WO2011007544A1 - Magnetic levitation control device and hybrid type magnetic bearing - Google Patents

Magnetic levitation control device and hybrid type magnetic bearing Download PDF

Info

Publication number
WO2011007544A1
WO2011007544A1 PCT/JP2010/004512 JP2010004512W WO2011007544A1 WO 2011007544 A1 WO2011007544 A1 WO 2011007544A1 JP 2010004512 W JP2010004512 W JP 2010004512W WO 2011007544 A1 WO2011007544 A1 WO 2011007544A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
permanent magnet
electromagnet
bypass
bias
Prior art date
Application number
PCT/JP2010/004512
Other languages
French (fr)
Japanese (ja)
Inventor
増澤徹
佐々木瑛祐
Original Assignee
国立大学法人茨城大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人茨城大学 filed Critical 国立大学法人茨城大学
Priority to AU2010272054A priority Critical patent/AU2010272054B2/en
Priority to JP2011522712A priority patent/JP5465249B2/en
Priority to US13/383,842 priority patent/US9203280B2/en
Publication of WO2011007544A1 publication Critical patent/WO2011007544A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0468Details of the magnetic circuit of moving parts of the magnetic circuit, e.g. of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a magnetic levitation control device and a hybrid magnetic bearing for controlling the position of a levitation object using a permanent magnet and an electromagnet together.
  • Patent Document 1 As a conventional hybrid magnetic bearing using both a permanent magnet and an electromagnet, a hybrid magnetic bearing having a rotor that is supported and rotated in a non-contact state by controlling the magnetic force of a plurality of electromagnets and permanent magnets (Patent Document 1).
  • Patent Document 2 a magnetic bearing for an artificial heart (Patent Document 2) is known, and an attempt is made to obtain a magnetic flux necessary for controlling the magnetic bearing by superimposing a bias magnetic flux generated by a permanent magnet on an electromagnet magnetic flux generated by an electromagnet. The technique is known from the above.
  • the magnetic path is three-dimensionally configured from the electromagnet magnetic flux generated by the electromagnet and the bias magnetic flux generated by the permanent magnet.
  • the efficiency cannot be increased.
  • the structure is complicated and the manufacture is difficult.
  • the magnetic path is configured two-dimensionally, like the magnetic bearing described in Patent Document 2, the magnetic flux formed by the electromagnet and the bias magnetic flux generated by the permanent magnet both form a magnetic path that passes through the same permanent magnet. As a result, the magnetic flux formed by the electromagnet is weakened by the large magnetic resistance of the permanent magnet, making it difficult to obtain a large magnetic flux necessary for controlling the movement of the magnetic bearing.
  • the present invention provides a magnetic resistance of a permanent magnet for generating a bias magnetic flux with respect to a control magnetic flux formed by the electromagnet even if the permanent magnet and the electromagnet are arranged at positions where the magnetic fluxes are superimposed on each other.
  • a magnetic levitation control device and a hybrid magnetic bearing that can suppress the loss of control magnetic flux formed by the electromagnet and reduce the influence of the magnetic field, and can obtain a large magnetic flux for controlling the position of the magnetic levitation object. The purpose is to do.
  • the present invention is a magnetic levitation control device for controlling the position of a magnetic levitation object with respect to the electromagnet by a bias magnetic flux formed by a biasing permanent magnet and a control magnetic flux formed by an electromagnet, wherein the bias magnetic flux is A bypass magnetic path that is formed so as to pass through the electromagnet core of the electromagnet and that is a magnetic path of the control magnetic flux is formed in parallel with the permanent magnet for bias, and the bypass magnetic path allows passage of the bias magnetic flux. It is magnetized in the blocking direction. Furthermore, in the magnetic levitation control device of the present invention, the bypass magnetic path is composed of a permanent magnet and a magnetic body, and a magnetic flux formed by the permanent magnet of the bypass magnetic path functions as the bias magnetic flux. .
  • the magnetic levitation control apparatus of the present invention is characterized in that the permanent magnet for bias and the bypass magnetic path are provided in the magnetic levitation object. Furthermore, the magnetic levitation control apparatus of the present invention is arranged such that the electromagnet is arranged so that two salient poles serving as magnetic poles face the magnetic levitation object, and the permanent magnet for bias is disposed on the magnetic levitation object. It is arranged to be parallel to the surface facing the electromagnet, and the permanent magnet of the bypass magnetic path is disposed so that the magnetic pole is perpendicular to the surface facing the electromagnet of the magnetic levitation object.
  • the magnetic levitation control device of the present invention two permanent magnets are provided as opposed to the two salient poles of the electromagnet as permanent magnets of the bypass magnetic path, and the magnetic force of the two permanent magnets is the electromagnet.
  • the magnetic flux density in each gap between the two salient poles and the magnetically levitated object is set to be the same.
  • the magnetic levitation control device of the present invention is characterized in that the permanent magnet for bias and the bypass magnetic path are provided in the electromagnet.
  • the present invention also provides a hybrid magnetic bearing that controls the position of a magnetic levitation rotor with respect to the electromagnet using a bias magnetic flux formed by a permanent magnet for biasing and a control magnetic flux formed by an electromagnet.
  • a bypass magnetic path that is formed so as to pass through the electromagnet core of the electromagnet and that is a magnetic path of the control magnetic flux is formed in parallel with the permanent magnet for bias, and the bypass magnetic path passes through the bias magnetic flux. It is magnetized in the direction to prevent Furthermore, the hybrid magnetic bearing of the present invention is characterized in that the bypass magnetic path includes a permanent magnet and a magnetic body, and a magnetic flux formed by the permanent magnet of the bypass functions as the bias magnetic flux. Furthermore, the hybrid magnetic bearing of the present invention includes the biasing permanent magnet that is magnetized in a radial direction and arranged in an annular shape, and the bypass magnetic path that connects the magnetic poles of the biasing permanent magnet.
  • the electromagnet is disposed such that two salient poles serving as magnetic poles are opposed to the magnetically levitated rotor from the axial direction, and the electromagnet controls the axial position of the magnetically levitated rotor. It is characterized by. Furthermore, the hybrid magnetic bearing of the present invention is characterized in that a permanent magnet magnetized in the axial direction of the magnetically levitated rotor and arranged in an annular shape is provided as a permanent magnet of the bypass magnetic path. .
  • the hybrid magnetic bearing of the present invention two permanent magnets are provided as opposed to the two salient poles of the electromagnet as permanent magnets of the bypass magnetic path, and the magnetic force of the two permanent magnets is the same as that of the electromagnet.
  • the magnetic flux density in each gap between the two salient poles and the magnetically levitated object is set to be the same.
  • the hybrid magnetic bearing of the present invention is characterized in that the permanent magnet for bias and the bypass magnetic path are provided in the electromagnet.
  • the cylindrical permanent magnet for bias magnetized in the axial direction and the bypass magnetic path connecting the magnetic poles of the permanent magnet for bias are connected to the magnetically levitated rotor.
  • the electromagnet is disposed such that two salient poles serving as magnetic poles are opposed to the magnetic levitation rotor in a radial direction, and the radial position of the magnetic levitation rotor is controlled by the electromagnet. .
  • the magnetic levitation control device of the present invention is formed so that the bias magnetic flux passes through the electromagnet core of the electromagnet, and the bypass magnetic path serving as the magnetic path of the control magnetic flux is formed in parallel with the permanent magnet for bias.
  • the bypass magnetic path By configuring the bypass magnetic path to be magnetized in a direction that prevents the passage of the bias magnetic flux, even if it is arranged at a position where the magnetic fluxes of the permanent magnet for bias and the electromagnet overlap each other, Since the control magnetic flux formed by the electromagnet passes through the bypass magnetic path, the influence of the magnetic resistance of the permanent magnet for bias for generating the bias magnetic flux is reduced, and the loss of the control magnetic flux formed by the electromagnet is suppressed.
  • a large magnetic flux for controlling the position of the magnetically levitated object can be obtained.
  • the permanent magnet for bias and the electromagnet can be arranged at the position where the magnetic fluxes are superimposed on each other, and the apparatus can be miniaturized.
  • the magnetic levitation control device of the present invention can function the magnetic flux formed by the permanent magnet of the bypass magnetic path as a bias magnetic flux by configuring the bypass magnetic path with a permanent magnet and a magnetic body. Power can be improved efficiently.
  • the magnetic levitation control device of the present invention can simplify the configuration of the electromagnet that forms the control magnetic flux by providing a permanent magnet for bias and a bypass magnetic path to the magnetic levitation object, and facilitates maintenance of the electromagnet. Can be done.
  • the electromagnet is disposed so that the two salient poles serving as magnetic poles face the magnetic levitation object, and the bias permanent magnet is opposed to the electromagnet of the magnetic levitation object.
  • the cross-sectional area of the permanent magnet of the bypass magnetic path is secured by arranging the permanent magnet of the bypass magnetic path so that the magnetic pole is perpendicular to the surface facing the electromagnet of the magnetically levitated object. Therefore, the magnetic resistance of the bypass magnetic path can be reduced efficiently, and the overall magnetic resistance including the biasing permanent magnet can be reduced.
  • the magnetic levitation control device of the present invention two permanent magnets are provided as opposed to the two salient poles of the electromagnet as permanent magnets of the bypass magnetic path, and the magnetic forces of the two permanent magnets are the two magnets of the electromagnet.
  • the magnetic levitation control device according to the present invention can simplify the configuration of the magnetic levitation object by providing the biasing permanent magnet and the bypass magnetic path in the electromagnet, thereby easily performing the levitation control. be able to.
  • the hybrid magnetic bearing of the present invention is formed so that the bias magnetic flux passes through the electromagnet core of the electromagnet, and the bypass magnetic path serving as the magnetic path of the control magnetic flux is formed in parallel with the permanent magnet for bias.
  • the bypass magnetic path is formed by the electromagnet even if the magnetic flux of the permanent magnet for bias and the electromagnet are arranged at a position where they overlap each other.
  • Control flux that passes through the bypass magnetic path reduces the influence of the magnetic resistance of the permanent magnet for bias for generating the bias magnetic flux, suppresses the loss of control magnetic flux formed by the electromagnet, and A large magnetic flux for controlling the position of the object can be obtained.
  • the permanent magnet for bias and the electromagnet can be arranged at the position where the magnetic fluxes are superimposed on each other, and the apparatus can be miniaturized.
  • the hybrid magnetic bearing of the present invention can function as magnetic flux formed by the permanent magnet of the bypass magnetic path as a bias magnetic flux by configuring the bypass magnetic path with a permanent magnet and a magnetic body. Power can be improved efficiently.
  • the hybrid magnetic bearing according to the present invention has a magnetically levitated rotor including a biasing permanent magnet that is magnetized in a radial direction and arranged in an annular shape, and a bypass magnetic path that connects each magnetic pole of the biasing permanent magnet.
  • the electromagnet is arranged so that two salient poles serving as magnetic poles are opposed to the magnetic levitation rotor from the axial direction, and the electromagnet is configured to control the axial position of the magnetic levitation rotor by the electromagnet. Since the magnetic flux passing through the electromagnetic core does not change due to the rotation of the magnetic levitation rotor, iron loss such as eddy current loss can be reduced, and it is not necessary to arrange an electromagnet in the radial direction of the magnetic levitation rotor, so it is slim An apparatus can be realized.
  • the hybrid magnetic bearing of the present invention is provided with a permanent magnet that is magnetized in the axial direction of the magnetically levitated rotor and arranged in an annular shape as a permanent magnet of the bypass magnetic path. Therefore, the magnetic resistance of the bypass magnetic path can be efficiently reduced, and the overall magnetic resistance including the biasing permanent magnet can be reduced. Furthermore, in the hybrid magnetic bearing of the present invention, two permanent magnets are provided as opposed to the two salient poles of the electromagnet as permanent magnets of the bypass magnetic path, and the magnetic forces of the two permanent magnets are By configuring so that the magnetic flux densities in the gaps between the salient pole and the magnetically levitated object are the same, the magnetic attractive force can be applied to the two salient poles of the electromagnet under equal conditions.
  • the hybrid magnetic bearing according to the present invention can simplify the structure of the magnetic levitation rotor by providing a permanent magnet for bias and a bypass magnetic path in the electromagnet, thereby making it possible to easily perform levitation control. Can do.
  • the hybrid magnetic bearing of the present invention is provided with a magnetically levitated rotor including a cylindrical biasing permanent magnet magnetized in the axial direction and bypass magnetic paths connecting the magnetic poles of the biasing permanent magnet.
  • the electromagnet is arranged so that two salient poles serving as magnetic poles are opposed to the magnetic levitation rotor from the radial direction, and the electromagnet core of the electromagnet is configured by controlling the radial position of the magnetic levitation rotor by the electromagnet.
  • FIG. 7 is a magnetic equivalent circuit diagram seen from an electromagnet in a hybrid magnetic bearing in which a plurality of electromagnets are arranged as shown in FIG. 6. It is a figure which shows the shape and dimension of the magnetic levitation control apparatus used for the numerical analysis by the finite element method which used the thickness of the permanent magnet of the bypass magnetic path as a parameter.
  • FIG. 1 shows a basic configuration of a magnetic levitation control apparatus 100 according to an embodiment of the present invention.
  • reference numeral 20 denotes an electromagnet in which an electromagnet coil 2 is wound around an electromagnet core 1.
  • 3 5 and 8 are rod-like magnetic bodies arranged on the left side, center and right side, 4 and 7 are rod-like permanent magnets arranged on the left and right sides, respectively, and 6 is a rod-like permanent magnet arranged on the center. It is.
  • the permanent magnet 4 arranged on the left side and the permanent magnet 7 arranged on the right side constitute another magnet means.
  • the electromagnet core 1 has a U-shape having two salient poles 1a and 1c serving as magnetic poles, and the two salient poles 1a and 1c are arranged at positions facing the magnetic bodies 3 and 8, respectively.
  • the magnetic bodies 3, 5, 8, the permanent magnets 4, 7, and the permanent magnet 6 arranged in the center are fixed on a magnetic levitation object (not shown), and become the magnetic levitation object 50 itself.
  • the permanent magnet 6 forms the bias magnetic flux 10, and the control magnetic flux 9 and the bias magnetic flux 10 formed by the electromagnet 20 act on the magnetic levitation target 50 in the direction attracting the electromagnet 20.
  • a separation force in a direction away from the electromagnet 20 (downward in the figure) is applied to the magnetic levitation object 50 by an electromagnet, a permanent magnet, or gravity (not shown), and the separation force and the control magnetic flux 9 and The magnetic levitation object 50 is levitated by balancing the attractive force due to the bias magnetic flux 10.
  • the magnetic levitation object can be controlled to move up and down (in the Z-axis direction in the figure). Even when the separation force acting on the object 50 changes, the magnetic levitation object 50 can be controlled to the same position by controlling the strength of the control magnetic flux 9. 15 indicates a space or a non-magnetic part.
  • the single magnetic levitation object 50 including the permanent magnet 6, the permanent magnets 4 and 7, which are other magnet means, and the magnetic bodies 3, 5 and 8, is integrally formed in a rectangular cross section. And disposed opposite to the electromagnet 20.
  • the permanent magnet 6 forming the bias magnetic flux 10 is arranged at the center of the levitating support object 50 so that the magnetic pole is parallel to the surface facing the electromagnet 20, and the permanent magnet 6 horizontally arranged on the drawing has a left end.
  • the N pole and the right end are magnetized to the S pole.
  • the permanent magnet 4 disposed on the left side of the magnetically levitated object 50 is magnetized so that the top surface is N pole and the bottom surface is S pole so that the magnetic pole is perpendicular to the surface facing the electromagnet 20.
  • the permanent magnet 7 disposed on the right side of the levitating support object is also magnetized so that the upper surface is an S pole and the lower surface is an N pole so that the magnetic pole is perpendicular to the surface facing the electromagnet 20.
  • the N pole on the upper surface of the left permanent magnet 4 is connected to the N pole on the left end of the permanent magnet 6 via the magnetic body 3 facing the salient pole 1 a of the electromagnet 20, and S on the upper surface of the right permanent magnet 7.
  • the poles are connected to the S pole at the right end of the permanent magnet 6 via the magnetic body 8 facing the salient pole 1c of the electromagnet 20.
  • the S pole on the lower surface of the left permanent magnet 4 and the N pole on the lower surface of the right permanent magnet 7 are connected via a magnetic body 5.
  • the magnetic path of the bias magnetic flux 10 which is a permanent magnet magnetic flux generated by the permanent magnet 6, shown by the solid line in FIG. 1, is composed of the left magnetic body 3, the electromagnet core 1, and the right magnetic body 8.
  • the magnetic body 3, the left permanent magnet 4, the magnetic body 5, the right permanent magnet 7 and the magnetic body 8 form a bypass magnetic path 9A in parallel with the permanent magnet 6 arranged at the center.
  • the bypass magnetic path 9A is formed, for example, when permanent magnets having the same performance are used, that is, when they are made of the same material having the same magnetic permeability, the plate widths of the permanent magnets 4 and 7 in the magnetic flux direction Is much smaller than the horizontal plate width in the figure formed in the permanent magnet 6. For this reason, the magnetic resistance of the bypass magnetic path 9A is smaller than that of the permanent magnet 6 having a large magnetic resistance arranged at the center.
  • the bypass magnetic path 9A is magnetized by the permanent magnets 4 and 7 in the direction in which the bias magnetic flux 10 is prevented from passing. That is, the permanent magnets 4 and 7 are used as bypass magnetic path permanent magnets that magnetize the bypass magnetic path 9A.
  • the permanent magnets 4 and 7 In the magnetic bodies 3 and 8 to which the permanent magnets 4 and 7 and the permanent magnet 6 are respectively connected, the permanent magnets 4 and 7 have the same pole in the magnetic flux direction with respect to the magnetic poles of the permanent magnet 6 forming the bias magnetic flux 10. Is provided, the bypass magnetic path 9A is magnetized in a direction that prevents the bias magnetic flux 10 from passing therethrough. Further, the magnetic resistance of the bypass magnetic path 9A by the permanent magnets 4 and 7 is formed and arranged so as to be smaller than the magnetic resistance by the permanent magnet.
  • the direction of the control magnetic flux 9 may be reversed by reversing the magnetization directions of the permanent magnets 4, 6, and 7 and reversing the direction of the current flowing through the electromagnet coil 2. It does not impair any effect.
  • the magnetization direction of the permanent magnets 4, 6 and 7 will be described.
  • control magnetic flux 9 that is an electromagnet magnetic flux generated by an electromagnet 20 composed of an electromagnet coil 2 and an electromagnet core 1.
  • the control magnetic flux 9 hardly passes through the permanent magnet 6 because the permanent magnet 6 disposed in the center has a large cross section in the lateral direction and has a large magnetic resistance.
  • most of the control magnetic flux 9 generated by the electromagnet 20 passes through the bypass magnetic path 9A. That is, the left and right permanent magnets 4 and 7 are connected to the magnetic member 5 so that the length between the magnetic poles is shorter than the length between the magnetic poles of the permanent magnet 6.
  • the magnetic resistance of the bypass magnetic path 9A formed by the body 5 and the permanent magnet 4 is smaller than the magnetic resistance of the permanent magnet 6, and the control magnetic flux 9 passes through the bypass magnetic path 9A.
  • bypass magnetic path 9A Since the bypass magnetic path 9A has a small magnetic resistance, the control magnetic flux 9 passing through the bypass magnetic path 9A has almost no loss.
  • the control magnetic flux 9 passing through the bypass magnetic path 9A with almost no loss passes through the left permanent magnet 4 and the magnetic body 3, and is superimposed on the bias magnetic flux 10 formed by the permanent magnet 6, thereby magnetically levitating. A large control magnetic flux for controlling the position of the object 50 can be obtained.
  • the N pole on the upper surface of the left permanent magnet 4 is connected to the N pole of the central permanent magnet 6 via the magnetic body 3, and the upper pole of the right permanent magnet 7 is connected.
  • the S pole is connected to the S pole of the central permanent magnet 6 through the magnetic body 8, and the bypass magnetic path 9 ⁇ / b> A is magnetized in a direction that prevents the passage of the bias magnetic flux 10. For this reason, a short circuit in the floating support object 50 of the bias magnetic flux 10 generated by the central permanent magnet 6 is prevented, and loss of the bias magnetic flux 10 can be prevented.
  • a bias magnetic flux is also generated from the permanent magnet 7 and the permanent magnet 4 which are other magnet means constituting the bypass magnetic path 9A. That is, the bias magnetic flux generated from the permanent magnet 7 and the permanent magnet 4 passes through the same magnetic path as the control magnetic flux 9 and is superimposed on the control magnetic flux 9.
  • the magnetic forces of the permanent magnets 4 and 7 facing the two salient poles 1a and 1c of the electromagnet core 1 are the same as the two salient poles 1a and 1c of the electromagnet core 1 and the magnetic bodies 3 and 8 of the levitating support object 50, respectively.
  • the loss of the electromagnet magnetic flux 9 is prevented by the bypass magnetic path 9A, the loss of the rebiased magnetic flux 10 is prevented by preventing the central permanent magnet 6 from being short-circuited, and other magnet means
  • the bias magnetic flux generated by the above is superimposed on the electromagnet magnetic flux 9, and it becomes possible to form a control magnetic flux that increases the generation efficiency of the total magnetic flux generated in the hybrid magnetic bearing.
  • FIG. 2 shows that the permanent magnet 7 shown in FIG. 1 is changed to a magnetic body 7 ′.
  • One permanent magnet 4 is used as a permanent magnet which is another magnet means for magnetizing the bypass magnetic path 9A.
  • either one of the permanent magnets 4 and 7 may be used.
  • the directions of the control magnetic flux 9 and the bias magnetic flux 10 generated by the electromagnet 20 are the same in the magnetic body 3 where the same poles of the permanent magnet 4 and the permanent magnet 6 are in contact with each other.
  • the same effect can be obtained even if the embodiment shown in FIG. 2 is modified as shown in FIG. That is, the permanent magnet 4 shown in FIG. 2 is changed to a magnetic body 4 ′ and a permanent magnet 16 is interposed in a part of the magnetic body 5.
  • the permanent magnet 16 functions as another magnet means for magnetizing the bypass magnetic path 9A composed of the magnetic bodies 3, 4 ′ 5, 5, 7, 8, and the bias magnetic flux generated by the permanent magnet 6 is used.
  • the bypass magnetic path 9 ⁇ / b> A is magnetized in a direction to prevent the passage of 10, and the magnetic resistance by the permanent magnet 16, that is, the magnetic resistance of the bypass magnetic path 9 ⁇ / b> A is made smaller than the magnetic resistance of the permanent magnet 6.
  • the embodiment of the present invention is not limited to the above-described configuration, and the bias magnetic flux 10 by the permanent magnet 6 is superimposed on the control magnetic flux 9 so that the control magnetic flux 9 is not weakened by the magnetic resistance of the permanent magnet 6. If the bypass magnetic path 9A is configured, the permanent magnet 6 that generates the bias magnetic flux 10, the permanent magnets 4 and 7 that are other magnet means for magnetizing the bypass magnetic path 9A and the bypass magnetic path 9A are the electromagnet core 1. It may be arranged.
  • the permanent magnet 6 that generates the bias magnetic flux 10 and the bypass magnetic path 9 ⁇ / b> A are provided in the electromagnet core 1 of the electromagnet 20.
  • the electromagnet core 1 of the electromagnet 20 has a U-shape composed of salient poles 1a and salient poles 1c each having an open end, and a connecting portion 1b that connects the salient poles 1a and 1c.
  • the salient pole 1a and part of the salient pole 1c and the connecting portion 1b are shortcutly spanned between the salient pole 1a and the salient pole 1c.
  • the salient poles 1a and a part of the salient poles 1c, which are short-cut by the permanent magnet 6, and the connecting portion 1b form a bypass magnetic path 9A in parallel with the permanent magnet 6, and the bypass magnetic path 9A is another magnet means.
  • Permanent magnets 4 and 7 are arranged. When permanent magnets having the same performance are used, that is, when they are made of the same material having the same magnetic permeability, the plate widths of the left permanent magnet 4 and the right permanent magnet 7 in the magnetic flux direction are the center in the magnetic flux direction.
