WO2011001962A1 - 光電変換素子の製造方法、光電変換素子の製造装置および光電変換素子 - Google Patents

光電変換素子の製造方法、光電変換素子の製造装置および光電変換素子 Download PDF

Info

Publication number
WO2011001962A1
WO2011001962A1 PCT/JP2010/061030 JP2010061030W WO2011001962A1 WO 2011001962 A1 WO2011001962 A1 WO 2011001962A1 JP 2010061030 W JP2010061030 W JP 2010061030W WO 2011001962 A1 WO2011001962 A1 WO 2011001962A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion element
electrode
manufacturing
physical property
Prior art date
Application number
PCT/JP2010/061030
Other languages
English (en)
French (fr)
Inventor
徳彦 松島
太佑 西村
淳雄 旗手
丈司 大隈
久雄 有宗
由佳理 橋本
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN2010800092446A priority Critical patent/CN102334193A/zh
Priority to JP2011520923A priority patent/JP5295369B2/ja
Priority to US13/256,902 priority patent/US20120006389A1/en
Priority to EP10794131A priority patent/EP2450960A1/en
Publication of WO2011001962A1 publication Critical patent/WO2011001962A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device

Definitions

  • the present invention relates to a photoelectric conversion element, a manufacturing method thereof, and a photoelectric conversion element manufacturing apparatus.
  • a photoelectric conversion element composed of a chalcopyrite semiconductor layer and an amorphous silicon semiconductor layer represented by CIS (copper indium selenide) is relatively low in cost and can easily increase the area of the photoelectric conversion module. Therefore, research and development is underway.
  • This chalcopyrite photoelectric conversion element has semiconductor layers such as a light absorption layer and a buffer layer. Since such a light absorption layer and a buffer layer are several micrometers in thickness, the location where the film
  • amorphous silicon-based photoelectric conversion elements may similarly decrease.
  • a reverse bias voltage is applied to the photoelectric conversion element, and the heat generation point at that time is observed with an infrared camera to identify the leak current generation point.
  • a repair method is known in which a laser beam is irradiated to the leak current generation portion and an electrode in the portion is removed (see Patent Document 1).
  • the semiconductor layer of amorphous silicon and chalcopyrite is irradiated with laser light to the part where the physical properties are abnormal in order to remove a part of the semiconductor layer, the semiconductor layer is melted and further irradiated with laser light.
  • the film quality deteriorates due to an increase in the temperature of the film, resulting in a decrease in photoelectric conversion efficiency.
  • the copper-based compound contained therein may short-circuit the upper electrode and the lower electrode.
  • An object of the present invention is to provide a highly efficient photoelectric conversion element by satisfactorily separating portions having abnormal physical properties generated in the photoelectric conversion element.
  • One embodiment according to the method for producing a photoelectric conversion element of the present invention includes a specifying step of specifying a physical property abnormality point for a structure having a photoelectric conversion body including a semiconductor layer between a pair of first and second electrodes, A separation step of separating the abnormal physical property portion by machining.
  • One embodiment of the photoelectric conversion element manufacturing apparatus of the present invention is a photoelectric conversion element having a mechanism that separates abnormal physical properties of a structure having a photoelectric conversion body including a semiconductor layer between a pair of first and second electrodes. And a voltage applying unit that applies a bias voltage to the structure, and a detection unit that detects the intensity of electromagnetic waves emitted from the structure. Furthermore, in one embodiment of the photoelectric conversion element manufacturing apparatus of the present invention, the specific unit that identifies the physical property abnormality location by the intensity of the electromagnetic wave, and machining the structural body, the physical property abnormality location And a machining unit for separation.
  • One embodiment according to the photoelectric conversion element of the present invention includes a structure having a photoelectric conversion body including a semiconductor layer between a pair of first and second electrodes, and the structure has an abnormality in physical properties by machining. Is separated.
  • the method for manufacturing a photoelectric conversion element and the apparatus for manufacturing a photoelectric conversion element of the present invention by separating the abnormal physical property part of the structure of the photoelectric conversion element using machining, The temperature rise in the periphery can be suppressed. And in this embodiment, since the physical property abnormality location is isolate
  • FIG. 1 It is sectional drawing which shows an example of the structure of the photoelectric conversion element which concerns on this invention. It is a block diagram explaining an example of the manufacturing method of the photoelectric conversion element which concerns on this invention. An example of the manufacturing apparatus of the photoelectric conversion element which concerns on this invention is shown. It is a perspective view which shows one implementation state of the machining which concerns on this invention.
  • (A)-(c) is the perspective view which showed an example of the photoelectric conversion element after giving a machining in a isolation
  • (A)-(c) is a top view which shows various embodiment of the front-end
  • FIG. 2 shows an example of a photoelectric conversion element after machining in a separation step, where (a) is a plan view viewed from the window layer side, and (b) to (d) are cross-sectional views. (A) And (b) is a perspective view which shows various embodiment of the front-end
  • Embodiments of the photoelectric conversion element of the present invention will be described. In the following embodiments, description will be made using a form of a photoelectric conversion element having a chalcopyrite semiconductor layer.
  • the chalcopyrite photoelectric conversion element has a structure including a photoelectric conversion body including a chalcopyrite compound semiconductor layer and a pair of electrodes (first and second electrodes).
  • This photoelectric converter may include a buffer layer heterojunction to the semiconductor layer of the chalcopyrite compound.
  • the electrodes include those made of a semiconductor layer, and also include what is called a window layer.
  • a photoelectric conversion element 1 shown in FIG. 1 includes a substrate 2, a back electrode 3 as a first electrode, a semiconductor layer 4 of a chalcopyrite compound, a buffer layer 5, and a window layer 6 as a second electrode.
  • the photoelectric conversion body 1 a is configured by the semiconductor 4 and the buffer layer 5.
  • the structure 1b is comprised from the back surface electrode 3, the photoelectric conversion body 1a, and the 2nd electrode.
  • the substrate 2 is made of, for example, blue plate glass (soda lime glass) having a thickness of about 1 to 3 mm.
  • the back electrode 3 is made of, for example, a metal such as molybdenum, titanium, or tantalum having a thickness of about 0.2 to 1 ⁇ m, or a metal laminate thereof.
  • the semiconductor layer 4 of the chalcopyrite compound has a role as a light absorption layer.
  • the semiconductor layer 4 is a semiconductor thin film having a chalcopyrite structure having a p-type conductivity and having a thickness of about 1 to 3 ⁇ m. Copper indium diselenide, indium diselenide / gallium, indium diselenide / indium copper sulfide. It is a multi-component compound semiconductor thin film such as gallium, copper indium disulfide, gallium or thin film selenium, copper indium sulfide, copper indium selenide, and gallium layer as a surface layer.
  • the buffer layer 5 is a mixed crystal compound semiconductor such as cadmium sulfide (CdS), indium sulfide (In 2 S 3 ), and zinc sulfide (ZnS).
  • CdS cadmium sulfide
  • In 2 S 3 indium sulfide
  • ZnS zinc sulfide
  • the window layer 6 is made of, for example, zinc oxide (ZnO) or aluminum, boron, gallium, indium, fluorine, etc. having a forbidden band width having an n-type conductivity, a transparent, low resistance, and a thickness of about 1 to 2 ⁇ m. It is a semiconductor thin film made of a metal oxide made of a compound with zinc oxide, tin-containing indium tin oxide (ITO), tin oxide (SnO 2 ), or the like.
