WO2011007772A1 - Method for diagnosing error of pressure sensor and common rail type fuel injection control device - Google Patents

Method for diagnosing error of pressure sensor and common rail type fuel injection control device Download PDF

Info

Publication number
WO2011007772A1
WO2011007772A1 PCT/JP2010/061820 JP2010061820W WO2011007772A1 WO 2011007772 A1 WO2011007772 A1 WO 2011007772A1 JP 2010061820 W JP2010061820 W JP 2010061820W WO 2011007772 A1 WO2011007772 A1 WO 2011007772A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
rail
predetermined
correlation
pressure sensor
Prior art date
Application number
PCT/JP2010/061820
Other languages
French (fr)
Japanese (ja)
Inventor
篤志 岸
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to JP2011522812A priority Critical patent/JPWO2011007772A1/en
Publication of WO2011007772A1 publication Critical patent/WO2011007772A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • F02D2041/223Diagnosis of fuel pressure sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/024Means for varying pressure in common rails by bleeding fuel pressure between the low pressure pump and the high pressure pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/025Means for varying pressure in common rails by bleeding fuel pressure from the common rail

Definitions

  • the present invention relates to sensor failure detection, and in particular, to improvements in speediness and simplicity.
  • an electronic control device for an internal combustion engine of an automobile typified by a diesel engine
  • various sensors are provided, and detection signals thereof are used for operation control of the internal combustion engine.
  • a pressure sensor for detecting a rail pressure in a common rail fuel injection control device is important for realizing appropriate fuel injection, and various measures for detecting a failure have been proposed. .
  • the present invention has been made in view of the above circumstances, and without providing a dedicated circuit or new parts for failure diagnosis, has a simple configuration, is quick and reliable, and affects vehicle operation.
  • a pressure sensor failure diagnosis method and a common rail fuel injection control device that are not given are provided.
  • the pressure adjustment valve is provided in the fuel return passage from the common rail, and the rail pressure detected by the pressure sensor is converted into the engine operation information by the drive control of the pressure adjustment valve.
  • a failure diagnosis method for the pressure sensor in a common rail fuel injection control device configured to be controllable so as to achieve a target rail pressure calculated on the basis of: The plurality of currents determined by a standard correlation representing a correlation between the current flowing through the actual pressure regulating valve at a plurality of rail pressures and a predetermined standard current regulating valve current flowing through the rail pressure.
  • the pressure sensor failure diagnosis method is provided in which the predetermined allowable range is determined based on a reference correlation obtained by correcting the standard correlation with the difference.
  • a high-pressure pump device that pumps fuel to the common rail
  • a pressure adjustment valve that is provided in a fuel return passage from the common rail
  • a pressure sensor that detects the pressure of the common rail
  • An electronic control unit for controlling the driving of the high-pressure pump device and the pressure regulating valve, The electronic control unit is configured to calculate a target rail pressure based on engine operation information and to drive and control the pressure adjustment valve so that the rail pressure detected by the pressure sensor becomes the target rail pressure.
  • a common rail fuel injection control device comprising: The electronic control unit is When the energizing current of the pressure regulating valve required to set the rail pressure to a plurality of predetermined diagnostic pressures under a predetermined driving condition of the vehicle is out of a predetermined allowable range more than a predetermined number of times, Configured to diagnose pressure sensor failure, The predetermined permissible range is obtained by correcting a standard correlation representing a correlation between a preset standard energizing current of the pressure regulating valve and the rail pressure based on an energizing characteristic of the actual pressure regulating valve.
  • a common rail fuel injection control apparatus defined based on the reference correlation is provided.
  • the present invention determines whether or not the energization current required for energizing the pressure regulating valve to obtain a predetermined rail pressure. Because of this, the presence or absence of a pressure sensor failure is determined, so that it is possible to realize a pressure sensor failure diagnosis more quickly than before with a simple configuration without providing a dedicated circuit for failure diagnosis. As a result, it is possible to provide a highly reliable common rail fuel injection control device.
  • FIG. 1 It is a block diagram which shows the structural example of the internal combustion engine injection control apparatus with which the failure diagnosis method of the pressure sensor in embodiment of this invention is applied. It is a flowchart which shows the procedure of the initial learning process performed by the electronic control unit which comprises the internal combustion engine injection control apparatus shown by FIG. It is a subroutine flowchart which shows the procedure of the pressure sensor failure diagnosis process performed by the electronic control unit which comprises the internal combustion engine injection control apparatus shown by FIG. It is a characteristic diagram for demonstrating the tolerance
  • FIG. 5A is a schematic diagram schematically showing an example of changes in the accelerator opening, the fuel injection amount, and the rail pressure when executing the pressure sensor failure diagnosis process in the embodiment of the present invention.
  • FIG. 5B is a schematic diagram schematically showing an example of change in fuel injection amount
  • FIG. 5C is a schematic diagram showing an example of change in rail pressure. It is a schematic diagram shown.
  • Embodiments of the present invention will be described below with reference to FIGS. 1 to 5.
  • the members and arrangements described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.
  • a configuration example of an internal combustion engine injection control apparatus to which a pressure sensor failure diagnosis method according to an embodiment of the present invention is applied will be described with reference to FIG.
  • the internal combustion engine injection control device shown in FIG. 1 is particularly configured as a common rail fuel injection control device.
  • the common rail type fuel injection control device includes a high pressure pump device 50 that pumps high pressure fuel, a common rail 1 that stores the high pressure fuel pumped by the high pressure pump device 50, and a high pressure fuel supplied from the common rail 1 as a diesel engine.
  • a plurality of fuel injection valves 2-1 to 2-n (hereinafter referred to as “engine”) for supplying fuel to three cylinders, and an electronic control unit for executing fuel injection control processing, pressure sensor failure diagnosis processing (to be described later), etc. 1 is represented as “ECU”) 4 as a main component.
  • ECU electronic control unit for executing fuel injection control processing, pressure sensor failure diagnosis processing (to be described later), etc.
  • Such a configuration itself is the same as the basic configuration of this type of fuel injection control apparatus that has been well known.
  • the high-pressure pump device 50 has a known and well-known configuration in which the supply pump 5, the metering valve 6, and the high-pressure pump 7 are configured as main components.
  • the fuel in the fuel tank 9 is pumped up by the supply pump 5 and supplied to the high-pressure pump 7 through the metering valve 6.
  • the metering valve 6 an electromagnetic proportional control valve is used, and the amount of energization is controlled by the electronic control unit 4, so that the flow rate of fuel supplied to the high-pressure pump 7, in other words, the discharge of the high-pressure pump 7. The amount is to be adjusted.
  • a return valve 8 is provided between the output side of the supply pump 5 and the fuel tank 9 so that surplus fuel on the output side of the supply pump 5 can be returned to the fuel tank 9. .
  • the supply pump 5 may be provided separately from the high-pressure pump device 50 on the upstream side of the high-pressure pump device 50 or may be provided in the fuel tank 9.
  • the fuel injection valves 2-1 to 2-n are provided for each cylinder of the engine 3, and are supplied with high-pressure fuel from the common rail 1 and perform fuel injection by injection control by the electronic control unit 4. Yes.
  • the common rail 1 in the embodiment of the present invention is provided with a pressure regulating valve 12 in a return passage (not shown) for returning surplus high-pressure fuel to the tank 9 and is used together with the metering valve 6 to control the rail pressure. It is supposed to be.
  • appropriate rail pressure control is realized by changing the operation states of the metering valve 6 and the pressure adjustment valve 12 in accordance with the operation state of the engine 3.
  • the rail pressure control in the embodiment of the present invention by the metering valve 6 and the pressure regulating valve 12 will be briefly described.
  • the pressure regulating valve 12 is fully closed, that is, While the flow path from the common rail 1 to the return passage is closed, there is a rail pressure control state in which a desired rail pressure is obtained by adjusting the fuel discharge amount from the metering valve 6.
  • a rail pressure control state in which a desired rail pressure is obtained by adjusting the valve opening degree of the pressure adjustment valve 12 by feedback control while the metering valve 6 is fully opened. is there.
  • the third rail pressure control state there is a rail pressure control state in which the metering valve 6 and the pressure regulating valve 12 are respectively set to predetermined valve openings to obtain a desired rail pressure.
  • the electronic control unit 4 has, for example, a microcomputer (not shown) having a known and well-known configuration, a storage element (not shown) such as a RAM and a ROM, and a fuel injection valve 2-
  • a drive circuit (not shown) for driving 1 to 2-n and an energization circuit (not shown) for energizing the metering valve 6 and the pressure regulating valve 12 are configured as main components. It has become a thing.
  • various detection signals such as the engine speed and the accelerator opening are input to control the operation of the engine 3. It is used for fuel injection control.
  • FIG. 2 and 3 show a subroutine flowchart showing the procedure of the pressure sensor failure diagnosis process executed by the electronic control unit 4.
  • the sensor failure diagnosis process will be described.
  • This pressure sensor failure diagnosis is based on the correlation between the energization current of the pressure regulating valve 12 and the rail pressure that can be controlled by the energization current. When attention is paid and the correlation deviates from a predetermined range, a failure (error) of the pressure regulating valve 12 or the pressure sensor 11 occurs.
  • the energization of the pressure adjustment valve 12 is performed. Data is acquired regarding the correlation between the current and the rail pressure that can be controlled by the energization current, and this is stored as a reference correlation in the storage area of the electronic control unit 4. After that, when the vehicle is put into actual use, the pressure regulating valve 12 is energized at a predetermined time, and the rail pressure at that time is the correlation of the reference stored in advance as described above. When a predetermined amount deviates from the above, it is determined that a failure (error) of the pressure regulating valve 12 or the pressure sensor 11 has occurred.
  • FIG. 2 shows a subroutine flowchart showing the procedure of the initial learning process regarding the correlation between the energization current of the pressure regulating valve 12 and the rail pressure that can be controlled by the energization current, with reference to FIG.
  • the procedure of the initial learning process will be described.
  • the correlation between the standard pressure regulating valve energization current stored in advance in the electronic control unit 4 and the rail pressure (hereinafter referred to as “standard correlation” for convenience) is actually used.
  • the data is acquired for correction based on the correlation between the energization current of the pressure regulating valve 12 mounted on the rail and the rail pressure that can be controlled by the energization current.
  • the outline of this process will be described. For a plurality of rail pressures, the current value that actually flows through the pressure regulating valve 12 is obtained to obtain each rail pressure, and the difference from the current value obtained from the standard correlation is obtained. Are stored as correction data.
  • this series of processes is executed when shipped as a new vehicle or immediately after the pressure adjustment valve 12 is replaced due to a failure or the like, the execution of this series of processes is started. Is preferably performed in a factory by a method such as a predetermined command input to the electronic control unit 4 to start processing, for example.
  • the pressure regulating valve 12 is not actually replaced as a single unit, and is generally referred to as a rail assembly composed of a plurality of components such as the common rail 11 including the pressure regulating valve 12. The entire configuration is to be exchanged.
  • the processing is started by the electronic control unit 4, it is determined whether or not the vehicle is in a no-load running state (see step S102 in FIG. 2).
  • the reason why the no-load running state is set as such is that a state in which the rail pressure is stable is preferable in order to obtain the reference correlation.
  • the depression amount of an accelerator pedal (not shown) is suitable, and the accelerator pedal is not depressed (depression amount 0%). If it is, it can be in a no-load running state.
  • step S102 If it is determined in step S102 that the vehicle is in the no-load running state (in the case of YES), then the rail pressure control is set to the second rail pressure control state described above (see step S104 in FIG. 2). . That is, the rail pressure is controlled by the pressure regulating valve 12.
  • the pressure regulating valve 12 is represented as “PCV”
  • PCV mode the second rail pressure control state described above
  • step S106 in order to obtain a correlation between the energization current of the pressure regulating valve 12 and the rail pressure, energization is performed on the pressure regulating valve 12 so as to obtain a predetermined rail pressure (test pressure) as one measurement point (see FIG. 2 step S106).