  • the magnetic resistance of the bypass magnetic path 9A by the permanent magnets 4 and 7 is formed and disposed so as to be smaller than the magnetic resistance of the permanent magnet 6.
  • the right end in the figure connected to the salient pole 1c is magnetized to the S pole
  • the left end in the figure connected to the salient pole 1a is magnetized to the N pole
  • the left permanent magnet 4 is disposed on the salient pole 1a, the lower surface of the permanent magnet 6 facing the N pole is magnetized to the N pole, and the upper surface is magnetized to the S pole.
  • the right permanent magnet 7 is disposed on the salient pole 1c, the lower surface of the permanent magnet 6 facing the S pole is magnetized to the S pole, and the upper surface is magnetized to the N pole.
  • the lower surface of the left permanent magnet 4 and the left end of the permanent magnet 6 are connected by the salient pole 1a which is a part of the electromagnet core 1, and the lower surface of the right permanent magnet 7 and the right end of the permanent magnet 6 are connected to the electromagnet. They are connected by salient poles 1 c that are part of the core 1. Further, the upper surface of the left permanent magnet 4 and the upper surface of the right permanent magnet 7 are connected by a connecting portion 1 b which is a part of the electromagnet core 1.
  • the left end of the permanent magnet 6 magnetized to the N pole is connected to the lower surface of the left permanent magnet 4 of the same pole via the salient pole 1a, and therefore, generated from the left end of the central permanent magnet 6
  • the bias magnetic flux 10 to be configured does not short-circuit in the electromagnet core 1 and constitutes the magnetic path shown in the figure.
  • control magnetic flux 9 generated by the electromagnet composed of the electromagnet coil 2 and the electromagnet core 1 is generated in the same direction as the magnetic flux direction of the bias magnetic flux 10.
  • the control magnetic flux 9 hardly passes through the permanent magnet 6 because the magnetic resistance of the permanent magnet 6 is larger than that of the bypass magnetic path 9A.
  • the left permanent magnet 4 and the right permanent magnet 7 are formed with a smaller width (thickness) in the magnetic path direction of the control magnetic flux 9 than the central permanent magnet 6.
  • the magnetic resistance in the magnetic path direction passing through the permanent magnet 4, the connecting portion 1 b, and the permanent magnet 7 is smaller. Therefore, a bypass magnetic path 9A is constituted by the left permanent magnet 4 and the right permanent magnet 7 connected by the connecting portion 1b, and the control magnetic flux 9 passes through the bypass magnetic path 9A having a smaller magnetic resistance.
  • the control magnetic flux 9 is not weakened by the magnetic resistance of the central permanent magnet 6 and can be superimposed on the bias magnetic flux 10 to obtain a large control magnetic flux for controlling the position of the magnetic levitation object 50.
  • the permanent magnet 6 that generates the bias magnetic flux 10 and the bypass magnetic path 9A that is the magnetic path of the control magnetic flux 9 may be disposed in the electromagnet core 1.
  • the arrangement of the permanent magnet 6 and the bypass magnetic path 9A is not limited to the example shown in FIG. 4.
  • the permanent magnet 6 is placed below the electromagnetic coil 2, that is, the salient pole.
  • the electromagnet coil 2 may be disposed on the bypass magnetic path 9A by moving it to the tip side of 1a, 1c.
  • the magnetic pole of the permanent magnet 6 and the magnetic levitation object 50 can be brought close to each other. Leakage of the bias magnetic flux 10 formed by the magnet 6 can be reduced, and the bias magnetic flux 10 can be efficiently applied to the magnetic levitation object 50.
  • any one of the permanent magnets 4 and 7 is used as another magnet means for magnetizing the bypass magnetic path 9A as shown in FIGS. 2 and 3, for example.
  • the structure provided may be sufficient.
  • FIG. 6 shows a hybrid magnetic bearing 200 for a disk-shaped magnetic levitation rotor in which two magnetic levitation control devices 100 are incorporated.
  • the magnetic levitation object 50 is a disk-shaped magnetic levitation rotor having a central axis in the Z-axis direction.
  • the permanent magnets 4, 6, 7 and magnetic bodies 3, 5, 8 that are rod-shaped in FIG.
  • the disk-shaped magnetic levitation rotor as the magnetic levitation object 50 has an annular arrangement with respect to the axis in the direction in which the movement is controlled, that is, the central axis of the magnetic levitation rotor in this embodiment, and the inside is not Filled with magnetic material 51.
  • FIG. 6 is the same as that of the magnetic levitation control apparatus 100 shown in FIG. 1 even when the magnetic levitation rotor as the magnetic levitation object 50 is rotated.
  • the reference numeral 6 corresponds to the reference numeral 6.
  • two magnetic levitation control devices 100 are used as shown in FIG. 6, and the two electromagnets 20 are arranged so as to face the magnetic levitation rotor as the magnetic levitation object 50 from the axial direction.
  • FIG. 7 shows a cross section of the hybrid magnetic bearing 200 in which the two magnetic levitation control devices 100 shown in FIG. 6 are incorporated.
  • the same reference numeral indicates the same thing, and two sets of magnetic levitation control devices 100 each having an electromagnet 20 composed of an electromagnet core 1 and an electromagnet coil 2 are arranged on the left and right.
  • the permanent magnet 6 has an annular shape and is magnetized in the radial direction (direction perpendicular to the Z axis) (for example, N on the outer peripheral side and S on the inner peripheral side), and in this example, the permanent magnet 6 is annular in the radial direction.
  • the magnetic bodies 3 and 8 are sandwiched.
  • the permanent magnet 4 is also in an annular shape, and in this example, it is magnetized in the vertical direction (Z-axis direction) (for example, the upper side is N and the lower side is S), and the vertical direction (Z-axis direction) is annular.
  • the magnetic bodies 3 and 5 are sandwiched.
  • the permanent magnet 7 is also in an annular shape, and is disposed below the magnetic body 8 in this example, and is sandwiched between the annular magnetic bodies 8 and 5 in the vertical direction (Z-axis direction).
  • the magnetic body 3, the permanent magnet 4, the magnetic body 5, the permanent magnet 7, and the magnetic body 8 are circular in the radial direction of the magnetic levitation object 50 that is a magnetic levitation rotor.
  • An annular bypass magnetic path 9 ⁇ / b> A connecting the magnetic poles of the annular permanent magnet 6 is formed in parallel with the permanent magnet 6.
  • the thickness of the permanent magnet 4 in the radial direction is equal to that of the magnetic body 3, it is not limited thereto.
  • the thickness in the radial direction of the magnetic body 5 is not limited to the thickness obtained by adding the radial thicknesses of the magnetic body 3, the permanent magnet 6, and the magnetic body 8.
  • the shape of the permanent magnet 6, the permanent magnet 4 and the permanent magnet 7 is an annular shape. However, if the permanent magnet 6, the permanent magnet 4 and the permanent magnet 7 are arranged in an annular shape, the shape will be described. Is not limited to an annular shape. For example, a plurality of arc-shaped permanent magnets may be arranged in an annular shape, and a large number of bar magnets may be arranged in an annular shape.
  • the position where the electromagnet coil 2 is wound around the electromagnet core 1 is not different from the example shown in FIG. In FIG. 6, the permanent magnet 7 of FIG. 1 is disposed below the magnetic body 8, but is not visible from the outside.
  • the electromagnet 20 By disposing the electromagnet 20 on one surface of the disk-shaped magnetically levitated object 50 arranged in this manner so that the salient pole 1a faces the magnetic body 3 and the salient pole 1c faces the magnetic body 8 respectively.
  • the magnetically levitated object 50 can be levitated and the position of the magnetically levitated object 50 in the axial direction can be controlled.
  • a motor (not shown) that rotates the magnetic levitation object 50 disposed below the magnetic levitation object 50, that is, on the opposite side of the surface on which the electromagnet 20 is disposed.
  • the attractive force by the stator, the gravity applied to the magnetic levitation object 50, and the like can be considered.
  • the rotation around the Y axis can be easily controlled by the axial position control by the magnetic levitation control device 100.
  • the rotation around the X axis can be easily controlled. Even if there is only one, the rotation around the X axis can be controlled as long as it is displaced from the X axis.
  • the at least three non-contact type position sensors are arranged on the upper surface (or lower surface) of the disk-shaped magnetically levitated object 50.
  • the permanent magnet 6 that is magnetized in the radial direction and arranged in an annular shape, and the annular bypass magnetic path 9A that connects the magnetic poles of the permanent magnet 6 are magnetic levitation targets. Since the electromagnet core 1 of the electromagnet 20 is arranged concentrically and the magnetic flux passing through the electromagnet core 1 of the electromagnet 20 is not changed by the rotation of the disk-shaped magnetic levitation object 50, It is possible to configure the hybrid magnetic bearing 200 with low iron loss such as current loss. In addition, since the bypass magnetic path 9A is also provided corresponding to each of the permanent magnets 6 arranged in an annular shape, the shape does not necessarily need to be an annular shape if arranged in an annular shape.
  • the magnetic levitation object 50 is a disk-shaped magnetic levitation rotor
  • the shape of the magnetically levitated object 50 is not limited to the disk-shaped magnetically levitated rotor, but may be an annular magnetic levitating rotor having a hollow inside, and is used as including such a form.
  • FIG. 8 shows the configuration of a hybrid magnetic bearing 300 for a disk-shaped magnetically levitated rotor as a second embodiment of the present invention.
  • a pair of hybrid magnetic bearings 200 according to the first embodiment shown in FIG. 6 is opposed to the outer peripheral surface of a disk-like magnetic levitation rotor, which is a magnetic levitation object 50, from the radial direction as shown in FIG.
  • a disk-like magnetic levitation rotor which is a magnetic levitation object 50
  • the salient poles of the electromagnet core 31 of the radial electromagnet 30 face the magnetic body 3 and the magnetic body 5 exposed on the outer peripheral surface of the magnetic levitation object 50, respectively.
  • Magnetic flux generated by the magnet 6 and the permanent magnet 4 passes through the electromagnet core 31 of the radial electromagnet 30.
  • the electromagnet coil 32 If an electric current is passed through the electromagnet coil 32 in this state, it is possible to control the strength of the magnetic flux between the electromagnet core 31 and the outer periphery of the annular levitation body 50 that is the magnetic levitation object 50, and the annular levitation body that is the magnetic levitation object 50.
  • the position in the radial direction for example, the position in the X axis direction can also be controlled.
  • Another pair of radial electromagnets 30 for controlling the position in the radial direction are arranged so as to be opposed to the outer periphery of the disk-shaped floating body 50 as the magnetically levitated object 50 so as to be orthogonal to the radial electromagnet 30 in FIG.
  • the radial direction of the magnetically levitated object 50 for example, the position in the Y-axis direction can also be controlled.
  • At least three non-contact position sensors such as an eddy current sensor are provided on the upper surface (or lower surface) of the magnetically levitated object 50 (Z-axis position, two degrees of rotation around the X and Y axes). ), Two (X and Y axis direction positions) are arranged on the outer periphery in the radial direction. Further, with this configuration, it is possible to cope with gravity acting on the magnetic levitation object 50 from various directions depending on the attitude of the hybrid magnetic bearing 300.
  • the magnetic flux flowing through the electromagnet core 31 of the radial electromagnet 30 does not change due to the rotation of the annular floating body, so that the hybrid magnetic bearing 300 with low iron loss such as eddy current loss is obtained. It can be configured.
  • the shape of the magnetically levitated rotor in this embodiment is not limited to a disc shape, and may be an annular shape having a hollow inside, and is used as including such a form.
  • the arrangement of the radial electromagnets 30 in the present embodiment is not limited to the configuration shown in FIG. 8.
  • the radial electromagnet 30 including the electromagnet core 31 and the electromagnet coil 32.
  • the same effect can be obtained by arranging the magnets so as to face each other in the center of the annular ring so that the salient poles of the radial electromagnet 30 face the magnetic bodies 8 and 5.
  • FIG. 9 shows a configuration example of a hybrid magnetic bearing 400 for a columnar magnetic levitation rotor in which two magnetic levitation control devices 100 are incorporated as a third embodiment of the present invention.
  • FIG. 10 shows a cross-sectional view of the hybrid magnetic bearing 400 shown in FIG. In each figure, the same reference numeral indicates the same object, and the electromagnet 20 composed of the electromagnet core 1 and the electromagnet coil 2 is on the left and right, that is, the electromagnet 20 constituting the magnetic levitation controller 100 is a magnetic levitation object 50.
  • FIG. 10 shows a cross-sectional view of a hybrid magnetic bearing 400 that is disposed opposite to the side surface, that is, opposed to the magnetically levitated rotor in the radial direction and includes two electromagnets 30.
  • a permanent magnet 6 represented as a rod is used, and in the third embodiment, a cylindrical magnet as shown in FIG. 9 is used.
  • the permanent magnets 4, 6, 7 and magnetic bodies 3, 5, 8, which are rod-shaped in FIG. 1, are arranged in an annular shape with respect to the central axis of a columnar magnetic levitation rotor that is a magnetic levitation object 50. Is filled with the non-magnetic material 51.
  • the inside is the non-magnetic body 51, but the inside is not required to be a non-magnetic body.
  • the permanent magnet 6 is magnetized in the vertical direction in FIG.
  • the magnetic bodies 3 and 8 are sandwiched.
  • the permanent magnet 4 is also cylindrical, and in this example, it is magnetized in the radial direction (for example, N on the outer peripheral side and S on the inner peripheral side), and is sandwiched between the cylindrical magnetic bodies 3 and 5 in the radial direction. It is rare.
  • the permanent magnet 7 is also cylindrical, and is disposed inside the magnetic body 8 in this example, and is sandwiched between the cylindrical magnetic bodies 8 and 5 in the radial direction. With this configuration, similarly to the example shown in FIG.
  • the magnetic body 3, the permanent magnet 4, the magnetic body 5, the permanent magnet 7, and the magnetic body 8 are cylindrical in the axial direction of the magnetic levitation object 50 that is a magnetic levitation rotor.
  • An annular bypass magnetic path 9 ⁇ / b> A connecting the magnetic poles of the permanent magnet 6 is formed in parallel with the permanent magnet 6.
  • the height of the permanent magnet 4 in the vertical direction is equal to that of the magnetic body 3, it is not limited thereto.
  • the height in the vertical direction of the magnetic body 5 is appropriate to the height of the magnetic body 3, the permanent magnet 6, and the magnetic body 8 in the vertical direction, but is not limited thereto.
  • the place where the electromagnet coil is wound around the core is not different from the example shown in FIG. In this figure, the permanent magnet 7 of FIG. 1 is disposed inside the magnetic body 8 but is not visible from the outside.
  • the electromagnet 20 By disposing the electromagnet 20 on the peripheral surface of the columnar magnetic levitation object 50 arranged in this manner so that the salient pole 1a faces the magnetic body 3 and the salient pole 1c faces the magnetic body 8, respectively. It is possible to generate an attractive force in the radial direction with respect to the magnetically levitated object 50. Therefore, by arranging the pair of electromagnets 20 so as to oppose the Y-axis direction shown in FIG. 9 which is the radial direction (left and right) of the magnetic levitation object 50, the levitation body radial direction Y-axis with respect to the magnetic levitation object 50 A suction force can be generated in a push-pull manner in the direction, and the position in the Y-axis direction can be controlled.
  • an attractive force is also generated in the X-axis direction by arranging another pair of electromagnets 20 for controlling the position in the radial direction at positions orthogonal to the electromagnet 20 in FIG. be able to.
  • the position of the magnetically levitated object 50 can be controlled to any point on the X-axis, Y-axis, and two-dimensional plane by the generated attractive force, and, for example, gravity is applied downward. Even if it is, it is possible to generate a sufficient attractive force, so that the magnetically levitated object 50 can be levitated by sucking it in the radial direction.
  • two non-contact type position sensors such as an eddy current sensor are arranged on the outer periphery of the cylindrical floating body in order to measure the positions in the X and Y axis directions and to perform closed loop control.
  • the magnetic levitation object 50 in the present embodiment is not limited to the columnar magnetic levitation rotor, and may be a hollow cylindrical magnetic levitation rotor.
  • the arrangement of the permanent magnet and the magnetic body in this embodiment is not limited to the configuration shown in FIG.
  • the magnetic bodies 3 and 8 and the permanent magnet 6 may be disposed on the inner peripheral surface side of the cylinder on the outer peripheral surface side.
  • the electromagnet 20 composed of the electromagnet core 1 and the electromagnet coil 2 is disposed in the center of the cylinder so as to face each other, and the salient poles (portions protruding in the convex shape of the electromagnet core 1) are the magnetic bodies 3 and 8. The same effect can be obtained even if they are arranged so as to face each other.
  • FIG. 11 shows a configuration example of a hybrid magnetic bearing 500 for a columnar magnetic levitation rotor as a fourth embodiment of the present invention.
  • the same reference numerals as those in the drawings indicate the same thing, and the electromagnet 20 composed of the electromagnet core 1 and the electromagnet coil 2 is arranged on the left and right, that is, the two electromagnets 20 are opposed to the magnetically levitated rotor in the radial direction.
  • the electromagnet 20 composed of the electromagnet core 1 and the electromagnet coil 2 is arranged on the left and right, that is, the two electromagnets 20 are opposed to the magnetically levitated rotor in the radial direction.
  • a pair of axial directions are made to face the upper surface of a columnar magnetic levitation rotor as the magnetic levitation object 50 as shown in FIG.
  • the electromagnet 40 is arranged, and the salient poles of the electromagnet core 41 of the axial electromagnet 40 are arranged to face the magnetic body 3 and the magnetic body 5 exposed on the upper surface of the magnetic levitation object 50, so that the permanent magnet 6, etc.
  • Two magnetic fluxes generated by the permanent magnet 4 as the magnet means are superimposed and pass through the electromagnet core 1.
  • the electromagnet coil 42 If a current is passed through the electromagnet coil 42 in this state, it is possible to control the strength of the magnetic flux in the gap between the electromagnet core 41 and the upper surface of the columnar floating body 50 that is the magnetic levitation object 50, and the axial direction of the cylinder that is the magnetic levitation object 50.
  • the position in the Z-axis direction and the rotation around the Y-axis, for example, orthogonal to the Z-axis direction can also be controlled.
  • the other pair of axial electromagnets 40 are arranged so as to be opposed to the upper surface of the columnar floating body that is the magnetically levitated object 50 so as to be orthogonal to the axial electromagnet 40 in FIG.
  • the measurement of the three directions in the X, Y, and Z axes and the degree of two rotations around the X and Y axes is performed.
  • at least three non-contact position sensors such as an eddy current sensor are provided on the upper surface (or lower surface) of the magnetically levitated object 50 (Z-axis position, two degrees of rotation around the X and Y axes).
  • Two X and Y axis direction positions
  • the hybrid magnetic bearing 500 configured in this way constitutes the hybrid magnetic bearing 500 with low iron loss such as eddy current loss because the magnetic flux flowing through the electromagnet core 41 of the electromagnet 20 does not change due to the rotation of the columnar floating body. It becomes possible.
  • the magnetically levitated object 50 in the present embodiment is not limited to a columnar magnetic levitation rotor, and may be a hollow cylindrical magnetic levitation rotor.
  • the arrangement of the permanent magnet and the magnetic body in this embodiment is not limited to the configuration shown in FIG. 11.
  • the magnetic body 5 is located on the outer peripheral surface side of the cylinder.
  • the magnetic bodies 3 and 8 and the permanent magnet 6 may be arranged on the inner peripheral surface side of the cylinder.
  • the electromagnet 20 composed of the electromagnet core 1 and the electromagnet coil 2 is disposed in the center of the cylinder so as to face each other, and the salient poles (portions protruding in the convex shape of the electromagnet core 1) are the magnetic bodies 3 and 8. The same effect can be obtained even if they are arranged so as to face each other.
  • the magnetic equivalent circuit as seen from the electromagnet 20 shown in FIG. 12 shows the relationship between the magnetic resistance of the permanent magnet 4 and the magnetic resistance of the permanent magnets 6 and 7 in the bypass magnetic path 9A in the magnetic levitation control apparatus shown in FIG. To consider.
  • FIG. 12 the magnetic equivalent circuit as seen from the electromagnet 20 shown in FIG. 12 shows the relationship between the magnetic resistance of the permanent magnet 4 and the magnetic resistance of the permanent magnets 6 and 7 in the bypass magnetic path 9A in the magnetic levitation control apparatus shown in FIG. To consider.
  • Fem is the magnetomotive force of the electromagnet
  • ⁇ em-g is the magnetic flux in the in-circuit air gap (the air gap between the salient poles 1a and 1c and the magnetic levitation object 50)
  • ⁇ em-1 is Magnetic flux passing through the permanent magnet 6
  • ⁇ em-2 is magnetic flux passing through the permanent magnets 4 and 7
  • Rg is magnetic resistance of the air gap in the circuit
  • R1 is magnetic resistance of the permanent magnet 6
  • R2 is permanent magnets 4, 7 The magnetic resistance of each is shown.
  • R2 kR1.
  • Rc 2Rg + R1 ⁇ 2k / (2k + 1)
  • the combined resistance Rc of the entire circuit is 2k / (2k + 1)
  • the value is always larger than “0”, and as a result, the combined resistance Rc of the entire circuit is reduced.
  • the smaller the value of k that is, the smaller the magnetic resistance R2 of the permanent magnets 4 and 7 compared to the magnetic resistance R1 of the permanent magnet 6, It can be seen that the magnetic resistance Rc decreases. However, if the magnetic resistance R2 of the permanent magnets 4 and 7 becomes too small compared to the magnetic resistance R1 of the permanent magnet 6, the magnetic flux generated by the electromagnet 20 and the generated attractive force increase, but the magnetic flux of the permanent magnet 6 is bypassed by the bypass magnetic path. It is assumed that the bias magnetic flux decreases due to leakage to 9A.
  • a finite element method is used as a parameter for changing the thickness I of the permanent magnets 4 and 7 of the bypass magnetic path 9A.
  • the generated suction force (N) and the force coefficient (N / A: suction force generated per unit current) were examined.
  • the shape and dimensions used for the study are as shown in FIG.
  • the analysis conditions are about 240,000 meshes (233,326), neodymium magnets as the permanent magnets 4, 6, 7 (coercive force: 962 kA / m, residual magnetic flux density: 1.43 T, relative permeability: 1).
  • SUY-1 JIS standard
  • the exciting current of the electromagnet 20 is set to ⁇ 1A, 0A, and 1A
  • the thickness I of the permanent magnets 4 and 7 of the bypass magnetic path 9A is 0.1 mm, 0.3 mm, 0.5 mm, 0.7 mm, 1 Numerical analysis was performed by varying the thickness to 0.0 mm, 1.3 mm, 1.5 mm, 2.0 mm, 3.0 mm, and 4.0 mm.
  • the magnetic resistance is simply inversely proportional to the cross-sectional area of the permanent magnet and simply proportional to the thickness
  • the thickness I of the permanent magnets 4 and 7 is 0.1 mm (the magnetic resistance 2R2 of the bypass magnetic path 9A).
  • FIG. 15 is a graph showing the relationship between the exciting current of the electromagnet 20 and the magnetic attractive force when the thickness I of the permanent magnets 4 and 7 of the bypass magnetic path 9A is varied as a parameter.
  • the graph shown in FIG. 15 is rewritten with the thickness I of the permanent magnets 4 and 7 of the bypass magnetic path 9A.
  • the thickness I of the permanent magnets 4 and 7 is 0 mm, it is the result of having analyzed only by the permanent magnet 6 which removed the bypass magnetic path 9A.
  • FIG. 17 is a graph showing the influence of the thickness I of the permanent magnets 4 and 7 of the bypass magnetic path 9A on the slope of the graph of FIG. 15 (force coefficient (N / A): representing a force that can be generated per unit current).
  • FIG. 18 is a graph showing the relationship between the acceleration coefficient (N / (A ⁇ kg)) obtained by dividing the force coefficient by the mass of the magnetically levitated object 50 and the thickness I of the permanent magnets 4 and 7 of the bypass magnetic path 9A. .
  • the greater the acceleration coefficient the better the controllability (dynamic characteristics) when magnetically levitating object 50 such as “withstand high acceleration” and “movable at high speed”.
  • the acceleration coefficient (N / (A ⁇ kg)) is smaller than that in the case of only the permanent magnet 6 from which is removed.
  • the magnetic attractive force is increased by increasing the thickness I of the permanent magnets 4 and 7, and asymptotically approaches 100N in this example.
  • This asymptotic effect is considered to be due to the magnetoresistance lowering effect by providing the bypass magnetic path 9A.
  • this is considered to be caused by an increase in the bias magnetic flux by the secondary permanent magnet rather than the magnetoresistance lowering effect.
  • the force coefficient increases, and in this example is asymptotic to 14 N / A.
  • This asymptotic effect is also considered to be due to the magnetoresistance lowering effect by providing the bypass magnetic path 9A.
  • the acceleration coefficient is maximum when the thickness I of the permanent magnets 4 and 7 is 2 mm. It is a value.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