  • the window layer 6 can be regarded as one electrode (second electrode) constituting the photoelectric conversion element 1.
  • a transparent conductive film may be further formed in addition to the window layer 6, and the window layer 6 and the transparent conductive film may be combined and regarded as the second electrode.
  • the back electrode 3 is formed on substantially the entire surface of the cleaned substrate 2 using a sputtering method or the like.
  • the rear electrode 3 is patterned by forming a dividing groove on the formed rear electrode 3 using a YAG laser or the like.
  • a chalcopyrite compound semiconductor layer 4 is formed on the back electrode 3 on which this pattern is formed by using a sputtering method, a vapor deposition method, a printing method, or the like.
  • the buffer layer 5 is formed using a solution growth method (CBD method) or the like.
  • Separation grooves are formed and patterned by mechanical scribing in the chalcopyrite compound semiconductor layer 4 and the buffer layer 5 formed on substantially the entire surface of the back electrode 3. Thereafter, the window layer 6 is formed on substantially the entire surface of the buffer layer 5 by sputtering, metal organic chemical vapor deposition (MOCVD), etc., and separation grooves are formed by mechanical scribing and patterned.
  • the grid electrode may be formed by printing a silver paste or the like on the window layer 6 to reduce the resistance.
  • the photoelectric conversion element 1 has a structure in which the substrate 2, the back electrode 3, the chalcopyrite compound semiconductor layer 4, the buffer layer 5, and the window layer 6 are laminated in this order from the back side, and each layer is patterned.
  • a forward bias voltage is applied between the electrodes of the photoelectric conversion element 1 by forward bias voltage applying means A (voltage application unit).
  • EL electroluminescence
  • the current density distribution in the photoelectric conversion element when the forward bias voltage is applied can be determined. From the non-uniformity of the current density distribution, the physical property abnormality portion in the photoelectric conversion element 1 can be identified. I can know. That is, in a portion where the EL intensity is not emitted or a portion where the emission intensity is small compared to other portions, a portion having a high pn junction defect, the presence of microcracks, a composition shift, a defect density that is likely to cause recombination, each layer, electrode and semiconductor It can be seen that there is a failure event such as an abnormality in contact resistance between layers.
  • the abnormal location specifying means C (specific unit) observes the state of EL emission on the observation surface of the photoelectric conversion element 1 to identify an abnormal physical property location (hereinafter, sometimes simply referred to as an abnormal location).
  • the coordinates of the location are stored in the abnormal location storage means D.
  • the photoelectric conversion element 1 includes a separation step of separating a physical property abnormality portion of the photoelectric conversion element 1 by machining.
  • the step of identifying the physical property abnormality location of the photoelectric conversion element 1 by using the EL light emission detector B, not only the location where the leakage current is generated due to the film physical property abnormality but also the presence of a pn junction defect and a micro crack.
  • the means for identifying the physical property abnormality location is not limited to the EL light emission detection, and may detect infrared rays generated when a forward bias voltage or a reverse bias voltage is applied to the photoelectric conversion element 1. As described above, by detecting the intensity distribution of electromagnetic waves such as EL and infrared rays, it is possible to identify an abnormality in physical properties of the photoelectric conversion element 1.
  • the photoelectric conversion element manufacturing apparatus in the present embodiment includes a mounting table 9, a voltage application unit 10, an observation camera 11 that forms part of a detection unit, a computer 12 that is a specific unit, and a display 13. ing. Further, the photoelectric conversion element manufacturing apparatus according to the present embodiment includes a machining unit X including a sequencer 14, a servo motor 15, a scriber up-and-down means 16, and a scriber 17.
  • the mounting table 9 is made of, for example, a stainless steel flat plate having a thickness of about 10 mm, and a plurality of through holes (not shown) are provided at a substantially central portion thereof. Then, the pressure reducing means such as a vacuum pump arranged in the vicinity of the mounting table 9 allows the photoelectric conversion element 1 mounted on the mounting table 9 to be fixed at a predetermined position through the through hole. It is. Further, the mounting table 9 can be moved freely in the XY directions by being driven by two servo motors 15 controlled by the sequencer 14.
  • the scriber 17 is moved up and down by a scriber up-and-down means 16 controlled by a sequencer 14 such as an air cylinder.
  • the photoelectric conversion element 1 mounted and fixed at a predetermined position on the mounting table 9 applies a forward bias voltage between its electrodes (between the back electrode 3 and the window layer 6) by the voltage application unit 10. Is done. That is, the voltage application unit has a role of applying a bias voltage to the structure 1b including the photoelectric conversion body 1a and the pair of electrodes.
  • the applied bias voltage value in the photoelectric conversion element 1 is suitably about 0.2 to 1 V per unit cell connected in series in the photoelectric conversion element 1, and the actually applied voltage value is This is multiplied by the number of series in the photoelectric conversion element 1.
  • the photoelectric conversion element 1 Since the photoelectric conversion element 1 emits EL light at an abnormal physical property when a bias voltage is applied, the EL light emission state is imaged by the observation camera 11 and the image signal is sent to the computer 12. That is, the detection unit including the observation camera 11 has a role of detecting the intensity of electromagnetic waves such as EL emission emitted from the structure 1 b that forms part of the photoelectric conversion element 1.
  • the sent image signal is displayed on the display 13, and the computer 12 A / D converts the EL light emission state of the photoelectric conversion element 1, and the obtained multi-valued image having a predetermined gray level is obtained. Binarization is performed using a threshold value, a dark part is specified, this dark part is determined as a physical property abnormality location, and the two-dimensional coordinates are stored.
  • the imaging by the observation camera 11 in the EL light emission state is performed in a dark room or a dark box in order to avoid the influence of stray light.
  • the servo motor 15 is controlled by the sequencer 14, and the placement table 9 on which the photoelectric conversion element 1 is placed is moved to a scribing position where mechanical properties are separated, and further, as shown in FIG. An abnormal portion of the photoelectric conversion element 1 is brought to a position immediately below the scriber 17. Thereafter, by combining the raising and lowering of the scriber 17 by the scriber raising / lowering means 16 and the movement of the mounting table 9 (photoelectric conversion element 1), mechanical scribing is performed on the film around the abnormal part of the photoelectric conversion element 1, and the film of the abnormal part is obtained. Is separated from the normal part by electrically separating or removing from the periphery.
  • the photoelectric conversion element 1 after mechanical scribe has an abnormal portion 19 formed of a groove 20 or a groove 21 formed by mechanical scribe from another normal portion. It is separated.
  • FIG. 5C shows an example in which the groove 22 is formed so as to remove the abnormal part from the structure 1 b of the photoelectric conversion element 1.
  • a part where the abnormal part 19 is removed from the structure 1 b is referred to as a first part 22.
  • the abnormal portion is electrically separated from the peripheral portion by removing a part of the structure 1b in a linear manner so as to surround the abnormal portion.
