WO2011000302A1 - 参考信号的处理方法、装置及*** - Google Patents

参考信号的处理方法、装置及*** Download PDF

Info

Publication number
WO2011000302A1
WO2011000302A1 PCT/CN2010/074657 CN2010074657W WO2011000302A1 WO 2011000302 A1 WO2011000302 A1 WO 2011000302A1 CN 2010074657 W CN2010074657 W CN 2010074657W WO 2011000302 A1 WO2011000302 A1 WO 2011000302A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
pilot
cell
pilot position
cells
Prior art date
Application number
PCT/CN2010/074657
Other languages
English (en)
French (fr)
Inventor
万蕾
***
赵亚军
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2012518015A priority Critical patent/JP5527780B2/ja
Priority to EP10793597.5A priority patent/EP2451202B1/en
Priority to CN201080003641.2A priority patent/CN102388635B/zh
Publication of WO2011000302A1 publication Critical patent/WO2011000302A1/zh
Priority to US13/340,337 priority patent/US8879484B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0056Inter-base station aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment

Definitions

  • the method for reporting the measurement mainly includes: the serving base station sends a certain reference information to the serving UE, and the UE of the service receives the CRS and obtains the downlink channel information by using the measurement, and the UE of the service determines the downlink according to a certain rule.
  • the channel information is appropriately quantized and fed back to the base station.
  • CRS common reference signal
  • CoMP Coordinated multipoint transmission/Reception
  • a plurality of cells that can serve the UE form a CoMP set
  • the neighboring base stations to which the cells belong in the CoMP set jointly provide a data transmission service for one UE, so that the UE can obtain higher throughput.
  • the efficiency of the UE to transmit signals is also improved.
  • the UE needs to measure the reference signals sent by multiple base stations, and feed back the measured downlink channel information to the multiple base stations.
  • the downlink wireless communication system scenario shown in FIG. cell 1, cell 2, cell 3, and UE1 are included.
  • the cell 1 is a serving cell of the UE1, and the cell 1 and the cell 3 are combined to form a CoMP set of the UE1.
  • the UE1 performs a modulo operation on the cell 1-ID of the serving cell to calculate a CRS pilot position that is sent by the base station to which the cell 1 belongs to the UE1, and the UE1 receives the CRS sent by the base station from the cell 1 at the CRS location, and
  • the downlink channel information in the cell 1 is measured according to the CRS, and then appropriately quantized and fed back to the base station to which the cell 1 belongs.
  • the figure represents a reference signal in a downlink subframe of a base station to which the cell 1 belongs.
  • the black box represents the issued CRS
  • the white square represents the data symbol
  • the dashed box represents the reference signal for other purposes.
  • the UE can only calculate the CRS pilot position of the cell according to the cell ID of the serving cell, and cannot obtain the CRS pilot position of the other cells in the CoMP set, and cannot evaluate the downlink channel information according to the CRS of other cells.
  • the current industry standard specifies that the downlink pilot position of the cell can be offset by an implicit mapping bound to the cell ID, thereby ensuring The CRSs of neighboring cells do not collide with each other.
  • the shift operation indicated in the regulations can only guarantee the possibility that the CRS has three kinds of offsets. That is to say, through the CRS, the UE can only distinguish the downlink channels of three different cells at most, and a CoMP set generally includes multiple possibilities. A cell that cooperatively transmits data, at which time the CRSs of the cells are likely to collide with each other, resulting in a downlink channel measurement error.
  • the CRS of each cell collides with the data symbols sent by other cells. For example: the CRS from cell 2 collides with the data symbol from cell 1. Since cell 2 is a non-serving cell, the downlink channel strength from cell 2 is weaker than cell 1 for UE1, which results in a small data symbol pair. The CRS of the area 2 causes strong interference, and the UE1 cannot correctly measure the downlink channel from the cell 2 according to the CRS.
  • the method in the prior art can not meet the requirement that the UE can receive the CRS sent by the base station to which the multiple cells belong, and accurately evaluate multiple downlink channel information according to each CRS.
  • Embodiments of the present invention provide a method, an apparatus, and a system for processing a reference signal.
  • the requirement that the UE can perform multi-cell downlink channel measurement in the CoMP scenario can be achieved.
  • a method for processing a reference signal comprising:
  • the specified pilot position is orthogonal to the reference signal pilot positions of other cells in the joint multicast set;
  • the other cells are: a cell other than the cell corresponding to the predetermined pilot location.
  • a method for processing a reference signal comprising:
  • the specified pilot position is orthogonal to the reference signal pilot positions of the other cells
  • a processing device for a reference signal comprising:
  • a sending module configured to send a reference signal to the target UE at a specified pilot position, where the specified pilot position is orthogonal to the reference signal pilot positions of other cells in the associated joint multicast set,
  • the other cells are: a cell other than a cell corresponding to the specified pilot location;
  • the puncturing module is configured to perform data puncturing on the transmitted data symbols, where the location of the data puncturing corresponds to at least one reference signal pilot position of each of the cells in the joint multicast set.
  • a processing device for a reference signal comprising:
  • a receiving module configured to receive a reference signal at a predetermined pilot position, where the reference signals of other cells in the coordinated multi-cast set of the service respectively perform data puncturing on the corresponding pilot position, And the specified pilot position is orthogonal to the reference signal pilot positions of the other cells, and the other cells are: a cell other than the cell corresponding to the specified pilot position;
  • a measuring module configured to detect and measure a corresponding downlink channel according to the reference signal received by the receiving module, and not detect the location of the data symbols of the other cells through data puncturing.
  • a processing system for reference signals comprising:
  • a reference signal processing apparatus configured to send a reference signal to a target user equipment at a predetermined pilot position, where the specified pilot position and a reference signal pilot position of each of the other cells in the associated joint multicast set are mutually And orthogonally separating; and/or, performing data puncturing on the transmitted data symbols, where the location of the data puncturing corresponds to at least one reference signal pilot position of each of the cells in the joint multicast set;
  • a user equipment configured to receive a reference signal at a predetermined pilot position, where the reference signals of other cells in the coordinated multi-cast set of the service perform data puncturing on the corresponding pilot position, and detecting And measuring, according to the reference signal, a corresponding downlink channel, where the data symbols of the other cells are not detected by the data punching position;
  • the other cells are: a cell other than the cell corresponding to the predetermined pilot location.
  • the processing scheme of the reference information provided by the embodiment of the present invention has the following beneficial effects: the downlink reference signals between multiple cells are orthogonal to each other, and collisions between different reference signals of multiple different cells can be avoided; data symbols from other cells are in Data puncturing is performed corresponding to the specified pilot position, which can avoid interference of data symbols of other cells, improve the measurement accuracy of the multi-cell downlink channel, and achieve the requirement that the UE can perform multi-cell downlink channel measurement in the CoMP scenario.
  • BRIEF DESCRIPTION OF THE DRAWINGS In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the embodiments or the prior art description will be briefly described below, and obviously, the following description will be described. The drawings in the drawings are only some embodiments of the present invention, and those skilled in the art can obtain other drawings according to the drawings without any inventive labor.
  • FIG. 1 is a schematic diagram of a wireless communication system scenario
  • FIG. 2 is a schematic diagram of a CRS pilot position in the prior art.
  • FIG. 3 is a schematic flowchart of a method for processing a network side reference signal according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic structural diagram of a network side reference signal processing apparatus according to Embodiment 1 of the present invention
  • FIG. 5 is a user side reference according to Embodiment 2 of the present invention
  • FIG. 6 is a schematic structural diagram of a processing apparatus for a reference signal of a user side according to Embodiment 2 of the present invention
  • FIG. 7 is a schematic flowchart of a processing method of a reference signal according to Embodiment 3 of the present invention
  • FIG. 8 is a schematic diagram of pilot position of reference signals of each cell in a CoMP set according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic diagram of puncturing of data symbols transmitted by each cell in a CoMP set according to Embodiment 3 of the present invention.
  • FIG. 10 is a schematic structural diagram of a device for processing a network side reference signal according to Embodiment 3 of the present invention
  • FIG. 11 is a schematic structural diagram of a device for processing a user side reference signal according to Embodiment 3 of the present invention
  • 12 is a schematic diagram of a processing system of a reference signal according to Embodiment 4 of the present invention
  • FIG. 13 is a schematic diagram of a first reference signal port occupying resources according to Embodiment 5 of the present invention
  • FIG. 14 is a second reference of Embodiment 5 of the present invention. Schematic diagram of the resource occupied by the signal port.
  • This embodiment provides a method for processing a reference signal, and the method is suitable for being deployed on the network side. As shown in FIG. 3, the method includes:
  • Step 101 A base station to a cell sends a reference signal to a target UE at a predetermined pilot position, and each data symbol sent by a base station of another cell in the CoMP set to which the cell belongs is corresponding to the specified pilot position. Data punching was performed.
  • the predetermined pilot position is orthogonal to the reference signal pilot positions of other cells in the CoMP set, and the other cells are: a cell other than the cell corresponding to the specified pilot position. . That is, the CoMP set is composed of a cell corresponding to the specified pilot position and the other cells.
  • the embodiment continues to improve a processing device for a reference signal.
  • the device includes: a transmitting module 11 and a punching module 12.
  • the sending module 11 is configured to send a reference signal to the target UE at a predetermined pilot position, where the specified pilot position is orthogonal to the reference signal pilot positions of other cells in the CoMP set to be orthogonal to each other;
  • the base stations of other cells in the CoMP set send their respective numbers.
