WO2011004827A1 - 複合光学素子及び光ヘッド装置 - Google Patents

複合光学素子及び光ヘッド装置 Download PDF

Info

Publication number
WO2011004827A1
WO2011004827A1 PCT/JP2010/061491 JP2010061491W WO2011004827A1 WO 2011004827 A1 WO2011004827 A1 WO 2011004827A1 JP 2010061491 W JP2010061491 W JP 2010061491W WO 2011004827 A1 WO2011004827 A1 WO 2011004827A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
resin layer
optical element
composite optical
Prior art date
Application number
PCT/JP2010/061491
Other languages
English (en)
French (fr)
Inventor
浩司 宮坂
琢治 野村
健介 小野
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN2010800308879A priority Critical patent/CN102473429A/zh
Priority to JP2011521932A priority patent/JPWO2011004827A1/ja
Publication of WO2011004827A1 publication Critical patent/WO2011004827A1/ja
Priority to US13/344,953 priority patent/US20120112048A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/189Structurally combined with optical elements not having diffractive power
    • G02B5/1895Structurally combined with optical elements not having diffractive power such optical elements having dioptric power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0075Arrays characterized by non-optical structures, e.g. having integrated holding or alignment means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13722Fresnel lenses

Definitions

  • the wavelength ⁇ 1 may be a 405 nm wavelength band of 375 to 435 nm
  • the wavelength ⁇ 2 may be a 660 nm wavelength band of 630 to 690 nm
  • the wavelength ⁇ 3 is 750 to 810 nm.
  • the 780 nm wavelength band may be used.
  • the present embodiment is a composite optical element including a single lens having an objective lens shape.
  • a second diffraction grating 44 is formed on the surface of the second resin layer 43, that is, on the surface of the second resin layer 43 not in contact with the first resin layer 43.
  • the refractive index of the first resin layer 42 and the refractive index of the second resin layer 43 have substantially the same value in the wavelength ⁇ 1 band, and are different in the wavelength ⁇ 2 band and the wavelength ⁇ 3 band. And, it has a wavelength dispersion characteristic as shown in FIG.
  • FIGS. 22A, 22B, and 22C show aberration diagrams of spherical aberration SA in light of each wavelength
  • FIGS. 22A, 22B, and 22C show 405 nm light, 660 nm light, and 780 nm light, respectively.
  • the aberration at the condensing point of each wavelength of light emitted from the composite optical element 10 in Example 2, that is, the position assuming each information recording surface of each optical disk is 21.2 m ⁇ rms at a wavelength of 405 nm.
  • the light becomes 6.3 m ⁇ rms at 660 nm and 6.5 m ⁇ rms at a wavelength of 780 nm.
  • the other conditions are the same as in the first embodiment.
  • the value of M is 0 at a wavelength of 405 nm, and -1 at a wavelength of 660 nm and a wavelength of 780 nm.
  • the shape of the diffraction grating surface at the interface between the first resin layer 12 and the second resin layer 13 is set so that
  • the value of M is 0 at a wavelength of 405 nm, and -1 at a wavelength of 660 nm and a wavelength of 780 nm.
  • the shape of the diffraction grating surface at the interface between the first resin layer 42 and the second resin layer 43 is set so that
  • Table 12 shows the refractive indexes of the first resin layer 72 and the second resin layer 73.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Head (AREA)
  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

 複合光学素子は、曲面形状を有し光学的に作用する単レンズと、前記単レンズの表面に形成された第1の樹脂層と、前記第1の樹脂層の上に形成された第2の樹脂層を備え、前記第1の樹脂層は、前記第2の樹脂層側にフレネルレンズ形状となる回折格子を有し、波長λの光、波長λの光及び波長λの光(λ<λ<λ)の3種類の光のうち、少なくとも1種類の波長の光においては、前記第1の樹脂層の屈折率と前記第2の樹脂層の屈折率とが略同一の値であり、他の少なくとも1種類の波長の光においては、前記第1の樹脂層の屈折率と前記第2の樹脂層の屈折率とが異なる値である。