  • the part is defined as a second part. That is, in this embodiment, the groove 20 or the groove 21 corresponds to the second part.
  • Examples of the machining unit used in the separation process for separating such abnormal portions by machining include a diamond scriber having a sharp diamond piece fixed to the scriber 17 or a tungsten carbide carbide blade. Used. Then, as shown in FIG. 5 (a), a groove 20 is formed by mechanical scribe so as to surround the abnormal portion 19, and the back electrode 3, chalcopyrite compound semiconductor layer 4, buffer layer 5 and window of this portion are formed. This is done by electrically separating the layer 6, grid electrodes (not shown), etc. from the peripheral portion.
  • peripheral portion 21 of the abnormal portion 19 is removed in a circular shape as shown in FIG. 5B using a scriber 17 with a surface diamond file, sandpaper, or a metal brush attached thereto. Is also possible. Thereby, in addition to the effect peculiar to the mechanical scribe described above, the separation (repair) of the abnormal portion 19 in a relatively large area can be efficiently performed.
  • the back electrode 3, the chalcopyrite compound semiconductor layer 4, the buffer layer 5, the window layer 6, and the grid electrode (not shown) constituting the photoelectric conversion element 1 are all removed. Since it is only necessary to suppress the contact between the back electrode 3 and the window layer 6 in the separation step, the window layer 6 alone may be removed, or the window layer 6 and the grid electrode may be removed.
  • the separation step is performed with the back electrode 3 left on the one main surface of the substrate 2. Is preferred. In this case, a scratch caused by the contact of the tip of the scriber 17 is formed on the back electrode 3 having a relatively higher elastic modulus than that of the glass substrate 2, so that a crack grows starting from the scratch. Can be suppressed.
  • the groove-shaped first portion 22 for removing the abnormal portion as shown in FIG. 5C from the structure 1b of the photoelectric conversion element 1 is formed, it is mixed in the photoelectric conversion element 1. Since it is possible to suppress the occurrence of a problem such that an abnormal location and a normal location are in contact with each other through a conductive material or the like, the reliability of the photoelectric conversion element 1 can be further improved.
  • the scriber 17 has, for example, a flat plate shape with a thickness of about 0.1 to 0.5 mm.
  • the width of the scriber 17 is, for example, about 0.2 to 3.0 mm.
  • the scriber 17 is provided so as to rotate about the rotation shaft 23.
  • the tip of the scriber 17 shown in FIG. 6A has a shape having a horizontal portion 24a and an inclined portion 24b, and has a flat plate shape as a whole.
  • the size of the horizontal portion 24a is, for example, about 1/10 to 1/5 of the width of the tip portion of the scriber 17.
  • the other end of the scriber 17 is connected to a motor or the like.
  • the horizontal portion 24 a is rotated at a speed of about 10 to 100 revolutions per second while the rotating shaft 23 of the scriber 17 is aligned with the substantially central portion of the abnormal portion 19, and the back electrode 3 of the photoelectric conversion element 1.
  • the scriber 17 is pushed down until it comes into contact.
  • the semiconductor layer 4, the buffer layer 5, and the window layer 6 corresponding to the abnormal portion 19 can be separated from normal portions by the rotation of the horizontal portion 24 a.
  • the tip portion thereof may be a rectangular shape 25 having a constant thickness and width as shown in FIG. 6B, for example.
  • the thickness of the tip portion of the scriber 17 may be a shape such that the thickness gradually decreases toward the tip.
  • the scriber 17 may have a shape in which the surface of the tip portion is recessed in an arc shape 26 as shown in FIG.
  • the cross-sectional area is reduced from the window layer 6 side toward the back electrode 3 side. If it is such a form, the internal peripheral surface of the structure 1b which faces the 1st site
  • part 22 is not restricted to the taper shape shown in FIG.7 (b), The form that a cross-sectional area becomes small in steps may be sufficient.
  • a hole provided along the stacking direction of the back electrode 3, the photoelectric conversion body 1a, and the window layer 6 is formed as the first portion 22.
  • the first hole 22a when viewed from the front surface side of the back electrode 3 by the first hole 22a penetrating the back electrode 3 and the photoelectric converter 1a and the second hole 22b penetrating the window layer 6. Is preferably formed so as to be located inside the second hole 22b. In such a form, the distance between the back electrode 3 exposed on the inner peripheral surface of the structure 1b and the window layer 6 can be made longer, so that the occurrence of the short circuit as described above can be further reduced. it can.
  • the first part 22 or the grooves 20 and 21 (second part) formed in the structure 1b is preferable to cover the first part 22 or the grooves 20 and 21 (second part) formed in the structure 1b with a resin. If it has such a process, it can control that moisture and oxygen enter into photoelectric conversion object 1a from the repaired 1st part or 2nd part, and photoelectric conversion object 1a deteriorates, and decline in photoelectric conversion efficiency can be carried out. Can be suppressed.
  • the resin described above may be colored so that it looks the same as the other parts when the photoelectric conversion element 1 is viewed from the light receiving surface side.
  • a resin a resin having high insulation and adhesiveness and excellent weather resistance is suitable.
  • an epoxy resin, a phenol resin, a polyurethane resin, a polyimide resin, a melamine resin, or the like can be used.
  • the tip portion of the scriber 17 is formed into a semicircular shape 27 as shown in FIG. What is necessary is just to select suitably the shape of the front-end
  • a reverse bias voltage is applied to the photoelectric conversion element 1 to generate heat at the leaked part, and infrared rays emitted therefrom are observed with an infrared camera to identify the leaked part. It is also possible to perform mechanical scribing at the leak location as described above. At this time, it is preferable to apply a reverse bias voltage after frequency modulation. Thereby, it can suppress that the photoelectric conversion body 1a containing the chalcopyrite type compound semiconductor layer of the circumference
  • the EL light emission detection means B having different resolutions may be used a plurality of times. As a result, it is possible to detect a defective portion of several ⁇ m level from a large photoelectric conversion element substrate having a side of 1 m or more.
  • the photoelectric conversion element 1 includes the chalcopyrite semiconductor layer 4.
  • the photoelectric conversion element 1 can be applied to a photoelectric conversion element including an amorphous silicon semiconductor layer, for example.
  • the first electrode is formed of aluminum or nickel
  • the photoelectric conversion body 1a is formed of an amorphous silicon semiconductor layer stacked in the order of n-type, i-type, and p-type.
  • the two electrodes may be formed of indium tin oxide (ITO) containing tin or the like.
  • ITO indium tin oxide
  • the first electrode may be formed to a thickness of 200 to 500 nm by vapor deposition or sputtering.
  • n-type, i-type, and p-type amorphous silicon may be sequentially formed on the first electrode by plasma CVD or the like. Thereafter, ITO can be formed on the photoelectric converter with a thickness of 100 to 600 nm by sputtering or the like and patterned by using a laser or the like as shown in FIG.
  • the amorphous silicon semiconductor layer described above may further contain microcrystalline silicon or polycrystalline silicon.
  • Photoelectric conversion element 1a Photoelectric conversion body 1b; Structure 1b ′: Projection 1b 2: Substrate 3: Back electrode 4: Semiconductor layer 5: Buffer layer 6: Window layer 9: Mounting table 10: Voltage application unit 11: Camera for observation (detection unit) 12: Computer (specific unit) 13: Display 14: Sequencer 15: Servo motor 16: Scriber up / down means 17: Scriber 19: Physical property abnormality location (abnormal location) 20, 21: Groove (second part) 22: First part