  • the puncturing module 12 is configured to perform data puncturing on the transmitted data symbols, where the location of the data puncturing corresponds to at least one reference signal pilot position of each of the other cells in the CoMP set.
  • the method and device for processing a reference signal provided by the embodiment of the present invention solves the existing technical solution that the downlink reference signals between multiple cells are orthogonal to each other and the reference pilot positions of other cells are used for data punching.
  • the technical problem of collision between different reference signals of multiple different cells in the CoMP scenario can also avoid the interference of data symbols of other cells, improve the measurement accuracy of the multi-cell downlink channel, and can be satisfied in the CoMP scenario. Multi-cell downlink channel measurement requirements.
  • the embodiment provides a method for processing a reference signal, and the method is suitable for being deployed on the user side. As shown in FIG. 5, the method includes:
  • Step 201 The UE receives a reference signal at a predetermined pilot position, where data symbols of other cells in the coordinated multicast set of the service respectively perform data puncturing on the corresponding pilot position.
  • the predetermined pilot position is orthogonal to the reference signal pilot positions of the other cells, and the other cells are: a cell other than the cell corresponding to the predetermined pilot position.
  • Step 202 The UE detects and measures a corresponding downlink channel according to the reference signal, and does not perform data detection on a location UE that has undergone data puncturing in the data symbols of the other cells.
  • the UE Because for the location of the data puncturing, the UE will consider that there is no transmission of data symbols at the location, the receiver of the UE does not perform data detection at that location, and there is no interference problem from other small cell data symbols.
  • the embodiment continues to provide a processing device for a reference signal, and the device may be specifically a UE.
  • the UE includes: a receiving module 21 and a measuring module 22.
  • the receiving module 21 is configured to receive a reference signal at a predetermined pilot position, where data data symbols of other cells in the served CoMP set are data punctured corresponding to the specified pilot position, and
  • the predetermined pilot position is orthogonal to the reference signal pilot positions of the other cells, and the other cells are: a cell other than the cell corresponding to the specified pilot position;
  • the measurement module 22 is configured to detect The corresponding downlink channel is measured according to the reference signal received by the receiving module 21, and the location where the data symbols of the other cells pass the data puncturing is not detected.
  • the processing method and apparatus for the reference signal provided in this embodiment have the following beneficial effects: Since the reference signals of the multi-cell are orthogonally separated from each other, the collision problem of different reference signals of multiple cells can be avoided, and at the same time, because other cells
  • the reference signal pilot position is processed by data puncturing, so the UE does not receive data symbol interference from other cells when receiving the signal, thereby obtaining the measurement accuracy of the downlink channel in the CoMP scenario, so that the UE can perform Technical effect of multi-cell downlink channel measurement.
  • This embodiment provides a method for processing a reference signal in combination with the scenario of the downlink infinite communication system shown in FIG.
  • the base station on the network side and the UE on the user side are involved.
  • the cell includes the cell 1, the cell 2, and the cell 3, and the corresponding radio evolved base station 1 (eNB1), eNB2, and eNB3 respectively.
  • UE1 is a serving cell of the UE1, and the cell 1, the cell 2, and the cell 3 jointly form a CoMP set of the UE1.
  • the cells in the formed CoMP set know each other which CoMP set, which cells in the CoMP set, and which services are served.
  • UE the radio evolved base station 1
  • the method specifically includes:
  • Step 301 A base station of a cell in the CoMP set passes the inter-base station interface (such as an X2 interface, a Common Public Radio Interface (CPRI), etc.)
  • the other cells in the CoMP set mutually negotiate their respective reference signal pilot positions, and the reference signal pilot positions of each cell after negotiation are orthogonally separated in a time-frequency domain multiplexing manner. After the cell obtains its own reference signal pilot position, the cell will transmit other cells in the CoMP set including the information of the pilot signal pilot position of the own.
  • CPRI Common Public Radio Interface
  • the reference signal specifically adopts a channel state information reference signal (CSI-RS), and the reference signal is characterized by: low overhead (total of 8 reference signals) The cost is less than 1% of the downlink resource.
  • the period is long (5 subframes or 10 subframes). Therefore, in this embodiment, the reference signal is the CSI-RS, and the reference signal pilot position is the CSI-RS.
  • the reference signal pilot position negotiated in step 301 includes: a pilot time of the reference signal and pilot coordinates.
  • the pilot time includes: a pilot period (5 subframes or 10 subframes) and an offset; pilot coordinates include: an abscissa symbol and an ordinate subcarrier.
  • the step 301 is specifically: the eNB2 to which the cell 2 belongs is to send the CSI-RS to the UE1.
  • the eNB2 needs to negotiate with each of the eNB1 and the eNB3 for the respective CSI-RS pilot positions, and after negotiation, respectively
  • the CSI-RS pilot positions will be orthogonally separated in a time-frequency domain multiplexed manner.
  • the information including the pilot position of the self reference signal is sent to the eNB1 to which the cell 1 belongs and the eNB2 to which the cell 2 belongs.
  • the pilot period is 5 subframes
  • the CSI-RS pilot positions of the negotiated cell 1, cell 2, and cell 3 can be as shown in FIG. 8.
  • the period of each cell is 5 subframes
  • the positions of the ordinate subcarriers are also the same, which are all the 3rd, 4th, and 9th, 10th positions, that is, the same subcarrier transmission is used.
  • the CSI-RS pilot position of cell 1 is: offset 1 (ie, the second subframe), the position of the 10th and 11th symbols of the abscissa;
  • the CSI-RS pilot position of the cell 2 is: offset 2 (ie The third subframe), the same position of the 10th and 11th signs of the abscissa;
  • the CSI-RS pilot position of the cell 3 is: offset 4 (ie the fourth subframe), the same abscissa 10th, 11th The location of the symbol.
  • the CSI-RS pilot positions of the cell 1, the cell 2, and the cell 3 are orthogonally separated in the time-frequency domain, thus ensuring that the CSI-RSs of different cells do not collide with each other and do not generate mutual Thousands of disturbances. It should be noted that due to the long-period nature of CSI-RS, more mutually orthogonal resources are provided to place CSI-RSs of multiple cells and ensure that they do not collide with each other.
  • the CSI-RS pilot position of the cell 1 is a predetermined pilot position, which is also its own reference signal pilot position, and then the cell 1
  • the pilot time and the pilot coordinates are the current pilot time and the current pilot coordinates.
  • the CSI-RS of the cell 1 is the reference signal.
  • Step 302 The base station to which the cell belongs informs the reference signal pilot position of the UE itself served by the cell, that is, the CSI-RS pilot position.
  • the eNB 2 to which the cell 2 belongs notifies the UE1 of the predetermined pilot position of the cell 2.
  • the method of the notification can be any of the following methods:
  • the eNB2 transmits the information including the cell 2-ID to the UE1, and the cell 2-ID is bound to the pilot position specified by the cell 2, so that the cell 2-ID can be mapped to the specified guide by implicit mapping. Frequency position.
  • the eNB2 sends information including the cell 2-ID and the virtual ID associated with the common CoMP set to the UE1, where the cell 2-ID and the virtual ID are bound to the pilot position specified by the cell 2,
  • the cell 1-ID and the virtual ID are mapped to the specified pilot location by implicit mapping.
  • the commonality may be CSI-RS multiplexing, such as the same period of each cell in the CoMP set, the number of the same port, or whether the same code division multiplexing (CDM) is used in each cell.
  • eNB2 transmits high layer signaling including the specified pilot position to UE 1.
  • steps 301 and 302 are not limited to the sequence described in this embodiment, step 302 may be performed before step 301, or two steps may be performed simultaneously.
  • Step 303 The UE acquires a CSI-RS pilot position of at least one cell.
  • the UE1 obtains the cell 1 and the cell 2 CSI-RS pilot positions respectively.
  • step 303 can obtain the CSI-RS by using the following three acquisition methods. Also take the cell 2 as an example.
  • the first type receives the cell 2-ID, and obtains a cell by performing a modulo operation on the 2-ID of the cell.
  • the modulo operation process may be similar to the process of acquiring the CRS pilot position according to the cell 1 -ID modulo in the prior art, and is not redundantly described herein.
  • the cell 2-ID and the virtual ID of the cell 2 are received, and the CSI-RS pilot position of the cell 2 is obtained by calculating the virtual ID and the cell 1-ID.
  • Community 2-ID mod 12 4
  • the reference signal pilot position of the cell 2 is: period 5 subframes, offset 2, second position.
  • a high layer signal from the eNB 2 containing the CSI-RS pilot position of the cell 2 is received.
  • the above steps 301 to 303 can be considered as preparations before the CSI-RS is sent by the cell to which the cell belongs.
  • the CSI-RS pilot position and UE negotiated by each cell in the above steps are The acquired cell ID and virtual ID, which are bound to the CSI-RS pilot positions, do not change under normal conditions, so they do not have to be reset or changed as the CSI-RS is periodically transmitted. .
  • Step 304 The base station to which the cell belongs sends a CSI-RS to the UE at a predetermined pilot position, and when the CSI-RS is sent, the base stations of other cells in the same CoMP set also send their respective data symbols. And in the data symbols sent by each base station, data puncturing processing is performed at a position corresponding to the predetermined pilot position.