  • the electronic control unit 4 compares the rail pressure detected by the pressure sensor 11 at this time with the energization current of the pressure regulating valve 12 (see step S108 in FIG. 2). That is, the actual rail pressure (actual rail pressure) detected by the pressure sensor 11 is compared with the verification pressure set in step S106, and the energization of the pressure adjustment valve 12 is performed so that the actual rail pressure becomes a predetermined verification pressure. The current will be adjusted.
  • step S110 described below.
  • step S110 when it is determined that it is within the predetermined specified range (in the case of YES), the process proceeds to step S112 described below, and is determined not to be within the predetermined specified range. In the case (in the case of NO), the process proceeds to step S118 described later.
  • the completion flag is set to a predetermined value, for example, “1” (see step S116 in FIG. 2), and a series of initial learning processes is ended.
  • step S114 determines whether the difference storage at all the test pressure points has not yet been completed (in the case of NO). If it is determined in step S114 that the difference storage at all the test pressure points has not yet been completed (in the case of NO), the process returns to the previous step S106, and the process after step S108 is performed for the next test pressure. Will be repeated in the same way.
  • step S118 the actual energization current value Ipcv (x) is It is stored in a predetermined storage area of the electronic control unit 4, for example, a predetermined area of a storage element such as a ROM.
  • the storage area in the electronic control unit 4 is a different area from the storage area in which the difference is stored in the previous step S112.
  • step S110 it is determined whether or not the number of times that the actual energization current value Ipcv (x) is determined not to be within a predetermined specified range (the number of times that is not specified) exceeds a predetermined number N in the processing of the previous step S110 (FIG. 2).
  • a predetermined error notification is performed assuming that the pressure regulating valve 12 or the pressure sensor 11 is abnormal (failure). (See step S122 in FIG. 2), a series of processing ends.
  • step S120 a lighting display or character display (not shown) or a ringing of a ringing element such as a buzzer is suitable, and any one of these means or a combination thereof is used. You can choose.
  • step S120 if it is determined in step S120 that the non-regulated number does not exceed N (in the case of NO), the process returns to the previous step S106, and the processing after step S108 is similarly repeated for the next verification pressure. It will be.
  • the energization current for the verification pressure determined from the standard correlation between the energization current of the standard pressure adjustment valve and the rail pressure, and the energization current for the verification pressure in the pressure adjustment valve 12 actually used
  • the standard correlation is corrected by the stored difference and is subjected to the pressure sensor failure diagnosis process described below. That is, in other words, the standard correlation becomes an equivalent state when it is substantially rewritten by the reference correlation between the actual energization current of the pressure regulating valve 12 and the rail pressure obtained by the initial learning.
  • FIG. 3 shows a procedure of the pressure sensor failure diagnosis process in the embodiment of the present invention in a subroutine flowchart.
  • the process procedure will be described below with reference to FIG. Unlike the initial learning process described above with reference to FIG. 2, this series of processes is repeatedly executed when a predetermined condition is satisfied during vehicle operation, as will be described later.
  • step S202 when processing by the electronic control unit 4 is started, it is first determined whether or not the vehicle is in a no-load running state (see step S202 in FIG. 3).
  • the condition of the no-load running state is that the rail pressure is stable in order to obtain the reference correlation, and the specific determination criterion is as shown in FIG.
  • step S102 when the accelerator pedal is not depressed (the depression amount is 0%), the vehicle can be in a no-load traveling state.
  • step S202 If it is determined in step S202 that the vehicle is in the no-load running state (in the case of YES), the process proceeds to the processing in step S204 described below, whereas if it is determined that the vehicle is not in the no-load state (in the case of NO), A series of processing is terminated on the assumption that the pressure sensor failure diagnosis is not suitable, and the process returns to the main routine (not shown), and the subroutine of FIG. 3 is executed again after a predetermined time has elapsed. ing.
  • FIGS. 5A and 5B show a change example of the accelerator opening and a change example of the fuel injection amount when it is determined that there is no load as described above. That is, a change example is shown in which the fuel injection amount becomes zero (FIG. 5 (B)) when the accelerator opening is made zero (see FIG. 5 (A)) at a certain time point. Is no load.
  • step S204 it is determined whether or not an initial learning completion flag is set.
  • the initial learning completion flag is as described above in step S116 in FIG. 2. For example, when it is set to “1”, the initial learning completion flag is set.
  • step S204 If it is determined in step S204 that the initial learning completion flag is set (in the case of YES), it is assumed that the series of processes described above with reference to FIG. On the other hand, if it is determined that the initial learning completion flag has not yet been set (in the case of NO), the initial learning process described with reference to FIG. 2 is executed.
  • step S206 the rail pressure control mode is set to the PCV mode as in step S104 of FIG.
  • energization is performed on the pressure control valve 12 so as to achieve one predetermined rail pressure of a plurality of pressures (diagnostic pressures) determined in advance as pressures for diagnosis (see step S208 in FIG. 3).
  • FIG. 5C shows a characteristic line showing an example of a change when the rail pressure is changed to a diagnostic pressure.
  • three diagnostic pressures P1 to P3 are defined. An example is shown.
  • step S208 described above when this step S208 is executed for the first time, in the example of FIG. 5C, energization is performed to the pressure adjustment valve 12 so that the rail pressure becomes the diagnostic pressure P1. Will be.
  • the magnitude of the energization current that is energized at the start of energization of the pressure regulating valve 12 to obtain the diagnostic pressure P1 as the rail pressure is set based on the result of the previous initial learning process (see FIG. 2). It will be.
  • the energizing current determined in this way is hereinafter referred to as “reference energizing current” for convenience of explanation.
  • an energization current with respect to the rail pressure P1 in the standard correlation described above is obtained. That is, it is assumed that the standard energization current with respect to the rail pressure P1 is obtained as Ist1 in the standard correlation.
  • the difference in the rail pressure P1 (the energizing current determined by the standard correlation and the energizing current in the actual characteristics of the pressure regulating valve 12) Difference).
  • the difference with respect to the rail pressure P1 is + ⁇ Ip1
  • the reference energization current in this case is (Ist1 + ⁇ Ip1).
  • the difference is a negative value, that is, for example, ⁇ Ip1, the reference energization current is (Ist1 ⁇ Ip1).
  • the electronic control unit 4 compares the rail pressure detected by the pressure sensor 11 at this time with the energization current of the pressure regulating valve 12 (see step S210 in FIG. 3). That is, the energization current of the pressure regulating valve 12 is adjusted so that the actual rail pressure (actual rail pressure) detected by the pressure sensor 11 becomes the diagnostic pressure set in step S208. Accordingly, when it is determined that the actual rail pressure has reached the predetermined verification pressure, the process proceeds to step S212 described below.
  • step S212 it is determined whether or not the difference between the reference energization current and the actually detected energization current is within a predetermined allowable range. That is, in the example of the diagnosis pressure P1, the reference energization current (Ist1 + ⁇ Ip1) and the energization current of the pressure regulating valve 12 finally detected to obtain the rail pressure P1 (assuming I1a). It is determined whether or not the difference is within a predetermined allowable range.
  • FIG. 4 is a characteristic diagram showing an example of an allowable range with respect to the reference correlation.
  • the horizontal axis represents the energization current of the pressure regulating valve 12, and the vertical axis represents the rail pressure.
  • the solid characteristic line represents the reference correlation. That is, the difference (see step S110 in FIG. 2) is added to the standard correlation mentioned in the description of FIG.
  • the standard energization current with respect to the rail pressure P1 is obtained as Ist1 in the standard correlation as described above, if the difference with respect to the rail pressure P1 is + ⁇ Ip1, add ⁇ Ip1 to Ist1.
  • the reference energization current at the rail pressure P1 is obtained as (Ist1 + ⁇ Ip1).
  • a characteristic line represented by a one-dot chain line is a characteristic line indicating an allowable range with respect to the reference correlation.
  • the allowable range is thus defined as a linear function.
  • the linear function that defines the allowable range (hereinafter referred to as “allowable linear function” for convenience) is defined on the side where the slope of the linear function becomes smaller than the reference correlation. It has been made. Specifically, for example, from an allowable linear function with respect to the energizing current determined from the reference correlation required for the pressure regulating valve 12 in order to obtain the diagnostic pressure P1, which is the rail pressure at one diagnostic pressure point, for example.
  • the energization current at the fixed rail pressure P1 is larger by ⁇ I1.
  • the energizing current of the pressure regulating valve 12 at the rail pressure P1 is in a range that does not exceed the tolerance ⁇ I1 with respect to the energizing current determined from the reference correlation, it is determined to be normal.
  • the tolerance is ⁇ I2 at the diagnostic pressure point P2, and the tolerance is ⁇ I3 at the diagnostic pressure point P3.
  • step S212 if it is determined in step S212 that the actual energization current of the pressure regulating valve 12 is within the allowable range as described above (in the case of YES), the following is performed. On the other hand, the process proceeds to step S214 to be described. On the other hand, if it is determined that the actual energization current of the pressure regulating valve 12 is not within the allowable range (NO), the process proceeds to step S218 described later.
  • vs. reference correlation difference is a predetermined storage area of the electronic control unit 4, such as a ROM. Is stored in a predetermined area of the storage element.
  • step S216 in FIG. 3 If it is determined that the reference correlation difference has been stored (in the case of YES), a series of processing is terminated assuming that there is no abnormality in the pressure sensor 11 and the pressure regulating valve 12, and the process returns to the main routine (not shown).
  • step S216 if it is determined in step S216 that the reference correlation differences at all the diagnostic pressure points are not yet stored (in the case of NO), the process returns to the previous step S208, and the next diagnostic pressure is stepped.
  • the processes after S210 will be repeated in the same manner.
  • the rail pressure is set to the next diagnostic pressure P2 (FIG. 5C) in step S208.
  • Energization of the pressure regulating valve 12 is performed so that In FIG. 5C, the change in the diagnostic pressure is expressed so as to change linearly for the sake of convenience.
  • the rail pressure gradually decreases according to a predetermined change characteristic. It is preferable to set the diagnostic pressure by applying so-called smoothing correction for correcting the pressure change so as to increase.
  • the reference correlation difference is determined to be a predetermined storage area of the electronic control unit 4 in step S218.
  • the predetermined storage area in this case is an area different from the storage area in the previous step S214.
  • step S212 it is determined whether or not the number of times that the actual energization current value is determined not to be within the predetermined allowable range (unspecified number) exceeds the predetermined number N (see step S220 in FIG. 3). ), When it is determined that the predetermined number of times N has been exceeded (in the case of YES), a predetermined error notification is performed assuming that the pressure regulating valve 12 or the pressure sensor 11 is abnormal (failure) (see FIG. 3). A series of processes will be complete
  • the error notification lighting display of a display element (not shown), character display, ringing of a ringing element such as a buzzer, etc.
  • step S220 if it is determined in step S220 that the non-specified number of times does not exceed N (in the case of NO), the process returns to the previous step S208, and the processing after step S210 is similarly repeated for the next diagnostic pressure. It will be.
  • the failure diagnosis of the pressure sensor is possible without requiring a dedicated circuit, it can be applied to a common rail fuel injection control device having a pressure sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

In order to make it possible to perform a faster and more reliable diagnosis of an error of a pressure sensor than the prior art by a simple structure and without providing a dedicated circuit for the error analysis or additional components, if a vehicle is in a no load running state (S202) and when currents which are supplied to a pressure regulation valve (12) and which are required to set a rail pressure to a plurality of predetermined diagnosis pressures are out of a predetermined allowable range more than a predetermined number of times (S208 to S212), an error warning is given as an error of a pressure sensor (11) (S220, S222). The predetermined allowable range is determined with reference to a reference correlation which is obtained by correcting a standard correlation which represents a correlation between a current supplied to a preset standard pressure regulation valve and the rail pressure, on the basis of current supply characteristics of an actual pressure regulation valve (12).