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明の光電変換素子の製造方法に係る一実施形態は、半導体層を含む光電変換体を一対の第1および第2電極間に有する構造体について物性異常箇所を特定する特定工程と、 前記物性異常箇所を機械加工で分離する分離工程とを具備する。

Description

光電変換素子の製造方法、光電変換素子の製造装置および光電変換素子
 本発明は、光電変換素子およびその製造方法、ならびに光電変換素子の製造装置に関する。
 太陽光発電等に使用される光電変換素子は、様々な種類のものがある。CIS系(銅インジウムセレナイド系)に代表されるカルコパイライト系の半導体層や非晶質シリコン系の半導体層より成る光電変換素子は、比較的低コストで光電変換モジュールの大面積化が容易なことから、研究開発が進められている。
 このカルコパイライト系の光電変換素子は、光吸収層およびバッファ層等の半導体層を有している。このような光吸収層やバッファ層は厚さ数μmであるため、部分的に膜物性の異常な箇所が発生することがある。このような異常箇所があると、局所的に光電流が小さくなったり、リーク電流の増大などが生じるため、光電変換素子の光電変換効率を著しく低下させたり、その信頼性を低下させたりすることがある。
 上述したような膜物性に応じて、非晶質シリコン系の光電変換素子でも同様に、信頼性が低下する場合がある。一方で、非晶質シリコン系の光電変換素子に対しては、光電変換素子に逆方向バイアス電圧を印加して、その時の発熱箇所を赤外線カメラで観察してリーク電流発生箇所を特定した後、このリーク電流発生箇所にレーザー光を照射し、その部分の電極などを除去するリペア方法が知られている(特許文献1参照)。
特開平9-266322号公報
 しかしながら、非晶質シリコン系およびカルコパイライト系の半導体層は、一部を除去するために物性異常箇所にレーザー光を照射した場合には、上記半導体層が溶融し、さらにレーザー光を照射した付近の温度が上昇することにより膜品質が低下することにより、光電変換効率の低下が生じる場合があった。特に、カルコパイライト系の化合物の半導体層では、内部に含まれる銅系化合物が上部電極と下部電極とを短絡させてしまうことがあった。
 本発明は、光電変換素子に生じた部分的な物性の異常な箇所を、良好に分離することにより、高効率な光電変換素子を提供することを目的とする。
 本発明の光電変換素子の製造方法に係る一実施形態は、半導体層を含む光電変換体を一対の第1および第2電極間に有する構造体について物性異常箇所を特定する特定工程と、
前記物性異常箇所を機械加工で分離する分離工程とを具備する。
 本発明の光電変換素子の製造装置に係る一実施形態は、半導体層を含む光電変換体を一対の第1および第2電極間に有する構造体について物性異常箇所を分離する機構を有する光電変換素子の製造装置であって、前記構造体にバイアス電圧を印加する電圧印加ユニットと、前記構造体から発せられる電磁波の強度を検出する検出ユニットとを有する。さらに、本発明の光電変換素子の製造装置に係る一実施形態は、前記電磁波の強度によって前記物性異常箇所を特定する特定ユニットと、前記構造体に対して機械加工を施し、前記物性異常箇所を分離する機械加工ユニットとを具備する。
 本発明の光電変換素子に係る一実施形態は、半導体層を含む光電変換体を一対の第1および第2電極間に有する構造体を備えており、前記構造体は、機械加工によって物性異常箇所が分離されてなる。
 本発明の光電変換素子の製造方法および光電変換素子の製造装置の一実施形態によれば、機械加工を用いて光電変換素子が有する構造体の物性異常箇所を分離することにより、物性異常箇所およびその周辺部の温度上昇を抑制することができる。そして、本実施形態では、機械加工により物性異常箇所を分離しているため、レーザー照射等によって生じるような熱による半導体層の変質を低減することができる。その結果、本実施形態では、高効率な光電変換素子を提供することができる。
本発明に係る光電変換素子の構造の一例を示す断面図である。 本発明に係る光電変換素子の製造方法の一例を説明するブロック図である。 本発明に係る光電変換素子の製造装置の一例を示したものである。 本発明に係る機械加工の一実施状態を示す斜視図である。 (a)~(c)は分離工程において、機械加工を施した後の光電変換素子の一例を示した斜視図である。 (a)~(c)はスクライバーの先端部の各種実施形態を示す平面図である。 分離工程において、機械加工を施した後の光電変換素子の一例を示すものであり、(a)は窓層側から見た平面図、(b)~(d)は断面図である。 (a)および(b)はスクライバーの先端部の各種実施形態を示す斜視図である。
 本発明の光電変換素子の実施形態について説明する。なお、以下の実施形態では、カルコパイライト系の半導体層を有する光電変換素子の形態を用いて説明する。
 カルコパイライト系の光電変換素子は、カルコパイライト系化合物半導体層を含む光電変換体と一対の電極(第1および第2電極)とを具備した構造体を有している。この光電変換体は、カルコパイライト系化合物の半導体層にヘテロ接合されたバッファ層を含んでいてもよい。また、電極は半導体層から成るものも含み、いわゆる窓層と呼ばれるものも含む。図1に示した光電変換素子1は、基板2と、第1電極である裏面電極3と、カルコパイライト系化合物の半導体層4と、バッファ層5と、第2電極である窓層6とを有している。なお、本実施形態では、半導体4およびバッファ層5から光電変換体1aが構成されている。さらに、本実施形態では、裏面電極3、光電変換体1aおよび第2電極より構造体1bが構成されている。
 基板2は、例えば、厚さ1~3mm程度の青板ガラス(ソーダライムガラス)からなる。また、裏面電極3は、例えば、厚さ0.2~1μm程度のモリブデン、チタン、タンタル等の金属またはこれらの金属積層体で構成される。
 カルコパイライト系化合物の半導体層4は光吸収層としての役割を有する。この半導体層4は、p型の導電形を有する厚さ1~3μm程度のカルコパイライト構造を有する半導体薄膜で、二セレン化銅インジウム、二セレン化銅インジウム・ガリウム、二セレン・イオウ化銅インジウム・ガリウム、二イオウ化銅インジウム・ガリウムまたは薄膜の二セレン・イオウ化銅インジウム・ガリウム層を表面層として有する二セレン化銅インジウム・ガリウム等の多元化合物半導体薄膜である。
 バッファ層5は、例えば、硫化カドニウム(CdS)、硫化インジウム(In)、硫化亜鉛(ZnS)等の混晶化合物半導体である。
 窓層6は、例えば、n型の導電形を有する禁制帯幅が広く、かつ透明で低抵抗の厚さ1~2μm程度の酸化亜鉛(ZnO)またはアルミニウム、ボロン、ガリウム、インジウム、フッ素などを含んだ酸化亜鉛との化合物、錫を含んだ酸化インジウムスズ(ITO)や酸化錫(SnO)などからなる金属酸化物よりなる半導体薄膜である。なお、窓層6は、光電変換素子1を構成する一方の電極(第2電極)と見なすことができる。窓層6に加えてさらに透明導電膜を形成してもよく、窓層6と透明導電膜とを合わせて第2電極と見なしてもよい。
 本実施形態に係る光電変換素子1を作製する工程の一例について説明する。まず、洗浄した基板2の略全面に裏面電極3をスパッタリング法などを用いて成膜する。次に、成膜したこの裏面電極3にYAGレーザーなどを用いて分割溝を形成して裏面電極3をパターニングする。その後、このパターンを形成した裏面電極3上にカルコパイライト系の化合物半導体層4をスパッタリング法や蒸着法、印刷法などを用いて成膜する。その後、バッファ層5を溶液成長法(CBD法)などを用いて成膜する。この裏面電極3の略全面に成膜したカルコパイライト系化合物の半導体層4とバッファ層5とにメカニカルスクライビングで分離溝を形成しパターニングする。その後、窓層6をスパッタ法や有機金属気相成長法(MOCVD法)などを用いて、バッファ層5の略全面に成膜して、メカニカルスクライビングで分離溝を形成し、パターニングする。なお、この窓層6上に低抵抗化のため銀ペーストなどを印刷することにより、グリッド電極を形成してもよい。