Description

複合光学素子及び光ヘッド装置
 本発明は、複合光学素子及び光ヘッド装置に関するものであり、特に波長の異なる情報記録媒体に用いる複合光学素子及び光ヘッド装置に関する。
 光ディスクとして、Blu-ray(商品名、以下、BD)、DVD、CDが幅広く普及している。これらBD、DVD、CDは、記録及び再生に用いる光の波長等が異なっている。具体的には、BDは、基板の厚さ(カバー層の厚さ)が0.1mmの情報記録媒体に、波長405nmの光源から出射された光をNA(開口数)が0.85の対物レンズにより集光させることにより情報の記録及び再生を行う。DVDは、基板の厚さ(カバー層の厚さ)が0.6mmの情報記録媒体に、波長660nmの光源から出射された光をNAが0.65の対物レンズにより集光させることにより情報の記録及び再生を行う。CDは、基板の厚さ(カバー層の厚さ)が1.2mmの情報記録媒体に、波長780nmの光源から出射された光をNAが、0.45の対物レンズにより集光し、情報の記録及び再生を行う。
 上述したBD、DVD、CDにおける光ディスクにおいて、1つの対物レンズにより各々の光ディスクに使用する波長の光を集光することを考えた場合、各々の光ディスクのカバー層の厚さの違いに起因する球面収差を補正することができ、各光ディスクへの良好な集光特性が得られるようにすることが必要となる。また、各々の光の光軸方向に平行に移動する対物レンズが、光ディスクの表面と接触することを防ぐため、対物レンズと光ディスクとの間に一定の距離を確保しながら、各光ディスクへの良好な集光特性が得られるようにする必要がある。
 これに対応するため、対物レンズに入射する各々の波長の光ごと、発散角を調整する方法がある。図1A及び1Bは、この方法を用いた光学系についての例を模式的に示した図であり、図1AはBD用の光学系、図1BはCD用の光学系を示す。例えば、図1Aに示すように、BD用の光学系においては、対物レンズ201をφ3mm、NA0.85、対物レンズ201と光ディスク(BD)202との距離WD1を0.7mmに設定し、BD用の波長の光203を無限系(発散角0°)で入射させ、カバー層202aの厚さ0.1mmの光ディスク202の情報記録面202bに集光させるものである。
 一方、同じ対物レンズ201を用いて、光ディスク(CD)212に対応させようとする場合、対物レンズ201に光源213よりCD用の波長の光214を発散光として入射することによりカバー層212aの厚さ1.2mmの光ディスク(CD)212の情報記録面212bに球面収差の補正が可能な状態で集光させることができる。しかしながら、光ディスク(CD)212において、対物レンズ201と光ディスク(CD)212との間の距離WD2を例えば0.3mm確保しようとした場合、光源213と対物レンズ201との間の距離Lが15mm程度と短くなるため、光源213から光ディスク(CD)212の間の光路中において、他の光学部品を配置することが困難となる。また、BD及びCDにおいて反射した光の焦点距離も異なるので、これらの光を検出する光検出器を各々の光学系に対し設ける必要があり、光ディスクの記録及び再生を行う信号処理回路が複雑になるという問題を有している。
 このような問題に対応する方法として、特許文献1では、DVDやCDに対応する各々の波長の光に対しても対物レンズとしての機能を有するように、これら波長の光に対して回折作用を示す回折光学素子を光学系中に配置することで、1つの回折光学素子を用いて3つの異なる規格の光ディスクにおける情報の記録及び再生を行う光ピックアップ装置が開示されている。
日本国特許第3966303号
 特許文献1に開示されている方法では、DVD及びCDの各々の波長の光に対して独立に回折作用を与えることができるため、各々の波長の光に対し好適な発散角とし、また、球面収差を補正するような位相分布をさらに付加することができるので、CD用の光学系における対物レンズと光ディスクの間の距離を確保しながら、記録及び再生に用いられる光の波長の異なる3種類の規格の光ディスクに対して好適に光を集光させることが可能である。
 ところで、特許文献1に記載された方法では、回折光学素子を対物レンズとは別個に設置する必要があり、対物レンズ等に対し精密に位置合せを行う必要があるため、量産性が低くなるという問題点を有していた。また、CD用の光を回折させるために断面が矩形状となるバイナリー格子を用いており、そのため±1次回折光のうち一方の回折光のみを利用することから光の利用効率が低いという問題がある。
 本発明は、上記点を鑑みてなされたものであり、位置合せを行う必要がなく、光の利用効率が高く、異なる規格の光ディスクに対して好適に光を集光させることが可能な複合光学素子及び光ヘッド装置を提供することを目的とするものである。
 本発明は、曲面形状を有し光学的に作用する単レンズと、前記単レンズの表面に形成された第1の樹脂層と、前記第1の樹脂層の上に形成された第2の樹脂層を備え、前記第1の樹脂層は、前記第2の樹脂層側にフレネルレンズ形状となる回折格子を有し、波長λの光、波長λの光及び波長λの光(λ<λ<λ)の3種類の光のうち、少なくとも1種類の波長の光においては、前記第1の樹脂層の屈折率と前記第2の樹脂層の屈折率とが略同一の値であり、他の少なくとも1種類の波長の光においては、前記第1の樹脂層の屈折率と前記第2の樹脂層の屈折率とが異なる値である複合光学素子を提供する。
 前記第2の樹脂層は、前記第1の樹脂層側と対向する側の表面にフレネルレンズ形状となる回折格子を有してもよい。
 前記第2の樹脂層の前記第1の樹脂層側と対向する側の表面に形成された回折格子は、ブレーズ形状を複数の段差に近似した階段状の擬似ブレーズ形状を有してもよく、各前記段差は、前記3種類の波長の光のうち1種類の波長の略整数倍の位相差を与えるかまたは、前記3種類の波長の光のうち2種類の波長それぞれにおいて略整数倍の位相差を与えてもよい。
 前記第2の樹脂層は、前記第1の樹脂層側と対向する側の表面において、光軸を中心とした中心領域と、前記中心領域を囲む輪帯状の周辺領域を有してもよく、前記中心領域は曲面形状を有してもよく、前記周辺領域は、前記中心領域の曲面に対して位相段差またはバイナリー回折格子を有してもよい。
 前記周辺領域は、前記位相段差を有してもよく、前記位相段差は、複数の段差を有してもよく、各前記段差は、前記3種類の波長の光のうち1種類の波長の略整数倍の位相差を与えるかまたは、前記3種類の波長の光のうち2種類の波長それぞれの略整数倍の位相差を与えてもよい。
 前記周辺領域は、前記位相段差を有してもよく、前記位相段差は、1つの段差からなってもよく、前記段差は、前記波長λの光に対してλ/2の奇数倍に略等しい位相差を与えるとともに、波長λの光および波長λの光に対してそれぞれの波長において略整数倍に略等しい位相差を与えてもよい。
 前記周辺領域は、前記バイナリー回折格子を有してもよく、前記バイナリー回折格子の深さは、前記波長λの光に対してλ/2の奇数倍に略等しい位相差を与えるとともに、波長λの光および波長λの光に対してそれぞれの波長の整数倍に略等しい位相差を与える値であってもよい。
 前記第1の樹脂層は、前記第2の樹脂層側に、光軸を中心とした内部中心領域と、前記内部中心領域を囲む輪帯状の内部周辺領域を有してもよく、前記内部中心領域はフレネルレンズ形状となる回折格子を有してもよく、前記内部周辺領域は、曲面形状を有してもよい。
 前記第2の樹脂層上に、保護層が形成されてもよい。
 前記波長λは、375~435nmとなる405nm波長帯であってもよく、前記波長λは、630~690nmとなる660nm波長帯であってもよく、前記波長λは、750~810nmとなる780nm波長帯であってもよい。
 また、本発明は、405nm波長帯の光、660nm波長帯の光および780nm波長帯の光を出射する光源と、前記光源から出射された各々の波長帯の光を各々の波長帯の光に対応した光ディスクの情報記録面に集光させる前記記載の複合光学素子と、前記光ディスクの情報記録面において反射された信号光を検出するための光検出器を備える光ヘッド装置を提供する。
 本発明によれば、回折光学素子等の位置合せを行う必要がなく、光の利用効率が高く、異なる規格の光ディスクに対しても各々好適に光を集光させることが可能な複合光学素子及び光ヘッド装置を提供することができる。
共通する対物レンズを用いて異なる光ディスクに集光させる従来の光学系の説明図 共通する対物レンズを用いて異なる光ディスクに集光させる従来の光学系の説明図 第1の実施の形態における複合光学素子の断面図 第1の実施の形態における複合光学素子の正面図 第1の実施の形態における第1の樹脂層及び第2の樹脂層における波長と屈折率との相関図 第2の実施の形態における複合光学素子の断面図 第2の実施の形態における複合光学素子の正面図 第2の実施の形態における複合光学素子の説明図 第2の実施の形態における複合光学素子の説明図 第3の実施の形態における複合光学素子の断面図 第4の実施の形態における複合光学素子の断面図 第5の実施の形態における複合光学素子の断面図 第6の実施の形態における複合光学素子の断面図 第7の実施の形態における複合光学素子の断面図 第7の実施の形態における第1の樹脂層及び第2の樹脂層における波長と屈折率との相関図 第8の実施の形態における複合光学素子の断面図 第9の実施の形態における複合光学素子の断面図 第10の実施の形態における光ヘッド装置の構成図 第11の実施の形態における光ヘッド装置の構成図 実施例1における波長と回折効率との相関図 実施例1における波長と回折効率との相関図 仮想的な光源から光ディスクまでの光学的位置関係の説明図 実施例1における405nm波長光の収差図 実施例1における660nm波長光の収差図 実施例1における780nm波長光の収差図 実施例2における405nm波長光の収差図 実施例2における660nm波長光の収差図 実施例2における780nm波長光の収差図 実施例3における405nm波長光の収差図 実施例3における660nm波長光の収差図 実施例3における780nm波長光の収差図 実施例4における405nm波長光の収差図 実施例4における660nm波長光の収差図 実施例4における780nm波長光の収差図 実施例5における405nm波長光の収差図 実施例5における660nm波長光の収差図 実施例5における780nm波長光の収差図 実施例8における405nm波長光の収差図 実施例8における660nm波長光の収差図 実施例8における780nm波長光の収差図 実施例9における405nm波長光の収差図 実施例9における660nm波長光の収差図 実施例9における780nm波長光の収差図 実施例10における405nm波長光の収差図 実施例10における660nm波長光の収差図 実施例10における780nm波長光の収差図
 本発明を実施するための形態について、以下に説明する。
 (第1の実施の形態)
 第1の実施の形態について説明する。本実施の形態は、対物レンズ形状を有する単レンズを含んだ構成の複合光学素子である。
 図2に基づき、本実施の形態における複合光学素子について説明する。図2は、本実施の形態における複合光学素子と、3種類の光ディスクについて模式的に示したものである。本実施の形態における複合光学素子10は、単レンズ11の表面に第1の樹脂層12、第1の樹脂層12の表面に第2の樹脂層13が形成されており、一体化した構成となっている。また、この複合光学素子10を含んだ構成の光ヘッド装置では、不図示の光源より必要に応じて光学系等を介し、波長の異なる3種類の光線、即ち、波長λの光線14、波長λの光線15、波長λの光線16が入射可能となるよう構成されており、各々の光が本実施の形態における複合光学素子10を介し、各々の種類の光ディスクに集光される。
 3種類の光ディスクは、厚さがtであるカバー層17aと情報記録面17bからなる第1の光ディスク17と、厚さがtであるカバー層18aと情報記録面18bからなる第2の光ディスク18と、厚さがtであるカバー層19aと情報記録面19bからなる第3の光ディスク19である。また、第1の光ディスク17は、波長λの光により情報の記録及び再生が行われるものであり、第2の光ディスク18は、波長λの光により情報の記録及び再生が行われるものであり、第3の光ディスク19は、波長λの光により情報の記録及び再生が行われるものである。各々の波長の光は各々の情報記録面に集光されることにより情報の記録及び再生が行われる。また、波長λ、波長λ、波長λについては、λ<λ<λの関係にあり、各々の光ディスクのカバー層の厚さt、t、tについては、t<t<tの関係にある。
 例えば、第1の光ディスク17はBDであり、波長λは405nm波長帯(375nm≦λ≦435nm)となる光であり、第2の光ディスク18はDVDであり、波長λは660nm波長帯(630nm≦λ≦690nm)となる光であり、第3の光ディスク19はCDであり、波長λは780nm波長帯(750nm≦λ≦810nm)となる光である。
 尚、図2においては、第1の光ディスク17、第2の光ディスク18及び第3の光ディスク19を示しているが、一度に記録再生を行うことが可能な光ディスクは1種類であり、3種類の第1の光ディスク17、第2の光ディスク18及び第3の光ディスク19のうちいずれか1つについて、情報の記録及び再生が行われる。つまり、第1の光ディスク17は、波長λの光線14が入射することにより情報の記録及び再生が行われ、第2の光ディスク18は、波長λの光線15が入射することにより情報の記録及び再生が行われ、第3の光ディスク19は、波長λの光線16が入射することにより情報の記録及び再生が行われる。また、各々の第1の光ディスク17、第2の光ディスク18及び第3の光ディスク19に光線14、15、16が入射する際における開口数NAの値を、各々NA、NA、NAとすると、NA>NA>NAの関係にある。
 本実施の形態を説明する上で、図2では、第1の光ディスク17に入射する波長λの光線14及び第3の光ディスク19に入射する波長λの光線16は、複合光学素子10に対して平行光となる無限系で入射しており、第2の光ディスク18に入射する波長λの光線15は、複合光学素子10に対して発散または収束しながら進行する有限系で入射している構成を示しているが、これに限らない。第3の光ディスク19に入射する波長λの光線16を複合光学素子10に対して有限系で入射し、第2の光ディスク18に入射する波長λの光線15を複合光学素子10に対して無限系で入射する構成でもよい。また、第2の光ディスク18に入射する波長λの光線及び第3の光ディスク19に入射するλの光線16をともに複合光学素子10に対して有限系で入射する構成としてもよい。
 前述のとおり、本実施の形態における複合光学素子10は、単レンズ11の表面に第1の樹脂層12、第1の樹脂層12の表面に第2の樹脂層13が形成されており、第1の樹脂層12と第2の樹脂層13との接合面(界面)によって、波長λの光線15及び波長λの光線16が透過する領域には断面形状がブレーズ形状の回折格子が形成される。図3は、本実施の形態における複合光学素子10において、単レンズ11に形成された第1の樹脂層12の状態を複合光学素子10の光軸方向より模式的に示したものである。尚、単レンズ11としては、ガラスや樹脂材料等が用いられ、ガラスの場合、低屈折率のものが好ましく用いられ、また、樹脂材料としてプラスチックを用いる場合、シクロオレフィンポリマー(COP)などを用いて、プレス加工により対物レンズ等のレンズ形状に形成することができる。
 また、第1の樹脂層12は、光線15よりも外側(光軸に対して周辺側)にブレーズ形状などの凹凸を有してもよく、この場合の凹凸形状は、波長λの光および波長λの光が入射する場合でも、それぞれ、第2の光ディスク18、第3の光ディスク19には集光しないような形状であるとよい。また、このように、光線15よりも外側に凹凸を有する場合、第1の樹脂層12と第2の樹脂層13と、が接する表面積が増えるので、これらの樹脂同士の密着性が上がる。これより、信頼性が上がるとともに、第2の樹脂層13を第1の樹脂層に積層する場合、この凹凸により樹脂の流動を阻害でき、樹脂の収縮による変形を抑制することができる。なお、このように、凹凸を与えることは、以降の実施の形態においても同様に用いることができる。
 第1の樹脂層12及び第2の樹脂層13は、入射する光の波長に対する屈折率、アッベ数が異なる特性を有する材料を各々用いる。図4に、第1の樹脂層12と第2の樹脂層13における波長と屈折率との関係(波長分散特性)を示す。例えば、屈折率特性12aは、第1の樹脂層12における波長分散特性を示し、屈折率特性13aは、第2の樹脂層13における波長分散特性を示したものである。第1の樹脂層12の屈折率と第2の樹脂層13の屈折率とは、波長λの帯域において屈折率n11で略同一の値となっている。しかしながら、波長λの帯域において、第1の樹脂層12の屈折率n12であり、第2の樹脂層13の屈折率n22であり各々異なる値となる。また、波長λの帯域において、第1の樹脂層12の屈折率n13であり、第2の樹脂層13の屈折率n23であり各々異なる値となる。ここで、波長の帯域とは、特定の波長λに対して、0.97λ~1.03λの波長領域のことを意味するものである。尚、屈折率の値が略同一とは、特定の波長の光における、2つの樹脂材料の屈折率の差をΔnとするとき、|Δn|≦0.02であるものとし、以降の実施の形態においても同様である。
 また、図4においては、波長λの光及び波長λの光おいて、第1の樹脂層12の屈折率に対し、第2の樹脂層13の屈折率が高い場合について示したが、逆に、第2の樹脂層13の屈折率に対し、第1の樹脂層12の屈折率が高い場合についても同様の効果を得ることができる。また、以降の他の実施の形態において図4を参照する場合も、屈折率特性12aは、第1の樹脂層における波長分散特性を示し、屈折率特性13aは、第2の樹脂層における波長分散特性を示すものとする。