Description

圧力センサ故障診断方法及びコモンレール式燃料噴射制御装置Pressure sensor failure diagnosis method and common rail fuel injection control device
 本発明は、センサの故障検出に係り、特に、迅速性、簡易性等の向上を図ったものに関する。 The present invention relates to sensor failure detection, and in particular, to improvements in speediness and simplicity.
 例えば、ディーゼルエンジンに代表される自動車の内燃機関の電子制御装置においては、様々なセンサが設けられており、その検出信号が内燃機関の動作制御に供されるようになっている。
 そのようなセンサの一つとして、コモンレール式燃料噴射制御装置におけるレール圧を検出する圧力センサは、適切な燃料噴射を実現する上で重要であり、故障検出のための方策が種々提案されている。
For example, in an electronic control device for an internal combustion engine of an automobile typified by a diesel engine, various sensors are provided, and detection signals thereof are used for operation control of the internal combustion engine.
As one of such sensors, a pressure sensor for detecting a rail pressure in a common rail fuel injection control device is important for realizing appropriate fuel injection, and various measures for detecting a failure have been proposed. .
 このようなコモンレール式燃料噴射制御装置における圧力センサの故障診断の一つとして、例えば、圧力センサの故障診断に際し、レール圧を意図的に上げる指令を行うと共に、インジェクタの通電時間の減少を指令することで、結果的に燃料噴射量の変化がなく、排ガス特性に変化が生じないと判定された場合に、圧力センサの故障はないと推定する方法などが提案されている(例えば、特許文献1等参照)。 As one of the failure diagnosis of the pressure sensor in such a common rail fuel injection control device, for example, when diagnosing the failure of the pressure sensor, a command to intentionally increase the rail pressure and a command to decrease the energization time of the injector are issued. As a result, there has been proposed a method for estimating that there is no failure in the pressure sensor when it is determined that there is no change in the fuel injection amount and no change in the exhaust gas characteristics (for example, Patent Document 1). Etc.).
 しかしながら、上述の故障診断方法においては、圧力センサの故障検出のために、本来の燃料噴射とは無関係に不要なレール圧の引き上げを指令する必要があり、制御動作の冗長を招くだけでなく、何らかの原因により、不要なレール圧の上昇が実際に生じ、燃料噴射動作に影響を与えかねないという虞もある。
 かかる問題を解決する技術として、本願出願人は、コモンレール式燃料噴射制御装置において、コモンレールの余剰燃料を燃料タンクへ戻す通路に設けられる圧力調整弁のばらつきを解消すべく、いわゆる学習処理によって得られたデータを基に、圧力調整弁の通電量の補正が行われる点に着目し、その学習処理により得られた補正量が、異常に大きい場合に、圧力調整弁、又は、レール圧を検出する圧力センサの故障と判定する診断方法を既に提案している(特願2008-071955)。
However, in the above-described failure diagnosis method, in order to detect a failure of the pressure sensor, it is necessary to command an unnecessary rail pressure increase regardless of the original fuel injection, which not only leads to redundant control operations, For some reason, an unnecessary increase in rail pressure may actually occur, which may affect the fuel injection operation.
As a technique for solving such a problem, the applicant of the present application is obtained by so-called learning processing in a common rail fuel injection control device in order to eliminate variations in pressure regulating valves provided in a passage for returning surplus fuel of the common rail to the fuel tank. Focusing on the fact that the energization amount of the pressure adjustment valve is corrected based on the obtained data, the pressure adjustment valve or rail pressure is detected when the correction amount obtained by the learning process is abnormally large A diagnostic method for determining a failure of the pressure sensor has already been proposed (Japanese Patent Application No. 2008-071955).
 かかる方法は、新たな電子部品を追加することなく、既存の装置を最大限活用できるという点で優れているが、なおも万全というものではない。例えば、故障診断を行う場合の、学習処理によって得られた補正値のずれをどの程度とするかは、実際には個々の装置の動作条件等を十分考慮して設定される必要があり、その調整作業が煩雑となる傾向にある。
 また、学習処理が実行される時期が限定されており、その実行頻度が十分でないために、故障診断の迅速性が必ずしも十分でない等の問題がある。
特開平10-325352号公報
This method is superior in that it can make the most of existing devices without adding new electronic components, but it is still not perfect. For example, in the case of performing fault diagnosis, the degree of deviation of the correction value obtained by the learning process needs to be set in consideration of the operating conditions of individual devices. Adjustment work tends to be complicated.
In addition, there is a problem that the time at which the learning process is executed is limited and the frequency of execution thereof is not sufficient, so that the speed of failure diagnosis is not always sufficient.
Japanese Patent Laid-Open No. 10-325352
 本発明は、上記実状に鑑みてなされたもので、故障診断のための専用の回路や新たな部品を設けることなく、簡易な構成で、迅速で信頼性が高く、しかも、車両動作に影響を与えることの無い圧力センサ故障診断方法及びコモンレール式燃料噴射制御装置を提供するものである。 The present invention has been made in view of the above circumstances, and without providing a dedicated circuit or new parts for failure diagnosis, has a simple configuration, is quick and reliable, and affects vehicle operation. A pressure sensor failure diagnosis method and a common rail fuel injection control device that are not given are provided.
 本発明の第1の形態によれば、コモンレールからの燃料の戻し通路に圧力調整弁が設けられ、圧力センサにより検出されたレール圧が、前記圧力調整弁の駆動制御により、エンジンの動作情報に基づいて算出された目標レール圧となるよう制御可能に構成されてなるコモンレール式燃料噴射制御装置における前記圧力センサの故障診断方法であって、
 複数のレール圧における実際の圧力調整弁の通電電流を検出し、当該通電電流と、予め設定された標準的な圧力調整弁の通電電流とレール圧との相関を表す標準相関関係から定まる前記複数のレール圧における通電電流との差分を求める一方、
 車両の所定の運転条件の下、レール圧を、予め定められた複数の診断圧に設定するに要する前記圧力調整弁の通電電流が、所定回数以上、所定の許容範囲外となった場合に、圧力センサの故障と診断し、
 前記所定の許容範囲は、前記標準相関関係を前記差分によって補正して求められる基準相関関係を基準として定められてなる圧力センサの故障診断方法が提供される。
 本発明の第2の形態によれば、コモンレールに燃料を圧送する高圧ポンプ装置と、前記コモンレールからの燃料の戻し通路に設けられた圧力調整弁と、前記コモンレールの圧力を検出する圧力センサと、前記高圧ポンプ装置及び前記圧力調整弁の駆動を制御する電子制御ユニットとを具備し、
 前記電子制御ユニットは、エンジンの動作情報に基づいて目標レール圧を算出し、前記圧力センサにより検出されたレール圧が、前記目標レール圧となるよう前記圧力調整弁を駆動制御可能に構成されてなるコモンレール式燃料噴射制御装置であって、
 前記電子制御ユニットは、
 車両の所定の運転条件の下、レール圧を、予め定められた複数の診断圧に設定するに要する前記圧力調整弁の通電電流が、所定回数以上、所定の許容範囲外となった場合に、圧力センサの故障と診断するよう構成されてなり、
 前記所定の許容範囲は、予め設定された標準的な圧力調整弁の通電電流とレール圧との相関関係を表す標準相関関係を、実際の圧力調整弁の通電特性に基づいて補正して得られた基準相関関係を基準として定められてなるコモンレール式燃料噴射制御装置が提供される。
According to the first aspect of the present invention, the pressure adjustment valve is provided in the fuel return passage from the common rail, and the rail pressure detected by the pressure sensor is converted into the engine operation information by the drive control of the pressure adjustment valve. A failure diagnosis method for the pressure sensor in a common rail fuel injection control device configured to be controllable so as to achieve a target rail pressure calculated on the basis of:
The plurality of currents determined by a standard correlation representing a correlation between the current flowing through the actual pressure regulating valve at a plurality of rail pressures and a predetermined standard current regulating valve current flowing through the rail pressure. While obtaining the difference with the current flow at the rail pressure of
When the energizing current of the pressure regulating valve required to set the rail pressure to a plurality of predetermined diagnostic pressures under a predetermined driving condition of the vehicle is out of a predetermined allowable range more than a predetermined number of times, Diagnose pressure sensor failure,
The pressure sensor failure diagnosis method is provided in which the predetermined allowable range is determined based on a reference correlation obtained by correcting the standard correlation with the difference.
According to the second aspect of the present invention, a high-pressure pump device that pumps fuel to the common rail, a pressure adjustment valve that is provided in a fuel return passage from the common rail, a pressure sensor that detects the pressure of the common rail, An electronic control unit for controlling the driving of the high-pressure pump device and the pressure regulating valve,
The electronic control unit is configured to calculate a target rail pressure based on engine operation information and to drive and control the pressure adjustment valve so that the rail pressure detected by the pressure sensor becomes the target rail pressure. A common rail fuel injection control device comprising:
The electronic control unit is
When the energizing current of the pressure regulating valve required to set the rail pressure to a plurality of predetermined diagnostic pressures under a predetermined driving condition of the vehicle is out of a predetermined allowable range more than a predetermined number of times, Configured to diagnose pressure sensor failure,
The predetermined permissible range is obtained by correcting a standard correlation representing a correlation between a preset standard energizing current of the pressure regulating valve and the rail pressure based on an energizing characteristic of the actual pressure regulating valve. A common rail fuel injection control apparatus defined based on the reference correlation is provided.
 本発明によれば、車両の動作制御に影響を与えることの無い状態にある場合に、圧力調整弁の通電を行い所定のレール圧を得るに要する通電電流が所定の許容範囲内にあるか否かによって、圧力センサの故障の有無を判定するようにしたので、故障診断のための専用の回路を設けることなく、簡易な構成で、従来に比して迅速に圧力センサの故障診断が実現でき、ひいては信頼性の高いコモンレール式燃料噴射制御装置を提供することができるという効果を奏するものである。 According to the present invention, whether or not the energization current required for energizing the pressure regulating valve to obtain a predetermined rail pressure is within a predetermined allowable range when the vehicle operation control is not affected. Because of this, the presence or absence of a pressure sensor failure is determined, so that it is possible to realize a pressure sensor failure diagnosis more quickly than before with a simple configuration without providing a dedicated circuit for failure diagnosis. As a result, it is possible to provide a highly reliable common rail fuel injection control device.
本発明の実施の形態における圧力センサの故障診断方法が適用される内燃機関噴射制御装置の構成例を示す構成図である。It is a block diagram which shows the structural example of the internal combustion engine injection control apparatus with which the failure diagnosis method of the pressure sensor in embodiment of this invention is applied. 図1に示された内燃機関噴射制御装置を構成する電子制御ユニットにより実行される初期学習処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the initial learning process performed by the electronic control unit which comprises the internal combustion engine injection control apparatus shown by FIG. 図1に示された内燃機関噴射制御装置を構成する電子制御ユニットにより実行される圧力センサ故障診断処理の手順を示すサブルーチンフローチャートである。It is a subroutine flowchart which shows the procedure of the pressure sensor failure diagnosis process performed by the electronic control unit which comprises the internal combustion engine injection control apparatus shown by FIG. 本発明の実施の形態における圧力センサ故障診断処理において圧力調整弁の通電電流が許容範囲にあるか否かを判断する際の通電電流の許容範囲を説明するための特性線図である。It is a characteristic diagram for demonstrating the tolerance | permissible_range of the energization current at the time of judging whether the energization | current of a pressure regulating valve is in a tolerance | permissible_range in the pressure sensor failure diagnosis process in embodiment of this invention. 本発明の実施の形態における圧力センサ故障診断処理の実行の際のアクセル開度、燃料噴射量、及び、レール圧の変化例を模式的に示す模式図であり、図5(A)は、アクセル開度の変化例を模式的に示す模式図、図5(B)は、燃料噴射量の変化例を模式的に示す模式図、図5(C)は、レール圧の変化例を模式的に示す模式図である。FIG. 5A is a schematic diagram schematically showing an example of changes in the accelerator opening, the fuel injection amount, and the rail pressure when executing the pressure sensor failure diagnosis process in the embodiment of the present invention. FIG. 5B is a schematic diagram schematically showing an example of change in fuel injection amount, and FIG. 5C is a schematic diagram showing an example of change in rail pressure. It is a schematic diagram shown.
1…コモンレール
2-1~2-n…燃料噴射弁
3…ディーゼルエンジン
4…電子制御ユニット
11…圧力センサ
12…圧力制御弁
50…高圧ポンプ装置
DESCRIPTION OF SYMBOLS 1 ... Common rail 2-1 to 2-n ... Fuel injection valve 3 ... Diesel engine 4 ... Electronic control unit 11 ... Pressure sensor 12 ... Pressure control valve 50 ... High pressure pump apparatus
 以下、本発明の実施の形態について、図1乃至図5を参照しつつ説明する。
 なお、以下に説明する部材、配置等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。
 最初に、本発明の実施の形態における圧力センサの故障診断方法が適用される内燃機関噴射制御装置の構成例について、図1を参照しつつ説明する。
 この図1に示された内燃機関噴射制御装置は、具体的には、特に、コモンレール式燃料噴射制御装置が構成されたものとなっている。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5.
The members and arrangements described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.
First, a configuration example of an internal combustion engine injection control apparatus to which a pressure sensor failure diagnosis method according to an embodiment of the present invention is applied will be described with reference to FIG.
Specifically, the internal combustion engine injection control device shown in FIG. 1 is particularly configured as a common rail fuel injection control device.
 このコモンレール式燃料噴射制御装置は、高圧燃料の圧送を行う高圧ポンプ装置50と、この高圧ポンプ装置50により圧送された高圧燃料を蓄えるコモンレール1と、このコモンレール1から供給された高圧燃料をディーゼルエンジン(以下「エンジン」と称する)3の気筒へ噴射供給する複数の燃料噴射弁2-1~2-nと、燃料噴射制御処理や後述する圧力センサ故障診断処理などを実行する電子制御ユニット(図1においては「ECU」と表記)4を主たる構成要素として構成されたものとなっている。