 このように光電変換素子1は、裏面側から基板2、裏面電極3、カルコパイライト系化合物の半導体層4、バッファ層5、窓層6の順に積層した構造を有しており、各層をパターニングすることにより、図1のように複数の単位セルが電気的に接続された集積構造である。
 次に、本発明に係る光電変換素子の製造方法について図2を用いて説明する。まず、図2に示すように、光電変換素子1の電極間に順バイアス電圧印加手段A(電圧印加ユニット)により順バイアス電圧を印加する。これにより光電変換素子1から発光されるエレクトロルミネッセンス(以下、ELと略する)をEL発光検知手段B(検出ユニット)により検知する。
 この光電変換素子1からのELを観察することにより、順バイアス電圧印加時の光電変換素子内での電流密度分布が判り、電流密度分布の不均一性から光電変換素子1内の物性異常箇所を知ることができる。すなわち、このEL発光のない部分または他の部分に比べ発光強度が小さい部分では、pn接合不良、マイクロクラックの存在、組成ズレ、再結合が起こりやすい欠陥密度が高い部分、各層間や電極と半導体層間のコンタクト抵抗の異常などの不具合事象が存在していることが分かる。その後、異常箇所特定手段C(特定ユニット)により、光電変換素子1の観察面におけるEL発光の状態を観察して物性異常箇所(以下、単に異常箇所とする場合もある)を特定し、その異常箇所の座標を異常箇所記憶手段Dに記憶させる。この記憶した異常箇所の情報に基づき、光電変換素子1とメカニカルスクライブ位置制御手段Eにより制御されたメカニカルスクライブ実施手段F(機械加工ユニット)との相互の位置を調整することにより、この異常箇所を周辺から電気的に切り離すか、またはその部分の膜を除去する。すなわち、本発明に係る光電変換素子の製造方法では、光電変換素子1の物性異常箇所を機械加工で分離する分離工程を有している。
 上述のように、光電変換素子1の物性異常箇所の特定工程では、EL発光検出器Bを用いることにより、膜物性異常に起因するリーク電流発生箇所のみでなく、pn接合不良、マイクロクラックの存在、組成ズレ、再結合が起こりやすい欠陥密度が高い部分、各層間や電極と半導体層間のコンタクト抵抗の異常などのより広範囲の物性異常箇所を特定できる。それゆえ、このような特定工程は、物性異常箇所を正常箇所から分離するというリペアの効果をより良好なものとすることができる。
 なお、上記の物性異常箇所の特定手段は、EL発光検出に限定されず、光電変換素子1に順バイアス電圧もしくは逆バイアス電圧を印加したときに生じる赤外線を検出するものであってもよい。このようにELや赤外線等の電磁波の強度分布を検出することにより光電変換素子1の物性異常箇所の特定が可能となる。
 次に、本発明に係る光電変換素子の製造装置(リペア装置)の一例について図3を用いて説明する。本実施形態における光電変換素子の製造装置は、載置テーブル9と、電圧印加ユニット10と、検出ユニットの一部を成す観察用カメラ11と、特定ユニットであるコンピューター12と、ディスプレー13とを備えている。さらに、本実施形態における光電変換素子の製造装置は、シーケンサー14と、サーボモーター15と、スクライバー上下手段16と、スクライバー17とを備えてなる機械加工ユニットXを有している。
 載置テーブル9は、例えば、厚さ10mm程度ステンレス製の平板で作製され、その略中央部に貫通孔(不図示)が複数設けられている。そして、この載置テーブル9の近傍に配置された真空ポンプなどの減圧手段により、この貫通孔を介して載置テーブル9上に載置された光電変換素子1を所定の位置に減圧固定できるようにしてある。さらに、載置テーブル9には、シーケンサー14でコントロールされた2台のサーボーモーター15で駆動されることにより、X-Y方向に自在に移動できるようになっている。
 スクライバー17は、エアシリンダーなどのシーケンサー14でコントロールされたスクライバー上下手段16により、上下方向に動くようになっている。
 次に、本発明に係る光電変換素子の製造装置(リペア装置)の動作について説明する。
 載置テーブル9の所定の位置に載置、固定された光電変換素子1は、電圧印加ユニット10により、その電極間(裏面電極3と窓層6との間)に順方向のバイアス電圧を印加される。すなわち、電圧印加ユニットは、光電変換体1aと一対の電極よりなる構造体1bにバイアス電圧を印加する役割を有している。この光電変換素子1における印加されるバイアス電圧値は、光電変換素子1内の直列接続されている1つの単位セル当たり、0.2~1V程度が適当であり、実際に印加される電圧値は、これに光電変換素子1内部の直列数を乗じたものとなる。
 光電変換素子1は、バイアス電圧の印加によって物性異常箇所がEL発光するので、このEL発光状態を観察用カメラ11により撮像し、その画像信号をコンピューター12に送る。すなわち、観察用カメラ11よりなる検出ユニットは、光電変換素子1の一部を成す構造体1bから発せられるEL発光等の電磁波の強度を検出する役割を有している。送られた画像信号は、ディスプレー13に表示されるとともに、コンピューター12では光電変換素子1のEL発光状態をA/D変換して、得られた濃淡の多値画像を予め定められた濃淡レベルの閾値により二値化し、暗部を特定し、この暗部を物性異常箇所と判断し、その二次元の座標を記憶する。
 このような光電変換素子1のEL発光は微弱なものであるため、このEL発光状態の観察用カメラ11による撮像は、迷光などの影響を避けるため、暗室または暗箱の中で行うことが好ましい。
 その後、シーケンサー14によりサーボモーター15を制御し、光電変換素子1を載置した載置テーブル9を、機械加工で物性異常箇所を分離するスクライブ実施位置まで移動させ、さらに、図4に示すようにスクライバー17の直下の位置に光電変換素子1の異常箇所を持ってくる。その後、スクライバー上下手段16によるスクライバー17の昇降と載置テーブル9(光電変換素子1)の移動を組み合わせることにより、光電変換素子1の異常箇所の周辺の膜にメカニカルスクライブを施し、異常箇所の膜を周辺から電気的に切り離す、または除去を行うことにより、物性異常箇所を正常な箇所から分離する。
 メカニカルスクライブを施した後の光電変換素子1は、図5(a)、(b)に示すように、異常箇所19がメカニカルスクライブにより形成された溝20または溝21により、他の正常な部位から分離されている。また、図5(c)は、異常箇所を光電変換素子1の構造体1bから除去するように溝22を形成した例である。なお、以下の説明では、図5(c)に示したように、異常箇所19が構造体1bから除去された部位を第1部位22とする。さらに、図5(a)、(b)に示すように、異常箇所を取り囲むように、線状に構造体1bの一部を除去することによって、異常箇所が周辺部分から電気的に分断された部位を第2部位とする。すなわち、本実施形態では、溝20または溝21が第2部位に相当する。
 このような異常箇所を機械加工により分離する分離工程に使用される機械加工ユニットには、例えば、スクライバー17に先端に鋭利なダイヤモンド片を固着したダイヤモンドスクライバー、あるいはタングステンカーバイト製超硬刃などが用いられる。そして、図5(a)のように異常箇所19に対し、これを取り囲むようにメカニカルスクライブによる溝20を形成し、この部分の裏面電極3、カルコパイライト系化合物半導体層4、バッファ層5、窓層6、グリッド電極(図示なし)などを周辺部分から電気的に分離することで行う。
 このように溝20により電気的に異常箇所19を分離することにより、レーザー光を照射した場合に見られるような光電変換素子1内部の各層に対する発熱がほとんど無いため、カルコパイライト系化合物の半導体層4が溶融してリークが発生したり、周辺の膜品質が低下することを抑制できる。さらに、微小な溝20により分離(リペア)を行うため、光電変換素子1の受光面側から観たときの外観の悪化を低減することができる。
 また、スクライバー17の先端に面状のダイヤモンドヤスリやサンドペーパー、あるいは金属ブラシなどを付けたものを用いて、図5(b)のように異常箇所19の周辺部21を円形状に除去することも可能である。これにより上述のメカニカルスクライブ特有の効果に加え、比較的大きな面積での異常箇所19の分離(リペア)も効率良く行うことができる。