  • the predetermined pilot position of the cell is orthogonal to the CSI-RS pilot position of each of the other cells in the time-frequency domain.
  • the eNB2 of the cell 2 sends the primary CSI-RS at the predetermined pilot position
  • the eNB1 of the cell 1 sends the data symbol, and the location of the pilot position specified by the cell 2 in the data symbol of the cell 1 Data puncturing is performed.
  • the eNB 3 to which the cell 3 belongs transmits a data symbol, and data puncturing is performed in the data symbol of the cell 3 corresponding to the position of the pilot position specified by the cell 2.
  • Step 305 The UE receives the CSI-RS from the corresponding cell at the specified pilot position, and measures the corresponding downlink channel according to the CSI-RS, and does not perform data detection on the data punctured position in each data symbol.
  • the UE will consider that there is no transmission of data symbols at the location, and the receiver of the UE does not perform data detection at the location, and therefore does not exist.
  • the UE1 receives the data symbols of the CSI-RS and the eNB1 that have received the data puncturing process from the eNB2 at the predetermined pilot position, and the data punctured data symbols of the eNB3.
  • UE1 measures the downlink channel of cell 2 according to the primary CSI-RS. For the location of data puncturing in each data symbol of cell 1 and cell 3, the receiver of UE1 will not perform data detection, and thus will not measure cell 2.
  • the downlink channel is received, it is subject to the interference from the data of the cell 1 and the cell 3.
  • the processing method of the foregoing reference signal is specifically described by taking one of the cells as an example.
  • the processing procedure of the reference signal of the other cells is similar to the method of the embodiment, and the specific implementation method is easily introduced by those skilled in the art according to the foregoing content. , no longer redundantly described here.
  • this embodiment continues to provide an eNB to facilitate implementation of the portion of the above method involving the network side.
  • the eNB includes: a sending module 91 and a punching module 92.
  • the sending module 91 is configured to send a reference signal to the target UE at a specified pilot position, where the specified pilot position is orthogonal to the reference signal pilot positions of other cells in the associated CoMP set; the punching module 92 is configured to perform data puncturing on the transmitted data symbols, where the location of the data puncturing corresponds to at least one reference signal pilot position of each of the cells in the CoMP set.
  • the eNB in this embodiment further includes the following optional modules: an obtaining module 93, and a calling module 94.
  • the obtaining module 93 is configured to obtain reference signal pilot positions of other cells in the CoMP set; the notification module 94 is configured to notify the target UE of the preset pilot position.
  • the obtaining module 93 includes: a negotiating unit 931 and a notifying unit 932.
  • the negotiating unit 931 is configured to negotiate a reference signal pilot position with the base station to which the other cells in the CoMP set belong, where the reference signal pilot position of each cell after negotiation is in time-frequency domain The method is orthogonally separated; the notifying unit 932 is configured to send information including the pilot position of the reference signal to the base station to which the other cells in the CoMP set belong.
  • the specified pilot position is: a self reference signal pilot position negotiated by the negotiating unit 931.
  • the notification module 94 includes at least one of the following units: a first transmitting unit 941, a second transmitting unit 942, and a third transmitting unit 943.
  • the first sending unit 941 is configured to send information including a cell ID to the target UE, where the cell ID is bound to the specified pilot position, and a second sending unit 942, configured to send the cell ID and the related CoMP Collecting the information of the common virtual ID to the target user, the cell ID and the virtual ID are bound to the specified pilot position, and the third sending unit 943 is configured to send the specified pilot location.
  • the higher layer signals to the target UE.
  • the reference signals mentioned in the foregoing modules are CSI-RSs; the preset pilot positions in the foregoing modules include: a current pilot time and a current pilot coordinate; the reference signal pilot positions in each module include: Pilot time and pilot coordinates.
  • a UE is further provided to facilitate the implementation of the portion on the user side in the above method.
  • the UE includes: a receiving module 95, and a measuring module 96.
  • the receiving module 95 is configured to receive a reference signal at a predetermined pilot position, where data symbols of other cells in the served CoMP set are data punctured corresponding to the specified pilot position, and the specification
  • the pilot position is orthogonal to the reference signal pilot positions of the other cells
  • the measurement module 96 is configured to detect and measure the corresponding downlink channel according to the reference signal received by the receiving module 95, and the data symbols for the other cells. The position where the data is punched is not detected.
  • the other cells are: a cell other than the cell corresponding to the predetermined pilot location.
  • this embodiment further includes the following optional modules: an obtaining module 97.
  • the obtaining module 97 is configured to acquire a reference signal pilot position of the at least one cell, where the at least one cell belongs to the CoMP set that provides the service.
  • the obtaining module 97 includes: a first acquiring unit 971 and a second acquiring unit 972.
  • the first obtaining unit 971 is configured to acquire a cell ID of the at least one cell
  • the second acquiring unit 972 is configured to obtain a corresponding at least one reference signal pilot position by performing a modulo operation on the cell ID.
  • the specified pilot position is: a reference signal pilot position of any one of the at least one reference signal pilot positions acquired by the second acquiring unit 972 currently receiving the reference signal.
  • the obtaining module 97 includes only the third obtaining unit 973 and the fourth obtaining unit 974.
  • the obtaining module 97 further includes: a third obtaining unit 973 and a fourth obtaining unit 974.
  • the third obtaining unit 973 is configured to acquire a cell ID of at least one cell and a virtual ID related to the common multicast set; the fourth obtaining unit 974, by using the at least one pair of virtual IDs and cell IDs Calculating and acquiring a corresponding at least one reference signal pilot position; the specified pilot position is: a reference signal of any one of the at least one reference signal pilot position acquired by the fourth acquiring unit 974 that currently receives the reference signal Frequency position. or
  • the obtaining module 97 includes only the first receiving unit 975; or the obtaining module 97 further includes a first receiving unit 975 for receiving at least one high layer signaling including a reference signal pilot position;
  • the specified pilot position is: a reference signal pilot position of any one of the at least one reference signal pilot position received by the first receiving unit 975 currently receiving the reference signal.
  • the reference signals mentioned in the foregoing modules are CSI-RSs;
  • the specified pilot positions in the foregoing modules include: a current pilot time and a current pilot coordinate;
  • the reference signal pilot positions in each module include: Pilot time and pilot coordinates.
  • the solution provided by the embodiment of the present invention has the following beneficial effects:
  • the technical problem that the UE can only obtain the reference signal pilot position according to the cell ID of the serving cell in the prior art is solved.
  • Reference signals for all cells within the CoMP set served for it The pilot position, so that the reference signals of the multiple cells can also be obtained, and the corresponding downlink channel is measured according to the downlink channel;
  • the downlink reference signals between the multiple cells are orthogonal to each other, so as to avoid mutual mutual reference signals of different cells. Collision; data puncturing at the reference signal pilot position of other cells can avoid the interference of data symbols of other cells, improve the measurement accuracy of the multi-cell downlink channel, and achieve the UE can perform more in the CoMP scenario.
  • This embodiment provides a processing system for a reference signal. As shown in FIG. 12, the system includes: a base station 41 and a UE 42.
  • the base station 41 is configured to send a reference signal to the target UE 42 at a predetermined pilot position, where the specified pilot position is orthogonal to the reference signal pilot positions of other cells in the associated CoMP set; and the base station 41 further And performing data puncturing on the transmitted data symbols, where the location of the data puncturing corresponds to at least one reference signal pilot position of each of the cells in the CoMP set.
  • the UE 42 is configured to receive a reference signal from the base station 41 at a predetermined pilot position, where the data symbols of other cells in the served CoMP set perform data puncturing on the corresponding pilot position, and detect And measuring, according to the reference signal, a corresponding downlink channel, where the data symbol of the other cells is not detected by the location of the data puncturing.
  • the other other cells are: a cell other than the cell corresponding to the predetermined pilot position.
  • the processing system of the reference signal provided in this embodiment solves the prior art by adopting a technical solution that the reference signals of the multiple cells are orthogonally separated from each other, and the reference signal pilot positions of other cells are processed through data puncturing. Different reference signals of multiple cells collide with each other and interfere with each other, and the UE does not receive the technical problem of data symbol interference from other cells when receiving the signal, so the measurement of the downlink channel is improved under the CoMP scenario. Accuracy, enabling the UE to perform the technical effects of multi-cell downlink channel measurement.
  • the embodiment provides a processing system for a reference signal, and the system includes: a base station and a UE.
  • the base station has a total of eight CSI-RS ports, and the base station divides the eight CSI-RS ports into two parts. Each part contains 4 CSI-RS ports, and each port still has 5 subframes as the pilot period (that is, here, each port transmits its CSI-RS period with the same pilot period) in the specified
  • the pilot position transmits a CSI RS pilot signal to the target UE, where the pilot position used by each CSI-RS port to transmit its CSI-RS can be notified to the UE by means of binding with the cell ID (in this example)
  • the pilot position is the second subframe in 5 subframe periods).
  • the two CSI-RS ports are intermittently transmitted with their corresponding CSI-RSs, that is, for any one of the CSI-RS ports, the actual period for transmitting the corresponding CSI-RS becomes 10 subframes.
  • the cell 1 is taken as an example, and the base station to which the cell 1 belongs is the base station in this embodiment.
  • the base station is configured to send, by using the first four CSI-RS ports, the CSI-RS corresponding to the first four CSI-RS ports in the first pilot period (ie, the first five subframes).