 かかる構成自体は、従来から良く知られているこの種の燃料噴射制御装置の基本的な構成と同一のものである。
The common rail type fuel injection control device includes a high pressure pump device 50 that pumps high pressure fuel, a common rail 1 that stores the high pressure fuel pumped by the high pressure pump device 50, and a high pressure fuel supplied from the common rail 1 as a diesel engine. A plurality of fuel injection valves 2-1 to 2-n (hereinafter referred to as “engine”) for supplying fuel to three cylinders, and an electronic control unit for executing fuel injection control processing, pressure sensor failure diagnosis processing (to be described later), etc. 1 is represented as “ECU”) 4 as a main component.
Such a configuration itself is the same as the basic configuration of this type of fuel injection control apparatus that has been well known.
 高圧ポンプ装置50は、供給ポンプ5と、調量弁6と、高圧ポンプ7とを主たる構成要素として構成されてなる公知・周知の構成を有してなるものである。
 かかる構成において、燃料タンク9の燃料は、供給ポンプ5により汲み上げられ、調量弁6を介して高圧ポンプ7へ供給されるようになっている。調量弁6には、電磁式比例制御弁が用いられ、その通電量が電子制御ユニット4に制御されることで、高圧ポンプ7への供給燃料の流量、換言すれば、高圧ポンプ7の吐出量が調整されるものとなっている。
The high-pressure pump device 50 has a known and well-known configuration in which the supply pump 5, the metering valve 6, and the high-pressure pump 7 are configured as main components.
In this configuration, the fuel in the fuel tank 9 is pumped up by the supply pump 5 and supplied to the high-pressure pump 7 through the metering valve 6. As the metering valve 6, an electromagnetic proportional control valve is used, and the amount of energization is controlled by the electronic control unit 4, so that the flow rate of fuel supplied to the high-pressure pump 7, in other words, the discharge of the high-pressure pump 7. The amount is to be adjusted.
 なお、供給ポンプ5の出力側と燃料タンク9との間には、戻し弁8が設けられており、供給ポンプ5の出力側の余剰燃料を燃料タンク9へ戻すことができるようになっている。
 また、供給ポンプ5は、高圧ポンプ装置50の上流側に高圧ポンプ装置50と別体に設けるようにしても、また、燃料タンク9内に設けるようにしても良いものである。
 燃料噴射弁2-1~2-nは、エンジン3の気筒毎に設けられており、それぞれコモンレール1から高圧燃料の供給を受け、電子制御ユニット4による噴射制御によって燃料噴射を行うようになっている。
A return valve 8 is provided between the output side of the supply pump 5 and the fuel tank 9 so that surplus fuel on the output side of the supply pump 5 can be returned to the fuel tank 9. .
The supply pump 5 may be provided separately from the high-pressure pump device 50 on the upstream side of the high-pressure pump device 50 or may be provided in the fuel tank 9.
The fuel injection valves 2-1 to 2-n are provided for each cylinder of the engine 3, and are supplied with high-pressure fuel from the common rail 1 and perform fuel injection by injection control by the electronic control unit 4. Yes.
 本発明の実施の形態におけるコモンレール1には、余剰高圧燃料をタンク9へ戻すリターン通路(図示せず)に、圧力調整弁12が設けられており、調量弁6と共にレール圧の制御に用いられるようになっている。
 本発明の実施の形態においては、エンジン3の動作状態に応じて、調量弁6と圧力調整弁12のそれぞれの動作状態を変えることで、適切なレール圧制御の実現を図っている。かかる調量弁6と圧力調整弁12による本発明の実施の形態におけるレール圧制御について、概説すれば、まず、第1のレール圧制御の状態として、圧力調整弁12を全閉状態、すなわち、コモンレール1からリターン通路への流路を閉じた状態とする一方、調量弁6からの燃料吐出量を調整することで、所望のレール圧を得るレール圧制御状態がある。
The common rail 1 in the embodiment of the present invention is provided with a pressure regulating valve 12 in a return passage (not shown) for returning surplus high-pressure fuel to the tank 9 and is used together with the metering valve 6 to control the rail pressure. It is supposed to be.
In the embodiment of the present invention, appropriate rail pressure control is realized by changing the operation states of the metering valve 6 and the pressure adjustment valve 12 in accordance with the operation state of the engine 3. The rail pressure control in the embodiment of the present invention by the metering valve 6 and the pressure regulating valve 12 will be briefly described. First, as the state of the first rail pressure control, the pressure regulating valve 12 is fully closed, that is, While the flow path from the common rail 1 to the return passage is closed, there is a rail pressure control state in which a desired rail pressure is obtained by adjusting the fuel discharge amount from the metering valve 6.
 次に、第2のレール圧制御状態として、調量弁6を全開状態とする一方、圧力調整弁12の弁開度をフィードバック制御により調整することで所望のレール圧を得るレール圧制御状態がある。
 そして、第3のレール圧制御状態として、調量弁6、圧力調整弁12を、それぞれ所定の弁開度にして、所望のレール圧を得るレール圧制御状態がある。
 これらは、エンジン3の動作状態に応じて、択一的に選択されて実行されるものとなっている。
Next, as a second rail pressure control state, a rail pressure control state in which a desired rail pressure is obtained by adjusting the valve opening degree of the pressure adjustment valve 12 by feedback control while the metering valve 6 is fully opened. is there.
As the third rail pressure control state, there is a rail pressure control state in which the metering valve 6 and the pressure regulating valve 12 are respectively set to predetermined valve openings to obtain a desired rail pressure.
These are alternatively selected and executed according to the operating state of the engine 3.
 電子制御ユニット4は、例えば、公知・周知の構成を有してなるマイクロコンピュータ(図示せず)を中心に、RAMやROM等の記憶素子(図示せず)を有すると共に、燃料噴射弁2-1~2-nを駆動するための駆動回路(図示せず)や、調量弁6や圧力調整弁12への通電を行うための通電回路(図示せず)を主たる構成要素として構成されたものとなっている。
 かかる電子制御ユニット4には、コモンレール1の圧力を検出する圧力センサ11の検出信号が入力される他、エンジン回転数やアクセル開度などの各種の検出信号が入力され、エンジン3の動作制御や燃料噴射制御に供されるようになっている。
The electronic control unit 4 has, for example, a microcomputer (not shown) having a known and well-known configuration, a storage element (not shown) such as a RAM and a ROM, and a fuel injection valve 2- A drive circuit (not shown) for driving 1 to 2-n and an energization circuit (not shown) for energizing the metering valve 6 and the pressure regulating valve 12 are configured as main components. It has become a thing.
In addition to the detection signal of the pressure sensor 11 that detects the pressure of the common rail 1 being input to the electronic control unit 4, various detection signals such as the engine speed and the accelerator opening are input to control the operation of the engine 3. It is used for fuel injection control.
 図2及び図3には、かかる電子制御ユニット4によって実行される圧力センサ故障診断処理の手順を示すサブルーチンフローチャートが示されており、以下、同図を参照しつつ本発明の実施の形態における圧力センサ故障診断処理について説明する。
 まず、本発明の実施の形態における圧力センサ故障診断処理の概略を説明すれば、この圧力センサ故障診断は、圧力調整弁12の通電電流と、その通電電流によって制御できるレール圧との相関関係に着目し、その相関関係が予め規定した範囲を逸脱した場合に、圧力調整弁12又は圧力センサ11の故障(エラー)発生とするものである。
2 and 3 show a subroutine flowchart showing the procedure of the pressure sensor failure diagnosis process executed by the electronic control unit 4. Hereinafter, the pressure in the embodiment of the present invention will be described with reference to FIG. The sensor failure diagnosis process will be described.
First, the outline of the pressure sensor failure diagnosis process in the embodiment of the present invention will be described. This pressure sensor failure diagnosis is based on the correlation between the energization current of the pressure regulating valve 12 and the rail pressure that can be controlled by the energization current. When attention is paid and the correlation deviates from a predetermined range, a failure (error) of the pressure regulating valve 12 or the pressure sensor 11 occurs.
 そのため、まず、新車として工場出荷の際、又は、レールアッシイ(Rail Assy)と称される圧力調整弁12を含むコモンレール11等の構成品が故障などにより交換された際に、圧力調整弁12の通電電流と、その通電電流によって制御できるレール圧との相関関係に関してデータ取得をし、これを基準の相関関係として電子制御ユニット4の記憶領域に記憶することが行われるようになっている。
 そして、その後、車両が実際の使用に供された際には、所定の時期に、圧力調整弁12に通電し、その際のレール圧が、上述のようにして予め記憶された基準の相関関係から所定量逸脱する場合に、圧力調整弁12又は圧力センサ11の故障(エラー)発生と判定されるようになっている。
For this reason, first, when a new vehicle is shipped from the factory, or when components such as the common rail 11 including the pressure adjustment valve 12 called rail assembly are replaced due to failure or the like, the energization of the pressure adjustment valve 12 is performed. Data is acquired regarding the correlation between the current and the rail pressure that can be controlled by the energization current, and this is stored as a reference correlation in the storage area of the electronic control unit 4.
After that, when the vehicle is put into actual use, the pressure regulating valve 12 is energized at a predetermined time, and the rail pressure at that time is the correlation of the reference stored in advance as described above. When a predetermined amount deviates from the above, it is determined that a failure (error) of the pressure regulating valve 12 or the pressure sensor 11 has occurred.
 以下、具体的に説明することとする。
 まず、図2には、圧力調整弁12の通電電流と、その通電電流によって制御できるレール圧との相関関係についての初期学習処理の手順がサブルーチンフローチャートに示されており、同図を参照しつつ初期学習処理の手順について説明する。
 この初期学習処理は、電子制御ユニット4に予め記憶されている標準的な圧力調整弁の通電電流と、レール圧との相関関係(以下、便宜的に「標準相関関係」と称する)を、実際に装備されている圧力調整弁12の通電電流と、その通電電流によって制御できるレール圧との相関関係に基づいて補正するためデータを取得するものである。最初に、この処理の概略を述べれば、複数のレール圧について、それぞれのレール圧を得るために圧力調整弁12に実際に流れる電流値を取得し、標準相関関係から求められる電流値との差を、補正データとして記憶するものである。
A specific description will be given below.
First, FIG. 2 shows a subroutine flowchart showing the procedure of the initial learning process regarding the correlation between the energization current of the pressure regulating valve 12 and the rail pressure that can be controlled by the energization current, with reference to FIG. The procedure of the initial learning process will be described.
In this initial learning process, the correlation between the standard pressure regulating valve energization current stored in advance in the electronic control unit 4 and the rail pressure (hereinafter referred to as “standard correlation” for convenience) is actually used. The data is acquired for correction based on the correlation between the energization current of the pressure regulating valve 12 mounted on the rail and the rail pressure that can be controlled by the energization current. First, the outline of this process will be described. For a plurality of rail pressures, the current value that actually flows through the pressure regulating valve 12 is obtained to obtain each rail pressure, and the difference from the current value obtained from the standard correlation is obtained. Are stored as correction data.
 この一連の処理は、先に述べたように、新車として工場出荷の際、又は、圧力調整弁12が故障等によって交換された直後に実行されるものであるので、この一連の処理の実行開始は、工場において、例えば、処理開始のため予め定められた所定のコマンドが電子制御ユニット4に入力されること等の方法によって行われるものとするのが好適である。
 また、圧力調整弁12は、実際には、単体で交換することはなく、一般的には、圧力調整弁12を含むコモンレール11等の複数の構成品からなるレールアッシイ(Rail Assy)と称される構成全体が交換されるものとなっている。
As described above, since this series of processes is executed when shipped as a new vehicle or immediately after the pressure adjustment valve 12 is replaced due to a failure or the like, the execution of this series of processes is started. Is preferably performed in a factory by a method such as a predetermined command input to the electronic control unit 4 to start processing, for example.
Further, the pressure regulating valve 12 is not actually replaced as a single unit, and is generally referred to as a rail assembly composed of a plurality of components such as the common rail 11 including the pressure regulating valve 12. The entire configuration is to be exchanged.
 しかして、電子制御ユニット4により処理が開始されると、車両が無負荷走行状態にあるか否かが判定される(図2のステップS102参照)。
 このように無負荷走行状態を条件とするのは、基準の相関関係を取得するためには、レール圧が安定した状態が好ましいためである。
 ここで、無負荷走行状態にあるか否かの具体的な判定基準としては、アクセルペダル(図示せず)の踏み込み量が好適であり、アクセルペダルが踏み込まれていない状態(踏込量0%)にある場合、無負荷走行状態とすることができる。
Thus, when the processing is started by the electronic control unit 4, it is determined whether or not the vehicle is in a no-load running state (see step S102 in FIG. 2).
The reason why the no-load running state is set as such is that a state in which the rail pressure is stable is preferable in order to obtain the reference correlation.
Here, as a specific criterion for determining whether or not the vehicle is in a no-load running state, the depression amount of an accelerator pedal (not shown) is suitable, and the accelerator pedal is not depressed (depression amount 0%). If it is, it can be in a no-load running state.
 ステップS102において、無負荷走行状態であると判定されると(YESの場合)、次いで、レール圧制御が、先に説明した第2のレール圧制御状態とされる(図2のステップS104参照)。すなわち、圧力調整弁12によってレール圧が制御される状態とされる。
 なお、図2においては、便宜的に、圧力調整弁12を「PCV」と表記しており、上述の第2のレール圧制御状態を「PCVモード」と表記している。
If it is determined in step S102 that the vehicle is in the no-load running state (in the case of YES), then the rail pressure control is set to the second rail pressure control state described above (see step S104 in FIG. 2). . That is, the rail pressure is controlled by the pressure regulating valve 12.
In FIG. 2, for convenience, the pressure regulating valve 12 is represented as “PCV”, and the second rail pressure control state described above is represented as “PCV mode”.
 次いで、圧力調整弁12の通電電流と、レール圧との相関関係を得るため、一つの測定点である所定のレール圧(検定圧力)となるよう圧力調整弁12へ対する通電が行われる(図2のステップS106参照)。
 次いで、電子制御ユニット4により、この時点における圧力センサ11によって検出されたレール圧と、圧力調整弁12の通電電流の比較が行われる(図2のステップS108参照)。
 すなわち、圧力センサ11によって検出された実際のレール圧(実レール圧)とステップS106において設定された検定圧力とが比較され、実レール圧が所定の検定圧力となるよう、圧力調整弁12の通電電流が調整されることとなる。