A bias magnetic flux (10) is formed in such a way as to pass through an electromagnetic core (1) of an electromagnet (20), and furthermore, a bypass magnetic path (9A) constituting a magnetic path for a control magnetic flux (9) is formed in parallel with a permanent magnet (6), with the result that a bypass magnetic path (9A) is magnetized in such a direction as to prevent the passage of the bias magnetic flux (10). Due to this arrangement, even if the permanent magnet (6) and the electromagnet (20) are installed in positions where the magnetic flux of the permanent magnet (6) and that of the electromagnet (20) are mutually superimposed on each other, still the control magnetic flux (9) formed by the electromagnet (20) passes through the bypass magnetic path (9A), thereby permitting the loss of the control magnetic flux (9) to be curbed. By virtue of the above, it is possible to install the permanent magnet (6) and the electromagnet (20) in positions where the magnetic flux of the permanent magnet (6) and that of the electromagnet (20) are mutually superimposed on each other, leading to miniaturization of the pertinent device.

Description

磁気浮上制御装置およびハイブリッド型磁気軸受けMagnetic levitation control device and hybrid magnetic bearing
 本発明は、永久磁石と電磁石を併用して浮上対象物の位置を制御する磁気浮上制御装置およびハイブリッド型磁気軸受けに関する。 The present invention relates to a magnetic levitation control device and a hybrid magnetic bearing for controlling the position of a levitation object using a permanent magnet and an electromagnet together.
 従来の永久磁石と電磁石を併用するハイブリッド型磁気軸受けとしては、複数の電磁石と永久磁石の磁気力を制御することにより非接触状態で支持され回転するロータを有するハイブリッド型磁気軸受け(特許文献1)や、人工心臓用の磁気軸受け(特許文献2)が知られており、電磁石により生ずる電磁石磁束に永久磁石により生ずるバイアス磁束を重畳することにより、磁気軸受けの制御に必要な磁束を得ようとする技術は上記により知られている。 As a conventional hybrid magnetic bearing using both a permanent magnet and an electromagnet, a hybrid magnetic bearing having a rotor that is supported and rotated in a non-contact state by controlling the magnetic force of a plurality of electromagnets and permanent magnets (Patent Document 1). In addition, a magnetic bearing for an artificial heart (Patent Document 2) is known, and an attempt is made to obtain a magnetic flux necessary for controlling the magnetic bearing by superimposing a bias magnetic flux generated by a permanent magnet on an electromagnet magnetic flux generated by an electromagnet. The technique is known from the above.
特開2007-120635号公報JP 2007-120635 A 特開2005-121157号公報JP 2005-121157 A
 しかしながら、特許文献1に記載のハイブリッド型磁気軸受けにおいては、電磁石により生ずる電磁石磁束と、永久磁石により生ずるバイアス磁束とから磁路が3次元的に構成されているため、各々の磁束のもれ損失が大きく、効率を高めることが出来ないという問題点がある。また、構造が複雑であり、製作が困難であるという問題点がある。 However, in the hybrid magnetic bearing described in Patent Document 1, the magnetic path is three-dimensionally configured from the electromagnet magnetic flux generated by the electromagnet and the bias magnetic flux generated by the permanent magnet. However, there is a problem that the efficiency cannot be increased. In addition, there is a problem that the structure is complicated and the manufacture is difficult.
 磁束のもれ損失を少なくし、またハイブリッド型磁気軸受けの製作を容易とするための解決手段として、磁路を2次元的に構成することが考えられる。しかし、磁路を2次元的に構成した場合、特許文献2に記載の磁気軸受けのように、電磁石によって形成する磁束と永久磁石により生ずるバイアス磁束が共に同一の永久磁石を通る磁路を形成することとなり、電磁石によって形成する磁束が永久磁石の大きい磁気抵抗により弱められ、磁気軸受けの移動制御に必要な大きな磁束を得ることが困難となる。 As a solution for reducing the leakage loss of magnetic flux and facilitating the production of a hybrid magnetic bearing, it is conceivable to construct the magnetic path two-dimensionally. However, when the magnetic path is configured two-dimensionally, like the magnetic bearing described in Patent Document 2, the magnetic flux formed by the electromagnet and the bias magnetic flux generated by the permanent magnet both form a magnetic path that passes through the same permanent magnet. As a result, the magnetic flux formed by the electromagnet is weakened by the large magnetic resistance of the permanent magnet, making it difficult to obtain a large magnetic flux necessary for controlling the movement of the magnetic bearing.
 本発明は、かかる点に鑑みて、永久磁石と電磁石とを互いの磁束が重畳する位置に配置しても、電磁石によって形成される制御磁束について、バイアス磁束を発生させるための永久磁石の磁気抵抗の影響を減少させることにより、電磁石により形成される制御磁束の損失を抑制し、磁気浮上対象物の位置制御を行うための大きな磁束を得ることの出来る磁気浮上制御装置およびハイブリッド型磁気軸受けを提供することを目的とする。 In view of this point, the present invention provides a magnetic resistance of a permanent magnet for generating a bias magnetic flux with respect to a control magnetic flux formed by the electromagnet even if the permanent magnet and the electromagnet are arranged at positions where the magnetic fluxes are superimposed on each other. Provides a magnetic levitation control device and a hybrid magnetic bearing that can suppress the loss of control magnetic flux formed by the electromagnet and reduce the influence of the magnetic field, and can obtain a large magnetic flux for controlling the position of the magnetic levitation object. The purpose is to do.
 本発明は、バイアス用永久磁石によって形成されるバイアス磁束と、電磁石によって形成される制御磁束とによって前記電磁石に対する磁気浮上対象物の位置を制御する磁気浮上制御装置であって、前記バイアス磁束が前記電磁石の電磁石コアを通るように形成されると共に、前記制御磁束の磁路となるバイパス磁路が、前記バイアス用永久磁石と並列に形成されており、該バイパス磁路が前記バイアス磁束の通過を阻止する方向に磁化されていることを特徴とする。
 さらに、本発明の磁気浮上制御装置は、前記バイパス磁路が永久磁石と磁性体とで構成され、前記バイパス磁路の永久磁石によって形成される磁束が前記バイアス磁束として機能することを特徴とする。
 さらに、本発明の磁気浮上制御装置は、前記バイアス用永久磁石および前記バイパス磁路が前記磁気浮上対象物に設けられていることを特徴とする。
 さらに、本発明の磁気浮上制御装置は、前記電磁石を磁極となる2つの突極が前記磁気浮上対象物に対向するように配置させ、前記バイアス用永久磁石を磁極が前記磁気浮上対象物の前記電磁石との対向面と平行になるように配置させ、前記バイパス磁路の永久磁石を磁極が前記磁気浮上対象物の前記電磁石との対向面と垂直になるように配置させることを特徴とする。
 さらに、本発明の磁気浮上制御装置は、前記バイパス磁路の永久磁石として、2つの永久磁石が前記電磁石の2つの突極に対向してそれぞれ設けられ、2つの永久磁石の磁力は、前記電磁石の2つの突極と前記磁気浮上対象物とのそれぞれ間隙の磁束密度が同一になるように設定されていることを特徴とする。
 さらに、本発明の磁気浮上制御装置は、前記バイアス用永久磁石および前記バイパス磁路が前記電磁石に設けられていることを特徴とする。
 また、本発明は、バイアス用永久磁石によって形成されるバイアス磁束と、電磁石によって形成される制御磁束とによって前記電磁石に対する磁気浮上ロータの位置を制御するハイブリッド型磁気軸受けであって、前記バイアス磁束が前記電磁石の電磁石コアを通るように形成されると共に、前記制御磁束の磁路となるバイパス磁路が、前記バイアス用永久磁石と並列に形成されており、該バイパス磁路が前記バイアス磁束の通過を阻止する方向に磁化されていることを特徴とする。
 さらに、本発明のハイブリッド型磁気軸受けは、前記バイパス磁路が永久磁石と磁性体とで構成され、前記バイパスの永久磁石によって形成される磁束が前記バイアス磁束として機能することを特徴とする。
 さらに、本発明のハイブリッド型磁気軸受けは、径方向に着磁されて円環状に配置されている前記バイアス用永久磁石と、当該バイアス用永久磁石の各磁極を接続する前記バイパス磁路とが前記磁気浮上ロータに設けられ、前記電磁石は、磁極となる2つの突極が前記磁気浮上ロータに軸方向から対向するように配置され、前記電磁石によって前記磁気浮上ロータの軸方向の位置を制御させることを特徴とする。
 さらに、本発明のハイブリッド磁気軸受けは、前記バイパス磁路の永久磁石として、前記磁気浮上ロータの軸方向に着磁されて円環状に配置されている永久磁石が設けられていることを特徴とする。
 さらに、本発明のハイブリッド磁気軸受けは、前記バイパス磁路の永久磁石として、2つの永久磁石が前記電磁石の2つの突極に対向してそれぞれ設けられ、2つの永久磁石の磁力は、前記電磁石の2つの突極と前記磁気浮上対象物とのそれぞれ間隙の磁束密度が同一になるように設定されていることを特徴とする。
 さらに、本発明のハイブリッド磁気軸受けは、前記バイアス用永久磁石および前記バイパス磁路が前記電磁石に設けられていることを特徴とする。
 さらに、本発明のハイブリッド型磁気軸受けは、軸方向に着磁された円筒状の前記バイアス用永久磁石と、当該バイアス用永久磁石の各磁極を接続する前記バイパス磁路とが前記磁気浮上ロータに設けられ、前記電磁石は、磁極となる2つの突極が前記磁気浮上ロータに径方向から対向するように配置され、前記電磁石によって前記磁気浮上ロータの径方向の位置を制御させることを特徴とする。
The present invention is a magnetic levitation control device for controlling the position of a magnetic levitation object with respect to the electromagnet by a bias magnetic flux formed by a biasing permanent magnet and a control magnetic flux formed by an electromagnet, wherein the bias magnetic flux is A bypass magnetic path that is formed so as to pass through the electromagnet core of the electromagnet and that is a magnetic path of the control magnetic flux is formed in parallel with the permanent magnet for bias, and the bypass magnetic path allows passage of the bias magnetic flux. It is magnetized in the blocking direction.
Furthermore, in the magnetic levitation control device of the present invention, the bypass magnetic path is composed of a permanent magnet and a magnetic body, and a magnetic flux formed by the permanent magnet of the bypass magnetic path functions as the bias magnetic flux. .
Furthermore, the magnetic levitation control apparatus of the present invention is characterized in that the permanent magnet for bias and the bypass magnetic path are provided in the magnetic levitation object.
Furthermore, the magnetic levitation control apparatus of the present invention is arranged such that the electromagnet is arranged so that two salient poles serving as magnetic poles face the magnetic levitation object, and the permanent magnet for bias is disposed on the magnetic levitation object. It is arranged to be parallel to the surface facing the electromagnet, and the permanent magnet of the bypass magnetic path is disposed so that the magnetic pole is perpendicular to the surface facing the electromagnet of the magnetic levitation object.
Furthermore, in the magnetic levitation control device of the present invention, two permanent magnets are provided as opposed to the two salient poles of the electromagnet as permanent magnets of the bypass magnetic path, and the magnetic force of the two permanent magnets is the electromagnet. The magnetic flux density in each gap between the two salient poles and the magnetically levitated object is set to be the same.
Furthermore, the magnetic levitation control device of the present invention is characterized in that the permanent magnet for bias and the bypass magnetic path are provided in the electromagnet.
The present invention also provides a hybrid magnetic bearing that controls the position of a magnetic levitation rotor with respect to the electromagnet using a bias magnetic flux formed by a permanent magnet for biasing and a control magnetic flux formed by an electromagnet. A bypass magnetic path that is formed so as to pass through the electromagnet core of the electromagnet and that is a magnetic path of the control magnetic flux is formed in parallel with the permanent magnet for bias, and the bypass magnetic path passes through the bias magnetic flux. It is magnetized in the direction to prevent
Furthermore, the hybrid magnetic bearing of the present invention is characterized in that the bypass magnetic path includes a permanent magnet and a magnetic body, and a magnetic flux formed by the permanent magnet of the bypass functions as the bias magnetic flux.
Furthermore, the hybrid magnetic bearing of the present invention includes the biasing permanent magnet that is magnetized in a radial direction and arranged in an annular shape, and the bypass magnetic path that connects the magnetic poles of the biasing permanent magnet. Provided in a magnetically levitated rotor, the electromagnet is disposed such that two salient poles serving as magnetic poles are opposed to the magnetically levitated rotor from the axial direction, and the electromagnet controls the axial position of the magnetically levitated rotor. It is characterized by.
Furthermore, the hybrid magnetic bearing of the present invention is characterized in that a permanent magnet magnetized in the axial direction of the magnetically levitated rotor and arranged in an annular shape is provided as a permanent magnet of the bypass magnetic path. .
Furthermore, in the hybrid magnetic bearing of the present invention, two permanent magnets are provided as opposed to the two salient poles of the electromagnet as permanent magnets of the bypass magnetic path, and the magnetic force of the two permanent magnets is the same as that of the electromagnet. The magnetic flux density in each gap between the two salient poles and the magnetically levitated object is set to be the same.
Furthermore, the hybrid magnetic bearing of the present invention is characterized in that the permanent magnet for bias and the bypass magnetic path are provided in the electromagnet.
Furthermore, in the hybrid magnetic bearing of the present invention, the cylindrical permanent magnet for bias magnetized in the axial direction and the bypass magnetic path connecting the magnetic poles of the permanent magnet for bias are connected to the magnetically levitated rotor. The electromagnet is disposed such that two salient poles serving as magnetic poles are opposed to the magnetic levitation rotor in a radial direction, and the radial position of the magnetic levitation rotor is controlled by the electromagnet. .
 本発明の磁気浮上制御装置は、上述のように、バイアス磁束が電磁石の電磁石コアを通るように形成されると共に、制御磁束の磁路となるバイパス磁路が、バイアス用永久磁石と並列に形成されており、該バイパス磁路がバイアス磁束の通過を阻止する方向に磁化されているように構成することにより、バイアス用永久磁石と電磁石との互いの磁束が重畳する位置に配置しても、電磁石によって形成される制御磁束がバイパス磁路を通ることになるため、バイアス磁束を発生させるためのバイアス用永久磁石の磁気抵抗の影響を減少させ、電磁石により形成される制御磁束の損失を抑制し、磁気浮上対象物の位置制御を行うための大きな磁束を得ることができる。これにより、バイアス用永久磁石と電磁石とを互いの磁束が重畳する位置に配置することができ、装置を小型化することができる。
 さらに、本発明の磁気浮上制御装置は、バイパス磁路を永久磁石と磁性体とで構成することにより、バイパス磁路の永久磁石によって形成される磁束をバイアス磁束として機能させることができ、磁気吸引力を効率よく向上させることができる。
 さらに、本発明の磁気浮上制御装置は、バイアス用永久磁石およびバイパス磁路を磁気浮上対象物に設けることにより、制御磁束を形成する電磁石の構成を簡略化することができ、電磁石のメンテナンスを容易に行うことができる。
 さらに、本発明の磁気浮上制御装置は、電磁石を磁極となる2つの突極が磁気浮上対象物に対向するように配置させ、バイアス用永久磁石を磁極が磁気浮上対象物の電磁石との対向面と平行になるように配置させ、バイパス磁路の永久磁石を磁極が磁気浮上対象物の電磁石との対向面と垂直になるように配置させることにより、バイパス磁路の永久磁石の断面積を確保しやすいため、バイパス磁路の磁気抵抗を効率よく減少させることができ、バイアス用永久磁石を含めた全体の磁気抵抗を減少させることができる。
 さらに、本発明の磁気浮上制御装置は、バイパス磁路の永久磁石として、2つの永久磁石が電磁石の2つの突極に対向してそれぞれ設けられ、2つの永久磁石の磁力は、電磁石の2つの突極と磁気浮上対象物とのそれぞれ間隙の磁束密度が同一になるように設定されるように構成することにより、電磁石の2つの突極において、均等な条件で磁気吸引力を作用させることができる。
 さらに、本発明の磁気浮上制御装置は、バイアス用永久磁石およびバイパス磁路を電磁石に設けることにより、磁気浮上対象物の構成を簡略化して軽量化することができるため、浮上制御を容易に行うことができる。
 また、本発明のハイブリッド型磁気軸受けは、バイアス磁束が電磁石の電磁石コアを通るように形成されると共に、制御磁束の磁路となるバイパス磁路が、バイアス用永久磁石と並列に形成されており、該バイパス磁路がバイアス磁束の通過を阻止する方向に磁化されているように構成することにより、バイアス用永久磁石と電磁石との互いの磁束が重畳する位置に配置しても、電磁石によって形成される制御磁束がバイパス磁路を通ることになるため、バイアス磁束を発生させるためのバイアス用永久磁石の磁気抵抗の影響を減少させ、電磁石により形成される制御磁束の損失を抑制し、磁気浮上対象物の位置制御を行うための大きな磁束を得ることができる。これにより、バイアス用永久磁石と電磁石とを互いの磁束が重畳する位置に配置することができ、装置を小型化することができる。
 さらに、本発明のハイブリッド型磁気軸受けは、バイパス磁路を永久磁石と磁性体とで構成することにより、バイパス磁路の永久磁石によって形成される磁束をバイアス磁束として機能させることができ、磁気吸引力を効率よく向上させることができる。
 さらに、本発明のハイブリッド型磁気軸受けは、径方向に着磁されて円環状に配置されているバイアス用永久磁石と、当該バイアス用永久磁石の各磁極を接続するバイパス磁路とが磁気浮上ロータに設けられ、電磁石は、磁極となる2つの突極が磁気浮上ロータに軸方向から対向するように配置され、電磁石によって磁気浮上ロータの軸方向の位置を制御させるように構成することにより、電磁石の電磁石コアを通過する磁束が磁気浮上ロータの回転により変化しないので、渦電流損等鉄損を低くすることができると共に、磁気浮上ロータの径方向に電磁石を配置する必要がないため、スリムな装置を実現することができる。
 さらに、本発明のハイブリッド型磁気軸受けは、バイパス磁路の永久磁石として、磁気浮上ロータの軸方向に着磁されて円環状に配置されている永久磁石を設けることにより、バイパス磁路の永久磁石の断面積を確保しやすいため、バイパス磁路の磁気抵抗を効率よく減少させることができ、バイアス用永久磁石を含めた全体の磁気抵抗を減少させることができる。
 さらに、本発明のハイブリッド型磁気軸受けは、バイパス磁路の永久磁石として、2つの永久磁石が電磁石の2つの突極に対向してそれぞれ設けられ、2つの永久磁石の磁力は、電磁石の2つの突極と磁気浮上対象物とのそれぞれ間隙の磁束密度が同一になるように設定されるように構成することにより、電磁石の2つの突極において、均等な条件で磁気吸引力を作用させることができる。
 さらに、本発明のハイブリッド型磁気軸受けは、バイアス用永久磁石およびバイパス磁路を電磁石に設けることにより、磁気浮上ロータの構成を簡略化して軽量化することができるため、浮上制御を容易に行うことができる。
 さらに、本発明のハイブリッド型磁気軸受けは、軸方向に着磁された円筒状のバイアス用永久磁石と、当該バイアス用永久磁石の各磁極を接続するバイパス磁路とが磁気浮上ロータに設けられ、電磁石は、磁極となる2つの突極が磁気浮上ロータに径方向から対向するように配置され、電磁石によって磁気浮上ロータの径方向の位置を制御させるように構成することにより、電磁石の電磁石コアを通過する磁束が磁気浮上ロータの回転により変化しないので、渦電流損等鉄損を低くすることができると共に、磁気浮上ロータの軸方向に電磁石を配置する必要がないため、装置を薄く構成することができる。
As described above, the magnetic levitation control device of the present invention is formed so that the bias magnetic flux passes through the electromagnet core of the electromagnet, and the bypass magnetic path serving as the magnetic path of the control magnetic flux is formed in parallel with the permanent magnet for bias. By configuring the bypass magnetic path to be magnetized in a direction that prevents the passage of the bias magnetic flux, even if it is arranged at a position where the magnetic fluxes of the permanent magnet for bias and the electromagnet overlap each other, Since the control magnetic flux formed by the electromagnet passes through the bypass magnetic path, the influence of the magnetic resistance of the permanent magnet for bias for generating the bias magnetic flux is reduced, and the loss of the control magnetic flux formed by the electromagnet is suppressed. A large magnetic flux for controlling the position of the magnetically levitated object can be obtained. Thereby, the permanent magnet for bias and the electromagnet can be arranged at the position where the magnetic fluxes are superimposed on each other, and the apparatus can be miniaturized.
Furthermore, the magnetic levitation control device of the present invention can function the magnetic flux formed by the permanent magnet of the bypass magnetic path as a bias magnetic flux by configuring the bypass magnetic path with a permanent magnet and a magnetic body. Power can be improved efficiently.
Furthermore, the magnetic levitation control device of the present invention can simplify the configuration of the electromagnet that forms the control magnetic flux by providing a permanent magnet for bias and a bypass magnetic path to the magnetic levitation object, and facilitates maintenance of the electromagnet. Can be done.
Furthermore, in the magnetic levitation control device of the present invention, the electromagnet is disposed so that the two salient poles serving as magnetic poles face the magnetic levitation object, and the bias permanent magnet is opposed to the electromagnet of the magnetic levitation object. The cross-sectional area of the permanent magnet of the bypass magnetic path is secured by arranging the permanent magnet of the bypass magnetic path so that the magnetic pole is perpendicular to the surface facing the electromagnet of the magnetically levitated object. Therefore, the magnetic resistance of the bypass magnetic path can be reduced efficiently, and the overall magnetic resistance including the biasing permanent magnet can be reduced.
Furthermore, in the magnetic levitation control device of the present invention, two permanent magnets are provided as opposed to the two salient poles of the electromagnet as permanent magnets of the bypass magnetic path, and the magnetic forces of the two permanent magnets are the two magnets of the electromagnet. By configuring so that the magnetic flux densities in the gaps between the salient pole and the magnetically levitated object are the same, the magnetic attractive force can be applied to the two salient poles of the electromagnet under equal conditions. it can.
Furthermore, the magnetic levitation control device according to the present invention can simplify the configuration of the magnetic levitation object by providing the biasing permanent magnet and the bypass magnetic path in the electromagnet, thereby easily performing the levitation control. be able to.
The hybrid magnetic bearing of the present invention is formed so that the bias magnetic flux passes through the electromagnet core of the electromagnet, and the bypass magnetic path serving as the magnetic path of the control magnetic flux is formed in parallel with the permanent magnet for bias. By configuring the bypass magnetic path to be magnetized in a direction that prevents the passage of the bias magnetic flux, the bypass magnetic path is formed by the electromagnet even if the magnetic flux of the permanent magnet for bias and the electromagnet are arranged at a position where they overlap each other. Control flux that passes through the bypass magnetic path reduces the influence of the magnetic resistance of the permanent magnet for bias for generating the bias magnetic flux, suppresses the loss of control magnetic flux formed by the electromagnet, and A large magnetic flux for controlling the position of the object can be obtained. Thereby, the permanent magnet for bias and the electromagnet can be arranged at the position where the magnetic fluxes are superimposed on each other, and the apparatus can be miniaturized.
Furthermore, the hybrid magnetic bearing of the present invention can function as magnetic flux formed by the permanent magnet of the bypass magnetic path as a bias magnetic flux by configuring the bypass magnetic path with a permanent magnet and a magnetic body. Power can be improved efficiently.
Furthermore, the hybrid magnetic bearing according to the present invention has a magnetically levitated rotor including a biasing permanent magnet that is magnetized in a radial direction and arranged in an annular shape, and a bypass magnetic path that connects each magnetic pole of the biasing permanent magnet. The electromagnet is arranged so that two salient poles serving as magnetic poles are opposed to the magnetic levitation rotor from the axial direction, and the electromagnet is configured to control the axial position of the magnetic levitation rotor by the electromagnet. Since the magnetic flux passing through the electromagnetic core does not change due to the rotation of the magnetic levitation rotor, iron loss such as eddy current loss can be reduced, and it is not necessary to arrange an electromagnet in the radial direction of the magnetic levitation rotor, so it is slim An apparatus can be realized.
Furthermore, the hybrid magnetic bearing of the present invention is provided with a permanent magnet that is magnetized in the axial direction of the magnetically levitated rotor and arranged in an annular shape as a permanent magnet of the bypass magnetic path. Therefore, the magnetic resistance of the bypass magnetic path can be efficiently reduced, and the overall magnetic resistance including the biasing permanent magnet can be reduced.
Furthermore, in the hybrid magnetic bearing of the present invention, two permanent magnets are provided as opposed to the two salient poles of the electromagnet as permanent magnets of the bypass magnetic path, and the magnetic forces of the two permanent magnets are By configuring so that the magnetic flux densities in the gaps between the salient pole and the magnetically levitated object are the same, the magnetic attractive force can be applied to the two salient poles of the electromagnet under equal conditions. it can.
Furthermore, the hybrid magnetic bearing according to the present invention can simplify the structure of the magnetic levitation rotor by providing a permanent magnet for bias and a bypass magnetic path in the electromagnet, thereby making it possible to easily perform levitation control. Can do.
Furthermore, the hybrid magnetic bearing of the present invention is provided with a magnetically levitated rotor including a cylindrical biasing permanent magnet magnetized in the axial direction and bypass magnetic paths connecting the magnetic poles of the biasing permanent magnet. The electromagnet is arranged so that two salient poles serving as magnetic poles are opposed to the magnetic levitation rotor from the radial direction, and the electromagnet core of the electromagnet is configured by controlling the radial position of the magnetic levitation rotor by the electromagnet. Since the passing magnetic flux does not change due to the rotation of the magnetic levitation rotor, iron loss such as eddy current loss can be reduced, and it is not necessary to arrange an electromagnet in the axial direction of the magnetic levitation rotor, so the apparatus must be made thin. Can do.