  • the base station is further configured to send, by using the last four CSI-RS ports, the CSI-RS corresponding to the last four CSI-RS ports in the second pilot period. So alternately, cyclically transmitting, wherein, in any one pilot period, the specified pilot position is orthogonal to the reference signal pilot positions of other cells in the associated CoMP set; and the base station is further configured to send
  • the data symbol performs data puncturing, and the location of the data puncturing corresponds to at least one reference signal pilot position of each of the other cells in the CoMP set;
  • the UE is configured to receive CSI-RSs from the first four CSI-RS ports of the foregoing base station at a predetermined pilot position in a first pilot period, and receive at a predetermined pilot position in a second pilot period.
  • the CSI-RSs from the last four CSI-RS ports of the above base station are alternated so that the required CSI-RSs can be cyclically received.
  • data symbols of other cells in the served CoMP set are data punctured corresponding to the specified pilot position, and are detected and measured according to the reference signal.
  • the downlink channel is not detected for the location where the data symbols of the other cells pass the data puncturing.
  • the base station has a total of eight CSI-RS ports, and the base station divides the eight CSI-RS ports 4 into two parts, one part is a CSI-RS port that transmits its CSI-RS in a period of 5 subframes, and the other part is Send the CSI-RS port of its CSI RS in a period of 10 subframes, both of which are in
  • the specified pilot position transmits a CSI RS pilot signal to the target UE, and the pilot period of the cell is still 5 subframes.
  • the information about the resources occupied by each port may be sent to the UE according to the resources occupied by each CSI-RS port. For example: Let the first 4 CSI-RS ports take 5 subframes as a period, occupy 6 REs in one pilot period (-the RE is the smallest one in Figure 8), and occupy 4 in the next pilot period. The last 4 CSI-RS ports are in a period of 10 subframes, occupying 6 REs in each pilot period. At this time, for the UE, the CSI-RS detected in each pilot period The ports are all different, so it is necessary to inform the UE which reference signals are used for which resources are used in each pilot period. As shown in FIG. 14, the cell 1 is taken as an example, and the base station to which the cell 1 belongs is the base station in this embodiment.
  • the base station is configured to send CSI-RS corresponding to the eight CSI-RS ports at a predetermined pilot position through eight CSI-RS ports in a first pilot period (ie, the first five subframes), where The base station is further configured to send, by using the last four CSI-RS ports, the CSI-RS corresponding to the last four CSI-RS ports in the second pilot period. So alternately, cyclically transmitting, wherein, in any one pilot period, the specified pilot position is orthogonal to the reference signal pilot positions of other cells in the associated CoMP set; and the base station is further configured to send The data symbol performs data puncturing, and the location of the data puncturing corresponds to at least one reference signal pilot position of each of the other cells in the CoMP set;
  • the UE is configured to receive CSI-RSs from 8 CSI-RS ports of the foregoing base station at a specified pilot position in a first pilot period, and receive at a specified pilot position in a second pilot period.
  • the CSI-RSs of the last four CSI-RS ports of the above base station are alternated, and the required CSI-RSs can be cyclically received.
  • data symbols of other cells in the served CoMP set are data punctured corresponding to the specified pilot position, and are detected and measured according to the reference signal.
  • the downlink channel is not detected for the location where the data symbols of the other cells pass the data puncturing.
  • the processing system of the reference signal provided in this embodiment solves the problem that multiple cells in the prior art do not Collision with the reference signals, mutual interference, and the UE does not suffer from the technical problem of data symbol interference from other cells when receiving the signal. Therefore, in the CoMP scenario, the measurement accuracy of the downlink channel is improved.
  • the UE can perform the technical effect of the multi-cell downlink channel measurement.