 ここで、低アッベ数樹脂材料としては、芳香族系炭化水素を含む樹脂材料やTiO、Nb等の低アッベ数の無機微粒子を含有した樹脂を用いることが可能である。芳香族系炭化水素は紫外線の波長領域において吸収を有する場合があり、波長が405nm近傍において急峻な屈折率分散を得ることが可能である。しかしながら、405nmの波長の光が照射された際に、劣化しやすい傾向にあり、これを避けるためにフェニルシラン構造等の405nmの波長に対して劣化耐性のある構造を含むものであることが好ましい。
 高アッベ数樹脂材料としては、脂肪族系炭化水素、フッ素系炭化水素、硫黄系炭化水素を用いることが可能である。また、これらの樹脂にZrO、SiO、Al、La等の高アッベ数の無機微粒子を含むものを用いることも可能である。脂肪族系炭化水素は緩やかな屈折率分散が得られるが、屈折率が低くなる傾向にあるため、アダマンタン構造やジアマンタン構造等の材料を含めることにより屈折率を高めて、低アッベ数材料との屈折率の調整を行うことが好ましい。
 次に、複合光学素子10の具体的な構成について説明する。図2に示すように、第1の樹脂層12を進行する光の方向と略平行方向に与えられる第1の樹脂層12のブレーズの高さ(回折面におけるブレーズの高さ)hは、波長λにおける2つの樹脂の屈折率差をΔnとした場合に、Δn×h/λの値が波長λから波長λの波長の帯域において略1となるように形成されている。ここで、略1であるとは、好ましくは0.5≦Δn×h/λ≦1.5の範囲であり、より好ましくは、0.7≦Δn×h/λ≦1.3の範囲である。
 また、第1の樹脂層12のブレーズの高さは、全面にわたってhのみの値とする場合限らず、hと異なる高さの値を有するなど、不均一であってもよい。例えば、波長λの光の回折効率と波長λの光の回折効率を所定の値より変える場合、第1の樹脂層12のブレーズの高さを2値化するなど自由に設定することができる。また、フレネルレンズ形状を有する第1の樹脂層12の隣り合う頂点間の距離(=フレネルピッチ)が短くなる場合、回折効率が所定の値に対して変化することがある。この場合、高さをピッチ毎に調整して、例えば、光軸を中心に周辺部に向けて、高さのグラデーションを与えることで回折効率を均一化させることもできる。また、高さを全面にわたって不均一とする場合において、所定の高さをhとするとき、0.8×h≦h≦1.2×hの間で高さhの値が調整されていればよい。なお、このように、高さに不均一な分布を与えることは、以降の実施の形態においても同様に用いることができる。
 第1の樹脂層12及び第2の樹脂層13として用いることのできる樹脂材料は、上述した屈折率の関係を満たすものであればよく、熱硬化型や紫外線硬化型の樹脂材料を用いることができる。また、樹脂を含んだ材料であれば無機微粒子が混合されるようなハイブリッド材料であってもよい。また、単レンズ11に対して、第1の樹脂層12及び第2の樹脂層13を接合し、第1の樹脂層12と第2の樹脂層13との界面に回折面を形成する方法としては、紫外線や熱によるインプリント法を用いることができる。
 このようにして形成された本実施の形態における複合光学素子10においては、波長λの光は第1の樹脂層12における屈折率及び第2の樹脂層13における屈折率が略同一の値となっているため、第1の樹脂層12及び第2の樹脂層13における界面において波長λの光は回折されずに進行する。従って、波長λの光が無限系で複合光学素子10に入射した場合、第1の光ディスク17の情報記録面17bに集光させることができるよう、単レンズ11、第1の樹脂層12及び第2の樹脂層13の形状を決定する。
 一方、波長λの光が無限系で入射すると、第1の樹脂層12と第2の樹脂層13との界面に形成された回折格子により回折されるため、複合光学素子10と第3の光ディスク19との間の距離を十分に保った状態で、波長λの光を第3の光ディスク19の情報記録面19bの表面に集光させることができ、かつ、第1の光ディスク17のカバー層17aと第3の光ディスク19のカバー層19aとの厚さの違いにより生じる球面収差の補正を行うことができる。
 更に、本実施の形態における複合光学素子10では、波長λの光を有限系で入射させ球面収差の補正を行うことにより、第2の光ディスク18の情報記録面18bに、波長λの光を集光させることができる。つまり、複合光学素子10に入射する波長λの光の発散状態(発散角)と、入射する光を回折させて集光させる回折格子の性能(仕様)を調整することで、第2の光ディスク18の情報記録面18bに集光させることができる。
 本実施の形態における複合光学素子10では、上述した構成により、複合光学素子10と第1の光ディスク17、第2の光ディスク18及び第3の光ディスク19との間の距離を十分に保った状態で、波長λの光、波長λの光及び波長λの光を集光させることができる。
 (第2の実施の形態)
 次に、第2の実施の形態について説明する。図5に基づき本実施の形態における複合光学素子について説明する。本実施の形態における複合光学素子は、単レンズを含んだ構成のものである。
 本実施の形態における複合光学素子20は、単レンズ21の表面に第1の樹脂層22、第1の樹脂層22の表面に第2の樹脂層23が形成されており一体化した構成となっている。第1の樹脂層22と第2の樹脂層23との界面によって、断面形状がブレーズ形状の回折格子が形成されており、第2の樹脂層23の表面、即ち、第1の樹脂層22と接しない面には、位相段差24が形成されている。第1の樹脂層22の屈折率と第2の樹脂層23の屈折率は、波長λの帯域において略同一の値であり、波長λの帯域及び波長λの帯域において値が異なるものであって、図4に示すような波長分散特性を有する。また、波長λの光及び波長λの光は有限系で複合光学素子20に入射する。尚、図6は、本実施の形態における複合光学素子20において、第2の樹脂層23の表面における位相段差24が形成されている状態を光軸方向より模式的に示したものである。また、本実施形態では、第2の樹脂層23の表面において、位相段差24が形成された領域を周辺領域、光軸を含み位相段差24が形成されない領域を中心領域という。
 次に、図7A及び7Bに基づき本実施の形態における複合光学素子20の位相段差24及びその効果について説明する。位相段差24は、複合光学素子20における残留収差の補正をするために形成されている。例えば、位相段差24が形成されていないため、波長λの光が入射し、第2の光ディスクに集光した際、残留波面収差が図7Aにおける波面収差31のような分布を有している場合に、位相段差24により、波面収差31を相殺するように波面収差32に示すような位相差を与える補正を行うことで、球面収差を低減させる。そして、図7Bは、波面収差31に対して波面収差32を差し引いた残留の波面収差33を示したものである。尚、図7A及び7Bは、本実施の形態における複合光学素子20の光軸に沿った断面における波面収差を示すものであり、波面収差31となる球面収差は光軸を中心に回転対称の分布となるように発生する。周辺領域は光軸を中心に回転対称となる輪帯状の領域となる。
 本実施の形態における複合光学素子20により生じる波面収差の大きさは、波長λの光、波長λの光、波長λの光によって異なるため、位相段差24により特に波面収差を補正したい特定の波長の光に対してのみを対象とし、他の波長の光に対して余分な波面収差を発生させないことが好ましい。例えば、波長λの光についてのみ波面収差の補正をしたい場合には、位相段差24における段差dが、以下の(1)~(3)の数式を満たすように作製する。
 (m-0.1)λ≦d(n(λ)-1)≦(m+0.1)λ・・(1)
 (m+0.1)λ<d(n(λ)-1)<(m+0.9)λ・・(2)
 (m-0.1)λ≦d(n(λ)-1)≦(m+0.1)λ・・(3)
 ここで、n(λ)、n(λ)及びn(λ)は、それぞれ、第2の樹脂層23における波長λの光の屈折率、波長λの光の屈折率及び波長λの光の屈折率である。また、m、m及びmは整数である。上記(1)~(3)に記載した式を満たすように本実施の形態における複合光学素子20を作製する。尚、段差dは、光軸に略平行な高さに相当し、図5において例として段差dの数が2つ(ステップ数=2)となる位相段差24としているが、波面収差31を相殺できればステップ数が3以上であってもよい。
 これにより、本実施の形態における複合光学素子20では、波面(球面)収差の補正が不十分であった場合に、所定の波長における波面(球面)収差の補正をすることができ、波長λの光、波長λの光及び波長λの光を第1の光ディスク17、第2の光ディスク18及び第3の光ディスク19に対し、低い波面(球面)収差量で良好に集光させることができる。また、本実施の形態では、第2の樹脂層23の表面に位相段差24を形成したが、第1の樹脂層22の回折格子面に位相段差を加えた形状としてもよい。尚、上記以外の内容については第1の実施の形態と同様である。
 (第3の実施の形態)
 次に、第3の実施の形態について説明する。図8は、本実施の形態における複合光学素子40を模式的に示したものである。本実施の形態における複合光学素子40は、単レンズ41の表面に第1の樹脂層42、第1の樹脂層42の表面に第2の樹脂層43が形成されており一体化した構成となっている。第1の樹脂層42と第2の樹脂層43との界面によって、第1の実施の形態と同様の、断面形状がブレーズ形状の回折格子が形成されており、後述するもう一つの回折格子と区別するため、この回折格子を第1の回折格子とする。そして、第2の樹脂層43の表面、即ち、第1の樹脂層43と接しない第2の樹脂層43の表面には第2の回折格子44が形成されている。第1の樹脂層42の屈折率と第2の樹脂層43の屈折率は、波長λの帯域において略同一の値であり、波長λの帯域及び波長λの帯域において値が異なるものであって、図4に示すような波長分散特性を有する。
 第2の回折格子44は第2の樹脂層43の表面全体に形成されており、この第2の回折格子44においても入射する光を回折させることによって、発生する収差を低減して集光性を改善することができる。つまり、第1の回折格子においても残留収差が残っている場合に、残留収差の補正を行うためのものである。樹脂層43の表面に入射した光は、第2の回折格子44により回折されるため進行方向が変化し、第1の樹脂層42と第2の樹脂層43との間で屈折率が異なる波長の光に対し、第1の回折格子によって回折させることによって残留収差の補正が行われ、各々の波長の光が、第1の光ディスク17、第2の光ディスク18及び第3の光ディスク19に集光される。
 第2の回折格子44がブレーズ形状である場合、最大の回折効率となるのは、光軸と略平行となるブレーズ形状の高さdが、以下の(4)~(6)における式を満たす場合である。
 (m-0.3)λ≦d(n(λ)-1)≦(m+0.3)λ・・(4)
 (m-0.3)λ≦d(n(λ)-1)≦(m+0.3)λ・・(5)
 (m-0.3)λ≦d(n(λ)-1)≦(m+0.3)λ・・(6)
 ここで、n(λ)、n(λ)及びn(λ)は、それぞれ、第2の樹脂層43における波長λの光の屈折率、波長λの光の屈折率及び波長λの光の屈折率である。また、m、m及びmは整数である。上記(4)~(6)における数式を満たすように本実施の形態における複合光学素子40を作製する。
 これにより、本実施の形態における複合光学素子40における光の屈折、第2の樹脂層43の表面(第2の回折格子)における光の回折、第1の樹脂層42と第2の樹脂層43との界面(第1の回折格子)における光の回折と、3つの光学特性を利用して、各々の波長の光を各々の光ディスクの情報記録面に良好に集光させるように自由度の高い設計を実現できる。
 ここで、本実施の形態の複合光学素子40に含まれる第1の樹脂層42と第2の樹脂層43の屈折率は、図4に示すような波長分散特性を有するものとしたので、波長λの光については、複合光学素子40における光の屈折及び第2の樹脂層43における光の回折により、第1の光ディスク17に集光される。また、波長λの光については、複合光学素子40における光の屈折、第2の回折格子における光の回折及び第1の回折格子における光の回折により、第2の光ディスク18に集光される。また、波長λの光についても、複合光学素子40における光の屈折、第2の回折格子における光の回折及び第1の回折格子における光の回折により、第3の光ディスク19に集光される。
 また、第2の回折格子44の断面形状が、図8に示すようにブレーズ形状を階段状に近似した擬似ブレーズ形状である場合には、各々の波長の光に対して異なる光学作用を与えることができる。例えば、波長λの光に対してのみ第2の回折格子44で回折させようとする場合、擬似ブレーズ形状の各段の段差d3Sは、以下の(7)~(9)の式を満たすように作製することにより、波長λの光に対してのみ作用し、波長λの光及び波長λの光については、第2の回折格子44で回折されることなく透過する。
 (p-0.1)λ≦d3S(n(λ)-1)≦(p+0.1)λ・・・(7)
 (p+0.1)λ<d3S(n(λ)-1)<(p+0.9)λ・・・(8)
 (p-0.1)λ≦d3S(n(λ)-1)≦(p+0.1)λ・・・(9)
 また、p、p及びpは整数である。これにより、第2の回折格子44の断面形状が擬似ブレーズ形状であるとき、本実施の形態における複合光学素子40における屈折、第2の回折格子において入射する光の波長を選択的に回折、第1の回折格子における回折と3つの光学特性を利用して、各々の波長の光を各々の光ディスクの情報記録面に良好に集光させるように自由度の高い設計を実現できる。
 ここで、本実施の形態の複合光学素子40に含まれる第1の樹脂層42の屈折率と第2の樹脂層43の屈折率は、図4に示すような波長分散特性を有するものとしたので、波長λの光については、複合光学素子40における光の屈折により、第1の光ディスク17における情報記録面17bに集光される。また、波長λの光については、複合光学素子40における光の屈折、第2の回折格子における光の回折及び第1の回折格子における光の回折により、第2の光ディスク18における情報記録面18bに集光される。また、波長λの光についても、複合光学素子40における光の屈折、第1の回折格子における光の回折により、第3の光ディスク19における情報記録面19bに集光される。
 本実施の形態においては、波長λの光は無限系で複合光学素子40に入射することが望ましいが、波長λの光及び波長λの光は無限系、有限系のどちらで入射してもよい。本実施の形態における複合光学素子40では、各々の波長の光に対して集光し、複合光学素子40と第1の光ディスク17、第2の光ディスク18及び第3の光ディスク19との間の距離を十分に保つことが可能である。尚、上記以外の内容については第1の実施の形態と同様である。
 (第4の実施の形態)
 次に、第4の実施の形態について説明する。図9は、本実施の形態における複合光学素子50を模式的に示したものである。本実施の形態における複合光学素子50は、単レンズ51の表面に第1の樹脂層52、第1の樹脂層52の表面に第2の樹脂層53が形成されており一体化した構成となっている。第1の樹脂層52と第2の樹脂層53との界面によって、第1の実施の形態と同様の断面形状がブレーズ形状の回折格子が形成されており、後述するもう一つの回折格子と区別するため、この回折格子を第1の回折格子とする。そして、第2の樹脂層53の表面、即ち、第1の樹脂層53と接しない面にはバイナリー型の第2の回折格子54が形成されている。また、本実施形態では、第2の樹脂層53の表面において、第2の回折格子54が形成された領域を周辺領域、光軸を含み第2の回折格子54が形成されない領域を中心領域という。第1の樹脂層52の屈折率と第2の樹脂層53の屈折率は、波長λの帯域において略同一の値であり、波長λの帯域及び波長λの帯域において値が異なるものであって、図4に示すような波長分散特性を有する。
 また、本実施の形態においては、波長λの光は無限系で本実施の形態の複合光学素子50に入射することが望ましく、波長λの光及び波長λの光は有限系で本実施の形態における複合光学素子50に入射するとよい。尚、波長λの光と波長λの光のいずれか一方は無限系で複合光学素子50に入射するものであってもよい。
 第2の回折格子54は第2の樹脂層53の周辺領域に形成されており、開口の大きさを制限する作用を有するものである。第2の回折格子54が形成された領域は、光軸を中心に回転対称となる輪帯状の領域であり、波長λの光が第2の回折格子54に入射した場合、光を回折させることによって波長λの光に対応した第3の光ディスク19へ集光させる光の開口を制限する。一方、波長λの光及び波長λの光は第2の回折格子54において光は回折されることなく、それぞれ、第1の光ディスク17及び第2の光ディスク18の情報記録面18bに集光する。つまり、波長λの光のうち周辺領域となる第2の回折格子54に入射して回折した光は、第3の光ディスク19の情報記録面19bに集光せず、第2の回折格子54が形成されていない光軸を含む中心領域を透過する光のみ、第3の光ディスク19の情報記録面19bに集光する。
 第1~第3の実施の形態では、各々の波長の光が開口制限された、所望のNAとなった状態で複合光学素子に入射することを前提として説明したが、本実施の形態では、このように入射する光を波長選択的に開口制限させる機能を発現する第2の回折格子54を形成することで、複合光学素子50を用いる光学系において、複合光学素子50とは別に開口制限機能を発現する光学素子等を用いなくてもよい場合がある。
 このような開口制限機能を発現するため、本実施の形態における複合光学素子50において、第2の回折格子54における、光軸と略平行となる高さdは、以下の(10)~(12)における式を満たすように作製されている。
 (m-0.2)λ≦d(n(λ)-1)≦(m+0.2)λ・・・(10)
 (m-0.2)λ≦d(n(λ)-1)≦(m+0.2)λ・・・(11)
 (m+0.3)λ≦d(n(λ)-1)≦(m+0.7)λ・・・(12)
 ここで、n(λ)、n(λ)及びn(λ)は、それぞれ、第2の樹脂層53における波長λの光の屈折率、波長λの光の屈折率及び波長λの光の屈折率である。また、m、m及びmは整数である。このようにすると、上記(10)、(11)を満足することにより、波長λの光の開口数(NA)より大きい開口数で入射する波長λの光及び波長λの光は回折格子54で回折されることなく透過し、さらに、上記(12)を満足することにより回折格子54に入射する波長λの光は±1次回折効率が最大となり直進透過する光の光量が略0(0次回折効率が略0%)となるので、第2の回折格子54に入射した光はほとんど第3の光ディスク19の情報記録面19bに集光せず、開口制限機能が向上し、好ましい。
 これにより、本実施の形態では、各々の波長の光に対して適した開口の大きさの光を光ディスクに集光することができ、また、複合光学素子50と第1の光ディスク17、第2の光ディスク18及び第3の光ディスク19との間の距離を十分に保つことが可能である。尚、上記以外の内容については第1の実施の形態と同様である。
 (第5の実施の形態)
 次に、第5の実施の形態について説明する。図10は、本実施の形態における複合光学素子60を模式的に示したものである。本実施の形態における複合光学素子60は、単レンズ61の表面に第1の樹脂層62、第1の樹脂層62の表面に第2の樹脂層63が形成されており一体化された構成となっている。第1の樹脂層62と第2の樹脂層63との界面によって、第1の実施の形態と同様の断面形状がブレーズ形状の回折格子が形成されており、第2の樹脂層63の表面、即ち、第1の樹脂層63と接しない面には位相段差64が形成されている。また、本実施形態では、第2の樹脂層63の表面において、位相段差64が形成された領域を周辺領域、光軸を含み位相段差64が形成されない領域を中心領域という。第1の樹脂層62の屈折率と第2の樹脂層63の屈折率は、波長λの帯域において略同一の値であり、波長λの帯域及び波長λの帯域において値が異なるものであって、図4に示すような波長分散特性を有する。
 また、本実施の形態においては、波長λの光は無限系で本実施の形態の複合光学素子60に入射することが望ましく、波長λの光及び波長λの光は有限系で本実施の形態における複合光学素子60に入射するとよい。尚、波長λの光と波長λの光のいずれか一方は無限系で複合光学素子60に入射するものであってもよい。
 位相段差64は第2の樹脂層63の周辺領域に形成されており、波長λの光の開口の大きさを制限する作用を有するものである。位相段差64が形成された領域は、光軸を中心に回転対称となる輪帯状の領域であり、第2の樹脂層63に入射する波長λの光のうち、位相段差64が形成された輪帯状の周辺領域と、位相段差64が形成されていない光軸を含む中心領域との間で位相差を与える作用を有している。具体的には、波長λの光のみ位相段差64により光の位相を変化させることによって、大きな収差を発生させる。発生した収差により、位相段差64を通過した光は、第3の光ディスク19の情報記録面19bに集光せず、位相段差64が形成されていない中心領域を透過する光のみ、第3の光ディスク19の情報記録面19bに集光する。したがって、複合光学素子60を用いる光学系において、複合光学素子60とは別に開口制限機能を有する光学素子等を用いなくてもよい場合がある。
 これにより、波長λの光及び波長λの光は位相段差64における収差が発生することなく、第1の光ディスク17及び第2の光ディスク18の情報記録面に集光し、波長λの光は位相段差64に入射した光は大きな収差が発生するため、位相段差64よりも内側の中心領域に入射した光のみが、第3の光ディスク19の情報記録面に集光する。
 このような開口制限機能を発現するため、本実施の形態における複合光学素子60において、位相段差64における光軸と略平行となる段差dは、以下の(13)~(15)における式を満たすように作製されている。
 (m-0.2)λ≦d(n(λ)-1)≦(m+0.2)λ・・・(13)
 (m-0.2)λ≦d(n(λ)-1)≦(m+0.2)λ・・・(14)
 (m+0.3)λ≦d(n(λ)-1)≦(m+0.7)λ・・・(15)
 ここで、n(λ)、n(λ)及びn(λ)は、それぞれ、第2の樹脂層63における波長λの光の屈折率、波長λの光の屈折率及び波長λの光の屈折率である。また、m、m及びmは整数である。このように、上記(13)、(14)を満足することで、入射する波長λの光及び波長λの光は、位相段差64でこれらの波長の略整数倍の位相差が与えられるので、見かけ上、位相差が発生しない状態と同じ状態で透過する。更に、上記(15)を満足するにより位相段差64に入射する波長λの光は、中心領域に対して最も大きな位相差を発生するので、位相段差64を透過した光は光ディスク19の情報記録面における集光性が大きく低下するので、開口制限機能が向上し、好ましい。
 これにより、本実施の形態では、各々の波長の光に対して適した開口の大きさの光を光ディスクに集光することができ、また、複合光学素子60と第1の光ディスク17、第2の光ディスク18及び第3の光ディスク19との間の距離を十分に保つことが可能である。また、本実施の形態では、第2の樹脂層63の表面に位相段差64を形成したが、第1の樹脂層62の回折格子面に位相段差を加えた形状としてもよい。尚、上記以外の内容については第1の実施の形態と同様である。
 (第6の実施の形態)
 次に、第6の実施の形態について説明する。図11は、本実施の形態における複合光学素子65を模式的に示したものである。本実施の形態における複合光学素子65は、単レンズ66の表面に第1の樹脂層67、第1の樹脂層67の表面に第2の樹脂層68が形成されており一体化した構成となっている。第1の樹脂層67と第2の樹脂層68との界面によって、第1の実施の形態と同様の断面形状がブレーズ形状の回折格子が形成されており、後述するもう一つの回折格子と区別するため、この回折格子を第1の回折格子とする。そして、第2の樹脂層68の表面、即ち、第1の樹脂層67と接しない面にはブレーズ形状の第2の回折格子69が形成されている。また、本実施形態では、第2の樹脂層68の表面において、第2の回折格子69が形成された領域を周辺領域、光軸を含み第2の回折格子69が形成されない領域を中心領域という。第1の樹脂層67の屈折率と第2の樹脂層68の屈折率は、波長λの帯域において略同一の値であり、波長λの帯域及び波長λの帯域において値が異なるものであって、図4に示すような波長分散特性を有する。
 また、本実施の形態においては、波長λの光は無限系で本実施の形態の複合光学素子65に入射することが望ましく、波長λの光及び波長λの光は有限系で本実施の形態における複合光学素子65に入射するとよい。尚、波長λの光と波長λの光のいずれか一方は無限系で複合光学素子65に入射するものであってもよい。
 第2の回折格子69は第2の樹脂層68の周辺領域に形成されており、この周辺領域は、光軸を中心に回転対称となる輪帯状の領域である。また、第2の回折格子69が形成される周辺領域は、任意の領域として設定することができるが、ここでは、他の波長の光に比べて開口数が大きい波長λの光のみ、が入射する領域に相当し、波長λの光および波長λの光は、周辺領域に入射しないものと考える。そして、波長λの光が中心領域および周辺領域に入射する場合、中心領域に入射する光を屈折させ、一方で周辺領域に入射する光を、第2の回折格子69で回折させることによって波長λの光に対応した第1の光ディスク17へ集光させる。また、波長λの光および波長λの光については、第1の実施の形態と同様に、それぞれ、第2の光ディスク18、第3の光ディスク19へ集光させる。
 本実施の形態における複合光学素子65では、とくに周辺領域にブレーズ形状の第2の回折格子を設けることで、開口数が大きい波長λの光のうち、周辺領域に入射する光を所定の回折角で回折することができる。そして、周辺領域の回折角を大きくすることで、複合光学素子65、とくに単レンズ66の周辺領域の形状を緩やかにすることができる。この場合、複合光学素子の加工精度が高くなり、所望の光学特性を得やすい。また、屈折と回折の色分散の方向が異なることを利用して色収差を補正するようにしてもよい。
 〔第7の実施の形態〕
 次に、第7の実施の形態について説明する。図12は、本実施の形態における複合光学素子70を模式的に示したものである。本実施の形態における複合光学素子70は、単レンズ71の表面に第1の樹脂層72、第1の樹脂層72の表面に第2の樹脂層73が形成されており一体化した構成となっている。第1の樹脂層72と第2の樹脂層73との界面によって、断面形状がブレーズ形状の回折格子が形成されている。
 図13に、第1の樹脂層72と第2の樹脂層73における波長と屈折率の関係(波長分散特性)を示す。屈折率特性72aは、第1の樹脂層72における波長分散特性を示し、屈折率特性73aは、第2の樹脂層73における波長分散特性を示したものである。図13に示されるように、波長λの帯域においては、第1の樹脂層72における屈折率はn11Rであり、第2の樹脂層73における屈折率はn21Rであり異なっている。しかしながら、波長λの帯域においては、第1の樹脂層72における屈折率はn12Rであり、第2の樹脂層73における屈折率はn22Rであり、略同一の値となっている。また、波長λの帯域においては、第1の樹脂層72における屈折率はn13Rであり、第2の樹脂層73における屈折率はn23Rであり、略同一の値となっている。第1の樹脂層72と第2の樹脂層73との界面によって形成されている、第1の樹脂層72を進行する光の方向と略平行方向に与えられるブレーズ形状の高さhは、第1の樹脂層72の屈折率と第2の樹脂層73の屈折率との差、屈折率差をΔn(λ)とした場合に、(16)における式を満たしていれば好ましく、
 (m-0.5)λ≦hΔn(λ)≦(m+0.5)λ・・・・・(16)
(17)における式を満たしていればより好ましい。
 (m-0.3)λ≦hΔn(λ)≦(m+0.3)λ・・・・・(17)
 尚、mは自然数である。これにより、第1の樹脂層72と第2の樹脂層73との界面によって形成された回折格子において、波長λの光が入射した場合には光が回折し、波長λの光及び波長λの光が入射した場合には光がほぼ回折することなく透過する。また、第1の樹脂層72のブレーズの高さは、全面にわたってhのみの値に限らず、hと異なる高さの値を有するなど、不均一であってもよい。
 本実施の形態における複合光学素子70では、波長λの光が入射した場合には、複合光学素子70と第3の光ディスク19の間の距離を十分保った状態で、第3の光ディスク19における情報記録面19bの表面に集光するような形状で複合光学素子70が作製されている。また、波長λの光が入射した場合には、第2の光ディスク18のカバー層18aの厚さと第3の光ディスク19のカバー層19aの厚さが相違していても、これにより生じる球面収差を補正することができるよう形成されている。また、波長λの光は無限系で入射した場合において、複合光学素子70における光の屈折、第1の樹脂層72と第2の樹脂層73との間に形成された回折格子による光の回折により、第1の光ディスク17における情報記録面17bに集光される。尚、第2の樹脂層73の表面には、第2、第5の実施の形態で示したような位相段差や第3、第4の実施の形態で示したような(第2の)回折格子を設けてもよい。
 これにより、本実施の形態では、複合光学素子70と第1の光ディスク17、第2の光ディスク18及び第3の光ディスク19との間の距離を十分に保った状態で各々集光することが可能である。尚、上記以外の内容については第1の実施の形態と同様である。また、以降の他の実施の形態において図13を参照する場合も、屈折率特性72aは、第1の樹脂層における波長分散特性を示し、屈折率特性73aは、第2の樹脂層における波長分散特性を示すものとする。
 〔第8の実施の形態〕
 次に、第8の実施の形態について説明する。図14は、本実施の形態における複合光学素子80を模式的に示したものである。本実施の形態における複合光学素子80は、単レンズ81の表面に第1の樹脂層82、第1の樹脂層82の表面に第2の樹脂層83が形成されており一体化した構成となっている。第1の樹脂層82と第2の樹脂層83との界面によって、光軸を含む一部の領域に断面形状がブレーズ形状の回折格子が形成されている。
 本実施の形態における複合光学素子80は、具体的に、前述の第1の樹脂層82と第2の樹脂層83との界面によって、断面形状がブレーズ形状の回折格子が形成されている第1の領域7Aと、第1の樹脂層82と第2の樹脂層83との界面によって、このようなブレーズ形状の回折格子は形成されていない第2の領域7Bを有する。また、第1の領域7Aは、光軸を含む円形の領域であり、第2の領域7Bは第1の領域7Aの周辺部分となる輪帯状の領域である。なお、第1の領域7Aは内部中心領域、第2の領域7Bは内部周辺領域ともいうこととする。
 ここで、例えば、第2の領域7Bとなる周辺の領域に回折格子を形成する場合、回折格子のピッチが光軸からの距離に反比例して狭くなるので、より高い精度の製造技術が要求される。複合光学素子80は、光軸から離れた第2の領域7Bに入射する波長λの光に対して回折ではなく、屈折のみで第1の光ディスク17の情報記録面17bに集光させるための曲面形状を有するものである。つまり、第1の領域7Aに入射する波長λの光は、光の屈折と光の回折によって第1の光ディスク17の情報記録面17bに集光させ、第2の領域7Bに入射する波長λの光は、光の屈折によって第1の光ディスク17の情報記録面17bに集光させることができる。尚、第2の領域7Aに入射する波長λの光は第2の光ディスク18の情報記録面18bには集光し、波長λの光は第3の光ディスク19の情報記録面19bに集光するように形成されている。
 第1の樹脂層82と第2の樹脂層83とは、第7の実施形態の場合と同様に図13に示す波長分散特性を有し、波長λの帯域においては、第1の樹脂層82における屈折率と、第2の樹脂層83における屈折率とは異なった値であるが、波長λの帯域においては、第1の樹脂層82における屈折率と、第2の樹脂層83における屈折率とは略同一の値であり、また、波長λの帯域においては、第1の樹脂層82における屈折率と、第2の樹脂層83における屈折率とは略同一の値である。第1の樹脂層82と第2の樹脂層83との間に形成されている、第1の樹脂層82に入射する光の進行方向と略平行方向に与えられるブレーズ形状の高さhは、第1の樹脂層82の屈折率と第2の樹脂層83との屈折率差をΔn(λ)とした場合に、(18)における式を満たしていれば好ましく、
 (m-0.5)λ≦hΔn(λ)≦(m+0.5)λ・・・・・(18)
(19)における式を満たしていればより好ましい。
 (m-0.3)λ≦hΔn(λ)≦(m+0.3)λ・・・・・(19)
 尚、mは自然数である。尚、本実施の形態における複合光学素子80は第1の領域7Aでは、波長λの光が入射した場合には、複合光学素子80と第3の光ディスク19との間の距離を十分保った状態で、第3の光ディスク19の情報記録面19bに集光されるよう、また、第2の領域7Bでは、波長λの光が入射した場合には、第1の光ディスク17の情報記録面17bに集光されるような形状で形成されている。また、第1の樹脂層82のブレーズの高さは、全面にわたってhのみの値に限らず、hと異なる高さの値を有するなど、不均一であってもよい。
 このように、本実施の形態における複合光学素子80には、波長λの光が無限系で入射した場合、第1の領域7Aを透過した光は第1の樹脂層82と第2の樹脂層83との界面によって形成された回折格子により回折され、第1の光ディスク17における情報記録面17bに集光される。また、第2の領域7Bでは光が屈折されて第1の光ディスク17の情報記録面17bに集光される。また、波長λの光及び波長λの光は有限系、又は無限系で本実施の形態における複合光学素子80の第1の領域7Aに入射し、1の樹脂層82と第2の樹脂層83との界面によって形成された回折格子により回折されることなく集光される。尚、第2の樹脂層83の表面には、第2、第5の実施の形態で示したような位相段差や第3、第4、第6の実施の形態で示したような(第2の)回折格子を設けてもよい。
 これにより、本実施の形態では、複合光学素子80と第1の光ディスク17、第2の光ディスク18及び第3の光ディスク19との間の距離を十分に保った状態で各々集光することが可能である。尚、上記以外の内容については第7の実施の形態と同様である。
 〔第9の実施の形態〕
 次に、第9の実施の形態について説明する。図15は、本実施の形態における複合光学素子90を模式的に示したものである。本実施の形態における複合光学素子90は、単レンズ91の表面に第1の樹脂層92、第1の樹脂層92の表面に第2の樹脂層93が形成されており一体化した構成となっている。第1の樹脂層92と第2の樹脂層93との界面によって、断面形状がブレーズ形状で、第1の樹脂層92を進行する光の方向と略平行方向に与えられる高さhの回折格子が形成されている。更に、第2の樹脂層93の表面には保護層94が形成されている。
 また、図4に示す波長分散特性のように、第1の樹脂層92の屈折率と第2の樹脂層93の屈折率とは、波長λの帯域の光において略同一の値であり、波長λの帯域の光及び波長λの帯域の光において異なった値となっているか、または、図13に示す波長分散特性のように、波長λの帯域の光及び波長λの帯域の光において各々略同一の値であり、波長λの帯域の光において異なった値となっているものである。
 単レンズ91は、プレス加工により非球面形状に形成してもよく、また、研磨加工により両面を球面形状に加工してもよい。また、保護層94は単レンズ91と同一の材料でもよく、また異なった材料であってもよい。保護層94は第2の樹脂層93の上に樹脂を直接形成してもよいし、別途ガラスや樹脂をプレスしたレンズ形状のものを第2の樹脂層93を介して接着するようなものであってもよい。