本発明の実施の形態に係る磁気浮上制御装置の基本的な構成を示す断面図である。It is sectional drawing which shows the basic composition of the magnetic levitation control apparatus which concerns on embodiment of this invention. 本発明の実施の形態の変形例の構成を示す図である。It is a figure which shows the structure of the modification of embodiment of this invention. 本発明の実施の形態の更なる変形例を示す図である。It is a figure which shows the further modification of embodiment of this invention. 本発明の実施の形態の更なる変形例を示す図である。It is a figure which shows the further modification of embodiment of this invention. 図4に示す本発明の実施の形態の応用例を示す図である。It is a figure which shows the application example of embodiment of this invention shown in FIG. 本発明の第1の実施例に係るハイブリッド型磁気軸受けの構成を示す図である。It is a figure which shows the structure of the hybrid type magnetic bearing which concerns on 1st Example of this invention. 図6に示す第1の実施例に係るハイブリッド型磁気軸受けの断面を示す図である。It is a figure which shows the cross section of the hybrid type magnetic bearing which concerns on 1st Example shown in FIG. 本発明の第2の実施例に係るハイブリッド型磁気軸受けの構成を示す図である。It is a figure which shows the structure of the hybrid type magnetic bearing which concerns on the 2nd Example of this invention. 本発明の第3の実施例に係るハイブリッド型磁気軸受けの構成を示す図である。It is a figure which shows the structure of the hybrid type magnetic bearing which concerns on the 3rd Example of this invention. 図9に示す第3の実施例の断面を示す図である。It is a figure which shows the cross section of the 3rd Example shown in FIG. 本発明の第4の実施例に係るハイブリッド型磁気軸受けの構成を示す図である。It is a figure which shows the structure of the hybrid type magnetic bearing which concerns on the 4th Example of this invention. 図1に示す磁気浮上制御装置の電磁石から見た磁気等価回路図である。It is the magnetic equivalent circuit diagram seen from the electromagnet of the magnetic levitation control apparatus shown in FIG. 図6に示すように電磁石を複数配置したハイブリッド型磁気軸受けにおいて電磁石から見た磁気等価回路図である。FIG. 7 is a magnetic equivalent circuit diagram seen from an electromagnet in a hybrid magnetic bearing in which a plurality of electromagnets are arranged as shown in FIG. 6. バイパス磁路の永久磁石の厚さをパラメータとした有限要素法による数値解析に用いた磁気浮上制御装置の形状および寸法を示す図である。It is a figure which shows the shape and dimension of the magnetic levitation control apparatus used for the numerical analysis by the finite element method which used the thickness of the permanent magnet of the bypass magnetic path as a parameter. バイパス磁路の永久磁石の厚さをパラメータとした有限要素法の数値解析結果を示す図である。It is a figure which shows the numerical analysis result of the finite element method which used the thickness of the permanent magnet of the bypass magnetic path as a parameter. バイパス磁路の永久磁石の厚さをパラメータとした有限要素法の数値解析結果を示す図である。It is a figure which shows the numerical analysis result of the finite element method which used the thickness of the permanent magnet of the bypass magnetic path as a parameter. バイパス磁路の永久磁石の厚さをパラメータとした有限要素法の数値解析結果を示す図である。It is a figure which shows the numerical analysis result of the finite element method which used the thickness of the permanent magnet of the bypass magnetic path as a parameter. バイパス磁路の永久磁石の厚さをパラメータとした有限要素法の数値解析結果を示す図である。It is a figure which shows the numerical analysis result of the finite element method which used the thickness of the permanent magnet of the bypass magnetic path as a parameter.
 以下、本発明を実施するための形態を図に基づいて説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 図1は本発明の実施の形態である磁気浮上制御装置100の基本的な構成を示す。図1において、20は電磁石コア1に電磁石コイル2を巻回した電磁石である。3、5および8はそれぞれ左側、中央、及び右側に配置された棒状の磁性体、4および7は夫々左側及び右側に配置された棒状の永久磁石、6は中央に配置された棒状の永久磁石である。左側に配置された永久磁石4と右側に配置された永久磁石7が他の磁石手段を構成する。また、電磁石コア1は、磁極となる2つの突極1a、1cを有するコの字形状であり、2つの突極1a、1cは、それぞれ磁性体3、8に対向する位置に配置される。 FIG. 1 shows a basic configuration of a magnetic levitation control apparatus 100 according to an embodiment of the present invention. In FIG. 1, reference numeral 20 denotes an electromagnet in which an electromagnet coil 2 is wound around an electromagnet core 1. 3, 5 and 8 are rod-like magnetic bodies arranged on the left side, center and right side, 4 and 7 are rod-like permanent magnets arranged on the left and right sides, respectively, and 6 is a rod-like permanent magnet arranged on the center. It is. The permanent magnet 4 arranged on the left side and the permanent magnet 7 arranged on the right side constitute another magnet means. The electromagnet core 1 has a U-shape having two salient poles 1a and 1c serving as magnetic poles, and the two salient poles 1a and 1c are arranged at positions facing the magnetic bodies 3 and 8, respectively.
 磁性体3、5、8、永久磁石4、7、中央に配置された永久磁石6は図示しない磁気浮上対象物上に固定され、自体も磁気浮上対象物50となる。永久磁石6は、バイアス磁束10を形成し、電磁石20によって形成される制御磁束9とバイアス磁束10とで、磁気浮上対象物50に対して電磁石20に引きつける方向の引力を作用させる。一方、磁気浮上対象物50には、図示しない電磁石や永久磁石、又は重力等によって、電磁石20から離れる方向(図中下方向)の離力が作用しており、当該離力と制御磁束9およびバイアス磁束10による引力とをバランスさせることで磁気浮上対象物50が浮上する。また、電磁石コイル2に流される電流を変化させ、制御磁束9の強さを制御することで、磁気浮上対象物を上下(図のZ軸方向)に移動制御することができ、さらに、磁気浮上対象物50に作用する離力が変化した場合でも、制御磁束9の強さを制御することで、磁気浮上対象物50を同じ位置に制御することが可能になる。 15は空間又は非磁性体部を示す。 The magnetic bodies 3, 5, 8, the permanent magnets 4, 7, and the permanent magnet 6 arranged in the center are fixed on a magnetic levitation object (not shown), and become the magnetic levitation object 50 itself. The permanent magnet 6 forms the bias magnetic flux 10, and the control magnetic flux 9 and the bias magnetic flux 10 formed by the electromagnet 20 act on the magnetic levitation target 50 in the direction attracting the electromagnet 20. On the other hand, a separation force in a direction away from the electromagnet 20 (downward in the figure) is applied to the magnetic levitation object 50 by an electromagnet, a permanent magnet, or gravity (not shown), and the separation force and the control magnetic flux 9 and The magnetic levitation object 50 is levitated by balancing the attractive force due to the bias magnetic flux 10. In addition, by changing the current passed through the electromagnet coil 2 and controlling the strength of the control magnetic flux 9, the magnetic levitation object can be controlled to move up and down (in the Z-axis direction in the figure). Even when the separation force acting on the object 50 changes, the magnetic levitation object 50 can be controlled to the same position by controlling the strength of the control magnetic flux 9. 15 indicates a space or a non-magnetic part.
 このように、永久磁石6、他の磁石手段である永久磁石4、7および磁性体3、5、8を含んで構成された1つの磁気浮上対象物50は、断面矩形状に一体的に形成され、電磁石20に対向配置される。 As described above, the single magnetic levitation object 50 including the permanent magnet 6, the permanent magnets 4 and 7, which are other magnet means, and the magnetic bodies 3, 5 and 8, is integrally formed in a rectangular cross section. And disposed opposite to the electromagnet 20.
 バイアス磁束10を形成する永久磁石6は、浮上支持対象物50の中央に、磁極が電磁石20との対向面と平行になるように配置され、図面上で水平配置される永久磁石6は左端がN極に、右端がS極に着磁されている。磁気浮上対象物50の左側に配置される永久磁石4は、磁極が電磁石20との対向面と垂直になるように、上面がN極に、下面がS極に着磁されている。浮上支持対象物の右側に配置される永久磁石7も、磁極が電磁石20との対向面と垂直になるように、上面がS極に、下面がN極に着磁されている。この構成により、永久磁石4、7の断面積を確保しやすいため、バイパス磁路9Aの磁気抵抗を効率よく減少させることができ、永久磁石6を含めた全体の磁気抵抗を減少させることができる。 The permanent magnet 6 forming the bias magnetic flux 10 is arranged at the center of the levitating support object 50 so that the magnetic pole is parallel to the surface facing the electromagnet 20, and the permanent magnet 6 horizontally arranged on the drawing has a left end. The N pole and the right end are magnetized to the S pole. The permanent magnet 4 disposed on the left side of the magnetically levitated object 50 is magnetized so that the top surface is N pole and the bottom surface is S pole so that the magnetic pole is perpendicular to the surface facing the electromagnet 20. The permanent magnet 7 disposed on the right side of the levitating support object is also magnetized so that the upper surface is an S pole and the lower surface is an N pole so that the magnetic pole is perpendicular to the surface facing the electromagnet 20. With this configuration, since the cross-sectional areas of the permanent magnets 4 and 7 can be easily secured, the magnetic resistance of the bypass magnetic path 9A can be efficiently reduced, and the overall magnetic resistance including the permanent magnet 6 can be reduced. .
 左側の永久磁石4の上面のN極は、永久磁石6の図示左端のN極と、電磁石20の突極1aと対向する磁性体3を介して接続され、右側の永久磁石7の上面のS極は、永久磁石6の図示右端のS極と、電磁石20の突極1cと対向する磁性体8を介して接続される。また、左側の永久磁石4の下面のS極と右側の永久磁石7の下面のN極は磁性体5を介して接続される。 The N pole on the upper surface of the left permanent magnet 4 is connected to the N pole on the left end of the permanent magnet 6 via the magnetic body 3 facing the salient pole 1 a of the electromagnet 20, and S on the upper surface of the right permanent magnet 7. The poles are connected to the S pole at the right end of the permanent magnet 6 via the magnetic body 8 facing the salient pole 1c of the electromagnet 20. Further, the S pole on the lower surface of the left permanent magnet 4 and the N pole on the lower surface of the right permanent magnet 7 are connected via a magnetic body 5.
 当該接続構成により、図1において実線で示す、永久磁石6により発生する永久磁石磁束であるバイアス磁束10の磁路が、左側の磁性体3、電磁石コア1、右側の磁性体8とから構成される。 With this connection configuration, the magnetic path of the bias magnetic flux 10, which is a permanent magnet magnetic flux generated by the permanent magnet 6, shown by the solid line in FIG. 1, is composed of the left magnetic body 3, the electromagnet core 1, and the right magnetic body 8. The
 また、磁性体3、左側の永久磁石4、磁性体5、右側の永久磁石7および磁性体8により、中央に配置される永久磁石6と並列に、バイパス磁路9Aが形成される。バイパス磁路9Aの形成に際しては、例えば、同一性能の永久磁石が使用される場合、即ち、透磁率が同じである同一材質で構成した場合、磁束方向における永久磁石4および永久磁石7の板幅は、永久磁石6の中に形成される図において水平方向の板幅に比べてはるかに小さなものとされる。このため、中央に配置される磁気抵抗の大きい永久磁石6と比較し、バイパス磁路9Aの磁気抵抗は小さいものとなる。 Further, the magnetic body 3, the left permanent magnet 4, the magnetic body 5, the right permanent magnet 7 and the magnetic body 8 form a bypass magnetic path 9A in parallel with the permanent magnet 6 arranged at the center. When the bypass magnetic path 9A is formed, for example, when permanent magnets having the same performance are used, that is, when they are made of the same material having the same magnetic permeability, the plate widths of the permanent magnets 4 and 7 in the magnetic flux direction Is much smaller than the horizontal plate width in the figure formed in the permanent magnet 6. For this reason, the magnetic resistance of the bypass magnetic path 9A is smaller than that of the permanent magnet 6 having a large magnetic resistance arranged at the center.
 このように、バイパス磁路9Aは、永久磁石4、7によってバイアス磁束10の通過を阻止する方向に磁化されている。即ち、永久磁石4、7は、バイパス磁路9Aを磁化させるバイパス磁路用永久磁石として用いられる。永久磁石4、7と永久磁石6とがそれぞれ接続された磁性体3、8において、バイアス磁束10を形成する永久磁石6の磁極に対して磁束方向で同一極になるように永久磁石4、7が配設されることで、バイパス磁路9Aがバイアス磁束10の通過を阻止する方向に磁化される。また、永久磁石4、7によるバイパス磁路9Aの磁気抵抗が永久磁石による磁気抵抗に比べて小さくなるようにして形成されて配設される。 Thus, the bypass magnetic path 9A is magnetized by the permanent magnets 4 and 7 in the direction in which the bias magnetic flux 10 is prevented from passing. That is, the permanent magnets 4 and 7 are used as bypass magnetic path permanent magnets that magnetize the bypass magnetic path 9A. In the magnetic bodies 3 and 8 to which the permanent magnets 4 and 7 and the permanent magnet 6 are respectively connected, the permanent magnets 4 and 7 have the same pole in the magnetic flux direction with respect to the magnetic poles of the permanent magnet 6 forming the bias magnetic flux 10. Is provided, the bypass magnetic path 9A is magnetized in a direction that prevents the bias magnetic flux 10 from passing therethrough. Further, the magnetic resistance of the bypass magnetic path 9A by the permanent magnets 4 and 7 is formed and arranged so as to be smaller than the magnetic resistance by the permanent magnet.
 永久磁石4、6、7の着磁方向を全て逆にすると共に、電磁石コイル2に流れる電流の向きを反対にすることで制御磁束9の向きを逆にしても良く、それにより本実施の形態の効果を何ら損なうものではない。ここでは、本発明の実施の形態の説明に当って、上記の永久磁石4、6、7の着磁方向で説明する。 The direction of the control magnetic flux 9 may be reversed by reversing the magnetization directions of the permanent magnets 4, 6, and 7 and reversing the direction of the current flowing through the electromagnet coil 2. It does not impair any effect. Here, in the description of the embodiment of the present invention, the magnetization direction of the permanent magnets 4, 6 and 7 will be described.
 図1に示す破線は、電磁石コイル2と電磁石コア1からなる電磁石20により発生する電磁石磁束である制御磁束9を示す。制御磁束9は、中央に配置された永久磁石6が横方向に細長い断面形状のため磁気抵抗が大きいので、永久磁石6をほとんど通過しない。ここで、電磁石20により発生する制御磁束9の大部分は、バイパス磁路9Aを通る構成となる。即ち、左右の永久磁石4および7は、それら磁極間の長さが永久磁石6の磁極間の長さに比較して短くなるように磁性部材5と接続されているので、永久磁石7、磁性体5、永久磁石4で形成されるバイパス磁路9Aの磁気抵抗が永久磁石6の磁気抵抗に比べて小さくなり、制御磁束9はバイパス磁路9Aを通る構成となる。 1 indicates a control magnetic flux 9 that is an electromagnet magnetic flux generated by an electromagnet 20 composed of an electromagnet coil 2 and an electromagnet core 1. The control magnetic flux 9 hardly passes through the permanent magnet 6 because the permanent magnet 6 disposed in the center has a large cross section in the lateral direction and has a large magnetic resistance. Here, most of the control magnetic flux 9 generated by the electromagnet 20 passes through the bypass magnetic path 9A. That is, the left and right permanent magnets 4 and 7 are connected to the magnetic member 5 so that the length between the magnetic poles is shorter than the length between the magnetic poles of the permanent magnet 6. The magnetic resistance of the bypass magnetic path 9A formed by the body 5 and the permanent magnet 4 is smaller than the magnetic resistance of the permanent magnet 6, and the control magnetic flux 9 passes through the bypass magnetic path 9A.
 バイパス磁路9Aは磁気抵抗が小さいため、バイパス磁路9Aを通過する制御磁束9には殆ど損失が生じない。そして、殆ど損失を生じることなくバイパス磁路9Aを通過する制御磁束9は、左側の永久磁石4及び磁性体3を通過して、永久磁石6により形成されるバイアス磁束10と重畳され、磁気浮上対象物50の位置を制御する大きな制御磁束を得ることが可能となる。 Since the bypass magnetic path 9A has a small magnetic resistance, the control magnetic flux 9 passing through the bypass magnetic path 9A has almost no loss. The control magnetic flux 9 passing through the bypass magnetic path 9A with almost no loss passes through the left permanent magnet 4 and the magnetic body 3, and is superimposed on the bias magnetic flux 10 formed by the permanent magnet 6, thereby magnetically levitating. A large control magnetic flux for controlling the position of the object 50 can be obtained.
 この場合に、上述のように、左側の永久磁石4の上面のN極は磁性体3を介して中央の
永久磁石6のN極と同極同士が接続され、右側の永久磁石7の上面のS極は磁性体8を介
して中央の永久磁石6のS極と同極同士が接続され、バイパス磁路9Aは、バイアス磁束10の通過を阻止する方向に磁化されている。このため、中央の永久磁石6により発生するバイアス磁束10の浮上支持対象物50内での短絡が防止され、バイアス磁束10の損失を防ぐことができる。
In this case, as described above, the N pole on the upper surface of the left permanent magnet 4 is connected to the N pole of the central permanent magnet 6 via the magnetic body 3, and the upper pole of the right permanent magnet 7 is connected. The S pole is connected to the S pole of the central permanent magnet 6 through the magnetic body 8, and the bypass magnetic path 9 </ b> A is magnetized in a direction that prevents the passage of the bias magnetic flux 10. For this reason, a short circuit in the floating support object 50 of the bias magnetic flux 10 generated by the central permanent magnet 6 is prevented, and loss of the bias magnetic flux 10 can be prevented.
 さらには、バイパス磁路9Aを構成する他の磁石手段である永久磁石7、永久磁石4からもバイアス磁束が発生する。即ち、永久磁石7、永久磁石4から発生するバイアス磁束は制御磁束9と同じ磁路を通過し、制御磁束9に重畳されることになる。なお、電磁石コア1の2つの突極1a、1cにそれぞれ対向する永久磁石4、7の磁力は、電磁石コア1の2つの突極1a、1cと浮上支持対象物50の磁性体3、8とのそれぞれ間隙の磁束密度が同一になるように設定することで、電磁石20の2つの突極1a、1cにおいて、均等な条件で磁気吸引力を作用させることができる。 Furthermore, a bias magnetic flux is also generated from the permanent magnet 7 and the permanent magnet 4 which are other magnet means constituting the bypass magnetic path 9A. That is, the bias magnetic flux generated from the permanent magnet 7 and the permanent magnet 4 passes through the same magnetic path as the control magnetic flux 9 and is superimposed on the control magnetic flux 9. The magnetic forces of the permanent magnets 4 and 7 facing the two salient poles 1a and 1c of the electromagnet core 1 are the same as the two salient poles 1a and 1c of the electromagnet core 1 and the magnetic bodies 3 and 8 of the levitating support object 50, respectively. By setting so that the magnetic flux densities of the gaps are the same, the magnetic attractive force can be applied to the two salient poles 1a and 1c of the electromagnet 20 under equal conditions.
 このように、本実施の形態においては、バイパス磁路9Aにより電磁石磁束9の損失が防止され、中央の永久磁石6の短絡を防ぐことによリバイアス磁束10の損失が防止され、他の磁石手段により発生するバイアス磁束が電磁石磁束9に重畳され、ハイブリッド型磁気軸受けに発生する総合的な磁束の発生効率を大きくした制御磁束を形成することが可能となる。 Thus, in the present embodiment, the loss of the electromagnet magnetic flux 9 is prevented by the bypass magnetic path 9A, the loss of the rebiased magnetic flux 10 is prevented by preventing the central permanent magnet 6 from being short-circuited, and other magnet means The bias magnetic flux generated by the above is superimposed on the electromagnet magnetic flux 9, and it becomes possible to form a control magnetic flux that increases the generation efficiency of the total magnetic flux generated in the hybrid magnetic bearing.
 図1に示す実施の形態は図2に示す如く変形しても同様の効果が得られる。即ち、図2に示す例は、図1に示す永久磁石7を磁性体7′ に変更したことを示す。バイパス磁路9Aを磁化させる他の磁石手段である永久磁石として1個の永久磁石4が用いられる。このように、永久磁石4および7はいずれか一方でも良い。そして、電磁石20により発生する制御磁束9およびバイアス磁束10の方向は、永久磁石4と永久磁石6の同極同士が接する磁性体3において同方向になる。 The same effect can be obtained even if the embodiment shown in FIG. 1 is modified as shown in FIG. That is, the example shown in FIG. 2 shows that the permanent magnet 7 shown in FIG. 1 is changed to a magnetic body 7 ′. One permanent magnet 4 is used as a permanent magnet which is another magnet means for magnetizing the bypass magnetic path 9A. As described above, either one of the permanent magnets 4 and 7 may be used. The directions of the control magnetic flux 9 and the bias magnetic flux 10 generated by the electromagnet 20 are the same in the magnetic body 3 where the same poles of the permanent magnet 4 and the permanent magnet 6 are in contact with each other.
 また、図2に示す実施の形態を、図3に示すように変形しても同様の効果が得られる。即ち、図2に示す永久磁石4は磁性体4′ に変更され、磁性体5の一部に永久磁石16を介在させている。この構成にあっても、永久磁石16は、磁性体3、4′ 、5、7′、8で構成されるバイパス磁路9Aを磁化させる他の磁石手段として機能し、永久磁石6によるバイアス磁束10の通過を阻止する方向にバイパス磁路9Aを磁化させ、かつ永久磁石16による磁気抵抗、即ちバイパス磁路9Aの磁気抵抗が永久磁石6の磁気抵抗に比べて小さく形成される。 Further, the same effect can be obtained even if the embodiment shown in FIG. 2 is modified as shown in FIG. That is, the permanent magnet 4 shown in FIG. 2 is changed to a magnetic body 4 ′ and a permanent magnet 16 is interposed in a part of the magnetic body 5. Even in this configuration, the permanent magnet 16 functions as another magnet means for magnetizing the bypass magnetic path 9A composed of the magnetic bodies 3, 4 ′ 5, 5, 7, 8, and the bias magnetic flux generated by the permanent magnet 6 is used. The bypass magnetic path 9 </ b> A is magnetized in a direction to prevent the passage of 10, and the magnetic resistance by the permanent magnet 16, that is, the magnetic resistance of the bypass magnetic path 9 </ b> A is made smaller than the magnetic resistance of the permanent magnet 6.
 本発明の実施の形態として、バイアス磁束を発生する永久磁石6およびバイパス磁路9Aを形成する他の磁石手段である永久磁石4、7が、浮上支持対象物50に配設される構成を説明した。 しかしながら、本発明の実施の形態は上述の構成に限定されることなく、永久磁石6によるバイアス磁束10が制御磁束9に重畳され、制御磁束9が永久磁石6の磁気抵抗により弱められないようにバイパス磁路9Aが構成されるのであれば、バイアス磁束10を発生させる永久磁石6、バイパス磁路9Aおよびバイパス磁路9Aを磁化させる他の磁石手段である永久磁石4、7は、電磁石コア1に配設されていても良い。 As an embodiment of the present invention, a configuration in which permanent magnets 4 and 7 which are other magnet means for forming a bias magnetic flux 6 and a bypass magnetic path 9A are arranged on a levitating support object 50 will be described. did. However, the embodiment of the present invention is not limited to the above-described configuration, and the bias magnetic flux 10 by the permanent magnet 6 is superimposed on the control magnetic flux 9 so that the control magnetic flux 9 is not weakened by the magnetic resistance of the permanent magnet 6. If the bypass magnetic path 9A is configured, the permanent magnet 6 that generates the bias magnetic flux 10, the permanent magnets 4 and 7 that are other magnet means for magnetizing the bypass magnetic path 9A and the bypass magnetic path 9A are the electromagnet core 1. It may be arranged.
 例えば、図4に示す本発明の実施の形態の変形例にあっては、バイアス磁束10を発する永久磁石6およびバイパス磁路9Aが電磁石20の電磁石コア1に備えられる。電磁石20の電磁石コア1は、それぞれ開放端を有する突極1aおよび突極1cと、突極1aと突極1cとを接続する接続部1bとからなるコの字状であり、永久磁石6は、突極1aおよび突極1cの一部と接続部1bとをショートカットして突極1aと突極1cとに架け渡されている。また、永久磁石6によってショートカットされた突極1aおよび突極1cの一部と接続部1bとが永久磁石6と並列なバイパス磁路9Aとなり、バイパス磁路9Aには、他の磁石手段である永久磁石4、7が配置されている。同一性能の永久磁石が使用される場合、即ち、透磁率が同じである同一材質で構成した場合、磁束方向における左側の永久磁石4と、右側の永久磁石7の板幅は、磁束方向における中央の永久磁石6の板幅と比較して小さく形成され、永久磁石4、7によるバイパス磁路9Aの磁気抵抗が永久磁石6の磁気抵抗に比べて小さくなるように形成されて配設される。 For example, in the modification of the embodiment of the present invention shown in FIG. 4, the permanent magnet 6 that generates the bias magnetic flux 10 and the bypass magnetic path 9 </ b> A are provided in the electromagnet core 1 of the electromagnet 20. The electromagnet core 1 of the electromagnet 20 has a U-shape composed of salient poles 1a and salient poles 1c each having an open end, and a connecting portion 1b that connects the salient poles 1a and 1c. The salient pole 1a and part of the salient pole 1c and the connecting portion 1b are shortcutly spanned between the salient pole 1a and the salient pole 1c. Further, the salient poles 1a and a part of the salient poles 1c, which are short-cut by the permanent magnet 6, and the connecting portion 1b form a bypass magnetic path 9A in parallel with the permanent magnet 6, and the bypass magnetic path 9A is another magnet means. Permanent magnets 4 and 7 are arranged. When permanent magnets having the same performance are used, that is, when they are made of the same material having the same magnetic permeability, the plate widths of the left permanent magnet 4 and the right permanent magnet 7 in the magnetic flux direction are the center in the magnetic flux direction. The magnetic resistance of the bypass magnetic path 9A by the permanent magnets 4 and 7 is formed and disposed so as to be smaller than the magnetic resistance of the permanent magnet 6.
 図4に示す永久磁石6は、突極1cと接続された図示右端がS極に着磁され、突極1aと接続された図示左端がN極に着磁される。左側の永久磁石4は、突極1aに配置され、永久磁石6のN極に面する下面がN極に着磁され、上面がS極に着磁される。右側の永久磁石7は、突極1cに配置され、永久磁石6のS極に面する下面がS極に着磁され、上面がN極に着磁される。 In the permanent magnet 6 shown in FIG. 4, the right end in the figure connected to the salient pole 1c is magnetized to the S pole, and the left end in the figure connected to the salient pole 1a is magnetized to the N pole. The left permanent magnet 4 is disposed on the salient pole 1a, the lower surface of the permanent magnet 6 facing the N pole is magnetized to the N pole, and the upper surface is magnetized to the S pole. The right permanent magnet 7 is disposed on the salient pole 1c, the lower surface of the permanent magnet 6 facing the S pole is magnetized to the S pole, and the upper surface is magnetized to the N pole.
 即ち、左側の永久磁石4の下面と、永久磁石6の左端は、電磁石コア1の一部である突極1aにより接続され、右側の永久磁石7の下面と、永久磁石6の右端は、電磁石コア1の一部である突極1cにより接続される。また、左側の永久磁石4の上面と、右側の永久磁石7の上面とは、電磁石コア1の一部である接続部1bにより接続される。 That is, the lower surface of the left permanent magnet 4 and the left end of the permanent magnet 6 are connected by the salient pole 1a which is a part of the electromagnet core 1, and the lower surface of the right permanent magnet 7 and the right end of the permanent magnet 6 are connected to the electromagnet. They are connected by salient poles 1 c that are part of the core 1. Further, the upper surface of the left permanent magnet 4 and the upper surface of the right permanent magnet 7 are connected by a connecting portion 1 b which is a part of the electromagnet core 1.
 上述の接続構成により、N極に着磁された永久磁石6の左端が突極1aを介して同極の左側永久磁石4の下面と接続されているため、中央の永久磁石6の左端から発生するバイアス磁束10は電磁石コア1内で短絡することなく、図に示す磁路を構成する。 Due to the above-described connection configuration, the left end of the permanent magnet 6 magnetized to the N pole is connected to the lower surface of the left permanent magnet 4 of the same pole via the salient pole 1a, and therefore, generated from the left end of the central permanent magnet 6 The bias magnetic flux 10 to be configured does not short-circuit in the electromagnet core 1 and constitutes the magnetic path shown in the figure.
 本実施の形態において、電磁石コイル2と電磁石コア1から構成される電磁石により発生する制御磁束9は、バイアス磁束10の磁束方向と同じ方向に発生するようにされる。 In the present embodiment, the control magnetic flux 9 generated by the electromagnet composed of the electromagnet coil 2 and the electromagnet core 1 is generated in the same direction as the magnetic flux direction of the bias magnetic flux 10.