 そして、実レール圧が所定の検定圧に達したと判定されると、次述するステップS110の処理へ進むこととなる。
Next, in order to obtain a correlation between the energization current of the pressure regulating valve 12 and the rail pressure, energization is performed on the pressure regulating valve 12 so as to obtain a predetermined rail pressure (test pressure) as one measurement point (see FIG. 2 step S106).
Next, the electronic control unit 4 compares the rail pressure detected by the pressure sensor 11 at this time with the energization current of the pressure regulating valve 12 (see step S108 in FIG. 2).
That is, the actual rail pressure (actual rail pressure) detected by the pressure sensor 11 is compared with the verification pressure set in step S106, and the energization of the pressure adjustment valve 12 is performed so that the actual rail pressure becomes a predetermined verification pressure. The current will be adjusted.
Then, when it is determined that the actual rail pressure has reached a predetermined test pressure, the process proceeds to step S110 described below.
 ステップS110においては、実レール圧を検定圧力とするためにステップS108において実際に通電された電流値(以下、便宜的に「実通電電流値」と称する)が、標準相関関係から定まる同じ検定圧力に対する通電電流(以下、便宜的に「標準通電電流」と称する)Istxに対して、予め定められたずれの範囲(規定範範囲)にあるか否かが判定されることとなる。
 すなわち、例えば、レール圧Pxにおける実通電電流値をIpcv(x)と仮定した場合、実通電電流値Ipcv(x)が、標準通電電流値Istx(x=1~n)に所定上限値K1を加算した値を超えず、かつ、標準通電電流値Istx(x=1~n)から所定下限値K2差し引いた値を下回らない範囲(Istx+K1>Ipcv(x)>Istx+K2)にあるか否かが判定されることとなる。
 しかして、ステップS110において、所定の規定範囲内であると判定された場合(YESの場合)には、次述するステップS112の処理へ進む一方、所定の規定範囲内にはないと判定された場合(NOの場合)には、後述するステップS118の処理へ進むこととなる。
In step S110, the current value actually energized in step S108 in order to set the actual rail pressure as the verification pressure (hereinafter referred to as “actual current value” for convenience) is the same verification pressure determined from the standard correlation. It is determined whether or not the current is in a predetermined deviation range (specified range) with respect to the current Istx (hereinafter referred to as “standard current” for convenience) Istx.
That is, for example, assuming that the actual energizing current value at the rail pressure Px is Ipcv (x), the actual energizing current value Ipcv (x) has a predetermined upper limit value K1 to the standard energizing current value Istx (x = 1 to n). It is determined whether or not the added value is not exceeded and is within a range (Istx + K1> Ipcv (x)> Istx + K2) that is not less than the value obtained by subtracting the predetermined lower limit K2 from the standard energization current value Istx (x = 1 to n). Will be.
Therefore, in step S110, when it is determined that it is within the predetermined specified range (in the case of YES), the process proceeds to step S112 described below, and is determined not to be within the predetermined specified range. In the case (in the case of NO), the process proceeds to step S118 described later.
  ステップS112においては、ステップS108において比較された実通電電流値と標準通電電流値Istx(x=1~n)との差分が電子制御ユニット4の所定の記憶領域、例えば、ROM等の記憶素子の所定の領域に記憶される(差分記憶)こととなる。
 次いで、予め定められた全ての検定圧点において上述のステップS108~S112の処理が行われ、それぞれにおける実通電電流値Ipcv(x)と標準通電電流値Istx(x=1~n)との差分が記憶されたか否かが判定され(図2のステップS114参照)、全ての検定圧点において差分記憶がなされたと判定された場合(YESの場合)には、初期学習が完了したとして、初期学習完了フラグが所定値、例えば、”1”に設定され(図2のステップS116参照)、一連の初期学習処理が終了されることとなる。
In step S112, the difference between the actual energization current value compared in step S108 and the standard energization current value Istx (x = 1 to n) is a predetermined storage area of the electronic control unit 4, for example, a storage element such as a ROM. It is stored in a predetermined area (difference storage).
Next, the above-described steps S108 to S112 are performed at all predetermined test pressure points, and the difference between the actual energization current value Ipcv (x) and the standard energization current value Istx (x = 1 to n) at each of them. Is stored (see step S114 in FIG. 2), and if it is determined that the difference is stored at all the test pressure points (in the case of YES), the initial learning is completed and the initial learning is completed. The completion flag is set to a predetermined value, for example, “1” (see step S116 in FIG. 2), and a series of initial learning processes is ended.
 一方、ステップS114において、未だ全ての検定圧点における差分記憶が終了していないと判定された場合(NOの場合)には、先のステップS106へ戻り、次の検定圧についてステップS108以降の処理が同様に繰り返されることとなる。 On the other hand, if it is determined in step S114 that the difference storage at all the test pressure points has not yet been completed (in the case of NO), the process returns to the previous step S106, and the process after step S108 is performed for the next test pressure. Will be repeated in the same way.
 また、先のステップS110において、実通電電流値Ipcv(x)が所定の規定範囲にないと判定された場合(NOの場合)には、ステップS118において、その実通電電流値Ipcv(x)が、電子制御ユニット4の所定の記憶領域、例えば、ROM等の記憶素子の所定の領域に記憶されることとなる。なお、この場合の電子制御ユニット4における記憶領域は、先のステップS112における差分の記憶が行われる記憶領域とは別の領域である。 When it is determined in step S110 that the actual energization current value Ipcv (x) is not within the predetermined specified range (in the case of NO), in step S118, the actual energization current value Ipcv (x) is It is stored in a predetermined storage area of the electronic control unit 4, for example, a predetermined area of a storage element such as a ROM. In this case, the storage area in the electronic control unit 4 is a different area from the storage area in which the difference is stored in the previous step S112.
 次いで、先のステップS110の処理において、実通電電流値Ipcv(x)が所定の規定範囲にないと判定された回数(規定外回数)が所定数Nを超えたか否かが判定され(図2のステップS120参照)、所定回数Nを超えたと判定された場合(YESの場合)には、圧力調整弁12、又は、圧力センサ11の異常(故障)であるとして、所定のエラー報知が行われ(図2のステップS122参照)、一連の処理が終了されることとなる。ここで、エラー報知としては、図示されない表示素子の点灯表示や文字表示、また、ブザー等の鳴動素子の鳴動などが好適であり、このような手段のいずれか、又は、それらの組合せのいずれを選択しても良いものである。
 一方、ステップS120において、規定外回数がNを超えていないと判定された場合(NOの場合)には、先のステップS106へ戻り、次の検定圧についてステップS108以降の処理が同様に繰り返されることとなる。
Next, it is determined whether or not the number of times that the actual energization current value Ipcv (x) is determined not to be within a predetermined specified range (the number of times that is not specified) exceeds a predetermined number N in the processing of the previous step S110 (FIG. 2). When it is determined that the predetermined number of times N has been exceeded (in the case of YES), a predetermined error notification is performed assuming that the pressure regulating valve 12 or the pressure sensor 11 is abnormal (failure). (See step S122 in FIG. 2), a series of processing ends. Here, as the error notification, a lighting display or character display (not shown) or a ringing of a ringing element such as a buzzer is suitable, and any one of these means or a combination thereof is used. You can choose.
On the other hand, if it is determined in step S120 that the non-regulated number does not exceed N (in the case of NO), the process returns to the previous step S106, and the processing after step S108 is similarly repeated for the next verification pressure. It will be.
 上述の一連の処理によって、標準の圧力調整弁の通電電流とレール圧との標準の相関関係から定まる検定圧力に対する通電電流と、実際に用いられている圧力調整弁12における検定圧力に対する通電電流との差分が記憶され、標準の相関関係は、この記憶された差分によって補正され、次述する圧力センサ故障診断処理に供されることとなる。すなわち、換言すれば、標準の相関関係は、初期学習によって得られる実際の圧力調整弁12の通電電流とレール圧との基準相関関係によって実質的に書き換えられると等価な状態となる。 By the series of processes described above, the energization current for the verification pressure determined from the standard correlation between the energization current of the standard pressure adjustment valve and the rail pressure, and the energization current for the verification pressure in the pressure adjustment valve 12 actually used The standard correlation is corrected by the stored difference and is subjected to the pressure sensor failure diagnosis process described below. That is, in other words, the standard correlation becomes an equivalent state when it is substantially rewritten by the reference correlation between the actual energization current of the pressure regulating valve 12 and the rail pressure obtained by the initial learning.
 図3には、本発明の実施の形態における圧力センサ故障診断処理の手順がサブルーチンフローチャートに示されており、以下、同図を参照しつつ、その処理手順について説明する。
 この一連の処理は、先の図2で説明した初期学習処理とは異なり、車両の動作中、後述するように所定の条件が満たされた際に繰り返し実行されるものとなっている。
FIG. 3 shows a procedure of the pressure sensor failure diagnosis process in the embodiment of the present invention in a subroutine flowchart. The process procedure will be described below with reference to FIG.
Unlike the initial learning process described above with reference to FIG. 2, this series of processes is repeatedly executed when a predetermined condition is satisfied during vehicle operation, as will be described later.
 以下、具体的に説明すれば、電子制御ユニット4による処理が開始されると、まず、車両が無負荷走行状態にあるか否かが判定される(図3のステップS202参照)。このように無負荷走行状態を条件とするのは、基準の相関関係を取得するためには、レール圧が安定した状態が好ましいためであり、その具体的な判定基準は、先に図2のステップS102で述べたと同様、アクセルペダルが踏み込まれていない状態(踏込量0%)にある場合、無負荷走行状態とすることができる。 Hereinafter, specifically, when processing by the electronic control unit 4 is started, it is first determined whether or not the vehicle is in a no-load running state (see step S202 in FIG. 3). The condition of the no-load running state is that the rail pressure is stable in order to obtain the reference correlation, and the specific determination criterion is as shown in FIG. As described in step S102, when the accelerator pedal is not depressed (the depression amount is 0%), the vehicle can be in a no-load traveling state.
 ステップS202において、無負荷走行状態であると判定されると(YESの場合)、次述するステップS204の処理へ進む一方、無負荷状態ではないと判定された場合(NOの場合)には、圧力センサ故障診断を行うに適した状態ではないとして一連の処理は終了されて、一旦、図示されないメインルーチンへ戻り、所定の時間経過後に、再度、この図3のサブルーチンが実行されるようになっている。 If it is determined in step S202 that the vehicle is in the no-load running state (in the case of YES), the process proceeds to the processing in step S204 described below, whereas if it is determined that the vehicle is not in the no-load state (in the case of NO), A series of processing is terminated on the assumption that the pressure sensor failure diagnosis is not suitable, and the process returns to the main routine (not shown), and the subroutine of FIG. 3 is executed again after a predetermined time has elapsed. ing.
 図5(A)及び図5(B)には、上述のように無負荷状態と判定される際のアクセル開度の変化例と燃料噴射量の変化例が示されている。
 すなわち、ある時点でアクセル開度が零とされる(図5(A)参照)ことに伴い燃料噴射量も零となる(図5(B))場合の変化例が示されており、かかる状態が無負荷状態である。
 次に、ステップS204においては、初期学習完了フラグがセットされているか否かが判定される。初期学習完了フラグは、先に図2のステップS116で述べた通りのものであり、例えば、”1”に設定されている場合、初期学習完了フラグがセットされているとされる。
FIGS. 5A and 5B show a change example of the accelerator opening and a change example of the fuel injection amount when it is determined that there is no load as described above.
That is, a change example is shown in which the fuel injection amount becomes zero (FIG. 5 (B)) when the accelerator opening is made zero (see FIG. 5 (A)) at a certain time point. Is no load.
Next, in step S204, it is determined whether or not an initial learning completion flag is set. The initial learning completion flag is as described above in step S116 in FIG. 2. For example, when it is set to “1”, the initial learning completion flag is set.
 そして、ステップS204において、初期学習完了フラグがセットされていると判定された場合(YESの場合)には、先に図2で説明した一連の処理が終了しているとして次述するステップS206の処理へ進む一方、初期学習完了フラグが未だセットされていないと判定された場合(NOの場合)には、先の図2で説明した初期学習処理が実行されることとなる。 If it is determined in step S204 that the initial learning completion flag is set (in the case of YES), it is assumed that the series of processes described above with reference to FIG. On the other hand, if it is determined that the initial learning completion flag has not yet been set (in the case of NO), the initial learning process described with reference to FIG. 2 is executed.
 ステップS206においては、レール圧制御モードが先の図2のステップS104同様に、PCVモードに設定されることとなる。
 次いで、診断を行う圧力として予め定められている複数の圧力(診断圧力)の一つの所定のレール圧となるよう圧力調整弁12へ対する通電が行われる(図3のステップS208参照)。
In step S206, the rail pressure control mode is set to the PCV mode as in step S104 of FIG.
Next, energization is performed on the pressure control valve 12 so as to achieve one predetermined rail pressure of a plurality of pressures (diagnostic pressures) determined in advance as pressures for diagnosis (see step S208 in FIG. 3).
 図5(C)には、レール圧が診断圧力に変化せしめられる場合の変化例を示す特性線が示されており、同図においては、3箇所の診断圧力(P1~P3)が定められている場合の例が示されている。
 上述のステップS208においては、このステップS208が最初に実行される際には、図5(C)の例で言えば、レール圧が診断圧P1になるように圧力調整弁12へ対する通電が行われることとなる。
 ここで、レール圧として診断圧P1を得るために圧力調整弁12への通電開始時に通電される通電電流の大きさは、先の初期学習処理(図2参照)の結果に基づいて設定されることとなる。なお、このようにして定められる通電電流を、以下、説明の便宜上、「基準通電電流」と称する。
FIG. 5C shows a characteristic line showing an example of a change when the rail pressure is changed to a diagnostic pressure. In FIG. 5C, three diagnostic pressures (P1 to P3) are defined. An example is shown.
