and Tb4 as a reference, and calculates the difference and the coordinates of the base station A and the base station B. To calculate the position of the node 100.
  • the size of the service providing area and the positioning accuracy are important factors, so a system capable of accurate positioning over a wide area is required.
  • the TDOA positioning system using GPS and mobile phone signals basically uses hygiene and mobile phone infrastructure that covers a wide area, so there are few restrictions on the area that can be measured, but satellite and mobile phone base stations Synchronization between (AP) is indispensable, and synchronization accuracy has a great influence on positioning accuracy. For this reason, it becomes necessary to use a very high-precision clock and a built-in clock, and to frequently update synchronization between systems, which has been a problem in terms of cost and operation.
  • the TDOA method using the reference station shown in Patent Document 2 can accurately synchronize, but it has to build its own system in the service provision area.
  • the base station measures only the interval between two signals
  • only the reference signal that has arrived first is measured even when the reference signals are sent from a plurality of reference stations to one base station. It was not possible to use it.
  • base station A and base station B receive reference signals from different reference stations, the difference in signal reception time between the two base stations could not be obtained.
  • positioning can be performed if signals from the same reference station are received by three or more base stations in succession to the signal from the positioning target node, but two signals can be used in situations where multiple reference stations are installed in a wide area. There was a problem that positioning could not be performed if there was a base station that received even one signal from another reference station.
  • a positioning system having a wireless terminal, a plurality of reference stations, a plurality of base stations, and a positioning server connected to the plurality of base stations via a network.
  • the radio terminal includes a signal generation unit that generates a radio signal and a radio signal transmission unit that transmits a radio signal.
  • Each of the plurality of reference stations includes a reference signal generation unit that generates a reference signal and a reference signal transmission unit that transmits a reference signal when receiving a radio signal.
  • Each of the plurality of base stations includes a signal reception unit that receives a radio signal and a reference signal, a time difference measurement unit that measures a reception time difference between two consecutive signals in the received radio signal and the reference signal, and a reception time difference And a signal transmission unit that transmits positioning information including the information to the positioning server.
  • the positioning server includes a reference signal extraction unit that extracts a reference signal transmitted from the same reference station from a plurality of reference signals received by a plurality of base stations based on positioning information, and a reference signal extracted from radio signals in each of the plurality of base stations.
  • a reception time measurement unit that measures a reception time difference with a signal
  • a correction unit that corrects the reception time difference based on a clock frequency deviation of each of the wireless terminal and the plurality of base stations
  • a corrected reception time difference A position measuring unit that measures the position of the wireless terminal using position information of a plurality of base stations and reference stations.
  • FIG. 1 shows the structural example of the positioning system which concerns on a 1st Example. It is a block diagram which shows the structural example of the node (NOD) of a 1st Example. It is a block diagram which shows the structural example of the reference
  • FIG. 6 is an example of a circuit block diagram illustrating a configuration of a time difference measurement unit in FIG. 5. It is an example of the figure explaining the principle of the positioning system which concerns on a 1st Example. It is an example of the block diagram of the positioning signal transmitted from the node which concerns on a 1st Example, and the reference signal transmitted from a reference station. It is an example of the figure explaining the synchronization acquisition method concerning a 1st example. It is an example of the figure explaining the synchronous tracking method which concerns on a 1st Example.
  • FIG. 1 shows a configuration of a positioning system according to Embodiment 1 of the present invention.
  • the positioning system includes a plurality of nodes (NOD) 100 (100a, 100b,...) That transmit positioning signals (target objects), a reference station (RS) 110 (110a, 110b, etc That transmits a reference signal, and positioning. It comprises a plurality of base stations (AP) 120 (120a, 120b, 120c) that receive signals and reference signals, a positioning server (PS) 130, and a network (INT) 140 that connects each base station 120 and the positioning server 130. .
  • the subscripts “a”, “b”, and “c” of the reference numerals indicate the same components, and when the subscripts are omitted, the same components are indicated.
  • all of the NOD, RS, AP, and PS have a transmission / reception function, but here, in order to simplify the description, the description will focus on the transmission / reception function necessary for the embodiment of the present invention.
  • FIG. 2A is a block diagram illustrating a configuration example of the node (NOD) 100.
  • Each node includes a signal transmission control unit 101, a signal creation unit 102, and an antenna 103.
  • the signal transmission control unit 101 generates a positioning signal S101 in response to a command from the signal transmission control unit 101 based on information from a sensor or timer built in or connected to the node itself, and the antenna 103 Send from.
  • FIG. 2B is a block diagram illustrating a configuration example of the reference station (RS) 110.
  • the reference station includes a baseband unit (BBM) 111, an analog-digital conversion unit (hereinafter abbreviated as “A / D conversion unit”) (ADM) 112, an RF front end unit (RFF) 113, and a transmission / reception changeover switch (SWT) 115. , An antenna (ANT) 117, a signal transmission / reception control unit 118, and a transmission signal generation unit 119.
  • the ADM 112 and the RFF 113 have an SCG 114 and a CLK 116 as a clock signal generation source to be synchronized.
  • the reference station has a function of transmitting the reference signal S111 created by the transmission signal generation unit 119 when receiving the positioning signal S101 transmitted by the node 100.
  • the reference station 110 may add an individual delay for each reference station between the positioning signal S101 reception and the reference signal S110 transmission.
  • a method for determining the delay time for each reference station there is a method for setting a fixed delay amount in each reference station 110 in advance. Further, the delay time may be determined in inverse proportion to the strength of the positioning signal S101 from the received node 100. As a result, if the distance from the node 100 is short and the signal is transmitted with a strong intensity, the reference station 110 immediately transmits the reference signal S101, and if the node 100 is far from the reference station 110, the reference signal S110 is transmitted after a large delay. be able to.
  • the reference station 110 has a function as a base station 120 described later, and transmits the reference signal S110 only when a signal from the node 100 is received. Before receiving the signal from the node, the reference station 110 receives the signal from the other reference stations 110. When the reference signal S110 is received, the measured signal reception interval may be reported to the server 130 without transmitting the reference signal. When the reference station 120 receives the signal from the node and transmits the reference signal S110, the reference station 120 sends the time at which it transmits the reference signal S110 to the server 130 instead of the reception time of the reference signal. As described above, since the reference station has the function of a base station, the cost of the system configuration can be reduced.
  • FIG. 2C is a block diagram illustrating a configuration example of the base station (AP) 120.
  • the base station includes a baseband unit (BBM) 121, an analog / digital conversion unit (ADM) 125, an RF front end unit (RFF) 127, and an antenna (ANT) 129.
  • the ADM 125 and the RFF 127 have clock signal generation sources SCG 126 and CLK 128 to be synchronized.
  • the baseband unit 121 has a function of identifying the node or reference station that transmitted the signal based on information that can identify the transmitting station included in the received signal.
  • the baseband unit 121 further generates a shift signal that changes the phase of the clock signal generated by the SCG, changes the phase of the clock signal, and acquires the synchronization of the transmission signal and the clock signal.
  • a time difference measurement unit (TDMM) 123 that measures the payload length of the positioning signal and the reference signal by using the clock signal and the shift signal and the time difference from the completion of signal reception to the SFD detection of the next signal is also provided.
  • the communication device that constitutes the reference station (RS) 110 is also provided with a synchronization acquisition unit (TRPM) and a time difference measurement unit (TDMM), like the base station (AP) 120.
  • the base station (AP) 120 may have a transmission function similar to that of the reference station (RS) 110. That is, the base station may have a function of transmitting a reference signal when receiving a positioning signal from a node. Further, when the reference signal is transmitted, the difference between the reception time of the position positioning signal and the transmission time of the reference signal is transmitted to the positioning server.
  • the positioning server can use the difference as a reception time difference between the reception time of the positioning signal and the reception time of the reference signal in the base station for positioning of the node.
  • FIG. 2D is a block diagram illustrating a configuration example of the positioning server 130 (PS).
  • the positioning server includes functions of the communication unit 131 and the positioning / ranging unit 132 and a system information database 133.
  • the communication unit 131 functions as an interface for connecting the positioning server to the network 140, receives the positioning information notification sent from the base station, and sends it to the positioning / ranging unit 132.
  • the positioning / ranging unit 132 uses the TDOA method based on the signal reception time difference information in each base station included in the positioning information notification and the information such as the position of each base station and reference station obtained from the system information database 133. 100 positions are calculated.
  • FIG. 3 is a sequence diagram showing an outline of signal transmission / reception in the positioning system of the first embodiment.
  • the node 100 transmits a transmission signal including the positioning signal S101 to the surrounding reference station 110 and the base station 120 at an arbitrary time, for example, periodically or when a sensor provided in the node detects an abnormality. To do.
  • the reference station 110 Upon receiving this positioning signal, transmits a transmission signal including the reference signal S111 to the surrounding base stations 120.
  • the base station APa when the base station APb is installed at a position where the signal of the reference station RSa does not reach, the base station APa receives three signals from the node, the reference station RSa, and the reference station RSb, whereas the base station APb Only two of the signals from the node and the reference station RSb are received.
  • Each base station determines the positioning information, for example, the reception time difference between the two consecutively received signals and the signal reception time difference between the reception time of the positioning signal and the reception time of the reference signal continuously received thereafter.
  • Sampling clock period to obtain, timing shift time, sampling clock count, sampling timing control signal count, and signal transmission source identifier, base station identifier and other information as positioning information S150 via the network Send to server 130.
  • each base station 120 when each base station 120 receives a signal, it synchronizes acquisition of this signal, for example, a positioning signal and a sampling clock. After synchronization acquisition is established, the transmission signal is demodulated and synchronized. In parallel with transmission signal reception processing such as synchronization acquisition, demodulation and synchronization tracking, each base station performs measurement processing of the reception time difference between two received signals and the payload length of each signal. The positioning information S150 based on the result is sent to the server 130.
  • the server 130 performs positioning by calculating the coordinates of the node 100 from the positioning information S150 and information recorded in the database of the server.
  • the receiving apparatus in the base station 120 is configured by a UWB-IR receiving apparatus that receives an intermittent impulse train as shown in FIG. 4, for example.
  • BPSK modulation Binary Phase Shift Keying: binary digital phase modulation
  • a directly spread pulse train are transmitted to the space and propagated through the space by the antenna of this receiving device.
  • a pulse train signal is received.
  • the signal propagating in the space is, for example, an impulse train in which a pulse having a width of about 2 ns is transmitted at an interval of about 30 ns.
  • the shape of the impulse is, for example, a primary Gaussian waveform, and a waveform that is further up-converted by a carrier wave of about 4 GHz is used.
  • the receiving apparatus includes an antenna (ANT) 410, an RF front end unit (RFF) 420, an analog / digital conversion unit (hereinafter abbreviated as “A / D conversion unit”) (ADM) 430, and a baseband unit (BBM) 440. Is done.
  • the RF front end unit 420 includes a low noise amplifier (LNA) 421, mixers (MIX) 422i and 422q, a ⁇ / 2 phase shifter (QPS) 423, a clock generator (CLK) 424, a low pass filter (LPF) 425i and 425q, and It is composed of variable gain amplifiers (VGA) 426i and 426q.
  • LNA low noise amplifier
  • MIX mixers
  • QPS ⁇ / 2 phase shifter
  • CLK clock generator
  • LPF low pass filter
  • VGA variable gain amplifiers
  • the subscripts i and q indicate the I signal component (in-phase signal: InPhase) and the Q signal component (quadrature signal: Quadrature), respectively. In the following description, unless otherwise specified, i and q are added. Letters are omitted.
  • the pulse signal (intermittent pulse train) received from the antenna 410 is amplified by the low noise amplifier 421 and then given to the mixer 422.
  • the mixer 422 receives a clock signal of about 4 GHz generated by the clock generator 424.
  • the output of the mixer 422 is separated into a carrier wave of 4 GHz band and an impulse signal of a Gaussian waveform having a pulse width of about 2 ns.
  • the output signal of the clock generator 424 is directly given to the mixer 422i, and an I signal which is an in-phase output signal is output.
  • the output signal is a quadrature component Q. Signal.
  • the signal separated by the mixer 422 is discriminated by the low-pass filter 425, and the high frequency 4 GHz carrier wave is cut off. Accordingly, only the Gaussian impulse waveform is output from the low-pass filter 425.
  • These impulse signals are amplified by a variable gain amplifier 426 and output from the RF front end unit 420 as an I signal S427i and a Q signal S427q, respectively.
  • the A / D conversion unit 430 includes an A / D converter (ADC) 431 and a sampling clock generation unit (SCG) 433, and a Gaussian waveform impulse of an I signal S427i and a Q signal S427q that are output signals of the RF front end unit.
  • a signal is input, converted into a digital signal by an A / D converter ADC 431, and output.
  • the input signals S427i and S427q are each divided into a plurality of parts, given to the individual internal A / D converters 431, and converted into digital signals S432.
  • the sampling timing for converting the input signal S427 into a digital value is controlled by the sampling clock S435.
  • Sampling clock S435 is provided from sampling clock generator 433, and the period thereof is equal to the pulse repetition period of the received impulse train. That is, sampling is performed at a timing synchronized with the pulse of the impulse train.
  • the transmission device and the reception device exist separately across a space, and are not synchronized with each other. For this reason, the phase of the received impulse train and the sampling clock do not match. Accordingly, an operation called synchronization acquisition is required in which the phase of the received impulse train and the sampling clock are matched.
  • the first is a clock signal of 4 GHz frequency used in the RF front end unit RFF 420 of FIG. 4, and the second is that an impulse train used in the A / D conversion unit 430 is sent at intervals of about 30 ns.
  • the signal received by the RF front end unit RFF 420 is divided into an I component and a Q component, and the signal is restored by the baseband unit BBM. It can be supported.
  • FIG. 5 shows a block diagram of the baseband unit 440.
  • the baseband unit 440 includes a matched filter unit (MFM) 510, a synchronization acquisition unit (TRPM) 520, a data holding timing control unit (DLTCTL) 530, a data holding unit (DLM) 540, a demodulation unit (DEMM) 550, and synchronization tracking.
  • MFM matched filter unit
  • TRPM synchronization acquisition unit
  • DLTCTL data holding timing control unit
  • DLM data holding unit
  • DEMM demodulation unit
  • TRCKM sampling timing control unit
  • TDMM time difference measurement unit
  • a plurality of digitized I and Q signals S432ia-c and S432qa-c given from the A / D conversion unit 430 detect the degree of matching (matching) with the spread code expected in the matched filter unit 510, The measurement result is output as signal S511.
  • the synchronization acquisition unit 520 performs synchronization acquisition of the received signal (impulse train) using the signals S511ia and S511qa. While synchronization acquisition is not established, the signal S522 is output to the sampling timing control unit 570, and the timing at which the A / D conversion unit 430 digitally converts the received signal using the sampling timing control signals S441 and S442 is changed. When synchronization acquisition is established, synchronization timing information is transmitted to the data holding timing control unit 530 via the signal S521.
  • the data holding timing control unit 530 gives the control signal S531 to the data holding unit 540 at a timing synchronized with the reception signal S511, and the data holding unit 540 uses only the data that matches the timing as the signal S541 as the signal S541. Tell the tracking unit 560.
  • the demodulator 550 demodulates the data based on the signal S541 selected by the data holding unit 540 and outputs digital data S443.
  • the synchronization tracking unit 560 detects whether or not there is a synchronization shift with the received signal S427 based on the signal S541 selected by the data holding unit 540, and if there is a synchronization shift, the sampling timing
  • the digital conversion timing of the A / D conversion unit 430 is adjusted by the sampling timing control signals S441 and S442 via the control unit 570.
  • the sampling timing control unit 570 adjusts the digital conversion timing of the A / D conversion unit 430 based on the signals from the synchronization acquisition unit 520 and the synchronization tracking unit 560.
  • the sampling timing control signal S441 is output via the sampling timing control unit 570, and the digital conversion timing is delayed by a minute time, for example, about 0.5 ns. That is, the normal digital conversion cycle (Tck) is equal to the impulse interval, but when the signal S441 is output, the digital conversion interval is Tck + Ts. Note that Ts is a digital conversion timing shift time when the signal S441 is output.
  • the timing of digital conversion is adjusted according to the output signal S561 of the synchronization tracking unit 560.
  • the synchronization tracking unit 520 detects the signal and transmits it to the sampling timing control unit, and the control signal S441 is output.
  • the conversion timing is delayed by Ts than usual.
  • the control signal S442 is output, and the digital conversion timing is advanced by Ts than usual.
  • the basic operation of a UWB-IR communication receiver that receives pulse signals is as follows. That is, a pulse signal is received by the antenna 410, a waveform having a frequency that is necessary for the RF front end unit 420 is extracted, converted into a digital signal by the A / D conversion unit 430, and digital signal processing is performed by the baseband unit 440. As a result, the communication data S443 is extracted and output.
  • a time difference measuring unit 580 is added for positioning.
  • This time difference measurement unit 580 realizes highly accurate measurement with low power consumption, and performs highly accurate time difference measurement using a function originally provided in the receiving apparatus and a relatively low-speed counter.
  • FIG. 6 shows a specific configuration example of the time difference measuring unit that performs this time difference measurement.
  • the time difference measurement unit 580 includes a counter (CNT) 610, a register (REG) 620, a delay unit (D) 630, and a time difference calculation unit (TDCAL) 640. Details of the time difference measuring unit 580 will be described later.
  • T x indicates transmission and R x indicates reception.
  • Positioning signal S101 to the node 100a is transmitted is received by the reference station 110 after a time T NR, T NA, are received by the base station 120a after a.
  • the reference station 110 transmits the reference signal S111 after TRP after receiving the positioning signal S101.
  • the reference signal S111 is received by the base station 120a after TRA, a after being transmitted.
  • T NR Time from when the node 100a transmits the positioning signal S101 to when the reference station 110 receives the positioning signal S101
  • T RP Time from when the reference station 110 receives the positioning signal S101 to when the reference signal S111 is transmitted
  • T RA, a , T RA, b , T RA, c Time from when the reference station 110 transmits the reference signal S111 until the base stations 120a, 120b, 120c receive the reference signal S111
  • T NA, a , T NA, b , T NA, c Time from when the node 100a transmits the positioning signal S101 to when the base stations 120a, 120b, 120c receive the positioning signal S101 T meas, a, T meas, b , T meas, c : The time from when the base station 120a, 120b, 120c receives the positioning signal S101 until it receives the reference signal S111.
  • T RA, a and T RA, b are respectively equal to values obtained by dividing the distance between the reference station 110 and the base stations 120a and 120b by the speed of light. Since T meas, a and T meas, b are values measured by the base stations 120a and 120b, the right side of the equation (2) is a known value.
  • the time difference T NA, a ⁇ T NA, b when the positioning signal S101 reaches the base stations 120a, 120b can be calculated.
  • the arrival time difference TDOA to the three base stations 120 can be known, and the position of the node 100a can be measured.
  • the number of base stations is three, but is not limited to this.
  • FIG. 8 shows a configuration example of the positioning signal S101 transmitted from the node 100 and the reference signal S111 transmitted from the reference station 110.
  • the signals S101 and S111 include a preamble 310, a frame start unit (StartFrameDelimiter, hereinafter abbreviated as “SFD”) 320, a header 330, and data 340.
  • SFD frame start unit
  • a CRC code or the like for error detection may be included in the header or data.
  • the preamble 310 is used for capturing synchronization in the device that has received the signals S101 and S111.
  • the SFD 320 is a specific bit pattern that indicates the end of the preamble 310 and the start of the header 330.
  • the header 330 stores information such as an identifier of the transmission source of the signals S101 and S111.
  • Data 340 stores information from the transmission source of the signals S101 and S111.
  • the data 340 information such as a sequence number assigned to the signal at the transmission source of the signals S101 and S111 is stored.
  • the data 340 of the reference signal S111 stores information related to the identifier and sequence number of the positioning signal S101 from the node 100 that triggered the reference signal transmission.
  • the signals S101 and S111 as communication signals, positioning can be performed simultaneously with communication. Further, it is not necessary to generate special positioning signals in the node 100 and the reference station 110, and the apparatus is simplified.
  • the transmission time or reception time of the signals S101 and S111 is determined as the time when a specific part is transmitted or received.
  • the time at which the SFD 320 of the signals S101 and S111 has been transmitted is defined as the transmission time
  • the time at which the reception is completed is defined as the reception time.
  • the position accuracy of the measured node 100 depends on the accuracy of the arrival time difference TDOA, that is, the accuracy of the time T meas measured by the base station 120. Furthermore, it depends on the measurement time error between the plurality of base stations 120a, 120b, 120c. For example, to obtain a position accuracy of 30 cm, a time accuracy of about 1 ns is required.
  • TDOA arrival time difference
  • a time accuracy of about 1 ns is required.
  • a 1 GHz oscillator and a counter operating at 1 GHz are usually used. However, the use of such high-speed oscillators and counters increases power consumption and circuit scale.
  • a relatively low-speed oscillator and a low-speed counter are used to perform time difference measurement with high accuracy, thereby reducing power consumption and circuit scale.
  • the synchronization acquisition method will be described with reference to FIG.
  • the A / D converted digital signal S432 has a noise level value.
  • the phase of the impulse train S427 and the sampling clock S435 match, an output obtained by sampling the pulse is output to the digital signal S432.
  • the sampling timing control signal S441 is output, and the sampling timing is shifted by shifting the period of the sampling clock S435 longer or shorter by a certain time (Ts). This process is repeated until the phases of the impulse train S427 and the sampling clock S435 match. In this manner, the synchronization with the impulse train S427 is acquired by shifting the phase of the sampling clock S435 by the sampling timing control signal S441.
  • the A / D converters 431ia, 431ib, 431ic of the A / D converter 430 are provided with sampling clocks each having a delay difference of 0.5 ns, for example. That is, when the Gaussian impulse signal has a width of 2 ns, the impulse signal is converted into a digital value at a position different by 0.5 ns and output. These values converted into digital values at different positions are used for synchronous tracking.
  • FIG. 10 shows a conceptual diagram of synchronous tracking
  • FIG. 11 shows the principle of time difference measurement.
  • FIG. 10 there is a difference between the pulse peak and the sampling timing as shown in states 810 and 820 due to the frequency deviation from the state 830 in which the pulse peak is sampled.
  • the baseband unit 440 detects this shift using the three digital signals S432 that have undergone A / D conversion, and adjusts the period of the sampling clock S435 through the control signals S441 and S442. That is, as shown in the state 810, when the sampling clock S435 is advanced with respect to the impulse, the period of the sampling clock S435 is increased by a certain time (Ts) by the shift signal. Further, as shown in the state 820, when the sampling clock S435 is delayed with respect to the impulse, the period of the sampling clock S435 is shortened by a certain time (Ts) by the shift signal.
  • the sampling clock generation unit 433 determines the sampling timings of the A / D converter 431 according to the sampling timing control signals S441 and S442 given from the baseband unit 440, and the sampling clocks S435ia to c and S435qa to c is generated.
  • the baseband unit 440 performs signal processing such as synchronization acquisition, synchronization confirmation, signal demodulation, synchronization tracking, and time difference measurement, and sampling timing control of the A / D conversion unit 430 using the received signal S432 converted into a digital value.
  • Demodulated data S443 and positioning data S444 are output from the baseband unit and transmitted to the upper layer, and data processing is performed in the upper layer.
  • FIG. 11 is a timing chart of the receiving apparatus of the base station 120 when two continuous signals are received. While synchronization acquisition with the first signal is not established, the sampling timing control signal S441 changes the period of the sampling clock S435 to acquire synchronization. When the first signal is received and synchronization acquisition is established, demodulation and synchronization tracking are started.
  • the synchronization tracking unit 560 detects the deviation and adjusts the cycle of the sampling clock S435 via the control signals S441 and S442.
  • the receiving device When the receiving device has received the first signal data 340, it performs synchronization acquisition. After synchronization acquisition of the second signal is established, demodulation and synchronization tracking are performed.
  • the base station 120 measures the payload length of each signal and the time T meas from the completion of the reception of the first signal until the reception of the second signal.
  • the payload length is the combined length of the header 330 and the data 340
  • the signal reception interval is the time from the completion of the reception of the first signal data 340 to the detection of the SFD 320 of the second signal.
  • Period of the sampling clock S435 is usually a T ck, respectively when the control signal S441, S442 is output T ck + T s, the T ck -T s.
  • T ck Normal sampling clock period
  • T s Timing shift time
  • N ck Number of clocks for pulse sampling N p
  • N m Counts of sampling timing control signals of + T s and -T s .
  • T meas and R are calculated by counting the number of sampling clocks S435 and their control signals S441 and S442.
  • the reception time difference is calculated by the time difference measurement unit (TDMM) 580 (see FIG. 6). Next, the operation of the time difference measuring unit 580 will be described.
  • Sampling clock S435D, sampling timing control signals S441, S442, and designated pattern detection signal S551 are input to time difference measuring unit 580.
  • Clock S435D and control signals S441 and S442 are respectively input to counters 610a to 610c, and the count values are output as signals S611a to c.
  • the designated pattern detection signal S551 is output from the demodulator 550 at the timing when the end of the SFD 320 or the data 340 is detected.
  • the count values S611a-c are stored in the registers 620a-c at the designated pattern detection timing.
  • the designated pattern detection signal S551 is delayed by the delay unit 630, and the count value of the counter 610 is reset.
  • FIG. 11 shows the case of signal detection interval measurement from the end of the first signal data 340 to the end of SFD detection of the second signal
  • the payload length measurement from the end of SFD to the end of data is the same operation. Done.
  • the time difference calculation unit 640 uses the value stored in the register 620 to calculate the time difference T meas according to equation (3).
  • the time difference T meas is output to the upper layer as a signal S444a.
  • the ID of the node 100 is identified from the demodulated data S443, and necessary information and the time difference T meas are transmitted to the positioning server.
  • the calculation of the time difference T meas may be performed not by the time difference measurement unit 580 but by an upper layer, a positioning server, or the like.
  • Each base station for an nth reference signal packet after receiving an incoming positioning signal, has a payload length P n and an interval I n, n + from the end of the packet to the SFD of the next (n + 1) th signal. Repeat 1 measurement.
  • the payload length P 0 of the first signal the interval I 01 from the end of the packet to the SFD of the next signal, the payload length P 1 of the next signal, The interval I 12 from the end of the packet to the SFD of the next signal, and the payload length P 2 of the third signal are measured.
  • Figure 13 is used to calculate the reception time difference between base stations is a diagram showing a method of calculating the reception time difference T AM of the positioning signal and the reference signal.
  • the server uses the positioning information to calculate the interval from the positioning signal reception at each base station to the reference signal reception at an arbitrary reference station.
  • each base station 120 operates with an independent clock, the reception time difference T meas measured by the base station 120 includes an error due to the frequency accuracy of the clock.
  • the positioning server calculates the position of the node 100 according to the equation (2) using T meas measured by the plurality of base stations 120.
  • an error (T real, a ⁇ ⁇ a -T real, b ⁇ ⁇ b ) occurs.
  • T real, a , T real, b actual times ⁇ a , ⁇ b to be measured by the base stations 120 a and 120 b , respectively, are clock deviations of the base stations 120 a and 120 b .
  • T real, a -T real, b depends on the distance between the node 100 and the base station 120 and the distance between the reference station 110 and the base station 120. For example, when a signal transmission distance of about 30 m is considered, its value Is about 100 ns at most.
  • T real, b depends on the signal processing time at the reference station 110, the data length of the positioning signal S101, the preamble length of the reference signal S111, etc. For example, when the transmission speed is 250 kbps and the preamble length is 20 bytes The value is at least 0.6 ms or more. In this case, for example, if the clock deviation ( ⁇ a ⁇ b ) between base stations is 20 ppm, a time error of about 13 ns occurs. This is an error of about 4 m when converted to distance.
  • the second term is dominant among the errors expressed by the equation (5).
  • the main error factor is not the absolute clock deviation (deviation from the actual time) but the relative clock deviation between base stations. Therefore, the error is reduced if the relative clock deviation between the base stations is reduced.
  • the relative deviation of the clock can be corrected by setting a common reference clock between the base stations and measuring the difference between the clock of each base station and the reference clock. Since the positioning in this embodiment is triggered by the positioning signal from the node, all the base stations related to the positioning receive this positioning signal. Therefore, by measuring the difference between the clock of this positioning signal and the clock of each base station, the operation clock of the node that generated this positioning signal can be used as a reference clock common to all base stations used for positioning. .
  • the relative frequency deviation between each base station and the node is calculated using information on the payload length of the positioning signal measured at each base station, and the frequency is corrected based on the clock of the node. Realize accurate positioning.
  • the payload length of the positioning signal is P 0
  • the interval from the end of the M ⁇ 1th reference signal packet to the SFD of the Mth reference signal is I M
  • the payload length of the Mth reference signal is PM.
  • the interval T AM from the positioning signal at the base station A to the Mth reference signal is expressed by the following equation (6).
  • I 1 is the interval from the end of the reference signal packet to the SFD of the first reference signal.
  • the measurement value includes an error due to the operation clock deviation of the base station A. For this reason, when comparing the reception time of the positioning signal and the reference signal from the reference station 1 between the two base stations A and B, the correction to match the common reference clock for the measurement results of the two base stations Is required.
  • a node clock is used as a common reference clock, and the correction based on the relative deviation between each base station clock and the node clock is performed, and then the received time is compared to achieve accurate positioning. .
  • the clock deviation between the node and the base station is obtained by counting the number of control signal generations when receiving a positioning signal payload.
  • a specific frequency deviation calculation procedure is shown below.
  • FIG. 14 is a timing chart of the A / D converter 430 of the base station 120a when the payload of the positioning signal S101 is received.
  • the state after the synchronization with positioning signal S101 is established is shown.
  • the analog signal S432 input to the A / D converter 430 and the sampling clock S435 are synchronized.
  • the period of the sampling clock S435 is controlled to be synchronized with the analog signal S432 by the sampling timing control signals S441 and S442.
  • the analog signal S432 reflects the frequency deviation of the clock of the node 100. Therefore, the period in which the control signal S441 is output corresponds to the deviation between the clock of the base station 120a and the clock of the node 100.
  • ⁇ r is a deviation of the clock of the node 100.
  • the frequency deviation R ( ⁇ a ⁇ r ) between the node and the base station is calculated by counting the sampling clock S435 and the sampling timing control signals S441 and S442.
  • the interval TM from the positioning signal obtained by correcting the measurement result so as to be synchronized with the clock of the node to the Mth reference signal is expressed by the following equation (8).
  • an accurate positioning signal reception time difference is obtained.
  • the base station measures the interval between the two signals that are continuously received with respect to all the received signals, so that the positioning server can receive the time difference between the positioning signal at each base station and all the reference signals. It is possible to obtain a positioning system in a wide range. Furthermore, accurate positioning can be realized by calculating a relative frequency deviation between each base station and the node and performing frequency correction based on the clock of the node.
  • Fig. 15 shows the flow of position calculation processing in the positioning server 130.
  • the positioning server 130 receives positioning information S150 including information on the time difference T meas from each base station 120, and accumulates it in the database 133 in the server for a certain period until information from all related base stations 120 is collected (S01). Regarding the data accumulation period, for example, if the signal transmission cycle of the node is 1 second, the accumulation period at the server is also 1 second. After a certain period of time, the positioning server 130 extracts from the database 133 all of the nodes 100 whose ID matches the sequence signal sequence number described in the positioning signal S101.
  • the difference in signal reception time from the node 100 between the two base stations (120a, 120b) is obtained.
  • two base stations (120a, 120b) are selected from the extracted positioning signal group, and all the positioning information S150 transmitted from these base stations is extracted (S02).
  • the method of combining all the base stations will be considered, and any method may be used for selecting the two base stations here as long as they are not yet processed.
  • a common reference signal S111 For the positioning information S150 from the two extracted base stations, it is first confirmed whether a common reference signal S111 is received (S03). If there is a common reference signal S111, first, signal reception intervals from reception of a positioning signal to reception of a common reference signal are calculated, and then clock correction is performed (S04). If the reference signal received immediately after the positioning signal is not common, the IDs of the reference signals received before the two base stations receive the next positioning signal are confirmed in the accumulated data. Check whether there is a common reference signal. If there is a common reference signal, the interval between the reception of the positioning signal at the two selected base stations and the reception of the reference signal of the reference station that has transmitted the common reference signal is obtained. Then, clock correction based on the clock deviation between the node and the base station is performed (S04). The clock correction based on the clock deviation between the node and the base station is obtained by the above formula (7) based on the positioning information.
  • Positioning at the selected two base stations using the difference in reception time between the positioning signal for which clock correction has been completed and the reference signal, the position information of the reference station that transmitted the reference signal, and the position information of the selected two base stations A signal reception time difference is calculated (S05).
  • the above processing is performed for all combinations of related base stations (S06), and if the number of information necessary for positioning is obtained (S07), positioning calculation is performed by the TDOA method (S08). If the number of information is insufficient, the positioning calculation is not performed (S09), and the process proceeds to the next process. Note that the number of information necessary for the positioning calculation is two in the case of two-dimensional positioning, and three in the case of three-dimensional positioning.
  • the present invention can easily install a wireless positioning system covering a wide range. For example, in a commercial facility such as a supermarket, when it is desired to measure the flow of a customer when changing the layout of a sales floor, the present invention allows all devices to be connected wirelessly. A positioning system can be constructed immediately without the need for complicated construction. If the effect of the layout change is confirmed, the positioning system can be removed and used for the next required site.
  • the present invention is applicable to a method for measuring the position of a node (terminal) having a wireless transmission function, a position measurement system using the method, and a base station (AP) used as a wireless base station in the system. is there.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In a wide area, a node position is positioned with a high accuracy.  A wireless communication system includes a node having a function of transmitting a position measuring signal, a plurality of reference stations, a plurality of base stations, and a positioning server.  In the wireless communication system, the reference stations transmit a reference signal after receiving the position measuring signal.  The base stations measure the interval between continuously received two signals of all received signals.  During a node position measurement, the positioning server searches for a reference signal commonly received by two base stations from among the received signals and obtains the interval between the signal from the node and the reference signal.  The positioning server also corrects the interval according to the clock frequency deviation of each base station to calculate the signal reception time difference between two base stations and, using this calculation result, calculates a node position.

