WO2011007828A1 - Fm-cw radar apparatus and doppler velocity measuring method - Google Patents

Fm-cw radar apparatus and doppler velocity measuring method Download PDF

Info

Publication number
WO2011007828A1
WO2011007828A1 PCT/JP2010/061970 JP2010061970W WO2011007828A1 WO 2011007828 A1 WO2011007828 A1 WO 2011007828A1 JP 2010061970 W JP2010061970 W JP 2010061970W WO 2011007828 A1 WO2011007828 A1 WO 2011007828A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
beat signal
transmission
doppler
frequency
Prior art date
Application number
PCT/JP2010/061970
Other languages
French (fr)
Japanese (ja)
Inventor
敏明 鷹野
Original Assignee
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学 filed Critical 国立大学法人 千葉大学
Priority to JP2011522846A priority Critical patent/JPWO2011007828A1/en
Publication of WO2011007828A1 publication Critical patent/WO2011007828A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • G01S13/951Radar or analogous systems specially adapted for specific applications for meteorological use ground based
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a technique for observing the Doppler velocity of an object.
  • the FM-CW (Frequency Modulated Continuous Wave) method uses a continuous wave that modulates the frequency to enable observation with higher sensitivity and lower power compared to the conventional pulse method. With the configuration, the distance and speed of the object can be observed.
  • a transmission wave whose frequency changes with a predetermined period and shape is transmitted from the transmission antenna.
  • the reflected wave reflected by the object is received as a received wave by the receiving antenna.
  • the received wave is a signal having a time delay corresponding to the distance to the object.
  • the frequency of the beat signal formed by combining the transmitted wave and the received wave with a mixer is a frequency proportional to the distance between the radar and the object (beat frequency) and a frequency proportional to the relative speed between the radar and the object. (Doppler frequency) is added. Therefore, it is theoretically possible to obtain the distance between the radar and the object and the relative velocity between the radar and the object by detecting each frequency of the beat signal.
  • the beat signal may be mixed with unwanted noise of direct current or low frequency such as noise generated from the mixer or noise caused by direct sneaking of radio waves from the transmission system to the reception system.
  • unwanted noise of direct current or low frequency such as noise generated from the mixer or noise caused by direct sneaking of radio waves from the transmission system to the reception system.
  • the beat signal is buried due to such noise, and it becomes impossible to detect the distance and the relative speed of the object.
  • a region that is in such a state is referred to as a non-detection region.
  • the non-detection area exists as an area having a certain width depending on the distance to the object and the relative speed.
  • Patent Document 1 proposes to reduce the non-detection area by using two types of transmission waves with different modulation periods and transmitting these two types of transmission waves alternately to obtain different beat signals.
  • the conventional FM-CW radar device is effective in an observation environment where the distance between the radar device and the object is relatively close (such as observation of the distance between vehicles), but it is several kilometers to several tens of kilometers from the ground.
  • the Doppler frequency is very small compared to the beat frequency, and the relative velocity with the object is measured. It has become extremely difficult.
  • an FM wave transmitting unit that transmits an FM wave that is swept repeatedly, a reflected wave receiving unit that receives a reflected wave, and beat signal synthesis that synthesizes a beat signal from the transmitted wave and the reflected wave FM-CW radar comprising: an initial phase acquisition unit that acquires an initial phase of a beat signal in a plurality of sweeps; and a Doppler velocity candidate acquisition unit that acquires a Doppler velocity candidate from a difference between two or more acquired initial phases Propose the device.
  • the FM wave transmission unit has a plurality of wave transmission means for transmitting two or more types of transmission waves, and the Doppler velocity candidate acquisition unit calculates the difference in the initial phase corresponding to each transmission wave.
  • the FM-CW radar apparatus according to claim 1, further comprising: a narrowing calculation means for performing narrowing down to obtain an optimal Doppler speed from a plurality of Doppler speed candidates by selecting a matching one on the speed axis.
  • an FM wave transmission step for transmitting an FM wave that is swept repeatedly, a reflected wave reception step for receiving a reflected wave, and a beat signal synthesis step for synthesizing a beat signal from the transmitted wave and the reflected wave, Proposing a Doppler velocity measurement method comprising an initial phase acquisition step for acquiring an initial phase of a beat signal in a plurality of sweeps, and a Doppler velocity candidate acquisition step for acquiring a Doppler velocity candidate from a difference between two or more acquired initial phases.
  • the FM wave transmission step includes a plurality of wave transmission sub-steps for transmitting two or more types of transmission waves
  • the Doppler velocity candidate acquisition step includes a difference in the initial phase corresponding to each transmission wave.
  • the Doppler speed measurement method according to claim 3 further comprising a narrowing calculation sub-step for performing narrowing down to obtain an optimal Doppler speed from a plurality of Doppler speed candidates by comparing the speed axes and selecting a matching one on the speed axis. .
  • the present invention it becomes possible to measure the distance and relative velocity of an observation object that exists at a long distance such as a cloud, and it is possible to observe a more detailed weather condition.
  • FIG. 1 is a functional block diagram of an FM-CW radar apparatus according to Embodiment 1.
  • FIG. An example of the circuit configuration of the FM-CW radar apparatus of this embodiment Principle of measuring object distance and Doppler velocity by FM-CW method Doppler frequency spectrum
  • FIG. 3 is an example of a process flow of the Doppler velocity measurement method according to the first embodiment.
  • Example of functional block of FM-CW radar apparatus according to embodiment 2 Distribution of phase change rate of beat signal at a certain time
  • Embodiment 1 will mainly describe claims 1 and 3.
  • an FM-CW radar apparatus and a Doppler velocity measurement method are characterized in that initial phases of beat signals in a plurality of sweeps are obtained, and Doppler velocity candidates are obtained from a difference between two or more obtained initial phases.
  • FIG. 1 is a diagram for illustrating an example of functional blocks of the FM-CW radar apparatus according to the present embodiment.
  • the “FM-CW radar device” (0100) includes an “FM wave transmission unit” (0101), a “reflected wave reception unit” (0102), a “beat signal synthesis unit” (0103), and an “initial phase acquisition unit”. "(0104)” and "Doppler speed candidate acquisition unit” (0105).
  • FIG. 2 is a diagram illustrating an example of a circuit configuration of the FM-CW radar apparatus according to the present embodiment.
  • the “FM wave transmitter” (0101) has a function of transmitting FM waves that are swept repeatedly.
  • the repeated frequency sweep means that the frequency is repeatedly modulated in a predetermined frequency range.
  • the frequency range, the number of repetitions, etc. are appropriately changed according to the observation target and the observation environment.
  • frequencies of C band (5 GHz) and X band (10 GHz) are often used, but it is desirable to use a higher frequency when observing clouds or the like.
  • the water and ice particles that make up the clouds are approximately several ⁇ m to several tens of ⁇ m in size, so millimeter waves are used as transmitted waves in order to obtain sensitivity that enables observation of thin clouds without accompanying rain. It is desirable to use (30 GHz to 300 GHz).
  • An FM wave is a wave that undergoes frequency modulation with a constant amplitude.
  • the FM wave transmission unit includes a divider (0203, 0204), a splitter (0224, 0225), a mixer (0205, 0206), a band pass filter (0210, 0211). ), An amplifier (0215, 0216), a phase lock oscillator (0222, 0223), and a multiplier (0227).
  • the “reflected wave receiver” (0102) has a function of receiving a reflected wave.
  • a receiving antenna (0221) is provided separately from the transmitting antenna. This antenna is not limited as long as it can receive reflected waves. It can be implemented by conventional techniques depending on the frequency of the FM wave used.
  • the reflected wave receiving unit includes a mixer (0207, 0208), a bandpass filter (0212, 0213, 0214), and an amplifier (0217, 0218, 0219) in addition to the above-described receiving antenna.
  • the “beat signal synthesis unit” (0103) has a function of synthesizing a beat signal from a transmission wave and a reflected wave.
  • the beat signal is a signal having a phase that is a phase difference between the transmission signal and the reception signal.
  • E t A t cos (2 ⁇ f t + ⁇ t )
  • E r A r cos (2 ⁇ f r + ⁇ r )
  • I b 2A t a r cos ⁇ 2 ⁇ (f r -f t) t + ( ⁇ r - ⁇ t) ⁇ .
  • the reflected wave received by the receiving antenna (0221) passes through the low noise amplifier (0219) and the band pass filter (0212), is down-converted at the local oscillation frequency, and then mixed with the signal of the signal generator A. To generate a beat signal.
  • the “initial phase acquisition unit” (0104) has a function of acquiring initial phases of beat signals in a plurality of sweeps.
  • the initial phase acquisition unit acquires the initial phase by performing the following arithmetic processing using a computer such as a personal computer (0226) based on the beat signal generated by the beat signal synthesis unit.
  • FIG. 3 is a diagram illustrating the principle of measuring the distance and Doppler velocity of an object by the FM-CW method.
  • the transmission signal is indicated by a solid line and modulated in a sawtooth shape. This modulation is modulated from the center frequency f 0 at a frequency width of F. Period of the sweep is T m.
  • the signal of the received wave reflected by the object is indicated by a broken line in FIG.
  • the received signal is a signal having a time delay ⁇ corresponding to the distance to the object.
  • the beat signal can be approximated as a wave having a frequency (beat frequency) proportional to the time delay (distance), so the distance to the object is detected by detecting the frequency of the beat signal.
  • the actual beat signal is composed of reflection signals from a plurality of objects at different distances, but the beat signal is subjected to FFT (Fast Fourier Transform) processing to obtain a frequency spectrum, so that a plurality of objects can be obtained. It becomes possible to obtain the distance.
  • FFT Fast Fourier Transform
  • ⁇ t (0) is the initial phase of the transmission wave.
  • is a phase change when reflected by the object.
  • the phase ⁇ b (t) of the beat signal is the difference between the phases of the transmission signal and the reception signal, and can be expressed by Equations 3 and 4.
  • the number 3 the frequency of the beat signal, it can be seen that determined the beat frequency f b, the value of the Doppler frequency f d.
  • the beat frequency f b dependent on the distance to the object the Doppler frequency f d is seen to be dependent on the relative velocity of the object.
  • f b >> f d (f b to f b + f d )
  • the distance to the object is calculated from the frequency of the beat signal using Equation 5.
  • the initial phase is the sum of the second term and the third term on the right side of Equation 3.
  • the “Doppler speed candidate acquisition unit” (0105) has a function of acquiring a Doppler speed candidate from the difference between two or more acquired initial phases.
  • the “Doppler speed” is a relative speed of the object with respect to the radar apparatus. When the Doppler speed is positive, the object has a relative speed away from the radar apparatus. Conversely, if it is negative, the object will have a relative velocity approaching the radar device. In principle, it is possible to obtain the relative speed with the object using the Doppler frequency from Equation 4. However, as described above, it is often difficult to detect the Doppler frequency smaller than the beat frequency. Therefore, as shown below, the Doppler frequency is detected from the difference between two or more initial phases.
  • phase change on reflection of the third term can be regarded as constant for a short T m, considering the difference [Delta] [theta] b of the initial phase of the beat signal for each sweep, represented by the number 7.
  • the number 7 shows that the initial phase of the beat signal is rotating at a Doppler frequency f d. Therefore, the Doppler velocity can be obtained by measuring the change in the initial phase.
  • a process for acquiring a Doppler velocity candidate from the difference between the initial phases of two or more acquired beat signals will be specifically described below.
  • a plurality of frequency components are detected from data of one sweep time of the beat signal.
  • Data acquisition M points sampled during one sweep time T m M / 2 pieces of frequency components are obtained by the FFT (Fast Fourier Transform) processing thereto.
  • Each frequency component obtained here corresponds to a reflected signal from the distance related in Equation 5. Therefore, it can be said that M / 2 pieces of data are acquired in the distance direction by one sweep.
  • the sweep argument is N times
  • N pieces of data are obtained in the time direction.
  • the phase data is as shown in Equation 8.
  • Expression 9 is obtained by arranging the phase data of the mth row in a certain distance direction in the time direction.
  • FIG. 4 shows the spectrum of the Doppler frequency in such a case.
  • the spectrum indicated by A represents the true Doppler velocity
  • aliasing occurs, so that a plurality of Doppler velocity candidates appear periodically as indicated by B.
  • the sampling frequency should be set as high as possible, the observation parameters should be adjusted, and the physical properties of the object such as rain and clouds should be taken into account. It is possible to determine the true Doppler speed.
  • FIG. 5 is a flowchart showing an example of the processing procedure of the present embodiment.
  • the FM wave transmission step step S0501
  • an FM wave that is repeatedly swept in frequency is transmitted.
  • the reflected wave receiving step step S0502
  • the reflected wave is received.
  • the beat signal synthesis step step S0503
  • a beat signal is synthesized from the transmitted wave and the reflected wave.
  • the initial phase acquisition step step S0504
  • initial phases of beat signals in a plurality of sweeps are acquired.
  • a Doppler speed candidate acquisition step step S0505
  • a Doppler speed candidate is acquired from the difference between two or more acquired initial phases.
  • the FM-CW radar apparatus and the Doppler velocity measurement method of the present embodiment can obtain the Doppler velocity candidates for determining the Doppler velocity, even when indefiniteness due to the aliasing occurs. Relative velocity can be observed.
  • the optimal Doppler is selected from among a plurality of Doppler speed candidates even if a return occurs by transmitting two or more types of transmission waves.
  • An FM-CW radar device and a Doppler velocity measurement method capable of obtaining velocity will be described.
  • FIG. 6 is a diagram for illustrating an example of functional blocks of the FM-CW radar apparatus according to the present embodiment.
  • the “FM-CW radar device” (0600) includes an “FM wave transmission unit” (0601), a “reflected wave reception unit” (0602), a “beat signal synthesis unit” (0603), and an “initial phase acquisition unit”. ”(0604) and“ Doppler velocity candidate acquisition unit ”(0605), the FM wave transmission unit further includes“ multi-wave transmission means ”(0606), and the Doppler velocity candidate acquisition unit further includes“ “Refinement calculation means” (0607). Since the components other than the “multiple transmission unit” and the “squeezing calculation unit” are the same as those in the first embodiment, the description thereof is omitted.
  • the “multiple wave transmission means” (0606) has a function of transmitting two or more types of transmission waves.
  • the transmission wave transmitted here is an FM wave that repeats frequency modulation at a predetermined period as described in the first embodiment.
  • the multiple wave transmission means transmits two or more types of transmission waves having different modulation periods in this way. Each modulation period in two or more types of transmission waves can be arbitrarily determined. Since this point is also related to the narrowing down calculation means, it will be described later.
  • the “squeezing calculation means” (0607) compares the differences of the initial phases corresponding to the respective transmission waves, and selects the ones that match on the speed axis, thereby narrowing down to obtain the optimum Doppler speed from a plurality of Doppler speed candidates. It has a function to perform. “Choose one that matches on the speed axis” means to select one that matches among the observation data obtained based on a plurality of transmission waves at a certain time. The processing in the narrowing down calculation means will be specifically described below.
  • FIG. 7A shows observation data when a cloud is observed by transmitting an FM wave having a modulation frequency of 4 kHz as one transmission wave in the vertical direction from the ground.
  • the distribution of the phase change rate of the beat signal at a certain time is obtained by FFT, with the vertical axis representing altitude and the horizontal axis representing phase difference and velocity.
  • FFT FFT
  • each observation data is displayed with the same speed (m / s) scale and with the position of zero phase difference aligned.
  • the phase difference corresponding to the speed is different.
  • FIG. 7A the velocity range where the phase change rate distribution is generated with a high frequency exists for each period (2 ⁇ ) (0701, 0702, 0703).
  • FIG. 7B a velocity region in which the phase change rate distribution occurs at a high frequency exists for each period (2 ⁇ ) (0711, 0712, 0713).
  • the ones that coincide in the speed are about +2.4 (m / s) to +2.9 (m / S) is limited to the speed range (0701, 0711) and does not match in other speed ranges. Anything that doesn't match and appears elsewhere only appears by wrapping, with no substance. Therefore, the actual Doppler velocity of the cloud can be specified to be about +2.4 (m / s) to +2.9 (m / s) which coincides in both observation data. Therefore, it can be observed that the clouds are rising at this speed.
  • a matching speed range appears in addition to the above-described speed range of about +2.4 (m / s) to +2.9 (m / s).
  • the speed ranges in the ⁇ 3 period when the modulation frequency is 4 kHz and the ⁇ 4 period when the modulation frequency is 3 kHz are the same.
  • a speed range of about +21.4 (m / s) to +21.9 (m / s) and a speed of about -16.6 (m / s) to -16.1 (m / s) It matches in the area.
  • the speed of the clouds is about 10 m / s at the fastest, it can be seen that these speeds are not realistic. In this way, the specific Doppler speed can be narrowed down from the Doppler speed candidates generated by the folding.
  • 3 kHz and 4 kHz are selected as the modulation frequencies.
  • a combination having a large common multiple such as 3 kHz and 7 kHz can be selected to widen the interval on the speed axis. This makes it possible to detect the Doppler speed in a wide speed range. It is also possible to use three types of modulation frequencies such as 3 kHz, 5 kHz, and 7 kHz.
  • the processing procedure of the present embodiment is the same as the processing procedure shown in FIG.
  • the FM wave transmission step two or more types of transmission waves that are swept repeatedly are transmitted.
  • the reflected wave receiving step the reflected wave is received.
  • the beat signal synthesis step a beat signal is synthesized from the transmission wave and the reflected wave.
  • the initial phase acquisition step initial phases of beat signals in a plurality of sweeps are acquired.
  • the Doppler speed candidate acquisition step the difference in the initial phase corresponding to each transmission wave is compared, and a selection is made to obtain an optimal Doppler speed from a plurality of Doppler speed candidates by selecting one that matches the speed axis.
  • the FM-CW radar apparatus can specify the Doppler velocity even when indefiniteness occurs due to folding.
  • FM-CW radar apparatus 0101 FM wave transmission unit 0102 Reflected wave reception unit 0103 Beat signal synthesis unit 0104 Initial phase acquisition unit 0105 Doppler velocity candidate acquisition unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The conventional FM-CW mode radio apparatus combines transmitted and reflected waves to acquire a beat signal and determine a Doppler velocity from a frequency transition corresponding to a relative velocity of the object included in the beat signal. However, in a case of performing weather observations of clouds, rain and/or the like, the frequency deviation corresponding to a relative velocity is very small relative to the frequency deviation proportional to a distance, so that it is extremely difficult to measure the distance and relative velocity of an object only on the basis of the frequency component of a beat signal. In order to solve this problem, an FM-CW radio apparatus is provided which comprises: an FM wave transmitting unit for transmitting FM waves that are repetitively frequency-swept; a reflected wave receiving unit for receiving reflected waves; a beat signal synthesizing unit for synthesizing a beat signal from the transmitted and reflected waves; an initial phase acquiring unit for acquiring the initial phase of the beat signal in each of a plurality of sweepings; and a Doppler velocity candidate acquiring unit for acquiring a Doppler velocity candidate from the difference between two or more acquired initial phases.

Description

FM-CWレーダ装置、ドップラ速度測定方法FM-CW radar device, Doppler velocity measurement method
 本発明は、対象物のドップラ速度を観測する技術に関する。 The present invention relates to a technique for observing the Doppler velocity of an object.
 近年、地球温暖化をはじめとする地球上の気候変動に対する注目が集まっている。また、竜巻や集中豪雨といった局所的な気象変動による大きな災害が生じている。このような状況において、気象災害の予防と軽減のために、気象観測の果たす役割は大きなものとなっている。 In recent years, attention has been focused on global climate change, including global warming. In addition, major disasters have occurred due to local weather fluctuations such as tornadoes and torrential rains. Under such circumstances, the role of meteorological observation has been significant for the prevention and mitigation of meteorological disasters.
 気象観測などのリモートセンシングにおいて、様々な方式によるレーダ装置の開発が進められている。その中でもFM-CW(Frequency Modulated Continuous Wave)方式は、周波数を変調する連続波を使用することにより、従来のパルス方式に比べ小電力で高感度な観測が可能であり、また、比較的簡易な構成で、対象物の距離と速度を観測することができる。 Development of various types of radar equipment is underway for remote sensing such as weather observation. Among them, the FM-CW (Frequency Modulated Continuous Wave) method uses a continuous wave that modulates the frequency to enable observation with higher sensitivity and lower power compared to the conventional pulse method. With the configuration, the distance and speed of the object can be observed.
 FM-CW方式による一般的な観測は、以下のようなものである。まず、周波数が所定の周期及び形状で変化する送信波を送信アンテナから送信する。そして、対象物に反射された反射波は、受信アンテナにより受信波として受信される。ここで、受信波は、対象物までの距離に相当した時間遅れを持つ信号となる。また、送信波と受信波とをミキサで合成して形成されるビート信号の周波数は、レーダと対象物との距離に比例した周波数(ビート周波数)とレーダと対象物の相対速度に比例した周波数(ドップラ周波数)とを足し合わせたものとなる。よって、ビート信号の各周波数を検出することによってレーダと対象物の距離及びレーダと対象物の相対速度を求めることが原理的に可能である。 General observations using the FM-CW method are as follows. First, a transmission wave whose frequency changes with a predetermined period and shape is transmitted from the transmission antenna. The reflected wave reflected by the object is received as a received wave by the receiving antenna. Here, the received wave is a signal having a time delay corresponding to the distance to the object. The frequency of the beat signal formed by combining the transmitted wave and the received wave with a mixer is a frequency proportional to the distance between the radar and the object (beat frequency) and a frequency proportional to the relative speed between the radar and the object. (Doppler frequency) is added. Therefore, it is theoretically possible to obtain the distance between the radar and the object and the relative velocity between the radar and the object by detecting each frequency of the beat signal.
 ここで、ビート信号には、ミキサから生じるノイズや送信系から受信系への電波の直接的な回り込みにより生じるノイズなどの直流や低周波の不要なノイズが混入することがある。対象物までの距離と相対速度によっては、このようなノイズのためにビート信号が埋もれてしまい、対象物の距離と相対速度を検出することが不可能な状態となってしまう。このような状態となってしまう領域のことを不検知領域という。不検知領域は、対象物までの距離と相対速度により一定の幅を持った領域として存在する。 Here, the beat signal may be mixed with unwanted noise of direct current or low frequency such as noise generated from the mixer or noise caused by direct sneaking of radio waves from the transmission system to the reception system. Depending on the distance to the object and the relative speed, the beat signal is buried due to such noise, and it becomes impossible to detect the distance and the relative speed of the object. A region that is in such a state is referred to as a non-detection region. The non-detection area exists as an area having a certain width depending on the distance to the object and the relative speed.
 この問題に対しては、変調周期の異なる2種類の送信波を用い、この2種類の送信波を交互に送信し、異なるビート信号を得ることにより、不検知領域を減少させることが提案されている(特許文献1)。 To solve this problem, it has been proposed to reduce the non-detection area by using two types of transmission waves with different modulation periods and transmitting these two types of transmission waves alternately to obtain different beat signals. (Patent Document 1).
特開平11-133144JP-A-11-133144
 しかしながら、従来のFM-CW方式のレーダ装置は、レーダ装置と対象物との距離が比較的近い観測環境(車間距離の観測等)においては有効であるが、地上から数kmないし数十kmを隔てて存在する雲等の観測を行う場合には、レーダと対象物の距離が大きく離れているため、ドップラ周波数がビート周波数と比較して非常に小さくなり、対象物との相対速度を測定することが極めて困難となっていた。 However, the conventional FM-CW radar device is effective in an observation environment where the distance between the radar device and the object is relatively close (such as observation of the distance between vehicles), but it is several kilometers to several tens of kilometers from the ground. When observing clouds that exist at a distance, since the distance between the radar and the object is far away, the Doppler frequency is very small compared to the beat frequency, and the relative velocity with the object is measured. It has become extremely difficult.
 本発明はかかる課題を解決するために、以下のFM-CWレーダを提供するものである。すなわち、第一の発明として、繰返し周波数掃引されるFM波を送信するFM波送信部と、反射波を受信する反射波受信部と、送信波と反射波とからビート信号を合成するビート信号合成部と、複数の掃引におけるビート信号の初期位相を取得する初期位相取得部と、取得した二以上の初期位相の差分からドップラ速度候補を取得するドップラ速度候補取得部と、を有するFM-CWレーダ装置を提案する。 The present invention provides the following FM-CW radar in order to solve such a problem. That is, as a first aspect of the invention, an FM wave transmitting unit that transmits an FM wave that is swept repeatedly, a reflected wave receiving unit that receives a reflected wave, and beat signal synthesis that synthesizes a beat signal from the transmitted wave and the reflected wave FM-CW radar comprising: an initial phase acquisition unit that acquires an initial phase of a beat signal in a plurality of sweeps; and a Doppler velocity candidate acquisition unit that acquires a Doppler velocity candidate from a difference between two or more acquired initial phases Propose the device.
 第二の発明として、前記FM波送信部は、二種以上の送信波を送信する複数波送信手段を有し、前記ドップラ速度候補取得部は、各送信波に対応した前記初期位相の差分を比較し、速度軸で一致するものを選ぶことで複数のドップラ速度候補から最適ドップラ速度を得るための絞り込みを行う絞込演算手段を有する請求項1に記載のFM-CWレーダ装置を提案する。 As a second invention, the FM wave transmission unit has a plurality of wave transmission means for transmitting two or more types of transmission waves, and the Doppler velocity candidate acquisition unit calculates the difference in the initial phase corresponding to each transmission wave. The FM-CW radar apparatus according to claim 1, further comprising: a narrowing calculation means for performing narrowing down to obtain an optimal Doppler speed from a plurality of Doppler speed candidates by selecting a matching one on the speed axis.
 第三の発明として、繰返し周波数掃引されるFM波を送信するFM波送信ステップと、反射波を受信する反射波受信ステップと、送信波と反射波とからビート信号を合成するビート信号合成ステップと、複数の掃引におけるビート信号の初期位相を取得する初期位相取得ステップと、取得した二以上の初期位相の差分からドップラ速度候補を取得するドップラ速度候補取得ステップと、からなるドップラ速度測定方法を提案する。 As a third aspect of the invention, an FM wave transmission step for transmitting an FM wave that is swept repeatedly, a reflected wave reception step for receiving a reflected wave, and a beat signal synthesis step for synthesizing a beat signal from the transmitted wave and the reflected wave, Proposing a Doppler velocity measurement method comprising an initial phase acquisition step for acquiring an initial phase of a beat signal in a plurality of sweeps, and a Doppler velocity candidate acquisition step for acquiring a Doppler velocity candidate from a difference between two or more acquired initial phases. To do.
 第四の発明として、前記FM波送信ステップは、二種以上の送信波を送信する複数波送信サブステップを有し、前記ドップラ速度候補取得ステップは、各送信波に対応した前記初期位相の差分を比較し、速度軸で一致するものを選ぶことで複数のドップラ速度候補から最適ドップラ速度を得るための絞り込みを行う絞込演算サブステップを有する請求項3に記載のドップラ速度測定方法を提案する。 As a fourth invention, the FM wave transmission step includes a plurality of wave transmission sub-steps for transmitting two or more types of transmission waves, and the Doppler velocity candidate acquisition step includes a difference in the initial phase corresponding to each transmission wave. 4. The Doppler speed measurement method according to claim 3, further comprising a narrowing calculation sub-step for performing narrowing down to obtain an optimal Doppler speed from a plurality of Doppler speed candidates by comparing the speed axes and selecting a matching one on the speed axis. .
 本発明によって、雲のような遠距離に存在する観測対象物の距離と相対速度を測定することが可能となり、より詳細な気象状況の観測を行うことができる。 According to the present invention, it becomes possible to measure the distance and relative velocity of an observation object that exists at a long distance such as a cloud, and it is possible to observe a more detailed weather condition.
実施形態1に係るFM-CWレーダ装置の機能ブロックの一例図1 is a functional block diagram of an FM-CW radar apparatus according to Embodiment 1. FIG. 本実施形態のFM-CWレーダ装置の回路構成の一例図An example of the circuit configuration of the FM-CW radar apparatus of this embodiment FM-CW方式により対象物の距離及びドップラ速度を測定する原理Principle of measuring object distance and Doppler velocity by FM-CW method ドップラ周波数のスペクトルDoppler frequency spectrum 実施形態1に係るドップラ速度測定方法の処理の流れの一例図FIG. 3 is an example of a process flow of the Doppler velocity measurement method according to the first embodiment. 実施形態2に係るFM-CWレーダ装置の機能ブロックの一例Example of functional block of FM-CW radar apparatus according to embodiment 2 ある時刻におけるビート信号の位相変化率の分布Distribution of phase change rate of beat signal at a certain time
 以下本発明を実施するための形態について説明する。なお、本発明はこれら実施の形態になんら限定されるべきものではなく、その要旨を逸脱しない範囲において種々なる態様で実施し得る。 Hereinafter, embodiments for carrying out the present invention will be described. The present invention should not be limited to these embodiments at all, and can be implemented in various modes without departing from the scope of the invention.
 実施形態1は、主に請求項1、3について説明する。 Embodiment 1 will mainly describe claims 1 and 3.
 実施形態2は、主に請求項2、4について説明する。
<実施形態1>
<実施形態1 概要>
The second embodiment will mainly describe claims 2 and 4.
<Embodiment 1>
<Overview of Embodiment 1>