 なお、上述した分離工程では、光電変換素子1を構成する裏面電極3、カルコパイライト系化合物半導体層4、バッファ層5、窓層6、およびグリッド電極(図示なし)をすべて除去しているが、分離工程では裏面電極3と窓層6との接触を抑制すればよいため、窓層6のみを除去する、あるいは窓層6およびグリッド電極を除去するような形態であってもよい。このとき、ガラスからなる基板2の一主面上に形成された裏面電極3をモリブデンで形成した場合は、分離工程を、裏面電極3が基板2の一主面上に残した状態で行なうことが好ましい。この場合、スクライバー17の先端の接触によって生じる傷が、ガラスの基板2に比べて比較的弾性率の高い裏面電極3に形成されることとなるので、その傷を起点として、クラックが成長するのを抑制することができる。
 また、図5(c)に示したような異常箇所を光電変換素子1の構造体1bから除去する溝状の第1部位22を形成した形態であれば、光電変換素子1内に混入してしまった導電性物質等を介して異常箇所と正常箇所とが接触するような不具合の発生を抑制できるため、光電変換素子1の信頼性をより向上させることができる。
 次に、スクライバー17の形状について図6を用いて説明する。スクライバー17は、例えば、厚さ0.1~0.5mm程度の平板状を成している。また、スクライバー17の幅は、例えば、0.2~3.0mm程度のものである。スクライバー17は、図6に示すように、回転軸23を軸として回転するように設けられている。
 図6(a)に示すスクライバー17の先端部は、水平部24aおよび傾斜部24bを有するような形状を有するとともに、全体として平板状を成している。水平部24aの大きさは、例えば、スクライバー17の先端部の幅の1/10~1/5程度である。また、スクライバー17の他端部は、モーターなどに繋がれている。スクライバー17を用いた分離工程では、スクライバー17の回転軸23を異常箇所19の略中央部に合わせ、毎秒10~100回転程度の速度で回転しながら水平部24aが光電変換素子1の裏面電極3に当接するまでスクライバー17を押し下げる。このスクライバー17では、水平部24aの回転により、異常箇所19に相当する半導体層4、バッファ層5および窓層6を正常な箇所から分離できる。なお、このスクライバー17が平板状である場合、その先端部は、例えば、図6(b)に示すような、厚み、幅が一定な矩形状25であってもよい。このとき、スクライバー17の先端部の厚みが、先端に向かって厚みが徐々に小さくなるような形状であってもよい。一方で、スクライバー17は、図6(c)に示すように、先端部の表面が円弧状26に窪んでいるような形状であってもよい。
 また、異常箇所19の分離工程では、図7(b)に示すように、第1部位22として、裏面電極3、光電変換体1aおよび窓層6の積層方向に沿って設けられた孔部を、窓層6側から裏面電極3側に向かって断面積が小さくなっているように形成するほうが好ましい。このような形態であれば、第1部位22(孔部)に面している構造体1bの内周面が積層方向に対して傾斜するようになる。そのため、本実施形態では、構造体1bの内周面に露出する裏面電極3と窓層6との距離を長くすることができる。それゆえ、本実施形態では、異常箇所19の分離時に生じた構造体1bの残渣を介した裏面電極3と窓層6との短絡の発生を低減することができる。なお、第1部位22の形状は、図7(b)に示したテーパー状に限られず、段階的に断面積が小さくなるような形態であってもよい。
 また、異常箇所19の分離工程では、図7(c)に示すように、第1部位22として、裏面電極3、光電変換体1aおよび窓層6の積層方向に沿って設けられた孔部を、裏面電極3および光電変換体1aを貫通する第1孔部22aと、窓層6を貫通する第2孔部22bとによって、裏面電極3の表面側から平面視したとき、第1孔部22aが第2孔部22bの内側に位置するように形成するほうが好ましい。このような形態であれば、構造体1bの内周面に露出する裏面電極3と窓層6との距離をより長くすることができるため、上述したような短絡の発生をより低減することができる。
 また、構造体1bに形成された第1部位22または溝20、21(第2部位)は、樹脂で覆うことが好ましい。このような工程を有していれば、リペアした第1部位または第2部位から水分や酸素が光電変換体1aへ進入し光電変換体1aが劣化するのを抑制でき、光電変換効率の低下を抑制することができる。上述した樹脂は、光電変換素子1を受光面側から見たときに他の部分と同じに見えるように、着色しておいても良い。このような樹脂には、絶縁性、接着性が高く、耐候性能に優れた樹脂が好適であり、例えば、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、ポリイミド樹脂、メラミン樹脂などを用いることができる。
 そして、上述のような樹脂を用いる場合は、図7(d)に示すように、分離工程を第1部位22に対向する構造体1bの表面に凸部を設けるように行なえば、該凸部のアンカー効果により、樹脂の抜けの発生を低減できる。なお、本実施形態では、第1部位22に限らず、第2部位に対向する構造体1bの表面に凸部1b’を設けてもよい。
 また、上述したような断面積が変化するような第1部位22または第2部位を形成するには、例えば、スクライバー17の先端部を図8(a)のような半円状27、または図8(b)に示すような円錐台状28のように、スクライバー17の先端部の形状を適宜選択すればよい。また、上述したような凸部1b’形成するには、スクライバー17の先端部の表面に溝部を形成しておけばよい。
 なお、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で多くの修正および変更を加えることができる。例えば、異常箇所19の特定工程において、光電変換素子1に逆バイアス電圧を印加してリーク箇所を発熱させ、そこから放出される赤外線を赤外線カメラで観察して、リーク箇所を特定した後、このリーク箇所に上述のようにメカニカルスクライブを行うことも可能である。この際、周波数変調して逆バイアス電圧を印加することが好ましい。これにより、リーク箇所の発熱によってその周囲のカルコパイライト系化合物半導体層を含む光電変換体1aが劣化するのを抑制でき、光電変換効率の高いものとすることができる。
 また、上記のEL発光検知手段Bを用いた異常箇所19の特定工程において、解像度の異なるEL発光検知手段Bを複数回用いてもよい。これにより、一辺が1m以上の大型の光電変換素子基板から、数μmレベルの不良箇所を検出することも可能となる。
 また、上述した実施形態では、カルコパイライト系の半導体層4を備えた光電変換素子1であったが、例えば、アモルファスシリコン系の半導体層を備えた光電変換素子にも適用可能である。このような光電変換素子は、例えば、第1電極をアルミニウムやニッケルで形成し、光電変換体1aをn型、i型、p型の順で積層されたアモルファスシリコンの半導体層で形成し、第2電極は錫を含む酸化インジウムスズ(ITO)等で形成すればよい。このとき、第1電極は、蒸着法やスパッタリング法で200~500nmの厚みで成膜すればよい。また、光電変換体1aは、第1電極上にプラズマCVD法等でn型、i型、p型のアモルファスシリコンを順次成膜すればよい。その後、光電変換体上にITOをスパッタ法などで100~600nmの厚みで成膜し、レーザー等を用いて図1に示すようなパターニングすることで作製できる。また、上述したアモルファスシリコンの半導体層は、さらに微結晶シリコンや多結晶シリコンを含んでいても良い。
1:光電変換素子
1a:光電変換体
1b;構造体
1b’:凸部1b
2:基板
3:裏面電極
4:半導体層
5:バッファ層
6:窓層
9:載置テーブル
10:電圧印加ユニット
11:観察用カメラ(検出ユニット)
12:コンピューター(特定ユニット)
13:ディスプレー
14:シーケンサー
15:サーボモーター
16:スクライバー上下手段
17:スクライバー
19:物性異常箇所(異常箇所)
20、21:溝(第2部位)
22:第1部位