Description

測位システム及び測位方法Positioning system and positioning method
 本発明は、無線送信機能を持つノード(端末)の位置を測定する方法、その方法を用いた位置測定システム、及び、そのシステムにおいて無線基地局として使用される基地局(AP)に関する。 The present invention relates to a method for measuring the position of a node (terminal) having a wireless transmission function, a position measurement system using the method, and a base station (AP) used as a wireless base station in the system.
 従来の代表的なノード位置測定方法としては、GPS等の衛星からの信号を用いて位置を測定する方法がある。 As a conventional representative node position measuring method, there is a method of measuring a position using a signal from a satellite such as GPS.
 また、他のノード位置測定方法としては、複数の基地局から送信された信号をノードが受信し、その受信時刻の差から、ノードの位置を算出する方法がある。 Further, as another node position measuring method, there is a method in which a node receives signals transmitted from a plurality of base stations and calculates the position of the node from the difference in reception times.
 具体的には、セルラ電話システムにおいて、基地局からノードに送信される信号の受信時間差(各基地局からノードまでの信号の伝搬時間差T1-T2及びT3-T2)を計算し、伝搬時間差に光速cを乗算することによって、ノードから各基地局までの信号の伝搬距離の差
D1-D2=c(T1-T2)及びD3-D2=c(T3-T2)
を算出し、ノードの位置を検出する方法が提案されている(例えば、特許文献1参照)。
Specifically, in the cellular telephone system, the reception time difference between the signals transmitted from the base station to the node (signal propagation time differences T1-T2 and T3-T2 from each base station to the node) is calculated, and the optical speed is calculated as the propagation time difference. By multiplying c, the difference in signal propagation distance from the node to each base station D1-D2 = c (T1-T2) and D3-D2 = c (T3-T2)
Has been proposed (see, for example, Patent Document 1).
 また、無線LANシステムにおいて、ノードから送信される信号を基地局で受信した時間差(各基地局の受信時間の差Ti-T1)を計算し、受信時間差に光速を乗算することによって、ノードから各基地局までの信号の伝搬距離の差{|P-Pi|-|P-P1|}=c(Ti-T1),i=2,...,nを算出し、ノードの位置を検出する方法が提案されている(例えば、非特許文献1参照。)。 Further, in the wireless LAN system, the time difference at which the signal transmitted from the node is received by the base station (the difference in reception time Ti−T1 of each base station) is calculated, and the reception time difference is multiplied by the speed of light, so that Difference in signal propagation distance to base station {| P−Pi | − | P−P1 |} = c (Ti−T1), i = 2,..., N is calculated, and the position of the node is detected. A method has been proposed (for example, see Non-Patent Document 1).
 また、特許文献2には基準局を用いることで基地局間の同期なしにTDOAを実現する方法が示されている。 Patent Document 2 discloses a method for realizing TDOA without synchronization between base stations by using a reference station.
 特許文献2では、図1のように示す測位システムにおいて、2つの基地局A(120A)及び基地局B(120B)の受信時刻の差を測定する場合について説明している。まず、ノード100が測位信号S101を送信する。基地局A及び基地局Bは、ノード100が送信した測位信号S101の受信時刻Ta1及びTb1をそれぞれ測定する。 Patent Document 2 describes a case where the difference between the reception times of two base stations A (120A) and B (120B) is measured in the positioning system shown in FIG. First, the node 100 transmits a positioning signal S101. Base station A and base station B measure reception times Ta1 and Tb1 of positioning signal S101 transmitted by node 100, respectively.
 一方、基準局110aは、通常状態ではノード100が送信した測位信号S101を監視しており、測位信号S101を受信可能な待ち受け状態にある。基準局110aは、ノード100が送信した測位信号S101を受信すると、基地局A及び基地局Bに共通の基準時刻を設定するため、基地局A及び基地局Bに基準信号S111aを送信する。そして、基地局A及び基地局Bは、それぞれ基準信号S111aの受信時刻Ta2及びTb2を測定する。測定された基準信号S111aの受信時刻Ta2及びTb2は、ネットワーク140を経由して位置計算サーバ130に送信される。 On the other hand, the reference station 110a monitors the positioning signal S101 transmitted by the node 100 in the normal state, and is in a standby state in which the positioning signal S101 can be received. When receiving the positioning signal S101 transmitted by the node 100, the reference station 110a transmits a reference signal S111a to the base station A and the base station B in order to set a common reference time for the base station A and the base station B. Then, the base station A and the base station B measure the reception times Ta2 and Tb2 of the reference signal S111a, respectively. The reception times Ta2 and Tb2 of the measured reference signal S111a are transmitted to the position calculation server 130 via the network 140.
 位置計算サーバ130は、既知である基地局A及び基地局Bと基準局110aとの間の距離の情報を用いて(基地局と基準局との間の距離を光速で除して)、基準局110aから基地局A及び基地局Bまでの信号伝搬遅延時間Ta3及びTb3を算出する。その後、時刻Ta2から時間Ta3を減じた時刻Ta4(=Ta2-Ta3)、及び時刻Tb2から時間Tb3を減じた時刻Tb4(=Tb2-Tb3)を算出する。この時刻Ta4及びTb4(時刻Ta2及びTb2からそれぞれ時間Ta3及びTb3だけ遡った時刻)が、基準局120が基準信号を送信した時刻となる。時刻Ta4とTb4とは同時刻となるため、このTa4及びTb4を基準として基地局Aと基地局Bの時刻を同期させることができる。 The position calculation server 130 uses the known distance information between the base station A and the base station B and the reference station 110a (dividing the distance between the base station and the reference station by the speed of light) from the reference station 110a. Signal propagation delay times Ta3 and Tb3 to base station A and base station B are calculated. Thereafter, a time Ta4 (= Ta2-Ta3) obtained by subtracting the time Ta3 from the time Ta2 and a time Tb4 (= Tb2-Tb3) obtained by subtracting the time Tb3 from the time Tb2 are calculated. The times Ta4 and Tb4 (times backed by the times Ta3 and Tb3 from the times Ta2 and Tb2, respectively) are times when the reference station 120 transmits the reference signal. Since the times Ta4 and Tb4 are the same time, the times of the base station A and the base station B can be synchronized with reference to the Ta4 and Tb4.
 位置計算サーバ130は、時刻Ta4及びTb4を基準として、測位信号受信時刻Ta1とTb1との差(Ta4-Ta1、Tb4-Tb1)を求め、この差と基地局A及び基地局Bの座標とを用いてノード100の位置を算出する。 The position calculation server 130 obtains a difference (Ta4-Ta1, Tb4-Tb1) between the positioning signal reception times Ta1 and Tb1 using the times Ta4 and Tb4 as a reference, and calculates the difference and the coordinates of the base station A and the base station B. To calculate the position of the node 100.
特開平7-181242号公報Japanese Patent Laid-Open No. 7-181242 特開2005-140617号公報Japanese Patent Laid-Open No. 2005-140617
 ノード保持者の位置に応じた情報提供などの測位に関するアプリケーションではサービス提供エリアの広さと測位精度が重要な要因となるため、広いエリアに対する正確な測位ができるシステムが求められている。 In the application related to positioning such as providing information according to the position of the node holder, the size of the service providing area and the positioning accuracy are important factors, so a system capable of accurate positioning over a wide area is required.
 GPSや携帯電話の信号を用いたTDOA測位システムでは基本的に広範囲なエリアをカバーしている衛生や携帯電話インフラを利用しているため測位可能エリアに関する制約は少ないが、衛星や携帯電話基地局(AP)間の同期が不可欠であり、また同期精度が測位精度に大きな影響を与える。このため非常に高精度なクロックや内蔵時計を使用したり、頻繁にシステム間の同期を更新したりする必要が生じ、コストや運用の面で課題となった。 The TDOA positioning system using GPS and mobile phone signals basically uses hygiene and mobile phone infrastructure that covers a wide area, so there are few restrictions on the area that can be measured, but satellite and mobile phone base stations Synchronization between (AP) is indispensable, and synchronization accuracy has a great influence on positioning accuracy. For this reason, it becomes necessary to use a very high-precision clock and a built-in clock, and to frequently update synchronization between systems, which has been a problem in terms of cost and operation.
 一方で特許文献2に示される基準局を用いたTDOA方式では正確な同期が可能だが、独自のシステムをサービス提供エリア内に構築しなければならない。このとき従来のシステムでは、基地局は2つの信号の間隔のみ測定することを前提として、1つの基地局に複数の基準局から基準信号が送られたときにも最初に到達した基準信号のみしか測位に活用できなかった。例えば基地局Aと基地局Bがそれぞれ違う基準局からの基準信号を受信した場合、この2つの基地局の信号受信時間差を求めることができなかった。このため測位対象ノードからの信号に連続して同じ基準局からの信号が3つ以上の基地局に受信されれば測位できるが、広いエリアに複数の基準局が設置されている状況下で2つの信号の間に別の基準局からの信号が1つでも受信された基地局があると測位ができないという問題があった。 On the other hand, the TDOA method using the reference station shown in Patent Document 2 can accurately synchronize, but it has to build its own system in the service provision area. At this time, in the conventional system, assuming that the base station measures only the interval between two signals, only the reference signal that has arrived first is measured even when the reference signals are sent from a plurality of reference stations to one base station. It was not possible to use it. For example, when base station A and base station B receive reference signals from different reference stations, the difference in signal reception time between the two base stations could not be obtained. For this reason, positioning can be performed if signals from the same reference station are received by three or more base stations in succession to the signal from the positioning target node, but two signals can be used in situations where multiple reference stations are installed in a wide area. There was a problem that positioning could not be performed if there was a base station that received even one signal from another reference station.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、下記のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 無線端末と、複数の基準局と、複数の基地局と、ネットワークを介して複数の基地局と接続される測位サーバとを有する測位システムである。無線端末は、無線信号を生成する信号生成部と、無線信号を送信する無線信号送信部とを有する。複数の基準局それぞれは、基準信号を生成する基準信号生成部と、無線信号を受信すると基準信号を送信する基準信号送信部とを有する。複数の基地局それぞれは、無線信号及び基準信号を受信する信号受信部と、受信した無線信号及び基準信号の中で連続する2の信号の受信時刻差を測定する時間差計測部と、受信時刻差を含む測位情報を測位サーバに送信する信号送信部とを有する。測位サーバは、測位情報に基づいて複数の基地局が受信した複数の基準信号から同一の基準局が送信した基準信号を抽出する基準信号抽出部と、複数の基地局それぞれにおける無線信号と抽出した基準信号との受信時刻差を計測する受信時刻計測部と、受信時刻差に対して無線端末及び複数の基地局それぞれのクロック周波数偏差に基づく補正を行う補正部と、補正を行った受信時刻差と複数の基地局及び基準局の位置情報を用いて無線端末の位置を測定する位置測定部とを有する。 A positioning system having a wireless terminal, a plurality of reference stations, a plurality of base stations, and a positioning server connected to the plurality of base stations via a network. The radio terminal includes a signal generation unit that generates a radio signal and a radio signal transmission unit that transmits a radio signal. Each of the plurality of reference stations includes a reference signal generation unit that generates a reference signal and a reference signal transmission unit that transmits a reference signal when receiving a radio signal. Each of the plurality of base stations includes a signal reception unit that receives a radio signal and a reference signal, a time difference measurement unit that measures a reception time difference between two consecutive signals in the received radio signal and the reference signal, and a reception time difference And a signal transmission unit that transmits positioning information including the information to the positioning server. The positioning server includes a reference signal extraction unit that extracts a reference signal transmitted from the same reference station from a plurality of reference signals received by a plurality of base stations based on positioning information, and a reference signal extracted from radio signals in each of the plurality of base stations. A reception time measurement unit that measures a reception time difference with a signal, a correction unit that corrects the reception time difference based on a clock frequency deviation of each of the wireless terminal and the plurality of base stations, and a corrected reception time difference A position measuring unit that measures the position of the wireless terminal using position information of a plurality of base stations and reference stations.
 本発明によると、測位可能な範囲が広い測位システムを容易に構築し、高い測位精度を得ることができる。 According to the present invention, it is possible to easily construct a positioning system with a wide positioning range and obtain high positioning accuracy.
第1の実施例に係る測位システムの構成例を示す図である。It is a figure which shows the structural example of the positioning system which concerns on a 1st Example. 第1の実施例のノード(NOD)の構成例を示すブロック図である。It is a block diagram which shows the structural example of the node (NOD) of a 1st Example. 第1の実施例の基準局(RS)の構成例を示すブロック図である。It is a block diagram which shows the structural example of the reference | standard station (RS) of a 1st Example. 第1の実施例の基地局(AP)の構成例を示すブロック図である。It is a block diagram which shows the structural example of the base station (AP) of a 1st Example. 第1の実施例の測位サーバの構成例を示すブロック図である。It is a block diagram which shows the structural example of the positioning server of a 1st Example. 第1の実施例の測位システムにおける信号の送受信の概要を示すシーケンス図である。It is a sequence diagram which shows the outline | summary of transmission / reception of the signal in the positioning system of a 1st Example. 第1の実施例に係る受信装置の回路ブロック図の例である。It is an example of the circuit block diagram of the receiver which concerns on a 1st Example. 第1の実施例に係る受信装置の時間差計測機能を持つベースバンド部の構成を示す回路ブロック図の例である。It is an example of a circuit block diagram showing a configuration of a baseband unit having a time difference measurement function of the receiving apparatus according to the first embodiment. 図5の時間差計測部の構成を示す回路ブロック図の例である。FIG. 6 is an example of a circuit block diagram illustrating a configuration of a time difference measurement unit in FIG. 5. 第1の実施例に係る測位システムの原理を説明する図の例である。It is an example of the figure explaining the principle of the positioning system which concerns on a 1st Example. 第1の実施例に係るノードから送信される測位信号および基準局から送信される基準信号の構成図の例である。It is an example of the block diagram of the positioning signal transmitted from the node which concerns on a 1st Example, and the reference signal transmitted from a reference station. 第1の実施例に係る同期捕捉方法を説明する図の例である。It is an example of the figure explaining the synchronization acquisition method concerning a 1st example. 第1の実施例に係る同期追跡方法を説明する図の例である。It is an example of the figure explaining the synchronous tracking method which concerns on a 1st Example. 第1の実施例に係る時間差計測の方法を説明する図の例である。It is an example of the figure explaining the method of the time difference measurement which concerns on a 1st Example. 第1の実施例に係る時間差計測の測定項目を説明する図の例である。It is an example of the figure explaining the measurement item of the time difference measurement which concerns on a 1st Example. 第1の実施例に係る信号受信時間差の算出方法を説明する図の例である。It is an example of the figure explaining the calculation method of the signal reception time difference which concerns on a 1st Example. 第1の実施例の偏差計測の方法を説明する図の例である。It is an example of the figure explaining the method of deviation measurement of the 1st example. 第1の実施例に係る測位計算処理の流れを説明する図の例である。It is an example of the figure explaining the flow of the positioning calculation process which concerns on a 1st Example.
 本発明の第1の実施例に係る受信装置及びそれを用いた測位システムに関して、図1ないし図15で説明する。まず、実施例1のシステムの構成及び動作の概要について、図1ないし図3で説明する。 A receiving apparatus and a positioning system using the receiving apparatus according to the first embodiment of the present invention will be described with reference to FIGS. First, the outline of the configuration and operation of the system according to the first embodiment will be described with reference to FIGS.
 図1は、本発明の実施例1に係る測位システムの構成である。測位システムは、測位信号を送信する(被測位対象である)複数のノード(NOD)100(100a,100b,…)、基準信号を送信する基準局(RS)110(110a,110b,…)、測位信号および基準信号を受信する複数の基地局(AP)120(120a,120b,120c)、測位サーバ(PS)130、各基地局120および測位サーバ130をつなぐネットワーク(INT)140、から構成される。なお、参照符号の添え字a,b,cは、同じ構成要素であることを示し、添え字を省略する場合は、その同一構成要素を指すものとする。また、NOD、RS、AP及びPSは、いずれも送受信の機能を備えているが、ここでは説明を簡単にするために、本発明の実施例に関して必要な送受信機能を主体にして説明する。 FIG. 1 shows a configuration of a positioning system according to Embodiment 1 of the present invention. The positioning system includes a plurality of nodes (NOD) 100 (100a, 100b,...) That transmit positioning signals (target objects), a reference station (RS) 110 (110a, 110b,...) That transmits a reference signal, and positioning. It comprises a plurality of base stations (AP) 120 (120a, 120b, 120c) that receive signals and reference signals, a positioning server (PS) 130, and a network (INT) 140 that connects each base station 120 and the positioning server 130. . The subscripts “a”, “b”, and “c” of the reference numerals indicate the same components, and when the subscripts are omitted, the same components are indicated. In addition, all of the NOD, RS, AP, and PS have a transmission / reception function, but here, in order to simplify the description, the description will focus on the transmission / reception function necessary for the embodiment of the present invention.