 ここで、制御磁束9は、バイパス磁路9Aに比べて永久磁石6の磁気抵抗が大きいため、永久磁石6内を殆ど通過しない。しかし、左側の永久磁石4と、右側の永久磁石7は、中央の永久磁石6と比較し、制御磁束9の磁路方向の幅(厚さ)が小さく形成されており、中央の永久磁石6よりも永久磁石4、接続部1bおよび永久磁石7を通過する磁路方向の磁気抵抗が小さい。従って、接続部1bにより接続された左側の永久磁石4と、右側の永久磁石7とからバイパス磁路9Aが構成され、制御磁束9はより磁気抵抗の小さいバイパス磁路9Aを通過する。このため、制御磁束9が中央の永久磁石6の磁気抵抗により弱められることがなく、バイアス磁束10に重畳され、磁気浮上対象物50の位置を制御する大きな制御磁束を得ることができる。 Here, the control magnetic flux 9 hardly passes through the permanent magnet 6 because the magnetic resistance of the permanent magnet 6 is larger than that of the bypass magnetic path 9A. However, the left permanent magnet 4 and the right permanent magnet 7 are formed with a smaller width (thickness) in the magnetic path direction of the control magnetic flux 9 than the central permanent magnet 6. The magnetic resistance in the magnetic path direction passing through the permanent magnet 4, the connecting portion 1 b, and the permanent magnet 7 is smaller. Therefore, a bypass magnetic path 9A is constituted by the left permanent magnet 4 and the right permanent magnet 7 connected by the connecting portion 1b, and the control magnetic flux 9 passes through the bypass magnetic path 9A having a smaller magnetic resistance. For this reason, the control magnetic flux 9 is not weakened by the magnetic resistance of the central permanent magnet 6 and can be superimposed on the bias magnetic flux 10 to obtain a large control magnetic flux for controlling the position of the magnetic levitation object 50.
 このように、本発明の実施の形態にあっては、バイアス磁束10を発生する永久磁石6および制御磁束9の磁路となるバイパス磁路9Aは、電磁石コア1に配設されていても良い。この場合、永久磁石6およびバイパス磁路9Aの配置は、図4に示す例に限定されるものではなく、例えば図5に示すように、永久磁石6を電磁石コイル2の下側、即ち突極1a、1cの先端側に移動させ、バイパス磁路9Aに電磁石コイル2を配置しても良く、この場合には、永久磁石6の磁極と磁気浮上対象物50とを近付けることができるため、永久磁石6によって形成されるバイアス磁束10の漏れを少なくでき、磁気浮上対象物50にバイアス磁束10を効率よく作用させることができる。 As described above, in the embodiment of the present invention, the permanent magnet 6 that generates the bias magnetic flux 10 and the bypass magnetic path 9A that is the magnetic path of the control magnetic flux 9 may be disposed in the electromagnet core 1. . In this case, the arrangement of the permanent magnet 6 and the bypass magnetic path 9A is not limited to the example shown in FIG. 4. For example, as shown in FIG. 5, the permanent magnet 6 is placed below the electromagnetic coil 2, that is, the salient pole. The electromagnet coil 2 may be disposed on the bypass magnetic path 9A by moving it to the tip side of 1a, 1c. In this case, the magnetic pole of the permanent magnet 6 and the magnetic levitation object 50 can be brought close to each other. Leakage of the bias magnetic flux 10 formed by the magnet 6 can be reduced, and the bias magnetic flux 10 can be efficiently applied to the magnetic levitation object 50.
 また、図4、図5に示す例にあっても、例えば図2、図3に示すように、バイパス磁路9Aを磁化させる他の磁石手段として、永久磁石4、7のいずれか1個が備えられる構成であっても良い。 4 and 5, any one of the permanent magnets 4 and 7 is used as another magnet means for magnetizing the bypass magnetic path 9A as shown in FIGS. 2 and 3, for example. The structure provided may be sufficient.
 以下、本発明の実施例を図に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明の第1の実施例として、2個の磁気浮上制御装置100が組み込まれた、円板状の磁気浮上ロータに対するハイブリッド型磁気軸受け200を図6に示す。磁気浮上対象物50は、Z軸方向の中心軸を有する円板状の磁気浮上ロータになっており、図1では棒状であった永久磁石4、6、7、磁性体3、5、8は、磁気浮上対象物50である円板状の磁気浮上ロータが移動制御される方向に有る軸、即ち、本実施例においては磁気浮上ロータの中心軸に対して円環状配置とされ、内部が非磁性体51で満たされている。図6に示すハイブリッド型磁気軸受け200の一方の断面は、磁気浮上対象物50である磁気浮上ロータが回転しても図1に示す磁気浮上制御装置100と同じであり、図1の符号は図6の符号と対応する。本実施例では図6に示すごとく2つの磁気浮上制御装置100を使用し、2つの電磁石20が磁気浮上対象物50である磁気浮上ロータに対して軸方向から対向するように配置されている。 As a first embodiment of the present invention, FIG. 6 shows a hybrid magnetic bearing 200 for a disk-shaped magnetic levitation rotor in which two magnetic levitation control devices 100 are incorporated. The magnetic levitation object 50 is a disk-shaped magnetic levitation rotor having a central axis in the Z-axis direction. The permanent magnets 4, 6, 7 and magnetic bodies 3, 5, 8 that are rod-shaped in FIG. The disk-shaped magnetic levitation rotor as the magnetic levitation object 50 has an annular arrangement with respect to the axis in the direction in which the movement is controlled, that is, the central axis of the magnetic levitation rotor in this embodiment, and the inside is not Filled with magnetic material 51. 6 is the same as that of the magnetic levitation control apparatus 100 shown in FIG. 1 even when the magnetic levitation rotor as the magnetic levitation object 50 is rotated. Corresponds to the reference numeral 6. In this embodiment, two magnetic levitation control devices 100 are used as shown in FIG. 6, and the two electromagnets 20 are arranged so as to face the magnetic levitation rotor as the magnetic levitation object 50 from the axial direction.
 図6に示す2個の磁気浮上制御装置100が組み込まれたハイブリッド型磁気軸受け200の断面を図7に示す。各図において同一符号は同一物を示し、電磁石コア1と電磁石コイル2からなる電磁石20を有する磁気浮上制御装置100が左右に2組配置される。 FIG. 7 shows a cross section of the hybrid magnetic bearing 200 in which the two magnetic levitation control devices 100 shown in FIG. 6 are incorporated. In each figure, the same reference numeral indicates the same thing, and two sets of magnetic levitation control devices 100 each having an electromagnet 20 composed of an electromagnet core 1 and an electromagnet coil 2 are arranged on the left and right.
 この場合、永久磁石6は円環状となっており、径方向(Z軸に直交する方向)に着磁されて(例えば、外周側がN、内周側がS)、本例では径方向において円環状の磁性体3と8ではさみ込まれている。また、永久磁石4も円環状となっており、本例では上下方向(Z軸方向)に着磁(例えば上側がN、下側がS)されており、上下方向(Z軸方向)において円環状の磁性体3と5ではさみ込まれている。さらに、永久磁石7も円環状となっており、本例では磁性体8の下に配設され、上下方向(Z軸方向)において円環状の磁性体8と5ではさみ込まれている。この構成により、図1に示す例と同様に、磁性体3、永久磁石4、磁性体5、永久磁石7および磁性体8により、磁気浮上ロータである磁気浮上対象物50の径方向において、円環状の永久磁石6の各磁極を接続する円環状のバイパス磁路9Aが永久磁石6と並列に形成されることになる。永久磁石4の径方向の厚みは磁性体3と等しくとるのが妥当であるがその限りではない。磁性体5の径方向厚みは磁性体3、永久磁石6、磁性体8の径方向厚みを加えた厚みが妥当であるがその限りではない。
なお、本実施例1では、永久磁石6、永久磁石4および永久磁石7の形状を円環状としたが、永久磁石6、永久磁石4および永久磁石7が円環状に配置されていれば、形状が円環状に限定されることはない。例えば、円弧状の複数の永久磁石を円環状に配置しても良く、多数の棒磁石を円環状に配置しても良い。
In this case, the permanent magnet 6 has an annular shape and is magnetized in the radial direction (direction perpendicular to the Z axis) (for example, N on the outer peripheral side and S on the inner peripheral side), and in this example, the permanent magnet 6 is annular in the radial direction. The magnetic bodies 3 and 8 are sandwiched. Further, the permanent magnet 4 is also in an annular shape, and in this example, it is magnetized in the vertical direction (Z-axis direction) (for example, the upper side is N and the lower side is S), and the vertical direction (Z-axis direction) is annular. The magnetic bodies 3 and 5 are sandwiched. Further, the permanent magnet 7 is also in an annular shape, and is disposed below the magnetic body 8 in this example, and is sandwiched between the annular magnetic bodies 8 and 5 in the vertical direction (Z-axis direction). With this configuration, similarly to the example shown in FIG. 1, the magnetic body 3, the permanent magnet 4, the magnetic body 5, the permanent magnet 7, and the magnetic body 8 are circular in the radial direction of the magnetic levitation object 50 that is a magnetic levitation rotor. An annular bypass magnetic path 9 </ b> A connecting the magnetic poles of the annular permanent magnet 6 is formed in parallel with the permanent magnet 6. Although it is appropriate that the thickness of the permanent magnet 4 in the radial direction is equal to that of the magnetic body 3, it is not limited thereto. The thickness in the radial direction of the magnetic body 5 is not limited to the thickness obtained by adding the radial thicknesses of the magnetic body 3, the permanent magnet 6, and the magnetic body 8.
In the first embodiment, the shape of the permanent magnet 6, the permanent magnet 4 and the permanent magnet 7 is an annular shape. However, if the permanent magnet 6, the permanent magnet 4 and the permanent magnet 7 are arranged in an annular shape, the shape will be described. Is not limited to an annular shape. For example, a plurality of arc-shaped permanent magnets may be arranged in an annular shape, and a large number of bar magnets may be arranged in an annular shape.
 電磁石コイル2が電磁石コア1に巻かれる位置は図1に示す例と変わりはない。図6では図1の永久磁石7は磁性体8の下に配設されるが、外部からは隠れて見えていない。このように磁石配列された円板状の磁気浮上対象物50の一方面に、突極1aを磁性体3に、突極1cを磁性体8にそれぞれ対向させるように電磁石20を配置することにより、磁気浮上対象物50に対して吸引力を発生させることが可能となり、磁気浮上対象物50に対してかかる下向きの力、即ち電磁石20から離れる方向に作用する離力とバランスをとることで、磁気浮上対象物50を浮上させ、磁気浮上対象物50の軸方向の位置を制御させることができる。磁気浮上対象物50に作用する離力としては、磁気浮上対象物50の下方、即ち電磁石20が配置されている面の反対面側に配置された、磁気浮上対象物50を回転させる図示しないモータステータによる引力や、磁気浮上対象物50にかかる重力等が考えられる。なお、本実施例では、2個の磁気浮上制御装置100がX軸方向に配置されているため、磁気浮上制御装置100による軸方向の位置制御によって、簡単にY軸周りの回転を制御することが可能となるが、磁気浮上制御装置100が1個であっても、Y軸からずれて配置されていれば、Y軸周りの回転を制御することが可能となる。また、もう1対の磁気浮上制御装置100を図中の磁気浮上制御装置100と直交する位置に配置することにより、簡単にX軸周りの回転も制御可能となるが、磁気浮上制御装置100が1個であっても、X軸からずれて配置されていれば、X軸周りの回転を制御することが可能となる。さらに、Z軸方向の位置とX、Y軸周りの回転を制御する場合、Z軸方向の位置とX、Y軸周りの2回転度の計測を行い、閉ループ制御をかけるために渦電流センサ等の非接触型位置センサを円板状の磁気浮上対象物50の上面(又は下面)に最低3つ配置することになる。 The position where the electromagnet coil 2 is wound around the electromagnet core 1 is not different from the example shown in FIG. In FIG. 6, the permanent magnet 7 of FIG. 1 is disposed below the magnetic body 8, but is not visible from the outside. By disposing the electromagnet 20 on one surface of the disk-shaped magnetically levitated object 50 arranged in this manner so that the salient pole 1a faces the magnetic body 3 and the salient pole 1c faces the magnetic body 8 respectively. It is possible to generate an attractive force for the magnetic levitation object 50 and balance the downward force applied to the magnetic levitation object 50, that is, the separation force acting in the direction away from the electromagnet 20, The magnetically levitated object 50 can be levitated and the position of the magnetically levitated object 50 in the axial direction can be controlled. As a separation force acting on the magnetic levitation object 50, a motor (not shown) that rotates the magnetic levitation object 50 disposed below the magnetic levitation object 50, that is, on the opposite side of the surface on which the electromagnet 20 is disposed. The attractive force by the stator, the gravity applied to the magnetic levitation object 50, and the like can be considered. In this embodiment, since the two magnetic levitation control devices 100 are arranged in the X-axis direction, the rotation around the Y axis can be easily controlled by the axial position control by the magnetic levitation control device 100. However, even if there is only one magnetic levitation control device 100, it is possible to control the rotation around the Y axis as long as the magnetic levitation control device 100 is displaced from the Y axis. Further, by arranging another pair of magnetic levitation control devices 100 at positions orthogonal to the magnetic levitation control device 100 in the figure, the rotation around the X axis can be easily controlled. Even if there is only one, the rotation around the X axis can be controlled as long as it is displaced from the X axis. Furthermore, when controlling the Z-axis position and rotation around the X and Y axes, measure the Z-axis direction position and two rotations around the X and Y axes, and use an eddy current sensor to apply closed-loop control. The at least three non-contact type position sensors are arranged on the upper surface (or lower surface) of the disk-shaped magnetically levitated object 50.
 本実施例では、径方向に着磁されて円環状に配置されている永久磁石6と、永久磁石6の各磁極を接続する円環状のバイパス磁路9Aとが磁気浮上ロータである磁気浮上対象物50に設けられていると共に、電磁石20の電磁石コア1が同心円上に配置され、電磁石20の電磁石コア1を通過する磁束は円板状の磁気浮上対象物50の回転により変化しないので、渦電流損等鉄損の低いハイブリッド型磁気軸受け200を構成することが可能となる。なお、バイパス磁路9Aも円環状に配置されている永久磁石6のそれぞれに対応して設けられるため、円環状に配置されていれば、形状が必ずしも円環状である必要がない。 In this embodiment, the permanent magnet 6 that is magnetized in the radial direction and arranged in an annular shape, and the annular bypass magnetic path 9A that connects the magnetic poles of the permanent magnet 6 are magnetic levitation targets. Since the electromagnet core 1 of the electromagnet 20 is arranged concentrically and the magnetic flux passing through the electromagnet core 1 of the electromagnet 20 is not changed by the rotation of the disk-shaped magnetic levitation object 50, It is possible to configure the hybrid magnetic bearing 200 with low iron loss such as current loss. In addition, since the bypass magnetic path 9A is also provided corresponding to each of the permanent magnets 6 arranged in an annular shape, the shape does not necessarily need to be an annular shape if arranged in an annular shape.
 本実施例では磁気浮上対象物50が円板状の磁気浮上ロータである場合について説明した。しかし、磁気浮上対象物50の形状は円板状の磁気浮上ロータに限定されず、その内部を中空とした円環状の磁気浮上ロータでも良く、このような形態を含むものとして使用する。 In the present embodiment, the case where the magnetic levitation object 50 is a disk-shaped magnetic levitation rotor has been described. However, the shape of the magnetically levitated object 50 is not limited to the disk-shaped magnetically levitated rotor, but may be an annular magnetic levitating rotor having a hollow inside, and is used as including such a form.
 図8に、本発明の第2の実施例としての円板状の磁気浮上ロータに対するハイブリッド型磁気軸受け300の構成を示す。 FIG. 8 shows the configuration of a hybrid magnetic bearing 300 for a disk-shaped magnetically levitated rotor as a second embodiment of the present invention.
 図6に示す第1の実施例に係るハイブリッド型磁気軸受け200に、図8のように、磁気浮上対象物50である円板状の磁気浮上ロータの外周面に径方向から対向させて1対の径方向電磁石30を配置させ、径方向電磁石30の電磁石コア31の突極を磁気浮上対象物50の外周面に露出した磁性体3および磁性体5にそれぞれ対向させて配置することで、永久磁石6、永久磁石4で生じた磁束が径方向電磁石30の電磁石コア31を通る。この状態で電磁石コイル32に電流を流せば、電磁石コア31と磁気浮上対象物50である円環状浮上体外周縁の間隙の磁束の強弱制御が可能となり、磁気浮上対象物50である円環状浮上体の径方向、例えばX軸方向の位置も制御可能となる。 A pair of hybrid magnetic bearings 200 according to the first embodiment shown in FIG. 6 is opposed to the outer peripheral surface of a disk-like magnetic levitation rotor, which is a magnetic levitation object 50, from the radial direction as shown in FIG. Are arranged so that the salient poles of the electromagnet core 31 of the radial electromagnet 30 face the magnetic body 3 and the magnetic body 5 exposed on the outer peripheral surface of the magnetic levitation object 50, respectively. Magnetic flux generated by the magnet 6 and the permanent magnet 4 passes through the electromagnet core 31 of the radial electromagnet 30. If an electric current is passed through the electromagnet coil 32 in this state, it is possible to control the strength of the magnetic flux between the electromagnet core 31 and the outer periphery of the annular levitation body 50 that is the magnetic levitation object 50, and the annular levitation body that is the magnetic levitation object 50. The position in the radial direction, for example, the position in the X axis direction can also be controlled.
 径方向の位置を制御するもう1対の径方向電磁石30を図8中の径方向電磁石30と直交するように、磁気浮上対象物50である円板状浮上体外周縁に対向させて配置することで、磁気浮上対象物50の径方向、例えばY軸方向の位置も制御可能となる。よって、 軸方向の位置を制御する1対の電磁石20二組、径方向の位置を制御する1対の径方向電磁石30二組を用いることによりX、Y、Z軸方向の3方向位置とX、Y軸周りの2回転の5軸制御が可能となる。さらに、X、Y、Z軸方向の3方向の位置とX、Y軸周りの回転を制御する場合、X、Y、Z軸方向の3方向位置とX、Y軸周りの2回転度の計測を行い、閉ループ制御をかけるために渦電流センサ等の非接触型位置センサを磁気浮上対象物50の上面(又は下面)に最低3つ(Z軸方向位置、X、Y軸周りの2回転度)、径方向外周部に2つ(X、Y軸方向位置)を配置することになる。また、このように構成することにより、ハイブリッド型磁気軸受け300の姿勢によって、磁気浮上対象物50に様々な方向から重力が作用しても対応可能である。 Another pair of radial electromagnets 30 for controlling the position in the radial direction are arranged so as to be opposed to the outer periphery of the disk-shaped floating body 50 as the magnetically levitated object 50 so as to be orthogonal to the radial electromagnet 30 in FIG. Thus, the radial direction of the magnetically levitated object 50, for example, the position in the Y-axis direction can also be controlled. Therefore, by using two pairs of electromagnets 20 for controlling the position in the radial direction and two pairs of radial electromagnets 30 for controlling the position in the radial direction, the three-direction positions in the X, Y, and Z axis directions and X , 5-axis control of 2 rotations around the Y-axis becomes possible. Furthermore, when controlling the position in the three directions of the X, Y and Z axes and the rotation around the X and Y axes, the measurement of the three directions in the X, Y and Z axes and the degree of rotation around the X and Y axes is performed. In order to apply closed loop control, at least three non-contact position sensors such as an eddy current sensor are provided on the upper surface (or lower surface) of the magnetically levitated object 50 (Z-axis position, two degrees of rotation around the X and Y axes). ), Two (X and Y axis direction positions) are arranged on the outer periphery in the radial direction. Further, with this configuration, it is possible to cope with gravity acting on the magnetic levitation object 50 from various directions depending on the attitude of the hybrid magnetic bearing 300.
 このように構成されたハイブリッド型磁気軸受け300は、径方向電磁石30の電磁石コア31に流れる磁束が円環状浮上体の回転により変化しないので、渦電流損等鉄損の低いハイブリッド型磁気軸受け300を構成することが可能となる。 In the hybrid magnetic bearing 300 configured as described above, the magnetic flux flowing through the electromagnet core 31 of the radial electromagnet 30 does not change due to the rotation of the annular floating body, so that the hybrid magnetic bearing 300 with low iron loss such as eddy current loss is obtained. It can be configured.
 また、本実施例における磁気浮上ロータの形状は円板状に限定されず、その内部が中空である円環状の形状でも良く、このような形態を含むものとして使用する。 Further, the shape of the magnetically levitated rotor in this embodiment is not limited to a disc shape, and may be an annular shape having a hollow inside, and is used as including such a form.
 ここで、磁気浮上ロータが円環状である場合には、本実施例における径方向電磁石30の配置は図8に示す構成に限定されず、例えば電磁石コア31と電磁石コイル32からなる径方向電磁石30を円環中央内部に互いに背中向きに配置して、径方向電磁石30の突極が磁性体8と5に対向するように配置しても同様の効果が得られる。 Here, when the magnetically levitated rotor has an annular shape, the arrangement of the radial electromagnets 30 in the present embodiment is not limited to the configuration shown in FIG. 8. For example, the radial electromagnet 30 including the electromagnet core 31 and the electromagnet coil 32. The same effect can be obtained by arranging the magnets so as to face each other in the center of the annular ring so that the salient poles of the radial electromagnet 30 face the magnetic bodies 8 and 5.
 図9に、本発明の第3の実施例として、2個の磁気浮上制御装置100が組み込まれた、円柱状の磁気浮上ロータに対するハイブリッド型磁気軸受け400の構成例を示す。また、図9に示すハイブリッド型磁気軸受け400の断面図を図10に示す。各図において同一符号は同一物を示し、電磁石コア1と電磁石コイル2からなる電磁石20が左右に、即ち磁気浮上制御装置100を構成する電磁石20は、磁気浮上対象物50である磁気浮上ロータの側面に対向、即ち磁気浮上ロータに対して径方向から対向して配置され、2個の電磁石30を含むハイブリッド型磁気軸受け400の断面図は図10のようになる。 FIG. 9 shows a configuration example of a hybrid magnetic bearing 400 for a columnar magnetic levitation rotor in which two magnetic levitation control devices 100 are incorporated as a third embodiment of the present invention. FIG. 10 shows a cross-sectional view of the hybrid magnetic bearing 400 shown in FIG. In each figure, the same reference numeral indicates the same object, and the electromagnet 20 composed of the electromagnet core 1 and the electromagnet coil 2 is on the left and right, that is, the electromagnet 20 constituting the magnetic levitation controller 100 is a magnetic levitation object 50. FIG. 10 shows a cross-sectional view of a hybrid magnetic bearing 400 that is disposed opposite to the side surface, that is, opposed to the magnetically levitated rotor in the radial direction and includes two electromagnets 30.
 図1では棒状として表した永久磁石6を、第3の実施例では、図9に示すように円筒状にしたものを使う。図1では棒状であった永久磁石4、6、7、磁性体3、5、8は、磁気浮上対象物50である円柱状の磁気浮上ロータの中心軸に対して円環状配置とされ、内部が非磁性体51で満たされている。なお、本例では、内部を非磁性体51としたが、内部を非磁性体とする必要はなく、例えば磁性体で構成した場合には、磁性体5として機能することになる。永久磁石6は図9中上下方向、即ち円柱状の磁気浮上ロータの軸方向に着磁され(例えば、上側がN、下側がS)、本例では上下方向(Z軸方向)おいて円環状の磁性体3と8ではさみ込まれている。また、永久磁石4も円筒状となっており、本例では径方向に着磁(例えば外周側がN、内周側がS)されており、径方向において円筒状の磁性体3と5ではさみ込まれている。さらに、永久磁石7も円筒状となっており、本例では磁性体8の内側に配設され、径方向において円筒状の磁性体8と5ではさみ込まれている。この構成により、図1に示す例と同様に、磁性体3、永久磁石4、磁性体5、永久磁石7および磁性体8により、磁気浮上ロータである磁気浮上対象物50の軸方向において、円筒状の永久磁石6の各磁極を接続する円環状のバイパス磁路9Aが永久磁石6と並列に形成されることになる。永久磁石4の上下方向の高さは磁性体3と等しくとるのが妥当であるがその限りではない。磁性体5の上下方向の高さは磁性体3、永久磁石6、磁性体8の上下方向の高さを加えた高さが妥当であるがその限りではない。電磁石コイルがコアに巻かれる箇所は図1に示す例と変わりはない。本図では図1の永久磁石7は磁性体8の内側に配設されるが、外部からは隠れて見えていない。 In FIG. 1, a permanent magnet 6 represented as a rod is used, and in the third embodiment, a cylindrical magnet as shown in FIG. 9 is used. The permanent magnets 4, 6, 7 and magnetic bodies 3, 5, 8, which are rod-shaped in FIG. 1, are arranged in an annular shape with respect to the central axis of a columnar magnetic levitation rotor that is a magnetic levitation object 50. Is filled with the non-magnetic material 51. In this example, the inside is the non-magnetic body 51, but the inside is not required to be a non-magnetic body. For example, when it is made of a magnetic body, it functions as the magnetic body 5. The permanent magnet 6 is magnetized in the vertical direction in FIG. 9, that is, in the axial direction of the cylindrical magnetic levitation rotor (for example, N on the upper side and S on the lower side). The magnetic bodies 3 and 8 are sandwiched. The permanent magnet 4 is also cylindrical, and in this example, it is magnetized in the radial direction (for example, N on the outer peripheral side and S on the inner peripheral side), and is sandwiched between the cylindrical magnetic bodies 3 and 5 in the radial direction. It is rare. Further, the permanent magnet 7 is also cylindrical, and is disposed inside the magnetic body 8 in this example, and is sandwiched between the cylindrical magnetic bodies 8 and 5 in the radial direction. With this configuration, similarly to the example shown in FIG. 1, the magnetic body 3, the permanent magnet 4, the magnetic body 5, the permanent magnet 7, and the magnetic body 8 are cylindrical in the axial direction of the magnetic levitation object 50 that is a magnetic levitation rotor. An annular bypass magnetic path 9 </ b> A connecting the magnetic poles of the permanent magnet 6 is formed in parallel with the permanent magnet 6. Although it is appropriate that the height of the permanent magnet 4 in the vertical direction is equal to that of the magnetic body 3, it is not limited thereto. The height in the vertical direction of the magnetic body 5 is appropriate to the height of the magnetic body 3, the permanent magnet 6, and the magnetic body 8 in the vertical direction, but is not limited thereto. The place where the electromagnet coil is wound around the core is not different from the example shown in FIG. In this figure, the permanent magnet 7 of FIG. 1 is disposed inside the magnetic body 8 but is not visible from the outside.
 このように磁石配列された円柱状の磁気浮上対象物50の周面に、突極1aを磁性体3に、突極1cを磁性体8にそれぞれ対向させるように電磁石20を配置することにより、磁気浮上対象物50に対して径方向に吸引力を発生させることが可能となる。従って、磁気浮上対象物50の径方向(左右)である図9に示すY軸方向に対向して一対の電磁石20を配置することにより、磁気浮上対象物50に対して浮上体径方向Y軸方向にプッシュプル方式で吸引力を発生させることが可能となり、Y軸方向の位置を制御することができる。また、径方向の位置を制御するもう1対の電磁石20を図9中の電磁石20と直交する位置に、即ちX軸方向に対向させて配置することによりX軸方向にも吸引力を発生することができる。このように構成することにより、発生した吸引力で磁気浮上対象物50の位置はX軸、Y軸、2次元平面上の任意の点に制御可能となると共に、例えば下方向に重力がかかっているとしても十分な吸引力を発生可能なので、磁気浮上対象物50を径方向に吸引することで浮上させることが可能である。この場合、X、Y軸方向の位置の計測を行い、閉ループ制御をかけるために渦電流センサ等の非接触型位置センサを円筒状浮上体の外周部に2つ配置することになる。 By disposing the electromagnet 20 on the peripheral surface of the columnar magnetic levitation object 50 arranged in this manner so that the salient pole 1a faces the magnetic body 3 and the salient pole 1c faces the magnetic body 8, respectively. It is possible to generate an attractive force in the radial direction with respect to the magnetically levitated object 50. Therefore, by arranging the pair of electromagnets 20 so as to oppose the Y-axis direction shown in FIG. 9 which is the radial direction (left and right) of the magnetic levitation object 50, the levitation body radial direction Y-axis with respect to the magnetic levitation object 50 A suction force can be generated in a push-pull manner in the direction, and the position in the Y-axis direction can be controlled. Further, an attractive force is also generated in the X-axis direction by arranging another pair of electromagnets 20 for controlling the position in the radial direction at positions orthogonal to the electromagnet 20 in FIG. be able to. With this configuration, the position of the magnetically levitated object 50 can be controlled to any point on the X-axis, Y-axis, and two-dimensional plane by the generated attractive force, and, for example, gravity is applied downward. Even if it is, it is possible to generate a sufficient attractive force, so that the magnetically levitated object 50 can be levitated by sucking it in the radial direction. In this case, two non-contact type position sensors such as an eddy current sensor are arranged on the outer periphery of the cylindrical floating body in order to measure the positions in the X and Y axis directions and to perform closed loop control.