Claims (13)

  1.  半導体層を含む光電変換体を一対の第1および第2電極間に有する構造体について物性異常箇所を特定する特定工程と、
    前記物性異常箇所を機械加工で分離する分離工程と
    を具備することを特徴とする光電変換素子の製造方法。
  2.  前記分離工程は、前記構造体に、前記物性異常箇所を除去された部位である第1部位を形成する工程であることを特徴とする請求項1記載の光電変換素子の製造方法。
  3.  前記分離工程は、前記物性異常箇所を取り囲むように、線状に前記構造体の一部を除去することによって、前記物性異常箇所が周辺部分から電気的に分断された部位である第2部位を形成する工程であることを特徴とする請求項1記載の光電変換素子の製造方法。
  4.  前記第1部位として、前記第1電極、前記光電変換体および前記第2電極の積層方向に沿って設けられた孔部を、前記第2電極側から前記第1電極側に向かって断面積が小さくなっているように形成することを特徴とする請求項2に記載の光電変換素子の製造方法。
  5.  前記第1部位として、前記第1電極、前記光電変換体および前記第2電極の積層方向に沿って設けられた孔部を、前記第1電極および前記光電変換体を貫通する第1孔部と、前記第2電極を貫通する第2孔部とによって、前記第1電極の表面側から平面視したとき、前記第1孔部が前記第2孔部の内側に位置しているように形成することを特徴とする請求項2に記載の光電変換素子の製造方法。
  6.  モリブデンを含む前記第1電極をガラス基板の一主面上に形成し、
    カルコパイライト系化合物を含む前記半導体層を形成し、
    前記分離工程を、前記第1電極を前記ガラス基板の前記一主面上に残した状態で行なうことを特徴とする請求項1乃至請求項5のいずれかに記載の光電変換素子の製造方法。
  7.  前記分離工程後に、前記第1部位または前記第2部位を樹脂で覆う工程をさらに具備することを特徴とする請求項2または請求項3に記載の光電変換素子の製造方法。
  8.  前記分離工程は、前記第1部位または前記第2部位に対向する前記構造体の表面に凸部を設けるように行なうことを特徴とする請求項7に記載の光電変換素子の製造方法。
  9.  前記特定工程は、前記構造体に順バイアス電圧を印加したときの前記構造体のエレクトロルミネッセンスによる発光強度によって前記物性異常箇所を特定する工程であることを特徴とする請求項1乃至請求項8のいずれかに記載の光電変換素子の製造方法。
  10.  前記特定工程は、前記構造体に順バイアス電圧または逆バイアス電圧を印加したときの前記構造体から発せられる赤外線強度によって前記物性異常箇所を特定する工程であることを特徴とする請求項1乃至請求項8のいずれかに記載の光電変換素子の製造方法。
  11.  前記逆バイアス電圧を、周波数変調して印加することを特徴とする請求項10記載の光電変換素子の製造方法。
  12.  半導体層を含む光電変換体を一対の第1および第2電極間に有する構造体について物性異常箇所を分離する機構を有する光電変換素子の製造装置であって、
    前記構造体にバイアス電圧を印加する電圧印加ユニットと、
    前記構造体から発せられる電磁波の強度を検出する検出ユニットと、
    前記電磁波の強度によって前記物性異常箇所を特定する特定ユニットと、
    前記構造体に対して機械加工を施し、前記物性異常箇所を分離する機械加工ユニットと
    を具備することを特徴とする光電変換素子の製造装置。
  13.  半導体層を含む光電変換体を一対の第1および第2電極間に有する構造体を備えており、前記構造体は、機械加工によって物性異常箇所が分離されてなる光電変換素子。
PCT/JP2010/061030 2009-06-29 2010-06-29 光電変換素子の製造方法、光電変換素子の製造装置および光電変換素子 WO2011001962A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800092446A CN102334193A (zh) 2009-06-29 2010-06-29 光电转换元件的制造方法、光电转换元件的制造装置及光电转换元件
JP2011520923A JP5295369B2 (ja) 2009-06-29 2010-06-29 光電変換素子の製造方法
US13/256,902 US20120006389A1 (en) 2009-06-29 2010-06-29 Method of Manufacturing Photoelectric Conversion Device, Apparatus for Manufacturing Photoelectric Conversion Device, and Photoelectric Conversion Device
EP10794131A EP2450960A1 (en) 2009-06-29 2010-06-29 Method for manufacturing photoelectric conversion elements, device for manufacturing photoelectric conversion elements, and photoelectric conversion element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009154340 2009-06-29
JP2009-154340 2009-06-29

Publications (1)

Publication Number Publication Date
WO2011001962A1 true WO2011001962A1 (ja) 2011-01-06

Family

ID=43411034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061030 WO2011001962A1 (ja) 2009-06-29 2010-06-29 光電変換素子の製造方法、光電変換素子の製造装置および光電変換素子

Country Status (5)