 実施例1のシステムを構成する各要素の構成例の概要を図2(図2A~図2D)で説明する。図2Aは、ノード(NOD)100の構成例を示すブロック図である。各ノードは、信号送信制御部101、信号作成部102及びアンテナ103を備えている。信号送信制御部101は、ノード自体に内蔵又は接続されているセンサやタイマからの情報等に基づいて、そのノードが信号送信制御部101からの命令を受けて測位信号S101を作成し、アンテナ103から送信する。 An outline of a configuration example of each element constituting the system of the first embodiment will be described with reference to FIG. 2 (FIGS. 2A to 2D). FIG. 2A is a block diagram illustrating a configuration example of the node (NOD) 100. Each node includes a signal transmission control unit 101, a signal creation unit 102, and an antenna 103. The signal transmission control unit 101 generates a positioning signal S101 in response to a command from the signal transmission control unit 101 based on information from a sensor or timer built in or connected to the node itself, and the antenna 103 Send from.
 図2Bは、基準局(RS)110の構成例を示すブロック図である。基準局は、ベースバンド部(BBM)111、アナログデジタル変換部(以下「A/D変換部」と略称する)(ADM)112、RFフロントエンド部(RFF)113、送信受信切り替えスイッチ(SWT)115、アンテナ(ANT)117、信号送受信制御部118、送信信号生成部119から構成される。ADM112及びRFF113は、同期をとるべきクロック信号の発生源としてSCG114やCLK116を有している。基準局は、ノード100が送信した測位信号S101を受信を契機として送信信号生成部119で作成された基準信号S111を送信する機能を備えている。 FIG. 2B is a block diagram illustrating a configuration example of the reference station (RS) 110. The reference station includes a baseband unit (BBM) 111, an analog-digital conversion unit (hereinafter abbreviated as “A / D conversion unit”) (ADM) 112, an RF front end unit (RFF) 113, and a transmission / reception changeover switch (SWT) 115. , An antenna (ANT) 117, a signal transmission / reception control unit 118, and a transmission signal generation unit 119. The ADM 112 and the RFF 113 have an SCG 114 and a CLK 116 as a clock signal generation source to be synchronized. The reference station has a function of transmitting the reference signal S111 created by the transmission signal generation unit 119 when receiving the positioning signal S101 transmitted by the node 100.
 また基準局110は、測位信号S101受信から基準信号S110送信までの間に基準局毎に個別の遅延を加えてもよい。基準局個別の遅延時間の決定方法としては各基準局110にあらかじめ固定された遅延量を設定しておく方法がある。また、受信したノード100からの測位信号S101の強さに反比例して遅延時間を決めても良い。これによりノード100からの距離が近く信号が強い強度で送られていれば基準局110はすぐに基準信号S101を送信し、ノード100が基準局110から遠ければ大きめの遅延の後に基準信号S110を送信することができる。 Further, the reference station 110 may add an individual delay for each reference station between the positioning signal S101 reception and the reference signal S110 transmission. As a method for determining the delay time for each reference station, there is a method for setting a fixed delay amount in each reference station 110 in advance. Further, the delay time may be determined in inverse proportion to the strength of the positioning signal S101 from the received node 100. As a result, if the distance from the node 100 is short and the signal is transmitted with a strong intensity, the reference station 110 immediately transmits the reference signal S101, and if the node 100 is far from the reference station 110, the reference signal S110 is transmitted after a large delay. be able to.
 また、基準局110は後述する基地局120としての機能を有し、ノード100からの信号を受信したときのみ基準信号S110を送信し、ノードからの信号を受信する前に、他の基準局110からの基準信号S110を受信した場合は、自らは基準信号を送信せずに、測定した信号受信間隔をサーバ130に報告してもよい。基準局120が、ノードからの信号を受信して基準信号S110を送信したときは基準信号の受信時刻の代わりに自らが基準信号S110を送信した時刻をサーバ130に送る。このように、基準局が基地局の機能を有することにより、システム構成のコストを低減することができる。 Further, the reference station 110 has a function as a base station 120 described later, and transmits the reference signal S110 only when a signal from the node 100 is received. Before receiving the signal from the node, the reference station 110 receives the signal from the other reference stations 110. When the reference signal S110 is received, the measured signal reception interval may be reported to the server 130 without transmitting the reference signal. When the reference station 120 receives the signal from the node and transmits the reference signal S110, the reference station 120 sends the time at which it transmits the reference signal S110 to the server 130 instead of the reception time of the reference signal. As described above, since the reference station has the function of a base station, the cost of the system configuration can be reduced.
 図2Cは、基地局(AP)120の構成例を示すブロック図である。基地局は、ベースバンド部(BBM)121、アナログデジタル変換部(ADM)125、RFフロントエンド部(RFF)127及びアンテナ(ANT)129から構成される。ADM125及びRFF127は、同期をとるべきクロック信号の発生源SCG126、CLK128を有している。ベースバンド部121は、受信した信号に含まれる送信局を特定可能な情報に基づいて、該信号を送信したノード又は基準局を特定する機能を備えている。ベースバンド部121は、さらに、SCGで生成されたクロック信号の位相を変化させるシフト信号を生成してクロック信号の位相を変化させ伝送信号とクロック信号との同期捕捉を行う同期捕捉部(TRPM)122、クロック信号およびシフト信号とを用いて測位信号と基準信号のペイロード長と、信号受信完了から次の信号のSFD検出までの時間差を計測する時間差計測部(TDMM)123も備えている。 FIG. 2C is a block diagram illustrating a configuration example of the base station (AP) 120. The base station includes a baseband unit (BBM) 121, an analog / digital conversion unit (ADM) 125, an RF front end unit (RFF) 127, and an antenna (ANT) 129. The ADM 125 and the RFF 127 have clock signal generation sources SCG 126 and CLK 128 to be synchronized. The baseband unit 121 has a function of identifying the node or reference station that transmitted the signal based on information that can identify the transmitting station included in the received signal. The baseband unit 121 further generates a shift signal that changes the phase of the clock signal generated by the SCG, changes the phase of the clock signal, and acquires the synchronization of the transmission signal and the clock signal. 122, a time difference measurement unit (TDMM) 123 that measures the payload length of the positioning signal and the reference signal by using the clock signal and the shift signal and the time difference from the completion of signal reception to the SFD detection of the next signal is also provided.
 なお、図2Bに示すように、基準局(RS)110を構成する通信装置にも、基地局(AP)120と同様に、同期捕捉部(TRPM)や時間差計測部(TDMM)を備えるようにしても良い。また、基地局(AP)120にも、基準局(RS)110と同様な送信機能を持たせても良い。すなわち、基地局はノードから位置測位信号を受信すると基準信号を送信する機能を有してもよい。さらに、基準信号を送信した場合には、位置測位信号の受信時刻と基準信号の送信時刻との差を測位サーバに送信する。測位サーバは、その差を基地局における測位信号の受信時刻と基準信号の受信時刻の受信時刻差としてノードの位置測位に用いることができる。 As shown in FIG. 2B, the communication device that constitutes the reference station (RS) 110 is also provided with a synchronization acquisition unit (TRPM) and a time difference measurement unit (TDMM), like the base station (AP) 120. Also good. Also, the base station (AP) 120 may have a transmission function similar to that of the reference station (RS) 110. That is, the base station may have a function of transmitting a reference signal when receiving a positioning signal from a node. Further, when the reference signal is transmitted, the difference between the reception time of the position positioning signal and the transmission time of the reference signal is transmitted to the positioning server. The positioning server can use the difference as a reception time difference between the reception time of the positioning signal and the reception time of the reference signal in the base station for positioning of the node.
 図2Dは、測位サーバ130(PS)の構成例を示すブロック図である。測位サーバは、通信部131、測位・測距部132の各機能及びシステム情報データベース133を備えている。通信部131は、測位サーバをネットワーク140に接続するインターフェースとして機能し、基地局から送られる測位情報通知を受けて、測位・測距部132に送る。測位・測距部132は、測位情報通知に含まれる各基地局における信号受信時刻差の情報及びシステム情報データベース133から得た各基地局及び基準局の位置等の情報に基づいて、TDOA方式によりノード100の位置を算出する。 FIG. 2D is a block diagram illustrating a configuration example of the positioning server 130 (PS). The positioning server includes functions of the communication unit 131 and the positioning / ranging unit 132 and a system information database 133. The communication unit 131 functions as an interface for connecting the positioning server to the network 140, receives the positioning information notification sent from the base station, and sends it to the positioning / ranging unit 132. The positioning / ranging unit 132 uses the TDOA method based on the signal reception time difference information in each base station included in the positioning information notification and the information such as the position of each base station and reference station obtained from the system information database 133. 100 positions are calculated.
 図3は、第1の実施例の測位システムにおける信号の送受信の概要を示すシーケンス図である。 FIG. 3 is a sequence diagram showing an outline of signal transmission / reception in the positioning system of the first embodiment.
 ノード100は、任意の時刻、例えば、定期的に、又は、ノードに設けられたセンサが異常を検出したときに、周辺の基準局110と基地局120に対して測位信号S101を含む伝送信号を送信する。この測位信号を受けた基準局110は周囲の基地局120に対して基準信号S111を含む伝送信号を送信する。 The node 100 transmits a transmission signal including the positioning signal S101 to the surrounding reference station 110 and the base station 120 at an arbitrary time, for example, periodically or when a sensor provided in the node detects an abnormality. To do. Upon receiving this positioning signal, the reference station 110 transmits a transmission signal including the reference signal S111 to the surrounding base stations 120.
 このとき、例えば基地局APbは基準局RSaの信号が届かない位置に設置されていた場合、基地局APaはノード、基準局RSa、基準局RSbからの信号3つを受信するのに対し、基地局APbはノードと基準局RSbからの信号の2つのみを受信する。 At this time, for example, when the base station APb is installed at a position where the signal of the reference station RSa does not reach, the base station APa receives three signals from the node, the reference station RSa, and the reference station RSb, whereas the base station APb Only two of the signals from the node and the reference station RSb are received.
 各基地局は、測位情報、例えば測位信号の受信時刻とそれ以降に連続して受信された基準信号の受信時刻について、連続して受信された2つの信号間の信号受信時間差、信号受信時間差を求めるためのサンプリングクロック周期、タイミングシフト時間、サンプリングクロックのカウント数、サンプリングタイミング制御信号のカウント数、及び信号送信元の識別子や基地局の識別子その他の情報を測位情報S150として、ネットワークを経由してサーバ130に送付する。 Each base station determines the positioning information, for example, the reception time difference between the two consecutively received signals and the signal reception time difference between the reception time of the positioning signal and the reception time of the reference signal continuously received thereafter. Sampling clock period to obtain, timing shift time, sampling clock count, sampling timing control signal count, and signal transmission source identifier, base station identifier and other information as positioning information S150 via the network Send to server 130.
 ここで、各基地局120は、信号を受信した際、この信号、例えば測位信号とサンプリングクロックとの同期捕捉を行う。同期捕捉が確立された後、伝送信号の復調・同期追跡を行う。各基地局は、同期捕捉、復調・同期追跡などの伝送信号の受信処理と並行して、連続して受信された2つの信号の受信時間差とそれぞれの信号のペイロード長の計測処理を行い、その結果に基づく測位情報S150をサーバ130に送付する。 Here, when each base station 120 receives a signal, it synchronizes acquisition of this signal, for example, a positioning signal and a sampling clock. After synchronization acquisition is established, the transmission signal is demodulated and synchronized. In parallel with transmission signal reception processing such as synchronization acquisition, demodulation and synchronization tracking, each base station performs measurement processing of the reception time difference between two received signals and the payload length of each signal. The positioning information S150 based on the result is sent to the server 130.
 サーバ130は、この測位情報S150と、サーバが持つデータベースに記録されている情報とから、ノード100の座標を算出して測位を行う。 The server 130 performs positioning by calculating the coordinates of the node 100 from the positioning information S150 and information recorded in the database of the server.
 次に、実施例1のシステムの具体的な構成、動作原理、作用及び効果について、図4ないし図15で説明する。 Next, a specific configuration, operation principle, operation, and effect of the system according to the first embodiment will be described with reference to FIGS.
 まず、本発明に係る基地局120における受信装置は、例えば図4に示すような、間欠的なインパルス列を受信するUWB-IR受信装置で構成される。 First, the receiving apparatus in the base station 120 according to the present invention is configured by a UWB-IR receiving apparatus that receives an intermittent impulse train as shown in FIG. 4, for example.
 空間を隔てて別個に存在する送信装置において、例えば、BPSK変調(BinaryPhaseShiftKeying:2値のデジタル位相変調)および直接拡散されたパルス列を空間に送信し、本受信装置のアンテナで、空間を伝搬してきたパルス列信号を受信する。空間を伝搬する信号は、例えば、幅が約2nsのパルスが、間隔約30nsで送信されるインパルス列である。インパルスの形状は例えば1次ガウシアン波形となっており、さらに約4GHzの搬送波によりアップコンバートされた波形が用いられる。 In a transmission device that exists separately across a space, for example, BPSK modulation (Binary Phase Shift Keying: binary digital phase modulation) and a directly spread pulse train are transmitted to the space and propagated through the space by the antenna of this receiving device. A pulse train signal is received. The signal propagating in the space is, for example, an impulse train in which a pulse having a width of about 2 ns is transmitted at an interval of about 30 ns. The shape of the impulse is, for example, a primary Gaussian waveform, and a waveform that is further up-converted by a carrier wave of about 4 GHz is used.
 受信装置は、アンテナ(ANT)410、RFフロントエンド部(RFF)420、アナログデジタル変換部(以下「A/D変換部」と略称する)(ADM)430、ベースバンド部(BBM)440から構成される。 The receiving apparatus includes an antenna (ANT) 410, an RF front end unit (RFF) 420, an analog / digital conversion unit (hereinafter abbreviated as “A / D conversion unit”) (ADM) 430, and a baseband unit (BBM) 440. Is done.
 RFフロントエンド部420は、ローノイズアンプ(LNA)421、ミキサ(MIX)422i,422q、π/2位相シフタ(QPS)423、クロック発生器(CLK)424、ローパスフィルタ(LPF)425i,425q、及び可変ゲインアンプ(VGA)426i,426qから構成される。 The RF front end unit 420 includes a low noise amplifier (LNA) 421, mixers (MIX) 422i and 422q, a π / 2 phase shifter (QPS) 423, a clock generator (CLK) 424, a low pass filter (LPF) 425i and 425q, and It is composed of variable gain amplifiers (VGA) 426i and 426q.
 なお、添え字i,qは、それぞれI信号成分(同相信号:InPhase)、Q信号成分(直交信号:Quadrature)用を示しており、以下の説明では、特に必要でない限りi,qの添え字は省略する。 The subscripts i and q indicate the I signal component (in-phase signal: InPhase) and the Q signal component (quadrature signal: Quadrature), respectively. In the following description, unless otherwise specified, i and q are added. Letters are omitted.
 アンテナ410から受信されたパルス信号(間欠的なパルス列)はローノイズアンプ421で増幅された後、ミキサ422に与えられる。ミキサ422にはクロック発生器424が生成する約4GHzのクロック信号が与えられ、その結果ミキサ422の出力は4GHz帯の搬送波と、パルス幅が約2nsのガウシアン波形のインパルス信号とに分離される。この時、ミキサ422iにはクロック発生器424の出力信号が直接与えられて同相の出力信号であるI信号が出力される。一方、ミキサ422qには、クロック発生器424のクロック信号がπ/2位相シフタ(QPS)423を経て位相がπ/2遅延されたクロック信号が供給されるため、出力信号は直交成分であるQ信号となる。 The pulse signal (intermittent pulse train) received from the antenna 410 is amplified by the low noise amplifier 421 and then given to the mixer 422. The mixer 422 receives a clock signal of about 4 GHz generated by the clock generator 424. As a result, the output of the mixer 422 is separated into a carrier wave of 4 GHz band and an impulse signal of a Gaussian waveform having a pulse width of about 2 ns. At this time, the output signal of the clock generator 424 is directly given to the mixer 422i, and an I signal which is an in-phase output signal is output. On the other hand, since the clock signal with the phase delayed by π / 2 is supplied to the mixer 422q through the π / 2 phase shifter (QPS) 423 through the π / 2 phase shifter (QPS) 423, the output signal is a quadrature component Q. Signal.
 ミキサ422で分離された信号は、ローパスフィルタ425で弁別され、周波数の高い4GHzの搬送波は遮断される。従って、ガウシアンのインパルス波形だけがローパスフィルタ425から出力される。これらインパルス信号は、可変ゲインアンプ426で増幅され、RFフロントエンド部420からそれぞれI信号S427i、Q信号S427qとして出力される。 The signal separated by the mixer 422 is discriminated by the low-pass filter 425, and the high frequency 4 GHz carrier wave is cut off. Accordingly, only the Gaussian impulse waveform is output from the low-pass filter 425. These impulse signals are amplified by a variable gain amplifier 426 and output from the RF front end unit 420 as an I signal S427i and a Q signal S427q, respectively.
 A/D変換部430は、A/D変換器(ADC)431とサンプリングクロック生成部(SCG)433から構成され、RFフロントエンド部の出力信号であるI信号S427iとQ信号S427qのガウシアン波形インパルス信号が入力され、A/D変換器ADC431によりデジタル信号に変換され出力される。 The A / D conversion unit 430 includes an A / D converter (ADC) 431 and a sampling clock generation unit (SCG) 433, and a Gaussian waveform impulse of an I signal S427i and a Q signal S427q that are output signals of the RF front end unit. A signal is input, converted into a digital signal by an A / D converter ADC 431, and output.