 このハイブリッド型磁気軸受け400において、電磁石20の電磁石コア1を通る磁束は磁気浮上対象物50の回転により変化しないので、渦電流損等鉄損の低い磁気軸受を構成することが可能となる。 In this hybrid magnetic bearing 400, since the magnetic flux passing through the electromagnet core 1 of the electromagnet 20 does not change due to the rotation of the magnetic levitation object 50, a magnetic bearing with low iron loss such as eddy current loss can be configured.
 また、本実施例における磁気浮上対象物50は円柱状の磁気浮上ロータに限定されるものではなく、その内部が中空の円筒状の磁気浮上ロータであっても良い。 Further, the magnetic levitation object 50 in the present embodiment is not limited to the columnar magnetic levitation rotor, and may be a hollow cylindrical magnetic levitation rotor.
 磁気浮上対象物50を円筒状の磁気浮上ロータとした場合には、本実施例における永久磁石と磁性体の配置は図9に示す構成に限定されるものではなく、例えば磁性体5が円筒の外周面側に、磁性体3、8、永久磁石6が円筒の内周面側に配置されても良い。この場合、電磁石コア1と電磁石コイル2からなる電磁石20を円筒中央内部に互いに背中向きに配置して、突極(電磁石コア1の凸状に突き出している部分)が磁性体3と磁性体8に対向するように配置しても同様の効果が得られる。 When the magnetic levitation object 50 is a cylindrical magnetic levitation rotor, the arrangement of the permanent magnet and the magnetic body in this embodiment is not limited to the configuration shown in FIG. The magnetic bodies 3 and 8 and the permanent magnet 6 may be disposed on the inner peripheral surface side of the cylinder on the outer peripheral surface side. In this case, the electromagnet 20 composed of the electromagnet core 1 and the electromagnet coil 2 is disposed in the center of the cylinder so as to face each other, and the salient poles (portions protruding in the convex shape of the electromagnet core 1) are the magnetic bodies 3 and 8. The same effect can be obtained even if they are arranged so as to face each other.
 図11に、本発明の第4の実施例としての円柱状の磁気浮上ロータに対するハイブリッド型磁気軸受け500の構成例を示す。図11において、各図と同一符号は同一物を示し、電磁石コア1と電磁石コイル2からなる電磁石20が左右に、即ち2個の電磁石20が磁気浮上ロータに対して径方向から対向して配置されている。 FIG. 11 shows a configuration example of a hybrid magnetic bearing 500 for a columnar magnetic levitation rotor as a fourth embodiment of the present invention. In FIG. 11, the same reference numerals as those in the drawings indicate the same thing, and the electromagnet 20 composed of the electromagnet core 1 and the electromagnet coil 2 is arranged on the left and right, that is, the two electromagnets 20 are opposed to the magnetically levitated rotor in the radial direction. Has been.
 図9に示す第3の実施例に係るハイブリッド型磁気軸受400に対して、図11に示すように磁気浮上対象物50である円柱状の磁気浮上ロータの上面に対向させて1対の軸方向電磁石40を配置させ、軸方向電磁石40の電磁石コア41の突極を磁気浮上対象物50の上面に露出した磁性体3および磁性体5にそれぞれ対向させて配置することで、永久磁石6、他の磁石手段としての永久磁石4で生じた二つの磁束が重畳されて電磁石コア1を通る。この状態で電磁石コイル42に電流を流せば、電磁石コア41と磁気浮上対象物50である円柱状浮上体上面の間隙の磁束の強弱制御が可能となり、磁気浮上対象物50である円柱の軸方向Z軸方向の位置と、Z軸方向と直交する、例えばY軸周りの回転も制御可能となる。他の1対の軸方向電磁石40を図11中の軸方向電磁石40と直交するように、磁気浮上対象物50である円柱状浮上体上面に対向させて配置することで、磁気浮上対象物50である円柱状浮上体のZ軸方向と直交する、例えばX軸周りの回転も制御可能となる。よって、径方向の位置を制御する1対の電磁石20を二組、 軸方向の位置を制御する1対の軸方向電磁石40二組を用いることによりX、Y、Z軸方向の3方向位置とX、Y軸周りの2回転の5軸制御が可能となる。さらに、X、Y、Z軸方向の3方向の位置とX、Y軸周りの回転を制御する場合、X、Y、Z軸方向の3方向位置とX、Y軸周りの2回転度の計測を行い、閉ループ制御をかけるために渦電流センサ等の非接触型位置センサを磁気浮上対象物50の上面(又は下面)に最低3つ(Z軸方向位置、X、Y軸周りの2回転度)、径方向外周部に2つ(X、Y軸方向位置)を配置することになる。また、このように構成することにより、ハイブリッド型磁気軸受け300の姿勢によって、磁気浮上対象物50に様々な方向から重力が作用しても下向きの力がかかるが対応可能である。 For the hybrid type magnetic bearing 400 according to the third embodiment shown in FIG. 9, a pair of axial directions are made to face the upper surface of a columnar magnetic levitation rotor as the magnetic levitation object 50 as shown in FIG. The electromagnet 40 is arranged, and the salient poles of the electromagnet core 41 of the axial electromagnet 40 are arranged to face the magnetic body 3 and the magnetic body 5 exposed on the upper surface of the magnetic levitation object 50, so that the permanent magnet 6, etc. Two magnetic fluxes generated by the permanent magnet 4 as the magnet means are superimposed and pass through the electromagnet core 1. If a current is passed through the electromagnet coil 42 in this state, it is possible to control the strength of the magnetic flux in the gap between the electromagnet core 41 and the upper surface of the columnar floating body 50 that is the magnetic levitation object 50, and the axial direction of the cylinder that is the magnetic levitation object 50 The position in the Z-axis direction and the rotation around the Y-axis, for example, orthogonal to the Z-axis direction can also be controlled. The other pair of axial electromagnets 40 are arranged so as to be opposed to the upper surface of the columnar floating body that is the magnetically levitated object 50 so as to be orthogonal to the axial electromagnet 40 in FIG. It is also possible to control the rotation of the columnar floating body perpendicular to the Z-axis direction, for example, around the X-axis. Therefore, by using two pairs of electromagnets 20 that control the position in the radial direction and two pairs of axial electromagnets 40 that control the position in the radial direction, the three-direction positions in the X, Y, and Z axis directions 5-axis control of 2 rotations around the X and Y axes becomes possible. In addition, when controlling the position in the three directions of the X, Y, and Z axes and the rotation around the X and Y axes, the measurement of the three directions in the X, Y, and Z axes and the degree of two rotations around the X and Y axes is performed. In order to apply closed loop control, at least three non-contact position sensors such as an eddy current sensor are provided on the upper surface (or lower surface) of the magnetically levitated object 50 (Z-axis position, two degrees of rotation around the X and Y axes). ), Two (X and Y axis direction positions) are arranged on the outer periphery in the radial direction. Further, with this configuration, depending on the attitude of the hybrid magnetic bearing 300, a downward force is applied even if gravity acts on the magnetically levitated object 50 from various directions.
 このように構成されたハイブリッド型磁気軸受け500は、電磁石20の電磁石コア41に流れる磁束が円柱状浮上体の回転により変化しないので、渦電流損等鉄損の低いハイブリッド型磁気軸受け500を構成することが可能となる。 The hybrid magnetic bearing 500 configured in this way constitutes the hybrid magnetic bearing 500 with low iron loss such as eddy current loss because the magnetic flux flowing through the electromagnet core 41 of the electromagnet 20 does not change due to the rotation of the columnar floating body. It becomes possible.
また、本実施例における磁気浮上対象物50は円柱状の磁気浮上ロータに限定されるものではなく、その内部が中空の円筒状の磁気浮上ロータであっても良い。 In addition, the magnetically levitated object 50 in the present embodiment is not limited to a columnar magnetic levitation rotor, and may be a hollow cylindrical magnetic levitation rotor.
 磁気浮上対象物50を円筒状とした場合には、本実施例における永久磁石と磁性体の配置は図11に示す構成に限定されるものではなく、例えば磁性体5が円筒の外周面側に、磁性体3、8、永久磁石6が円筒の内周面側に配置されても良い。この場合、電磁石コア1と電磁石コイル2からなる電磁石20を円筒中央内部に互いに背中向きに配置して、突極(電磁石コア1の凸状に突き出している部分)が磁性体3と磁性体8に対向するように配置しても同様の効果が得られる。 When the magnetically levitated object 50 is cylindrical, the arrangement of the permanent magnet and the magnetic body in this embodiment is not limited to the configuration shown in FIG. 11. For example, the magnetic body 5 is located on the outer peripheral surface side of the cylinder. The magnetic bodies 3 and 8 and the permanent magnet 6 may be arranged on the inner peripheral surface side of the cylinder. In this case, the electromagnet 20 composed of the electromagnet core 1 and the electromagnet coil 2 is disposed in the center of the cylinder so as to face each other, and the salient poles (portions protruding in the convex shape of the electromagnet core 1) are the magnetic bodies 3 and 8. The same effect can be obtained even if they are arranged so as to face each other.
 次に、図1に示す磁気浮上制御装置における永久磁石4の磁気抵抗と、バイパス磁路9Aの永久磁石6、7の磁気抵抗との関係を、図12に示す電磁石20から見た磁気等価回路を用いて検討する。図12において、Femは、電磁石20の起磁力、Φem-gは、回路内エアギャップ(突極1a、1cと磁気浮上対象物50との間のエアギャップ)中の磁束、Φem-1は、永久磁石6を通る磁束、Φem-2は、永久磁石4、7を通る磁束、Rgは、回路内エアギャップの磁気抵抗、R1は、永久磁石6の磁気抵抗、R2は、永久磁石4、7の磁気抵抗をそれぞれ示している。 Next, the magnetic equivalent circuit as seen from the electromagnet 20 shown in FIG. 12 shows the relationship between the magnetic resistance of the permanent magnet 4 and the magnetic resistance of the permanent magnets 6 and 7 in the bypass magnetic path 9A in the magnetic levitation control apparatus shown in FIG. To consider. In FIG. 12, Fem is the magnetomotive force of the electromagnet 20, Φem-g is the magnetic flux in the in-circuit air gap (the air gap between the salient poles 1a and 1c and the magnetic levitation object 50), and Φem-1 is Magnetic flux passing through the permanent magnet 6, Φem-2 is magnetic flux passing through the permanent magnets 4 and 7, Rg is magnetic resistance of the air gap in the circuit, R1 is magnetic resistance of the permanent magnet 6, and R2 is permanent magnets 4, 7 The magnetic resistance of each is shown.
 図12に示す磁気等価回路において回路全体の合成抵抗Rcは、
 Rc=2Rg+[1/{(1/R1)+(1/2R2)}]
   =2Rg+2R1R2/(R1+2R2)となる。
 ここで、永久磁石4、7の磁気抵抗を永久磁石6の磁気抵抗を基準にして表すことで、R2=kR1とすると、
 Rc=2Rg+R1・2k/(2k+1)
となり、回路全体の合成抵抗Rcは、2k/(2k+1)
In the magnetic equivalent circuit shown in FIG. 12, the combined resistance Rc of the entire circuit is
Rc = 2Rg + [1 / {(1 / R1) + (1 / 2R2)}]
= 2Rg + 2R1R2 / (R1 + 2R2).
Here, by expressing the magnetic resistance of the permanent magnets 4 and 7 with reference to the magnetic resistance of the permanent magnet 6, R2 = kR1.
Rc = 2Rg + R1 · 2k / (2k + 1)
The combined resistance Rc of the entire circuit is 2k / (2k + 1)
 永久磁石6の磁気抵抗R1にかかっている2k/(2k+1)は、kの値が1に比べて非常に大きい場合、すなわち永久磁石6の磁気抵抗R1に比べて永久磁石4、7の磁気抵抗R2が極めて大きい場合に1となり、そうでない場合は、必ず1以下になる。従って、バイパス磁路9Aを設けることにより、回路全体の磁気抵抗Rcが減少することになり、電磁石20による発生磁束および発生吸引力を増加させることになる。 2k / (2k + 1) applied to the magnetic resistance R1 of the permanent magnet 6 is very large compared to 1, that is, the magnetic resistance of the permanent magnets 4 and 7 compared to the magnetic resistance R1 of the permanent magnet 6. It is 1 when R2 is very large, and is always 1 or less otherwise. Therefore, by providing the bypass magnetic path 9A, the magnetic resistance Rc of the entire circuit is reduced, and the generated magnetic flux and the generated attractive force by the electromagnet 20 are increased.
 なお、図6に示すように、円板状の磁気浮上ロータに対して複数の電磁石20を配置した場合には、電磁石20で発生する磁束は磁性体3、8を通って他の電磁石20を通るため、3次元的経路をとることになる。そこで、円板状の磁気浮上ロータに対して4個の電磁石20を配置したハイブリッド型磁気軸受けのモデルにおいて、図13に示す電磁石20から見た磁気等価回路を用いて検討する。 As shown in FIG. 6, when a plurality of electromagnets 20 are arranged with respect to the disk-shaped magnetically levitated rotor, the magnetic flux generated by the electromagnet 20 passes through the magnetic bodies 3 and 8 to the other electromagnets 20. In order to pass, a three-dimensional route is taken. Therefore, a hybrid magnetic bearing model in which four electromagnets 20 are arranged with respect to a disk-shaped magnetically levitated rotor will be examined using a magnetic equivalent circuit viewed from the electromagnet 20 shown in FIG.
 図12に示す磁気等価回路において回路全体の合成抵抗Rcは、
 Rc=2Rg+[1/{(3/2Rg)+(4/R1)+(2/R2)}]
となる。
 ここで、永久磁石4、7の磁気抵抗に起因する値である(2/R2)は、r2=∞のとき、すなわちバイパス磁路9Aを設けない場合に「0」になり、バイパス磁路9Aを設け場合には、必ず「0」よりも大きな値となることが判り、結果として回路全体の合成抵抗Rcが減少することになる。
In the magnetic equivalent circuit shown in FIG. 12, the combined resistance Rc of the entire circuit is
Rc = 2Rg + [1 / {(3 / 2Rg) + (4 / R1) + (2 / R2)}]
It becomes.
Here, the value (2 / R2) resulting from the magnetic resistance of the permanent magnets 4 and 7 becomes “0” when r2 = ∞, that is, when the bypass magnetic path 9A is not provided, and the bypass magnetic path 9A. When it is provided, it is found that the value is always larger than “0”, and as a result, the combined resistance Rc of the entire circuit is reduced.
 このように図12に示す磁気等価回路を用いた検証では、kの値が小さいほど、すなわち永久磁石6の磁気抵抗R1に比べて永久磁石4、7の磁気抵抗R2が小さいほど、回路全体の磁気抵抗Rcが減少することが判る。しかしながら、永久磁石6の磁気抵抗R1に比べて永久磁石4、7の磁気抵抗R2が小さくなりすぎると、電磁石20による発生磁束および発生吸引力を増加するものの、永久磁石6の磁束がバイパス磁路9Aに漏れてしまい、バイアス磁束が減少してしまうことが想定される。 As described above, in the verification using the magnetic equivalent circuit shown in FIG. 12, the smaller the value of k, that is, the smaller the magnetic resistance R2 of the permanent magnets 4 and 7 compared to the magnetic resistance R1 of the permanent magnet 6, It can be seen that the magnetic resistance Rc decreases. However, if the magnetic resistance R2 of the permanent magnets 4 and 7 becomes too small compared to the magnetic resistance R1 of the permanent magnet 6, the magnetic flux generated by the electromagnet 20 and the generated attractive force increase, but the magnetic flux of the permanent magnet 6 is bypassed by the bypass magnetic path. It is assumed that the bias magnetic flux decreases due to leakage to 9A.
 そこで、円板状の磁気浮上ロータに対して4個の電磁石20を配置したハイブリッド型磁気軸受けのモデルにおいて、バイパス磁路9Aの永久磁石4、7の厚みIを変動させるパラメータとして、有限要素法による数値解析を行い、発生吸引力(N)、力係数(N/A:単位電流当たりに発生する吸引力)を検討した。検討に用いた形状および寸法は、図14に示す通りである。また、解析条件は、メッシュ数を約24万(233,326)とし、永久磁石4、6、7としてネオジム磁石(保磁力:962kA/m、残留磁束密度:1.43T、比透磁率:1.18)を、磁性体3、5、8としてSUY-1(JIS規格)をそれぞれ用いた。さらに、電磁石20の励磁電流を-1A、0A、1Aとし、それぞれにおいて、バイパス磁路9Aの永久磁石4、7の厚みIを0.1mm、0.3mm、0.5mm、0.7mm、1.0mm、1.3mm、1.5mm、2.0mm、3.0mm、4.0mmに変動させて数値解析を行った。なお、磁気抵抗が永久磁石の断面積に単純に反比例し、厚さに単純に比例すると考えると、永久磁石4、7の厚みI=0.1mmの場合、(バイパス磁路9Aの磁気抵抗2R2)/(永久磁石6の磁気抵抗R1)≒0.02になり、(合成抵抗Rc)/(永久磁石6の磁気抵抗R1)≒0.02になる。同様に、
厚みI=0.3mmの場合、2R2/R1≒0.06、Rc/R1≒0.06、
厚みI=0.5mmの場合、2R2/R1≒0.10、Rc/R1≒0.09、
厚みI=0.7mmの場合、2R2/R1≒0.14、Rc/R1≒0.13、
厚みI=1.0mmの場合、2R2/R1≒0.21、Rc/R1≒0.17、
厚みI=1.3mmの場合、2R2/R1≒0.27、Rc/R1≒0.21、
厚みI=1.5mmの場合、2R2/R1≒0.31、Rc/R1≒0.24、
厚みI=2.0mmの場合、2R2/R1≒0.41、Rc/R1≒0.29、
厚みI=3.0mmの場合、2R2/R1≒0.62、Rc/R1≒0.38、
厚みI=4.0mmの場合、2R2/R1≒0.83、Rc/R1≒0.45となる。
Therefore, in a hybrid magnetic bearing model in which four electromagnets 20 are arranged with respect to a disk-shaped magnetically levitated rotor, a finite element method is used as a parameter for changing the thickness I of the permanent magnets 4 and 7 of the bypass magnetic path 9A. The generated suction force (N) and the force coefficient (N / A: suction force generated per unit current) were examined. The shape and dimensions used for the study are as shown in FIG. The analysis conditions are about 240,000 meshes (233,326), neodymium magnets as the permanent magnets 4, 6, 7 (coercive force: 962 kA / m, residual magnetic flux density: 1.43 T, relative permeability: 1). 18), SUY-1 (JIS standard) was used as the magnetic bodies 3, 5, and 8, respectively. Further, the exciting current of the electromagnet 20 is set to −1A, 0A, and 1A, and the thickness I of the permanent magnets 4 and 7 of the bypass magnetic path 9A is 0.1 mm, 0.3 mm, 0.5 mm, 0.7 mm, 1 Numerical analysis was performed by varying the thickness to 0.0 mm, 1.3 mm, 1.5 mm, 2.0 mm, 3.0 mm, and 4.0 mm. Assuming that the magnetic resistance is simply inversely proportional to the cross-sectional area of the permanent magnet and simply proportional to the thickness, when the thickness I of the permanent magnets 4 and 7 is 0.1 mm (the magnetic resistance 2R2 of the bypass magnetic path 9A). ) / (Magnetic resistance R1 of the permanent magnet 6) ≈0.02, and (combined resistance Rc) / (magnetic resistance R1 of the permanent magnet 6) ≈0.02. Similarly,
When thickness I = 0.3 mm, 2R2 / R1≈0.06, Rc / R1≈0.06,
When the thickness I is 0.5 mm, 2R2 / R1≈0.10, Rc / R1≈0.09,
When thickness I = 0.7 mm, 2R2 / R1≈0.14, Rc / R1≈0.13,
When thickness I = 1.0 mm, 2R2 / R1≈0.21, Rc / R1≈0.17,
When the thickness I = 1.3 mm, 2R2 / R1≈0.27, Rc / R1≈0.21,
When the thickness I is 1.5 mm, 2R2 / R1≈0.31, Rc / R1≈0.24,
When thickness I = 2.0 mm, 2R2 / R1≈0.41, Rc / R1≈0.29,
When thickness I = 3.0 mm, 2R2 / R1≈0.62, Rc / R1≈0.38,
When the thickness I is 4.0 mm, 2R2 / R1≈0.83 and Rc / R1≈0.45.
 図15は、バイパス磁路9Aの永久磁石4、7の厚みIをパラメータとして変動させた場合の電磁石20の励磁電流と磁気吸引力との関係を示すグラフであり、図16は、横軸をバイパス磁路9Aの永久磁石4、7の厚みIにして図15に示すグラフを書き直したものである。なお、永久磁石4、7の厚みIが0mmの場合は,バイパス磁路9Aを取り除いた永久磁石6のみで解析を行った結果である。 FIG. 15 is a graph showing the relationship between the exciting current of the electromagnet 20 and the magnetic attractive force when the thickness I of the permanent magnets 4 and 7 of the bypass magnetic path 9A is varied as a parameter. The graph shown in FIG. 15 is rewritten with the thickness I of the permanent magnets 4 and 7 of the bypass magnetic path 9A. In addition, when the thickness I of the permanent magnets 4 and 7 is 0 mm, it is the result of having analyzed only by the permanent magnet 6 which removed the bypass magnetic path 9A.
 図17は、図15のグラフの傾き(力係数(N/A):単位電流あたり発生可能な力を表す)に対するバイパス磁路9Aの永久磁石4、7の厚みIの影響を示すグラフであり、図18は、力係数を磁気浮上対象物50の質量で除した加速度係数(N/(A・kg))とバイパス磁路9Aの永久磁石4、7の厚みIの関係を示すグラフである。なお、加速度係数は,大きいほど「高加速度に耐える」、「高速に動かせる」等の磁気浮上対象物50を磁気浮上させる際の制御性(動特性)の良さを表す。 FIG. 17 is a graph showing the influence of the thickness I of the permanent magnets 4 and 7 of the bypass magnetic path 9A on the slope of the graph of FIG. 15 (force coefficient (N / A): representing a force that can be generated per unit current). FIG. 18 is a graph showing the relationship between the acceleration coefficient (N / (A · kg)) obtained by dividing the force coefficient by the mass of the magnetically levitated object 50 and the thickness I of the permanent magnets 4 and 7 of the bypass magnetic path 9A. . The greater the acceleration coefficient, the better the controllability (dynamic characteristics) when magnetically levitating object 50 such as “withstand high acceleration” and “movable at high speed”.
 図15および図16を参照すると、バイパス磁路9Aの永久磁石4、7の厚みIが0.3mm以下、すなわち2R2/R1≒0.06以下の場合では、永久磁石4、7によって形成される磁束が加わっているにもかかわらず、厚みI=0、すなわちバイパス磁路9Aを取り除いた永久磁石6のみの場合よりも磁気吸引力が弱くなっていることが判る。また、図17を参照すると、バイパス磁路9Aの永久磁石4、7の厚みIが0.3mm以下、すなわち2R2/R1≒0.06以下の場合では、厚みI=0、すなわちバイパス磁路9Aを取り除いた永久磁石6のみの場合よりも力係数(N/A)が小さな値となっている。さらに、図18を参照すると、バイパス磁路9Aの永久磁石4、7の厚みIが0.5mm以下、すなわち2R2/R1≒0.10以下の場合では、厚みI=0、すなわちバイパス磁路9Aを取り除いた永久磁石6のみの場合よりも加速度係数(N/(A・kg))が小さな値となっている。これらの現象は、永久磁石6の磁気抵抗R1に比べてバイパス磁路9Aの磁気抵抗2R2が小さすぎ、永久磁石6の磁束の大部分がバイパス磁路9Aに漏れてしまうことに起因すると考えられ、バイパス磁路9Aの磁気抵抗2R2は、永久磁石4、7の厚みI=0.7mmの場合の、2R2/R1≒0.14以上が望ましいことが判る。 15 and 16, when the thickness I of the permanent magnets 4 and 7 of the bypass magnetic path 9A is 0.3 mm or less, that is, 2R2 / R1≈0.06 or less, the permanent magnets 4 and 7 are formed. It can be seen that the magnetic attraction force is weaker than the case of only the permanent magnet 6 from which the thickness I = 0, that is, the bypass magnetic path 9A is removed, although the magnetic flux is applied. Referring to FIG. 17, when the thickness I of the permanent magnets 4 and 7 of the bypass magnetic path 9A is 0.3 mm or less, that is, 2R2 / R1≈0.06 or less, the thickness I = 0, that is, the bypass magnetic path 9A. The force coefficient (N / A) is smaller than that in the case of only the permanent magnet 6 from which is removed. Further, referring to FIG. 18, when the thickness I of the permanent magnets 4 and 7 of the bypass magnetic path 9A is 0.5 mm or less, that is, 2R2 / R1≈0.10 or less, the thickness I = 0, that is, the bypass magnetic path 9A. The acceleration coefficient (N / (A · kg)) is smaller than that in the case of only the permanent magnet 6 from which is removed. These phenomena are considered to be caused by the fact that the magnetic resistance 2R2 of the bypass magnetic path 9A is too small compared to the magnetic resistance R1 of the permanent magnet 6, and most of the magnetic flux of the permanent magnet 6 leaks to the bypass magnetic path 9A. It can be seen that the magnetic resistance 2R2 of the bypass magnetic path 9A is preferably 2R2 / R1≈0.14 or more when the thickness I of the permanent magnets 4 and 7 is 0.7 mm.
 また、図16を参照すると、永久磁石4、7の厚みIを大きくすることにより、磁気吸引力が増加し、本例では、100Nあたりに漸近している。この漸近効果は、バイパス磁路9Aを設けることによる磁気抵抗低下効果に依るものであると考えられる。なお、永久磁石4、7の厚みIを大きくすることにより、厚みI=0、すなわちバイパス磁路9Aを取り除いた永久磁石6のみの場合に比較して磁気吸引力が数倍に増加しているが、これは、磁気抵抗低下効果よりも二次永久磁石によるバイアス磁束増加に起因するものと考えられる。 Referring to FIG. 16, the magnetic attractive force is increased by increasing the thickness I of the permanent magnets 4 and 7, and asymptotically approaches 100N in this example. This asymptotic effect is considered to be due to the magnetoresistance lowering effect by providing the bypass magnetic path 9A. In addition, by increasing the thickness I of the permanent magnets 4 and 7, the magnetic attraction force is increased several times as compared with the case of the thickness I = 0, that is, only the permanent magnet 6 from which the bypass magnetic path 9A is removed. However, this is considered to be caused by an increase in the bias magnetic flux by the secondary permanent magnet rather than the magnetoresistance lowering effect.
 さらに、図17を参照すると、永久磁石4、7の厚みIを大きくすることにより、力係数が増加し、本例では、14N/Aに漸近している。この漸近効果も、バイパス磁路9Aを設けることによる磁気抵抗低下効果に依るものであると考えられる。 Further, referring to FIG. 17, by increasing the thickness I of the permanent magnets 4 and 7, the force coefficient increases, and in this example is asymptotic to 14 N / A. This asymptotic effect is also considered to be due to the magnetoresistance lowering effect by providing the bypass magnetic path 9A.
 さらに、図18を参照すると、永久磁石4、7の厚みIを大きくすることにより、磁気浮上対象物50の質量が増加するため、加速度係数は、永久磁石4、7の厚みI=2mmで最大値となっている。 Further, referring to FIG. 18, since the mass of the magnetically levitated object 50 is increased by increasing the thickness I of the permanent magnets 4 and 7, the acceleration coefficient is maximum when the thickness I of the permanent magnets 4 and 7 is 2 mm. It is a value.
 以上の結果により、永久磁石6よりも0.14倍以上の磁気抵抗2R2を有するバイパス磁路9Aを永久磁石6と並列に設けることにより、永久磁石6のみの場合に比べて、磁気吸引力、力係数、加速度係数が向上することが判る。また、制御性能、すなわち加速度係数に関しては、磁気浮上対象物50の質量増加によって、永久磁石4、7の厚みIに最適値(本列の場合には、厚みI=2mm)が存在することが判る。 Based on the above results, by providing a bypass magnetic path 9A having a magnetic resistance 2R2 of 0.14 times or more that of the permanent magnet 6 in parallel with the permanent magnet 6, the magnetic attraction force, compared to the case of the permanent magnet 6 alone, It can be seen that the force coefficient and acceleration coefficient are improved. Further, regarding the control performance, that is, the acceleration coefficient, there may be an optimum value for the thickness I of the permanent magnets 4 and 7 (thickness I = 2 mm in this case) due to the increase in the mass of the magnetically levitated object 50. I understand.
1、31、41 電磁石コア
1a、1c 突極
1b 接続部
2、32、42 電磁石コイル
3 磁性体
4 永久磁石
5 磁性体
6 永久磁石
7 永久磁石
8 磁性体
9 制御磁束
9A バイパス磁路
10 バイアス磁束
15 空間又は非磁性体部
20 電磁石
30 径方向電磁石
40 軸方向電磁石
50 磁気浮上対象物
51 非磁性体
100 磁気浮上制御装置
200、300、400、500 ハイブリッド型磁気軸受け
DESCRIPTION OF SYMBOLS 1, 31, 41 Electromagnetic core 1a, 1c Salient pole 1b Connection part 2, 32, 42 Electromagnetic coil 3 Magnetic body 4 Permanent magnet 5 Magnetic body 6 Permanent magnet 7 Permanent magnet 8 Magnetic body 9 Control magnetic flux 9A Bypass magnetic path 10 Bias magnetic flux DESCRIPTION OF SYMBOLS 15 Space or nonmagnetic body part 20 Electromagnet 30 Radial direction electromagnet 40 Axial direction electromagnet 50 Magnetic levitation object 51 Nonmagnetic body 100 Magnetic levitation control apparatus 200, 300, 400, 500 Hybrid type magnetic bearing

Claims (13)

  1.  バイアス用永久磁石によって形成されるバイアス磁束と、電磁石によって形成される制御磁束とによって前記電磁石に対する磁気浮上対象物の位置を制御する磁気浮上制御装置であって、
     前記バイアス磁束が前記電磁石の電磁石コアを通るように形成されると共に、
     前記制御磁束の磁路となるバイパス磁路が前記バイアス用永久磁石と並列に形成されており、
     該バイパス磁路が前記バイアス磁束の通過を阻止する方向に磁化されていることを特徴とする磁気浮上制御装置。
    A magnetic levitation control device for controlling the position of a magnetic levitation object with respect to the electromagnet by a bias magnetic flux formed by a permanent magnet for bias and a control magnetic flux formed by an electromagnet,
    The bias flux is formed to pass through the electromagnet core of the electromagnet;
    A bypass magnetic path serving as a magnetic path of the control magnetic flux is formed in parallel with the permanent magnet for bias;
    The magnetic levitation control apparatus, wherein the bypass magnetic path is magnetized in a direction that prevents passage of the bias magnetic flux.
  2.  前記バイパス磁路が永久磁石と磁性体とで構成され、前記バイパス磁路の永久磁石によって形成される磁束が前記バイアス磁束として機能することを特徴とする請求項1記載の磁気浮上制御装置。 The magnetic levitation control device according to claim 1, wherein the bypass magnetic path is composed of a permanent magnet and a magnetic body, and a magnetic flux formed by the permanent magnet of the bypass magnetic path functions as the bias magnetic flux.
  3.  前記バイアス用永久磁石および前記バイパス磁路が前記磁気浮上対象物に設けられていることを特徴とする請求項2記載の磁気浮上制御装置。 3. The magnetic levitation control apparatus according to claim 2, wherein the biasing permanent magnet and the bypass magnetic path are provided in the magnetic levitation object.
  4.  前記電磁石を磁極となる2つの突極が前記磁気浮上対象物に対向するように配置させ、
     前記バイアス用永久磁石を磁極が前記磁気浮上対象物の前記電磁石との対向面と平行になるように配置させ、
     前記バイパス磁路の永久磁石を磁極が前記磁気浮上対象物の前記電磁石との対向面と垂直になるように配置させることを特徴とする請求項3記載の磁気浮上制御装置。
    The electromagnet is arranged so that two salient poles serving as magnetic poles face the magnetic levitation object,
    Arranging the permanent magnet for bias so that the magnetic pole is parallel to the surface of the magnetically levitated object facing the electromagnet,
    4. The magnetic levitation control apparatus according to claim 3, wherein the permanent magnets of the bypass magnetic path are arranged such that the magnetic poles are perpendicular to the surface of the magnetic levitation object facing the electromagnet.
  5.  前記バイパス磁路の永久磁石として、2つの永久磁石が前記電磁石の2つの突極に対向してそれぞれ設けられ、2つの永久磁石の磁力は、前記電磁石の2つの突極と前記磁気浮上対象物とのそれぞれ間隙の磁束密度が同一になるように設定されていることを特徴とする請求項4記載の磁気浮上制御装置。 As permanent magnets of the bypass magnetic path, two permanent magnets are respectively provided opposite to the two salient poles of the electromagnet, and the magnetic force of the two permanent magnets is determined by the two salient poles of the electromagnet and the magnetic levitation object. The magnetic levitation control device according to claim 4, wherein the magnetic flux density in each gap is set to be the same.
  6.  前記バイアス用永久磁石および前記バイパス磁路が前記電磁石に設けられていることを特徴とする請求項2記載の磁気浮上制御装置。 3. The magnetic levitation control apparatus according to claim 2, wherein the biasing permanent magnet and the bypass magnetic path are provided in the electromagnet.
  7.  バイアス用永久磁石によって形成されるバイアス磁束と、電磁石によって形成される制御磁束とによって前記電磁石に対する磁気浮上ロータの位置を制御するハイブリッド型磁気軸受けであって、
     前記バイアス磁束が前記電磁石の電磁石コアを通るように形成されると共に、
     前記制御磁束の磁路となるバイパス磁路が前記バイアス用永久磁石と並列に形成されており、
     該バイパス磁路が前記バイアス磁束の通過を阻止する方向に磁化されていることを特徴とするハイブリッド型磁気軸受け。
    A hybrid magnetic bearing that controls the position of a magnetically levitated rotor with respect to the electromagnet by a bias magnetic flux formed by a biasing permanent magnet and a control magnetic flux formed by an electromagnet,
    The bias flux is formed to pass through the electromagnet core of the electromagnet;
    A bypass magnetic path serving as a magnetic path of the control magnetic flux is formed in parallel with the permanent magnet for bias;
    A hybrid magnetic bearing, wherein the bypass magnetic path is magnetized in a direction that prevents passage of the bias magnetic flux.
  8.  前記バイパス磁路が永久磁石と磁性体とで構成され、前記バイパスの永久磁石によって形成される磁束が前記バイアス磁束として機能することを特徴とする請求項7記載のハイブリッド型磁気軸受け。 The hybrid magnetic bearing according to claim 7, wherein the bypass magnetic path is composed of a permanent magnet and a magnetic body, and a magnetic flux formed by the bypass permanent magnet functions as the bias magnetic flux.
  9.  径方向に着磁されて円環状に配置されている前記バイアス用永久磁石と、当該バイアス用永久磁石の各磁極を接続する前記バイパス磁路とが前記磁気浮上ロータに設けられ、
     前記電磁石は、磁極となる2つの突極が前記磁気浮上ロータに軸方向から対向するように配置され、前記電磁石によって前記磁気浮上ロータの軸方向の位置を制御させることを特徴とする請求項8記載のハイブリッド型磁気軸受け。
    The magnetic levitation rotor is provided with the biasing permanent magnet magnetized in a radial direction and arranged in an annular shape, and the bypass magnetic path connecting the magnetic poles of the biasing permanent magnet,
    9. The electromagnet is disposed so that two salient poles serving as magnetic poles are opposed to the magnetic levitation rotor in an axial direction, and the position of the magnetic levitation rotor in the axial direction is controlled by the electromagnet. The described hybrid type magnetic bearing.
  10.  前記バイパス磁路の永久磁石として、前記磁気浮上ロータの軸方向に着磁されて円環状に配置されている永久磁石が設けられていることを特徴とする請求項9記載のハイブリッド型磁気軸受け。 The hybrid magnetic bearing according to claim 9, wherein a permanent magnet magnetized in the axial direction of the magnetically levitated rotor and arranged in an annular shape is provided as the permanent magnet of the bypass magnetic path.
  11.  前記バイパス磁路の永久磁石として、2つの永久磁石が前記電磁石の2つの突極に対向してそれぞれ設けられ、2つの永久磁石の磁力は、前記電磁石の2つの突極と前記磁気浮上対象物とのそれぞれ間隙の磁束密度が同一になるように設定されていることを特徴とする請求項10記載のハイブリッド型磁気軸受け。 As permanent magnets of the bypass magnetic path, two permanent magnets are respectively provided opposite to the two salient poles of the electromagnet, and the magnetic force of the two permanent magnets is determined by the two salient poles of the electromagnet and the magnetic levitation object. The hybrid magnetic bearing according to claim 10, wherein the magnetic flux density in each gap is set to be the same.
  12.  前記バイアス用永久磁石および前記バイパス磁路が前記電磁石に設けられていることを特徴とする請求項8記載のハイブリッド型磁気軸受け。 9. The hybrid magnetic bearing according to claim 8, wherein the permanent magnet for bias and the bypass magnetic path are provided in the electromagnet.
  13.  軸方向に着磁された円筒状の前記バイアス用永久磁石と、当該バイアス用永久磁石の各磁極を接続する前記バイパス磁路とが前記磁気浮上ロータに設けられ、
     前記電磁石は、磁極となる2つの突極が前記磁気浮上ロータに径方向から対向するように配置され、前記電磁石によって前記磁気浮上ロータの径方向の位置を制御させることを特徴とする請求項8記載のハイブリッド型磁気軸受け。
    The cylindrical permanent magnet for bias magnetized in the axial direction and the bypass magnetic path connecting the magnetic poles of the permanent magnet for bias are provided in the magnetic levitation rotor,
    The said electromagnet is arrange | positioned so that two salient poles used as a magnetic pole may oppose the said magnetic levitation rotor from radial direction, The position of the radial direction of the said magnetic levitation rotor is controlled by the said electromagnet. The described hybrid type magnetic bearing.
PCT/JP2010/004512 2009-07-16 2010-07-12 Magnetic levitation control device and hybrid type magnetic bearing WO2011007544A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2010272054A AU2010272054B2 (en) 2009-07-16 2010-07-12 Magnetic levitation control device and hybrid type magnetic bearing
JP2011522712A JP5465249B2 (en) 2009-07-16 2010-07-12 Magnetic levitation control device and hybrid magnetic bearing
US13/383,842 US9203280B2 (en) 2009-07-16 2010-07-12 Magnetic levitation control device and hybrid type magnetic bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009167937 2009-07-16
JP2009-167937 2009-07-16

Publications (1)

Publication Number Publication Date
WO2011007544A1 true WO2011007544A1 (en) 2011-01-20

Family

ID=43449154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004512 WO2011007544A1 (en) 2009-07-16 2010-07-12 Magnetic levitation control device and hybrid type magnetic bearing

Country Status (4)

Country Link
US (1) US9203280B2 (en)
JP (1) JP5465249B2 (en)
AU (1) AU2010272054B2 (en)
WO (1) WO2011007544A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110475981A (en) * 2017-04-01 2019-11-19 开利公司 Magnetic transverse bearing with flux enhancing
US11142570B2 (en) 2017-02-17 2021-10-12 Bristol-Myers Squibb Company Antibodies to alpha-synuclein and uses thereof
JP7498295B2 (ja) 2020-04-14 2024-06-11 エム ヘリン ロバート トルク増大装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5465249B2 (en) * 2009-07-16 2014-04-09 国立大学法人茨城大学 Magnetic levitation control device and hybrid magnetic bearing
CN103578688A (en) * 2012-07-20 2014-02-12 南昌航空大学 Inductance element provided with permanent magnet bias magnet and bypass magnetic core
WO2014063048A1 (en) 2012-10-18 2014-04-24 University Of Utah Research Foundation Omnidirectional electromagnet
US9388795B1 (en) * 2013-07-04 2016-07-12 Regenedyne LLC Magnet configurations for magnetic levitation of wind turbines and other apparatus
RU2563884C2 (en) * 2013-12-17 2015-09-27 Вячеслав Евгеньевич Вавилов Controlled magnetic bearing on permanent magnets and their control method
RU2547450C1 (en) * 2014-04-29 2015-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" System based on hybrid magnetic bearings
US10323960B2 (en) * 2014-12-31 2019-06-18 Ingersoll-Rand Company Method of making sensing mechanism and machine system using same
EP4098504A1 (en) 2015-02-08 2022-12-07 Hyperloop Technologies, Inc. Transportation system
US9997976B2 (en) * 2015-12-17 2018-06-12 II Robert W. LAWSON Failure mode protection for electromechanical battery
RU2626461C1 (en) * 2016-02-25 2017-07-28 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" System based on magnetic bearings
US20170321749A1 (en) * 2016-05-09 2017-11-09 Skf Canada Limited Non-cantilevered magnetic bearing for drum-shaped vertical rotors
WO2018182872A1 (en) 2017-04-01 2018-10-04 Carrier Corporation Magnetic radial bearing with flux boost
ES2897273T3 (en) 2017-04-01 2022-02-28 Carrier Corp Flux Boosted Radial Magnetic Bearing
CN110212811B (en) * 2019-05-27 2020-08-04 珠海格力电器股份有限公司 Current control device, magnetic suspension system and current control method thereof
CN113472241B (en) * 2021-07-19 2023-08-25 大连交通大学 Five-degree-of-freedom permanent magnet magnetic levitation motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021140A (en) * 2001-07-06 2003-01-24 Sankyo Seiki Mfg Co Ltd Control type radial magnetic bearing
JP2003087909A (en) * 2001-09-14 2003-03-20 Nsk Ltd Magnetic levitation transport device and its control method
JP2005121157A (en) * 2003-10-17 2005-05-12 Rikogaku Shinkokai Magnetic bearing and motor device for artificial heart
JP2007009949A (en) * 2005-06-28 2007-01-18 Toru Masuzawa Hybrid type magnetic bearing
JP2007120635A (en) * 2005-10-28 2007-05-17 Iwaki Co Ltd Hybrid-type magnetic bearing

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3324254A (en) * 1965-11-22 1967-06-06 Henry W Shaw Microphone holder and the like
US3885504A (en) * 1971-01-09 1975-05-27 Max Baermann Magnetic stabilizing or suspension system
US4308479A (en) * 1980-08-28 1981-12-29 General Electric Company Magnet arrangement for axial flux focussing for two-pole permanent magnet A.C. machines
US5013951A (en) * 1988-08-19 1991-05-07 Stadnik Ivan P Multipolar rotor for electric machine with interpolar and polar magnets
JP2001190043A (en) * 2000-01-05 2001-07-10 Sankyo Seiki Mfg Co Ltd Magnetically-levitated motor
US6700258B2 (en) * 2001-05-23 2004-03-02 Calnetix Magnetic thrust bearing with permanent bias flux
KR100548714B1 (en) * 2001-08-22 2006-02-02 에이에스엠엘 네델란즈 비.브이. Lithographic Apparatus and Motor for use in said Apparatus
WO2004013504A1 (en) * 2002-08-02 2004-02-12 Koyo Seiko Co., Ltd. Superconducting magnetic bearing
WO2006052172A1 (en) * 2004-11-11 2006-05-18 Abb Research Ltd Linear transverse flux machine
KR100980565B1 (en) * 2007-10-18 2010-09-06 가부시키가이샤 이와키 Magnetic levitation motor and pump
JP5465249B2 (en) * 2009-07-16 2014-04-09 国立大学法人茨城大学 Magnetic levitation control device and hybrid magnetic bearing
US8378543B2 (en) * 2009-11-02 2013-02-19 Calnetix Technologies, L.L.C. Generating electromagnetic forces in large air gaps

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021140A (en) * 2001-07-06 2003-01-24 Sankyo Seiki Mfg Co Ltd Control type radial magnetic bearing
JP2003087909A (en) * 2001-09-14 2003-03-20 Nsk Ltd Magnetic levitation transport device and its control method
JP2005121157A (en) * 2003-10-17 2005-05-12 Rikogaku Shinkokai Magnetic bearing and motor device for artificial heart
JP2007009949A (en) * 2005-06-28 2007-01-18 Toru Masuzawa Hybrid type magnetic bearing
JP2007120635A (en) * 2005-10-28 2007-05-17 Iwaki Co Ltd Hybrid-type magnetic bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11142570B2 (en) 2017-02-17 2021-10-12 Bristol-Myers Squibb Company Antibodies to alpha-synuclein and uses thereof
US11827695B2 (en) 2017-02-17 2023-11-28 Bristol-Myers Squibb Company Antibodies to alpha-synuclein and uses thereof
CN110475981A (en) * 2017-04-01 2019-11-19 开利公司 Magnetic transverse bearing with flux enhancing
US11035406B2 (en) 2017-04-01 2021-06-15 Carrier Corporation Magnetic radial bearing with flux boost
JP7498295B2 (ja) 2020-04-14 2024-06-11 エム ヘリン ロバート トルク増大装置

Also Published As

Publication number Publication date
JPWO2011007544A1 (en) 2012-12-20
US20120139375A1 (en) 2012-06-07
AU2010272054B2 (en) 2013-09-12
AU2010272054A1 (en) 2012-02-02
US9203280B2 (en) 2015-12-01
JP5465249B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5465249B2 (en) Magnetic levitation control device and hybrid magnetic bearing
EP2209186B1 (en) Magnetically-levitated motor and pump
US8378543B2 (en) Generating electromagnetic forces in large air gaps
KR102498082B1 (en) Electromechanical actuators and improvements therewith
KR102123460B1 (en) Reluctance Transducer
CN101994761B (en) Double-permanent magnet outer-rotor permanent magnet biased radial magnetic bearing
Liu et al. Design and static performance analysis of a novel axial hybrid magnetic bearing
US10389197B2 (en) Linear electromagnetic actuator comprising two independent moving members
JP2007009949A (en) Hybrid type magnetic bearing
JP2008069964A (en) Hybrid-type magnetic bearing
JP6252048B2 (en) Magnetic field generator
US7679246B2 (en) Actuator
GB2533943A (en) Improvements in and relating to electromechanical actuators
KR101438403B1 (en) Control Method and Magnetic Bearing
CN102758875A (en) Magnetic levitation balance mass framework
Filatov et al. General explanation of how magnetic bearings work
JPH07139545A (en) Magnetic bearing device
JPH02114834A (en) Magnetic bearing device
JP5656902B2 (en) Actuator
EP3043087A1 (en) Improvements in and relating to electromechanical actuators
JP2003068522A (en) Linear actuator
Cao et al. Electromagnetic Force Modelling for Hybrid Magnetic Bearing
JPH03262105A (en) Magnet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799608

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011522712

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010272054

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13383842

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010272054

Country of ref document: AU

Date of ref document: 20100712

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10799608

Country of ref document: EP

Kind code of ref document: A1