In step S208 described above, when this step S208 is executed for the first time, in the example of FIG. 5C, energization is performed to the pressure adjustment valve 12 so that the rail pressure becomes the diagnostic pressure P1. Will be.
Here, the magnitude of the energization current that is energized at the start of energization of the pressure regulating valve 12 to obtain the diagnostic pressure P1 as the rail pressure is set based on the result of the previous initial learning process (see FIG. 2). It will be. The energizing current determined in this way is hereinafter referred to as “reference energizing current” for convenience of explanation.
 すなわち、まず、先に説明した標準相関関係におけるレール圧P1に対する通電電流が求められる。すなわち、標準相関関係においてレール圧P1に対する標準通電電流が仮にIst1と求められるとする。次に、電子制御ユニット4に記憶されている差分(図2のステップ110参照)において、レール圧P1における差分(標準相関関係で定まる通電電流と、圧力調整弁12の実際の特性における通電電流との差分)が求められる。例えば、レール圧P1に対する差分が+ΔIp1であるとすると、この場合の基準通電電流は、(Ist1+ΔIp1)となる。なお、差分が負の値、すなわち、例えば、-ΔIp1である場合には、基準通電電流は、(Ist1-ΔIp1)となる。 That is, first, an energization current with respect to the rail pressure P1 in the standard correlation described above is obtained. That is, it is assumed that the standard energization current with respect to the rail pressure P1 is obtained as Ist1 in the standard correlation. Next, in the difference stored in the electronic control unit 4 (see step 110 in FIG. 2), the difference in the rail pressure P1 (the energizing current determined by the standard correlation and the energizing current in the actual characteristics of the pressure regulating valve 12) Difference). For example, if the difference with respect to the rail pressure P1 is + ΔIp1, the reference energization current in this case is (Ist1 + ΔIp1). When the difference is a negative value, that is, for example, −ΔIp1, the reference energization current is (Ist1−ΔIp1).
 次いで、電子制御ユニット4により、この時点における圧力センサ11によって検出されたレール圧と、圧力調整弁12の通電電流の比較が行われる(図3のステップS210参照)。
 すなわち、圧力センサ11によって検出された実際のレール圧(実レール圧)がステップS208において設定された診断圧力となるように、圧力調整弁12の通電電流が調整されることとなる。
 しかして、実レール圧が所定の検定圧に達したと判定されると、次述するステップS212の処理へ進むこととなる。
Next, the electronic control unit 4 compares the rail pressure detected by the pressure sensor 11 at this time with the energization current of the pressure regulating valve 12 (see step S210 in FIG. 3).
That is, the energization current of the pressure regulating valve 12 is adjusted so that the actual rail pressure (actual rail pressure) detected by the pressure sensor 11 becomes the diagnostic pressure set in step S208.
Accordingly, when it is determined that the actual rail pressure has reached the predetermined verification pressure, the process proceeds to step S212 described below.
  ステップS212においては、基準通電電流と実際に検出された通電電流との差が、予め定められた許容範囲にあるか否かが判定されることとなる。すなわち、先の診断圧力P1の例で言えば、基準通電電流(Ist1+ΔIp1)と、レール圧P1を得るために最終的に検出された圧力調整弁12の通電電流(仮に、I1aとする)との差が予め定められた許容範囲にあるか否かが判定されることとなる。 In step S212, it is determined whether or not the difference between the reference energization current and the actually detected energization current is within a predetermined allowable range. That is, in the example of the diagnosis pressure P1, the reference energization current (Ist1 + ΔIp1) and the energization current of the pressure regulating valve 12 finally detected to obtain the rail pressure P1 (assuming I1a). It is determined whether or not the difference is within a predetermined allowable range.
 ここで、上述の許容範囲について、図4を参照しつつ説明する。
 図4は、基準相関関係に対する許容範囲の例を示した特性線図であり、横軸は、圧力調整弁12の通電電流を、縦軸は、レール圧を、それぞれ示している。
 同図において、実線の特性線は、基準相関関係を表したものである。すなわち、図2の説明の際に言及した標準相関関係に、差分(図2のステップS110参照)を加味したものである。ここで、加味するとは、上述したように標準相関関係においてレール圧P1に対する標準通電電流が仮にIst1と求められる際に、レール圧P1に対する差分が+ΔIp1であるとすると、Ist1にΔIp1を加算して、レール圧P1における基準通電電流を(Ist1+ΔIp1)と求めることを意味する。
Here, the above-described allowable range will be described with reference to FIG.
FIG. 4 is a characteristic diagram showing an example of an allowable range with respect to the reference correlation. The horizontal axis represents the energization current of the pressure regulating valve 12, and the vertical axis represents the rail pressure.
In the figure, the solid characteristic line represents the reference correlation. That is, the difference (see step S110 in FIG. 2) is added to the standard correlation mentioned in the description of FIG. Here, when the standard energization current with respect to the rail pressure P1 is obtained as Ist1 in the standard correlation as described above, if the difference with respect to the rail pressure P1 is + ΔIp1, add ΔIp1 to Ist1. This means that the reference energization current at the rail pressure P1 is obtained as (Ist1 + ΔIp1).
 そして、図4において、一点鎖線で表された特性線は、基準相関関係に対して許容範囲を示す特性線である。本発明の実施の形態においては、許容範囲は、このように一次関数として定義されたものとなっている。
 この図4に示された例の場合、許容範囲を定める一次関数(以下、便宜的に「許容一次関数」と称する)は、基準相関関係に対して、一次関数の傾きが小さくなる側に規定されたものとなっている。
 すなわち、具体的には、例えば、一つの診断圧力点におけるレール圧である診断圧力P1を得るために圧力調整弁12に必要とされる基準相関関係から定まる通電電流に対して、許容一次関数から定まる同一レール圧P1における通電電流は、ΔI1大きいものとなっている。換言すれば、レール圧P1における圧力調整弁12の通電電流が、基準相関関係から定まる通電電流に対して許容差ΔI1を超えない範囲であれば、正常と判定されることとなる。
In FIG. 4, a characteristic line represented by a one-dot chain line is a characteristic line indicating an allowable range with respect to the reference correlation. In the embodiment of the present invention, the allowable range is thus defined as a linear function.
In the case of the example shown in FIG. 4, the linear function that defines the allowable range (hereinafter referred to as “allowable linear function” for convenience) is defined on the side where the slope of the linear function becomes smaller than the reference correlation. It has been made.
Specifically, for example, from an allowable linear function with respect to the energizing current determined from the reference correlation required for the pressure regulating valve 12 in order to obtain the diagnostic pressure P1, which is the rail pressure at one diagnostic pressure point, for example. The energization current at the fixed rail pressure P1 is larger by ΔI1. In other words, if the energizing current of the pressure regulating valve 12 at the rail pressure P1 is in a range that does not exceed the tolerance ΔI1 with respect to the energizing current determined from the reference correlation, it is determined to be normal.
 他の診断圧力においても上述したと同様にして、各診断圧力点における圧力調整弁12の通電電流が、許容一次関数から定まる通電電流を超えない範囲か否かによって、正常か否かが判定されることとなる。
 なお、図4の例では、診断圧力点P2においては、許容差はΔI2であり、診断圧力点P3においては、許容差はΔI3となっている。
In the same way as described above for other diagnostic pressures, it is determined whether or not they are normal depending on whether or not the energizing current of the pressure regulating valve 12 at each diagnostic pressure point does not exceed the energizing current determined from the allowable linear function. The Rukoto.
In the example of FIG. 4, the tolerance is ΔI2 at the diagnostic pressure point P2, and the tolerance is ΔI3 at the diagnostic pressure point P3.
 ここで、再び、図3の説明に戻れば、ステップS212において、上述のようにして圧力調整弁12の実際の通電電流が許容範囲にあると判定された場合(YESの場合)には、次述するステップS214の処理へ進む一方、圧力調整弁12の実際の通電電流が許容範囲にないと判定された場合(NOの場合)には、後述するステップS218の処理へ進むこととなる。
 ステップ214においては、基準通電電流と実際に検出された通電電流との差(以下、便宜的に「対基準相関差」と称する)が、電子制御ユニット4の所定の記憶領域、例えば、ROM等の記憶素子の所定の領域に記憶されることとなる。
Here, returning to the description of FIG. 3 again, if it is determined in step S212 that the actual energization current of the pressure regulating valve 12 is within the allowable range as described above (in the case of YES), the following is performed. On the other hand, the process proceeds to step S214 to be described. On the other hand, if it is determined that the actual energization current of the pressure regulating valve 12 is not within the allowable range (NO), the process proceeds to step S218 described later.
In step 214, a difference between the reference energization current and the actually detected energization current (hereinafter referred to as “vs. reference correlation difference” for convenience) is a predetermined storage area of the electronic control unit 4, such as a ROM. Is stored in a predetermined area of the storage element.
 次いで、全ての診断圧力点において、上述のステップS208~S214の処理が行われ、対基準相関差が記憶されたか否かが判定され(図3のステップS216参照)、全ての診断圧点において対基準相関差が記憶されたと判定された場合(YESの場合)には、圧力センサ11、圧力調整弁12に異常は無いとして一連の処理が終了され、図示されないメインルーチンへ一旦戻ることとなる。 Next, at all the diagnostic pressure points, the above-described processing of steps S208 to S214 is performed, and it is determined whether or not the reference correlation difference is stored (see step S216 in FIG. 3). If it is determined that the reference correlation difference has been stored (in the case of YES), a series of processing is terminated assuming that there is no abnormality in the pressure sensor 11 and the pressure regulating valve 12, and the process returns to the main routine (not shown).
 一方、ステップS216において、未だ全ての診断圧点における対基準相関差は記憶されていないと判定された場合(NOの場合)には、先のステップS208の処理へ戻り、次の診断圧についてステップS210以降の処理が同様に繰り返されることとなる。
 例えば、先に示した図5(C)の例で言えば、これまでの処理が診断圧力P1におけるものであるとすると、ステップS208においては、レール圧が次の診断圧力P2(図5(C)参照)となるように圧力調整弁12へ対する通電が行われることとなる。
 なお、図5(C)においては、診断圧力の変化は、便宜的に直線的に変化する如くに表されているが、実際には、予め定められた変化特性にしたがって、レール圧が緩やかに上昇するように圧力変化を補正するいわゆるなまし補正を適用して診断圧力の設定を行うようにすると好適である。
On the other hand, if it is determined in step S216 that the reference correlation differences at all the diagnostic pressure points are not yet stored (in the case of NO), the process returns to the previous step S208, and the next diagnostic pressure is stepped. The processes after S210 will be repeated in the same manner.
For example, in the example of FIG. 5C described above, if the processing so far is performed at the diagnostic pressure P1, the rail pressure is set to the next diagnostic pressure P2 (FIG. 5C) in step S208. Energization of the pressure regulating valve 12 is performed so that
In FIG. 5C, the change in the diagnostic pressure is expressed so as to change linearly for the sake of convenience. However, in practice, the rail pressure gradually decreases according to a predetermined change characteristic. It is preferable to set the diagnostic pressure by applying so-called smoothing correction for correcting the pressure change so as to increase.
 一方、先のステップ212において、実通電電流値が所定の許容範囲にないと判定された場合(NOの場合)には、ステップS218において、対基準相関差が電子制御ユニット4の所定の記憶領域、例えば、ROM等の記憶素子の所定の領域に記憶されることとなる。なお、この場合の所定の記憶領域は、先のステップS214における記憶領域とは異なる領域である。 On the other hand, if it is determined in the previous step 212 that the actual energization current value is not within the predetermined allowable range (in the case of NO), the reference correlation difference is determined to be a predetermined storage area of the electronic control unit 4 in step S218. For example, it is stored in a predetermined area of a storage element such as a ROM. Note that the predetermined storage area in this case is an area different from the storage area in the previous step S214.
 次いで、上述のステップS212の処理において、実通電電流値が所定の許容範囲にないと判定された回数(規定外回数)が所定数Nを超えたか否かが判定され(図3のステップS220参照)、所定回数Nを超えたと判定された場合(YESの場合)には、圧力調整弁12、又は、圧力センサ11の異常(故障)であるとして、所定のエラー報知が行われ(図3のステップS222参照)、一連の処理が終了されることとなる。ここで、エラー報知としては、図示されない表示素子の点灯表示や文字表示、また、ブザー等の鳴動素子の鳴動などが好適であり、このような手段のいずれか、又は、それらの組合せいずれを選択しても良いものである。
 一方、ステップS220において、規定外回数がNを超えていないと判定された場合(NOの場合)には、先のステップS208へ戻り、次の診断圧についてステップS210以降の処理が同様に繰り返されることとなる。
Next, in the process of step S212 described above, it is determined whether or not the number of times that the actual energization current value is determined not to be within the predetermined allowable range (unspecified number) exceeds the predetermined number N (see step S220 in FIG. 3). ), When it is determined that the predetermined number of times N has been exceeded (in the case of YES), a predetermined error notification is performed assuming that the pressure regulating valve 12 or the pressure sensor 11 is abnormal (failure) (see FIG. 3). A series of processes will be complete | finished (refer step S222). Here, as the error notification, lighting display of a display element (not shown), character display, ringing of a ringing element such as a buzzer, etc. are suitable, and any one of these means or a combination thereof is selected. You can do it.
On the other hand, if it is determined in step S220 that the non-specified number of times does not exceed N (in the case of NO), the process returns to the previous step S208, and the processing after step S210 is similarly repeated for the next diagnostic pressure. It will be.
 専用の回路を要することなく圧力センサの故障診断を可能としたので、圧力センサを有するコモンレール式燃料噴射制御装置に適用できる。 Since the failure diagnosis of the pressure sensor is possible without requiring a dedicated circuit, it can be applied to a common rail fuel injection control device having a pressure sensor.