 入力信号S427i,S427qはそれぞれ複数に分割されて、内部の個々のA/D変換器431に与えられ、デジタル信号S432に変換される。各A/D変換器431において、入力信号S427をデジタル値に変換するためのサンプリングタイミングは、サンプリングクロックS435により制御される。サンプリングクロックS435は、サンプリングクロック生成部433から与えられ、その周期は、受信インパルス列のパルス繰返し周期と等しい。すなわち、インパルス列のパルスと同期したタイミングで、サンプリングを行う。 The input signals S427i and S427q are each divided into a plurality of parts, given to the individual internal A / D converters 431, and converted into digital signals S432. In each A / D converter 431, the sampling timing for converting the input signal S427 into a digital value is controlled by the sampling clock S435. Sampling clock S435 is provided from sampling clock generator 433, and the period thereof is equal to the pulse repetition period of the received impulse train. That is, sampling is performed at a timing synchronized with the pulse of the impulse train.
 しかしながら、送信装置と受信装置は空間を隔てて別個に存在し、それぞれ同期を取っているわけではない。そのため、受信インパルス列とサンプリングクロックの位相は一致しない。従って、受信インパルス列とサンプリングクロックの位相を一致させる、同期捕捉という動作が必要となる。 However, the transmission device and the reception device exist separately across a space, and are not synchronized with each other. For this reason, the phase of the received impulse train and the sampling clock do not match. Accordingly, an operation called synchronization acquisition is required in which the phase of the received impulse train and the sampling clock are matched.
 ここで、同期をとるべきクロック信号に2種類あることを説明する。一つ目は、図4のRFフロントエンド部RFF420で用いられる4GHz周波数のクロック信号であり、二つ目は、A/D変換部430で用いられる、インパルス列が約30ns間隔で送られることに対応した約32MHz周波数のクロック信号である。 Here, we explain that there are two types of clock signals that should be synchronized. The first is a clock signal of 4 GHz frequency used in the RF front end unit RFF 420 of FIG. 4, and the second is that an impulse train used in the A / D conversion unit 430 is sent at intervals of about 30 ns. A corresponding clock signal having a frequency of about 32 MHz.
 4GHz信号成分は、RFフロントエンド部RFF420において受信された信号をI成分とQ成分に分割し、ベースバンド部BBMで信号を復元しているが、この方法により位相差に関して同期をとらなくても対応可能となっている。 As for the 4 GHz signal component, the signal received by the RF front end unit RFF 420 is divided into an I component and a Q component, and the signal is restored by the baseband unit BBM. It can be supported.
 一方で、約32MHz間隔のインパルス列については、以下に説明する同期捕捉や同期追跡を行なう必要がある。 On the other hand, it is necessary to perform synchronization acquisition and synchronization tracking described below for an impulse train with an interval of about 32 MHz.
 図5に、ベースバンド部440のブロック図を示す。ベースバンド部440は、マッチトフィルタ部(MFM)510、同期捕捉部(TRPM)520、データ保持タイミング制御部(DLTCTL)530、データ保持部(DLM)540、復調部(DEMM)550、同期追跡部(TRCKM)560、サンプリングタイミング制御部(STCTL)570、時間差計測部(TDMM)580から構成される。 FIG. 5 shows a block diagram of the baseband unit 440. The baseband unit 440 includes a matched filter unit (MFM) 510, a synchronization acquisition unit (TRPM) 520, a data holding timing control unit (DLTCTL) 530, a data holding unit (DLM) 540, a demodulation unit (DEMM) 550, and synchronization tracking. Unit (TRCKM) 560, sampling timing control unit (STCTL) 570, and time difference measurement unit (TDMM) 580.
 A/D変換部430から与えられる複数のデジタル化されたI、Q信号S432ia~cとS432qa~cは、マッチトフィルタ部510において期待される拡散符号とのマッチング(整合)度合いを検出し、測定結果を信号S511として出力する。 A plurality of digitized I and Q signals S432ia-c and S432qa-c given from the A / D conversion unit 430 detect the degree of matching (matching) with the spread code expected in the matched filter unit 510, The measurement result is output as signal S511.
 同期捕捉部520は、信号S511iaおよびS511qaを用いて受信信号(インパルス列)の同期捕捉を行なう。同期捕捉が確立されていない間は信号S522をサンプリングタイミング制御部570へ出力し、サンプリングタイミング制御信号S441,S442を用いてA/D変換部430が受信信号をデジタル変換するタイミングを変えていく。同期捕捉が確立すると、同期タイミングの情報が信号S521を経てデータ保持タイミング制御部530に伝えられる。 The synchronization acquisition unit 520 performs synchronization acquisition of the received signal (impulse train) using the signals S511ia and S511qa. While synchronization acquisition is not established, the signal S522 is output to the sampling timing control unit 570, and the timing at which the A / D conversion unit 430 digitally converts the received signal using the sampling timing control signals S441 and S442 is changed. When synchronization acquisition is established, synchronization timing information is transmitted to the data holding timing control unit 530 via the signal S521.
 データ保持タイミング制御部530は、受信信号S511と同期の取れたタイミングで制御信号S531をデータ保持部540に与え、データ保持部540はそのタイミングに合ったデータだけを信号S541として復調部550および同期追跡部560に伝える。復調部550ではデータ保持部540によって選ばれた信号S541をもとにデータを復調し、デジタルデータS443を出力する。 The data holding timing control unit 530 gives the control signal S531 to the data holding unit 540 at a timing synchronized with the reception signal S511, and the data holding unit 540 uses only the data that matches the timing as the signal S541 as the signal S541. Tell the tracking unit 560. The demodulator 550 demodulates the data based on the signal S541 selected by the data holding unit 540 and outputs digital data S443.
 また、同期追跡部560では、データ保持部540によって選ばれた信号S541をもとに、受信信号S427との同期ずれがおきていないかを検出し、同期ずれが起きている場合にはサンプリングタイミング制御部570を介してサンプリングタイミング制御信号S441,S442によりA/D変換部430のデジタル変換タイミングを調整する。 In addition, the synchronization tracking unit 560 detects whether or not there is a synchronization shift with the received signal S427 based on the signal S541 selected by the data holding unit 540, and if there is a synchronization shift, the sampling timing The digital conversion timing of the A / D conversion unit 430 is adjusted by the sampling timing control signals S441 and S442 via the control unit 570.
 サンプリングタイミング制御部570では、同期捕捉部520および同期追跡部560からの信号をもとに、A/D変換部430のデジタル変換タイミングを調整する。同期捕捉部520から信号S522が出力された場合、サンプリングタイミング制御部570を介してサンプリングタイミング制御信号S441が出力され、デジタル変換タイミングを通常よりも微小時間、例えば0.5ns程度、遅らせる。すなわち、通常のデジタル変換の周期(Tckとする)はインパルス間隔と等しいが、当該信号S441が出力された場合は、デジタル変換の間隔がTck+Tsとなる。ただし、Tsは当該信号S441が出力された場合のデジタル変換のタイミングシフト時間である。 The sampling timing control unit 570 adjusts the digital conversion timing of the A / D conversion unit 430 based on the signals from the synchronization acquisition unit 520 and the synchronization tracking unit 560. When the signal S522 is output from the synchronization acquisition unit 520, the sampling timing control signal S441 is output via the sampling timing control unit 570, and the digital conversion timing is delayed by a minute time, for example, about 0.5 ns. That is, the normal digital conversion cycle (Tck) is equal to the impulse interval, but when the signal S441 is output, the digital conversion interval is Tck + Ts. Note that Ts is a digital conversion timing shift time when the signal S441 is output.
 また、デジタル変換のタイミングは、同期追跡部560の出力信号S561に応じて調整される。A/D変換部430に入力されるアナログ信号S427に対してデジタル変換タイミングが進んでいる場合、同期追跡部520が検知し、サンプリングタイミング制御部に伝えられ、制御信号S441が出力されて、デジタル変換タイミングを通常よりもTs遅らせる。逆にアナログ信号S427に対してデジタル変換タイミングが遅れている場合、制御信号S442が出力されて、デジタル変換タイミングを通常よりもTs進ませる。 Also, the timing of digital conversion is adjusted according to the output signal S561 of the synchronization tracking unit 560. When the digital conversion timing is advanced with respect to the analog signal S427 input to the A / D conversion unit 430, the synchronization tracking unit 520 detects the signal and transmits it to the sampling timing control unit, and the control signal S441 is output. The conversion timing is delayed by Ts than usual. On the other hand, when the digital conversion timing is delayed with respect to the analog signal S427, the control signal S442 is output, and the digital conversion timing is advanced by Ts than usual.
 すなわち、サンプリングタイミング制御部570から制御信号S441が出力された場合、サンプリングクロックS435の周期は1周期だけTck+Tsとなり、制御信号S442が出力された場合、S435の周期は1周期だけTck-Tsとなる。このようにサンプリングクロックS435の周期を制御することで、同期捕捉、同期追跡が可能となる。 That is, when the control signal S441 is output from the sampling timing control unit 570, the cycle of the sampling clock S435 is Tck + Ts for one cycle, and when the control signal S442 is output, the cycle of S435 is Tck-Ts for one cycle. It becomes. By controlling the cycle of the sampling clock S435 in this way, synchronization acquisition and synchronization tracking can be performed.
 パルス信号を受信するUWB-IR通信の受信装置の基本動作は、次のとおりである。すなわち、パルス信号をアンテナ410で受け取り、RFフロントエンド部420で必要な周波数の整形された波形を抽出し、A/D変換部430でデジタル信号に変換し、ベースバンド部440でデジタル信号処理を行なうことで通信データS443を取り出して出力する。 The basic operation of a UWB-IR communication receiver that receives pulse signals is as follows. That is, a pulse signal is received by the antenna 410, a waveform having a frequency that is necessary for the RF front end unit 420 is extracted, converted into a digital signal by the A / D conversion unit 430, and digital signal processing is performed by the baseband unit 440. As a result, the communication data S443 is extracted and output.
 本実施例のUWB-IR受信装置におけるベースバンド部440には、測位用に、時間差計測部580が追加されている。本時間差計測部580は高精度な計測を低消費電力で実現するものであり、受信装置に元々備えている機能と比較的低速のカウンタを使用して高精度な時間差計測を行う。 In the baseband unit 440 in the UWB-IR receiver of the present embodiment, a time difference measuring unit 580 is added for positioning. This time difference measurement unit 580 realizes highly accurate measurement with low power consumption, and performs highly accurate time difference measurement using a function originally provided in the receiving apparatus and a relatively low-speed counter.
 この時間差計測を行う時間差計測部の具体的な構成例を図6に示す。時間差計測部580は、カウンタ(CNT)610、レジスタ(REG)620、遅延部(D)630、時間差計算部(TDCAL)640から構成される。なお、時間差計測部580の詳細については、後で説明する。 FIG. 6 shows a specific configuration example of the time difference measuring unit that performs this time difference measurement. The time difference measurement unit 580 includes a counter (CNT) 610, a register (REG) 620, a delay unit (D) 630, and a time difference calculation unit (TDCAL) 640. Details of the time difference measuring unit 580 will be described later.
 この実施例の測位システムの仕組みを、ノード100aの位置測定を行う場合の例を用いて、図7ないし図8を参照しながら、より詳細に説明する。 The mechanism of the positioning system according to this embodiment will be described in more detail with reference to FIGS. 7 to 8 using an example in which the position of the node 100a is measured.
 まず、図7により、本発明に係る測位システムの原理を説明する。図7において、Tは送信、Rは受信を示す。ノード100aが送信した測位信号S101は、時間TNR後に基準局110に受信され、TNA,a後に基地局120aに受信される。基準局110は、測位信号S101を受信してからTRP後に、基準信号S111を送信する。基準信号S111は、送信されてからTRA,a後に、基地局120aに受信される。 First, the principle of the positioning system according to the present invention will be described with reference to FIG. In FIG. 7, T x indicates transmission and R x indicates reception. Positioning signal S101 to the node 100a is transmitted is received by the reference station 110 after a time T NR, T NA, are received by the base station 120a after a. The reference station 110 transmits the reference signal S111 after TRP after receiving the positioning signal S101. The reference signal S111 is received by the base station 120a after TRA, a after being transmitted.
 基地局120aは、測位信号S101を受信してから基準信号S111を受信するまでの時間Tmeas,aを計測する。この時、以下の式が成立する。
TNR+TRP+TRA,a=TNA,a+Tmeas,a……(1a)
 また、測位信号S101および基準信号S111は、基地局120b,120cにも受信され、
TNR+TRP+TRA,b=TNA,b+Tmeas,b……(1b)
TNR+TRP+TRA,c=TNA,c+Tmeas,c……(1c)
が成立する。ここで、
TNR:ノード100aが測位信号S101を送信してから、基準局110が測位信号S101を受信するまでの時間
TRP:基準局110が測位信号S101を受信してから、基準信号S111を送信するまでの時間
TRA,a,TRA,b,TRA,c:基準局110が基準信号S111を送信してから、基地局120a,120b,120cが基準信号S111を受信するまでの時間
TNA,a,TNA,b,TNA,c:ノード100aが測位信号S101を送信してから、基地局120a,120b,120cが測位信号S101を受信するまでの時間
Tmeas,a,Tmeas,b,Tmeas,c:基地局120a,120b,120cが、測位信号S101を受信してから、基準信号S111を受信するまでの時間である。
The base station 120a measures a time T meas, a from when the positioning signal S101 is received until the reference signal S111 is received. At this time, the following equation is established.
T NR + T RP + T RA, a = T NA, a + T meas, a (1a)
The positioning signal S101 and the reference signal S111 are also received by the base stations 120b and 120c,
T NR + T RP + T RA, b = T NA, b + T meas, b (1b)
T NR + T RP + T RA, c = T NA, c + T meas, c (1c)
Is established. here,
T NR : Time from when the node 100a transmits the positioning signal S101 to when the reference station 110 receives the positioning signal S101
T RP : Time from when the reference station 110 receives the positioning signal S101 to when the reference signal S111 is transmitted
T RA, a , T RA, b , T RA, c : Time from when the reference station 110 transmits the reference signal S111 until the base stations 120a, 120b, 120c receive the reference signal S111
T NA, a , T NA, b , T NA, c : Time from when the node 100a transmits the positioning signal S101 to when the base stations 120a, 120b, 120c receive the positioning signal S101
T meas, a, T meas, b , T meas, c : The time from when the base station 120a, 120b, 120c receives the positioning signal S101 until it receives the reference signal S111.
 式(1a)および式(1b)から以下の式が導かれる。
TNA,a-TNA,b=(TRA,a-TRA,b)-(Tmeas,a-Tmeas,b)……(2)
 ここで、TRA,a,TRA,bはそれぞれ基準局110と基地局120a,120bとの間の距離を光速で除した値に等しい。また、Tmeas,a,Tmeas,bは基地局120a,120bがそれぞれ計測した値であるため、式(2)の右辺は既知の値となる。
The following formulas are derived from formulas (1a) and (1b).
T NA, a -T NA, b = (T RA, a -T RA, b )-(T meas, a -T meas, b ) …… (2)
Here, T RA, a and T RA, b are respectively equal to values obtained by dividing the distance between the reference station 110 and the base stations 120a and 120b by the speed of light. Since T meas, a and T meas, b are values measured by the base stations 120a and 120b, the right side of the equation (2) is a known value.
 従って、測位信号S101が基地局120a,120bに到達した時間差TNA,a-TNA,bを算出することができる。同様にして、3基の基地局120への到達時間差TDOAを知ることができ、ノード100aの位置測定が可能となる。なお、本説明では、基地局の数を3基としているが、これに限るものではない。 Therefore, the time difference T NA, a −T NA, b when the positioning signal S101 reaches the base stations 120a, 120b can be calculated. Similarly, the arrival time difference TDOA to the three base stations 120 can be known, and the position of the node 100a can be measured. In this description, the number of base stations is three, but is not limited to this.
 図8は、ノード100から送信される測位信号S101および基準局110から送信される基準信号S111の構成例を示す。当該信号S101,S111は、プリアンブル310、フレーム開始部(StartFrameDelimiter、以下「SFD」と略称する)320、ヘッダ330、データ340から構成される。ヘッダ内やデータ内には誤り検出用のCRC符号等が含まれていてもよい。 FIG. 8 shows a configuration example of the positioning signal S101 transmitted from the node 100 and the reference signal S111 transmitted from the reference station 110. The signals S101 and S111 include a preamble 310, a frame start unit (StartFrameDelimiter, hereinafter abbreviated as “SFD”) 320, a header 330, and data 340. A CRC code or the like for error detection may be included in the header or data.
 プリアンブル310は、当該信号S101,S111を受信した装置において同期の捕捉に使用される。SFD320は、プリアンブル310の終了およびヘッダ330の始まりを示す特定のビットパターンである。ヘッダ330には、当該信号S101,S111の送信元の識別子などの情報等が格納される。データ340には当該信号S101,S111の送信元からの情報が格納される。 The preamble 310 is used for capturing synchronization in the device that has received the signals S101 and S111. The SFD 320 is a specific bit pattern that indicates the end of the preamble 310 and the start of the header 330. The header 330 stores information such as an identifier of the transmission source of the signals S101 and S111. Data 340 stores information from the transmission source of the signals S101 and S111.
 データ340には当該信号S101,S111の送信元において信号に付与されたシーケンス番号などの情報が格納される。また基準信号S111のデータ340にはその基準信号発信の契機となったノード100からの測位信号S101の識別子やシーケンス番号に関する情報が格納される。 In the data 340, information such as a sequence number assigned to the signal at the transmission source of the signals S101 and S111 is stored. The data 340 of the reference signal S111 stores information related to the identifier and sequence number of the positioning signal S101 from the node 100 that triggered the reference signal transmission.
 当該信号S101,S111を通信用の信号とすることで、通信と同時に測位を行うことが可能となる。また、ノード100、基準局110において測位用の特別な信号を生成する必要がなくなり、装置が簡易化される。 By using the signals S101 and S111 as communication signals, positioning can be performed simultaneously with communication. Further, it is not necessary to generate special positioning signals in the node 100 and the reference station 110, and the apparatus is simplified.
 当該信号S101,S111の送信時刻あるいは受信時刻は、ある特定の部分を送信あるいは受信した時刻と定める。例えば、当該信号S101,S111のSFD320を送信し終えた時刻を送信時刻と定め、受信し終えた時刻を受信時刻と定める。 The transmission time or reception time of the signals S101 and S111 is determined as the time when a specific part is transmitted or received. For example, the time at which the SFD 320 of the signals S101 and S111 has been transmitted is defined as the transmission time, and the time at which the reception is completed is defined as the reception time.
 本測位システムにおいて、測定されるノード100の位置精度は、到達時間差TDOAの精度、すなわち、基地局120で計測する時間Tmeasの精度に依存する。さらに、複数基地局120a、120b、120c間の計測時間誤差に依存する。例えば、30cmの位置精度を得るには、約1nsの時間精度が必要となる。精度1nsで時間差を計測する場合、通常、1GHzの発振器と1GHzで動作するカウンタを用いる。しかし、このような高速な発振器、カウンタを使用すると消費電力、回路規模が増大してしまう。 In this positioning system, the position accuracy of the measured node 100 depends on the accuracy of the arrival time difference TDOA, that is, the accuracy of the time T meas measured by the base station 120. Furthermore, it depends on the measurement time error between the plurality of base stations 120a, 120b, 120c. For example, to obtain a position accuracy of 30 cm, a time accuracy of about 1 ns is required. When measuring the time difference with an accuracy of 1 ns, a 1 GHz oscillator and a counter operating at 1 GHz are usually used. However, the use of such high-speed oscillators and counters increases power consumption and circuit scale.
 本実施形態では、比較的低速の発振器と低速のカウンタを使用して、高精度な時間差計測を行い、消費電力、回路規模を低減する。 In this embodiment, a relatively low-speed oscillator and a low-speed counter are used to perform time difference measurement with high accuracy, thereby reducing power consumption and circuit scale.
 以下、その詳細を図9から図11を用いて説明する。まず、図9を用いて、同期捕捉の方法を説明する。A/D変換部430に入力されるインパルス列S427と、サンプリングクロックS435の位相が一致していない場合、A/D変換されたデジタル信号S432は、ノイズレベルの値となる。インパルス列S427とサンプリングクロックS435の位相が一致している場合、パルスをサンプリングした出力がデジタル信号S432に出力される。 Hereinafter, the details will be described with reference to FIGS. First, the synchronization acquisition method will be described with reference to FIG. When the impulse train S427 input to the A / D conversion unit 430 and the phase of the sampling clock S435 do not match, the A / D converted digital signal S432 has a noise level value. When the phase of the impulse train S427 and the sampling clock S435 match, an output obtained by sampling the pulse is output to the digital signal S432.
 デジタル信号S432はベースバンド部440に入力され、当該信号S432のレベルから位相の一致/不一致の判定を行う。位相が一致していない場合、シフト信号(タイミングシフト時間=Ts)を生成して位相の調整を行う。 The digital signal S432 is input to the baseband unit 440, and phase matching / mismatching is determined from the level of the signal S432. If the phases do not match, a shift signal (timing shift time = Ts) is generated to adjust the phase.
 すなわち、サンプリングタイミング制御信号S441を出力し、サンプリングクロックS435の周期を一定時間(Ts)長くあるいは短くシフトすることで、サンプリングタイミングをシフトさせる。この処理を、インパルス列S427とサンプリングクロックS435の位相が一致するまで繰返す。このように、サンプリングタイミング制御信号S441により、サンプリングクロックS435の位相をずらすことで、インパルス列S427との同期捕捉を行う。 That is, the sampling timing control signal S441 is output, and the sampling timing is shifted by shifting the period of the sampling clock S435 longer or shorter by a certain time (Ts). This process is repeated until the phases of the impulse train S427 and the sampling clock S435 match. In this manner, the synchronization with the impulse train S427 is acquired by shifting the phase of the sampling clock S435 by the sampling timing control signal S441.
 A/D変換部430のA/D変換器431ia、431ib、431icには、例えば、それぞれ0.5nsの遅延差を持つサンプリングクロックが与えられる。すなわち、ガウシアンインパルス信号が2nsの幅を持つ場合に、このインパルス信号を0.5nsずつ異なる位置でデジタル値に変換し、出力する。これらの、異なる位置でデジタル値に変換された値は、同期追跡に用いられる。 The A / D converters 431ia, 431ib, 431ic of the A / D converter 430 are provided with sampling clocks each having a delay difference of 0.5 ns, for example. That is, when the Gaussian impulse signal has a width of 2 ns, the impulse signal is converted into a digital value at a position different by 0.5 ns and output. These values converted into digital values at different positions are used for synchronous tracking.
 一度同期捕捉が確立した後でも、送信装置と受信装置のクロックに周波数偏差が存在する場合、次第に同期ずれが生じる。UWB-IR方式では、間隔の短い2ns程度のインパルスに対して同期を行なう必要がある。送信装置および受信装置のクロック発生に用いられる水晶発振子の周波数精度が高ければ同期追跡は不要であるが、精度の高い水晶発振子は高額になる。低コスト化を目指すためには、精度の悪い水晶発振子を用いても受信できるシステムでなければならない。そのために、同期追跡という動作が必要となる。 Even after the synchronization acquisition is established once, if there is a frequency deviation between the clocks of the transmission device and the reception device, the synchronization deviation gradually occurs. In the UWB-IR system, it is necessary to synchronize with an impulse having a short interval of about 2 ns. If the frequency accuracy of the crystal oscillator used for clock generation of the transmission device and the reception device is high, synchronization tracking is unnecessary, but a crystal oscillator with high accuracy is expensive. In order to reduce the cost, the system must be able to receive even a crystal oscillator with poor accuracy. Therefore, an operation called synchronization tracking is required.
 この同期追跡について、図10ないし図11で説明する。図10に同期追跡の概念図を示し、図11は、時間差計測の原理を示す。まず、図10において、パルスのピークをサンプリングしている状態830から、周波数偏差のため、状態810,820に示すように、パルスのピークとサンプリングタイミングにずれが生じる。 This synchronization tracking will be described with reference to FIGS. FIG. 10 shows a conceptual diagram of synchronous tracking, and FIG. 11 shows the principle of time difference measurement. First, in FIG. 10, there is a difference between the pulse peak and the sampling timing as shown in states 810 and 820 due to the frequency deviation from the state 830 in which the pulse peak is sampled.
 ベースバンド部440では、A/D変換された3点のデジタル信号S432を用いてこのずれを検出し、制御信号S441,S442を通じてサンプリングクロックS435の周期を調整する。すなわち、状態810に示すように、サンプリングクロックS435がインパルスに対して進んでいる場合、シフト信号によりサンプリングクロックS435の周期を一定時間(Ts)長くする。また、状態820に示すように、サンプリングクロックS435がインパルスに対して遅れている場合、シフト信号によりサンプリングクロックS435の周期を一定時間(Ts)短くする。 The baseband unit 440 detects this shift using the three digital signals S432 that have undergone A / D conversion, and adjusts the period of the sampling clock S435 through the control signals S441 and S442. That is, as shown in the state 810, when the sampling clock S435 is advanced with respect to the impulse, the period of the sampling clock S435 is increased by a certain time (Ts) by the shift signal. Further, as shown in the state 820, when the sampling clock S435 is delayed with respect to the impulse, the period of the sampling clock S435 is shortened by a certain time (Ts) by the shift signal.
 サンプリングクロック生成部433は、上述のように、ベースバンド部440から与えられるサンプリングタイミング制御信号S441,S442に応じて、A/D変換器431のサンプリングタイミングを決定するサンプリングクロックS435ia~c、S435qa~cを生成する。 As described above, the sampling clock generation unit 433 determines the sampling timings of the A / D converter 431 according to the sampling timing control signals S441 and S442 given from the baseband unit 440, and the sampling clocks S435ia to c and S435qa to c is generated.
 ベースバンド部440は、デジタル値に変換された受信信号S432を用いて同期捕捉、同期確認、信号復調、同期追跡、時間差計測といった信号処理、およびA/D変換部430のサンプリングタイミング制御を行なう。復調されたデータS443および測位データS444はベースバンド部から出力されて上位レイヤに伝えられ、上位レイヤでデータ処理が行なわれる。 The baseband unit 440 performs signal processing such as synchronization acquisition, synchronization confirmation, signal demodulation, synchronization tracking, and time difference measurement, and sampling timing control of the A / D conversion unit 430 using the received signal S432 converted into a digital value. Demodulated data S443 and positioning data S444 are output from the baseband unit and transmitted to the upper layer, and data processing is performed in the upper layer.
 次に、時間差計測の原理を、図11を参照しながら説明する。図11は、連続した2つの信号受信時の、基地局120の受信装置のタイミングチャートである。1つめの信号との同期捕捉が確立されていない間は、サンプリングタイミング制御信号S441により、サンプリングクロックS435の周期を変え、同期の捕捉を行う。1つめの信号を受信し、同期捕捉が確立されると、復調および同期追跡を開始する。 Next, the principle of time difference measurement will be described with reference to FIG. FIG. 11 is a timing chart of the receiving apparatus of the base station 120 when two continuous signals are received. While synchronization acquisition with the first signal is not established, the sampling timing control signal S441 changes the period of the sampling clock S435 to acquire synchronization. When the first signal is received and synchronization acquisition is established, demodulation and synchronization tracking are started.
 送信装置と受信装置のクロックに周波数偏差が存在するため、一度同期が確立した後でも、次第に同期ずれが生じる。同期追跡部560でそのずれを検知し、制御信号S441,S442を介してサンプリングクロックS435の周期を調整する。 Since there is a frequency deviation between the clocks of the transmission device and the reception device, even after synchronization is established once, a synchronization deviation gradually occurs. The synchronization tracking unit 560 detects the deviation and adjusts the cycle of the sampling clock S435 via the control signals S441 and S442.
 受信装置は、1つめの信号のデータ340を受信し終えると、同期捕捉を行う。2つめの信号の同期捕捉が確立された後、復調・同期追跡を行う。 When the receiving device has received the first signal data 340, it performs synchronization acquisition. After synchronization acquisition of the second signal is established, demodulation and synchronization tracking are performed.
 基地局120は、それぞれの信号のペイロード長と、1つめの信号受信完了から、2つめの信号を受信するまでの時間Tmeasを計測する。ここでは、ペイロード長をヘッダ330とデータ340をあわせた長さ、また信号の受信間隔を、1つめの信号のデータ340受信完了から2つめの信号のSFD320を検出するまでの時間とする。 The base station 120 measures the payload length of each signal and the time T meas from the completion of the reception of the first signal until the reception of the second signal. Here, the payload length is the combined length of the header 330 and the data 340, and the signal reception interval is the time from the completion of the reception of the first signal data 340 to the detection of the SFD 320 of the second signal.
 サンプリングクロックS435の周期は、通常はTckであり、制御信号S441,S442が出力された場合はそれぞれTck+Ts,Tck-Tsとなる。これを利用すると、計測する間隔Tmeasは以下の式で与えられる。
Tmeas=Tck・Nck+Ts・(Np-Nm)……(3)
ただし、
Tck:通常のサンプリングクロック周期
Ts:タイミングシフト時間
Nck:パルスサンプリング用クロックのカウント数
Np,Nm:+Ts,-Tsのサンプリングタイミング制御信号のカウント数
である。
Period of the sampling clock S435 is usually a T ck, respectively when the control signal S441, S442 is output T ck + T s, the T ck -T s. Using this, the measurement interval T meas is given by the following equation.
T meas = T ck・ N ck + T s・ (N p -N m ) …… (3)
However,
T ck : Normal sampling clock period
T s : Timing shift time
N ck : Number of clocks for pulse sampling
N p , N m : Counts of sampling timing control signals of + T s and -T s .
 すなわち、TmeasおよびRは、サンプリングクロックS435およびその制御信号S441,S442の数をカウントすることで算出される。 That is, T meas and R are calculated by counting the number of sampling clocks S435 and their control signals S441 and S442.
 この受信時間差の算出は、時間差計測部(TDMM)580(図6参照)でなされる。次に、この時間差計測部580の動作を説明する。時間差計測部580には、サンプリングクロックS435D、サンプリングタイミング制御信号S441,S442、および指定パターン検出信号S551が入力される。クロックS435D、および制御信号S441,S442がそれぞれカウンタ610a~cに入力され、そのカウント値を信号S611a~cとして出力する。 The reception time difference is calculated by the time difference measurement unit (TDMM) 580 (see FIG. 6). Next, the operation of the time difference measuring unit 580 will be described. Sampling clock S435D, sampling timing control signals S441, S442, and designated pattern detection signal S551 are input to time difference measuring unit 580. Clock S435D and control signals S441 and S442 are respectively input to counters 610a to 610c, and the count values are output as signals S611a to c.
 指定パターン検出信号S551は、SFD320もしくはデータ340の終了が検出されたタイミングで復調部550から出力される。カウント値S611a~cは、指定パターン検出タイミングでレジスタ620a~cに記憶される。また、指定パターン検出信号S551は、遅延部630にて遅延され、カウンタ610のカウント値をリセットする。 The designated pattern detection signal S551 is output from the demodulator 550 at the timing when the end of the SFD 320 or the data 340 is detected. The count values S611a-c are stored in the registers 620a-c at the designated pattern detection timing. The designated pattern detection signal S551 is delayed by the delay unit 630, and the count value of the counter 610 is reset.
 図11では1つめの信号のデータ340終了から2つめの信号のSFD検出終了までの信号検出間隔測定の場合を示しているが、SFD終了からデータ終了までのペイロード長の測定も同様の動作で行われる。 Although FIG. 11 shows the case of signal detection interval measurement from the end of the first signal data 340 to the end of SFD detection of the second signal, the payload length measurement from the end of SFD to the end of data is the same operation. Done.
 時間差計算部640では、レジスタ620に記憶された値を用い、式(3)に従って時間差Tmeasを計算する。当該時間差Tmeasは、信号S444aとして上位レイヤに出力される。上位レイヤでは、復調されたデータS443からノード100のIDなどを識別し、必要な情報と該時間差Tmeasを測位サーバに送信する。 The time difference calculation unit 640 uses the value stored in the register 620 to calculate the time difference T meas according to equation (3). The time difference T meas is output to the upper layer as a signal S444a. In the upper layer, the ID of the node 100 is identified from the demodulated data S443, and necessary information and the time difference T meas are transmitted to the positioning server.
 該時間差Tmeasの計算は、時間差計測部580でなく、上位レイヤ、測位サーバなどで行ってもよい。 The calculation of the time difference T meas may be performed not by the time difference measurement unit 580 but by an upper layer, a positioning server, or the like.
 基地局での測定項目を図13に示す。各基地局は到来する測位信号受信後のn番目の基準信号のパケットに対して、ペイロード長Pn、パケット終了から次の(n+1番目の)信号のSFDまでの間隔In,n+1の測定を繰り返す。 The measurement items at the base station are shown in FIG. Each base station, for an nth reference signal packet after receiving an incoming positioning signal, has a payload length P n and an interval I n, n + from the end of the packet to the SFD of the next (n + 1) th signal. Repeat 1 measurement.
 例えば、図12のように連続する3つの信号を受信した場合、最初の信号のペイロード長P0、そのパケット終了から次の信号のSFDまでの間隔I01、次の信号のペイロード長P1、そのパケット終了から次の信号のSFDまでの間隔I12、3つめの信号のペイロード長P2を測定する。 For example, when three consecutive signals are received as shown in FIG. 12, the payload length P 0 of the first signal, the interval I 01 from the end of the packet to the SFD of the next signal, the payload length P 1 of the next signal, The interval I 12 from the end of the packet to the SFD of the next signal, and the payload length P 2 of the third signal are measured.
 図13は、基地局間での受信時刻差の算出に使用する、測位信号と基準信号の受信時刻差TAMの算出方法を示した図である。 Figure 13 is used to calculate the reception time difference between base stations is a diagram showing a method of calculating the reception time difference T AM of the positioning signal and the reference signal.
 基地局120からはペイロード長や信号受信完了から次の信号受信までの間隔に関する情報が測位情報S150としてサーバ130に送られてくる。サーバではそれらの測位情報を用いて、各基地局における測位信号受信から任意の基準局の基準信号受信までの間隔を算出する。 Information regarding the payload length and the interval from the completion of signal reception until the next signal reception is sent from the base station 120 to the server 130 as positioning information S150. The server uses the positioning information to calculate the interval from the positioning signal reception at each base station to the reference signal reception at an arbitrary reference station.
 例えばサーバは基地局Aからの連続する測位情報の内容より、図13では測位信号受信からと基準局1からの基準信号受信までの間隔TA1は、それぞれの信号の受信時刻をSFD検出時刻と定めるならば TA1= P0 + I01となる。また測位信号受信からと基準局2からの基準信号受信までの間隔は、TA2 = P0+ I01+ P1 + I12となる。これらの情報を用いれば図6に示す手順により連続していないパケットの間隔も算出することができる。 For example, the server determines, based on the contents of the continuous positioning information from the base station A, the interval T A1 from the positioning signal reception to the reference signal reception from the reference station 1 in FIG. 13 as the reception time of each signal as the SFD detection time. Then T A1 = P 0 + I 01 . In addition, the interval between receiving the positioning signal and receiving the reference signal from the reference station 2 is T A2 = P 0 + I 01 + P 1 + I 12 . By using these pieces of information, it is possible to calculate a non-continuous packet interval by the procedure shown in FIG.
 次に各基地局からの測位情報に対する周波数補正について説明する。各基地局120はそれぞれ独立したクロックで動作しているため、基地局120が計測した該受信時間差Tmeasは、クロックの周波数精度に起因する誤差を含んでいる。 Next, frequency correction for positioning information from each base station will be described. Since each base station 120 operates with an independent clock, the reception time difference T meas measured by the base station 120 includes an error due to the frequency accuracy of the clock.
 測位サーバでは、複数の基地局120で計測されたTmeasを用いて、式(2)に従いノード100の位置を算出する。クロックの誤差を考慮した場合、式(2)の右辺第2項は
Tmeas,a - Tmeas,b=Treal,a・(1+δa) - Treal,b・(1+δb)
=Treal,a - Treal,b+(Treal,a・δ- Treal,b・δb)……(4)
となり、誤差(Treal,a・δ- Treal,b・δb)が生じる。ここで、
Treal,a,Treal,b:基地局120a,120bがそれぞれ計測すべき実際の時間
δa,δb:基地局120a,120bのクロックの偏差
である。誤差(Treal,a・δ- Treal,b・δb)は、
Treal,a・δa - Treal,b・δb=(Treal,a-Treal,b)・δa+Treal,b・(δab)……(5)
と変形される。
The positioning server calculates the position of the node 100 according to the equation (2) using T meas measured by the plurality of base stations 120. When the clock error is taken into consideration, the second term on the right side of equation (2) is
T meas, a -T meas, b = T real, a・ (1 + δ a )-T real, b・ (1 + δ b )
= T real, a-   T real, b + (T real, a・ δ a -T real, b・ δ b ) …… (4)
Thus, an error (T real, a · δ a -T real, b · δ b ) occurs. here,
T real, a , T real, b : actual times δ a , δ b to be measured by the base stations 120 a and 120 b , respectively, are clock deviations of the base stations 120 a and 120 b . The error (T real, a・ δ a -T real, b・ δ b ) is
T real, a・ δ a -T real, b・ δ b = (T real, a -T real, b ) ・ δ a + T real, b・ (δ ab ) …… (5)
And transformed.
 (Treal,a-Treal,b)は、ノード100と基地局120との距離および基準局110と基地局120との距離に依存し、例えば、30m程度の信号伝達距離を考えると、その値は高々100ns程度となる。これに対し、Treal,bは基準局110での信号処理時間、測位信号S101のデータ長、基準信号S111のプリアンブル長などに依存し、例えば、伝送速度が250kbpsでプリアンブル長が20バイトとした場合、その値は少なくとも0.6ms以上となる。この場合、例えば基地局間のクロックの偏差(δab)が20ppmとすると、約13nsの時間誤差が生じる。これは距離に直すと約4mの誤差となる。 (T real, a -T real, b ) depends on the distance between the node 100 and the base station 120 and the distance between the reference station 110 and the base station 120. For example, when a signal transmission distance of about 30 m is considered, its value Is about 100 ns at most. On the other hand, T real, b depends on the signal processing time at the reference station 110, the data length of the positioning signal S101, the preamble length of the reference signal S111, etc. For example, when the transmission speed is 250 kbps and the preamble length is 20 bytes The value is at least 0.6 ms or more. In this case, for example, if the clock deviation (δ a −δ b ) between base stations is 20 ppm, a time error of about 13 ns occurs. This is an error of about 4 m when converted to distance.
 従って、式(5)で表される誤差のうち、支配的となるのは第2項である。言い換えると、主な誤差要因となるのは、クロックの絶対的な偏差(実際の時間との偏差)ではなく、基地局間のクロックの相対的な偏差である。従って、基地局間のクロックの相対的な偏差を低減すれば、誤差が低減される。 Therefore, the second term is dominant among the errors expressed by the equation (5). In other words, the main error factor is not the absolute clock deviation (deviation from the actual time) but the relative clock deviation between base stations. Therefore, the error is reduced if the relative clock deviation between the base stations is reduced.
 クロックの相対的な偏差は、基地局間に共通の基準クロックを定めて、各基地局のクロックに対して基準クロックとの差異を測定することで補正することができる。本実施例での測位は全てノードからの測位信号が契機となるため、測位に関係する基地局は全てこの測位信号を受信している。そのため、この測位信号のクロックと各基地局のクロックとの差異を測定することで、この測位信号を生成したノードの動作クロックを測位に使用する全て基地局に共通の基準クロックとすることができる。 The relative deviation of the clock can be corrected by setting a common reference clock between the base stations and measuring the difference between the clock of each base station and the reference clock. Since the positioning in this embodiment is triggered by the positioning signal from the node, all the base stations related to the positioning receive this positioning signal. Therefore, by measuring the difference between the clock of this positioning signal and the clock of each base station, the operation clock of the node that generated this positioning signal can be used as a reference clock common to all base stations used for positioning. .
 そこで本実施例では、各基地局において測定した測位信号のペイロード長の情報を用いて各基地局とノードとの相対的周波数偏差を算出し、ノードのクロックを基準とした周波数補正を行うことで正確な測位を実現する。 Therefore, in this embodiment, the relative frequency deviation between each base station and the node is calculated using information on the payload length of the positioning signal measured at each base station, and the frequency is corrected based on the clock of the node. Realize accurate positioning.
 測位信号のペイロード長をP0、M-1番目の基準信号パケット終了からM番目の基準信号のSFDまでの間隔をIM 、M番目の基準信号のペイロード長をPMとする。このとき基地局Aでの測位信号からM番目の基準信号までの間隔TAMは以下の式(6)で表される。なおIは基準信号のパケット終了から1番目の基準信号のSFDまでの間隔となる。 The payload length of the positioning signal is P 0 , the interval from the end of the M−1th reference signal packet to the SFD of the Mth reference signal is I M , and the payload length of the Mth reference signal is PM. At this time, the interval T AM from the positioning signal at the base station A to the Mth reference signal is expressed by the following equation (6). Note that I 1 is the interval from the end of the reference signal packet to the SFD of the first reference signal.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 しかし実際にはPMやI等の情報は基地局Aの時間差計測部の測定結果に基づいているので、その測定値は基地局Aの動作クロック偏差による誤差を含む。このため基地局Aと基地局Bの2つの基地局間で測位信号と基準局1からの基準信号の受信時刻を比較する場合、2つの基地局の測定結果に対して共通の基準クロックにあわせる補正が必要となる。本発明では共通の基準クロックとしてノードのクロックを用い、それぞれの基地局のクロックとノードのクロックとの相対偏差に基づいた補正を行った後に受信時刻の比較を行うことで正確な測位を実現する。 However, since information such as P M and I M is actually based on the measurement result of the time difference measurement unit of the base station A, the measurement value includes an error due to the operation clock deviation of the base station A. For this reason, when comparing the reception time of the positioning signal and the reference signal from the reference station 1 between the two base stations A and B, the correction to match the common reference clock for the measurement results of the two base stations Is required. In the present invention, a node clock is used as a common reference clock, and the correction based on the relative deviation between each base station clock and the node clock is performed, and then the received time is compared to achieve accurate positioning. .
 ノードと基地局のクロック偏差は測位信号のペイロード受信時の制御信号発生回数のカウントにより求める。具体的な周波数偏差算出手順を以下に示す。 The clock deviation between the node and the base station is obtained by counting the number of control signal generations when receiving a positioning signal payload. A specific frequency deviation calculation procedure is shown below.
 図14は、測位信号S101のペイロード受信時における、基地局120aのA/D変換部430のタイミングチャートである。測位信号S101との同期が確立した後の状態を示している。この状態では、A/D変換部430に入力されるアナログ信号S432とサンプリングクロックS435が同期している。言い換えると、サンプリングタイミング制御信号S441,S442により、サンプリングクロックS435の周期を、該アナログ信号S432と同期するように制御している。 FIG. 14 is a timing chart of the A / D converter 430 of the base station 120a when the payload of the positioning signal S101 is received. The state after the synchronization with positioning signal S101 is established is shown. In this state, the analog signal S432 input to the A / D converter 430 and the sampling clock S435 are synchronized. In other words, the period of the sampling clock S435 is controlled to be synchronized with the analog signal S432 by the sampling timing control signals S441 and S442.
 また、測位信号S101はノード100により生成されるため、該アナログ信号S432は、ノード100のクロックの周波数偏差を反映する。従って、制御信号S441が出力される周期は、基地局120aのクロックとノード100のクロックとの偏差に対応する。その偏差Rは、
R=δar=Ts・(Np-Nm)/Tck・Nck……(7)
と表される。ここで、δrはノード100のクロックの偏差である。
Further, since the positioning signal S101 is generated by the node 100, the analog signal S432 reflects the frequency deviation of the clock of the node 100. Therefore, the period in which the control signal S441 is output corresponds to the deviation between the clock of the base station 120a and the clock of the node 100. The deviation R is
R = δ a −δ r = T s · (N p −N m ) / T ck · N ck ...... (7)
It is expressed. Here, δ r is a deviation of the clock of the node 100.
 すなわち、ノードと基地局の周波数偏差 R = (δar)は、サンプリングクロックS435およびサンプリングタイミング制御信号S441,S442をカウントすることで算出される。 That is, the frequency deviation R = (δ a −δ r ) between the node and the base station is calculated by counting the sampling clock S435 and the sampling timing control signals S441 and S442.
 このため、測定結果をノードのクロックに同期させるように補正して得られた測位信号からM番目の基準信号までの間隔TMは以下の式(8)で表される。 Therefore, the interval TM from the positioning signal obtained by correcting the measurement result so as to be synchronized with the clock of the node to the Mth reference signal is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 このTを図7のように比較することで正確な測位信号受信時刻差が求められる。このように、基地局は全ての受信信号に対して連続して受信する2の信号の間隔を測定することにより、測位サーバは各基地局での測位信号と全ての基準信号との受信時刻差を求めることができ、広範囲での測位システムを実現可能にする。さらには、各基地局とノードとの相対的周波数偏差を算出し、ノードのクロックを基準とした周波数補正を行うことで正確な測位を実現することができる。 By comparing this TM as shown in FIG. 7, an accurate positioning signal reception time difference is obtained. In this way, the base station measures the interval between the two signals that are continuously received with respect to all the received signals, so that the positioning server can receive the time difference between the positioning signal at each base station and all the reference signals. It is possible to obtain a positioning system in a wide range. Furthermore, accurate positioning can be realized by calculating a relative frequency deviation between each base station and the node and performing frequency correction based on the clock of the node.
 図15に測位サーバ130での位置計算処理の流れを示す。 Fig. 15 shows the flow of position calculation processing in the positioning server 130.
 測位サーバ130は各基地局120から時間差Tmeasに関する情報を含む測位情報S150を受け取り、関連する全基地局120からの情報が集まるまで一定期間サーバ内のデータベース133に蓄積する(S01)。データの蓄積期間については、例えばノードの信号送信周期が1秒のシステムであれば、サーバでの蓄積期間も1秒とする。一定期間経過後、測位サーバ130はデータベース133内からノード100のIDと測位信号S101内に記された測位信号のシーケンス番号が一致するものを全て抽出する。 The positioning server 130 receives positioning information S150 including information on the time difference T meas from each base station 120, and accumulates it in the database 133 in the server for a certain period until information from all related base stations 120 is collected (S01). Regarding the data accumulation period, for example, if the signal transmission cycle of the node is 1 second, the accumulation period at the server is also 1 second. After a certain period of time, the positioning server 130 extracts from the database 133 all of the nodes 100 whose ID matches the sequence signal sequence number described in the positioning signal S101.
 次に、2つの基地局(120a,120b)間でのノード100からの信号受信時刻の差を求める。まず抽出された測位信号群から2つの基地局(120a,120b)を選択し、それらの基地局から送られてきた測位情報S150を全て抽出する(S02)。最終的には全ての基地局の組み合わせ方を検討するので、ここでの2つの基地局の選び方は、まだ処理をしていない組み合わせならばどのような方法でも良い。 Next, the difference in signal reception time from the node 100 between the two base stations (120a, 120b) is obtained. First, two base stations (120a, 120b) are selected from the extracted positioning signal group, and all the positioning information S150 transmitted from these base stations is extracted (S02). In the end, the method of combining all the base stations will be considered, and any method may be used for selecting the two base stations here as long as they are not yet processed.
 取り出された2つの基地局からの測位情報S150について、まず共通する基準信号S111を受信しているかを確認する(S03)。共通する基準信号S111があれば、まずは測位信号受信から共通する基準信号受信までの信号受信間隔をそれぞれ算出し、その後クロック補正を行う(S04)。測位信号の直後に受信した基準信号が共通していなければ、2つの基地局が次の測位信号を受信するまでの間に受信した基準信号のIDを蓄積されたデータ内で確認し、その中に共通の基準信号が無いかを調べる。もし共通の基準信号があれば、選択された2の基地局において測位信号を受信してから共通の基準信号を送信した基準局の基準信号を受信するまでの間隔を求め、その受信時刻差に対して、ノードと基地局のクロック偏差に基づいたクロック補正を行う(S04)。ノードと基地局のクロック偏差に基づくクロック補正は、測位情報に基づいて、上述の式(7)により求められる。 For the positioning information S150 from the two extracted base stations, it is first confirmed whether a common reference signal S111 is received (S03). If there is a common reference signal S111, first, signal reception intervals from reception of a positioning signal to reception of a common reference signal are calculated, and then clock correction is performed (S04). If the reference signal received immediately after the positioning signal is not common, the IDs of the reference signals received before the two base stations receive the next positioning signal are confirmed in the accumulated data. Check whether there is a common reference signal. If there is a common reference signal, the interval between the reception of the positioning signal at the two selected base stations and the reception of the reference signal of the reference station that has transmitted the common reference signal is obtained. Then, clock correction based on the clock deviation between the node and the base station is performed (S04). The clock correction based on the clock deviation between the node and the base station is obtained by the above formula (7) based on the positioning information.
 共通の基準信号が無ければ受信時刻の差を求める処理を終了し、次の基地局の組み合わせを検討する。 If there is no common reference signal, the process of obtaining the difference in reception time is terminated, and the next combination of base stations is examined.
 クロック補正が完了した測位信号と基準信号の受信時刻差と、当該基準信号を送信した基準局の位置情報及び選択された2の基地局の位置情報を用いて、選択された2の基地局における測位信号の受信時刻差を算出する(S05)。上記の処理を関連する基地局全ての組み合わせについて行い(S06)、測位に必要な情報数が得られていれば(S07)、TDOA方式により測位計算を行う(S08)。もし情報数が足りなければ測位計算を行わず(S09)、次の処理に向かう。なお、測位計算に必要な情報数とは、2次元測位の場合、測位信号受信時刻の比較が2つ、3次元測位の場合は3つとなる。 Positioning at the selected two base stations using the difference in reception time between the positioning signal for which clock correction has been completed and the reference signal, the position information of the reference station that transmitted the reference signal, and the position information of the selected two base stations A signal reception time difference is calculated (S05). The above processing is performed for all combinations of related base stations (S06), and if the number of information necessary for positioning is obtained (S07), positioning calculation is performed by the TDOA method (S08). If the number of information is insufficient, the positioning calculation is not performed (S09), and the process proceeds to the next process. Note that the number of information necessary for the positioning calculation is two in the case of two-dimensional positioning, and three in the case of three-dimensional positioning.
 本発明は広範囲をカバーする無線測位システムを簡易に設置することができる。例えばスーパーマーケットなどの商業施設に於いて、売り場レイアウトを変更するときに顧客の動線を測定したいと希望したときも、本発明ならば全ての機器を無線接続することができるため、売り場での大がかりな工事など不要ですぐに測位システムを構築することができる。またレイアウト変更の効果が確かめられたら測位システムを撤去し、次に必要となる現場に使用することもできる。 The present invention can easily install a wireless positioning system covering a wide range. For example, in a commercial facility such as a supermarket, when it is desired to measure the flow of a customer when changing the layout of a sales floor, the present invention allows all devices to be connected wirelessly. A positioning system can be constructed immediately without the need for complicated construction. If the effect of the layout change is confirmed, the positioning system can be removed and used for the next required site.
 また、工場などに於いて工員の動線を測定することにより、ベテラン作業員と新人作業員との動線を比較することができ、作業の効率化を目に見える形で指導する、あるいはノウハウを数値データとして保存することができるようになる。 In addition, by measuring the flow lines of workers at factories, etc., it is possible to compare the flow lines of experienced workers and new workers, providing guidance on how to improve work efficiency, or know-how. Can be saved as numerical data.
 本発明は、無線送信機能を持つノード(端末)の位置を測定する方法、その方法を用いた位置測定システム、及び、そのシステムにおいて無線基地局として使用される基地局(AP)に利用可能である。 The present invention is applicable to a method for measuring the position of a node (terminal) having a wireless transmission function, a position measurement system using the method, and a base station (AP) used as a wireless base station in the system. is there.
100…ノード(NOD)
110…基準局(RS)
120…基地局(AP)
130…測位サーバ(PS)
140…ネットワーク(INT)
S101…測位信号
S111…基準信号
101…信号送信制御部
102…送信信号作成部
103…アンテナ
310…プリアンブル
320…フレーム開始部(SFD)
330…ヘッダ
340…データ
410…アンテナ(ANT)
420…RFフロントエンド部(RFF)
430…A/D変換部(ADM)
440…ベースバンド部(BBM)
S443…受信データ
S444…測位データ
421…ローノイズアンプ(LNA)
422…ミキサ(MIX)
423…π/2位相シフタ(QPS)
424…クロック発生器(CLK)
425…ローパスフィルタ(LPF)
426…可変ゲインアンプ(VGA)
431…A/D変換器(ADC)
433…サンプリングクロック生成部(SCG)
S435…サンプリングクロック
510…マッチトフィルタ部(MFM)
520…同期捕捉部(TRPM)
530…データ保持タイミング制御部(DLTCTL)
540…データ保持部(DLM)
550…復調部(DEMM)
560…同期追跡部(TRCKM)
570…サンプリングタイミング制御部(STCTL)
580…時間差計測部(TDMM)
S551…指定パターン検出信号
S444a…測定時間差Tmeas
610…カウンタ(CNT)
620…レジスタ(REG)
630…遅延部(D)
640…時間差計算部(TDCAL)
810…サンプリングクロックがパルスのピークよりも進んでいる状態
820…サンプリングクロックがパルスのピークよりも遅れている状態
830…サンプリングクロックがパルスのピークと一致している状態
S150…測位情報
 