  • the technical solution in this embodiment solves the technical problem in the prior art by using the technical solution that the reference signal ports use different periods to transmit their respective reference signals. A technical problem of excessive overhead caused by transmitting reference signals through multiple reference signal ports in a frequency cycle.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
  • the computer software product is stored in a readable storage medium, such as a floppy disk, a hard disk or an optical disk of a computer, and includes a thousand instructions for making a device (which may be a wireless network).
  • the controller performs the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

参考信号的处理方法、 装置及*** 本申请要求于 2009 年 6 月 29 日提交中国专利局、 申请号为 200910139568.0、发明名称为"参考信号的处理方法、 装置及***"的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及无线通信技术领域, 尤其涉及一种参考信号的处理方法、 装置及***。 发明背景 在无线通信***中, 为了进行高效无线资源调度, 基站必须获取足够 多和具有一定准确性的下行信道信息。 目前, 采用依靠用户设备(User Equipment, UE )测量上 ^艮的方法获得该信息。
该测量上报的方法主要包括: 服务基站发送一定的参考信息到服务的 UE, 该服务的 UE接收到该 CRS后通过测量计算得到下行信道信息, 该服务 的 UE根据一定的规则将测量到的下行信道信息适当量化后反馈给上述基 站。
另夕卜 , 在现有技术中定义了公共参考信号 ( common reference signal, CRS )用于上述方法。
随着无线通信技术的发展, 业界引入了联合多点传送 (Coordinated multipoint transmission/Reception, CoMP)技术。 在 CoMP技术中, 多个可为 UE提供服务的小区构成一个的 CoMP集合, 通过 CoMP集合中的各小区所 属相邻基站联合地为一个 UE提供数据传输服务,可使 UE在获得更高的吞吐 量同时, 也提高了 UE传送信号的效率。 与传统的单小区服务不同的是, 在 CoMP场景中, UE需要测量多个基站下发的参考信号, 并将测量获得的下 行信道信息反馈到所述多个基站。
结合上述内容, 见图 1中所示的下行无线通信***场景。 该场景中, 包 括小区 1、 小区 2、 小区 3以及 UE1。 其中, 小区 1是 UE1的服务小区, 设小 区 1、 小区 2、 小区 3共同组成了 UE1的 CoMP集合。 UE1根据服务小区的小区 1-ID进行取模运算可计算得出小区 1所属基站下发到 UE1的 CRS导频位置, UE1在该 CRS位置上接收来自小区 1所述基站下发的 CRS, 并根据该 CRS测 量到在小区 1中的下行信道信息, 再适当量化后反馈到小区 1所属基站。 如 图 2所示, 该图代表了小区 1所属基站下行子帧中的参考信号。 其中, 黑色 方框代表下发的 CRS, 白色方块代表数据符号,虚框代表下发的其它用途的 参考信号。
根据上述内容, 发明人发现现有技术中至少存在如下问题:
1、 UE只能根据服务小区的小区 ID计算出小区的 CRS导频位置, 无法得 到 CoMP集合中 ,其它各小区的 CRS导频位置,也就无法根据其它小区的 CRS 评估下行信道信息。
2、 即使 UE得知所有 CoMP集合中的其它各小区的 ID, 目前的业界中规 定小区下行导频位置可以通过与小区 ID绑定的隐式映射进行偏移 ( shift )操 作, 以此来保证相邻小区的 CRS不相互碰撞。但是规定中指出的 shift操作只 能保证 CRS有三种偏移的可能性, 也就是说通过 CRS, UE最多只能区分出 三个不同小区的下行信道, 而一个 CoMP集合中一般包含了多个可能协作传 输数据的小区,此时各小区的 CRS很有可能会相互碰撞,导致下行信道测量 错误。
3、 即使同一个 CoMP集合中的所有小区的 CRS都相互错开, 没有碰撞, 但是每个小区的 CRS都会和其它小区发送的数据符号相互碰撞。例如: 来自 小区 2的 CRS与来自小区 1的数据符号碰撞,由于小区 2是非服务小区,对 UE1 而言, 来自小区 2的下行信道强度比小区 1要弱, 这样会导致数据符号对小 区 2的 CRS造成了强干扰,导致 UE1无法根据该 CRS正确的测量出来自小区 2 的下行信道。
综上所述:在 CoMP场景下, 现有技术中的方法, 已经无法达到使 UE可 以接收多个小区所属基站下发的 CRS,并根据各 CRS准确评估出多个下行信 道信息的要求。 发明内容
本发明的实施例提供一种参考信号的处理方法、 装置及***。 可达到 在 CoMP场景下, 使 UE可进行多小区下行信道测量的要求。
为达到上述目的, 本发明的实施例采用如下技术方案:
一种参考信号的处理方法, 包括:
在规定的导频位置发送参考信号到目标 UE, 并且, 所属联合多点传送 集合内的其它各小区所属基站同时发送的各数据符号在对应所述规定的导 频位置上进行了数据打孔;
所述规定的导频位置与所述联合多点传送集合内的其它各小区的参考 信号导频位置相互正交分开;
所述其它各小区为: 除对应所述规定的导频位置的小区以外的小区。 一种参考信号的处理方法, 包括:
在规定的导频位置接收参考信号, 其中, 提供服务的联合多点传送集 合内的其它各小区的数据符号在对应所述规定的导频位置上分别进行了数 据打孔;
检测并根据所述参考信号测量对应的下行信道, 对于所述其它各小区 的数据符号中经过数据打孔的位置不进行检测;
所述规定的导频位置与所述其它各小区的参考信号导频位置相互正交 分开;
所述其它各小区为: 除对应所述规定的导频位置的小区以外的小区。 一种参考信号的处理装置, 包括:
发送模块, 用于在规定的导频位置发送参考信号到目标 UE, 其中, 所 述规定的导频位置与所属联合多点传送集合内的其它各小区的参考信号导 频位置相互正交分开, 所述其它各小区为: 除对应所述规定的导频位置的 小区以外的小区; 和 /或
打孔模块, 用于对发送的数据符号进行数据打孔, 所述数据打孔的位 置对应所述联合多点传送集合内的其它各小区的至少一个参考信号导频位 置。
一种参考信号的处理装置, 包括:
接收模块, 用于在规定的导频位置接收参考信号, 其中, 提供服务的 联合多点传送集合内的其它各小区的参考信号在对应所述规定的导频位置 上分别进行了数据打孔 , 并且所述规定的导频位置与所述其它各小区的参 考信号导频位置相互正交分开, 所述其它各小区为: 除对应所述规定的导 频位置的小区以外的小区;
测量模块, 用于检测并根据接收模块接收的参考信号测量对应的下行 信道, 对于所述其它各小区的数据符号经过数据打孔的位置不进行检测。
一种参考信号的处理***, 包括:
参考信号的处理装置, 用于在规定的导频位置发送参考信号到目标用 户设备, 其中, 所述规定的导频位置与所属联合多点传送集合内的其它各 小区的参考信号导频位置相互正交分开; 和 /或, 用于对发送的数据符号进 行数据打孔, 所述数据打孔的位置对应所述联合多点传送集合内的其它各 小区的至少一个参考信号导频位置;
用户设备, 用于在规定的导频位置接收参考信号, 其中, 提供服务的 联合多点传送集合内的其它各小区的参考信号在对应所述规定的导频位置 上进行了数据打孔, 检测并根据所述参考信号测量对应的下行信道, 对于 所述其它各小区的数据符号经过数据打孔的位置不进行检测; 所述其它各小区为: 除对应所述规定的导频位置的小区以外的小区。 本发明实施例提供的参考信息的处理方案具有如下有益效果: 多个小 区之间的下行参考信号相互正交, 可避免多个不同小区不同参考信号间的 相互碰撞; 来自其它小区的数据符号在对应规定的导频位置进行数据打孔, 可避免其它小区的数据符号的干扰, 提高了多小区下行信道的测量精度, 可达到在 CoMP场景下, 使 UE可进行多小区下行信道测量的要求。 附图筒要说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地 , 下面描述中的附图仅仅是本发明的一些实施例 , 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为无线通信***场景示意图;
图 2为现有技术中的 CRS导频位置示意图
图 3为本发明实施例 1中网络侧参考信号的处理方法流程示意图; 图 4为本发明实施例 1中网络侧参考信号的处理装置结构示意图; 图 5为本发明实施例 2中用户侧参考信号的处理方法流程示意图; 图 6为本发明实施例 2中用户侧参考信号的处理装置结构示意图; 图 7为本发明实施例 3中参考信号的处理方法流程示意图;
图 8为本发明实施例 3的 CoMP集合中各小区参考信号导频位置示意 图;
图 9为本发明实施例 3的 CoMP集合中各小区发送的数据符号的打孔 示意图;
图 10为本发明实施例 3中网络侧参考信号的处理装置结构示意图; 图 11为本发明实施例 3中用户侧参考信号的处理装置结构示意图; 图 12为本发明实施例 4中参考信号的处理***的示意图; 图 13为本发明实施例 5中第一种参考信号端口占用资源的示意图; 图 14为本发明实施例 5中第二种参考信号端口占用资源的示意图。 实施本发明的方式 下面将结合本发明实施例中的附图 , 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。 并且, 以下各实施例均为本发明的可选方案, 实施例的排列顺序及 实施例的编号与其优选执行顺序无关。
实施例 1
本实施例提供一种参考信号的处理方法, 该方法适合部署在网络侧, 如图 3所示, 该方法包括:
步驟 101 ,某小区所属基站在规定的导频位置发送参考信号到目标 UE, 并且, 该小区所属 CoMP集合内的其它各小区所属基站同时发送的各数据 符号在对应所述规定的导频位置上进行了数据打孔。