Claims (7)

  1. コモンレールからの燃料の戻し通路に圧力調整弁が設けられ、圧力センサにより検出されたレール圧が、前記圧力調整弁の駆動制御により、エンジンの動作情報に基づいて算出された目標レール圧となるよう制御可能に構成されてなるコモンレール式燃料噴射制御装置における前記圧力センサの故障診断方法であって、
     複数のレール圧における実際の圧力調整弁の通電電流を検出し、当該通電電流と、予め設定された標準的な圧力調整弁の通電電流とレール圧との相関を表す標準相関関係から定まる前記複数のレール圧における通電電流との差分を求める一方、
     車両の所定の運転条件の下、レール圧を、予め定められた複数の診断圧に設定するに要する前記圧力調整弁の通電電流が、所定回数以上、所定の許容範囲外となった場合に、圧力センサの故障と診断し、
     前記所定の許容範囲は、前記標準相関関係を前記差分によって補正して求められる基準相関関係を基準として定められてなることを特徴とする圧力センサ故障診断方法。
    A pressure adjustment valve is provided in the fuel return passage from the common rail, and the rail pressure detected by the pressure sensor becomes the target rail pressure calculated based on the operation information of the engine by the drive control of the pressure adjustment valve. A failure diagnosis method for the pressure sensor in a common rail fuel injection control device configured to be controllable,
    The plurality of currents determined by a standard correlation representing a correlation between the current flowing through the actual pressure regulating valve at a plurality of rail pressures and a predetermined standard current regulating valve current flowing through the rail pressure. While obtaining the difference with the current flow at the rail pressure of
    When the energizing current of the pressure regulating valve required to set the rail pressure to a plurality of predetermined diagnostic pressures under a predetermined driving condition of the vehicle is out of a predetermined allowable range for a predetermined number of times or more, Diagnose pressure sensor failure,
    The pressure sensor failure diagnosis method according to claim 1, wherein the predetermined allowable range is determined based on a reference correlation obtained by correcting the standard correlation with the difference.
  2. 所定の運転条件は、内燃機関が無負荷で車両が走行状態にあることを特徴とする請求項1記載の圧力センサ故障診断方法。 2. The pressure sensor failure diagnosis method according to claim 1, wherein the predetermined operating condition is that the internal combustion engine is unloaded and the vehicle is running.
  3. アクセルの踏み込みが無く、且つ、燃料噴射量が零の場合に、内燃機関が無負荷で車両が走行状態にあると判定することを特徴とする請求項2記載の圧力センサ故障診断方法。 3. The pressure sensor failure diagnosis method according to claim 2, wherein when the accelerator is not depressed and the fuel injection amount is zero, it is determined that the internal combustion engine is unloaded and the vehicle is running.
  4. コモンレールに燃料を圧送する高圧ポンプ装置と、前記コモンレールからの燃料の戻し通路に設けられた圧力調整弁と、前記コモンレールの圧力を検出する圧力センサと、前記高圧ポンプ装置及び前記圧力調整弁の駆動を制御する電子制御ユニットとを具備し、
     前記電子制御ユニットは、エンジンの動作情報に基づいて目標レール圧を算出し、前記圧力センサにより検出されたレール圧が、前記目標レール圧となるよう前記圧力調整弁を駆動制御可能に構成されてなるコモンレール式燃料噴射制御装置であって、
     前記電子制御ユニットは、
     車両の所定の運転条件の下、レール圧を、予め定められた複数の診断圧に設定するに要する前記圧力調整弁の通電電流が、所定回数以上、所定の許容範囲外となった場合に、圧力センサの故障と診断するよう構成されてなり、
     前記所定の許容範囲は、予め設定された標準的な圧力調整弁の通電電流とレール圧との相関関係を表す標準相関関係を、実際の圧力調整弁の通電特性に基づいて補正して得られた基準相関関係を基準として定められてなることを特徴とするコモンレール式燃料噴射制御装置。
    A high pressure pump device that pumps fuel to the common rail, a pressure adjustment valve that is provided in a fuel return path from the common rail, a pressure sensor that detects the pressure of the common rail, and a drive for the high pressure pump device and the pressure adjustment valve An electronic control unit for controlling
    The electronic control unit is configured to calculate a target rail pressure based on engine operation information and to drive and control the pressure adjustment valve so that the rail pressure detected by the pressure sensor becomes the target rail pressure. A common rail fuel injection control device comprising:
    The electronic control unit is
    When the energizing current of the pressure regulating valve required to set the rail pressure to a plurality of predetermined diagnostic pressures under a predetermined driving condition of the vehicle is out of a predetermined allowable range for a predetermined number of times or more, Configured to diagnose pressure sensor failure,
    The predetermined permissible range is obtained by correcting a standard correlation representing a correlation between a preset standard energizing current of the pressure regulating valve and the rail pressure based on an energizing characteristic of the actual pressure regulating valve. A common rail type fuel injection control device characterized in that it is determined based on a reference correlation.
  5. 所定の運転条件は、内燃機関が無負荷で車両が走行状態にあることを特徴とする請求項4記載のコモンレール式燃料噴射制御装置。 5. The common rail fuel injection control apparatus according to claim 4, wherein the predetermined operating condition is that the internal combustion engine is unloaded and the vehicle is in a running state.
  6. 電子制御ユニットによる実際の圧力調整弁の通電特性に基づく前記標準相関関係の補正は、同一のレール圧に対する標準相関関係に基づいて定まる通電電流と実際の圧力調整弁の通電電流との予め記憶された差分を、前記標準相関関係に基づいて定まる通電電流に加減算することによって行われることを特徴とする請求項5記載のコモンレール式燃料噴射制御装置。 The correction of the standard correlation based on the current-carrying characteristic of the actual pressure regulating valve by the electronic control unit is stored in advance between the conduction current determined based on the standard correlation for the same rail pressure and the actual current of the pressure-regulating valve. 6. The common rail fuel injection control device according to claim 5, wherein the difference is added to or subtracted from an energization current determined based on the standard correlation.
  7. 電子制御ユニットは、アクセルの踏み込みが無く、且つ、燃料噴射量が零の場合に、内燃機関が無負荷で車両が走行状態にあると判定するよう構成されてなることを特徴とする請求項6記載のコモンレール式燃料噴射制御装置。 The electronic control unit is configured to determine that the internal combustion engine is unloaded and the vehicle is running when the accelerator is not depressed and the fuel injection amount is zero. The common rail fuel injection control device described.
PCT/JP2010/061820 2009-07-15 2010-07-13 Method for diagnosing error of pressure sensor and common rail type fuel injection control device WO2011007772A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011522812A JPWO2011007772A1 (en) 2009-07-15 2010-07-13 Pressure sensor failure diagnosis method and common rail fuel injection control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009166208 2009-07-15
JP2009-166208 2009-07-15