100 ... Node (NOD)
110 ... Reference station (RS)
120 ... Base station (AP)
130: Positioning server (PS)
140 ... Network (INT)
S101 ... Positioning signal S111 ... Reference signal 101 ... Signal transmission controller 102 ... Transmission signal generator 103 ... Antenna 310 ... Preamble 320 ... Frame start part (SFD)
330 ... Header 340 ... Data 410 ... Antenna (ANT)
420: RF front end (RFF)
430 ... A / D converter (ADM)
440 ... Baseband part (BBM)
S443: Received data S444 ... Positioning data 421 ... Low noise amplifier (LNA)
422 ... Mixer (MIX)
423 ... π / 2 phase shifter (QPS)
424 ... Clock generator (CLK)
425: Low pass filter (LPF)
426 ... Variable gain amplifier (VGA)
431 ... A / D converter (ADC)
433 ... Sampling clock generator (SCG)
S435 ... Sampling clock 510 ... Matched filter unit (MFM)
520 ... Synchronization acquisition unit (TRPM)
530: Data holding timing control unit (DLTCTL)
540 ... Data holding unit (DLM)
550 ... Demodulator (DEMM)
560 ... Synchronization tracking unit (TRCKM)
570: Sampling timing controller (STCTL)
580 ... Time difference measurement unit (TDMM)
S551: Designated pattern detection signal S444a ... Measurement time difference Tmeas
610: Counter (CNT)
620: Register (REG)
630 ... Delay unit (D)
640 ... Time difference calculator (TDCAL)
810: Sampling clock is ahead of pulse peak 820: Sampling clock is behind pulse peak 830: Sampling clock coincides with pulse peak S150: Positioning information

Claims (8)

  1.  無線端末と、複数の基準局と、複数の基地局と、ネットワークを介して上記複数の基地局と接続される測位サーバとを有する測位システムであって、
     上記無線端末は、無線信号を生成する信号生成部と、上記無線信号を送信する無線信号送信部と、を有し、
     上記複数の基準局それぞれは、基準信号を生成する基準信号生成部と、上記無線信号を受信すると上記基準信号を送信する基準信号送信部と、を有し、
     上記複数の基地局それぞれは、上記無線信号及び上記基準信号を受信する信号受信部と、上記受信した無線信号及び上記基準信号の中で連続する2の信号の受信時刻差を測定する時間差計測部と、上記受信時刻差を含む測位情報を上記測位サーバに送信する信号送信部と、を有し、
     上記測位サーバは、上記測位情報に基づいて上記複数の基地局が受信した複数の基準信号から同一の基準局が送信した基準信号を抽出する基準信号抽出部と、上記複数の基地局それぞれにおける上記無線信号と上記抽出した基準信号との受信時刻差を計測する受信時刻計測部と、上記受信時刻差に対して上記無線端末及び上記複数の基地局それぞれのクロック周波数偏差に基づく補正を行う補正部と、上記補正を行った上記受信時刻差と上記複数の基地局及び上記基準局の位置情報を用いて上記無線端末の位置を測定する位置測定部と、を有する測位システム。
    A positioning system having a wireless terminal, a plurality of reference stations, a plurality of base stations, and a positioning server connected to the plurality of base stations via a network,
    The wireless terminal includes a signal generation unit that generates a wireless signal, and a wireless signal transmission unit that transmits the wireless signal,
    Each of the plurality of reference stations includes a reference signal generation unit that generates a reference signal, and a reference signal transmission unit that transmits the reference signal when receiving the radio signal,
    Each of the plurality of base stations includes a signal receiving unit that receives the radio signal and the reference signal, and a time difference measurement unit that measures a reception time difference between two consecutive signals in the received radio signal and the reference signal. And a signal transmission unit that transmits positioning information including the reception time difference to the positioning server,
    The positioning server includes a reference signal extraction unit that extracts a reference signal transmitted from the same reference station from a plurality of reference signals received by the plurality of base stations based on the positioning information, and the wireless signal in each of the plurality of base stations. A reception time measurement unit that measures a reception time difference between a signal and the extracted reference signal; and a correction unit that performs correction based on the clock frequency deviation of each of the wireless terminal and the plurality of base stations with respect to the reception time difference; A positioning system comprising: a position measuring unit that measures the position of the wireless terminal using the reception time difference after the correction and position information of the plurality of base stations and the reference station.
  2.  請求項1に記載の測位システムにおいて、
     上記基準局が上記無線信号を受信する前に他の上記基準局から上記基準信号を受信したとき、上記基準信号送信部は、上記基準信号を送信することなく、上記無線信号の受信時刻と上記基準信号の受信時刻を上記測位サーバに送信する測位システム。
    The positioning system according to claim 1,
    When the reference station receives the reference signal from another reference station before receiving the radio signal, the reference signal transmission unit transmits the reference time and the reference signal without transmitting the reference signal. A positioning system that transmits the reception time of to the positioning server.
  3.  請求項2に記載の測位システムにおいて、
     上記基準局が上記他の基準局から上記基準信号を受信する前に上記無線信号を受信したとき、上記基準信号送信部は上記基準信号を送信し、当該基準信号の送信時刻と上記無線信号の受信時刻を上記測位サーバに送信する測位システム。
    In the positioning system according to claim 2,
    When the reference station receives the wireless signal before receiving the reference signal from the other reference station, the reference signal transmission unit transmits the reference signal, and the transmission time of the reference signal and the reception time of the wireless signal A positioning system that transmits to the positioning server.
  4.  請求項1に記載の測位システムにおいて、
     上記時間差計測部は、上記連続する2の信号を第1の信号及び第2の信号としたとき、上記第1の信号のパケットのプリアンブル終了からパケット終了までの間に、上記基地局と上記第1の信号を送信した端末とのクロック周波数の差分を測定し、上記第1の信号のパケット終了から上記第2の信号のプリアンブル終了までの間隔を測定することを繰り返す測位システム。
    The positioning system according to claim 1,
    When the two consecutive signals are the first signal and the second signal, the time difference measuring unit is configured to perform the above-mentioned base station and the first signal between the end of the preamble of the packet of the first signal and the end of the packet. A positioning system that repeatedly measures a difference in clock frequency with a terminal that has transmitted a signal of 1, and measures an interval from the end of a packet of the first signal to the end of a preamble of the second signal.
  5.  請求項1に記載の測位システムにおいて、
     上記周波数偏差補正部は、上記無線端末のクロック周波数偏差を用いることで、上記無線端末から信号を受信した全ての基地局の測定結果に対して共通のクロックを基準とした補正を行う測位システム。
    The positioning system according to claim 1,
    The frequency deviation correction unit uses the clock frequency deviation of the wireless terminal to perform a correction based on a common clock for the measurement results of all base stations that have received signals from the wireless terminal.
  6.  無線端末と、複数の基準局と、複数の基地局と、ネットワークを介して上記複数の基地局と接続される測位サーバとを有する測位システムで実現される測位方法であって、
     上記無線端末は、無線信号を生成して送信し、
     上記複数の基準局それぞれは、基準信号を生成し、上記無線信号を受信すると上記基準信号を送信し、
     上記複数の基地局それぞれは、上記無線信号及び上記基準信号を受信すると、上記無線信号及び上記基準信号の中で連続する2の信号の受信時刻差を測定し、上記受信時刻差を含む測位情報を上記測位サーバに送信し、
     上記測位サーバは、上記測位情報に基づいて上記複数の基地局が受信した複数の基準信号から同一の基準局が送信した基準信号を抽出し、上記複数の基地局それぞれにおける上記無線信号と上記抽出した基準信号との受信時刻差を計測し、上記受信時刻差に対して上記無線端末及び上記複数の基地局それぞれのクロック周波数偏差に基づく補正を行い、上記補正を行った上記受信時刻差と上記複数の基地局及び上記基準局の位置情報を用いて上記無線端末の位置を測定する測位方法。
    A positioning method realized by a positioning system having a wireless terminal, a plurality of reference stations, a plurality of base stations, and a positioning server connected to the plurality of base stations via a network,
    The wireless terminal generates and transmits a wireless signal,
    Each of the plurality of reference stations generates a reference signal, transmits the reference signal when receiving the radio signal,
    When each of the plurality of base stations receives the radio signal and the reference signal, the base station measures a reception time difference between two consecutive signals in the radio signal and the reference signal, and includes positioning information including the reception time difference. To the above positioning server,
    The positioning server extracts a reference signal transmitted from the same reference station from a plurality of reference signals received by the plurality of base stations based on the positioning information, and extracts the radio signals and the extracted signals from the plurality of base stations, respectively. The reception time difference from the reference signal is measured, the reception time difference is corrected based on the clock frequency deviation of each of the wireless terminal and the plurality of base stations, and the reception time difference and the plurality of the corrections are corrected. Positioning method for measuring the position of the wireless terminal using the position information of the base station and the reference station.
  7.  請求項6に記載の測位方法において、
     上記基準局が上記無線信号を受信する前に他の上記基準局から上記基準信号を受信したときは、上記基準信号を送信することなく、上記無線信号の受信時刻と上記基準信号の受信時刻を上記測位サーバに送信する測位方法。
    The positioning method according to claim 6, wherein
    When the reference station receives the reference signal from another reference station before receiving the radio signal, the positioning time of the reception time of the radio signal and the reception time of the reference signal is transmitted without transmitting the reference signal. The positioning method to send to the server.
  8.  請求項6に記載の測位方法において、
     上記基地局は、上記無線信号を受信すると上記基準信号を送信し、上記無線信号の受信時刻と上記基準信号の送信時刻との差を上記測位サーバに送信する測位方法。
     
    The positioning method according to claim 6, wherein
    When the base station receives the radio signal, the base station transmits the reference signal, and transmits a difference between the reception time of the radio signal and the transmission time of the reference signal to the positioning server.
PCT/JP2009/063509 2009-07-29 2009-07-29 Positioning system and positioning method WO2011013220A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/063509 WO2011013220A1 (en) 2009-07-29 2009-07-29 Positioning system and positioning method
JP2011524577A JPWO2011013220A1 (en) 2009-07-29 2009-07-29 Positioning system and positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/063509 WO2011013220A1 (en) 2009-07-29 2009-07-29 Positioning system and positioning method

Publications (1)

Publication Number Publication Date
WO2011013220A1 true WO2011013220A1 (en) 2011-02-03

Family

ID=43528897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063509 WO2011013220A1 (en) 2009-07-29 2009-07-29 Positioning system and positioning method

Country Status (2)

Country Link
JP (1) JPWO2011013220A1 (en)
WO (1) WO2011013220A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751350B1 (en) 2015-07-08 2017-06-27 국방과학연구소 Beamforming method and device for joint localization and data transmission in distributed antenna systems
CN107607907A (en) * 2017-08-15 2018-01-19 中国科学院光电研究院 A kind of Position Fixing Navigation System based on the random radio signal of space-based
CN107861098A (en) * 2017-11-10 2018-03-30 简极科技有限公司 A kind of intelligent court alignment system and method
CN110568404A (en) * 2019-08-16 2019-12-13 中国人民解放军63921部队 Forwarding type indoor positioning method and device
US20220124458A1 (en) * 2020-10-15 2022-04-21 Qualcomm Incorporated Prs reports with distributed antenna system
WO2023100489A1 (en) * 2021-12-03 2023-06-08 アルプスアルパイン株式会社 Positioning device, and clock correcting method
JP7498718B2 (en) 2019-01-18 2024-06-12 エキサロクス オイ Positioning based on signal propagation time difference

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140617A (en) * 2003-11-06 2005-06-02 Hitachi Ltd Positioning method, positioning system, and radio base station
JP2007071819A (en) * 2005-09-09 2007-03-22 Hitachi Ltd Receiver, frequency deviation measuring unit, and positioning ranging system
JP2008096326A (en) * 2006-10-13 2008-04-24 Hitachi Ltd Positioning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140617A (en) * 2003-11-06 2005-06-02 Hitachi Ltd Positioning method, positioning system, and radio base station
JP2007071819A (en) * 2005-09-09 2007-03-22 Hitachi Ltd Receiver, frequency deviation measuring unit, and positioning ranging system
JP2008096326A (en) * 2006-10-13 2008-04-24 Hitachi Ltd Positioning system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751350B1 (en) 2015-07-08 2017-06-27 국방과학연구소 Beamforming method and device for joint localization and data transmission in distributed antenna systems
CN107607907A (en) * 2017-08-15 2018-01-19 中国科学院光电研究院 A kind of Position Fixing Navigation System based on the random radio signal of space-based
CN107607907B (en) * 2017-08-15 2020-09-04 中国科学院光电研究院 Positioning navigation system based on space-based random radio signal
CN107861098A (en) * 2017-11-10 2018-03-30 简极科技有限公司 A kind of intelligent court alignment system and method
JP7498718B2 (en) 2019-01-18 2024-06-12 エキサロクス オイ Positioning based on signal propagation time difference
CN110568404A (en) * 2019-08-16 2019-12-13 中国人民解放军63921部队 Forwarding type indoor positioning method and device
US20220124458A1 (en) * 2020-10-15 2022-04-21 Qualcomm Incorporated Prs reports with distributed antenna system
WO2023100489A1 (en) * 2021-12-03 2023-06-08 アルプスアルパイン株式会社 Positioning device, and clock correcting method

Also Published As

Publication number Publication date
JPWO2011013220A1 (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP4829571B2 (en) Receiver and positioning distance measuring system
JP4853218B2 (en) Positioning system
WO2011013220A1 (en) Positioning system and positioning method
US6925292B2 (en) Method, apparatus and system for synchronizing a cellular communication system to GPS time
US11909852B1 (en) Frequency and gain calibration for time synchronization in a network
JP3383797B2 (en) Method and system for determining the position of a mobile transmitter
US10859666B1 (en) Method and system for radiofrequency localization of transmitting devices via a mesh network
CN110121657B (en) Positioning based on message splitting
US7609207B2 (en) System and method for performing time difference of arrival location without requiring a common time base or clock calibration
JP4854003B2 (en) Ranging system
EP1735634B1 (en) Position detection with frequency smoothing
EP2042885B1 (en) System and method for both wireless communication and distance estimation between a plurality of devices in a wireless network
JP2004258009A (en) Range-finding/positioning system, range-finding/ positioning method, and radio communication device
JP2007524829A (en) Bi-directional RF ranging system and method for local positioning
US20230254110A1 (en) Methods for time synchronization and localization in a mesh network
JP2007187639A (en) Radio positioning system
JP4750660B2 (en) Receiving device, positioning system, and positioning method
EP2642312B1 (en) Hardware-reduced system for TDOA-locating of radio frequency emitters
US20230030936A1 (en) Accurate Clock Synchronization and Location Detection in Time-Sensitive Wireless Networks
WO2001075471A1 (en) Locating a mobile unit
US11686805B1 (en) Method and system for radiofrequency localization of transmitting devices via a mesh network
WO2022226233A1 (en) Methods for time synchronization and localization in a mesh network
JP2011180148A (en) Receiving device, frequency deviation measuring unit, and positioning ranging system
JP2011191070A (en) Pseudo-satellite positioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847812

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011524577

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847812

Country of ref document: EP

Kind code of ref document: A1