其中, 所述规定的导频位置与所述 CoMP集合内的其它各小区的参考 信号导频位置相互正交分开; 上述其它各小区为: 除对应所述规定的导频 位置的小区以外的小区。 即该 CoMP集合是由对应所述规定的导频位置的 小区和所述其它各小区组成。
对应于上述方法, 本实施例继续提高一种参考信号的处理装置, 如图 4 所示, 该装置包括: 发送模块 11 , 打孔模块 12。
发送模块 11用于在规定的导频位置发送参考信号到目标 UE, 其中, 所述规定的导频位置与所属 CoMP集合内的其它各小区的参考信号导频位 置相互正交分开; 在所述 CoMP集合内其它各小区所属基站发送各自的数 据符号时, 打孔模块 12用于对发送的数据符号进行数据打孔, 所述数据打 孔的位置对应所述 CoMP集合内的其它各小区的至少一个参考信号导频位 置。
本发明实施例提供的参考信号的处理方法及装置通过采用多个小区之 间的下行参考信号相互正交, 和在其它小区的参考信号导频位置进行数据 打孔的技术方案, 解决了现有技术中在 CoMP场景中多个不同小区不同参 考信号间的相互碰撞的技术问题, 同时也可避免其它小区的数据符号的千 扰, 提高了多小区下行信道的测量精度, 可满足在 CoMP场景进行多小区 下行信道测量的要求。
实施例 2
本实施例提供一种参考信号的处理方法 , 该方法适合部署在用户侧 , 如图 5所示, 该方法包括:
步骤 201 , UE在规定的导频位置接收参考信号, 其中, 提供服务的联 合多点传送集合内的其它各小区的数据符号在对应所述规定的导频位置上 分别进行了数据打孔。
其中, 所述规定的导频位置与所述其它各小区的参考信号导频位置相 互正交分开, 所述其它各小区为: 除对应所述规定的导频位置的小区以外 的小区。
步驟 202, UE检测并根据所述参考信号测量对应的下行信道, 对于所 述其它各小区的数据符号中经过数据打孔的位置 UE不进行数据检测。
因为对于经过数据打孔的位置, UE将认为在该位置没有数据符号的传 输,所述 UE的接收机不在该位置进行数据检测,也就不存在来自于其它小 区数据符号的千扰问题了。
对应于上述方法, 本实施例继续提供一种参考信号的处理装置, 该装 置可具体为一种 UE, 如图 6所示, 该 UE包括: 接收模块 21 , 测量模块 22。 接收模块 21用于在规定的导频位置接收参考信号, 其中, 提供服务的 CoMP 集合内的其它各小区的数据数据符号在对应所述规定的导频位置上 进行了数据打孔, 并且所述规定的导频位置与所述其它各小区的参考信号 导频位置相互正交分开, 所述其它各小区为: 除对应所述规定的导频位置 的小区以外的小区; 测量模块 22用于检测并根据接收模块 21接收的参考 信号测量对应的下行信道, 对于所述其它各小区的数据符号经过数据打孔 的位置不进行检测。
本实施例所提供的参考信号的处理方法和装置具有如下有益效果: 多 小区的各参考信号因为相互正交分开 , 所以可避免多个小区不同参考信号 的相互碰撞问题, 同时, 因为其它各小区的参考信号导频位置经过数据打 孔的处理, 所以 UE在接收信号时就不会受到来自于其它小区数据符号干 扰, 进而取得了在 CoMP场景下, 提高下行信道的测量精度, 使 UE可进 行多小区下行信道测量的技术效果。
实施例 3
本实施例结合图 1 所示的下行无限通信***场景, 具体提供一种参考 信号的处理方法。
在该方法中涉及网络侧的基站和用户侧的 UE , 如图 1所示的场景中, 包括小区 1、 小区 2、 小区 3, 分别对应的所属无线演进型基站 1 ( eNBl )、 eNB2、 eNB3以及 UE1。 其中, 小区 1是 UE1的服务小区, 设小区 1、 小 区 2、 小区 3共同组成了 UE1的 CoMP集合。 并且因为一个 CoMP集合在 形成时需要各 eNB经过相互协商和交互才能完成, 所以形成后的 CoMP集 合内的各小区彼此都获知其所属哪个 CoMP集合、 该 CoMP集合中的包含 哪些小区, 以及所服务的 UE。
如图 7所示, 该方法具体包括:
步驟 301 , CoMP集合中的某小区所属基站通过基站间接口 (如: X2接 口、 普通公共无线接口 ( CommonPublicRadioInterface, CPRI )等) 与该 CoMP集合中其它小区相互协商各自的参考信号导频位置,并且协商后的每 个小区的参考信号导频位置以时频域复用的方式正交分开。 该小区在协商 获得自身的参考信号导频位置后, 将包含该自身的参考信号导频位置的信 息发送的该 CoMP集合内的其他各小区。
在这里需要说明的是: 在本实施中, 参考信号具体采用信道状态信息 参考信号 ( Channel State Information Reference signal, CSI-RS ), 该参考信 号的特点是: 开销小 (最多 8个参考信号的总开销小于下行资源的 1 % ); 周期长( 5个子帧或 10个子帧),因此在本实施例中,参考信号即为 CSI-RS, 参考信号导频位置即为 CSI-RS。 另外, 步驟 301中协商的参考信号导频位 置包括: 参考信号的导频时间和导频坐标。 其中, 导频时间包括: 导频周 期(5个子帧或 10个子帧)和偏移; 导频坐标包括: 横坐标符号和纵坐标 子载波。
在本实施例中步骤 301具体可为: 设小区 2所属 eNB2将下发 CSI-RS 到 UE1 ,那么在此之前, eNB2需要与 eNBl、 eNB3相互协商各自的 CSI-RS 导频位置,协商后各自的 CSI-RS导频位置将以时频域复用的方式正交分开。 在小区 2协商获得自身的参考信号导频位置后, 将包含该自身参考信号导 频位置的信息发送到小区 1所属 eNBl、 小区 2所属 eNB2。
在本实施例中, 以导频周期为 5个子帧为例, 协商后的小区 1、 小区 2和 小区 3各自的 CSI-RS导频位置可如图 8所示。 由图 8可知, 其中, 各小区的周 期均为 5个子帧, 纵坐标子载波的位置也相同, 均为第 3、 4和第 9、 10位置, 即采用相同的子载波传送。 小区 1的 CSI-RS导频位置为: 偏移 1 (即第二个 子帧), 横坐标第 10、 11两个符号的位置; 小区 2的 CSI-RS导频位置为: 偏 移 2 (即第三个子帧),同样横坐标第 10、 11两个符号的位置;小区 3的 CSI-RS 导频位置为: 偏移 4 (即第四个子帧), 同样横坐标第 10、 11两个符号的位 置。
需要说明的是: 因为业界规定 CSI-RS和 CRS两者只能使用其一, 并且 在本实施例中使用的是 CSI-RS, 所以图 8中的 CRS导频位置用于代表该部分 资源已经被占用。 另外, 在该图 8中其他参考信号也都是现有技术中已经在 使用的资源, 也用于在本实施例的图 8中代表这部分的资源已经被占用之 意。
由图 8可知, 小区 1、 小区 2、 小区 3各自的 CSI-RS导频位置在时频域是 正交分开的, 这样就保证了不同小区的 CSI-RS不相互碰撞, 也不会产生相 互千扰。 需要指出的是, 正是由于 CSI-RS的长周期特性, 提供了更多的相 互正交的资源用来放置多个小区的 CSI-RS并保证其互相不碰撞。
在本实施例中因为设小区 2所属 eNB2将下发 CSI-RS到 UE1 ,所以小区 1 的 CSI-RS导频位置为规定的导频位置, 也是自身的参考信号导频位置, 则 小区 1的导频时间和导频坐标即为当前导频时间和当前导频坐标 , 小区 1的 CSI-RS即为参考信号,在 eNB2发送小区 2的 CSI-RS时, 小区 1所属 eNBl同时 发送的小区 1的数据符号、 以及小区 3所属 eNB3同时发送小区 3的数据符号。
步驟 302, 该小区所属基站通知其所服务的 UE自身的参考信号导频位 置, 即 CSI-RS导频位置。
具体可为: 以小区 2为例, 小区 2所属 eNB2通知 UE1小区 2的规定的导频 位置。
该通知的方法可为下例方法中的任意一种:
第一种, eNB2发送包含小区 2-ID的信息到 UE1, 该小区 2-ID与小区 2规 定的导频位置相绑定,即可将小区 2-ID通过隐式映射映射到该规定的导频位 置。
第二种, eNB2发送包含小区 2-ID和相关于该所属 CoMP集合共性的虚拟 ID的信息到 UE1 , 所述小区 2-ID和虚拟 ID与小区 2规定的导频位置相绑定, 即可将小区 1-ID和虚拟 ID通过隐式映射映射到该规定的导频位置。 其中, 该共性可以为所属 CoMP集合内各小区的相同周期、 相同端口个数、 或者各 小区内部是否釆用同一码分复用 (CDM ) 的方式进行 CSI-RS复用等。 第三种, eNB2发送包含该规定的导频位置的高层信令到 UE 1。
在这里需要说明的是: 步驟 301和步驟 302的执行顺序并不限定在本 实施例中所描述的顺序, 步驟 302也可以在步驟 301前执行, 或者, 两步 骤甚至可以同时执行。
步驟 303, UE获取到至少一个小区的 CSI-RS导频位置。
具体可为: UE1分别获取到小区 1和小区 2CSI-RS导频位置。
针对步骤 302中的三种通知方法, 步骤 303可以具体通过下例三种获 取方法获取到 CSI-RS。 同样以小区 2为例。
第一种, 接收到小区 2-ID, 通过对该小区 2-ID进行取模运算获取小区
2的 CSI-RS导频位置。
所述取模运算过程具体可与现有技术中根据小区 1 -ID取模获取 CRS导 频位置的过程相似, 在这里就不冗余叙述了。
第二种, 接收到小区 2的小区 2-ID和虚拟 ID, 通过计算该虚拟 ID和 小区 1-ID的获取小区 2的 CSI-RS导频位置。 具体过程可为: 设接收到来的小区 2的虚拟 ID为 0, 小区 2-ID为 4, 则 UE通过 以下的运算可以找到小区 2的 CSI RS导频位置: 虚拟 ID mod 2 = 0 其中, 2代表周期有 10个子帧和 5个子帧两种, 结果 0代表周期是 5个 子帧。 小区 2-ID mod 12 =4
其中, 12代表 CSI-RS的可能位置有 4 x 3 = 12种(因为 5个子帧中第 1 个子帧一般不可用, 所以可用的子帧共有 4 个, 在每个子帧中可能的 CSI-RS位置有 3个,所以共 12种),结果 4代表第从 0开始的第 4个位置, 因为第 1个子帧的位置是 0、 1、 2, 第 2个子帧的位置是 3、 4、 5, 所以 4 代表第 2个子帧的 2个位置。
因此, 该小区 2的参考信号导频位置是: 周期 5个子帧, 偏移 2, 第 2 个位置。
第三种, 接收到来自 eNB2的包含小区 2的 CSI-RS导频位置的高层信 令。