 本実施形態では、複数の掃引におけるビート信号の初期位相を取得し、取得した二以上の初期位相の差分からドップラ速度候補を取得することを特徴とするFM-CWレーダ装置及びドップラ速度測定方法を説明する。
<実施形態1 構成>
In the present embodiment, an FM-CW radar apparatus and a Doppler velocity measurement method are characterized in that initial phases of beat signals in a plurality of sweeps are obtained, and Doppler velocity candidates are obtained from a difference between two or more obtained initial phases. explain.
<Configuration of Embodiment 1>
 図1は、本実施形態に係るFM-CWレーダ装置の機能ブロックの一例を示すための図である。「FM-CWレーダ装置」(0100)は、「FM波送信部」(0101)と、「反射波受信部」(0102)と、「ビート信号合成部」(0103)と、「初期位相取得部」(0104)と、「ドップラ速度候補取得部」(0105)とにより構成される。また、図2は、本実施形態のFM-CWレーダ装置の回路構成の一例を示す図である。 FIG. 1 is a diagram for illustrating an example of functional blocks of the FM-CW radar apparatus according to the present embodiment. The “FM-CW radar device” (0100) includes an “FM wave transmission unit” (0101), a “reflected wave reception unit” (0102), a “beat signal synthesis unit” (0103), and an “initial phase acquisition unit”. "(0104)" and "Doppler speed candidate acquisition unit" (0105). FIG. 2 is a diagram illustrating an example of a circuit configuration of the FM-CW radar apparatus according to the present embodiment.
 「FM波送信部」(0101)は、繰返し周波数掃引されるFM波を送信する機能を有する。ここで、繰返し周波数掃引されるとは、所定の周波数範囲で周波数を繰返し変調させることをいう。当該周波数の範囲や繰返す回数等は観測対象や観測環境に合わせて適宜変更する。気象観測には、Cバンド(5GHz)やXバンド(10GHz)の周波数が用いられることが多いが、雲などを観測する場合にはより高い周波数を用いることが望ましい。また、雲を構成している水や氷の粒子は、概ね数μmから数十μmの大きさであるため、降雨を伴わないような薄い雲を観測できる感度を得るために送信波としてミリ波(30GHz~300GHz)を用いることが望ましい。 The “FM wave transmitter” (0101) has a function of transmitting FM waves that are swept repeatedly. Here, the repeated frequency sweep means that the frequency is repeatedly modulated in a predetermined frequency range. The frequency range, the number of repetitions, etc. are appropriately changed according to the observation target and the observation environment. For weather observation, frequencies of C band (5 GHz) and X band (10 GHz) are often used, but it is desirable to use a higher frequency when observing clouds or the like. In addition, the water and ice particles that make up the clouds are approximately several μm to several tens of μm in size, so millimeter waves are used as transmitted waves in order to obtain sensitivity that enables observation of thin clouds without accompanying rain. It is desirable to use (30 GHz to 300 GHz).
 FM波は、振幅が一定の状態で周波数変調する波をいう。FM波送信部においては、信号発生器A(0201)にて150±10MHzのFM-CW信号を作る。そして、信号発生器B(0202)にて作る2段の局部発振周波数と混合してアップコンバートし、94.79GHz(波長=3.16mm)の送信信号を生成し送信用アンテナ(0220)を介して送信する。FM波送信部は、上記の信号発生器や送信用アンテナなどの他に、ディバイダ(0203、0204)、スプリッタ(0224、0225)、ミキサ(0205、0206)、バンド・パス・フィルタ(0210、0211)、アンプ(0215、0216)、フェイズロック発振器(0222、0223)、逓倍器(0227)を備える。 An FM wave is a wave that undergoes frequency modulation with a constant amplitude. In the FM wave transmission unit, the signal generator A (0201) generates an FM-CW signal of 150 ± 10 MHz. Then, it is mixed with the two-stage local oscillation frequency produced by the signal generator B (0202) and up-converted to generate a transmission signal of 94.79 GHz (wavelength = 3.16 mm) via the transmission antenna (0220). To send. In addition to the signal generator and the transmitting antenna, the FM wave transmission unit includes a divider (0203, 0204), a splitter (0224, 0225), a mixer (0205, 0206), a band pass filter (0210, 0211). ), An amplifier (0215, 0216), a phase lock oscillator (0222, 0223), and a multiplier (0227).
 「反射波受信部」(0102)は、反射波を受信する機能を有する。本実施形態においては、送信用アンテナとは別に受信用アンテナ(0221)を備えている。このアンテナについては反射波を受信可能なものである限り何ら限定を加えない。使用するFM波の周波数などに応じて従来技術により実施可能である。反射波受信部は、上記の受信用アンテナなどの他に、ミキサ(0207、0208)、バンドパスフィルタ(0212、0213、0214)、アンプ(0217、0218、0219)を備える。 The “reflected wave receiver” (0102) has a function of receiving a reflected wave. In this embodiment, a receiving antenna (0221) is provided separately from the transmitting antenna. This antenna is not limited as long as it can receive reflected waves. It can be implemented by conventional techniques depending on the frequency of the FM wave used. The reflected wave receiving unit includes a mixer (0207, 0208), a bandpass filter (0212, 0213, 0214), and an amplifier (0217, 0218, 0219) in addition to the above-described receiving antenna.
 「ビート信号合成部」(0103)は、送信波と反射波とからビート信号を合成する機能を有する。ビート信号は送信信号と受信信号の位相の差である位相を有する信号である。具体的には、送信信号の電界成分をE=Acos(2πf+φ)、位相信号の電界成分をE=Acos(2πf+φ)とした場合、ビート信号の強度はI=2Acos{2π(f-f)t+(φ-φ)}と表わされる。受信用アンテナ(0221)により受信された反射波は、低ノイズアンプ(0219)及びバンド・パス・フィルタ(0212)を経て、局部発振周波数でダウンコンバートされた後、信号発生器Aの信号と混合されてビート信号を生成する。 The “beat signal synthesis unit” (0103) has a function of synthesizing a beat signal from a transmission wave and a reflected wave. The beat signal is a signal having a phase that is a phase difference between the transmission signal and the reception signal. Specifically, when the electric field component of the transmission signal is E t = A t cos (2πf t + φ t ) and the electric field component of the phase signal is E r = A r cos (2πf r + φ r ), the intensity of the beat signal is expressed as I b = 2A t a r cos {2π (f r -f t) t + (φ r -φ t)}. The reflected wave received by the receiving antenna (0221) passes through the low noise amplifier (0219) and the band pass filter (0212), is down-converted at the local oscillation frequency, and then mixed with the signal of the signal generator A. To generate a beat signal.
 「初期位相取得部」(0104)は、複数の掃引におけるビート信号の初期位相を取得する機能を有する。初期位相取得部は、ビート信号合成部により生成されるビート信号に基づき、パーソナルコンピュータ(0226)などの計算機を用いて、以下に示す演算処理を行うことにより初期位相を取得する。 The “initial phase acquisition unit” (0104) has a function of acquiring initial phases of beat signals in a plurality of sweeps. The initial phase acquisition unit acquires the initial phase by performing the following arithmetic processing using a computer such as a personal computer (0226) based on the beat signal generated by the beat signal synthesis unit.
 図3は、FM-CW方式により対象物の距離及びドップラ速度を測定する原理を示す図である。実線にて示され鋸波状に変調しているのが送信信号である。この変調は、中心周波数fからFの周波数幅で変調される。掃引の周期はTである。対象物により反射された受信波の信号は、図3において破線で示される。この図から分かるように、受信信号は対象物までの距離に相当した時間遅れτを持つ信号となる。対象物までの距離が大きいとき、ビート信号は時間遅れ(距離)に比例した周波数(ビート周波数)を有する波と近似することができるため、ビート信号の周波数を検出することで対象物までの距離を測定することができる。なお、実際のビート信号は距離の異なる複数の対象物からの反射信号から構成されるが、ビート信号をFFT(高速フーリエ変換)処理して周波数のスペクトルを求めることで、複数の対象物までの距離を求めることが可能になる。 FIG. 3 is a diagram illustrating the principle of measuring the distance and Doppler velocity of an object by the FM-CW method. The transmission signal is indicated by a solid line and modulated in a sawtooth shape. This modulation is modulated from the center frequency f 0 at a frequency width of F. Period of the sweep is T m. The signal of the received wave reflected by the object is indicated by a broken line in FIG. As can be seen from this figure, the received signal is a signal having a time delay τ corresponding to the distance to the object. When the distance to the object is large, the beat signal can be approximated as a wave having a frequency (beat frequency) proportional to the time delay (distance), so the distance to the object is detected by detecting the frequency of the beat signal. Can be measured. The actual beat signal is composed of reflection signals from a plurality of objects at different distances, but the beat signal is subjected to FFT (Fast Fourier Transform) processing to obtain a frequency spectrum, so that a plurality of objects can be obtained. It becomes possible to obtain the distance.
 ビート信号の初期位相を取得するために、まず、一の掃引内の時間での送信波の位相について考える。送信波は、図示したように線形に周波数掃引されるので、掃引開始時の周波数をf、周波数変化率をΔf(=2F/T)とすると、その位相θ(t)は数1で表せる。
Figure JPOXMLDOC01-appb-M000001
To obtain the initial phase of the beat signal, first consider the phase of the transmitted wave at a time within one sweep. Since the transmission wave is linearly swept as shown in the figure, assuming that the frequency at the start of the sweep is f 1 and the frequency change rate is Δf (= 2F / T m ), the phase θ t (t) is It can be expressed as
Figure JPOXMLDOC01-appb-M000001
 ここで、θ(0)は送信波の初期位相である。 Here, θ t (0) is the initial phase of the transmission wave.
 次に、受信波であるが、振幅は対象物の散乱断面積で決まり時間的に一定であるから、位相成分のみ考慮する。対象物の視線方向の速度をv、対象物までの距離をr(t)=r(0)+vt(v=dr/dt)、対象物で反射した後に受信されるまでの時間遅れをτ(t)=2r(t)/cとすると、受信波の位相θ(t)は、数2で求められる。
Figure JPOXMLDOC01-appb-M000002
Next, although it is a received wave, since the amplitude is determined by the scattering cross section of the object and is constant in time, only the phase component is considered. The velocity of the object in the line-of-sight direction is v, the distance to the object is r (t) = r (0) + vt (v = dr / dt), and the time delay until the object is received after being reflected by the object is τ ( Assuming that t) = 2r (t) / c, the phase θ r (t) of the received wave can be obtained by Equation 2.
Figure JPOXMLDOC01-appb-M000002
 ここで、Θは対象物に反射したときの位相変化である。数1及び数2より積分し整理するとビート信号の位相θ(t)は送信信号と受信信号の位相の差であることから、数3、数4で表せる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Here, Θ is a phase change when reflected by the object. When integrating and organizing from Equations 1 and 2, the phase θ b (t) of the beat signal is the difference between the phases of the transmission signal and the reception signal, and can be expressed by Equations 3 and 4.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ここで数3から、ビート信号の周波数は、ビート周波数fbと、ドップラ周波数fの値で決まることが分かる。また数4から、ビート周波数fは対象物までの距離に依存し、ドップラ周波数fは対象物との相対速度に依存することが分かる。ただし、対象物との距離が大きい場合は一般的にf≫f(f~f+f)であるから、このビート信号の周波数から数5を利用して対象物までの距離を求めることができる。また、初期位相は数3の右辺第二項と第三項の和である。
Figure JPOXMLDOC01-appb-M000005
Here the number 3, the frequency of the beat signal, it can be seen that determined the beat frequency f b, the value of the Doppler frequency f d. Also from Equation 4, the beat frequency f b dependent on the distance to the object, the Doppler frequency f d is seen to be dependent on the relative velocity of the object. However, when the distance to the object is large, generally, f b >> f d (f b to f b + f d ), and therefore the distance to the object is calculated from the frequency of the beat signal using Equation 5. Can be sought. The initial phase is the sum of the second term and the third term on the right side of Equation 3.
Figure JPOXMLDOC01-appb-M000005
 「ドップラ速度候補取得部」(0105)は、取得した二以上の初期位相の差分からドップラ速度候補を取得する機能を有する。「ドップラ速度」とは、レーダ装置に対する対象物の相対速度であり、ドップラ速度が正である場合には、対象物はレーダ装置から遠ざかる相対速度を有することになる。反対に負である場合には、対象物はレーダ装置に対して近づく相対速度を有することになる。原理的には数4から、ドップラ周波数を用いて対象物との相対速度を求めることが可能である。しかしながら、上述のようにドップラ周波数はビート周波数に比べて小さく検知するのが困難な場合が多い。よって、以下に示すように二以上の初期位相の差分からドップラ周波数を検知する。 The “Doppler speed candidate acquisition unit” (0105) has a function of acquiring a Doppler speed candidate from the difference between two or more acquired initial phases. The “Doppler speed” is a relative speed of the object with respect to the radar apparatus. When the Doppler speed is positive, the object has a relative speed away from the radar apparatus. Conversely, if it is negative, the object will have a relative velocity approaching the radar device. In principle, it is possible to obtain the relative speed with the object using the Doppler frequency from Equation 4. However, as described above, it is often difficult to detect the Doppler frequency smaller than the beat frequency. Therefore, as shown below, the Doppler frequency is detected from the difference between two or more initial phases.
 FM-CW方式では掃引を周期Tで繰り返し行なう。そこで、n番目の掃引とn+1番目の掃引について考える。このとき対象物が運動をしているならば、それぞれの掃引での対象物までの距離は、vTだけ変化している。n番目の掃引での対象物までの距離と、n+1番目の掃引での対象物までの距離を、それぞれr、r+1とすると、これらの関係は、数6で表せる。
Figure JPOXMLDOC01-appb-M000006
Repeating the sweep cycle the T m in FM-CW method. Therefore, consider the n-th sweep and the (n + 1) -th sweep. If the object at this time is the movement distance to the object in each sweep is changed by vT m. If the distance to the object in the n-th sweep and the distance to the object in the (n + 1) -th sweep are r n and r n +1, respectively, these relationships can be expressed by Equation 6.
Figure JPOXMLDOC01-appb-M000006
 ここで、第三項の反射時の位相変化はTが短いため一定とみなすことができ、それぞれの掃引のビート信号の初期位相の差分Δθを考えると、数7で表せる。
Figure JPOXMLDOC01-appb-M000007
Here, the phase change on reflection of the third term can be regarded as constant for a short T m, considering the difference [Delta] [theta] b of the initial phase of the beat signal for each sweep, represented by the number 7.
Figure JPOXMLDOC01-appb-M000007
 数7は、ビート信号の初期位相がドップラ周波数fで回転していることを示すものである。したがって、この初期位相の変化を測定することによりドップラ速度を得ることができる。 The number 7 shows that the initial phase of the beat signal is rotating at a Doppler frequency f d. Therefore, the Doppler velocity can be obtained by measuring the change in the initial phase.
 取得した二以上のビート信号の初期位相の差分からドップラ速度候補を取得するための処理を、以下具体的に説明する。まずビート信号の一掃引時間のデータから複数の周波数成分を検出する。データの取得は1掃引時間T中にMポイントサンプリングし、これをFFT(高速フーリエ変換)処理をすることによりM/2個の周波数成分が得られる。ここで得られる各周波数成分は、数5で関係付けられた距離からの反射信号に相当する。したがって、1掃引で距離方向にM/2個のデータを取得しているといえる。さらに、掃引数をN回とすると時間方向にN個のデータが得られる。ここで、距離方向にm番目でかつ時間方向にn番目の位相のデータをφmnと表わすと、位相データは数8のようになる。
Figure JPOXMLDOC01-appb-M000008
A process for acquiring a Doppler velocity candidate from the difference between the initial phases of two or more acquired beat signals will be specifically described below. First, a plurality of frequency components are detected from data of one sweep time of the beat signal. Data acquisition M points sampled during one sweep time T m, M / 2 pieces of frequency components are obtained by the FFT (Fast Fourier Transform) processing thereto. Each frequency component obtained here corresponds to a reflected signal from the distance related in Equation 5. Therefore, it can be said that M / 2 pieces of data are acquired in the distance direction by one sweep. Further, when the sweep argument is N times, N pieces of data are obtained in the time direction. Here, when the data of the m-th phase in the distance direction and the n-th phase in the time direction is expressed as φ mn , the phase data is as shown in Equation 8.
Figure JPOXMLDOC01-appb-M000008
 また、ある距離方向にm番目の行の位相データを時間方向に並べたものが数9である。 
Figure JPOXMLDOC01-appb-M000009
Further, Expression 9 is obtained by arranging the phase data of the mth row in a certain distance direction in the time direction.
Figure JPOXMLDOC01-appb-M000009
 このデータ列は、前述のとおり周波数がfである信号をTごとにサンプリングしたものとみなせる。したがって、このデータ列をもう一度FFTすることにより距離がm番目の行にある対象物のドップラ周波数fのスペクトルを求めることができる。ドップラ周波数fをサンプリング周波数f(=1/T)でサンプリングしているものと同等であるので、サンプリング定理(2f<f)を満たしている範囲であればドップラ周波数は一意で求めることができる。このときの測定可能範囲は数10のようになる。
Figure JPOXMLDOC01-appb-M000010
This data sequence can be regarded as those frequencies as described above was sampled signal is f d for each T m. Therefore, it is possible to obtain the spectrum of the Doppler frequency f d of the object in the distance by FFT the data string once more to m-th row. Since the Doppler frequency f d is equivalent to that sampled at the sampling frequency f m (= 1 / T m ), the Doppler frequency is unique as long as the sampling theorem (2f d <f m ) is satisfied. Can be sought. The measurable range at this time is as shown in Equation 10.
Figure JPOXMLDOC01-appb-M000010
 上記の測定可能範囲を超えた場合には折り返しを生じ、ドップラ周波数は一意に定まらず、不定性が生じてしまう。このような場合のドップラ周波数のスペクトルを示したものが図4である。Aで示されているスペクトルが真のドップラ速度を表すものであった場合に、折り返しが生じることにより、Bで示されているように、複数のドップラ速度候補が周期的に現れる。 When the above measurable range is exceeded, aliasing occurs, the Doppler frequency is not uniquely determined, and indefiniteness occurs. FIG. 4 shows the spectrum of the Doppler frequency in such a case. When the spectrum indicated by A represents the true Doppler velocity, aliasing occurs, so that a plurality of Doppler velocity candidates appear periodically as indicated by B.
 実際の観測においては、このように折り返しによる不定性が生じる場合であっても、サンプリング周波数をなるべく高くしたり、観測パラメータを調整したり、雨や雲などの対象物の物理的性質を考慮したりすることにより、真のドップラ速度を判別することが可能である。 In actual observation, even if instability due to aliasing occurs, the sampling frequency should be set as high as possible, the observation parameters should be adjusted, and the physical properties of the object such as rain and clouds should be taken into account. It is possible to determine the true Doppler speed.
<処理手順>
 図5は、本実施例の処理手順の一例を表す流れ図である。まずFM波送信ステップ(ステップS0501)では、繰返し周波数掃引されるFM波を送信する。次に反射波受信ステップ(ステップS0502)では、反射波を受信する。ビート信号合成ステップ(ステップS0503)では、送信波と反射波とからビート信号を合成する。初期位相取得ステップ(ステップS0504)では、複数の掃引におけるビート信号の初期位相を取得する。ドップラ速度候補取得ステップ(ステップS0505)では、取得した二以上の初期位相の差分からドップラ速度候補を取得する。
<Processing procedure>
FIG. 5 is a flowchart showing an example of the processing procedure of the present embodiment. First, in the FM wave transmission step (step S0501), an FM wave that is repeatedly swept in frequency is transmitted. Next, in the reflected wave receiving step (step S0502), the reflected wave is received. In the beat signal synthesis step (step S0503), a beat signal is synthesized from the transmitted wave and the reflected wave. In the initial phase acquisition step (step S0504), initial phases of beat signals in a plurality of sweeps are acquired. In a Doppler speed candidate acquisition step (step S0505), a Doppler speed candidate is acquired from the difference between two or more acquired initial phases.
<実施形態1 効果> <Embodiment 1 effect>
 本実施形態のFM-CWレーダ装置、ドップラ速度測定方法により、折り返しによる不定性が生じた場合であっても、ドップラ速度を判別するためのドップラ速度候補が得られることにより、対象物の距離と相対速度の観測を行うことができる。
<実施形態2>
<実施形態2 概要>
The FM-CW radar apparatus and the Doppler velocity measurement method of the present embodiment can obtain the Doppler velocity candidates for determining the Doppler velocity, even when indefiniteness due to the aliasing occurs. Relative velocity can be observed.
<Embodiment 2>
<Overview of Embodiment 2>
 本実施形態では、実施形態1のFM-CWレーダ装置を基本として、二種以上の送信波を送信することにより、折り返しが生じた場合であっても、複数のドップラ速度候補の内から最適ドップラ速度を得ることができるFM-CWレーダ装置及びドップラ速度測定方法を説明する。
<実施形態2 構成>
In the present embodiment, based on the FM-CW radar apparatus of the first embodiment, the optimal Doppler is selected from among a plurality of Doppler speed candidates even if a return occurs by transmitting two or more types of transmission waves. An FM-CW radar device and a Doppler velocity measurement method capable of obtaining velocity will be described.
<Configuration of Embodiment 2>
 図6は、本実施形態に係るFM-CWレーダ装置の機能ブロックの一例を示すための図である。「FM-CWレーダ装置」(0600)は、「FM波送信部」(0601)と、「反射波受信部」(0602)と、「ビート信号合成部」(0603)と、「初期位相取得部」(0604)と、「ドップラ速度候補取得部」(0605)とにより構成され、FM波送信部は、さらに「複数波送信手段」(0606)を有し、ドップラ速度候補取得部は、さらに「絞込演算手段」(0607)を有する。「複数送信手段」と「絞込演算手段」以外の各構成は実施形態1における各構成と同様であるため、説明を省略する。 FIG. 6 is a diagram for illustrating an example of functional blocks of the FM-CW radar apparatus according to the present embodiment. The “FM-CW radar device” (0600) includes an “FM wave transmission unit” (0601), a “reflected wave reception unit” (0602), a “beat signal synthesis unit” (0603), and an “initial phase acquisition unit”. ”(0604) and“ Doppler velocity candidate acquisition unit ”(0605), the FM wave transmission unit further includes“ multi-wave transmission means ”(0606), and the Doppler velocity candidate acquisition unit further includes“ “Refinement calculation means” (0607). Since the components other than the “multiple transmission unit” and the “squeezing calculation unit” are the same as those in the first embodiment, the description thereof is omitted.
 「複数波送信手段」(0606)は、二種以上の送信波を送信する機能を有する。ここで送信される送信波は、実施形態1で述べたように所定の周期で周波数変調を繰り返すFM波である。そして、二種以上の送信波は、それぞれの変調周期のみを異なるものとしたものである。例えば、一の送信波の1掃引の時間をT=250μsecとすれば、この送信波の変調周波数はf=4kHz(T=1/f)となる。この場合に、例えば、変調周波数f=3kHzとなる送信波をもう一つの送信波として用いる。複数波送信手段は、このように異なる変調周期を有する二種以上の送信波を送信する。二種以上の送信波におけるそれぞれの変調周期は任意に定めることができる。この点については、絞込演算手段にも関連するので後述する。 The “multiple wave transmission means” (0606) has a function of transmitting two or more types of transmission waves. The transmission wave transmitted here is an FM wave that repeats frequency modulation at a predetermined period as described in the first embodiment. The two or more types of transmission waves differ only in their modulation periods. For example, if the time for one sweep of one transmission wave is T m = 250 μsec, the modulation frequency of this transmission wave is f m = 4 kHz (T m = 1 / f m ). In this case, for example, a transmission wave having a modulation frequency f m = 3 kHz is used as another transmission wave. The multiple wave transmission means transmits two or more types of transmission waves having different modulation periods in this way. Each modulation period in two or more types of transmission waves can be arbitrarily determined. Since this point is also related to the narrowing down calculation means, it will be described later.
 「絞込演算手段」(0607)は、各送信波に対応した前記初期位相の差分を比較し、速度軸で一致するものを選ぶことで複数のドップラ速度候補から最適ドップラ速度を得るための絞り込みを行う機能を有する。「速度軸で一致するものを選ぶ」とは、ある時刻における複数の送信波に基づいて得られる観測データの中で一致するものを選ぶという意である。以下に絞込演算手段における処理を具体的に説明する。 The “squeezing calculation means” (0607) compares the differences of the initial phases corresponding to the respective transmission waves, and selects the ones that match on the speed axis, thereby narrowing down to obtain the optimum Doppler speed from a plurality of Doppler speed candidates. It has a function to perform. “Choose one that matches on the speed axis” means to select one that matches among the observation data obtained based on a plurality of transmission waves at a certain time. The processing in the narrowing down calculation means will be specifically described below.
 実施形態1において述べたように、対象物のドップラ速度を得るために、複数の掃引におけるビート信号の初期位相の差分を求める。この初期位相の差分を、変調周波数の異なる二種以上の送信波のそれぞれについて求める。図7(A)は、変調周波数が4kHzのFM波を一の送信波として用いて地上から鉛直方向に送信して雲を観測した場合の観測データである。縦軸を高度、横軸を位相差及び速度として、ある時刻におけるビート信号の位相変化率の分布をFFTにより求めて示したものである。図のように、高度3kmから6kmの範囲の領域において、位相変化率の分布が高い頻度で生じているのが分かる。したがって、この領域で雲が運動していることが分かる。しかし、2πの周期で折り返しが生じているため、この観測データのみでは雲のドップラ速度を特定することはできない。 As described in the first embodiment, in order to obtain the Doppler velocity of the object, the difference between the initial phases of the beat signals in a plurality of sweeps is obtained. The initial phase difference is obtained for each of two or more types of transmission waves having different modulation frequencies. FIG. 7A shows observation data when a cloud is observed by transmitting an FM wave having a modulation frequency of 4 kHz as one transmission wave in the vertical direction from the ground. The distribution of the phase change rate of the beat signal at a certain time is obtained by FFT, with the vertical axis representing altitude and the horizontal axis representing phase difference and velocity. As shown in the figure, it can be seen that the phase change rate distribution occurs at a high frequency in the region of altitude 3 km to 6 km. Therefore, it can be seen that the clouds are moving in this region. However, since folding occurs at a period of 2π, the cloud Doppler velocity cannot be specified only by this observation data.
 ここで、変調周波数が4kHzのFM波と、変調周波数が3kHzのFM波を二種の送信波とした場合には、図7(A)に示す観測データの他に、図7(B)に示すように、変調周波数が3kHzのFM波による観測データを得ることができる。したがって、ある時刻の雲の運動を、変調周波数の異なる二のFM波によってドップラ速度を観測したものになる。 Here, in the case where FM waves with a modulation frequency of 4 kHz and FM waves with a modulation frequency of 3 kHz are used as two types of transmission waves, in addition to the observation data shown in FIG. As shown, observation data by FM waves with a modulation frequency of 3 kHz can be obtained. Therefore, the Doppler velocity of the cloud motion at a certain time is observed by the two FM waves having different modulation frequencies.
 図7に示すように、それぞれの観測データは速度(m/s)のスケールを等しくして、かつ、位相差ゼロの位置を揃えて表示している。一方、それぞれの変調周波数が異なるため、速度に対応する位相差は相違したものとなる。図7(A)において、位相変化率の分布が高い頻度で生じている速度域は、1周期(2π)ごとに存在する(0701、0702、0703)。図7(B)においても、位相変化率の分布が高い頻度で生じている速度域は、1周期(2π)ごとに存在する(0711、0712、0713)。そこで、それぞれの観測データにおける位相変化率の分布が高い頻度で生じている速度域を比較してみると、速度において一致するものは、約+2.4(m/s)~+2.9(m/s)の速度域(0701、0711)に限られ、他の速度域においては一致しない。一致せずに他に現れているものは、折り返しにより現れているに過ぎず、実体を伴わない。したがって、実際の雲のドップラ速度は、両観測データにおいて一致した約+2.4(m/s)~+2.9(m/s)であると特定することができる。よって、この速度で雲が上昇しているということが観測できる。 As shown in FIG. 7, each observation data is displayed with the same speed (m / s) scale and with the position of zero phase difference aligned. On the other hand, since each modulation frequency is different, the phase difference corresponding to the speed is different. In FIG. 7A, the velocity range where the phase change rate distribution is generated with a high frequency exists for each period (2π) (0701, 0702, 0703). In FIG. 7B as well, a velocity region in which the phase change rate distribution occurs at a high frequency exists for each period (2π) (0711, 0712, 0713). Therefore, when comparing the speed ranges where the distribution of the phase change rate in each observation data occurs at a high frequency, the ones that coincide in the speed are about +2.4 (m / s) to +2.9 (m / S) is limited to the speed range (0701, 0711) and does not match in other speed ranges. Anything that doesn't match and appears elsewhere only appears by wrapping, with no substance. Therefore, the actual Doppler velocity of the cloud can be specified to be about +2.4 (m / s) to +2.9 (m / s) which coincides in both observation data. Therefore, it can be observed that the clouds are rising at this speed.
 折り返しは図示した範囲のほかにも存在するため、上述した約+2.4(m/s)~+2.9(m/s)の速度域のほかにも一致する速度域が現れる。位相差が-π~+πの1周期を基準とし、変調周波数が4kHzの場合の±3周期目と、変調周波数が3kHzの場合の±4周期目とにおける速度域が一致する。具体的には、約+21.4(m/s)~+21.9(m/s)の速度域と、約-16.6(m/s)~-16.1(m/s)の速度域とにおいて一致する。しかし、雲の速度は早くても10m/s程度なので、これらの速度が現実的でないことが分かる。このようにして、折り返しにより生じるドップラ速度候補の中から特定ドップラ速度を絞り込むことができる。 Since the folding exists in addition to the illustrated range, a matching speed range appears in addition to the above-described speed range of about +2.4 (m / s) to +2.9 (m / s). With reference to one period of phase difference of −π to + π, the speed ranges in the ± 3 period when the modulation frequency is 4 kHz and the ± 4 period when the modulation frequency is 3 kHz are the same. Specifically, a speed range of about +21.4 (m / s) to +21.9 (m / s) and a speed of about -16.6 (m / s) to -16.1 (m / s) It matches in the area. However, since the speed of the clouds is about 10 m / s at the fastest, it can be seen that these speeds are not realistic. In this way, the specific Doppler speed can be narrowed down from the Doppler speed candidates generated by the folding.
 なお、上記の例では変調周波数として3kHzと4kHzを選択したが、例えば3kHzと7kHzのように公倍数の大きな組み合わせを選択して速度軸で一致する間隔を広くすることもできる。これにより、広い速度範囲でドップラ速度を検出することが可能になる。また、3kHzと5kHzと7kHzなどの三種の変調周波数を用いることも同様に可能である。 In the above example, 3 kHz and 4 kHz are selected as the modulation frequencies. However, for example, a combination having a large common multiple such as 3 kHz and 7 kHz can be selected to widen the interval on the speed axis. This makes it possible to detect the Doppler speed in a wide speed range. It is also possible to use three types of modulation frequencies such as 3 kHz, 5 kHz, and 7 kHz.
<処理手順>
 本実施例の処理手順は実施例1の図5で示した処理手順と同様である。まずFM波送信ステップでは、繰返し周波数掃引される二種以上の送信波を送信する。次に反射波受信ステップでは、反射波を受信する。ビート信号合成ステップでは、送信波と反射波とからビート信号を合成する。初期位相取得ステップでは、複数の掃引におけるビート信号の初期位相を取得する。ドップラ速度候補取得ステップでは、各送信波に対応した前記初期位相の差分を比較し、速度軸で一致するものを選ぶことで複数のドップラ速度候補から最適ドップラ速度を得るための絞り込みを行う。
<実施形態2 効果>
<Processing procedure>
The processing procedure of the present embodiment is the same as the processing procedure shown in FIG. First, in the FM wave transmission step, two or more types of transmission waves that are swept repeatedly are transmitted. Next, in the reflected wave receiving step, the reflected wave is received. In the beat signal synthesis step, a beat signal is synthesized from the transmission wave and the reflected wave. In the initial phase acquisition step, initial phases of beat signals in a plurality of sweeps are acquired. In the Doppler speed candidate acquisition step, the difference in the initial phase corresponding to each transmission wave is compared, and a selection is made to obtain an optimal Doppler speed from a plurality of Doppler speed candidates by selecting one that matches the speed axis.
<Embodiment 2 Effect>
 本実施形態のFM-CWレーダ装置により、折り返しによる不定性が生じた場合であっても、ドップラ速度を特定することが可能となる。 The FM-CW radar apparatus according to the present embodiment can specify the Doppler velocity even when indefiniteness occurs due to folding.
  0100 FM-CWレーダ装置
  0101 FM波送信部
  0102 反射波受信部
  0103 ビート信号合成部
  0104 初期位相取得部
  0105 ドップラ速度候補取得部
0100 FM-CW radar apparatus 0101 FM wave transmission unit 0102 Reflected wave reception unit 0103 Beat signal synthesis unit 0104 Initial phase acquisition unit 0105 Doppler velocity candidate acquisition unit

Claims (4)

  1.  繰返し周波数掃引されるFM波を送信するFM波送信部と、
     反射波を受信する反射波受信部と、
     送信波と反射波とからビート信号を合成するビート信号合成部と、
     複数の掃引におけるビート信号の初期位相を取得する初期位相取得部と、
     取得した二以上の初期位相の差分からドップラ速度候補を取得するドップラ速度候補取得部と、
    を有するFM-CWレーダ装置。
    An FM wave transmitter that transmits FM waves that are swept at a repetitive frequency;
    A reflected wave receiver for receiving the reflected wave;
    A beat signal synthesis unit that synthesizes a beat signal from a transmission wave and a reflected wave;
    An initial phase acquisition unit for acquiring an initial phase of a beat signal in a plurality of sweeps;
    A Doppler speed candidate acquisition unit that acquires a Doppler speed candidate from the difference between two or more acquired initial phases;
    FM-CW radar apparatus having
  2.  前記FM波送信部は、二種以上の送信波を送信する複数波送信手段を有し、
     前記ドップラ速度候補取得部は、各送信波に対応した前記初期位相の差分を比較し、速度軸で一致するものを選ぶことで複数のドップラ速度候補から最適ドップラ速度を得るための絞り込みを行う絞込演算手段を有する請求項1に記載のFM-CWレーダ装置。
    The FM wave transmission unit includes a plurality of wave transmission means for transmitting two or more types of transmission waves,
    The Doppler speed candidate acquisition unit compares the difference of the initial phase corresponding to each transmission wave, and selects the one that matches on the speed axis, thereby narrowing down to obtain an optimal Doppler speed from a plurality of Doppler speed candidates. The FM-CW radar apparatus according to claim 1, further comprising a calculation unit.
  3.  繰返し周波数掃引されるFM波を送信するFM波送信ステップと、
     反射波を受信する反射波受信ステップと、
     送信波と反射波とからビート信号を合成するビート信号合成ステップと、
     複数の掃引におけるビート信号の初期位相を取得する初期位相取得ステップと、
     取得した二以上の初期位相の差分からドップラ速度候補を取得するドップラ速度候補取得ステップと、
    からなるドップラ速度測定方法。
    An FM wave transmission step of transmitting an FM wave that is swept at a repetitive frequency;
    A reflected wave receiving step for receiving the reflected wave;
    A beat signal synthesis step for synthesizing a beat signal from a transmission wave and a reflected wave;
    An initial phase acquisition step of acquiring an initial phase of a beat signal in a plurality of sweeps;
    A Doppler speed candidate acquisition step of acquiring a Doppler speed candidate from the difference between the acquired two or more initial phases;
    A Doppler velocity measurement method comprising:
  4.  前記FM波送信ステップは、二種以上の送信波を送信する複数波送信サブステップを有し、
     前記ドップラ速度候補取得ステップは、各送信波に対応した前記初期位相の差分を比較し、速度軸で一致するものを選ぶことで複数のドップラ速度候補から最適ドップラ速度を得るための絞り込みを行う絞込演算サブステップを有する請求項3に記載のドップラ速度測定方法。
    The FM wave transmission step includes a multi-wave transmission sub-step for transmitting two or more types of transmission waves,
    The Doppler speed candidate acquisition step compares the initial phase differences corresponding to each transmission wave, and selects the ones that match on the speed axis, thereby narrowing down to obtain an optimal Doppler speed from a plurality of Doppler speed candidates. The Doppler velocity measurement method according to claim 3, further comprising a calculation substep.
PCT/JP2010/061970 2009-07-16 2010-07-15 Fm-cw radar apparatus and doppler velocity measuring method WO2011007828A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011522846A JPWO2011007828A1 (en) 2009-07-16 2010-07-15 FM-CW radar device, Doppler velocity measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009168208 2009-07-16
JP2009-168208 2009-07-16