Publications (1)

Publication Number Publication Date
WO2011007772A1 true WO2011007772A1 (en) 2011-01-20

Family

ID=43449379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061820 WO2011007772A1 (en) 2009-07-15 2010-07-13 Method for diagnosing error of pressure sensor and common rail type fuel injection control device

Country Status (2)

Country Link
JP (1) JPWO2011007772A1 (en)
WO (1) WO2011007772A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103047125A (en) * 2012-12-11 2013-04-17 潍柴动力股份有限公司 Oil pump feeding fault detecting method and device of high-pressure plunger-type fuel pump
US20130167809A1 (en) * 2010-07-12 2013-07-04 Robert Bosch Gmbh Method and device for operating a fuel injection system
JP2014084754A (en) * 2012-10-22 2014-05-12 Bosch Corp Rail pressure sensor output characteristic diagnostic method, and common rail-type fuel injection control device
KR101755933B1 (en) * 2015-12-11 2017-07-19 현대자동차주식회사 A method for deterioration of pressure sensor for common rail and an apparatus the same
JP2017193226A (en) * 2016-04-19 2017-10-26 トヨタ自動車株式会社 Fuel pressure sensor diagnosis device
US10364770B2 (en) 2015-03-26 2019-07-30 Toyota Jidosha Kabushiki Kaisha Fuel pressure sensor diagnostic during engine stopping
JP2019532213A (en) * 2016-10-13 2019-11-07 シー・ピー・ティー グループ ゲー・エム・ベー・ハーCPT Group GmbH Method, controller, high pressure injection system, and automobile for checking the calibration of pressure sensors in an automobile injection system
CN112196685A (en) * 2020-09-29 2021-01-08 东风商用车有限公司 Intervention type rail pressure sensor fault diagnosis method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10227268A (en) * 1997-02-12 1998-08-25 Nippon Soken Inc Accumulator fuel injection device
JPH11506813A (en) * 1995-12-20 1999-06-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for monitoring fuel metering device for internal combustion engine
JP2005248885A (en) * 2004-03-05 2005-09-15 Bosch Automotive Systems Corp Fuel injection device
JP2005273571A (en) * 2004-03-25 2005-10-06 Isuzu Motors Ltd Device and method for twist prevention of crankshaft

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2919128B2 (en) * 1991-09-02 1999-07-12 東洋機械金属株式会社 Control method of proportional electromagnetic control valve of injection molding machine
JP3460319B2 (en) * 1994-08-19 2003-10-27 いすゞ自動車株式会社 Pressure accumulating fuel injection device and control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506813A (en) * 1995-12-20 1999-06-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for monitoring fuel metering device for internal combustion engine
JPH10227268A (en) * 1997-02-12 1998-08-25 Nippon Soken Inc Accumulator fuel injection device
JP2005248885A (en) * 2004-03-05 2005-09-15 Bosch Automotive Systems Corp Fuel injection device
JP2005273571A (en) * 2004-03-25 2005-10-06 Isuzu Motors Ltd Device and method for twist prevention of crankshaft

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130167809A1 (en) * 2010-07-12 2013-07-04 Robert Bosch Gmbh Method and device for operating a fuel injection system
JP2014084754A (en) * 2012-10-22 2014-05-12 Bosch Corp Rail pressure sensor output characteristic diagnostic method, and common rail-type fuel injection control device
CN103047125A (en) * 2012-12-11 2013-04-17 潍柴动力股份有限公司 Oil pump feeding fault detecting method and device of high-pressure plunger-type fuel pump
US10364770B2 (en) 2015-03-26 2019-07-30 Toyota Jidosha Kabushiki Kaisha Fuel pressure sensor diagnostic during engine stopping
KR101755933B1 (en) * 2015-12-11 2017-07-19 현대자동차주식회사 A method for deterioration of pressure sensor for common rail and an apparatus the same
JP2017193226A (en) * 2016-04-19 2017-10-26 トヨタ自動車株式会社 Fuel pressure sensor diagnosis device
US10344731B2 (en) 2016-04-19 2019-07-09 Toyota Jidosha Kabushiki Kaisha Fuel pressure sensor diagnosis device
JP2019532213A (en) * 2016-10-13 2019-11-07 シー・ピー・ティー グループ ゲー・エム・ベー・ハーCPT Group GmbH Method, controller, high pressure injection system, and automobile for checking the calibration of pressure sensors in an automobile injection system
CN112196685A (en) * 2020-09-29 2021-01-08 东风商用车有限公司 Intervention type rail pressure sensor fault diagnosis method and device

Also Published As

Publication number Publication date
JPWO2011007772A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
WO2011007772A1 (en) Method for diagnosing error of pressure sensor and common rail type fuel injection control device
JP5103519B2 (en) Pressure sensor failure diagnosis method and common rail fuel injection control device
JP5807953B2 (en) Pressure sensor diagnosis method and common rail fuel injection control device
JP4659648B2 (en) Abnormality judgment device for fuel supply system
KR100669293B1 (en) System for operating an internal combustion engine, especially an internal combustion engine of an automobile
CN102428264B (en) Fault localization in a fuel injection system
US7444993B2 (en) Method for monitoring the operability of a fuel injection system
US7437234B2 (en) Method for adjusting an on-time calculation model or lookup table and a system for controlling an injector of a cylinder in a combustion engine
US8347863B2 (en) Method for controlling a fuel delivery device on an internal combustion engine
US9051893B2 (en) Method for detecting a malfunction in an electronically regulated fuel injection system of an internal combustion engine
JP4386026B2 (en) Fuel injection control device
US7328689B2 (en) Method for monitoring a fuel supply pertaining to an internal combustion engine
US20150153242A1 (en) Method for monitoring a pressure sensor of a fuel injection system, especially of a motor vehicle
US7010415B2 (en) Method for controlling an internal combustion engine
JP4506651B2 (en) Fuel injection control device
KR20170082552A (en) Method and device for operating a pump
CN105074183A (en) Method for operating a common rail system of a motor vehicle having a redundant rail pressure sensor
KR20140007828A (en) Method for determining a control volume of an injector
US20150068610A1 (en) Method for determining a value of a current
US20120239272A1 (en) Method for testing the fuel quantity balance in a common rail system, corresponding engine control system, and corresponding diagnosti device
JP2014084754A (en) Rail pressure sensor output characteristic diagnostic method, and common rail-type fuel injection control device
US20130151123A1 (en) Method and device for operating a pressure-regulating valve
JP2013177851A (en) Excessive leakage diagnosis method, and common rail type fuel injection control device
JP6498000B2 (en) Pressure sensor failure diagnosis method and common rail fuel injection control device
JP5936263B2 (en) Discharge amount variation correction method for high-pressure pump and common rail fuel injection control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799830

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011522812

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799830

Country of ref document: EP

Kind code of ref document: A1