WO2011010471A1 - Coil antenna and electronic device using same - Google Patents

Coil antenna and electronic device using same Download PDF

Info

Publication number
WO2011010471A1
WO2011010471A1 PCT/JP2010/004717 JP2010004717W WO2011010471A1 WO 2011010471 A1 WO2011010471 A1 WO 2011010471A1 JP 2010004717 W JP2010004717 W JP 2010004717W WO 2011010471 A1 WO2011010471 A1 WO 2011010471A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil antenna
iron
alloy
winding
insulator
Prior art date
Application number
PCT/JP2010/004717
Other languages
French (fr)
Japanese (ja)
Inventor
井上哲夫
Original Assignee
株式会社 東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝マテリアル株式会社 filed Critical 株式会社 東芝
Priority to CN201080033656.3A priority Critical patent/CN102474011B/en
Priority to KR1020127004367A priority patent/KR101337753B1/en
Priority to JP2011523564A priority patent/JP5658153B2/en
Publication of WO2011010471A1 publication Critical patent/WO2011010471A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • H01Q7/08Ferrite rod or like elongated core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • Embodiments described herein relate generally to a coil antenna and an electronic device using the coil antenna.
  • a magnetic substance or dielectric used to shorten the wavelength of radio waves is more effective as the magnetic permeability and dielectric constant are higher.
  • Wavelength shortening using a dielectric ceramic (nonmagnetic material) has been attempted in the past.
  • the band is narrowed, downsizing while maintaining sufficient sensitivity has not been realized.
  • a small antenna having excellent reception sensitivity is required by winding a coil element around a magnetic material having high magnetic permeability and shortening the radio wave characteristic length.
  • the frequency band of radio waves used for information propagation in current mobile communication terminals is a high frequency region of 100 MHz or more.
  • radio waves in the high frequency range of the GHz band are used. For this reason, electronic components useful in the high frequency region are attracting attention.
  • antenna devices In order to cope with radio waves in a high frequency range, electronic parts are required to have small energy loss and transmission loss and to effectively shorten the electrical characteristic length. For example, in an antenna device indispensable for a mobile communication terminal, a loss occurs in a conductor and a material in a reception process. This loss causes a decrease in reception sensitivity. On the other hand, with the increasing demand for downsizing and weight reduction of electronic components, antenna devices are required to be downsized while maintaining reception sensitivity while suppressing loss. For this reason, antenna devices using dielectric ceramics and magnetic materials have been developed, enabling miniaturization and space saving.
  • a coil antenna for digital terrestrial broadcasting in which a dielectric (or magnetic body) made of a rectangular parallelepiped is wound (see Patent Document 1).
  • a radio timepiece antenna a rectangular parallelepiped magnetic body in which a magnetic body of a rectangular parallelepiped is insulated with a heat-shrinkable tube and wound thereon (see Patent Document 2), or a rectangular solid core in which magnetic powder is solidified with resin
  • An antenna in which a coil is wound around is known.
  • the magnetic powder for antenna it is known to control the magnetic permeability at high frequency by using, for example, a fine magnetic powder having an average particle diameter of 1 ⁇ m or less (see Patent Document 4).
  • antennas using dielectric ceramics have a narrow band and cannot maintain sufficient sensitivity within the required band, they are currently used as auxiliary antenna devices.
  • loss in a high frequency band cannot be sufficiently reduced due to the magnetic characteristics of the magnetic material.
  • the coil is wound on a rectangular parallelepiped magnetic body, high-frequency current is concentrated on the portion of the coil that is bent at a right angle, and the distance between the magnetic body and the coil is not constant, so that the reception sensitivity characteristics are sufficient. Can't get. For this reason, a coil antenna with improved reception sensitivity in a wide band has been demanded.
  • An object of the present invention is to provide a coil antenna with improved reception sensitivity in a wide band and an electronic device using the coil antenna.
  • the coil antenna according to the embodiment includes a cylindrical magnetic body including a cylindrical magnetic body made of a mixture of soft magnetic powder and an organic binder, an insulator covering a surface of the cylindrical magnetic body, and the cylindrical magnetic core. And a wound winding.
  • the electronic device of the embodiment includes the coil antenna of the above-described embodiment.
  • FIG. 1 is a perspective view showing a coil antenna according to the first embodiment
  • FIG. 2 is a perspective view showing a coil antenna according to the second embodiment
  • FIG. 3 is a perspective view showing the coil antenna according to the third embodiment.
  • 1 is a coil antenna
  • 2 is a cylindrical magnetic body
  • 3 is an insulator
  • 4 is a cylindrical magnetic core
  • 5 is a winding
  • 6 is a cylindrical bobbin
  • 7 is a flat portion.
  • the cylindrical magnetic body 2 is composed of a mixture of soft magnetic powder and an organic binder, and this mixture is formed into a cylindrical shape.
  • the surface of the columnar magnetic body 2 is covered with an insulator 3.
  • the columnar magnetic core 4 includes a columnar magnetic body 2 and an insulator 3 that covers the surface thereof.
  • a winding 5 is provided on a cylindrical magnetic core 4 in which a cylindrical magnetic body 2 is covered with an insulator 3.
  • the coil antenna 1 according to the second embodiment further includes a columnar bobbin 6 attached to the outer periphery of the columnar magnetic core 4.
  • the winding 5 is wound on a cylindrical bobbin 6.
  • the soft magnetic powder constituting the columnar magnetic body 2 is preferably made of a magnetic material having a high magnetic permeability in a high frequency range.
  • soft magnetic powders are iron aluminum silicon alloy (Sendust), iron nickel alloy (permalloy), iron nickel permalloy alloy (molybdenum permalloy), iron cobalt alloy, iron cobalt silicon alloy, iron silicon vanadium alloy, iron cobalt It is preferably made of at least one selected from a boron alloy, a cobalt-based amorphous alloy, an iron-based amorphous alloy, carbonyl iron, and pure iron.
  • the soft magnetic powder may have a core-shell structure whose surface is covered with a coating.
  • the coating is preferably made of at least one selected from nitrides, carbides, and oxides.
  • the coating may be formed by directly nitriding, carbonizing, or oxidizing the surface of the soft magnetic powder.
  • a metal film having excellent corrosion resistance such as a resin film or a Ni plating film may be applied.
  • Resin coating is polyester, polyethylene, polystyrene, polyvinyl chloride, polyvinyl butyral, polyurethane, cellulose resin, acrylonitrile-butadiene rubber, styrene-butadiene rubber, epoxy resin, phenol resin, ABS resin, amide resin, imide resin Or a copolymer thereof is preferred.
  • the thickness of the film is preferably in the range of 1 nm to 100 nm.
  • the soft magnetic powder is a fine powder having an average particle diameter of 10 nm or more and less than 100 nm
  • the thickness of the coating is preferably thin, and particularly preferably in the range of 1 nm or more and 7 nm or less.
  • the coated soft magnetic powder is called core-shell type soft magnetic powder.
  • the average particle size of the soft magnetic powder is not particularly limited, but is preferably in the range of 10 nm to 1 ⁇ m. It is difficult to prepare a soft magnetic powder having an average particle size of less than 10 nm. When the average particle size of the soft magnetic powder exceeds 1 ⁇ m, the high frequency characteristics of the antenna are degraded.
  • the average particle size of the soft magnetic powder is preferably 100 nm or less.
  • the average particle size of the soft magnetic powder is preferably less than 50 nm.
  • the fine powder soft magnetic powder for example, nickel powder obtained by low-temperature reduction of fine oxide obtained by thermally decomposing organic acid salt such as nickel, cobalt, iron oxalate, etc., examples thereof include cobalt powder and iron powder, and fine iron powder obtained by neutralizing ferrous sulfate solution.
  • a metal such as nickel, cobalt, or iron is heated and evaporated under reduced pressure and solidified in a gas phase to obtain nickel powder, cobalt powder, iron powder, or the like.
  • These methods are not limited to fine powders such as nickel, cobalt, iron, etc., but can also be applied to alloys thereof and alloys added with metals having a low standard Gibbs energy of oxides such as Al and Si.
  • the soft magnetic powder may be a fine powder reduced in a solution, such as nickel powder or cobalt powder obtained by hydrogen reduction of a solution containing ammonia complex ions of nickel or cobalt at high temperature and high pressure. It is done. Furthermore, it may be carbonyl nickel powder or carbonyl iron powder obtained by thermally decomposing nickel carbonyl (Ni (CO) 4 ) or iron carbonyl (Fe (CO) 5 ). Since the powder having an average particle size of less than 100 nm is extremely fine, it is preferable to provide the above-described coating as a protective layer to prevent deterioration of the soft magnetic powder due to oxidation or the like.
  • the organic binder that binds the soft magnetic powder is not particularly limited, but polyester, polyvinyl chloride, polyvinyl butyral, polyurethane, cellulosic resin, acrylonitrile-butadiene rubber, styrene-butadiene rubber, and co-polymers thereof.
  • thermoplastic resins such as polymers, thermosetting resins such as epoxy resins, phenol resins, amide resins, and imide resins, or halides and brominated polymers that are organic flame retardants. These may be used alone or in combination of two or more.
  • the columnar magnetic body 2 is formed by molding the above-mentioned mixture of the soft magnetic powder and the organic binder into a columnar shape.
  • the columnar magnetic body 2 may be in a cured state or in a flexible state.
  • a thermosetting resin is used as the organic binder
  • a hardened cylindrical magnetic body 2 can be obtained by forming a mixture of soft magnetic powder and organic binder into a cylindrical shape and then performing a heat treatment. it can.
  • a rubber-based material is used as the organic binder, the cylindrical magnetic body 2 having flexibility can be obtained.
  • the cylindrical magnetic body 2 is preferably a perfect circle, but may be an ellipsoid.
  • the columnar magnetic core 4 includes a columnar magnetic body 2 covered with an insulator 3.
  • the size of the cylindrical magnetic core 4 is not particularly limited, but is preferably about 1 to 5 mm in diameter and about 10 to 100 mm in length. If it is smaller than this size, the antenna characteristics may be insufficient. If it is larger than this size, the antenna is too large and is not suitable for miniaturization or thinning.
  • an insulating tube is used as the insulator 3. It is preferable to use a heat-shrinkable resin or a heat-shrinkable tube for at least part of the insulator 3. It is preferable that all of the insulator 3 is formed of a heat-shrinkable resin or a heat-shrinkable tube, whereby the thickness of the insulator 3 can be made constant.
  • the insulator 3 that protects the cylindrical magnetic body 2
  • polytetrafluoroethylene, polyolefin, fluorine elastomer, non-halogen resin, polyvinyl chloride, fluorine resin, epoxy resin, silicone rubber, polyethylene terephthalate, polyethylene, polyester, or the like is used.
  • the insulator 3 is preferably formed of a material having excellent insulating properties and weather resistance. The insulator 3 is formed at least on the portion where the winding is applied.
  • Materials for heat shrinkable tubes include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA), perfluoroethylene-perfluoropropylene copolymer, polyolefin, polyvinylidene fluoride, nylon elastomer, and silicone.
  • gum is mentioned.
  • the heat shrinkable tube is preferably heat shrinkable at a temperature of 60 to 180 ° C. If the heat shrink temperature of the heat shrinkable tube is less than 60 ° C., handling is difficult, and if it exceeds 180 ° C., the soft magnetic powder and the organic binder may be adversely affected.
  • the heat-shrinkable resin When using a heat-shrinkable resin, the heat-shrinkable resin is applied to the surface of the columnar magnetic body 2 and then heat-treated to heat-shrink the heat-shrinkable resin coating layer.
  • the cylindrical magnetic body 2 When using a heat-shrinkable tube, the cylindrical magnetic body 2 is inserted into the heat-shrinkable tube, and then heat-treated to heat-shrink the heat-shrinkable tube.
  • a heat-shrinkable resin or a heat-shrinkable tube is used as the insulator 3, but separately from this, an insulating resin may be applied to the surface of the columnar magnetic body 2, and the heat-shrinkable tube may be covered thereon. . Even in such a case, the cylindrical magnetic body 2 and the insulator 3 can be integrated by shrinking the heat-shrinkable tube by heat treatment.
  • the thickness of the insulator 3 made of an insulating tube or the like is not particularly limited, but is preferably 0.05 mm or more. If the thickness of the insulator 3 is less than 0.05 mm, it is difficult to form a uniform insulating film. In order to easily form a uniform insulating film, the thickness of the insulator 3 is preferably 0.2 mm or more. The upper limit of the thickness of the insulator 3 is not particularly limited, but is preferably 0.85 mm or less. If the thickness of the insulator 3 exceeds 0.85 mm, the distance between the columnar magnetic body 2 and the winding 5 will be too far, so that the antenna characteristics of the coil antenna 1 may be deteriorated. When a heat-shrinkable material such as heat-shrinkable resin or heat-shrinkable tube is used, the thickness of the insulator 3 indicates the thickness after heat shrinkage.
  • the insulating tube can be formed of a material that does not have heat shrink performance.
  • the cylindrical magnetic body 2 is inserted into the insulating tube after the sizes of the inner diameter of the insulating tube and the outer diameter of the cylindrical magnetic body 2 are matched.
  • a gap is generated between the columnar magnetic body 2 and the insulating tube, it is also effective to fill the gap with resin as necessary.
  • the cylindrical magnetic core 4 is provided with a winding 5, and the coil antenna 1 is constituted by these.
  • the surface of a cylindrical magnetic body 2 is covered with an insulator 3 such as an insulating tube, and then a winding 5 is formed on the insulator 3.
  • a cylindrical magnetic core 4 is inserted into a cylindrical bobbin 5 and then a winding 5 is formed on the bobbin 5.
  • the coil antenna 1 can be configured by inserting the columnar magnetic body 2 into the columnar bobbin 5.
  • the winding 5 a metal wire, a metal foil, or the like can be used.
  • the winding 5 may have an insulating coating on its surface.
  • the size of the winding 5 is arbitrary, a metal wire having a diameter of 1 mm or less or a metal foil having a width of 2 mm or less and a thickness of 0.5 mm or less is preferable.