Publications (1)

Publication Number Publication Date
WO2011007828A1 true WO2011007828A1 (en) 2011-01-20

Family

ID=43449437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061970 WO2011007828A1 (en) 2009-07-16 2010-07-15 Fm-cw radar apparatus and doppler velocity measuring method

Country Status (2)

Country Link
JP (1) JPWO2011007828A1 (en)
WO (1) WO2011007828A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104169828A (en) * 2011-12-22 2014-11-26 英特尔公司 Deterministic clock crossing
KR20150108876A (en) * 2013-03-15 2015-09-30 오토리브 에이에스피, 인크. Vehicle radar system with blind spot detection
JP2017058291A (en) * 2015-09-17 2017-03-23 富士通テン株式会社 Radar device, signal processing device for radar device, and method for measuring speed
JP2017090066A (en) * 2015-11-02 2017-05-25 富士通テン株式会社 Radar device, signal processing device of radar device, and signal processing method
KR101742868B1 (en) * 2015-06-03 2017-06-02 한국과학기술원 Frequency modulated continuous wave chain radar system for detecting unmanned aerial vehicle
KR101777011B1 (en) 2015-10-01 2017-09-26 재단법인대구경북과학기술원 Apparatus and method for processing radar signal in accordance with the energy of the radar sensor
WO2017200041A1 (en) * 2016-05-18 2017-11-23 株式会社デンソー Speed detecting device
WO2017208670A1 (en) * 2016-05-30 2017-12-07 日本電気株式会社 Object sensing device, vehicle-mounted radar system, surveillance radar system, object sensing method, and program
TWI667488B (en) * 2018-08-27 2019-08-01 呈鎬科技股份有限公司 A target detection method by stepped-frequency modulation signals
WO2019182043A1 (en) * 2018-03-23 2019-09-26 株式会社Soken Radar device
JP2019168449A (en) * 2018-03-23 2019-10-03 株式会社Soken Radar device
CN110927717A (en) * 2019-12-11 2020-03-27 深圳大学 Imaging method, device and imaging system of frequency modulated continuous wave radar
JP2020173163A (en) * 2019-04-10 2020-10-22 株式会社デンソー Radar device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001500621A (en) * 1996-09-18 2001-01-16 セルシウステク エレクトロニクス エービー A process for determining the relative velocity between two moving objects
JP2003194924A (en) * 2001-12-25 2003-07-09 Mitsubishi Electric Corp Doppler radar equipment
JP2004085452A (en) * 2002-08-28 2004-03-18 Toyota Central Res & Dev Lab Inc Fm-cw radar system
JP2004151022A (en) * 2002-10-31 2004-05-27 Denso Corp Fmcw radar device
WO2006134912A1 (en) * 2005-06-17 2006-12-21 Murata Manufacturing Co., Ltd. Radar apparatus
JP2009510410A (en) * 2005-09-29 2009-03-12 バレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Radar method for automatic vehicle and radar device for automatic vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001500621A (en) * 1996-09-18 2001-01-16 セルシウステク エレクトロニクス エービー A process for determining the relative velocity between two moving objects
JP2003194924A (en) * 2001-12-25 2003-07-09 Mitsubishi Electric Corp Doppler radar equipment
JP2004085452A (en) * 2002-08-28 2004-03-18 Toyota Central Res & Dev Lab Inc Fm-cw radar system
JP2004151022A (en) * 2002-10-31 2004-05-27 Denso Corp Fmcw radar device
WO2006134912A1 (en) * 2005-06-17 2006-12-21 Murata Manufacturing Co., Ltd. Radar apparatus
JP2009510410A (en) * 2005-09-29 2009-03-12 バレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Radar method for automatic vehicle and radar device for automatic vehicle

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104169828A (en) * 2011-12-22 2014-11-26 英特尔公司 Deterministic clock crossing
KR20150108876A (en) * 2013-03-15 2015-09-30 오토리브 에이에스피, 인크. Vehicle radar system with blind spot detection
KR102065626B1 (en) 2013-03-15 2020-01-13 비오니어 유에스, 인크. Vehicle radar system with blind spot detection
KR101742868B1 (en) * 2015-06-03 2017-06-02 한국과학기술원 Frequency modulated continuous wave chain radar system for detecting unmanned aerial vehicle
JP2017058291A (en) * 2015-09-17 2017-03-23 富士通テン株式会社 Radar device, signal processing device for radar device, and method for measuring speed
US10527718B2 (en) 2015-09-17 2020-01-07 Fujitsu Ten Limited Radar device, signal processing device for radar device and velocity measuring method for radar device
KR101777011B1 (en) 2015-10-01 2017-09-26 재단법인대구경북과학기술원 Apparatus and method for processing radar signal in accordance with the energy of the radar sensor
JP2017090066A (en) * 2015-11-02 2017-05-25 富士通テン株式会社 Radar device, signal processing device of radar device, and signal processing method
WO2017200041A1 (en) * 2016-05-18 2017-11-23 株式会社デンソー Speed detecting device
JP2017207368A (en) * 2016-05-18 2017-11-24 株式会社デンソー Speed detector
WO2017208670A1 (en) * 2016-05-30 2017-12-07 日本電気株式会社 Object sensing device, vehicle-mounted radar system, surveillance radar system, object sensing method, and program
JPWO2017208670A1 (en) * 2016-05-30 2019-03-28 日本電気株式会社 Object detection apparatus, in-vehicle radar system, surveillance radar system, object detection method and program
US11194033B2 (en) 2016-05-30 2021-12-07 Nec Corporation Object sensing device, automotive radar system, surveillance radar system, object sensing method, and program
WO2019182043A1 (en) * 2018-03-23 2019-09-26 株式会社Soken Radar device
JP2019168449A (en) * 2018-03-23 2019-10-03 株式会社Soken Radar device
US11709246B2 (en) * 2018-03-23 2023-07-25 Soken, Inc. Radar apparatus
JP7168493B2 (en) 2018-03-23 2022-11-09 株式会社Soken radar equipment
US20210003695A1 (en) * 2018-03-23 2021-01-07 Soken, Inc. Radar apparatus
TWI667488B (en) * 2018-08-27 2019-08-01 呈鎬科技股份有限公司 A target detection method by stepped-frequency modulation signals
JP2020173163A (en) * 2019-04-10 2020-10-22 株式会社デンソー Radar device
JP7196744B2 (en) 2019-04-10 2022-12-27 株式会社デンソー radar equipment
CN110927717B (en) * 2019-12-11 2022-01-11 深圳大学 Imaging method, device and imaging system of frequency modulated continuous wave radar
CN110927717A (en) * 2019-12-11 2020-03-27 深圳大学 Imaging method, device and imaging system of frequency modulated continuous wave radar

Also Published As

Publication number Publication date
JPWO2011007828A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
WO2011007828A1 (en) Fm-cw radar apparatus and doppler velocity measuring method
US7667637B2 (en) System and method for radar detection of an object
US10989589B2 (en) Interferometric vibration observation device, vibration observation program, recording medium, vibration observation method and vibration observation system
US9442188B2 (en) Negative pseudo-range processing with multi-static FMCW radars
JP4293194B2 (en) Distance measuring device and distance measuring method
JP3144688B2 (en) Method and apparatus for detection and measurement of air phenomena and transmitter and receiver for use in such apparatus
US4054879A (en) Dual-frequency, remote ocean-wave spectrometer
May et al. The altitude coverage of temperature measurements using RASS with wind profiler radars
RU2480782C1 (en) Method and device to resolve moving targets along angular directions in surveillance radars
Rajkumar et al. Design and Development of DSP Interfaces and Algorithm for FMCW Radar Altimeter
US11914021B2 (en) Velocity measurement device, velocity measurement program, recording medium, and velocity measurement method
Ciattaglia et al. Performance evaluation of vibrational measurements through mmWave radars
Leuschen et al. SAR processing of radar echo sounder data
Xu et al. Ultra-wideband chaos life-detection radar with sinusoidal wave modulation
CN115128592A (en) Debris flow surface flow velocity monitoring method and system
Ji et al. A small array HFSWR system for ship surveillance
Wang et al. Accurate non-contact retrieval in micro vibration by a 100GHz radar.
Ciattaglia et al. Assessment of Displacement Measurements by a mmWave Radar
Munton et al. A midlatitude HF propagation experiment over New Mexico
JP2006226711A (en) Radar
Griffin et al. Development of a passive dual channel receiver at l-band for the detection of drones
JP2558651B2 (en) Radar device
Munir Performance analysis of FMCW-based X-band weather radar
Luzi et al. Development of a novel radar sensor for monitoring the vibration characteristics of structures at short ranges
Yang et al. A bistatic HF radar for surface current mapping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799886

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011522846

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799886

Country of ref document: EP

Kind code of ref document: A1