 本実施の形態における複合光学素子90において、図4に示す波長分散特性のように、第1の樹脂層92の屈折率と第2の樹脂層93の屈折率とが、波長λの帯域の光において略同一の値であり、波長λの帯域の光及び波長λの帯域の光において異なった値である場合について説明する。波長λの光が無限系で入射した場合、複合光学素子90における光の屈折により第1の光ディスク17の情報記録面17bに集光される。また、波長λの光が入射した場合、複合光学素子90における光の屈折と第1の樹脂層92と第2の樹脂層93との界面によって形成された回折格子による光の回折により、複合光学素子90と第3の光ディスク19との間の距離を十分保った状態で、波長λの光が第3の光ディスク19の情報記録面19bに集光される。波長λの光が入射した場合、波長λの光とは異なった発散角で入射することにより、第3の光ディスク19のカバー層19aとは異なる厚さの第2の光ディスク18のカバー層18aによる球面収差を補正して、第2の光ディスク18の情報記録面18bに集光させることができる。
 本実施の形態では、保護層94を形成することにより第1の樹脂層92及び第2の樹脂層93が保護されるため、信頼性を高めることができ、また、複合光学素子80と第1の光ディスク17、第2の光ディスク18及び第3の光ディスク19との間の距離を十分に保った状態で各々集光することが可能である。また、第1の樹脂層92のブレーズの高さは、全面にわたってhのみの値に限らず、hと異なる高さの値を有するなど、不均一であってもよい。
 尚、第2の樹脂層93の表面には第2、第5の実施の形態で示したような位相段差や第3、第4、第6の実施の形態で示したような(第2の)回折格子を設けてもよく、さらに、第8の実施の形態に記載されているように2つの領域のうち一方の領域にのみ回折格子を形成したものであってもよい。尚、上記以外の内容については第1の実施の形態と同様である。
 〔第10の実施の形態〕
 次に、第10の実施の形態について説明する。本実施の形態は、第1~第9の実施の形態における複合光学素子を有する光ヘッド装置である。
 図16に基づき本実施の形態における光ヘッド装置について説明する。本実施の形態における光ヘッド装置は、光ディスク110の記録及び再生を行うための光ヘッド装置であり、3種類の異なる波長の光に対応したものである。具体的には、光ディスク110として、BD、DVD、CDの3種類の光ディスクに対応するものであり、それぞれ、405nm波長帯、660nm波長帯、780nm波長帯の光に対応したものである。
 本実施の形態における光ヘッド装置は、405nm波長帯である波長λの光を発する第1のレーザ光源111、660nm波長帯である波長λの光を発する第2のレーザ光源112、780nm波長帯である波長λの光を発する第3のレーザ光源113、第1のビームスプリッタ114、第2のビームスプリッタ115、第3のビームスプリッタ116、コリメータレンズ117、複合光学素子118、第4のビームスプリッタ119、第5のビームスプリッタ120、第1のフォトディテクタ121、第2のフォトディテクタ122、第3のフォトディテクタ123を有している。尚、これらのビームスプリッタは、偏光ビームスプリッタ、ダイクロイックプリズムなどが用いられる。
 尚、複合光学素子118は、対物レンズ機能を発現する第1~第9の実施の形態のいずれかに記載された複合光学素子が利用できる。また、コリメータレンズ117は、光軸に平行に移動することにより複合光学素子118に入射する各々の波長の光の発散角を調節することができるものが備えられてもよい。コリメータレンズ117の移動には不図示のステッピングモーター等が用いられる。具体的には、各々の光源からの位置とコリメータレンズ117までの物体側主点の距離をsとし、コリメータレンズ117の像側主点とコリメータレンズ117の像側主点とコリメータレンズ117による結像位置の距離をsとし、コリメータレンズ117の焦点距離をfとした場合に、数1に記載された式が成立する。数1における式において、sの値によってコリメータレンズ117に入射する光の発散角が定まるため、所望の発散角となるように、sの値、fの値を定めることができる。
Figure JPOXMLDOC01-appb-M000001
 本実施の形態において、第1のレーザ光源111より発せられた波長λの光は、第1のビームスプリッタ114、第2のビームスプリッタ115及び第3のビームスプリッタ116を直進し、コリメータレンズ117を介し、対物レンズである複合光学素子118により集光され、光ディスク110に照射される。この際、再生される光ディスク110は、波長λの光に対応した第1の光ディスクであるBDである。この後、光ディスク110の情報記録面において反射された光は、複合光学素子118及びコリメータレンズ117を透過した後、第3のビームスプリッタ116により偏向され、更に、第4のビームスプリッタ119及び第5のビームスプリッタ120を直進した後、第1のフォトディテクタ121に入射し、光ディスク110の情報記録面に記録された信号が電気信号に変換され検出される。尚、コリメータレンズ117と複合光学素子118との間の光路中には、光の波長に対して1/4となる位相差を与える不図示の1/4波長板が備えられる。更に光路中に複合光学素子118に入射する角波長の光の開口数を制御する不図示の開口制限素子が備えられていてもよい。
 また、第2のレーザ光源112より発せられた波長λの光は、第1のビームスプリッタ114において偏向された後、第2のビームスプリッタ115及び第3のビームスプリッタ116を直進し、コリメータレンズ117を介し、対物レンズである複合光学素子118により集光され、光ディスク110に照射される。この際、再生される光ディスク110は、波長λの光に対応した第2の光ディスクであるDVDである。この後、光ディスク110の情報記録面において反射された光は、複合光学素子118及びコリメータレンズ117を透過した後、第3のビームスプリッタ116により偏向され、更に、第4のビームスプリッタ119を直進した後、第5のビームスプリッタ120により偏向されて、第2のフォトディテクタ122に入射し、光ディスク110の情報記録面に記録された信号が電気信号に変換され検出される。
 また、第3のレーザ光源113より発せられた波長λの光は、第2のビームスプリッタ115において偏向された後、第3のビームスプリッタ116を直進し、コリメータレンズ117を介し、対物レンズである複合光学素子118により集光され、光ディスク110に照射される。この際、再生される光ディスク110は、波長λの光に対応した第3の光ディスクであるCDである。この後、光ディスク110の情報記録面において反射された光は、複合光学素子118及びコリメータレンズ117を透過した後、第3のビームスプリッタ116により偏向され、更に、第4のビームスプリッタ119により偏向されて、第3のフォトディテクタ123に入射し、光ディスク110の情報記録面に記録された信号が電気信号に変換され検出される。
 以上より、本実施の形態は、3つの異なる波長のレーザ光源、即ち、波長λの光を発する第1のレーザ光源111、波長λの光を発する第2のレーザ光源112、波長λの光を発する第3のレーザ光源113を有し、各々の光源から発射する光に対応した光ディスクの情報記録面に記録されている情報を検出することができる。
 〔第11の実施の形態〕
 次に、第11の実施の形態について説明する。本実施の形態は、第1~第9の実施の形態のいずれかに記載された複合光学素子を有する光ヘッド装置である。
 図17に基づき本実施の形態における光ヘッド装置について説明する。本実施の形態における光ヘッド装置は、光ディスク110の記録及び再生を行うための光ヘッド装置であり、3種類の異なる波長の光に対応したものである。具体的には、光ディスク110として、BD、DVD、CDの3種類の光ディスクに対応するものであり、それぞれ、405nm波長帯、660nm波長帯、780nm波長帯の光に対応したものである。
 本実施の形態における光ヘッド装置は、405nm波長帯である波長λの光を発する第1のレーザ光源131、660nm波長帯である波長λの光及び780nm波長帯である波長λの光を発する第2のレーザ光源132、第1のビームスプリッタ133、第2のビームスプリッタ134、コリメータレンズ135、複合光学素子136、フォトディテクタ137を有している。尚、これらのビームスプリッタは、偏光ビームスプリッタ、ダイクロイックプリズムなどが用いられる。
 尚、複合光学素子136は、対物レンズ機能を発現する第1~第9の実施の形態のいずれかに記載された複合光学素子が利用できる。また、コリメータレンズ135は、光軸に平行に移動することにより複合光学素子136に入射する各々の波長の光に発散角を調節することができる不図示のステッピングモーター等が備えられている。本実施の形態において、第1のレーザ光源131より発せられた波長λの光は、第1のビームスプリッタ133及び第2のビームスプリッタ134を直進し、コリメータレンズ135を介し、対物レンズである複合光学素子136により集光され、光ディスク110に照射される。この際、再生される光ディスク110は、波長λの光に対応した第1の光ディスクであるBDである。この後、光ディスク110の情報記録面において反射された光は、複合光学素子136及びコリメータレンズ135を透過した後、第2のビームスプリッタ134により偏向され、フォトディテクタ137に入射し、光ディスク110の情報記録面に記録された信号が電気信号に変換され検出される。
 また、第2のレーザ光源132より発せられた波長λの光は、第1のビームスプリッタ133により偏向された後、第2のビームスプリッタ134を直進し、コリメータレンズ135を介し、対物レンズである複合光学素子136により集光され、光ディスク110に照射される。この際、再生される光ディスク110は、波長λの光に対応した第2の光ディスクであるDVDである。この後、光ディスク110の情報記録面において反射された光は、複合光学素子136及びコリメータレンズ135を透過した後、第2のビームスプリッタ134により偏向され、フォトディテクタ137に入射し、光ディスク110の情報記録面に記録された信号が電気信号に変換され検出される。
 また、第3のレーザ光源132より発せられた波長λの光は、第1のビームスプリッタ133により偏向された後、第2のビームスプリッタ134を直進し、コリメータレンズ135を介し、対物レンズである複合光学素子136により集光され、光ディスク110に照射される。この際、再生される光ディスク110は、波長λの光に対応した第3の光ディスクであるCDである。この後、光ディスク110の情報記録面において反射された光は、複合光学素子136及びコリメータレンズ135を透過した後、第2のビームスプリッタ134により偏向され、フォトディテクタ137に入射し、光ディスク110の情報記録面に記録された信号が電気信号に変換され検出される。
 以上より、本実施の形態は、3つの異なる波長のレーザ光源、即ち、波長λの光を発する第1のレーザ光源131、波長λの光及び波長λの光の2種類の波長の光を発する第2のレーザ光源132を有し、各々の光源に対応した光ディスクの情報記録面に記録されている情報を検出することができる。特に、コリメータレンズ135の位置を調整して、複合光学素子136に入射する各々の波長の光の発散角が変えられ、さらに、複合光学素子136が発現する集光特性を調整することによって、光ディスク110で反射された、各々の波長の光を1つのフォトディテクタ137に共通して集光させることができる。この構成により、光学素子の部品点数が少なくでき、光ヘッド装置の小型化が実現できる。
 (実施例1)
 実施例1は、第1の実施の形態に基づくものである。本実施例における複合光学素子10は、波長λが405nm、波長λが660nm、波長λが780nmの光を光ディスクに集光するものとして設計したものである。各々の波長における開口数及び入射瞳の径(単位、[mm])は、表1に示される。尚、実施例において、第2の樹脂層13の(空気側の)表面を第1面、単レンズ11の光入射側の表面を第2面、複合光学素子10の光出射側の表面を第3面と記載する場合がある。
Figure JPOXMLDOC01-appb-T000002
 本実施例の複合光学素子10は、ガラスモールド法により、単レンズ11を所望の形状となるように作製した後、ガラス表面に形成される第1の樹脂層12との密着性を高めるため、カップリング処理を行う。この後、インプリント法により、第1の樹脂層12を形成する。第1の樹脂層12は、表面がフレネルレンズ形状となるように形成される。更に、形成された第1の樹脂層12上に第2の樹脂層13を所望の形状となるようにモールドによって加工し形成する。
 第1の樹脂層12の屈折率及び第2の樹脂層13の屈折率を表2に示す。また、第1の樹脂層12に形成されるフレネルレンズ形状となるブレーズ型の回折格子は、波長λの光、即ち、660nmの光が進行する方向に対して、高さhが25μmとなるように形成する。
Figure JPOXMLDOC01-appb-T000003
 上述した第1の樹脂層12及び第2の樹脂層13により形成され、高さhが25μmであるブレーズ型の回折格子の回折効率ηは、図18に示すようになる。即ち、405nm波長帯で入射した光は回折されることなく0次光を出射し、660nm波長帯の光及び780nm波長帯で入射した光は、高い-1次回折光の回折効率で出射する。尚、ηは0次回折効率、η-1は-1次回折効率、η+1は+1次回折効率を意味するものである。また、+1次回折光は光軸方向に集光するように回折する光であり、-1次回折光は光軸方向と反対方向に集光するように回折する光である。尚、図18において、η+1はほぼゼロであるので図示していない。
 また、複合光学素子10の各面(第1面~第3面)は非球面形状となっており、数2に示す式により表される。尚、第4面は、カバー層の面、第5面は情報記録面である。
Figure JPOXMLDOC01-appb-M000004
 ここで、数2に示す式は、光軸方向をz、光軸と垂直な面内における光軸からの距離をr[mm]とし、複合光学素子10の各面の光軸と交わる点をz=0とした場合における非球面形状のr依存性を示すものである。cは各面頂点の曲率半径の逆数、kはコーニック係数、α(i=1~8)は非球面係数である。
 表3に複合光学素子10の各々の面の曲率半径(単位、[mm])、面間隔(光軸における各面間の距離、単位、[mm])および各面を構成する材料の屈折率を示す。そして、表4に、各々の波長の光について以下に定義する光学距離(単位、[mm])を示す。尚、図20に示すようにL1は、仮想的な光源151からコリメータレンズ152を介し、複合光学素子10までの距離、L2は、複合光学素子10から各々の光ディスクのカバー層153までの距離、L3は、各々の光ディスクのカバー層153の厚さを示すものである。また、複合光学素子10における光軸上の単レンズ11の厚さは、1.757mmであり、光軸上の第2の樹脂層13と単レンズ11との距離は、0.04mmと設定した。尚、表4に示すL3に相当する各々の光ディスクのカバー層は、それぞれ、BD(405nm)、DVD(660nm)、CD(780nm)に対応させたものである。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 第1面(第2の樹脂層13の光軸方向からの面)及び第2面(単レンズ11の光軸方向からの面)におけるコーニック係数、非球面係数は同じ値であり、以下の値となる。
k=-0.638656713
α=0.0
α=1.563195E-2
α=-1.082702E-2
α=2.860841E-2
α=-2.971487E-2
α=1.883752E-2
α=-6.176390E-3
α=7.951991E-4
 また、第3面(単レンズ11の光出射面)のコーニック係数、非球面係数は以下の値になる。
k=-39.76454404
α=0.0
α=1.309717E-1
α=-1.219434E-1
α=5.463863E-2
α=-8.999275E-3
α=-3.311178E-4
α=0
α=0
 さらに、数3に示す数式により、位相関数φ(r)により回折による光路の変化を表す。ここで、Mは回折次数、A(iは1以上の整数)、ρは1mmによって規格化されたrの値である。
Figure JPOXMLDOC01-appb-M000007
 数3に示す数式において、Mの値は波長405nmで0、波長660nm及び波長780nmで-1である。そして、A~Aの値は、
=-279.6016
=5.82717
=6.83897
となるように第1の樹脂層12と第2の樹脂層13との界面の回折格子面の形状を設定する。
 図21A、21B及び21Cは、各々の波長の光における球面収差SA(=Spherical Aberration)の収差図を示したものであり、図21A、図21B、図21Cはそれぞれ、405nmの光、660nmの光、780nmの光に対応するものである。そして、実施例1における複合光学素子10を出射する各々の波長の光の集光点、つまり、各々の光ディスクの各々の情報記録面を想定した位置における収差は、波長405nmにおいて21.2mλrms、波長660nmにおいて6.2mλrms及び波長780nmで9.4mλrmsとなり、良好に光を集光することができる。尚、収差は、70λrms以下であれば、良好に光を集光することが可能となる。
 (実施例2)
 実施例2では、波長λの光、即ち、波長660nmの光を無限系入射とし、波長λの光、即ち、波長780nmの光を有限系入射とした場合における、複合光学素子について設計した。実施例1とは、入射瞳径、面間隔L1及びL2の値、及び第2面の位相関数の値が異なり、表5に入射瞳径、面間隔L1及びL2の値(単位、[mm])を示す。
 また、数3に示す数式において、Mの値は波長405nmで0、波長660nm及び波長780nmで-1である。そして、A~Aの値は、
=-173.7479582
=5.856708628
=5.507469245
となるように第1の樹脂層12と第2の樹脂層13との界面の回折格子面の形状を設定する。
 図22A、22B及び22Cは、各々の波長の光における球面収差SAの収差図を示したものであり、図22A、図22B、図22Cはそれぞれ、405nmの光、660nmの光、780nmの光に対応するものである。そして、実施例2における複合光学素子10を出射する各々の波長の光の集光点、つまり、各々の光ディスクの各々の情報記録面を想定した位置における収差は、波長405nmにおいて21.2mλrms、波長660nmにおいて6.3mλrms及び波長780nmで6.5mλrmsとなり、良好に光を集光することができる。尚、他の条件等は実施例1と同様である。
 (実施例3)
 実施例3では、波長λの光、即ち、波長660nmの光及び、波長λの光、即ち、波長780nmの光をともに有限系入射とした複合光学素子10である。実施例1とは、入射瞳径、面間隔L1及びL2の値、及び第2面の位相関数の値が異なり、表6に入射瞳径、面間隔L1及びL2の値(単位、[mm])を示す。
Figure JPOXMLDOC01-appb-T000009
 また、数3に示す数式において、Mの値は波長405nmで0、波長660nm及び波長780nmで-1である。そして、A~Aの値は、
=-224.8858698
=5.821827362
=6.508923842
となるように第1の樹脂層12と第2の樹脂層13との界面の回折格子面の形状を設定する。
 図23A、23B及び23Cは、各々の波長の光における球面収差SAの収差図を示したものであり、図23A、図23B、図23Cはそれぞれ、405nmの光、660nmの光、780nmの光に対応するものである。そして、実施例3における複合光学素子10を出射する各々の波長の光の集光点、つまり、各々の光ディスクの各々の情報記録面を想定した位置における収差は、波長405nmにおいて21.2mλrms、波長660nmにおいて5.9mλrms及び波長780nmで8.8mλrmsとなり、良好に光を集光することができる。尚、他の条件等は実施例1と同様である。
 (実施例4)
 実施例4における複合光学素子は、第2の実施の形態に基づくものである。具体的には、第2の樹脂層23の表面に位相段差構造を形成し、波長λの光、即ち、波長660nmの光及び、波長λの光、即ち、波長780nmの光をともに無限系入射とした複合光学素子20である。尚、単レンズ21は、実施例1における単レンズ11と同じものである。また、表7に、本実施例における入射瞳径、面間隔L1及びL2の値(単位、[mm])を示す。
Figure JPOXMLDOC01-appb-T000010
 また、数3に示す数式において、Mの値は波長405nmで0、波長660nm及び波長780nmで-1である。そして、A~Aの値は、
=-283.8906959
=16.8274628
=-0.6609704
となるように第1の樹脂層22と第2の樹脂層23の界面との回折格子面の形状を設定する。
 第2の樹脂層23の表面に形成された段差dを1.457μmとすることにより、波長405nm、660nm、780nmの各々の光における空気と第2の樹脂層23との屈折率Δn(λ)によって生じる位相差Δn(λ)d/λ(λは波長)の値を各々2、1.18、0.99とすることができる。つまり、405nmの波長の光及び780nmの波長の光が入射した場合には、位相差が波長の略整数倍となっているため、位相差の影響を受けることはないが、660nmの波長の光が入射した場合には、位相差が波長の略整数倍とはならないため、位相差の影響を受ける。
 この際、空気と第2の樹脂層23との界面の位相段差の形状を以下の係数の値となるように加工する。
=-13.30723534
=13.30723534
 図24A、24B及び24Cは、各々の波長の光における球面収差SAの収差図を示したものであり、図24A、図24B、図24Cはそれぞれ、405nmの光、660nmの光、780nmの光に対応するものである。以上より、実施例4における複合光学素子20では、各々の波長において良好に光を集光することができる。尚、他の条件等は実施例1と同様である。
 (実施例5)
 実施例5における複合光学素子は、第3の実施の形態に基づくものである。具体的には、第1の樹脂層42と第2の樹脂層43との界面及び第2の樹脂層43の(空気側の)表面にフレネルレンズ形状となる回折格子を形成し、波長λの光、即ち、波長660nmの光及び、波長λの光、即ち、波長780nmの光をともに無限系入射とした複合光学素子40である。尚、単レンズ41は、実施例1における単レンズ11と同じものである。また、表8に、本実施例における入射瞳径、面間隔L1及びL2の値(単位、[mm])を示す。
Figure JPOXMLDOC01-appb-T000011
 また、数3に示す数式において、Mの値は波長405nmで0、波長660nm及び波長780nmで-1である。そして、A~Aの値は、
=-281.4348109
=10.5725758
=3.5814807
となるように第1の樹脂層42と第2の樹脂層43との界面の回折格子面の形状を設定する。
 次に、第2の樹脂層43の表面に形成された段差d3Sを1.457μmのステップ数が5段の擬似ブレーズとすることにより、波長405nm、660nm、780nmの各々の波長における空気と第2の樹脂層23との屈折率Δnによって生じる位相差Δnd3S/λ(λは波長)の値を各々2、1.18、0.99とすることができる。405nmの波長の光及び780nmの波長の光が入射した場合には、位相差が波長の略整数倍となっているため、光が回折することはないが、660nmの波長の光が入射した場合には、位相差が波長の略整数倍とならないため光が回折する。
 この際、空気と第2の樹脂層43との界面の回折格子面の形状を以下の係数の値となるように加工する。
=-232.61692015
=-3.10648414
=-9.08156951
 図25A、25B及び25Cは、各々の波長の光における球面収差SAの収差図を示したものであり、図25A、図25B、図25Cはそれぞれ、405nmの光、660nmの光、780nmの光に対応するものである。そして、実施例5における複合光学素子40を出射する各々の波長の光の集光点、つまり、各々の光ディスクの各々の情報記録面を想定した位置における収差は、波長405nmにおいて21.2mλrms、波長660nmにおいて8.4mλrms及び波長780nmで2.5mλrmsとなり、良好に光を集光することができる。尚、他の条件等は実施例1と同様である。
 (実施例6)
 実施例6における複合光学素子は、第4の実施の形態に基づくものである。具体的には、第2の樹脂層53の表面の周辺領域に回折構造を形成し、波長λの光、即ち、波長780nmの光が所定の開口数となるように、波長λの光が入射する径を制限する機能を有する複合光学素子50である。尚、単レンズ51は、実施例1における単レンズ11と同じものである。
 第2の樹脂層53の周辺領域に高さdの値が3.65μmとなるようなバイナリー回折格子を形成する。このようなバイナリー回折格子を形成することにより、波長405nm、660nm、780nmの各々の波長における空気と第2の樹脂層23との屈折率Δn(λ)によって生じる位相差Δn(λ)d/λ(λは波長)の値を各々5.0、3.0、2.5とすることができる。405nmの波長の光及び660nmの波長の光が入射した場合には、位相差が波長の略整数倍となっているため、光が回折することはないが、780nmの波長の光が入射した場合には、位相差が波長の略整数倍とならないため光が回折し、バイナリー回折格子の形成された領域の光はほぼ直進透過しない。
 以上より、実施例6における複合光学素子50では、各々の波長において良好に光を集光することができる。また、780nmの波長の光の入射径を制限することができる。尚、他の条件等は実施例1と同様である。
 (実施例7)
 実施例7における複合光学素子は、第5の実施の形態に基づくものである。具体的には、第2の樹脂層63の表面の周辺領域に位相段差を形成し、波長λの光、即ち、波長780nmの光が所定の開口数となるように、波長λの光が入射する径を制限する機能を有する複合光学素子60である。尚、単レンズ61は、実施例1における単レンズ11と同じものである。
 第2の樹脂層63の周辺領域に段差dの値が3.65μmとなるような溝を形成する。このような溝を形成することにより、波長405nm、660nm、780nmの各々の波長における空気と第2の樹脂層63との屈折率Δn(λ)によって生じる位相差Δn(λ)d/λ(λは波長)の値を各々5.0、3.0、2.5とすることができる。405nmの波長の光及び660nmの波長の光が入射した場合には、位相差が波長の略整数倍となっているため、光が位相変化を受けることはないが、780nmの波長の光が入射した場合には、位相差が波長の略整数倍とはならないため光が位相変化を受け、溝が形成された領域に入射する波長λの光は第3の光ディスク19の情報記録面19bに良好に集光されないため、実質的に開口の大きさが制限される。
 以上より、実施例7における複合光学素子60では、各々の波長において良好に光を集光することができる。また、780nmの波長の光の入射径を制限することができる。
 尚、他の条件等は実施例1と同様である。
 (実施例8)
 実施例8における複合光学素子は、第7の実施の形態に基づくものである。本実施例における複合光学素子70は、単レンズ71、第1の樹脂層72及び第2の樹脂層73から構成されており、第1の樹脂層72と第2の樹脂層73との界面によって、断面形状がブレーズ形状となる回折格子が形成されている。
 表9、表10及び表11に、本実施例における複合光学素子70の形状及び屈折率等の値を示す。特に、表10は、本実施例における入射瞳径、面間隔L1、L2及びL3の値(単位、[mm])を示す。尚、第1面~第3面は、複合光学素子70の各面、第4面は、カバー層の面、第5面は情報記録面である。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 また、表12には、第1の樹脂層72及び第2の樹脂層73の屈折率を示す。尚、第1の樹脂層72及び第2の樹脂層73との界面が第1の樹脂層72を進行する光の方向に対して高さhが13.5μmのブレーズ形状となる回折格子を形成する。
Figure JPOXMLDOC01-appb-T000015
 本実施例における回折格子の回折効率ηは、図19に示されるものとなる。即ち、405nm波長帯で入射した光は、高い+1次回折光の回折効率(η+1)で回折され、660nm波長帯の光及び780nm波長帯で入射した光は回折されることなく透過する。よって、効率よく各々の波長の光を利用することができる。尚、図18において、η-1はほぼゼロであるので図示していない。
 また、数3に示す数式において、Mの値は波長405nmで1、波長660nm及び波長780nmで0である。第1の樹脂層72と第2の樹脂層73との界面における回折格子面の位相関数の係数は、
=-175.0024593
=-17.3941813
=109.140934
=-85.5726871
=26.8307306
となる。
 図26A、26B及び26Cは、各々の波長の光における球面収差SAの収差図を示したものであり、図26A、図26B、図26Cはそれぞれ、405nmの光、660nmの光、780nmの光に対応するものである。そして、実施例8における複合光学素子70を出射する各々の波長の光の集光点、つまり、各々の光ディスクの各々の情報記録面を想定した位置における収差は、波長405nmにおいて20.9mλrms、波長660nmにおいて11.9mλrms及び波長780nmで8.9mλrmsとなり、良好に光を集光することができる。
 (実施例9)
 実施例9における複合光学素子は、第8の実施の形態に基づくものである。本実施例における複合光学素子80は、単レンズ81、第1の樹脂層82及び第2の樹脂層83から構成されており、第1の樹脂層82と第2の樹脂層83との界面の領域の一部(光軸を含む領域)には、断面形状がブレーズ形状となる回折格子が形成されている。具体的には、第1の樹脂層82と第2の樹脂層83との界面によって、回折格子の形成される第1の領域7Aと、回折格子の形成されない第2の領域7Bを有しており、r≦1.3の範囲で数4に示す数式となり、r>1.3の範囲で数5に示す数式を満たすように形成されている。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 ここで、zは、zがない場合の面形状をz(r)、z'(r)とした場合に、r=1.3における値の差z=z(1.3)-z'(1.3)を表している。また、表13、表14及び表15には、本実施例における複合光学素子80の形状及び屈折率を示す。特に、表14は、本実施例における入射瞳径、面間隔L1、L2及びL3の値(単位、[mm])を示す。なお、第2の樹脂層83の(空気側の)表面を第1面、第1の樹脂層82と単レンズ81との界面を第2面、複合光学素子(単レンズ81)の光出射側の表面を第3面とし、光軸を含む中心領域を第1の領域、第1の領域の周辺にある輪帯状の領域を第2の領域とする。尚、第4面は、カバー層の面、第5面は情報記録面である。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 また、数3に示す数式において、Mの値は波長405nmで1、波長660nm及び波長780nmで0である。第1の樹脂層82と第2の樹脂層83との界面において第1の領域7Aにおいてのみ形成された回折格子の位相関係の係数は、
=-436.590796
=-30.22682545
=250.5501439
=-242.3786543
=108.1249459
の値となる。
 図27A、27B及び27Cは、各々の波長の光における球面収差SAの収差図を示したものであり、図27A、図27B、図27Cはそれぞれ、405nmの光、660nmの光、780nmの光に対応するものである。そして、実施例9における複合光学素子80を出射する各々の波長の光の集光点、つまり、各々の光ディスクの各々の情報記録面を想定した位置における収差は、波長405nmにおいて40.3mλrms、波長660nmにおいて7.7mλrms及び波長780nmで4.5mλrmsとなり、良好に光を集光することができる。尚、他の条件等は実施例8と同様である。
 (実施例10)
 実施例10における複合光学素子は、第9の実施の形態に基づくものである。本実施例における複合光学素子90は、単レンズ91、第1の樹脂層92及び第2の樹脂層93、さらに保護層94から構成されている。第1の樹脂層92と第2の樹脂層93との界面には、断面形状がブレーズ形状となる回折格子が形成されており、単レンズ91と第1の樹脂層92と接する面及び、第2の樹脂層93と保護層94と接する面は、各々球面となっている。
 表16、表17及び表18には、本実施例における複合光学素子90の形状及び屈折率を示す。特に、表17は、本実施例における入射瞳径、面間隔L1、L2及びL3の値(単位、[mm])を示す。なお、保護層94の(空気側の)表面を第1面、保護層94と第2の樹脂層93との界面を第2面、第1の樹脂層92と単レンズ91との界面を第3面、複合光学素子(単レンズ91)の光出射側の表面を第4面とする。尚、第5面は、カバー層の面、第6面は情報記録面である。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 また、表19には、第1の樹脂層92と第2の樹脂層93における各々の波長の光の屈折率を示す。
Figure JPOXMLDOC01-appb-T000024
 第1の樹脂層92と第2の樹脂層93との界面が第1の樹脂層92を進行する光の方向に対して高さhが25μmのブレーズ形状となる回折格子を形成する。また、数3に示す数式において、Mの値は波長405nmで-1、波長660nm及び波長780nmで0である。これにより、波長405nmの光が入射した場合には高い屈折率となり、波長660nm及び780nmの光が入射した場合には高い-1次回折効率で効率よく回折させることができる。また、位相関係の係数は、
=-371.1647158
=52.6764996
=0.2249316
の値となる。
 図28A、28B及び28Cは、各々の波長の光における球面収差SAの収差図を示したものであり、図28A、図28B、図28Cはそれぞれ、405nmの光、660nmの光、780nmの光に対応するものである。そして、実施例10における複合光学素子90を出射する各々の波長の光の集光点、つまり、各々の光ディスクの各々の情報記録面を想定した位置における収差は、波長405nmにおいて14.9mλrms、波長660nmにおいて7.0mλrms及び波長780nmで6.0mλrmsとなり、良好に光を集光することができる。
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2009年7月10日出願の日本特許出願(特願2009-164240)に基づくものであり、その内容はここに参照として取り込まれる。
10    複合光学素子
11    単レンズ
12    第1の樹脂層
12a   第1の樹脂層における屈折率特性
13    第2の樹脂層
13a   第2の樹脂層における屈折率特性
14    波長λの光線
15    波長λの光線
16    波長λの光線
17    第1の光ディスク
17a   カバー層
17b   情報記録面
18    第2の光ディスク
18a   カバー層
18b   情報記録面
19    第3の光ディスク
19a   カバー層
19b   情報記録面
110   光ディスク
111   第1のレーザ光源
112   第2のレーザ光源
113   第3のレーザ光源
114   第1のビームスプリッタ
115   第2のビームスプリッタ
116   第3のビームスプリッタ
117   コリメータレンズ
118   複合光学素子(対物レンズ)
119   第4のビームスプリッタ
120   第5のビームスプリッタ
121   第1のフォトディテクタ
122   第2のフォトディテクタ
123   第3のフォトディテクタ

Claims (11)

  1.  曲面形状を有し光学的に作用する単レンズと、
     前記単レンズの表面に形成された第1の樹脂層と、
     前記第1の樹脂層の上に形成された第2の樹脂層を備え、
     前記第1の樹脂層は、前記第2の樹脂層側にフレネルレンズ形状となる回折格子を有し、
     波長λの光、波長λの光及び波長λの光(λ<λ<λ)の3種類の光のうち、少なくとも1種類の波長の光においては、前記第1の樹脂層の屈折率と前記第2の樹脂層の屈折率とが略同一の値であり、他の少なくとも1種類の波長の光においては、前記第1の樹脂層の屈折率と前記第2の樹脂層の屈折率とが異なる値である複合光学素子。
  2.  前記第2の樹脂層は、前記第1の樹脂層側と対向する側の表面にフレネルレンズ形状となる回折格子を有する請求項1に記載の複合光学素子。
  3.  前記第2の樹脂層の前記第1の樹脂層側と対向する側の表面に形成された回折格子は、ブレーズ形状を複数の段差に近似した階段状の擬似ブレーズ形状を有し、
     各前記段差は、前記3種類の波長の光のうち1種類の波長の略整数倍の位相差を与えるかまたは、前記3種類の波長の光のうち2種類の波長それぞれにおいて略整数倍の位相差を与える請求項2に記載の複合光学素子。
  4.  前記第2の樹脂層は、前記第1の樹脂層側と対向する側の表面において、光軸を中心とした中心領域と、前記中心領域を囲む輪帯状の周辺領域を有し、
     前記中心領域は曲面形状を有し、
     前記周辺領域は、前記中心領域の曲面に対して位相段差またはバイナリー回折格子を有する請求項1に記載の複合光学素子。
  5.  前記周辺領域は、前記位相段差を有し、
     前記位相段差は、複数の段差を有し、
     各前記段差は、前記3種類の波長の光のうち1種類の波長の略整数倍の位相差を与えるかまたは、前記3種類の波長の光のうち2種類の波長それぞれの略整数倍の位相差を与える請求項4に記載の複合光学素子。
  6.  前記周辺領域は、前記位相段差を有し、
     前記位相段差は、1つの段差からなり、
     前記段差は、前記波長λの光に対してλ/2の奇数倍に略等しい位相差を与えるとともに、波長λの光および波長λの光に対してそれぞれの波長において略整数倍に略等しい位相差を与える請求項4に記載の複合光学素子。
  7.  前記周辺領域は、前記バイナリー回折格子を有し、
     前記バイナリー回折格子の深さは、前記波長λの光に対してλ/2の奇数倍に略等しい位相差を与えるとともに、波長λの光および波長λの光に対してそれぞれの波長の整数倍に略等しい位相差を与える値である請求項4に記載の複合光学素子。
  8.  前記第1の樹脂層は、前記第2の樹脂層側に、光軸を中心とした内部中心領域と、前記内部中心領域を囲む輪帯状の内部周辺領域を有し、
     前記内部中心領域はフレネルレンズ形状となる回折格子を有し、
     前記内部周辺領域は、曲面形状を有する請求項1に記載の複合光学素子。
  9.  前記第2の樹脂層上に、保護層が形成されている請求項1~8いずれか1項に記載の複合光学素子。
  10.  前記波長λは、375~435nmとなる405nm波長帯であり、前記波長λは、630~690nmとなる660nm波長帯であり、前記波長λは、750~810nmとなる780nm波長帯である請求項1~9のいずれか1項に記載の複合光学素子。
  11.  405nm波長帯の光、660nm波長帯の光および780nm波長帯の光を出射する光源と、
     前記光源から出射された各々の波長帯の光を各々の波長帯の光に対応した光ディスクの情報記録面に集光させる請求項1~10のいずれか1項に記載の複合光学素子と、
     前記光ディスクの情報記録面において反射された信号光を検出するための光検出器を備える光ヘッド装置。
PCT/JP2010/061491 2009-07-10 2010-07-06 複合光学素子及び光ヘッド装置 WO2011004827A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800308879A CN102473429A (zh) 2009-07-10 2010-07-06 复合光学元件及光学头装置
JP2011521932A JPWO2011004827A1 (ja) 2009-07-10 2010-07-06 複合光学素子及び光ヘッド装置
US13/344,953 US20120112048A1 (en) 2009-07-10 2012-01-06 Composite optical element and optical head device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-164240 2009-07-10
JP2009164240 2009-07-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/344,953 Continuation US20120112048A1 (en) 2009-07-10 2012-01-06 Composite optical element and optical head device

Publications (1)

Publication Number Publication Date
WO2011004827A1 true WO2011004827A1 (ja) 2011-01-13

Family

ID=43429251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061491 WO2011004827A1 (ja) 2009-07-10 2010-07-06 複合光学素子及び光ヘッド装置

Country Status (4)

Country Link
US (1) US20120112048A1 (ja)
JP (1) JPWO2011004827A1 (ja)
CN (1) CN102473429A (ja)
WO (1) WO2011004827A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358753B1 (ja) * 2011-12-26 2013-12-04 パナソニック株式会社 光学素子およびこれを備える光ヘッド装置
JP2017519254A (ja) * 2014-08-28 2017-07-13 ハンズ レーザー テクノロジー インダストリー グループ カンパニー リミテッド 光学レンズ
JP6482285B2 (ja) * 2015-01-16 2019-03-13 株式会社タムロン 回折光学素子
US10852460B2 (en) * 2017-08-04 2020-12-01 Canon Kabushiki Kaisha Diffraction optical element, manufacturing method thereof, and optical apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11194207A (ja) * 1997-12-26 1999-07-21 Fuji Photo Optical Co Ltd 回折型フィルタ
JP2004030724A (ja) * 2002-06-21 2004-01-29 Sharp Corp 光ピックアップ装置
JP2006012394A (ja) * 2004-05-27 2006-01-12 Konica Minolta Opto Inc 光学系、光ピックアップ装置、及び光ディスクドライブ装置
WO2007145120A1 (ja) * 2006-06-13 2007-12-21 Panasonic Corporation 複合光学素子
JP2008052787A (ja) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd 複合光学素子及び光ピックアップ装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4341332B2 (ja) * 2002-07-31 2009-10-07 旭硝子株式会社 光ヘッド装置
US8317321B2 (en) * 2007-07-03 2012-11-27 Pixeloptics, Inc. Multifocal lens with a diffractive optical power region

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11194207A (ja) * 1997-12-26 1999-07-21 Fuji Photo Optical Co Ltd 回折型フィルタ
JP2004030724A (ja) * 2002-06-21 2004-01-29 Sharp Corp 光ピックアップ装置
JP2006012394A (ja) * 2004-05-27 2006-01-12 Konica Minolta Opto Inc 光学系、光ピックアップ装置、及び光ディスクドライブ装置
WO2007145120A1 (ja) * 2006-06-13 2007-12-21 Panasonic Corporation 複合光学素子
JP2008052787A (ja) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd 複合光学素子及び光ピックアップ装置

Also Published As

Publication number Publication date
US20120112048A1 (en) 2012-05-10
CN102473429A (zh) 2012-05-23
JPWO2011004827A1 (ja) 2012-12-20

Similar Documents

Publication Publication Date Title
US7821904B2 (en) Optical pickup apparatus and objective optical element
JPWO2005101393A1 (ja) 光ピックアップ装置用の対物光学系、光ピックアップ装置、光情報記録媒体のドライブ装置、集光レンズ、及び光路合成素子
JP2004030724A (ja) 光ピックアップ装置
US20050180295A1 (en) Optical pickup apparatus and diffractive optical element for optical pickup apparatus
KR20060128030A (ko) 다초점 대물렌즈, 광 픽업 장치 및 광 정보 기록 재생 장치
JPWO2005083694A1 (ja) 対物光学系、光ピックアップ装置及び光情報記録再生装置
WO2007145202A1 (ja) 光学素子の設計方法、光学素子及び光ピックアップ装置
JP4846975B2 (ja) 光学素子、対物光学系および光ピックアップ装置
WO2011004827A1 (ja) 複合光学素子及び光ヘッド装置
WO2005117002A1 (ja) 対物光学系、光ピックアップ装置、及び光ディスクドライブ装置
WO2005088624A1 (ja) 対物光学素子及び光ピックアップ装置
US20090103419A1 (en) Optical Pickup Device, Optical Information Recording and Reproducing Device and Design, Method of Optical Element
JP2000260056A (ja) 複合対物レンズ,球面収差補正素子及び光情報記録再生装置
WO2009147827A1 (ja) 光ピックアップおよび光ディスク装置、コンピュータ、光ディスクプレーヤ、光ディスクレコーダ
JP2005158089A (ja) 光ディスク用の対物レンズとそれを用いた光ヘッド装置
JP4462108B2 (ja) 対物光学系、光ピックアップ装置、及び光ディスクドライブ装置
US7460460B2 (en) Objective optical system, optical pickup apparatus and optical information recording and reproducing apparatus
JP2007122828A (ja) 回折面を有する光学素子、及びそれを用いた光ピックアップ装置
JP4400326B2 (ja) 光ピックアップ光学系、光ピックアップ装置及び光ディスクドライブ装置
JP2009037719A (ja) 光ピックアップ装置及び対物光学素子
JP2006114081A (ja) 対物レンズ及び光ピックアップ装置
US8406110B2 (en) Objective lens element
JP4375107B2 (ja) 光ピックアップ装置
JPH1139703A (ja) ホログラムレーザユニット及び2焦点型の光ピックアップ装置
JP2004178617A (ja) 光学素子、対物光学素子及び光ピックアップ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080030887.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797138

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011521932

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10797138

Country of ref document: EP

Kind code of ref document: A1