  • the size of the winding 5 exceeds the above value, the spring back of the winding 5 becomes large when wound around the cylindrical magnetic core 4, and it becomes difficult to keep the distance between the cylindrical magnetic core 4 and the winding 5 constant. In such a case, it is effective to apply a resin coating after winding.
  • the columnar bobbin 5 has a columnar cavity into which the columnar magnetic core 4 is inserted. Further, the outer shape of the columnar bobbin 5 is preferably a columnar shape similar to the columnar magnetic core 4. As a material for forming the cylindrical bobbin 5, it is preferable to use an insulating resin (industrial plastic) such as liquid crystal polymer (LCP) or ABS resin.
  • the wall thickness of the cylindrical bobbin 5 is preferably in the range of 0.1 to 0.5 mm. If the thickness of the cylindrical bobbin 5 is less than 0.1 mm, the strength of the bobbin 5 tends to be insufficient, and if it exceeds 0.5 mm, the distance between the cylindrical magnetic core 2 and the winding 5 will be too large. It is not preferable.
  • FIG. 3 shows an example of a cylindrical magnetic core 4 having a flat portion 7 at the end.
  • a flat portion may be provided directly in the longitudinal direction (circumferential surface) of the cylindrical magnetic core 4.
  • the distance between the magnetic body 2 and the winding 5 can be made substantially constant. If the magnetic body is a rectangular parallelepiped like a conventional coil antenna, there will be a difference in the distance between the magnetic body and the winding between the corner and the flat surface of the rectangular parallelepiped. Loss due to As a result, antenna characteristics are degraded.
  • the distance between the magnetic body 2 and the winding 5 can be kept substantially constant, so that the generation of eddy current in the coil portion can be suppressed.
  • the difference between the maximum value and the minimum value of the distance between the central axis of the magnetic body 2 and the winding 5 can be set to 0.25 mm or less. As a result, the antenna characteristics can be improved.
  • the effect of shortening the antenna characteristics, particularly the electrical characteristic length, can be enhanced, so that it can be applied to, for example, a radio signal antenna of 100 MHz or higher.
  • the upper limit of the frequency depends on the characteristics of the magnetic material, but is effective up to about 3 GHz if the magnetic material has a high magnetic permeability.
  • Magnetic materials effective up to about 3 GHz are iron aluminum silicon alloy (Sendust), iron nickel alloy (permalloy), iron nickel permalloy alloy (molybdenum permalloy), iron cobalt alloy, iron cobalt silicon alloy, iron silicon. Examples thereof include vanadium alloy, iron cobalt boron alloy, cobalt-based amorphous alloy, iron-based amorphous alloy, carbonyl iron, and pure iron.
  • the coil antenna 1 of this embodiment can be applied to electronic devices having various communication functions, and can realize a reduction in size and thickness of the antenna and improvement in antenna characteristics.
  • the coil antenna 1 is effective in a high frequency region of 100 MHz or more, the coil antenna 1 is suitable for an antenna of a wireless communication electronic device such as a wireless LAN electronic device, a digital terrestrial broadcasting electronic device, and a mobile phone. By mounting the coil antenna 1 on such an electronic device, it is possible to improve the reception characteristics and the characteristics of the electronic device based thereon.
  • the flexible coil antenna 1 can be provided. For this reason, even if it is a case where an antenna must be bent and built in an electronic device, it is possible to suppress the occurrence of problems such as breakage. In addition, even when it is bent, the distance between the cylindrical magnetic core 4 and the winding 5 does not change greatly, so that the antenna characteristics can be kept good.
  • a method for manufacturing the coil antenna 1 of this embodiment will be described.
  • the manufacturing method of the coil antenna 1 is not specifically limited, The following methods are mentioned as a method for obtaining efficiently.
  • a soft magnetic powder is prepared.
  • the material and particle size of the soft magnetic powder are appropriately selected according to the required characteristics.
  • Soft magnetic powder is mixed with an organic binder.
  • the mixing ratio of the soft magnetic powder and the organic binder should be [soft magnetic powder / (soft magnetic powder + organic binder)] ⁇ 100 (%) in a volume ratio of 30 to 70%. preferable. As a result, it is possible to obtain a molded body having high strength and excellent handleability while utilizing the magnetic properties of the soft magnetic powder.
  • a cylindrical magnetic body 2 is prepared by forming a mixture of soft magnetic powder and an organic binder into a cylindrical shape.
  • the molding method mold molding and extrusion molding are preferable because of excellent productivity.
  • the molded body is cut into a required size.
  • the organic binder is a thermosetting resin
  • the molded body is solidified by heat treatment (curing).
  • the surface of the cylindrical magnetic body 2 may be coated with a resin to improve the strength of the cylindrical magnetic body 2.
  • the cylindrical magnetic body 2 is insulated by covering the surface of the cylindrical magnetic body 2 with the insulator 3.
  • a heat-shrinkable tube as the insulator 3
  • a heat-shrinkable tube cut into a predetermined length is prepared in advance, and the columnar magnetic body 2 is inserted into the tube.
  • the cylindrical magnetic core 4 is produced by heat-treating the tube to cause heat shrinkage.
  • the heat-shrinkable tube preferably has such a length that the tip of the cylindrical magnetic body 2 is not exposed after heat-shrinking.
  • a resin tube having no heat shrink performance is used as the insulator 3
  • the columnar magnetic body 2 is inserted into the tube. If a gap is formed, a resin may be separately charged.
  • a winding 5 is wound around a cylindrical magnetic core 4.
  • a cylindrical magnetic core 4 is inserted into a bobbin 6 to which a winding 5 has been applied in advance.
  • the flat portion 7 provided at the end of the columnar magnetic core 4 is used as a fixed portion.
  • a plane part will be provided in the edge part of the bobbin 6, and such a plane part will be used as a fixing
  • the fixing method is not particularly limited, and adhesion, welding, or the like is applied. Further, after the winding 5 is formed on the cylindrical magnetic core 4 or the cylindrical bobbin 6, the entire coil antenna 1 may be coated with a resin to improve the strength.
  • Example 1 Argon was introduced as a plasma generating gas at a rate of 40 L / min into the chamber of the high frequency induction thermal plasma apparatus to generate plasma.
  • the plasma in the chamber is mixed with Fe powder having an average particle diameter of 10 ⁇ m and Al powder having an average particle diameter of 3 ⁇ m, together with argon (carrier gas) so that the ratio of Fe to Al is 20: 1 by mass ratio.
  • argon carrier gas
  • acetylene gas was introduced into the chamber together with a carrier gas as a raw material for carbon coating. In this way, nanoparticles in which FeAl alloy particles were coated with carbon were obtained.
  • the carbon-coated FeAl alloy nanoparticles are reduced at 600 ° C. under a hydrogen flow of 500 mL / min, cooled to room temperature, and then taken out into an argon atmosphere containing 0.1% by volume of oxygen and oxidized.
  • a core-shell type soft magnetic powder was produced.
  • the obtained core-shell type soft magnetic powder had a structure in which the average particle size of the soft magnetic powder as the core was 32 nm and the thickness of the oxide film was 4 nm.
  • Core-shell type soft magnetic powder and polyvinyl butyral resin (organic binder) are mixed at a volume ratio of 60:40, and the mixture is molded into a cylindrical shape having a diameter of 2 mm ⁇ 40 mm by a powder press, followed by curing treatment.
  • the resin was solidified.
  • After applying an epoxy resin to this cylindrical magnetic body it is inserted into a PTFE heat-shrinkable tube (inner diameter 2.41 mm ⁇ outer diameter 3.01 mm) and heat-treated at 120 ° C. for 60 minutes to obtain a diameter of 3.
  • a cylindrical magnetic core of 01 mm ⁇ 40 mm was produced.
  • a polyurethane wire having a diameter of 0.5 mm was wound around this magnetic core (direct winding / about 15 turns) to obtain a coil antenna.
  • Table 1 shows the configuration of the coil antenna.
  • Example 2 A coil antenna was produced in the same manner as in Example 1 except that the insulating tube was replaced with a PFA heat-shrinkable tube. Table 1 shows the configuration of the coil antenna.
  • Example 3 After inserting the columnar magnetic body produced in Example 1 into a liquid crystal polymer bobbin (thickness 0.2 mm), winding was performed on the bobbin to produce a coil antenna. The type of winding and the number of turns were the same as in Example 1. Table 1 shows the configuration of the coil antenna.
  • Example 4 Argon was introduced as a plasma generating gas at a rate of 40 L / min into the chamber of the high frequency induction thermal plasma apparatus to generate plasma.
  • the plasma in this chamber is mixed with Fe powder having an average particle diameter of 10 ⁇ m, Co powder having an average particle diameter of 10 ⁇ m and Al powder having an average particle diameter of 3 ⁇ m, and the ratio of Fe, Co, and Al is 70: It sprayed at 3 L / min with argon (carrier gas) so that it might be set to 30:10.
  • argon carrier gas
  • acetylene gas was introduced into the chamber together with a carrier gas as a raw material for carbon coating. In this way, nanoparticles in which FeCoAl alloy particles were coated with carbon were obtained.
  • the FeCoAl alloy nanoparticles coated with carbon are reduced at 650 ° C. under a hydrogen flow of 500 mL / min, cooled to room temperature, then taken out into an argon atmosphere containing 0.1% by volume of oxygen and oxidized.
  • a core-shell type soft magnetic powder was produced.
  • the obtained core-shell type soft magnetic powder had a structure in which the average particle diameter of the core soft magnetic powder was 18 nm and the thickness of the oxide film was 2.5 nm.
  • the soft magnetic powder was composed of Fe—Co—Al—C, and the oxide film was composed of Fe—Co—Al—O.
  • Core-shell type soft magnetic powder and polyvinyl butyral resin (organic binder) are mixed at a volume ratio of 40:60, and this mixture is molded into a cylindrical shape having a diameter of 2 mm ⁇ 40 mm by a powder press, followed by curing treatment.
  • the resin was solidified.
  • a columnar magnetic core having a diameter of 2.1 mm and a length of 40 mm was produced by heat treatment at 120 ° C.
  • a metal foil Cu wire having a width of 1 mm and a thickness of 0.2 mm was wound around this magnetic core (about 12 turns) to obtain a coil antenna.
  • Table 1 shows the configuration of the coil antenna.
  • Examples 5 and 6 The coil antenna similar to Example 4 was produced using the PTFE heat-shrinkable tube (Examples 5 and 6). Table 1 shows the configuration of the coil antenna.
  • Example 7 After inserting the columnar magnetic body produced in Example 4 into a liquid crystal polymer bobbin (thickness 0.2 mm), winding was performed on the bobbin to produce a coil antenna. The type of winding and the number of turns were the same as in Example 4. Table 1 shows the configuration of the coil antenna.
  • Example 1 The cylindrical magnetic body in Example 1 was a rectangular parallelepiped having a height of 2 mm and a length of 40 mm, and a coil antenna was manufactured by winding the rectangular parallelepiped magnetic body. The type of winding and the number of turns were the same as in Example 1.
  • Comparative Example 2 The rectangular parallelepiped magnetic body of Comparative Example 1 was inserted into a heat shrinkable tube, subjected to heat shrinkage treatment, and then wound to produce a coil antenna. The winding process was the same as in Comparative Example 1.
  • Example 3 Without covering the cylindrical magnetic body of Example 1 with an insulating tube, the cylindrical magnetic body was directly wound to produce a coil antenna. The winding process was the same as in Example 1.
  • Example 4 The cylindrical magnetic body of Example 1 was covered with an insulating sheet (film), and then a winding process was performed to produce a coil antenna. The winding process was the same as in Example 1.
  • a coaxial cable center line (center conductor) and mesh line (outer conductor) were each drawn by a 15 cm long copper wire (diameter 2 mm) to a total length of 30 cm.
  • the drawn copper wire is called an antenna element (element). If there is an electric field in the space, a potential difference occurs between both ends of the antenna element, and radio waves flow into the coaxial cable.
  • the reason why the length of the antenna element is 15 cm ⁇ 2 and the total length is 30 cm is that the radio wave to be received is set to 500 MHz and is based on a half value ( ⁇ / 2) of the wavelength of 500 MHz.
  • a dipole antenna (standard antenna) is connected to an electronic device such as a terrestrial digital tuner to measure the reception intensity at all azimuth angles.
  • the antenna facing the standard antenna measures horizontal and vertical polarization.
  • the antenna (Example and Comparative Example) which measures a standard antenna, and the receiving intensity of all azimuths is measured.
  • the ratio of the radiation power of the antenna of each example and the radiation power of the standard antenna is defined as radiation efficiency.
  • the radiation efficiency for a frequency of 500 MHz was measured by such a method.
  • 10 coil antennas of each example were prepared and measured, and based on the minimum value, those having a gain of ⁇ 10 dB or more at 500 MHz [ ⁇ (good)], and ⁇ 12 dB or more and less than ⁇ 10 dB [ ⁇ (ordinary)], less than ⁇ 12 dB was regarded as [ ⁇ (dissatisfied)].
  • the coil antennas of Examples 1 to 7 all have excellent antenna characteristics.
  • Comparative Example 1 is wound directly around a prismatic magnetic core, a large loss occurs in the conductor near the magnetic body due to the concentration of the electromagnetic field near the magnetic body, and as a result, the characteristics deteriorate.
  • Comparative Example 2 is covered with a heat-shrinkable tube, but since the distance between the central axis of the prismatic magnetic core and the winding is non-uniform, there is a variation in the shortening effect of the electrical characteristic length, and there is a difference in the conductor location. The antenna characteristics deteriorated because the discontinuity occurred and the high frequency current concentrated.
  • Comparative Example 3 a cylindrical magnetic core was directly wound, and a large loss was generated in the conductor near the magnetic body due to the concentration of the electromagnetic field near the magnetic body, resulting in a decrease in characteristics.
  • Comparative Example 4 since an insulating sheet is wound around a columnar magnetic body, a non-uniform gap is generated due to a tension applied during film winding, and a step is formed in a portion where film end portions overlap. For this reason, the distance between the winding and the magnetic core is non-uniform, resulting in variations in the shortening effect of the electrical characteristic length. Also, the discontinuity occurs in the conductor part and the high-frequency current is concentrated, so that the antenna characteristic is deteriorated. .
  • SYMBOLS 1 Coil antenna, 2 ... Cylindrical magnetic body, 3 ... Insulator, 4 ... Cylindrical magnetic core, 5 ... Winding, 6 ... Cylindrical bobbin, 7 ... Flat part.

Abstract

Disclosed is a coil antenna (1) provided with a cylindrical magnetic core (4) and a wire (5) wound around the cylindrical magnetic core (4). The cylindrical magnetic core (4) is provided with: a cylindrical magnet (2) comprising a mixture of a soft magnetic powder and an organic binder; and an insulator (3) that covers the surface of the cylindrical magnet (2).

Description

コイルアンテナとそれを用いた電子機器Coil antenna and electronic equipment using it
 本発明の実施形態はコイルアンテナとそれを用いた電子機器に関する。 Embodiments described herein relate generally to a coil antenna and an electronic device using the coil antenna.
 電波の波長を短縮するために用いられる磁性体や誘電体は、透磁率や誘電率が高いほど効果的である。誘電体セラミック(非磁性材料)を用いた波長短縮は従来から試みられているが、帯域が狭くなるために十分な感度を保ちつつ小型化することは実現されていない。例えば、地上デジタル放送のように100MHz~1GHzの周波数帯を使用する情報通信においては、外付けアンテナが必要とされる。そこで、この周波数帯の波長を短縮するために、透磁率が高い磁性材料の周りにコイルエレメントを巻回し、電波特性長の短縮効果により小型で受信感度に優れたアンテナが求められている。 A magnetic substance or dielectric used to shorten the wavelength of radio waves is more effective as the magnetic permeability and dielectric constant are higher. Wavelength shortening using a dielectric ceramic (nonmagnetic material) has been attempted in the past. However, since the band is narrowed, downsizing while maintaining sufficient sensitivity has not been realized. For example, in information communication using a frequency band of 100 MHz to 1 GHz such as terrestrial digital broadcasting, an external antenna is required. Therefore, in order to shorten the wavelength of this frequency band, a small antenna having excellent reception sensitivity is required by winding a coil element around a magnetic material having high magnetic permeability and shortening the radio wave characteristic length.
 また、通信情報の急増に伴って電子通信機器の小型化や軽量化が図られており、このために電子通信機器に搭載される電子部品の小型化や軽量化が望まれている。現在の携帯通信端末で情報伝播に用いられている電波の周波数帯域は100MHz以上の高周波領域である。携帯移動体通信や衛星通信においては、GHz帯の高周波域の電波が使用されている。このため、高周波領域において有用な電子部品が注目されている。 Also, along with the rapid increase in communication information, electronic communication devices are becoming smaller and lighter, and for this reason, electronic components mounted on electronic communication devices are desired to be smaller and lighter. The frequency band of radio waves used for information propagation in current mobile communication terminals is a high frequency region of 100 MHz or more. In mobile mobile communications and satellite communications, radio waves in the high frequency range of the GHz band are used. For this reason, electronic components useful in the high frequency region are attracting attention.
 高周波域の電波に対応するために、電子部品にはエネルギー損失や伝送損失が小さく、電気特性長を有効に短縮することが求められている。例えば、携帯通信端末に不可欠なアンテナデバイスでは、受信過程で導体ならびに材料で損失が生じる。この損失は受信感度を落とす原因となる。一方、電子部品に対する小型化や軽量化への要望の高まりに伴って、アンテナデバイスには損失を抑えて受信感度を維持したまま小型化することが要求されている。このため、誘電体セラミックスや磁性体を用いたアンテナデバイスが開発され、小型化や省スペース化を可能としている。 In order to cope with radio waves in a high frequency range, electronic parts are required to have small energy loss and transmission loss and to effectively shorten the electrical characteristic length. For example, in an antenna device indispensable for a mobile communication terminal, a loss occurs in a conductor and a material in a reception process. This loss causes a decrease in reception sensitivity. On the other hand, with the increasing demand for downsizing and weight reduction of electronic components, antenna devices are required to be downsized while maintaining reception sensitivity while suppressing loss. For this reason, antenna devices using dielectric ceramics and magnetic materials have been developed, enabling miniaturization and space saving.
 例えば、地上デジタル放送用のコイルアンテナとしては、直方体からなる誘電体(または磁性体)に巻線を施したものが知られている(特許文献1参照)。電波時計用アンテナとしては、直方体の磁性体の周囲を熱収縮チューブで絶縁し、その上に巻線を施したコイルアンテナ(特許文献2参照)や、磁性体粉末を樹脂で固めた直方体のコアの周囲にコイルを巻回したアンテナ(特許文献3参照)が知られている。アンテナ用磁性体粉末に関しては、例えば平均粒径が1μm以下の微細磁性粉末を使用することによって、高周波での透磁率を制御することが知られている(特許文献4参照)。 For example, a coil antenna for digital terrestrial broadcasting is known in which a dielectric (or magnetic body) made of a rectangular parallelepiped is wound (see Patent Document 1). As a radio timepiece antenna, a rectangular parallelepiped magnetic body in which a magnetic body of a rectangular parallelepiped is insulated with a heat-shrinkable tube and wound thereon (see Patent Document 2), or a rectangular solid core in which magnetic powder is solidified with resin An antenna (see Patent Document 3) in which a coil is wound around is known. Regarding the magnetic powder for antenna, it is known to control the magnetic permeability at high frequency by using, for example, a fine magnetic powder having an average particle diameter of 1 μm or less (see Patent Document 4).
 しかしながら、誘電体セラミックスを用いたアンテナは帯域が狭くなり、必要な帯域内で十分な感度が保てないため、補助的なアンテナデバイスとして用いられているのが現状である。軟磁性粉末を有機結合剤で固めた磁性体を用いたアンテナでは、磁性体の磁気特性から高周波帯域での損失を十分に低減することができない。さらに、直方体の磁性体上にコイルを巻回しているため、コイルの直角に曲がった部分に高周波電流が集中し、また磁性体とコイルとの距離が一定にならないため、受信感度特性を十分に得ることができない。このため、広帯域での受信感度を向上させたコイルアンテナが求められていた。 However, since antennas using dielectric ceramics have a narrow band and cannot maintain sufficient sensitivity within the required band, they are currently used as auxiliary antenna devices. In an antenna using a magnetic material obtained by solidifying soft magnetic powder with an organic binder, loss in a high frequency band cannot be sufficiently reduced due to the magnetic characteristics of the magnetic material. In addition, since the coil is wound on a rectangular parallelepiped magnetic body, high-frequency current is concentrated on the portion of the coil that is bent at a right angle, and the distance between the magnetic body and the coil is not constant, so that the reception sensitivity characteristics are sufficient. Can't get. For this reason, a coil antenna with improved reception sensitivity in a wide band has been demanded.
特開2008-259039公報JP 2008-259039 A 特開2005-269234公報JP 2005-269234 A 特開2007-060138公報JP 2007-060138 A 特開2008-258601公報JP 2008-258601 A
 本発明の目的は、広帯域での受信感度を向上させたコイルアンテナと、それを用いた電子機器を提供することにある。 An object of the present invention is to provide a coil antenna with improved reception sensitivity in a wide band and an electronic device using the coil antenna.
 実施形態のコイルアンテナは、軟磁性体粉末と有機結合剤との混合物からなる円柱状磁性体と、前記円柱状磁性体の表面を覆う絶縁体とを備える円柱状磁心と、前記円柱状磁心に巻回された巻線とを具備している。また、実施形態の電子機器は、上記した実施形態のコイルアンテナを具備している。 The coil antenna according to the embodiment includes a cylindrical magnetic body including a cylindrical magnetic body made of a mixture of soft magnetic powder and an organic binder, an insulator covering a surface of the cylindrical magnetic body, and the cylindrical magnetic core. And a wound winding. Moreover, the electronic device of the embodiment includes the coil antenna of the above-described embodiment.
第1の実施形態のコイルアンテナを示す斜視図である。It is a perspective view which shows the coil antenna of 1st Embodiment. 第2の実施形態のコイルアンテナを示す斜視図である。It is a perspective view which shows the coil antenna of 2nd Embodiment. 第3の実施形態のコイルアンテナを示す斜視図である。It is a perspective view which shows the coil antenna of 3rd Embodiment.
 以下、実施形態のコイルアンテナについて、図面に基づいて説明する。図1は第1の実施形態によるコイルアンテナを示す斜視図、図2は第2の実施形態によるコイルアンテナを示す斜視図、図3は第3の実施形態によるコイルアンテナを示す斜視図である。これらの図において、1はコイルアンテナ、2は円柱状磁性体、3は絶縁体、4は円柱状磁心、5は巻線、6は円柱状ボビン、7は平坦部である。 Hereinafter, the coil antenna of the embodiment will be described with reference to the drawings. 1 is a perspective view showing a coil antenna according to the first embodiment, FIG. 2 is a perspective view showing a coil antenna according to the second embodiment, and FIG. 3 is a perspective view showing the coil antenna according to the third embodiment. In these drawings, 1 is a coil antenna, 2 is a cylindrical magnetic body, 3 is an insulator, 4 is a cylindrical magnetic core, 5 is a winding, 6 is a cylindrical bobbin, and 7 is a flat portion.
 円柱状磁性体2は軟磁性体粉末と有機結合剤との混合物からなり、この混合物を円柱状に成形したものである。円柱状磁性体2の表面は絶縁体3で覆われている。円柱状磁心4は円柱状磁性体2とその表面を覆う絶縁体3とを備えている。第1の実施形態によるコイルアンテナ1は、円柱状磁性体2を絶縁体3で覆った円柱状磁心4に巻線5を施したものである。第2の実施形態によるコイルアンテナ1は、さらに円柱状磁心4の外周に装着した円柱状ボビン6を備えている。第2の実施形態によるコイルアンテナ1において、巻線5は円柱状ボビン6の上に巻回されている。 The cylindrical magnetic body 2 is composed of a mixture of soft magnetic powder and an organic binder, and this mixture is formed into a cylindrical shape. The surface of the columnar magnetic body 2 is covered with an insulator 3. The columnar magnetic core 4 includes a columnar magnetic body 2 and an insulator 3 that covers the surface thereof. In the coil antenna 1 according to the first embodiment, a winding 5 is provided on a cylindrical magnetic core 4 in which a cylindrical magnetic body 2 is covered with an insulator 3. The coil antenna 1 according to the second embodiment further includes a columnar bobbin 6 attached to the outer periphery of the columnar magnetic core 4. In the coil antenna 1 according to the second embodiment, the winding 5 is wound on a cylindrical bobbin 6.
 円柱状磁性体2を構成する軟磁性体粉末は、高周波域における透磁率が大きな磁性材料からなることが好ましい。具体的には、軟磁性体粉末は鉄アルミシリコン合金(センダスト)、鉄ニッケル合金(パーマロイ)、鉄ニッケルパーマロイ合金(モリブデンパーマロイ)、鉄コバルト合金、鉄コバルトシリコン合金、鉄シリコンバナジウム合金、鉄コバルトボロン合金、コバルト基アモルフアス合金、鉄基アモルフアス合金、カルボニル鉄、および純鉄から選ばれる少なくとも1種からなることが好ましい。 The soft magnetic powder constituting the columnar magnetic body 2 is preferably made of a magnetic material having a high magnetic permeability in a high frequency range. Specifically, soft magnetic powders are iron aluminum silicon alloy (Sendust), iron nickel alloy (permalloy), iron nickel permalloy alloy (molybdenum permalloy), iron cobalt alloy, iron cobalt silicon alloy, iron silicon vanadium alloy, iron cobalt It is preferably made of at least one selected from a boron alloy, a cobalt-based amorphous alloy, an iron-based amorphous alloy, carbonyl iron, and pure iron.
 軟磁性体粉末はその表面を被膜で覆ったコアシェル構造を有するものであってもよい。被膜は窒化物、炭化物、および酸化物から選ばれる少なくとも1種からなることが好ましい。被膜の構成材料としては、Al、Si、Mg、Ca、Sr、Ba、Ti、Zr、Hf、Zn、Mn、および希土類元素から選ばれる少なくとも1種の金属を含む酸化物、AlN、Si、SiC等が挙げられる。被膜は軟磁性体粉末の表面を直接窒化処理、炭化処理、または酸化処理して形成したものであってもよい。 The soft magnetic powder may have a core-shell structure whose surface is covered with a coating. The coating is preferably made of at least one selected from nitrides, carbides, and oxides. As a constituent material of the film, an oxide containing at least one metal selected from Al, Si, Mg, Ca, Sr, Ba, Ti, Zr, Hf, Zn, Mn, and a rare earth element, AlN, Si 3 N 4 , SiC and the like. The coating may be formed by directly nitriding, carbonizing, or oxidizing the surface of the soft magnetic powder.
 このように、軟磁性体粉末の表面を被膜で覆うことによって、軟磁性体粉末の劣化を抑制することができる。窒化物、炭化物、酸化物等からなる被膜に代えて、樹脂被膜やNiメッキ膜等の耐食性に優れる金属被膜を適用してもよい。樹脂被膜は、ポリエステル、ポリエチレン、ポリスチレン、ポリ塩化ビニル、ポリビニルブチラール、ポリウレタン、セルロース系樹脂、アクリルニトリル-ブタジエンゴム、スチレン-ブタジエンゴム、エポキシ樹脂、フェノール樹脂、ABS樹脂、アミド系樹脂、イミド系樹脂、あるいはそれらの共重合体からなるものが好ましい。 Thus, by covering the surface of the soft magnetic powder with the film, the deterioration of the soft magnetic powder can be suppressed. Instead of a film made of nitride, carbide, oxide or the like, a metal film having excellent corrosion resistance such as a resin film or a Ni plating film may be applied. Resin coating is polyester, polyethylene, polystyrene, polyvinyl chloride, polyvinyl butyral, polyurethane, cellulose resin, acrylonitrile-butadiene rubber, styrene-butadiene rubber, epoxy resin, phenol resin, ABS resin, amide resin, imide resin Or a copolymer thereof is preferred.
 いずれの被膜を用いる場合であっても、被膜の厚さは1nm以上100nm以下の範囲であることが好ましい。特に、軟磁性体粉末の平均粒径が10nm以上100nm未満の微粉末のときには、被膜の厚さは薄いことが好ましく、特に1nm以上7nm以下の範囲であることが好ましい。被膜付きの軟磁性体粉末をコアシェル型軟磁性体粉末と呼ぶ。 Whatever film is used, the thickness of the film is preferably in the range of 1 nm to 100 nm. In particular, when the soft magnetic powder is a fine powder having an average particle diameter of 10 nm or more and less than 100 nm, the thickness of the coating is preferably thin, and particularly preferably in the range of 1 nm or more and 7 nm or less. The coated soft magnetic powder is called core-shell type soft magnetic powder.
 軟磁性体粉末の平均粒径は特に限定されるものではないが、10nm以上1μm以下の範囲であることが好ましい。平均粒径が10nm未満の軟磁性体粉末は調製が難しい。軟磁性体粉末の平均粒径が1μmを超えると、アンテナの高周波特性が低下する。コイルアンテナ1を100MHz以上の無線信号アンテナとして用いる場合、軟磁性体粉末の平均粒径は100nm以下が好ましい。コイルアンテナ1を1GHz以上の無線信号アンテナとして用いる場合、軟磁性体粉末の平均粒径は50nm未満が好ましい。 The average particle size of the soft magnetic powder is not particularly limited, but is preferably in the range of 10 nm to 1 μm. It is difficult to prepare a soft magnetic powder having an average particle size of less than 10 nm. When the average particle size of the soft magnetic powder exceeds 1 μm, the high frequency characteristics of the antenna are degraded. When the coil antenna 1 is used as a radio signal antenna of 100 MHz or higher, the average particle size of the soft magnetic powder is preferably 100 nm or less. When the coil antenna 1 is used as a radio signal antenna of 1 GHz or higher, the average particle size of the soft magnetic powder is preferably less than 50 nm.
 微粉末状の軟磁性体粉末としては、例えばニッケル、コバルト、鉄のシュウ酸塩等の有機酸塩を熱分解して得た微細な酸化物を水素で低温還元して得られたニッケル粉、コバルト粉、鉄粉等や、硫酸第一鉄溶液を中和して得た微細な鉄粉等が挙げられる。他の方法としては、ニッケル、コバルト、鉄等の金属を減圧化で加熱蒸発させ、気相で凝固させてニッケル粉、コバルト粉、鉄粉等を得る方法が挙げられる。これらの方法はニッケル、コバルト、鉄等の微粉末に限らず、それらの合金やさらにAlやSi等の酸化物の標準生成ギブスエネルギーが小さい金属を添加した合金にも適用可能である。 As the fine powder soft magnetic powder, for example, nickel powder obtained by low-temperature reduction of fine oxide obtained by thermally decomposing organic acid salt such as nickel, cobalt, iron oxalate, etc., Examples thereof include cobalt powder and iron powder, and fine iron powder obtained by neutralizing ferrous sulfate solution. As another method, there is a method in which a metal such as nickel, cobalt, or iron is heated and evaporated under reduced pressure and solidified in a gas phase to obtain nickel powder, cobalt powder, iron powder, or the like. These methods are not limited to fine powders such as nickel, cobalt, iron, etc., but can also be applied to alloys thereof and alloys added with metals having a low standard Gibbs energy of oxides such as Al and Si.
 軟磁性体粉末は溶液中で還元した微粉末であってもよく、例えばニッケルやコバルトのアンモニア錯イオンを含む溶液を、高温、高圧中で水素還元して得られるニッケル粉やコバルト粉等が挙げられる。さらに、ニッケルカルボニル(Ni(CO))や鉄カルボニル(Fe(CO))を熱分解して得られたカルボニルニッケル粉やカルボニル鉄粉等であってもよい。平均粒径が100nm未満の粉末は極めて微細であるため、前述した被膜を保護層として設け、軟磁性体粉末の酸化等による劣化を防止することが好ましい。 The soft magnetic powder may be a fine powder reduced in a solution, such as nickel powder or cobalt powder obtained by hydrogen reduction of a solution containing ammonia complex ions of nickel or cobalt at high temperature and high pressure. It is done. Furthermore, it may be carbonyl nickel powder or carbonyl iron powder obtained by thermally decomposing nickel carbonyl (Ni (CO) 4 ) or iron carbonyl (Fe (CO) 5 ). Since the powder having an average particle size of less than 100 nm is extremely fine, it is preferable to provide the above-described coating as a protective layer to prevent deterioration of the soft magnetic powder due to oxidation or the like.
 軟磁性体粉末を結合する有機結合剤は、特に限定されるものではないが、ポリエステル、ポリ塩化ビニル、ポリビニルブチラール、ポリウレタン、セルロース系樹脂、アクリルニトリル-ブタジエンゴム、スチレン-ブタジエンゴムやそれらの共重合体等の熱可塑性樹脂、エポキシ樹脂、フェノール樹脂、アミド系樹脂、イミド系樹脂等の熱硬化性樹脂、あるいは有機系難燃剤であるハロゲン化物、臭素化ポリマー等が例示される。これらは1種で用いてもよいし、2種以上を混合して用いてもよい。 The organic binder that binds the soft magnetic powder is not particularly limited, but polyester, polyvinyl chloride, polyvinyl butyral, polyurethane, cellulosic resin, acrylonitrile-butadiene rubber, styrene-butadiene rubber, and co-polymers thereof. Examples thereof include thermoplastic resins such as polymers, thermosetting resins such as epoxy resins, phenol resins, amide resins, and imide resins, or halides and brominated polymers that are organic flame retardants. These may be used alone or in combination of two or more.
 円柱状磁性体2は、上述した軟磁性体粉体と有機結合剤との混合物を円柱状に成形したものである。円柱状磁性体2は硬化させた状態でもよいし、柔軟性のある状態でもよい。有機結合剤として熱硬化性樹脂を使用した場合、軟磁性体粉体と有機結合剤との混合物を円柱状に成形した後に熱処理を施すことによって、硬化させた円柱状磁性体2とすることができる。有機結合剤としてゴム系の材料を使用した場合、柔軟性を有する円柱状磁性体2とすることができる。円柱状磁性体2は真円体が好ましいが、楕円体でもよい。 The columnar magnetic body 2 is formed by molding the above-mentioned mixture of the soft magnetic powder and the organic binder into a columnar shape. The columnar magnetic body 2 may be in a cured state or in a flexible state. When a thermosetting resin is used as the organic binder, a hardened cylindrical magnetic body 2 can be obtained by forming a mixture of soft magnetic powder and organic binder into a cylindrical shape and then performing a heat treatment. it can. When a rubber-based material is used as the organic binder, the cylindrical magnetic body 2 having flexibility can be obtained. The cylindrical magnetic body 2 is preferably a perfect circle, but may be an ellipsoid.
 円柱状磁心4は、絶縁体3で覆われた円柱状磁性体2を備えている。円柱状磁心4のサイズは特に限定されるものではないが、直径が1~5mm、長さが10~100mm程度であることが好ましい。このサイズより小さいとアンテナ特性が不十分となるおそれがあり、これより大きいとアンテナが大きすぎて小型化や薄型化に適さない。絶縁体3としては、例えば絶縁チューブが用いられる。絶縁体3は少なくとも一部に熱収縮性樹脂や熱収縮チューブを用いることが好ましい。絶縁体3は全てが熱収縮性樹脂や熱収縮チューブで形成されていることが好ましく、これにより絶縁体3の厚さを一定にすることができる。 The columnar magnetic core 4 includes a columnar magnetic body 2 covered with an insulator 3. The size of the cylindrical magnetic core 4 is not particularly limited, but is preferably about 1 to 5 mm in diameter and about 10 to 100 mm in length. If it is smaller than this size, the antenna characteristics may be insufficient. If it is larger than this size, the antenna is too large and is not suitable for miniaturization or thinning. For example, an insulating tube is used as the insulator 3. It is preferable to use a heat-shrinkable resin or a heat-shrinkable tube for at least part of the insulator 3. It is preferable that all of the insulator 3 is formed of a heat-shrinkable resin or a heat-shrinkable tube, whereby the thickness of the insulator 3 can be made constant.
 円柱状磁性体2を保護する絶縁体3には、ポリテトラフルオロエチレン、ポリオレフィン、フッ素エラストマー、ノンハロゲン樹脂、ポリ塩化ビニル、フッ素樹脂、エポキシ樹脂、シリコーンゴム、ポリエチレンテレフタレート、ポリエチレン、ポリエステル等が用いられる。絶縁体3は絶縁性および耐候性に優れた材料で形成することが好ましい。絶縁体3は、少なくとも巻線を施す部分に形成される。 For the insulator 3 that protects the cylindrical magnetic body 2, polytetrafluoroethylene, polyolefin, fluorine elastomer, non-halogen resin, polyvinyl chloride, fluorine resin, epoxy resin, silicone rubber, polyethylene terephthalate, polyethylene, polyester, or the like is used. . The insulator 3 is preferably formed of a material having excellent insulating properties and weather resistance. The insulator 3 is formed at least on the portion where the winding is applied.
 熱収縮チューブの材質としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ペルフルオロアルコキシエチレン共重合体(PFA)、ペルフルオロエチレン-ペルフルオロプロピレン共重合体、ポリオレフィン、ポリフッ化ビニリデン、ナイロンエラストマー、およびシリコーンゴムから選ばれる少なくとも1種が挙げられる。熱収縮チューブは60~180℃の温度で熱収縮するものが好ましい。熱収縮チューブの熱収縮温度が60℃未満であると取扱いが難しく、180℃を超えると軟磁性体粉末や有機結合剤に悪影響を及ぼすおそれがある。 Materials for heat shrinkable tubes include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA), perfluoroethylene-perfluoropropylene copolymer, polyolefin, polyvinylidene fluoride, nylon elastomer, and silicone. The at least 1 sort (s) chosen from rubber | gum is mentioned. The heat shrinkable tube is preferably heat shrinkable at a temperature of 60 to 180 ° C. If the heat shrink temperature of the heat shrinkable tube is less than 60 ° C., handling is difficult, and if it exceeds 180 ° C., the soft magnetic powder and the organic binder may be adversely affected.
 熱収縮性樹脂を用いる場合には、熱収縮性樹脂を円柱状磁性体2の表面に塗布した後、熱処理して熱収縮性樹脂の塗布層を熱収縮させる。熱収縮チューブを用いる場合には、熱収縮チューブに円柱状磁性体2を挿入した後、熱処理して熱収縮チューブを熱収縮させる。熱収縮性樹脂や熱収縮チューブは絶縁体3として用いられるものであるが、これらとは別途に円柱状磁性体2の表面に絶縁樹脂を塗布し、その上に熱収縮チューブを被せてもよい。このような場合においても、熱収縮チューブを熱処理して収縮させることによって、円柱状磁性体2と絶縁体3とを一体化することができる。 When using a heat-shrinkable resin, the heat-shrinkable resin is applied to the surface of the columnar magnetic body 2 and then heat-treated to heat-shrink the heat-shrinkable resin coating layer. When using a heat-shrinkable tube, the cylindrical magnetic body 2 is inserted into the heat-shrinkable tube, and then heat-treated to heat-shrink the heat-shrinkable tube. A heat-shrinkable resin or a heat-shrinkable tube is used as the insulator 3, but separately from this, an insulating resin may be applied to the surface of the columnar magnetic body 2, and the heat-shrinkable tube may be covered thereon. . Even in such a case, the cylindrical magnetic body 2 and the insulator 3 can be integrated by shrinking the heat-shrinkable tube by heat treatment.
 絶縁チューブ等からなる絶縁体3の厚さは特に限定されるものではないが、0.05mm以上あることが好ましい。絶縁体3の厚さが0.05mm未満であると、均一な絶縁膜を形成することが難しい。均一な絶縁膜を形成しやすくする上で、絶縁体3の厚さは0.2mm以上が好ましい。絶縁体3の厚さの上限は特に限定されないが、0.85mm以下であることが好ましい。絶縁体3の厚さが0.85mmを超えると円柱状磁性体2と巻線5との距離が離れすぎてしまうため、コイルアンテナ1のアンテナ特性が低下するおそれがある。熱収縮樹脂や熱収縮チューブ等の熱収縮性の材料を用いた場合、絶縁体3の厚さは熱収縮後の厚さを示すものとする。 The thickness of the insulator 3 made of an insulating tube or the like is not particularly limited, but is preferably 0.05 mm or more. If the thickness of the insulator 3 is less than 0.05 mm, it is difficult to form a uniform insulating film. In order to easily form a uniform insulating film, the thickness of the insulator 3 is preferably 0.2 mm or more. The upper limit of the thickness of the insulator 3 is not particularly limited, but is preferably 0.85 mm or less. If the thickness of the insulator 3 exceeds 0.85 mm, the distance between the columnar magnetic body 2 and the winding 5 will be too far, so that the antenna characteristics of the coil antenna 1 may be deteriorated. When a heat-shrinkable material such as heat-shrinkable resin or heat-shrinkable tube is used, the thickness of the insulator 3 indicates the thickness after heat shrinkage.
 絶縁チューブは熱収縮性能を持たない材料で形成することも可能である。このような場合には、絶縁チューブの内径と円柱状磁性体2の外径のサイズを合わせた上で、円柱状磁性体2を絶縁チューブに挿入する。円柱状磁性体2と絶縁チューブとの間に隙間が生じる場合には、必要に応じて隙間に樹脂を充填することも有効である。 The insulating tube can be formed of a material that does not have heat shrink performance. In such a case, the cylindrical magnetic body 2 is inserted into the insulating tube after the sizes of the inner diameter of the insulating tube and the outer diameter of the cylindrical magnetic body 2 are matched. When a gap is generated between the columnar magnetic body 2 and the insulating tube, it is also effective to fill the gap with resin as necessary.
 円柱状磁心4には巻線5が施されており、これらによりコイルアンテナ1が構成されている。第1の実施形態によるコイルアンテナ1は、円柱状磁性体2の表面を絶縁チューブ等による絶縁体3で覆った後、絶縁体3上に巻線5を形成したものである。第2の実施形態によるコイルアンテナ1は、円柱状磁心4を円柱状ボビン5に挿入した後、ボビン5上に巻線5を形成したものである。この場合、円柱状磁性体2を円柱状ボビン5に挿入することによって、コイルアンテナ1を構成することも可能である。 The cylindrical magnetic core 4 is provided with a winding 5, and the coil antenna 1 is constituted by these. In the coil antenna 1 according to the first embodiment, the surface of a cylindrical magnetic body 2 is covered with an insulator 3 such as an insulating tube, and then a winding 5 is formed on the insulator 3. In the coil antenna 1 according to the second embodiment, a cylindrical magnetic core 4 is inserted into a cylindrical bobbin 5 and then a winding 5 is formed on the bobbin 5. In this case, the coil antenna 1 can be configured by inserting the columnar magnetic body 2 into the columnar bobbin 5.
 巻線5としては、金属線や金属箔等を用いることができる。巻線5はその表面に絶縁被膜を有するものであってもよい。巻線5のサイズは任意であるが、直径1mm以下の金属線、あるいは幅が2mm以下で厚さが0.5mm以下の金属箔が好ましい。巻線5のサイズが上記値を超えると、円柱状磁心4に巻回するときに巻線5のスプリングバックが大きくなり、円柱状磁心4と巻線5との距離を一定に保ちにくくなる。このような場合には、巻線後に樹脂コーティングを施すことが有効である。 As the winding 5, a metal wire, a metal foil, or the like can be used. The winding 5 may have an insulating coating on its surface. Although the size of the winding 5 is arbitrary, a metal wire having a diameter of 1 mm or less or a metal foil having a width of 2 mm or less and a thickness of 0.5 mm or less is preferable. When the size of the winding 5 exceeds the above value, the spring back of the winding 5 becomes large when wound around the cylindrical magnetic core 4, and it becomes difficult to keep the distance between the cylindrical magnetic core 4 and the winding 5 constant. In such a case, it is effective to apply a resin coating after winding.