Country Link
US (1) US20120006389A1 (ja)
EP (1) EP2450960A1 (ja)
JP (1) JP5295369B2 (ja)
CN (1) CN102334193A (ja)
WO (1) WO2011001962A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109421A (ja) * 2010-11-18 2012-06-07 Mitsuboshi Diamond Industrial Co Ltd 薄膜太陽電池用の欠陥修復用ツール、欠陥修復用装置及び欠陥修復方法
JP2013030507A (ja) * 2011-07-26 2013-02-07 Kyocera Corp 光電変換装置
JP2013211465A (ja) * 2012-03-30 2013-10-10 Mitsuboshi Diamond Industrial Co Ltd 溝加工ツールおよびこれを用いた薄膜太陽電池の溝加工方法ならびに溝加工装置
JP2014065291A (ja) * 2013-03-28 2014-04-17 Mitsuboshi Diamond Industrial Co Ltd 金属膜積層セラミックス基板溝加工用ツール
JP2015177177A (ja) * 2014-03-18 2015-10-05 シャープ株式会社 化合物半導体太陽電池セルおよび化合物半導体太陽電池セルの製造方法
JP2019054142A (ja) * 2017-09-15 2019-04-04 株式会社東芝 光電変換素子、その製造方法、およびその製造装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352582B2 (en) * 2013-04-30 2019-07-16 Daikin Industries, Ltd. Decorative panel and air-conditioner indoor unit provided with same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986270A (ja) * 1982-11-09 1984-05-18 Semiconductor Energy Lab Co Ltd 光電変換装置
JPS6418274U (ja) * 1987-07-21 1989-01-30
JPH09266322A (ja) 1996-03-27 1997-10-07 Sanyo Electric Co Ltd 光電変換素子のリーク箇所検出リペア装置
JP2003513473A (ja) * 1999-11-04 2003-04-08 パシフィック ソーラー ピー ティ ワイ リミテッド 薄膜上でのコンタクトの形成
JP2004115356A (ja) * 2002-09-26 2004-04-15 Honda Motor Co Ltd メカニカルスクライブ装置
JP2005159167A (ja) * 2003-11-27 2005-06-16 Kyocera Corp 光電変換装置およびその製造方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3165430A (en) * 1963-01-21 1965-01-12 Siliconix Inc Method of ultra-fine semiconductor manufacture
JPS6041478B2 (ja) * 1979-09-10 1985-09-17 富士通株式会社 半導体レ−ザ素子の製造方法
JPS56164552A (en) * 1980-05-22 1981-12-17 Toshiba Corp Manufacture of semiconductor element
US4726849A (en) * 1985-08-07 1988-02-23 Sanyo Electric Co., Ltd Photovoltaic device and a method of manufacturing thereof
JPS6418274A (en) * 1987-07-13 1989-01-23 Fuji Electric Co Ltd Manufacture of thin film photoelectric converter
JPH04249113A (ja) * 1991-02-06 1992-09-04 Mitsubishi Electric Corp ウエハスクライバ
US5468652A (en) * 1993-07-14 1995-11-21 Sandia Corporation Method of making a back contacted solar cell
US6021574A (en) * 1997-11-05 2000-02-08 Murray, Iii; William W. Scribing tool
JP2001053309A (ja) * 1999-08-12 2001-02-23 Kanegafuchi Chem Ind Co Ltd 薄膜太陽電池パネルの製造方法および薄膜太陽電池パネルの洗浄水の水切り装置
US6986739B2 (en) * 2001-08-23 2006-01-17 Sciperio, Inc. Architecture tool and methods of use
TW549566U (en) * 2002-11-14 2003-08-21 Ind Tech Res Inst Cutting knife head mechanism for separating brittle material
US7736940B2 (en) * 2004-03-15 2010-06-15 Solopower, Inc. Technique and apparatus for depositing layers of semiconductors for solar cell and module fabrication
JP4681352B2 (ja) * 2005-05-24 2011-05-11 本田技研工業株式会社 カルコパイライト型太陽電池
JP3963924B2 (ja) * 2005-07-22 2007-08-22 本田技研工業株式会社 カルコパイライト型太陽電池
US7302761B2 (en) * 2005-10-05 2007-12-04 Loomis Industries, Inc. Automatic tool tilting apparatus for a scribe tool
JP4251203B2 (ja) * 2006-08-29 2009-04-08 セイコーエプソン株式会社 貼合せマザー基板のスクライブ方法および貼合せマザー基板の分割方法
US7982126B2 (en) * 2007-05-21 2011-07-19 Macfarlane Alexander T Photovoltaic module with improved heat transfer and recovery potential
US7875945B2 (en) * 2007-06-12 2011-01-25 Guardian Industries Corp. Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same
US20090077804A1 (en) * 2007-08-31 2009-03-26 Applied Materials, Inc. Production line module for forming multiple sized photovoltaic devices
US20090084425A1 (en) * 2007-09-28 2009-04-02 Erel Milshtein Scribing Methods for Photovoltaic Modules Including a Mechanical Scribe
US7707732B2 (en) * 2007-10-16 2010-05-04 Solyndra, Inc. Constant force mechanical scribers and methods for using same in semiconductor processing applications
KR100986024B1 (ko) * 2007-12-31 2010-10-07 (주)에이디에스 투명 전극 패턴 제조 방법 및 이를 갖는 전기 광학 소자의제조 방법
US7989729B1 (en) * 2008-03-11 2011-08-02 Kla-Tencor Corporation Detecting and repairing defects of photovoltaic devices
JP5388673B2 (ja) * 2008-05-07 2014-01-15 パナソニック株式会社 電子部品
US7956337B2 (en) * 2008-09-09 2011-06-07 Applied Materials, Inc. Scribe process monitoring methodology
US7829356B2 (en) * 2008-09-17 2010-11-09 Applied Materials, Inc. Thin film scribe process
TWI393265B (zh) * 2008-10-07 2013-04-11 Nexpower Technology Corp 薄膜太陽能電池之缺陷隔離方法
TW201015727A (en) * 2008-10-07 2010-04-16 Nexpower Technology Corp Thin-film solar cell
US20100190275A1 (en) * 2009-01-29 2010-07-29 Applied Materials, Inc. Scribing device and method of producing a thin-film solar cell module
US20100237895A1 (en) * 2009-03-19 2010-09-23 Kyo Young Chung System and method for characterizing solar cell conversion performance and detecting defects in a solar cell
KR101295547B1 (ko) * 2009-10-07 2013-08-12 엘지전자 주식회사 박막 태양 전지 모듈 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986270A (ja) * 1982-11-09 1984-05-18 Semiconductor Energy Lab Co Ltd 光電変換装置
JPS6418274U (ja) * 1987-07-21 1989-01-30
JPH09266322A (ja) 1996-03-27 1997-10-07 Sanyo Electric Co Ltd 光電変換素子のリーク箇所検出リペア装置
JP2003513473A (ja) * 1999-11-04 2003-04-08 パシフィック ソーラー ピー ティ ワイ リミテッド 薄膜上でのコンタクトの形成
JP2004115356A (ja) * 2002-09-26 2004-04-15 Honda Motor Co Ltd メカニカルスクライブ装置
JP2005159167A (ja) * 2003-11-27 2005-06-16 Kyocera Corp 光電変換装置およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109421A (ja) * 2010-11-18 2012-06-07 Mitsuboshi Diamond Industrial Co Ltd 薄膜太陽電池用の欠陥修復用ツール、欠陥修復用装置及び欠陥修復方法
JP2013030507A (ja) * 2011-07-26 2013-02-07 Kyocera Corp 光電変換装置
JP2013211465A (ja) * 2012-03-30 2013-10-10 Mitsuboshi Diamond Industrial Co Ltd 溝加工ツールおよびこれを用いた薄膜太陽電池の溝加工方法ならびに溝加工装置
JP2014065291A (ja) * 2013-03-28 2014-04-17 Mitsuboshi Diamond Industrial Co Ltd 金属膜積層セラミックス基板溝加工用ツール
JP2015177177A (ja) * 2014-03-18 2015-10-05 シャープ株式会社 化合物半導体太陽電池セルおよび化合物半導体太陽電池セルの製造方法
JP2019054142A (ja) * 2017-09-15 2019-04-04 株式会社東芝 光電変換素子、その製造方法、およびその製造装置
US10950391B2 (en) 2017-09-15 2021-03-16 Kabushiki Kaisha Toshiba Photoelectric conversion device and manufacturing method and apparatus thereof

Also Published As

Publication number Publication date
CN102334193A (zh) 2012-01-25
JP5295369B2 (ja) 2013-09-18
JPWO2011001962A1 (ja) 2012-12-13
US20120006389A1 (en) 2012-01-12
EP2450960A1 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP5295369B2 (ja) 光電変換素子の製造方法
US8309390B2 (en) Method of manufacturing a photovoltaic device and system for patterning an object
KR101139453B1 (ko) 박막형 태양전지 및 그 제조방법
EP2416377A2 (en) Solar cell and manufacturing method thereof
JP2013506990A (ja) 太陽光発電装置及びその製造方法
JP5145456B2 (ja) 太陽電池モジュール及びその製造方法
JP5602234B2 (ja) 太陽光発電装置及びその製造方法
JP5734437B2 (ja) 太陽光発電装置及びその製造方法
JP5624153B2 (ja) 太陽電池及びその製造方法
JP5274432B2 (ja) 光電変換装置
KR20130047513A (ko) 태양전지 및 이의 제조방법
JP5499223B2 (ja) 光起電層システムの分析方法
KR101241714B1 (ko) 태양전지 및 그의 수리방법
JP2012038902A (ja) 集積型光電変換装置の製造方法
KR101091359B1 (ko) 태양전지 및 이의 제조방법
JP5558339B2 (ja) 光電変換モジュールの製造方法
JP7077017B2 (ja) 太陽電池モジュール
US20120135545A1 (en) Laser apparatus and method for manufacturing a solar cell module using the same
JP2011091224A (ja) 集積型光発電素子及び集積型光発電素子の製造方法
KR20100109310A (ko) 태양전지 및 이의 제조방법
KR20110036353A (ko) 태양전지 및 이의 제조방법
US20100300539A1 (en) Solar cell structure and manufacturing method thereof
KR101543034B1 (ko) 팁 및 이를 이용한 태양전지의 제조방법
KR101091499B1 (ko) 팁, 태양전지 및 팁을 이용한 태양전지의 제조방법
JP2011077104A (ja) 光電変換装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009244.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520923

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010794131

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13256902

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE