WO2011005057A2 - Vacuum dryer and drying method using the same - Google Patents

Vacuum dryer and drying method using the same Download PDF

Info

Publication number
WO2011005057A2
WO2011005057A2 PCT/KR2010/004486 KR2010004486W WO2011005057A2 WO 2011005057 A2 WO2011005057 A2 WO 2011005057A2 KR 2010004486 W KR2010004486 W KR 2010004486W WO 2011005057 A2 WO2011005057 A2 WO 2011005057A2
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum chamber
pressure
wafer
disk
drying method
Prior art date
Application number
PCT/KR2010/004486
Other languages
French (fr)
Korean (ko)
Other versions
WO2011005057A3 (en
Inventor
홍성호
노봉호
김성진
김덕호
Original Assignee
에이펫(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이펫(주) filed Critical 에이펫(주)
Priority to JP2012519479A priority Critical patent/JP5501460B2/en
Publication of WO2011005057A2 publication Critical patent/WO2011005057A2/en
Publication of WO2011005057A3 publication Critical patent/WO2011005057A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying

Definitions

  • the present invention relates to a vacuum dryer and a drying method using the same, and more particularly, to a vacuum dryer and a drying method used for removing water after a cleaning process in a wafer or disk manufacturing process.
  • the manufacturing process of the wafer or disk includes a cleaning process and a drying process for removing various foreign substances such as impurities including organic particles remaining on the surface, organic contaminants, and a surface coating such as a natural oxide film.
  • the drying process was carried out by a drying method using IPA (Isopropyl Alcohol).
  • This drying method uses the marangoni force generated by the difference in surface tension between pure water and IPA to dry the wafer or disk.
  • An object of the present invention is to provide a vacuum dryer and a drying method using the same, which reduces the risk of fire and does not cause organic pollution, because the drying time is short and stains do not occur and IPA is not used.
  • a first aspect of the present invention includes a vacuum chamber in which a dispenser nozzle is formed in a cover portion and a discharge port through which a gas is discharged is formed; A stand positioned in the vacuum chamber to arrange a plurality of wafers or disks; And a punching plate positioned between the stand and the discharge port in the vacuum chamber and having a plurality of holes formed therein.
  • the diameter of the plurality of holes is to provide a dryer having a range of 1/2 to 2/3 of the spacing of the plurality of wafers or disks.
  • a second aspect of the present invention includes a first step of placing a plurality of wafers or disks in a vacuum chamber and sealing the vacuum chamber; By exhausting the gas in the vacuum chamber, the pressure in the vacuum chamber may alternately have a first air pressure, which is a pressure just before water vaporizes, and a second air pressure, which is lower than the first air pressure, and a pressure at which the water vaporizes. Second step to ensure; And a third step of bringing the pressure in the vacuum chamber to atmospheric pressure and lowering the plurality of wafers or disks in the vacuum chamber.
  • the first pressure is to provide a drying method of 30 ⁇ 50 Torr.
  • the second pressure is to provide a drying method of 8 ⁇ 12 Torr.
  • drying method further comprising a fourth step of immediately evacuating the gas in the vacuum chamber after pressurizing the pressure in the vacuum chamber above atmospheric pressure.
  • the second step it is to provide a drying method for preventing the freezing phenomenon on the surface of the wafer or disk in the vacuum chamber by injecting heated nitrogen in the vacuum chamber.
  • the pressure in the vacuum chamber is to provide a drying method for pressurizing using heated nitrogen.
  • the wafer or disk is positioned using a robot arm, by which the wafer or disk is moved in a cleaning tank at a speed of 1 to 5 m / sec to provide a drying method will be.
  • the robot arm further comprises a nitrogen nozzle to provide a drying method for spraying the nitrogen heated in the nitrogen nozzle to the wafer or disk.
  • the vacuum dryer according to the present invention and a drying method using the same, it is possible to eco-friendly drying without the risk of fire and contamination by organic materials without using IPA. In addition, since moisture between the capacitors is dried, no spots are generated and the drying time can be reduced.
  • FIG. 1 is a view showing the inside of the vacuum dryer according to the present invention.
  • FIG. 2 is a view showing a punching plate employed in the vacuum dryer according to the present invention.
  • FIG. 3 is a flowchart illustrating a driving process of a vacuum dryer according to the present invention.
  • FIG. 1 is a view showing the inside of the vacuum dryer according to the present invention.
  • 2 is a view showing a punching plate 106 employed in the vacuum dryer according to the present invention.
  • the vacuum dryer includes a vacuum chamber 100 and a stand 104 located inside the vacuum chamber 100.
  • the vacuum chamber 100 is composed of three components, a cover 100a, a body 100b, and a bottom 100c, and the body 100c is positioned on the bottom 100c and the cover 100a on the body 100b. Will be located.
  • the space between the lower part 100c and the body 100b and the body 100a and the cover 100a is sealed through the sealing material 102.
  • the punching plate 106 Pierching plate
  • the punching plate 106 is fixed in the space between the lower portion (100c) and the body (100b).
  • the punching plate 106 is formed in a plate shape as shown in FIG. 2 and allows a plurality of holes 106a to be drilled on the plane.
  • the diameter of the holes 106a is about 1/2 to 1/3 of the gap between the wafers and the disks.
  • a discharge port 107 is formed in the lower portion of the vacuum chamber 100 and a vacuum pump (not shown) is connected to the discharge port 107 so that the gas inside the vacuum chamber 100 can be discharged through the discharge port 107.
  • the wafers 104 are arranged at regular intervals within the vacuum chamber 100 by the stand 104.
  • the dispensing nozzle 101 to which heated nitrogen is supplied is formed in the lid 100c so that the heated nitrogen is supplied into the vacuum chamber 100 through the dispense nozzle 101.
  • the heated nitrogen is supplied without using the punching plate 106, the heated nitrogen is also discharged through the outlet 107 in a short time so that the heated nitrogen cannot reach the lower portion of the vacuum chamber 100. There is a problem.
  • the wafer or disk 103 located in the place where the heated nitrogen is not transferred is delayed in drying or freezing occurs on the surface, thereby preventing effective drying.
  • the heated nitrogen reaches the outlet 107 through the hole formed in the punching plate 106 so that the heated nitrogen reaches the lower end of the vacuum chamber 100.
  • heated nitrogen reaches the entire wafer or disc 103, resulting in effective drying.
  • FIG. 3 is a flowchart illustrating a driving process of a vacuum dryer according to the present invention.
  • a nitrogen nozzle is installed on a robot arm used to lower the wafer or the disk 103 in the cleaning tank, and nitrogen is supplied to the wafer or the disk 103 so that the moisture is supplied to the wafer or the disk.
  • the wafer or disk 103 is lifted up from the cleaning tank by the robot arm at a speed of 1 to 5 m / sec.
  • the wafer or disk 103 is standing by the stand 104 to be located in the vacuum chamber 100. Then, the cover of the vacuum chamber 100 is covered and sealed using the sealing material 102.
  • Second step (ST 110); The gas in the vacuum chamber 100 is discharged through the outlet 107 of the vacuum chamber 100 to lower the pressure in the vacuum chamber 100. At this time, the pressure in the vacuum chamber 100 is lowered to the first pressure before the pure water is evaporated. The first pressure is in the range of 30-50 Torr. At this time, the heated nitrogen is supplied to the vacuum chamber 100 through the dispense nozzle 101 to prevent the temperature in the vacuum chamber 100 from lowering.
  • the second pressure is in the range of 8 to 12 Torr.
  • the heated nitrogen is supplied through the dispense nozzle 101 into the vacuum chamber 100 to prevent the temperature in the vacuum chamber 100 from lowering.
  • the pressure of the vacuum chamber 100 maintains the second pressure for a long time, even if heated nitrogen is supplied through the dispense nozzle 101, the temperature in the vacuum chamber 100 drops and freezes on the wafer or the disk 103. This may occur.
  • the second pressure is maintained for a predetermined time and the pressure is lowered again to the first pressure so that the temperature in the vacuum chamber 100 becomes a predetermined value or more. Then, the pressure in the vacuum chamber 100 again reaches the second pressure. In this way, the pressure in the vacuum chamber 100 alternately becomes the first pressure and the second pressure so that moisture on the surface of the wafer or disk 103 can be vaporized without freezing.
  • Fourth Step ST 130 Eject the wafer or disc 103 in the vacuum chamber 100. Then, heated nitrogen is supplied into the vacuum chamber 100 so that the pressure in the vacuum chamber 100 is equal to or higher than atmospheric pressure. Then, when the gas in the vacuum chamber 100 is discharged through the outlet 107 to decompress the gas instantaneously, a strong vortex is generated in the vacuum chamber 100 so that the contaminants in the vacuum chamber 100 may discharge the outlet 107. Will be discharged through.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Solid Materials (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

The present invention is directed to provide a vacuum dryer which offers a short drying time, does not leave stains and does not use isopropyl alcohol (IPA), thereby reducing the risk of fire and eliminating the production of pollutants, and a drying method using the same. As such, there are provided a dryer and a drying method using the same, wherein the dryer comprises: a vacuum chamber that has a dispenser nozzle formed at a cover part thereof and an outlet formed at the bottom for discharging gas therethrough; a stand that is placed within the vacuum chamber and is used as a site for arraying a plurality of wafers or disks thereon; and a punching plate that is placed between the stand and the outlet within the vacuum chamber and has a plurality of holes formed therein.

Description

진공 건조기 및 이를 이용한 건조 방법Vacuum dryer and drying method using the same
본 발명은 진공건조기 및 이를 이용한 건조 방법에 관한 것으로, 더욱 상세히 설명하면, 웨이퍼 또는 디스크 제조 과정에서 세정 공정 후 수분제거에 사용되는 진공건조기 및 건조방법에 관한 것이다. The present invention relates to a vacuum dryer and a drying method using the same, and more particularly, to a vacuum dryer and a drying method used for removing water after a cleaning process in a wafer or disk manufacturing process.
일반적으로 웨이퍼 또는 디스크의 제조 과정은 표면에 잔류하는 미립자를 비롯한 불순물, 유기 오염물, 자연 산화막과 같은 표면 피막 등의 다양한 이물질을 제거하기 위한 세정공정 및 건조공정을 포함한다. In general, the manufacturing process of the wafer or disk includes a cleaning process and a drying process for removing various foreign substances such as impurities including organic particles remaining on the surface, organic contaminants, and a surface coating such as a natural oxide film.
이 중 건조공정은 IPA(Isopropyl Alcohol)를 이용한 건조방식으로 수행되었다. 이러한 건조방식은 순수와 IPA 간의 표면장력 차이에 의해 발생되는 마랑고니 포스(marangoni force)을 이용함으로써 웨이퍼 또는 디스크를 건조하는 것이다. Among these, the drying process was carried out by a drying method using IPA (Isopropyl Alcohol). This drying method uses the marangoni force generated by the difference in surface tension between pure water and IPA to dry the wafer or disk.
하지만, 점차적으로 웨이퍼 또는 디스크에 형성되는 캐패시터의 집적도가 높아지고 용량이 증가함에 따라 캐패시터의 전극의 면적이 커져 캐패시터 사이의 순수가 건조되지 않게 되는 문제점이 발생했다. However, as the degree of integration of the capacitors formed on the wafer or the disk gradually increases and the capacity increases, the area of the electrodes of the capacitors increases so that pure water between the capacitors does not dry out.
또한, 상기의 종래의 건조방식은 IPA를 사용하게 되므로, 화재의 위험과 IPA에 의한 환경오염 등이 발생할 우려가 있다. In addition, since the conventional drying method uses IPA, there is a risk of fire and environmental pollution due to IPA.
본 발명의 목적은, 건조가 시간이 짧고 얼룩 등이 발생하지 않으며 IPA를 사용하지 않으므로써, 화재 위험을 줄이고 유기 오염이 발생하지 않도록 하는 진공건조기 및 이를 이용한 건조방법을 제공하는 것이다. An object of the present invention is to provide a vacuum dryer and a drying method using the same, which reduces the risk of fire and does not cause organic pollution, because the drying time is short and stains do not occur and IPA is not used.
상기 목적을 달성하기 위하여 본 발명의 제 1 측면은, 덮개부분에 디스펜서 노즐이 형성되고 하부에 가스가 배출되는 배출구가 형성되어 있는 진공챔버; 상기 진공챔버 내에 위치하여 복수의 웨이퍼 또는 디스크가 배열되도록 하는 스탠드; 및상기 진공챔버 내에 상기 스탠드와 상기 배출구 사이에 위치하며 복수의 홀이 형성되어 있는 펀칭 플레이트를 포함하는 건조기를 제공하는 것이다. In order to achieve the above object, a first aspect of the present invention includes a vacuum chamber in which a dispenser nozzle is formed in a cover portion and a discharge port through which a gas is discharged is formed; A stand positioned in the vacuum chamber to arrange a plurality of wafers or disks; And a punching plate positioned between the stand and the discharge port in the vacuum chamber and having a plurality of holes formed therein.
부가적으로, 상기 복수의 홀의 직경은 상기 복수의 웨이퍼 또는 디스크의 간격의 1/2~2/3의 범위를 갖는 건조기를 제공하는 것이다. Additionally, the diameter of the plurality of holes is to provide a dryer having a range of 1/2 to 2/3 of the spacing of the plurality of wafers or disks.
상기 목적을 달성하기 위하여 본 발명의 제 2 측면은, 진공챔버 내에 복수의 웨이퍼 또는 디스크가 위치하도록 하고 상기 진공챔버를 봉인하는 제 1 단계; 상기 진공챔버 내의 가스를 배기하여 상기 진공챔버 내의 압력이 수분이 기화하기 직전의 압력인 제 1 기압과 상기 제 1 기압보다 더 낮으며 상기 수분이 기화되는 압력인 제 2 기압을 교번적으로 가질 수 있도록 하는 제 2 단계; 및 상기 진공챔버 내의 압력을 대기압이 되도록 하고 상기 복수의 웨이퍼 또는 디스크를 상기 진공챔버 내에서 내리는 제 3 단계를 포함하는 건조방법을 제공하는 것이다. In order to achieve the above object, a second aspect of the present invention includes a first step of placing a plurality of wafers or disks in a vacuum chamber and sealing the vacuum chamber; By exhausting the gas in the vacuum chamber, the pressure in the vacuum chamber may alternately have a first air pressure, which is a pressure just before water vaporizes, and a second air pressure, which is lower than the first air pressure, and a pressure at which the water vaporizes. Second step to ensure; And a third step of bringing the pressure in the vacuum chamber to atmospheric pressure and lowering the plurality of wafers or disks in the vacuum chamber.
부가적으로, 상기 제 1 압력은 30~50 Torr 인 건조방법을 제공하는 것이다. In addition, the first pressure is to provide a drying method of 30 ~ 50 Torr.
부가적으로, 상기 제 2 압력은 8~12 Torr 인 건조방법을 제공하는 것이다. In addition, the second pressure is to provide a drying method of 8 ~ 12 Torr.
부가적으로, 상기 진공챔버 내의 압력을 대기압 이상으로 가압한 후 순간적으로 상기 진공챔버 내의 가스를 배기하는 제 4 단계를 더 포함하는 건조방법을 제공하는 것이다. In addition, it provides a drying method further comprising a fourth step of immediately evacuating the gas in the vacuum chamber after pressurizing the pressure in the vacuum chamber above atmospheric pressure.
부가적으로, 상기 제 2 단계에서, 상기 진공챔버 내에 가열된 질소를 주입하여 상기 진공챔버 내의 웨이퍼 또는 디스크의 표면에 결빙현상을 방지하는 건조방법을 제공하는 것이다. In addition, in the second step, it is to provide a drying method for preventing the freezing phenomenon on the surface of the wafer or disk in the vacuum chamber by injecting heated nitrogen in the vacuum chamber.
부가적으로, 상기 진공챔버 내의 압력은 가열된 질소를 이용하여 가압하는 건조방법을 제공하는 것이다. In addition, the pressure in the vacuum chamber is to provide a drying method for pressurizing using heated nitrogen.
부가적으로, 상기 제 1 단계에서, 상기 웨이퍼 또는 디스크는 로봇암을 이용하여 위치하도록 하되, 상기 로봇암에 의해 웨이퍼 또는 디스크는 세정조에서 1~5m/sec 의 속도로 움직이는 건조방법을 제공하는 것이다. Additionally, in the first step, the wafer or disk is positioned using a robot arm, by which the wafer or disk is moved in a cleaning tank at a speed of 1 to 5 m / sec to provide a drying method will be.
부가적으로, 상기 로봇암에 질소 노즐을 더 구비하여 상기 질소 노즐에서 가열된 질소를 상기 웨이퍼 또는 디스크에 뿌리는 건조방법을 제공하는 것이다. In addition, the robot arm further comprises a nitrogen nozzle to provide a drying method for spraying the nitrogen heated in the nitrogen nozzle to the wafer or disk.
본 발명에 따른 진공건조기 및 이를 이용한 건조방법에 의하면, IPA를 사용하지 않아 화재 위험과 유기물에 의한 오염이 없는 친환경적인 건조가 가능한다. 그리고, 캐패시터 사이의 수분이 건조가 되기 때문에 반점이 발생하지 않으며 건조시간을 줄일 수 있다. According to the vacuum dryer according to the present invention and a drying method using the same, it is possible to eco-friendly drying without the risk of fire and contamination by organic materials without using IPA. In addition, since moisture between the capacitors is dried, no spots are generated and the drying time can be reduced.
도 1은 본 발명에 따른 진공건조기의 내부를 나타내는 도면이다. 1 is a view showing the inside of the vacuum dryer according to the present invention.
도 2는 본 발명에 따른 진공건조기에 채용된 펀칭플레이트를 나타내는 도면이다. 2 is a view showing a punching plate employed in the vacuum dryer according to the present invention.
도 3은 본 발명에 따른 진공 건조기의 구동과정을 나타내는 순서도이다. 3 is a flowchart illustrating a driving process of a vacuum dryer according to the present invention.
이하, 본 발명의 실시예를 첨부한 도면을 참조하여 설명하면 다음과 같다. Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명에 따른 진공건조기의 내부를 나타내는 도면이다. 도 2는 본 발명에 따른 진공건조기에 채용된 펀칭플레이트(106)를 나타내는 도면이다. 1 is a view showing the inside of the vacuum dryer according to the present invention. 2 is a view showing a punching plate 106 employed in the vacuum dryer according to the present invention.
도 1 및 도 2를 참조하여 설명하면, 진공건조기는 진공챔버(100)와 진공챔버(100) 내부에 위치한 스탠드(104)를 포함한다. Referring to FIGS. 1 and 2, the vacuum dryer includes a vacuum chamber 100 and a stand 104 located inside the vacuum chamber 100.
진공챔버(100)는 덮개(100a), 바디(100b), 하부(100c)의 세 개의 구성성분으로 구성되며, 하부(100c) 상에 바디(100c)가 위치하고 바디(100b) 위에 덮개(100a)가 위치하게 된다. 그리고, 하부(100c)와 바디(100b), 그리고 바디(100a)와 덮개(100a) 사이의 공간은 실링재(102)를 통해 봉인된다. 이때, 하부(100c)와 바디(100b) 사이의 공간에 펀칭플레이트(106)(Punching plate)가 고정되도록 한다. The vacuum chamber 100 is composed of three components, a cover 100a, a body 100b, and a bottom 100c, and the body 100c is positioned on the bottom 100c and the cover 100a on the body 100b. Will be located. In addition, the space between the lower part 100c and the body 100b and the body 100a and the cover 100a is sealed through the sealing material 102. At this time, the punching plate 106 (Punching plate) is fixed in the space between the lower portion (100c) and the body (100b).
펀칭플레이트(106)는 도 2에 도시되어 있는 것과 같이 판상 형태로 구성되며 평면 상에 복수의 홀(106a)이 뚫려 있도록 한다. 홀(106a)의 직경은 웨이퍼 또는 디스크의 간 간격의 1/2~1/3 정도가 되도록 한다. The punching plate 106 is formed in a plate shape as shown in FIG. 2 and allows a plurality of holes 106a to be drilled on the plane. The diameter of the holes 106a is about 1/2 to 1/3 of the gap between the wafers and the disks.
진공챔버(100)의 하부에는 배출구(107)가 형성되며 배출구(107)에는 진공펌프(미도시)가 연결되어 배출구(107)를 통해 진공챔버(100) 내부의 가스가 배출될 수 있도록 한다. A discharge port 107 is formed in the lower portion of the vacuum chamber 100 and a vacuum pump (not shown) is connected to the discharge port 107 so that the gas inside the vacuum chamber 100 can be discharged through the discharge port 107.
그리고, 스탠드(104)에 의해 진공챔버(100)의 내부에 웨이퍼 또는 디스크(103)가 일정한 간격으로 배열되게 된다. Then, the wafers 104 are arranged at regular intervals within the vacuum chamber 100 by the stand 104.
또한, 덮개(100c)에는 가열된 질소가 공급되는 디스펜스노즐(101)이 형성되어 가열된 질소가 디스펜스노즐(101)을 통해 진공챔버(100) 내부로 공급되도록 한다. In addition, the dispensing nozzle 101 to which heated nitrogen is supplied is formed in the lid 100c so that the heated nitrogen is supplied into the vacuum chamber 100 through the dispense nozzle 101.
만약, 펀칭플레이트(106)를 사용하지 않은 상태에서 가열된 질소를 공급하게 되면 가열된 질소 역시 배출구(107)를 통해 짧은 시간에 배출되기 때문에 진공챔버(100) 하부에 가열된 질소가 도달하지 못하게 되는 문제점이 생긴다. 이렇게 가열된 질소가 전달되지 않는 곳에 위치하는 웨이퍼 또는 디스크(103)는 건조가 늦어지거나 표면에 결빙현상이 나타나게 되어 효과적인 건조가 이루어지지 않게 된다. If the heated nitrogen is supplied without using the punching plate 106, the heated nitrogen is also discharged through the outlet 107 in a short time so that the heated nitrogen cannot reach the lower portion of the vacuum chamber 100. There is a problem. The wafer or disk 103 located in the place where the heated nitrogen is not transferred is delayed in drying or freezing occurs on the surface, thereby preventing effective drying.
하지만, 펀칭플레이트(106)를 사용하게 되면, 가열된 질소가 펀칭플레이트(106)에 형성된 홀을 통해 배출구(107)에 도달하기 때문에 보다 넓게 가열된 질소가 진공챔버(100)의 하단부까지 도달하게 되어 웨이퍼 또는 디스크(103) 전체에 가열된 질소가 도달하게 됨으로써 효과적인 건조가 이루어지게 된다. However, when the punching plate 106 is used, the heated nitrogen reaches the outlet 107 through the hole formed in the punching plate 106 so that the heated nitrogen reaches the lower end of the vacuum chamber 100. As a result, heated nitrogen reaches the entire wafer or disc 103, resulting in effective drying.
도 3은 본 발명에 따른 진공 건조기의 구동과정을 나타내는 순서도이다. 도 3을 참조하여 설명하면, 3 is a flowchart illustrating a driving process of a vacuum dryer according to the present invention. Referring to Figure 3,
제 1 단계(ST 100); 먼저, 웨이퍼 또는 디스크(103)가 진공챔버(100)의 내부에 위치하기 전에 표면의 잔여 수분을 최소화하기 위한 작업을 실시한다. 이 작업은 세정조에서 웨이퍼 또는 디스크(103)를 내릴 때 일정한 속도로 웨이퍼 또는 디스크(103)가 이동할 수 있도록 한다. 그리고, 이때 물반점이 발생되는 것을 방지하기 위해 세정조에서 웨이퍼 또는 디스크(103)를 내릴 때 사용되는 로봇암에 질소노즐을 설치하여 웨이퍼 또는 디스크(103)에 질소를 공급하여 수분이 웨이퍼 또는 디스크(103)에서 분리될 수 있도록 한다. 로봇암에 의해 웨이퍼 또는 디스크(103)는 1~5 m/sec 의 속도로 세정조에서 올려진다. First step (ST 100); First, work is performed to minimize residual moisture on the surface before the wafer or disk 103 is positioned inside the vacuum chamber 100. This operation allows the wafer or disk 103 to move at a constant speed as the wafer or disk 103 is lowered in the cleaning bath. In this case, in order to prevent water spots from occurring, a nitrogen nozzle is installed on a robot arm used to lower the wafer or the disk 103 in the cleaning tank, and nitrogen is supplied to the wafer or the disk 103 so that the moisture is supplied to the wafer or the disk. To be separated at 103. The wafer or disk 103 is lifted up from the cleaning tank by the robot arm at a speed of 1 to 5 m / sec.
그리고, 웨이퍼 또는 디스크(103)가 스탠드(104)에 의해 세워져 진공챔버(100) 내에 위치하게 된다. 그리고 난 후, 진공챔버(100)의 덮개를 덮고 실링재(102)를 이용하여 밀봉한다. Then, the wafer or disk 103 is standing by the stand 104 to be located in the vacuum chamber 100. Then, the cover of the vacuum chamber 100 is covered and sealed using the sealing material 102.
제 2 단계(ST 110); 진공챔버(100)의 배출구(107)를 통해 진공챔버(100) 내의 가스가 배출되도록 하여 진공챔버(100)내의 압력이 낮아지도록 한다. 이때, 진공챔버(100) 내의 압력은 순수가 증발되기 전의 제 1 압력까지 낮아지도록 한다. 제 1 압력은 30~50 Torr의 범위를 갖게 된다. 이때, 진공챔버(100) 내에 디스펜스노즐(101)을 통해 가열된 질소를 공급하여 진공챔버(100) 내의 온도가 낮아지는 것을 방지한다. Second step (ST 110); The gas in the vacuum chamber 100 is discharged through the outlet 107 of the vacuum chamber 100 to lower the pressure in the vacuum chamber 100. At this time, the pressure in the vacuum chamber 100 is lowered to the first pressure before the pure water is evaporated. The first pressure is in the range of 30-50 Torr. At this time, the heated nitrogen is supplied to the vacuum chamber 100 through the dispense nozzle 101 to prevent the temperature in the vacuum chamber 100 from lowering.
제 3 단계(ST 120): 진공챔버(100)의 배출구(107)를 통해 가스를 더 배출하도록 하여 진공챔버(100)내의 압력이 제 1 압력보다 더 낮은 제 2 압력이 되도록 한다. 제 2 압력에 도달하게 되면 웨이퍼 또는 디스크(103)의 표면에 부착되어 있는 수분이 기화된다. 제 2 압력은 8~12 Torr의 범위를 갖게 된다. 그리고, 진공챔버(100) 내에 디스펜스노즐(101)을 통해 가열된 질소를 공급하여 진공챔버(100) 내의 온도가 낮아지는 것을 방지한다. 이때, 진공챔버(100)의 압력이 제 2 압력을 오랜 시간 유지하게 되면 디스펜스노즐(101)을 통해 가열된 질소가 공급되더라도 진공챔버(100) 내의 온도가 떨어져 웨이퍼 또는 디스크(103)에 결빙현상이 발생할 우려가 있다. 따라서, 제 2 압력을 소정 시간 동안 유지하고 다시 상기 제 1 압력으로 압력을 낮춰 진공챔버(100) 내의 온도가 일정치 이상이 되도록 한다. 그리고, 다시 진공챔버(100) 내의 압력이 제 2 압력에 도달하도록 한다. 이렇게 진공챔버(100) 내의 압력이 교번적으로 제 1 압력과 제 2 압력이 되도록 하여 웨이퍼 또는 디스크(103) 표면에 있는 수분이 결빙되지 않고 기화될 수 있도록 한다. Third Step (ST 120): More gas is discharged through the outlet 107 of the vacuum chamber 100 so that the pressure in the vacuum chamber 100 becomes a second pressure lower than the first pressure. When the second pressure is reached, moisture adhering to the surface of the wafer or disk 103 is vaporized. The second pressure is in the range of 8 to 12 Torr. Then, the heated nitrogen is supplied through the dispense nozzle 101 into the vacuum chamber 100 to prevent the temperature in the vacuum chamber 100 from lowering. At this time, when the pressure of the vacuum chamber 100 maintains the second pressure for a long time, even if heated nitrogen is supplied through the dispense nozzle 101, the temperature in the vacuum chamber 100 drops and freezes on the wafer or the disk 103. This may occur. Therefore, the second pressure is maintained for a predetermined time and the pressure is lowered again to the first pressure so that the temperature in the vacuum chamber 100 becomes a predetermined value or more. Then, the pressure in the vacuum chamber 100 again reaches the second pressure. In this way, the pressure in the vacuum chamber 100 alternately becomes the first pressure and the second pressure so that moisture on the surface of the wafer or disk 103 can be vaporized without freezing.
제 4 단계(ST 130): 진공챔버(100) 내에서 웨이퍼 또는 디스크(103)를 방출한다. 그리고, 진공챔버(100) 내에 가열된 질소를 공급하여 진공챔버(100) 내의 압력을 대기압 이상이 되도록 한다. 그리고 난 후 배출구(107)를 통해 진공챔버(100) 내의 가스를 배출하여 순간적으로 감압시키면 진공챔버(100) 내우에 강력한 소용돌이가 발생하게 되어 진공챔버(100) 내의 오염물질이 배출구(107)를 통해 배출되게 된다. Fourth Step ST 130: Eject the wafer or disc 103 in the vacuum chamber 100. Then, heated nitrogen is supplied into the vacuum chamber 100 so that the pressure in the vacuum chamber 100 is equal to or higher than atmospheric pressure. Then, when the gas in the vacuum chamber 100 is discharged through the outlet 107 to decompress the gas instantaneously, a strong vortex is generated in the vacuum chamber 100 so that the contaminants in the vacuum chamber 100 may discharge the outlet 107. Will be discharged through.
본 발명의 바람직한 실시예가 특정 용어들을 사용하여 기술되어 왔지만, 그러한 기술은 단지 설명을 하기 위한 것이며, 다음의 청구범위의 기술적 사상 및 범위로부터 이탈되지 않고 여러 가지 변경 및 변화가 가해질 수 있는 것으로 이해되어져야 한다. While preferred embodiments of the present invention have been described using specific terms, such descriptions are for illustrative purposes only and it is understood that various changes and modifications may be made without departing from the spirit and scope of the following claims. You must lose.

Claims (10)

  1. 덮개부분에 디스펜서 노즐이 형성되고 하부에 가스가 배출되는 배출구가 형성되어 있는 진공챔버;A vacuum chamber in which a dispenser nozzle is formed in the cover part and a discharge port through which a gas is discharged is formed;
    상기 진공챔버 내에 위치하여 복수의 웨이퍼 또는 디스크가 배열되도록 하는 스탠드;A stand positioned in the vacuum chamber to arrange a plurality of wafers or disks;
    상기 진공챔버 내에 상기 스탠드와 상기 배출구 사이에 위치하며 복수의 홀이 형성되어 있는 펀칭 플레이트를 포함하는 건조기. And a punching plate disposed between the stand and the outlet in the vacuum chamber and having a plurality of holes formed therein.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 복수의 홀의 직경은 상기 복수의 웨이퍼 또는 디스크의 간격의 1/2~2/3의 범위를 갖는 건조기. The diameter of the plurality of holes is a dryer having a range of 1/2 to 2/3 of the interval of the plurality of wafers or disks.
  3. 진공챔버 내에 복수의 웨이퍼 또는 디스크가 위치하도록 하고 상기 진공챔버를 봉인하는 제 1 단계; A first step of placing a plurality of wafers or disks in the vacuum chamber and sealing the vacuum chamber;
    상기 진공챔버 내의 가스를 배기하여 상기 진공챔버 내의 압력이 수분이 기화하기 직전의 압력인 제 1 기압과 상기 제 1 기압보다 더 낮으며 상기 수분이 기화되는 압력인 제 2 기압을 교번적으로 가질 수 있도록 하는 제 2 단계; 및By exhausting the gas in the vacuum chamber, the pressure in the vacuum chamber may alternately have a first air pressure, which is a pressure just before water vaporizes, and a second air pressure, which is lower than the first air pressure, and a pressure at which the water vaporizes. Second step to ensure; And
    상기 진공챔버 내의 압력을 대기압이 되도록 하고 상기 복수의 웨이퍼 또는 디스크를 상기 진공챔버 내에서 내리는 제 3 단계를 포함하는 건조방법. And a third step of bringing the pressure in the vacuum chamber to atmospheric pressure and lowering the plurality of wafers or disks in the vacuum chamber.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 제 1 압력은 30~50 Torr 인 건조방법. The first pressure is 30 to 50 Torr drying method.
  5. 제 3 항에 있어서, The method of claim 3, wherein
    상기 제 2 압력은 8~12 Torr 인 건조방법. The second pressure is 8 to 12 Torr drying method.
  6. 제 3 항에 있어서, The method of claim 3, wherein
    상기 진공챔버 내의 압력을 대기압 이상으로 가압한 후 순간적으로 상기 진공챔버 내의 가스를 배기하는 제 4 단계를 더 포함하는 건조방법. And a fourth step of immediately evacuating the gas in the vacuum chamber after pressurizing the pressure in the vacuum chamber above atmospheric pressure.
  7. 제 3항에 있어서, The method of claim 3, wherein
    상기 제 2 단계에서, 상기 진공챔버 내에 가열된 질소를 주입하여 상기 진공챔버 내의 웨이퍼 또는 디스크의 표면에 결빙현상을 방지하는 건조방법. In the second step, a drying method for preventing freezing phenomenon on the surface of the wafer or disk in the vacuum chamber by injecting heated nitrogen in the vacuum chamber.
  8. 제 6 항에 있어서, The method of claim 6,
    상기 진공챔버 내의 압력은 가열된 질소를 이용하여 가압하는 건조방법. And the pressure in the vacuum chamber is pressurized using heated nitrogen.
  9. 제 3 항에 있어서, The method of claim 3, wherein
    상기 제 1 단계에서, 상기 웨이퍼 또는 디스크는 로봇암을 이용하여 위치하도록 하되, 상기 로봇암에 의해 웨이퍼 또는 디스크는 세정조에서 1~5m/sec 의 속도로 움직이는 건조방법. In the first step, wherein the wafer or disk is positioned using a robot arm, the wafer or disk by the robot arm moves at a speed of 1 ~ 5m / sec in the cleaning tank.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 로봇암에 질소 노즐을 더 구비하여 상기 질소 노즐에서 가열된 질소를 상기 웨이퍼 또는 디스크에 뿌리는 건조방법. And a nitrogen nozzle on the robot arm to spray nitrogen heated in the nitrogen nozzle onto the wafer or disk.
PCT/KR2010/004486 2009-07-10 2010-07-09 Vacuum dryer and drying method using the same WO2011005057A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012519479A JP5501460B2 (en) 2009-07-10 2010-07-09 Vacuum dryer and drying method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090063082A KR101238858B1 (en) 2009-07-10 2009-07-10 Vacuum dryer and dry method using the same
KR10-2009-0063082 2009-07-10

Publications (2)

Publication Number Publication Date
WO2011005057A2 true WO2011005057A2 (en) 2011-01-13
WO2011005057A3 WO2011005057A3 (en) 2011-06-03

Family

ID=43429698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004486 WO2011005057A2 (en) 2009-07-10 2010-07-09 Vacuum dryer and drying method using the same

Country Status (3)

Country Link
JP (1) JP5501460B2 (en)
KR (1) KR101238858B1 (en)
WO (1) WO2011005057A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108132588A (en) * 2017-12-21 2018-06-08 信利(惠州)智能显示有限公司 A kind of novel VCD structures and its even pressure method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6318939B2 (en) * 2014-07-18 2018-05-09 株式会社デンソー Cleaning method and cleaning device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2532324B2 (en) * 1992-04-27 1996-09-11 株式会社中央理研 Substrate cleaning method and reduced pressure drying apparatus
JPH0669180A (en) * 1992-08-13 1994-03-11 Tokyo Hightech Kk Vacuum drier
JPH0743066A (en) * 1993-07-28 1995-02-10 Hitachi Plant Eng & Constr Co Ltd Vacuum dryer
KR0180344B1 (en) * 1995-10-18 1999-04-15 김광호 Drying apparatus of semiconductor wafer
KR100464853B1 (en) * 2002-06-20 2005-01-06 삼성전자주식회사 Method and apparatus for drying wafer by instant decompressing and heating
JP2006093740A (en) * 2002-07-16 2006-04-06 Chem Art Technol:Kk Substrate treatment method and substrate treatment device
JP2005166848A (en) * 2003-12-01 2005-06-23 Ses Co Ltd Substrate treating method and device
JP2006324506A (en) * 2005-05-19 2006-11-30 Shibaura Mechatronics Corp Apparatus and method for drying and processing substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108132588A (en) * 2017-12-21 2018-06-08 信利(惠州)智能显示有限公司 A kind of novel VCD structures and its even pressure method

Also Published As

Publication number Publication date
WO2011005057A3 (en) 2011-06-03
JP2012533174A (en) 2012-12-20
JP5501460B2 (en) 2014-05-21
KR101238858B1 (en) 2013-03-04
KR20110005490A (en) 2011-01-18

Similar Documents

Publication Publication Date Title
CN101609779B (en) Focus ring and plasma processing apparatus
KR100375080B1 (en) Method and apparatus for removing unnecessary material around substrate and method of applying using same
US7635417B2 (en) Semiconductor apparatus and cleaning unit thereof
KR20100047803A (en) Substrate treatment apparatus
JPH11274282A (en) Substrate housing vessel, substrate housing vessel cleaner, substrate housing cleaning method and substrate treating apparatus
CN101670215A (en) A segregator that separates liquid vapor mixture and a cardinal plate processing equipment containing the segregator
WO2011005057A2 (en) Vacuum dryer and drying method using the same
CN101647097B (en) Cleaning of bonded silicon electrodes
KR20170054399A (en) Coater with automatic cleaning function and coater automatic cleaning method
KR20070087495A (en) Substrate processing system, substrate processing method, and storage medium
CN102896113A (en) Novel spray gun for cleaning by double-dielectric barrier atmospheric-pressure plasma free radicals
KR20000018711A (en) Apparatus for drying lcd glass
WO2011005055A2 (en) Wafer drying device and a wafer drying method employing the same
KR100753959B1 (en) Drying method using apparatus for drying substrate
KR100875881B1 (en) Dry cleaning apparatus for semiconductor wafer
CN212695120U (en) Dry etching machine
KR100915435B1 (en) Substrate treater and substrate treatment method
KR101342619B1 (en) Substrate drying system
CN112071957B (en) Focal plane chip dielectric film stripping device and focal plane chip dielectric film stripping method
KR20010112344A (en) Method and device for drying substrate
CN204834580U (en) Serving tray
KR20190022946A (en) Unit for supplying treating liquid and Apparatus for treating substrate
KR20060027597A (en) Substrate cleaning system and method for cleaning the substrate
US6408860B1 (en) Method for cleaning phosphorus from an MBE chamber
CN207012690U (en) A kind of dust treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797331

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012519479

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10797331

Country of ref document: EP

Kind code of ref document: A2