 円柱状ボビン5は円柱状磁心4が挿入する円柱状の空洞部を有する。また、円柱状ボビン5の外形に関しても、円柱状磁心4と同様な円柱状であることが好ましい。円柱状ボビン5の形成材料としては、液晶ポリマー(LCP)やABS樹脂等の絶縁樹脂(工業用プラスチック)を用いることが好ましい。円柱状ボビン5の肉厚は0.1~0.5mmの範囲であることが好ましい。円柱状ボビン5の肉厚が0.1mm未満であると、ボビン5の強度が不十分になりやすく、0.5mmを超えると円柱状磁心2と巻線5との距離が離れすぎてしまうために好ましくない。 The columnar bobbin 5 has a columnar cavity into which the columnar magnetic core 4 is inserted. Further, the outer shape of the columnar bobbin 5 is preferably a columnar shape similar to the columnar magnetic core 4. As a material for forming the cylindrical bobbin 5, it is preferable to use an insulating resin (industrial plastic) such as liquid crystal polymer (LCP) or ABS resin. The wall thickness of the cylindrical bobbin 5 is preferably in the range of 0.1 to 0.5 mm. If the thickness of the cylindrical bobbin 5 is less than 0.1 mm, the strength of the bobbin 5 tends to be insufficient, and if it exceeds 0.5 mm, the distance between the cylindrical magnetic core 2 and the winding 5 will be too large. It is not preferable.
 巻線5の先端を固定する必要がある場合には、円柱状磁心4の端部に平面部7を設け、巻線5の先端部を平面部7に固定するようにしてもよい。図3は端部に平面部7を設けた円柱状磁心4の一例を示している。図示しないが、円柱状磁心4の長手方向(円周面)に直接平坦部を設けてもよい。このような平面部を設ける場合には、円柱状磁心4の長さの10%以下となるように形成することが好ましい。 When it is necessary to fix the tip of the winding 5, the flat portion 7 may be provided at the end of the cylindrical magnetic core 4 and the tip of the winding 5 may be fixed to the flat portion 7. FIG. 3 shows an example of a cylindrical magnetic core 4 having a flat portion 7 at the end. Although not shown, a flat portion may be provided directly in the longitudinal direction (circumferential surface) of the cylindrical magnetic core 4. When providing such a plane part, it is preferable to form it so that it may become 10% or less of the length of the cylindrical magnetic core 4. FIG.
 この実施形態のコイルアンテナ1は、巻線5を施す部分が円柱状であるため、磁性体2と巻線5との距離を略一定とすることができる。従来のコイルアンテナのように、磁性体が直方体であると直方体の角部と平面部とで磁性体と巻線との距離に違いが生じるため、コイル部分で電磁界集中が発生して渦電流による損失が発生する。その結果、アンテナ特性が低下する。円柱状磁性体2を用いることによって、磁性体2と巻線5との距離を略一定に保つことができるため、コイル部分での渦電流の発生を抑制することができる。具体的には、磁性体2の中心軸と巻線5との距離の最大値と最小値との差を0.25mm以下にすることができる。これによって、アンテナ特性を向上させることが可能となる。 In the coil antenna 1 of this embodiment, since the portion to which the winding 5 is applied is cylindrical, the distance between the magnetic body 2 and the winding 5 can be made substantially constant. If the magnetic body is a rectangular parallelepiped like a conventional coil antenna, there will be a difference in the distance between the magnetic body and the winding between the corner and the flat surface of the rectangular parallelepiped. Loss due to As a result, antenna characteristics are degraded. By using the columnar magnetic body 2, the distance between the magnetic body 2 and the winding 5 can be kept substantially constant, so that the generation of eddy current in the coil portion can be suppressed. Specifically, the difference between the maximum value and the minimum value of the distance between the central axis of the magnetic body 2 and the winding 5 can be set to 0.25 mm or less. As a result, the antenna characteristics can be improved.
 上述したコイルアンテナ1によれば、アンテナ特性、特に電気特性長の短縮効果を高めることができるため、例えば100MHz以上の無線信号アンテナに適用することが可能となる。周波数の上限は磁性体の特性にもよるが、磁性体の透磁率が高ければ3GHz程度まで有効である。透磁率が3GHz程度まで有効な磁性体としては、前述した鉄アルミシリコン合金(センダスト)、鉄ニッケル合金(パーマロイ)、鉄ニッケルパーマロイ合金(モリブデンパーマロイ)、鉄コバルト合金、鉄コバルトシリコン合金、鉄シリコンバナジウム合金、鉄コバルトボロン合金、コバルト基アモルフアス合金、鉄基アモルフアス合金、カルボニル鉄、純鉄等が挙げられる。 According to the coil antenna 1 described above, the effect of shortening the antenna characteristics, particularly the electrical characteristic length, can be enhanced, so that it can be applied to, for example, a radio signal antenna of 100 MHz or higher. The upper limit of the frequency depends on the characteristics of the magnetic material, but is effective up to about 3 GHz if the magnetic material has a high magnetic permeability. Magnetic materials effective up to about 3 GHz are iron aluminum silicon alloy (Sendust), iron nickel alloy (permalloy), iron nickel permalloy alloy (molybdenum permalloy), iron cobalt alloy, iron cobalt silicon alloy, iron silicon. Examples thereof include vanadium alloy, iron cobalt boron alloy, cobalt-based amorphous alloy, iron-based amorphous alloy, carbonyl iron, and pure iron.
 この実施形態のコイルアンテナ1は、様々な通信機能を有する電子機器に適用可能であり、アンテナの小型・薄型化やアンテナ特性の向上を実現することができる。特に、100MHz以上の高周波領域で有効であるため、コイルアンテナ1は無線LAN用電子機器、地上デジタル放送用電子機器、携帯電話等の携帯通信用電子機器のアンテナに好適である。このような電子機器にコイルアンテナ1を搭載することによって、受信特性やそれに基づく電子機器の特性を向上させることが可能となる。 The coil antenna 1 of this embodiment can be applied to electronic devices having various communication functions, and can realize a reduction in size and thickness of the antenna and improvement in antenna characteristics. In particular, since the coil antenna 1 is effective in a high frequency region of 100 MHz or more, the coil antenna 1 is suitable for an antenna of a wireless communication electronic device such as a wireless LAN electronic device, a digital terrestrial broadcasting electronic device, and a mobile phone. By mounting the coil antenna 1 on such an electronic device, it is possible to improve the reception characteristics and the characteristics of the electronic device based thereon.
 さらに、コイルアンテナ1は軟磁性体粉末と有機結合剤との混合物をベース材料としているため、柔軟性のあるコイルアンテナ1を提供することができる。このため、電子機器でアンテナを折り曲げて内蔵しなければならないような場合であっても、破損等の不具合の発生を抑制することができる。また、折り曲げた場合であっても円柱状磁心4と巻線5との距離が大きく変わらないため、アンテナ特性を良好に保つことができる。 Furthermore, since the coil antenna 1 is based on a mixture of soft magnetic powder and an organic binder, the flexible coil antenna 1 can be provided. For this reason, even if it is a case where an antenna must be bent and built in an electronic device, it is possible to suppress the occurrence of problems such as breakage. In addition, even when it is bent, the distance between the cylindrical magnetic core 4 and the winding 5 does not change greatly, so that the antenna characteristics can be kept good.
 次に、この実施形態のコイルアンテナ1の製造方法について説明する。コイルアンテナ1の製造方法は特に限定されるものではないが、効率よく得るための方法として以下の方法が挙げられる。まず、軟磁性体粉末を用意する。軟磁性体粉末の材質や粒径は求める特性に応じて適宜選択される。軟磁性体粉末を有機結合剤と混合する。軟磁性体粉末と有機結合剤との混合割合は、体積比で[軟磁性体粉末/(軟磁性体粉末+有機結合剤)]×100(%)を30~70%の範囲とすることが好ましい。これによって、軟磁性体粉末の磁気特性を生かしつつ、強度が強く取扱い性に優れる成形体を得ることができる。 Next, a method for manufacturing the coil antenna 1 of this embodiment will be described. Although the manufacturing method of the coil antenna 1 is not specifically limited, The following methods are mentioned as a method for obtaining efficiently. First, a soft magnetic powder is prepared. The material and particle size of the soft magnetic powder are appropriately selected according to the required characteristics. Soft magnetic powder is mixed with an organic binder. The mixing ratio of the soft magnetic powder and the organic binder should be [soft magnetic powder / (soft magnetic powder + organic binder)] × 100 (%) in a volume ratio of 30 to 70%. preferable. As a result, it is possible to obtain a molded body having high strength and excellent handleability while utilizing the magnetic properties of the soft magnetic powder.
 次に、軟磁性体粉末と有機結合剤との混合物を円柱状に成形して円柱状磁性体2を調製する。成形方法としては、金型成形や押出成形が生産性に優れることから好ましい。押出成形の場合には、成形体を必要なサイズに切断する。また、有機結合剤が熱硬化性樹脂であれば、熱処理(キュア)して成形体を固化する。いずれの有機結合剤の場合も十分に固化させてから次の工程に移る。また必要に応じて、円柱状磁性体2の表面に樹脂被覆を施して、円柱状磁性体2の強度を向上させてもよい。 Next, a cylindrical magnetic body 2 is prepared by forming a mixture of soft magnetic powder and an organic binder into a cylindrical shape. As the molding method, mold molding and extrusion molding are preferable because of excellent productivity. In the case of extrusion molding, the molded body is cut into a required size. If the organic binder is a thermosetting resin, the molded body is solidified by heat treatment (curing). In the case of any organic binder, after sufficiently solidifying, it moves to the next step. If necessary, the surface of the cylindrical magnetic body 2 may be coated with a resin to improve the strength of the cylindrical magnetic body 2.
 次いで、円柱状磁性体2の表面を絶縁体3で覆うことによって、円柱状磁性体2を絶縁する。絶縁体3として熱収縮チューブを用いる場合には、予め所定の長さに切断した熱収縮チューブを用意しておき、チューブ中に円柱状磁性体2を挿入する。この後、熱処理を施してチューブを熱収縮させることによって、円柱状磁心4を作製する。熱収縮チューブは熱収縮後に円柱状磁性体2の先端部が剥き出しにならないような長さを有することが好ましい。絶縁体3として熱収縮性能を持たない樹脂チューブを用いる場合には、チューブに円柱状磁性体2を挿入する。隙間が形成される場合には、別途樹脂を充填してもよい。 Next, the cylindrical magnetic body 2 is insulated by covering the surface of the cylindrical magnetic body 2 with the insulator 3. When using a heat-shrinkable tube as the insulator 3, a heat-shrinkable tube cut into a predetermined length is prepared in advance, and the columnar magnetic body 2 is inserted into the tube. Then, the cylindrical magnetic core 4 is produced by heat-treating the tube to cause heat shrinkage. The heat-shrinkable tube preferably has such a length that the tip of the cylindrical magnetic body 2 is not exposed after heat-shrinking. When a resin tube having no heat shrink performance is used as the insulator 3, the columnar magnetic body 2 is inserted into the tube. If a gap is formed, a resin may be separately charged.
 第1の実施形態によるコイルアンテナ1においては、円柱状磁心4に巻線5を巻回する。第2の実施形態によるコイルアンテナ1においては、例えば予め巻線5を施したボビン6に、円柱状磁心4を挿入する。巻線5の先端部を止める必要があるとき、第1の実施形態によるコイルアンテナ1では、例えば円柱状磁心4の端部に設けた平面部7を固定部として使用する。第2の実施形態によるコイルアンテナ1であれば、ボビン6の端部に平面部を設けておき、そのような平面部を固定部として使用する。固定方法は特に限定されず、接着や溶接等が適用される。また、円柱状磁心4や円柱状ボビン6に巻線5を形成した後に、コイルアンテナ1全体に樹脂被覆を施して強度を向上させてもよい。 In the coil antenna 1 according to the first embodiment, a winding 5 is wound around a cylindrical magnetic core 4. In the coil antenna 1 according to the second embodiment, for example, a cylindrical magnetic core 4 is inserted into a bobbin 6 to which a winding 5 has been applied in advance. When it is necessary to stop the front end of the winding 5, in the coil antenna 1 according to the first embodiment, for example, the flat portion 7 provided at the end of the columnar magnetic core 4 is used as a fixed portion. If it is the coil antenna 1 by 2nd Embodiment, a plane part will be provided in the edge part of the bobbin 6, and such a plane part will be used as a fixing | fixed part. The fixing method is not particularly limited, and adhesion, welding, or the like is applied. Further, after the winding 5 is formed on the cylindrical magnetic core 4 or the cylindrical bobbin 6, the entire coil antenna 1 may be coated with a resin to improve the strength.
 次に、実施例とその評価結果について述べる。 Next, examples and evaluation results will be described.
 (実施例1)
高周波誘導熱プラズマ装置のチャンバ内に、プラズマ発生用ガスとしてアルゴンを40L/分で導入してプラズマを発生させた。このチャンバ内のプラズマに、平均粒径が10μmのFe粉末と平均粒径が3μmのAl粉末とを、FeとAlとの比率が質量比で20:1になるようにアルゴン(キャリアガス)と共に3L/分で噴射した。同時に、チャンバ内に炭素被覆の原料としてアセチレンガスをキャリアガスと共に導入した。このようにして、FeAl合金粒子を炭素で被覆したナノ粒子を得た。
Example 1
Argon was introduced as a plasma generating gas at a rate of 40 L / min into the chamber of the high frequency induction thermal plasma apparatus to generate plasma. The plasma in the chamber is mixed with Fe powder having an average particle diameter of 10 μm and Al powder having an average particle diameter of 3 μm, together with argon (carrier gas) so that the ratio of Fe to Al is 20: 1 by mass ratio. Injected at 3 L / min. At the same time, acetylene gas was introduced into the chamber together with a carrier gas as a raw material for carbon coating. In this way, nanoparticles in which FeAl alloy particles were coated with carbon were obtained.
 炭素で被覆したFeAl合金のナノ粒子を500mL/分の水素フロー下で、600℃にて還元処理し、室温まで冷却した後、酸素を0.1体積%含むアルゴン雰囲気中に取り出して酸化することによって、コアシェル型軟磁性体粉末を製造した。得られたコアシェル型軟磁性体粉末は、コアである軟磁性体粉末の平均粒径が32nmで、酸化物被膜の厚さが4nmの構造を有していた。 The carbon-coated FeAl alloy nanoparticles are reduced at 600 ° C. under a hydrogen flow of 500 mL / min, cooled to room temperature, and then taken out into an argon atmosphere containing 0.1% by volume of oxygen and oxidized. Thus, a core-shell type soft magnetic powder was produced. The obtained core-shell type soft magnetic powder had a structure in which the average particle size of the soft magnetic powder as the core was 32 nm and the thickness of the oxide film was 4 nm.
 コアシェル型軟磁性体粉末とポリビニルブチラール樹脂(有機結合剤)とを体積比で60:40の割合で混合し、この混合物を粉体プレスにより直径2mm×40mmの円柱状に成形した後、キュア処理して樹脂を固化させた。この円柱状磁性体にエポキシ樹脂を塗布した後、PTFE製熱収縮チューブ(内径2.41mm×外径3.01mm)に挿入し、120℃×60分の条件で熱処理することによって、直径3.01mm×40mmの円柱状磁心を作製した。この磁心に直径0.5mmのポリウレタン線を巻回(直巻き/15ターン程度)してコイルアンテナとした。コイルアンテナの構成を表1に示す。 Core-shell type soft magnetic powder and polyvinyl butyral resin (organic binder) are mixed at a volume ratio of 60:40, and the mixture is molded into a cylindrical shape having a diameter of 2 mm × 40 mm by a powder press, followed by curing treatment. The resin was solidified. After applying an epoxy resin to this cylindrical magnetic body, it is inserted into a PTFE heat-shrinkable tube (inner diameter 2.41 mm × outer diameter 3.01 mm) and heat-treated at 120 ° C. for 60 minutes to obtain a diameter of 3. A cylindrical magnetic core of 01 mm × 40 mm was produced. A polyurethane wire having a diameter of 0.5 mm was wound around this magnetic core (direct winding / about 15 turns) to obtain a coil antenna. Table 1 shows the configuration of the coil antenna.
 (実施例2)
絶縁チューブをPFA製熱収縮チューブに代える以外は、実施例1と同様にしてコイルアンテナを作製した。コイルアンテナの構成を表1に示す。
(Example 2)
A coil antenna was produced in the same manner as in Example 1 except that the insulating tube was replaced with a PFA heat-shrinkable tube. Table 1 shows the configuration of the coil antenna.
 (実施例3)
実施例1で作製した円柱状磁性体を、液晶ポリマー製ボビン(肉厚0.2mm)に挿入した後、ボビン上に巻線を施してコイルアンテナを作製した。なお、巻線の種類やターン数は実施例1と同一とした。コイルアンテナの構成を表1に示す。
(Example 3)
After inserting the columnar magnetic body produced in Example 1 into a liquid crystal polymer bobbin (thickness 0.2 mm), winding was performed on the bobbin to produce a coil antenna. The type of winding and the number of turns were the same as in Example 1. Table 1 shows the configuration of the coil antenna.
 (実施例4)
高周波誘導熱プラズマ装置のチャンバ内に、プラズマ発生用ガスとしてアルゴンを40L/分で導入してプラズマを発生させた。このチャンバ内のプラズマに、平均粒径が10μmのFe粉末と平均粒径が10μmのCo粉末と平均粒径が3μmのAl粉末とを、FeとCoとAlとの比率が質量比で70:30:10になるようにアルゴン(キャリアガス)と共に3L/分で噴射した。同時に、チャンバ内に炭素被覆の原料としてアセチレンガスをキャリアガスと共に導入した。このようにして、FeCoAl合金粒子を炭素で被覆したナノ粒子を得た。
Example 4
Argon was introduced as a plasma generating gas at a rate of 40 L / min into the chamber of the high frequency induction thermal plasma apparatus to generate plasma. The plasma in this chamber is mixed with Fe powder having an average particle diameter of 10 μm, Co powder having an average particle diameter of 10 μm and Al powder having an average particle diameter of 3 μm, and the ratio of Fe, Co, and Al is 70: It sprayed at 3 L / min with argon (carrier gas) so that it might be set to 30:10. At the same time, acetylene gas was introduced into the chamber together with a carrier gas as a raw material for carbon coating. In this way, nanoparticles in which FeCoAl alloy particles were coated with carbon were obtained.
 炭素で被覆したFeCoAl合金のナノ粒子を500mL/分の水素フロー下で、650℃にて還元処理し、室温まで冷却した後、酸素を0.1体積%含むアルゴン雰囲気中に取り出して酸化することによって、コアシェル型軟磁性体粉末を製造した。得られたコアシェル型軟磁性体粉末は、コアである軟磁性体粉末の平均粒径が18nmで、酸化物被膜の厚さが2.5nmの構造を有していた。軟磁性体粉末はFe-Co-Al-Cで構成されており、酸化物被膜はFe-Co-Al-Oで構成されていた。 The FeCoAl alloy nanoparticles coated with carbon are reduced at 650 ° C. under a hydrogen flow of 500 mL / min, cooled to room temperature, then taken out into an argon atmosphere containing 0.1% by volume of oxygen and oxidized. Thus, a core-shell type soft magnetic powder was produced. The obtained core-shell type soft magnetic powder had a structure in which the average particle diameter of the core soft magnetic powder was 18 nm and the thickness of the oxide film was 2.5 nm. The soft magnetic powder was composed of Fe—Co—Al—C, and the oxide film was composed of Fe—Co—Al—O.
 コアシェル型軟磁性体粉末とポリビニルブチラール樹脂(有機結合剤)とを体積比で40:60の割合で混合し、この混合物を粉体プレスにより直径2mm×40mmの円柱状に成形した後、キュア処理して樹脂を固化させた。この円柱状磁性体にエポキシ樹脂を塗布した後、120℃で熱処理することによって、直径2.1mm×長さ40mmの円柱状磁心を作製した。この磁心に幅1mm×厚さ0.2mmの金属箔状Cu線を巻回(12ターン程度)してコイルアンテナとした。コイルアンテナの構成を表1に示す。 Core-shell type soft magnetic powder and polyvinyl butyral resin (organic binder) are mixed at a volume ratio of 40:60, and this mixture is molded into a cylindrical shape having a diameter of 2 mm × 40 mm by a powder press, followed by curing treatment. The resin was solidified. After applying an epoxy resin to this columnar magnetic body, a columnar magnetic core having a diameter of 2.1 mm and a length of 40 mm was produced by heat treatment at 120 ° C. A metal foil Cu wire having a width of 1 mm and a thickness of 0.2 mm was wound around this magnetic core (about 12 turns) to obtain a coil antenna. Table 1 shows the configuration of the coil antenna.
 (実施例5、6)
PTFE製熱収縮チューブ(実施例5、6)を用いて、実施例4と同様なコイルアンテナを作製した。コイルアンテナの構成を表1に示す。
(Examples 5 and 6)
The coil antenna similar to Example 4 was produced using the PTFE heat-shrinkable tube (Examples 5 and 6). Table 1 shows the configuration of the coil antenna.
 (実施例7)
実施例4で作製した円柱状磁性体を、液晶ポリマー製ボビン(肉厚0.2mm)に挿入した後、ボビン上に巻線を施してコイルアンテナを作製した。なお、巻線の種類やターン数は実施例4と同一とした。コイルアンテナの構成を表1に示す。
(Example 7)
After inserting the columnar magnetic body produced in Example 4 into a liquid crystal polymer bobbin (thickness 0.2 mm), winding was performed on the bobbin to produce a coil antenna. The type of winding and the number of turns were the same as in Example 4. Table 1 shows the configuration of the coil antenna.
 (比較例1)
実施例1における円柱状磁性体の形状を高さ2mm×長さ40mmの直方体とし、この直方体状磁性体に巻線を施してコイルアンテナを作製した。なお、巻線の種類やターン数は実施例1と同一とした。
(Comparative Example 1)
The cylindrical magnetic body in Example 1 was a rectangular parallelepiped having a height of 2 mm and a length of 40 mm, and a coil antenna was manufactured by winding the rectangular parallelepiped magnetic body. The type of winding and the number of turns were the same as in Example 1.
 (比較例2)
比較例1の直方体状磁性体を熱収縮チューブに挿入し、これに熱収縮処理を施した後に巻線を施してコイルアンテナを作製した。巻線処理は比較例1と同様とした。
(Comparative Example 2)
The rectangular parallelepiped magnetic body of Comparative Example 1 was inserted into a heat shrinkable tube, subjected to heat shrinkage treatment, and then wound to produce a coil antenna. The winding process was the same as in Comparative Example 1.
 (比較例3)
実施例1の円柱状磁性体を絶縁チューブで覆うことなく、円柱状磁性体に直接巻線処理を施してコイルアンテナを作製した。巻線処理は実施例1と同様とした。
(Comparative Example 3)
Without covering the cylindrical magnetic body of Example 1 with an insulating tube, the cylindrical magnetic body was directly wound to produce a coil antenna. The winding process was the same as in Example 1.
 (比較例4)
実施例1の円柱状磁性体を絶縁シート(フィルム)で覆った後に、巻線処理を施してコイルアンテナを作製した。巻線処理は実施例1と同様とした。
(Comparative Example 4)
The cylindrical magnetic body of Example 1 was covered with an insulating sheet (film), and then a winding process was performed to produce a coil antenna. The winding process was the same as in Example 1.
 実施例1~7および比較例1~4に係るコイルアンテナについて、円柱状磁心の表面とコイル(巻線)との間の平均距離と、円柱状磁心の中心軸とコイル(巻線)との間の距離の最大値と最小値との差を測定した。さらに、各コイルアンテナのアンテナ特性として放射効率を測定した。これらの結果を表2に示す。放射効率はダイポールアンテナと比較した値(単位:dB)として示している。 For the coil antennas according to Examples 1 to 7 and Comparative Examples 1 to 4, the average distance between the surface of the cylindrical magnetic core and the coil (winding), and the center axis of the cylindrical magnetic core and the coil (winding) The difference between the maximum value and the minimum value of the distance between them was measured. Furthermore, the radiation efficiency was measured as the antenna characteristics of each coil antenna. These results are shown in Table 2. The radiation efficiency is shown as a value (unit: dB) compared with the dipole antenna.
 ダイポールアンテナとしては、同軸ケーブルの中心線(中心導体)と網線(外部導体)を、それぞれ長さ15cmの銅線(直径2mm)で引き出して、全長30cmの長さにしたものを用いた。引き出した銅線をアンテナ素子(エレメント)と呼ぶ。空間中に電界があると、アンテナ素子の両端に電位差が生じ、電波が同軸ケーブルの中に流れていくことになる。アンテナ素子を15cm×2本で全長30cmとしたのは、受信したい電波を500MHzに設定し、波長500MHzの半分(λ/2)の値に基づく。アンテナ素子の全長は、アンテナ全長=λ/2=300/FREQ/2[m]、周波数:FREQ[MHz]により求めることができる。 As the dipole antenna, a coaxial cable center line (center conductor) and mesh line (outer conductor) were each drawn by a 15 cm long copper wire (diameter 2 mm) to a total length of 30 cm. The drawn copper wire is called an antenna element (element). If there is an electric field in the space, a potential difference occurs between both ends of the antenna element, and radio waves flow into the coaxial cable. The reason why the length of the antenna element is 15 cm × 2 and the total length is 30 cm is that the radio wave to be received is set to 500 MHz and is based on a half value (λ / 2) of the wavelength of 500 MHz. The total length of the antenna element can be obtained from the total length of the antenna = λ / 2 = 300 / FREQ / 2 [m], frequency: FREQ [MHz].
 まず、ダイポールアンテナ(標準アンテナ)を地上デジタルチューナ等の電子機器に接続して全方位角の受信強度を測定する。このとき、標準アンテナと対向するアンテナは水平、垂直偏波を測定するものとする。次に、標準アンテナを測定するアンテナ(実施例および比較例)に置き換えて、全方位角の受信強度を測定する。そして、各例のアンテナの放射電力と標準アンテナの放射電力の比を放射効率とする。 First, a dipole antenna (standard antenna) is connected to an electronic device such as a terrestrial digital tuner to measure the reception intensity at all azimuth angles. At this time, the antenna facing the standard antenna measures horizontal and vertical polarization. Next, it replaces with the antenna (Example and Comparative Example) which measures a standard antenna, and the receiving intensity of all azimuths is measured. The ratio of the radiation power of the antenna of each example and the radiation power of the standard antenna is defined as radiation efficiency.
 このような方法によって、500MHzの周波数についての放射効率を測定した。測定にあたっては、各例のコイルアンテナを10個用意して測定し、その最小値に基づいて、500MHzで利得が-10dB以上のものを[○(良好)]、-12dB以上-10dB未満を[△(普通)]、-12dB未満を[×(不満)]とした。 The radiation efficiency for a frequency of 500 MHz was measured by such a method. In the measurement, 10 coil antennas of each example were prepared and measured, and based on the minimum value, those having a gain of −10 dB or more at 500 MHz [◯ (good)], and −12 dB or more and less than −10 dB [ Δ (ordinary)], less than −12 dB was regarded as [× (dissatisfied)].
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例1~7のコイルアンテナはいずれも優れたアンテナ特性を有している。一方、比較例1は角柱状の磁心に直接巻回しているため、磁性体近傍での電磁界集中により磁性体近傍の導体内で大きな損失が生じ、その結果として特性が低下した。比較例2は熱収縮チューブを被せているが、角柱状磁心の中心軸と巻線との間の距離が不均一であるため、電気特性長の短縮効果にばらつきが生じ、また導体箇所に一部不連続が発生して高周波電流が集中するため、アンテナ特性が低下した。 As is clear from Table 2, the coil antennas of Examples 1 to 7 all have excellent antenna characteristics. On the other hand, since Comparative Example 1 is wound directly around a prismatic magnetic core, a large loss occurs in the conductor near the magnetic body due to the concentration of the electromagnetic field near the magnetic body, and as a result, the characteristics deteriorate. Comparative Example 2 is covered with a heat-shrinkable tube, but since the distance between the central axis of the prismatic magnetic core and the winding is non-uniform, there is a variation in the shortening effect of the electrical characteristic length, and there is a difference in the conductor location. The antenna characteristics deteriorated because the discontinuity occurred and the high frequency current concentrated.
 比較例3は円柱状磁心に直接巻線を施したものであり、磁性体近傍での電磁界集中により磁性体近傍の導体内で大きな損失が生じ、その結果として特性が低下した。比較例4は円柱状磁性体に絶縁シートを巻回したものであるため、フィルム巻回時に加わるテンション等で不均一な隙間が生じ、またフィルム端部の重なる部分において段差が生じる。このため、巻線と磁心間距離が不均一となって電気特性長の短縮効果にバラツキが生じ、また導体箇所に一部不連続が発生して高周波電流が集中するため、アンテナ特性が低下した。 In Comparative Example 3, a cylindrical magnetic core was directly wound, and a large loss was generated in the conductor near the magnetic body due to the concentration of the electromagnetic field near the magnetic body, resulting in a decrease in characteristics. In Comparative Example 4, since an insulating sheet is wound around a columnar magnetic body, a non-uniform gap is generated due to a tension applied during film winding, and a step is formed in a portion where film end portions overlap. For this reason, the distance between the winding and the magnetic core is non-uniform, resulting in variations in the shortening effect of the electrical characteristic length. Also, the discontinuity occurs in the conductor part and the high-frequency current is concentrated, so that the antenna characteristic is deteriorated. .
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 In addition, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 1…コイルアンテナ、2…円柱状磁性体、3…絶縁体、4…円柱状磁心、5…巻線、6…円柱状ボビン、7…平坦部。 DESCRIPTION OF SYMBOLS 1 ... Coil antenna, 2 ... Cylindrical magnetic body, 3 ... Insulator, 4 ... Cylindrical magnetic core, 5 ... Winding, 6 ... Cylindrical bobbin, 7 ... Flat part.

Claims (15)

  1.  軟磁性体粉末と有機結合剤との混合物からなる円柱状磁性体と、前記円柱状磁性体の表面を覆う絶縁体とを備える円柱状磁心と、
     前記円柱状磁心に巻回された巻線と
     を具備することを特徴とするコイルアンテナ。
    A cylindrical magnetic core comprising a cylindrical magnetic body made of a mixture of soft magnetic powder and an organic binder, and an insulator covering the surface of the cylindrical magnetic body;
    A coil antenna comprising: a winding wound around the cylindrical magnetic core.
  2.  請求項1記載のコイルアンテナにおいて、
     さらに、前記円柱状磁心の外周に装着された円柱状ボビンを具備し、前記巻線は前記円柱状ボビン上に巻回されていることを特徴とするコイルアンテナ。
    The coil antenna according to claim 1, wherein
    The coil antenna further comprises a columnar bobbin mounted on an outer periphery of the columnar magnetic core, and the winding is wound on the columnar bobbin.
  3.  請求項1記載のコイルアンテナにおいて、
     前記軟磁性体粉末は、鉄アルミシリコン合金、鉄ニッケル合金、鉄ニッケルパーマロイ合金、鉄コバルト合金、鉄コバルトシリコン合金、鉄シリコンバナジウム合金、鉄コバルトボロン合金、コバルト基アモルフアス合金、鉄基アモルフアス合金、カルボニル鉄、および純鉄から選ばれる少なくとも1種からなることを特徴とするコイルアンテナ。
    The coil antenna according to claim 1, wherein
    The soft magnetic powder is made of iron aluminum silicon alloy, iron nickel alloy, iron nickel permalloy alloy, iron cobalt alloy, iron cobalt silicon alloy, iron silicon vanadium alloy, iron cobalt boron alloy, cobalt base amorphous alloy, iron base amorphous alloy, A coil antenna comprising at least one selected from carbonyl iron and pure iron.
  4.  請求項1記載のコイルアンテナにおいて、
     前記軟磁性体粉末の表面に、窒化物、炭化物、および酸化物から選ばれる少なくとも1種からなる被膜が設けられていることを特徴とするコイルアンテナ。
    The coil antenna according to claim 1, wherein
    A coil antenna, wherein a film made of at least one selected from a nitride, a carbide, and an oxide is provided on a surface of the soft magnetic powder.
  5.  請求項1記載のコイルアンテナにおいて、
     前記磁性体粉末の平均粒径が10nm以上1μm以下の範囲であることを特徴とするコイルアンテナ。
    The coil antenna according to claim 1, wherein
    The coil antenna, wherein the magnetic powder has an average particle size in the range of 10 nm to 1 μm.
  6.  請求項1記載のコイルアンテナにおいて、
     前記絶縁体の少なくとも一部として熱収縮チューブが用いられていることを特徴とするコイルアンテナ。
    The coil antenna according to claim 1, wherein
    A coil antenna, wherein a heat shrinkable tube is used as at least a part of the insulator.
  7.  請求項6記載のコイルアンテナにおいて、
     前記熱収縮チューブは、ポリテトラフルオロエチレン、テトラフルオロエチレン-ペルフルオロアルコキシエチレン共重合体、ペルフルオロエチレン-ペルフルオロプロピレン共重合体、ポリオレフィン、ポリフッ化ビニリデン、ナイロンエラストマー、およびシリコーンゴムから選ばれる少なくとも1種からなることを特徴とするコイルアンテナ。
    The coil antenna according to claim 6, wherein
    The heat shrinkable tube is made of at least one selected from polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkoxyethylene copolymer, perfluoroethylene-perfluoropropylene copolymer, polyolefin, polyvinylidene fluoride, nylon elastomer, and silicone rubber. The coil antenna characterized by becoming.
  8.  請求項1記載のコイルアンテナにおいて、
     前記絶縁体の厚さが0.05mm以上あることを特徴とするコイルアンテナ。
    The coil antenna according to claim 1, wherein
    A coil antenna, wherein the insulator has a thickness of 0.05 mm or more.
  9.  請求項1記載のコイルアンテナにおいて、
     前記絶縁体の厚さが0.2mm以上あることを特徴とするコイルアンテナ。
    The coil antenna according to claim 1, wherein
    A coil antenna, wherein the insulator has a thickness of 0.2 mm or more.
  10.  請求項1記載のコイルアンテナにおいて、
     前記絶縁体の厚さが0.85mm以下あることを特徴とするコイルアンテナ。
    The coil antenna according to claim 1, wherein
    A coil antenna, wherein the insulator has a thickness of 0.85 mm or less.
  11.  請求項1記載のコイルアンテナにおいて、
     前記円柱状磁心の少なくとも一方の端部に、前記巻線を止める平坦部が設けられていることを特徴とするコイルアンテナ。
    The coil antenna according to claim 1, wherein
    A coil antenna, wherein a flat portion for stopping the winding is provided at at least one end of the cylindrical magnetic core.
  12.  請求項1記載のコイルアンテナにおいて、
     100MHz以上の無線信号アンテナに用いられることを特徴とするコイルアンテナ。
    The coil antenna according to claim 1, wherein
    A coil antenna used for a radio signal antenna of 100 MHz or higher.
  13.  請求項1記載のコイルアンテナを具備することを特徴とする電子機器。 An electronic apparatus comprising the coil antenna according to claim 1.
  14.  請求項13記載の電子機器において、
     前記コイルアンテナは100MHz以上の無線信号アンテナであることを特徴とするコイルアンテナ。
    The electronic device according to claim 13.
    The coil antenna is a radio signal antenna of 100 MHz or more.
  15.  請求項13記載の電子機器において、
     無線LAN用電子機器、地上デジタル放送用電子機器、または携帯通信用電子機器であることを特徴とする電子機器。
    The electronic device according to claim 13.
    An electronic device characterized by being an electronic device for wireless LAN, an electronic device for terrestrial digital broadcasting, or an electronic device for mobile communication.
PCT/JP2010/004717 2009-07-24 2010-07-23 Coil antenna and electronic device using same WO2011010471A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080033656.3A CN102474011B (en) 2009-07-24 2010-07-23 Coil antenna and electronic device using same
KR1020127004367A KR101337753B1 (en) 2009-07-24 2010-07-23 Coil antenna and electronic device using same
JP2011523564A JP5658153B2 (en) 2009-07-24 2010-07-23 Coil antenna and electronic equipment using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-173739 2009-07-24
JP2009173739 2009-07-24

Publications (1)

Publication Number Publication Date
WO2011010471A1 true WO2011010471A1 (en) 2011-01-27

Family

ID=43498951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004717 WO2011010471A1 (en) 2009-07-24 2010-07-23 Coil antenna and electronic device using same

Country Status (4)

Country Link
JP (1) JP5658153B2 (en)
KR (1) KR101337753B1 (en)
CN (1) CN102474011B (en)
WO (1) WO2011010471A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811148A (en) * 2012-11-09 2014-05-21 辉达公司 Winding inductor for switching power supply and switching power supply with winding inductor
JP2015115448A (en) * 2013-12-11 2015-06-22 アイシン精機株式会社 Inductor
JP2016103598A (en) * 2014-11-28 2016-06-02 Tdk株式会社 Coil component
EP3106195A3 (en) * 2015-06-18 2017-03-01 Biosense Webster (Israel) Ltd. Tracking sensor with ferrite powder core
JP2018022918A (en) * 2014-01-29 2018-02-08 アルプス電気株式会社 Electronic component and electronic device
JP6392967B1 (en) * 2017-12-27 2018-09-19 Smk−Logomotion株式会社 Near-field wireless communication antenna element

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370671B1 (en) * 2012-06-13 2014-03-04 박희택 Multi-frequency public antenna and portable terminal case
CN102904005A (en) * 2012-10-29 2013-01-30 中国石油天然气股份有限公司 Downhole signal receiving antenna and manufacturing method thereof
US9590305B2 (en) * 2012-11-15 2017-03-07 Smk Corporation Non-stationary magnetic field emitter, its connection in system and data modulation method
KR101475847B1 (en) * 2013-08-05 2015-01-05 (주) 세노텍 Choke trans for vehicle and lf antenna for the same and method of manufacturing the same
DE102013215520A1 (en) * 2013-08-07 2015-02-12 Robert Bosch Gmbh Soft magnetic metal powder composite material and method for producing such
KR101642612B1 (en) * 2014-12-30 2016-07-25 삼성전기주식회사 Inductor and Method of Fabricating the Same
KR101630834B1 (en) * 2016-01-25 2016-06-15 (주)동산전자 Tubular ferrite cores
JP2017175214A (en) * 2016-03-18 2017-09-28 Tdk株式会社 Antenna device and portable radio equipment with the same
CN105977645A (en) * 2016-06-17 2016-09-28 上海易码信息科技有限公司 Method for manufacturing magnetic pulse transmitting antenna
CN110892582B (en) * 2017-07-25 2022-04-19 株式会社村田制作所 Antenna coil and method for manufacturing the same
CN108010656A (en) * 2017-10-30 2018-05-08 东莞市大忠电子有限公司 A kind of high inductance core

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041224A1 (en) * 2003-10-23 2005-05-06 Kabushiki Kaisha Toshiba Inductive device and method for manufacturing same
JP2005184424A (en) * 2003-12-19 2005-07-07 Mitsubishi Materials Corp Magnetic core for antenna and antenna provided with the magnetic core
JP2005347966A (en) * 2004-06-01 2005-12-15 Sanyo Electric Co Ltd Antenna, electronic equipment and method for manufacturing antenna
JP2007060138A (en) * 2005-08-23 2007-03-08 Nec Tokin Corp Coil antenna
JP2008033706A (en) * 2006-07-31 2008-02-14 Mitsubishi Materials Corp Tag with attachment
JP2008193187A (en) * 2007-02-01 2008-08-21 Nec Tokin Corp Receiving coil antenna

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040198428A1 (en) * 2002-05-31 2004-10-07 Kye Systems Corp. Miniature, high efficiency antenna device for enabling wireless communication with a computer system
JP3964401B2 (en) * 2004-04-27 2007-08-22 Necトーキン株式会社 Antenna core, coil antenna, watch, mobile phone, electronic device
JP5010429B2 (en) * 2007-10-19 2012-08-29 株式会社東芝 Magnetic material, antenna device, and method of manufacturing magnetic material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041224A1 (en) * 2003-10-23 2005-05-06 Kabushiki Kaisha Toshiba Inductive device and method for manufacturing same
JP2005184424A (en) * 2003-12-19 2005-07-07 Mitsubishi Materials Corp Magnetic core for antenna and antenna provided with the magnetic core
JP2005347966A (en) * 2004-06-01 2005-12-15 Sanyo Electric Co Ltd Antenna, electronic equipment and method for manufacturing antenna
JP2007060138A (en) * 2005-08-23 2007-03-08 Nec Tokin Corp Coil antenna
JP2008033706A (en) * 2006-07-31 2008-02-14 Mitsubishi Materials Corp Tag with attachment
JP2008193187A (en) * 2007-02-01 2008-08-21 Nec Tokin Corp Receiving coil antenna

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811148A (en) * 2012-11-09 2014-05-21 辉达公司 Winding inductor for switching power supply and switching power supply with winding inductor
JP2015115448A (en) * 2013-12-11 2015-06-22 アイシン精機株式会社 Inductor
JP2018022918A (en) * 2014-01-29 2018-02-08 アルプス電気株式会社 Electronic component and electronic device
JP2018022917A (en) * 2014-01-29 2018-02-08 アルプス電気株式会社 Inductance element and electronic device
JP2018022916A (en) * 2014-01-29 2018-02-08 アルプス電気株式会社 Electronic component and electronic device
JP2016103598A (en) * 2014-11-28 2016-06-02 Tdk株式会社 Coil component
EP3106195A3 (en) * 2015-06-18 2017-03-01 Biosense Webster (Israel) Ltd. Tracking sensor with ferrite powder core
US11031172B2 (en) 2015-06-18 2021-06-08 Biosense Webster (Israel) Ltd. Tracking sensor
JP6392967B1 (en) * 2017-12-27 2018-09-19 Smk−Logomotion株式会社 Near-field wireless communication antenna element

Also Published As

Publication number Publication date
JPWO2011010471A1 (en) 2012-12-27
JP5658153B2 (en) 2015-01-21
CN102474011A (en) 2012-05-23
KR101337753B1 (en) 2013-12-06
CN102474011B (en) 2014-12-03
KR20120035219A (en) 2012-04-13

Similar Documents

Publication Publication Date Title
JP5658153B2 (en) Coil antenna and electronic equipment using it
EP2851910B1 (en) Metal powder and its use
JP6050667B2 (en) Coil module, non-contact power transmission antenna unit, and electronic device
JP5214335B2 (en) Antenna device
WO2008010329A1 (en) Coil component
JP2002325013A (en) Antenna coil
JP2013236021A5 (en)
KR20170053173A (en) Flexible soft magnetic core, antenna with flexible soft magnetic core and method for producing a flexible soft magnetic core
JP2005228908A (en) High-frequency magnetic core, antenna therewith and its manufacturing method
JP5770108B2 (en) Antenna component and manufacturing method thereof
EP3016203B1 (en) Receiving antenna and wireless power receiving apparatus comprising same
JP5448663B2 (en) Coil antenna and electronic device using the same
KR102315813B1 (en) Heat dissipation member for reception device module of wireless power charger, Reception device module of wireless power charger containing the same and Reception device of wireless power charger containing the same
JP6167560B2 (en) Insulating flat magnetic powder, composite magnetic body including the same, antenna and communication device including the same, and method for manufacturing composite magnetic body
JP2012134463A (en) Composite magnetic body, production method therefor, antenna and communication device
JP7251468B2 (en) Composite magnetic materials, magnetic cores and electronic components
JP2012212980A (en) Antenna component and manufacturing method of the same
KR20220136692A (en) Heat dissipation antenna for wireless power transmission, heat dissipation antenna module for wireless power transmission module and electronic device comprising the same
JP2007019958A (en) Coil antenna instrument for wave ceptor clock
US10923276B2 (en) Coil electronic component
KR101716691B1 (en) Magnetic sheet with enhanced DC bias characteristics
JP2012160892A (en) Antenna device and electronic apparatus equipped with the same
JPH02172208A (en) Inductor and its manufacture
JP2013247352A (en) Composite magnetic material, its manufacturing method, antenna, and communication device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033656.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802092

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011523564

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127004367

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10802092

Country of ref document: EP

Kind code of ref document: A1