上述步驟 301到步骤 303可以认为是小区所属基站下发 CSI-RS前的准 备工作, 虽然参考信号是周期性发送的, 但上述各步骤过程中各小区协商 好的 CSI-RS导频位置和 UE获取的与各 CSI-RS导频位置相绑定的小区 ID 和虚拟 ID等, 在一般情况下, 是不会发生变化的, 因此不必随着 CSI-RS 周期性的发送而重新设定或变化。
步驟 304, 该小区所属基站在规定的导频位置下发 CSI-RS到 UE, 在 下发该 CSI-RS的同时,该同一 CoMP集合内的其它各小区所属基站也将下 发各自的数据符号 , 并且在每个基站下发的数据符号中在对应所述规定的 导频位置的位置进行了数据打孔处理。
其中, 由上述步骤 301 可知, 该小区的规定的导频位置与其它各小区 的 CSI-RS导频位置在时频域是正交分开的。
具体可为: 小区 2所属 eNB2在规定的导频位置下发的主 CSI-RS, 同 时小区 1所属 eNBl下发数据符号, 在该小区 1的数据符号中对应小区 2 规定的导频位置的位置进行了数据打孔, 同样, 同时小区 3所属 eNB3下发 数据符号, 在该小区 3的数据符号中对应小区 2规定的导频位置的位置进 行了数据打孔。 上述内容可用图 9表示。
步驟 305, UE在规定的导频位置接收到来自对应小区的 CSI-RS, 并根 据该 CSI-RS测量相应的下行信道,对于各数据符号中经过数据打孔的位置 不进行数据检测。
其中, 对于经过数据打孔的导频位置, UE将认为在该位置没有数据符 号的传输,所述 UE的接收机不在该位置进行数据检测, 因此也就不存在来 自于其它小区数据符号的千扰问题了。
具体可为: UE1接收在规定的导频位置接收到来自 eNB2的 CSI-RS、 eNBl的经过数据打孔处理的数据符号, 以及 eNB3的经过数据打孔处理的 数据符号。 UE1根据该主 CSI-RS测量小区 2的下行信道, 对于小区 1和小 区 3的各数据符号中数据打孔的位置, UE1的接收机将不进行数据检测, 也就不会在测量小区 2的下行信道时, 受到来自小区 1和小区 3的数据符 合的千扰。
上述参考信号的处理方法是以其中一个小区为例进行具体描述的, 其 它小区对于参考信号的处理过程与本实施例的方法相似, 具体实施方法是 本领域所属技术人员根据上述内容可以轻易推出的, 在这里就不再冗余叙 述了。
对应于上述方法, 本实施例继续提供一种 eNB, 以便于上述方法中涉 及网络侧的部分的实现。 如图 10所示, 该 eNB包括: 发送模块 91 , 打孔 模块 92。
发送模块 91用于在规定的导频位置发送参考信号到目标 UE, 其中, 所述规定的导频位置与所属 CoMP集合内的其它各小区的参考信号导频位 置相互正交分开; 打孔模块 92用于对发送的数据符号进行数据打孔, 所述 数据打孔的位置对应所述 CoMP集合内的其它各小区的至少一个参考信号 导频位置。
进一步, 在本实施例的 eNB中还包括如下可选模块: 获取模块 93, 通 知模块 94。
获取模块 93用于获取所述 CoMP 集合内其它小区的参考信号导频位 置; 通知模块 94用于通知目标 UE规定的导频位置。
其中, 获取模块 93包括: 协商单元 931 , 通知单元 932。
协商单元 931用于与所述 CoMP集合内的其它各小区所属基站协商参 考信号导频位置, 其中, 协商后的各小区的参考信号导频位置以时频域复 用方式正交分开; 通知单元 932用于发送包含自身参考信号导频位置的信 息到所述 CoMP集合内的其它各小区所属基站。
所述规定的导频位置为: 经过协商单元 931 协商后的自身参考信号导 频位置。
在本实施例中,通知模块 94包括下述至少一个单元:第一发送单元 941 , 第二发送单元 942, 第三发送单元 943。
第一发送单元 941用于发送包含小区 ID的信息到目标 UE, 所述小区 ID与所述规定的导频位置绑定; 第二发送单元 942, 用于发送包含小区 ID 和相关于所述 CoMP集合共性的虚拟 ID的信息到目标用户 i殳备,所述小区 ID和虚拟 ID与所述规定的导频位置绑定; 第三发送单元 943 , 用于发送包 含所述规定的导频位置的高层信令到所述目标 UE。
其中, 上述各模块中提到的参考信号为 CSI-RS; 上述各模块中的规定 的导频位置包括: 当前导频时间和当前导频坐标; 上述各模块中的参考信 号导频位置包括: 导频时间和导频坐标。
相应地, 在本实施例中还继续提供一种 UE, 以便于上述方法中涉及用 户侧的部分的实现。 如图 11, 该 UE包括: 接收模块 95, 测量模块 96。
接收模块 95用于在规定的导频位置接收参考信号, 其中, 提供服务的 CoMP 集合内的其它各小区的数据符号在对应所述规定的导频位置上进行 了数据打孔, 并且所述规定的导频位置与所述其它各小区的参考信号导频 位置相互正交分开; 测量模块 96用于检测并根据接收模块 95接收的参考 信号测量对应的下行信道, 对于所述其它各小区数据符号经过数据打孔的 位置不进行检测。
所述其它各小区为: 除对应所述规定的导频位置的小区以外的小区。 进一步, 本实施例还包括如下可选模块: 获取模块 97。 获取模块 97用 于获取至少一个小区的参考信号导频位置, 所述至少一个小区属于所述提 供服务的 CoMP集合。 另外, 在本实施例中, 获取模块 97包括: 第一获取单元 971 , 第二获 取单元 972。
第一获取单元 971用于获取至少一个小区的小区 ID;第二获取单元 972 用于通过对所述小区 ID 进行取模运算获取对应的至少一个参考信号导频 位置;
所述规定的导频位置为: 所述第二获取单元 972获取的至少一个参考 信号导频位置中的任意一个当前接收到参考信号的参考信号导频位置。 或 者
获取模块 97仅包括: 第三获取单元 973 , 第四获取单元 974; 或者获 取模块 97还包括: 第三获取单元 973 , 第四获取单元 974 。
其中, 第三获取单元 973用于获取至少一个小区的小区 ID和相关于所 述联合多点传送集合共性的虚拟 ID; 第四获取单元 974, 通过对所述至少 一对虚拟 ID和小区 ID的计算获取对应的至少一个参考信号导频位置; 所述规定的导频位置为: 所述第四获取单元 974获取的至少一个参考 信号导频位置中的任意一个当前接收到参考信号的参考信号导频位置。 又 或者
获取模块 97仅包括第一接收单元 975;或者获取模块 97还包括第一接 收单元 975用于接收至少一条包含参考信号导频位置的高层信令;
所述规定的导频位置为: 所述第一接收单元 975接收的至少一个参考 信号导频位置中的任意一个当前接收到参考信号的参考信号导频位置。
另外, 上述各模块中提到的参考信号为 CSI-RS; 上述各模块中的规定 的导频位置包括: 当前导频时间和当前导频坐标; 上述各模块中的参考信 号导频位置包括: 导频时间和导频坐标。
本发明实施例提供的方案具有如下有益效果: 解决了现有技术中, UE 仅能根据服务小区的小区 ID获取到参考信号导频位置的技术问题, 本实施 例的方案中, UE可获取到为其服务的 CoMP集合内的所有小区的参考信号 导频位置, 因此也可以获取到多个小区的参考信号, 并根据其测量对应的 下行信道; 多个小区之间的下行参考信号相互正交, 可避免多个不同小区 不同参考信号间的相互碰撞; 在其它小区的参考信号导频位置进行数据打 孔, 可避免其它小区的数据符号的千扰, 提高了多小区下行信道的测量精 度, 可达到了在 CoMP场景下, 使 UE可进行多小区下行信道测量的要求。
实施例 4
本实施例提供一种参考信号的处理***, 如图 12所示, 该***包括: 基站 41和 UE42。
基站 41用于在规定的导频位置发送参考信号到目标 UE42, 其中, 所 述规定的导频位置与所属 CoMP集合内的其它各小区的参考信号导频位置 相互正交分开; 并且基站 41还用于对发送的数据符号进行数据打孔, 所述 数据打孔的位置对应所述 CoMP集合内的其它各小区的至少一个参考信号 导频位置。 UE42用于在规定的导频位置来自基站 41的接收参考信号, 其 中, 提供服务的 CoMP集合内的其它各小区的数据符号在对应所述规定的 导频位置上进行了数据打孔, 并检测并根据所述参考信号测量对应的下行 信道, 对于所述其它各小区的数据符号经过数据打孔的位置不进行检测。
上其它各小区为: 除对应所述规定的导频位置的小区以外的小区。 本实施例所提供的参考信号的处理***通过采用多小区的各参考信号 相互正交分开, 和其它各小区的参考信号导频位置经过数据打孔的处理的 技术方案, 解决了现有技术中多个小区不同参考信号的相互碰撞、 相互千 扰,并且 UE在接收信号时就不会受到来自于其它小区数据符号千扰的技术 问题, 所以进而取得了在 CoMP场景下, 提高下行信道的测量精度, 使 UE 可进行多小区下行信道测量的技术效果。
实施例 5
本实施例提供一种参考信号的处理***, 该***包括: 基站和 UE。 该基站共有 8个 CSI-RS端口, 该基站将这 8个 CSI-RS端口分成两部 分,每个部分包含 4个 CSI-RS端口 ,每个端口仍以 5个子帧为导频周期(即 此处, 每个端口的发送其 CSI-RS的周期与导频周期相同)在规定的导频位 置发送 CSI RS导频信号到目标 UE,其中,每个 CSI-RS端口发送其 CSI-RS 时所使用的导频位置可通过与小区 ID相绑定的方式通知该 UE (在本例中 , 该导频位置为 5个子帧周期中的第二个子帧)。 这两部分 CSI-RS端口间隔 发送其对应的 CSI-RS, 即, 对于其中任意一个 CSI-RS端口来说, 其发送 对应 CSI-RS的实际周期变为 10个子帧。 如图 13所示, 以小区 1为例, 并 设小区 1的所属基站为本实施例中的基站。
该基站用于在第一个导频周期 (即第一个 5 个子帧) 中通过前 4 个 CSI-RS端口在规定的导频位置发送与该前 4个 CSI-RS端口对应的 CSI-RS, 该基站还用于在第二个导频周期中通过后 4个 CSI-RS端口在规定的导频位 置发送与该后 4个 CSI-RS端口对应的 CSI-RS。 如此交替, 循环发送, 其 中, 在任何一个导频周期中, 所述规定的导频位置与所属 CoMP集合内的 其它各小区的参考信号导频位置相互正交分开; 并且基站还用于对发送的 数据符号进行数据打孔, 所述数据打孔的位置对应所述 CoMP集合内的其 它各小区的至少一个参考信号导频位置;
该 UE 用于在第一个导频周期中在规定的导频位置接收来自上述基站 的前 4个 CSI-RS端口的 CSI-RS, 在第二个导频周期中在规定的导频位置 接收来自上述基站的后 4个 CSI-RS端口的 CSI-RS, 如此交替, 可循环接 收需要的 CSI-RS。 其中, 在任意一个导频周期中, 提供服务的 CoMP集合 内的其它各小区的数据符号在对应所述规定的导频位置上进行了数据打 孔, 并检测并根据所述参考信号测量对应的下行信道, 对于所述其它各小 区的数据符号经过数据打孔的位置不进行检测。 或者
该基站共有 8个 CSI-RS端口, 该基站将这 8个 CSI-RS端口 4艮据周期 分成两部分, 一部分是以 5个子帧为周期发送其 CSI-RS的 CSI-RS端口, 另一部分是以 10个子帧为周期发送其 CSI RS的 CSI-RS端口 , 两部分均在 规定的导频位置发送 CSI RS导频信号到目标 UE,小区的导频周期仍旧为 5 个子帧。
其中, 根据每个 CSI-RS端口所占用的资源的情况, 可发送包含每个端 口所占用的资源的信息到 UE。 例如: 设前 4个 CSI-RS端口是以 5个子帧 为周期, 在一个导频周期中占用 6个 RE (—个 RE为图 8中最小的一个方 块), 在下一个导频周期中占用 4个 RE; 后 4个 CSI-RS端口是以 10个子 帧为周期, 在每个导频周期中占用 6个 RE, 此时, 对于 UE来说, 在每个 导频周期中检测的 CSI-RS端口都不同, 所以需要通知 UE在每个导频周期 中使用哪些资源发送的参考信号。 如图 14所示, 以小区 1为例, 并设小区 1的所属基站为本实施例中的基站。
该基站用于在第一个导频周期(即第一个 5个子帧)中通过 8个 CSI-RS 端口在规定的导频位置发送与该 8个 CSI-RS端口对应的 CSI-RS, 该基站 还用于在第二个导频周期中通过后 4个 CSI-RS端口在规定的导频位置发送 与该后 4个 CSI-RS端口对应的 CSI-RS。 如此交替, 循环发送, 其中, 在 任何一个导频周期中, 所述规定的导频位置与所属 CoMP集合内的其它各 小区的参考信号导频位置相互正交分开; 并且基站还用于对发送的数据符 号进行数据打孔, 所述数据打孔的位置对应所述 CoMP集合内的其它各小 区的至少一个参考信号导频位置;
该 UE 用于在第一个导频周期中在规定的导频位置接收来自上述基站 的 8个 CSI-RS端口的 CSI-RS, 在第二个导频周期中在规定的导频位置接 收来自上述基站的后 4个 CSI-RS端口的 CSI-RS, 如此交替, 可循环接收 需要的 CSI-RS。 其中, 在任意一个导频周期中, 提供服务的 CoMP集合内 的其它各小区的数据符号在对应所述规定的导频位置上进行了数据打孔, 并检测并根据所述参考信号测量对应的下行信道, 对于所述其它各小区的 数据符号经过数据打孔的位置不进行检测。
本实施例所提供的参考信号的处理***解决了现有技术中多个小区不 同参考信号的相互碰撞、相互千扰,并且 UE在接收信号时就不会受到来自 于其它小区数据符号千扰的技术问题, 所以进而取得了在 CoMP场景下, 提高下行信道的测量精度, 使 UE可进行多小区下行信道测量的技术效果, 同时, 本实施例中的技术方案, 通过使参考信号端口采用不同的周期发送 其各自参考信号的技术方案, 在解决了现有技术中在同一导频周期中通过 多个参考信号端口发送参考信号导致的开销过大的技术问题。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到 本发明可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过 硬件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的 体现出来, 该计算机软件产品存储在可读取的存储介质中, 如计算机的软 盘, 硬盘或光盘等, 包括若千指令用以使得一台设备(可以是无线网络控 制器)执行本发明各个实施例所述的方法。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种参考信号的处理方法, 其特征在于, 包括:
在规定的导频位置发送参考信号到目标用户设备, 并且, 所属联合多 点传送集合内的其它各小区所属基站同时发送的各数据符号在对应所述规 定的导频位置上进行了数据打孔;
所述规定的导频位置与所述联合多点传送集合内的其它各小区的参考 信号导频位置相互正交分开;
所述其它各小区为: 除对应所述规定的导频位置的小区以外的小区。
2、 根据权利要求 1所述的参考信号的处理方法, 其特征在于, 该方法 还包括:
获取所述联合多点传送集合内其它小区的参考信号导频位置。
3、 根据权利要求 2所述的参考信号的处理方法, 其特征在于, 所述获 取所述联合多点传送集合内其它小区的参考信号导频位置为:
与所述联合多点传送集合内的其它各小区所属基站协商参考信号导频 位置, 其中, 协商后的各小区的参考信号导频位置以时频域复用方式正交 分开;
发送包含自身参考信号导频位置的信息到所述联合多点传送集合内的 其它各小区所属基站;
所述规定的导频位置为: 经过协商后的所述自身参考信号导频位置。
4、 根据权利要求 1所述的参考信号的处理方法, 其特征在于, 该方法 还包括:
通知目标用户设备规定的导频位置。
5、 根据权利要求 4所述的参考信号的处理方法, 其特征在于, 所述通 知目标用户设备规定的导频位置为:
发送包含小区 ID的信息到目标用户设备, 所述小区 ID与所述规定的 导频位置绑定; 或者 发送包含小区 ID和相关于所述联合多点传送集合共性的虚拟 ID的信 息到目标用户设备, 所述小区 ID和虚拟 ID与所述规定的导频位置绑定; 发送包含所述规定的导频位置的高层信令到所述目标用户设备。
6、 根据权利要求 1至 5所述的参考信号的处理方法, 其特征在于, 所 述参考信号为信道状态信息参考信号;
所述规定的导频位置包括: 当前导频时间和当前导频坐标;
所述参考信号导频位置包括: 导频时间和导频坐标。
7、 一种参考信号的处理方法, 其特征在于, 包括:
在规定的导频位置接收参考信号, 其中, 提供服务的联合多点传送集 合内的其它各小区的数据符号在对应所述规定的导频位置上分别进行了数 据打孔;
检测并根据所述参考信号测量对应的下行信道, 对于所述其它各小区 的数据符号中经过数据打孔的位置不进行检测;
所述规定的导频位置与所述其它各小区的参考信号导频位置相互正交 分开;
所述其它各小区为: 除对应所述规定的导频位置的小区以外的小区。
8、 根据权利要求 7所述的参考信号的处理方法, 其特征在于, 该方法 还包括:
获取至少一个小区的参考信号导频位置, 所述至少一个小区属于所述 提供服务的联合多点传送集合。
9、 根据权利要求 8所述的参考信号的处理方法, 其特征在于, 所述获 取至少一个小区的参考信号导频位置包括:
获取至少一个小区的小区 ID;
通过对所述至少一个的小区 ID 进行取模运算获取对应的至少一个参 考信号导频位置;
所述规定的导频位置为: 所述至少一个参考信号导频位置中的任意一 个当前接收到参考信号的参考信号导频位置; 和 /或
获取至少一个小区的小区 ID和相关于所述联合多点传送集合共性的虚 拟 ID;
通过对所述至少一对虚拟 ID和小区 ID的计算获取对应的至少一个参 考信号导频位置;
所述规定的导频位置为: 所述至少一个参考信号导频位置中的任意一 个当前接收到参考信号的参考信号导频位置; 和 /或
至少接收到一条包含参考信号导频位置的高层信令;
所述规定的导频位置为: 所述至少一个参考信号导频位置中的任意一 个当前接收到参考信号的参考信号导频位置。
10、 根据权利要求 7至 9所述的参考信号的处理方法, 其特征在于, 所述参考信号为信道状态信息参考信号;
所述规定的导频位置包括: 当前导频时间和当前导频坐标;
所述参考信号导频位置包括: 导频时间和导频坐标。
11、 一种参考信号的处理装置, 其特征在于, 包括:
发送模块, 用于在规定的导频位置发送参考信号到目标用户设备, 其 中 , 所述规定的导频位置与所属联合多点传送集合内的其它各小区的参考 信号导频位置相互正交分开, 所述其它各小区为: 除对应所述规定的导频 位置的小区以外的小区; 和 /或
打孔模块, 用于对发送的数据符号进行数据打孔, 所述数据打孔的位 置对应所述联合多点传送集合内的其它各小区的至少一个参考信号导频位 置。
12、 根据权利要求 11所述的参考信号的处理装置, 其特征在于, 该装 置还包括:
获取模块, 用于获取所述联合多点传送集合内其它小区的参考信号导 频位置。
13、 根据权利要求 12所述的参考信号的处理装置, 其特征在于, 所述 获取模块包括:
协商单元, 用于与所述联合多点传送集合内的其它各小区所属基站协 商参考信号导频位置, 其中, 协商后的各小区的参考信号导频位置以时频 域复用方式正交分开;
通知单元, 用于发送包含自身参考信号导频位置的信息到所述联合多 点传送集合内的其它各小区所属基站;
所述规定的导频位置为: 经过协商单元协商后的自身参考信号导频位 置。
14、 根据权利要求 11所述的参考信号的处理装置, 其特征在于, 该装 置还包括:
通知模块 , 用于通知目标用户设备规定的导频位置。
15、 根据权利要求 14所述的参考信号的处理装置, 其特征在于, 所述 通知模块包括下述至少一个单元:
第一发送单元, 用于发送包含小区 ID的信息到目标 UE, 所述小区 ID 与所述规定的导频位置绑定;
第二发送单元, 用于发送包含小区 ID和相关于所述联合多点传送集合 共性的虚拟 ID的信息到目标用户设备,所述小区 ID和虚拟 ID与所述规定 的导频位置绑定;
第三发送单元, 用于发送包含所述规定的导频位置的高层信令到所述 目标 UE。
16、 一种参考信号的处理装置, 其特征在于, 包括:
接收模块, 用于在规定的导频位置接收参考信号, 其中, 提供服务的 联合多点传送集合内的其它各小区的参考信号在对应所述规定的导频位置 上分别进行了数据打孔, 并且所述规定的导频位置与所述其它各小区的参 考信号导频位置相互正交分开, 所述其它各小区为: 除对应所述规定的导 频位置的小区以外的小区;
测量模块, 用于检测并根据接收模块接收的参考信号测量对应的下行 信道, 对于所述其它各小区的数据符号经过数据打孔的位置不进行检测。
17、 根据权利要求 16所述的参考信号的处理装置, 其特征在于, 该装 置还包括:
获取模块, 用于获取至少一个小区的参考信号导频位置, 所述至少一 个小区属于所述提供服务的联合多点传送集合。
18、 根据权利要求 17所述的参考信号的处理装置, 其特征在于, 所述 获取模块包括:
第一获取单元, 用于获取至少一个小区的小区 ID;
第二获取单元,用于通过对所述小区 ID进行取模运算获取对应的至少 一个参考信号导频位置;
所述规定的导频位置为: 所述第二获取单元获取的至少一个参考信号 导频位置中的任意一个当前接收到参考信号的参考信号导频位置; 或者 所述获取模块包括:
第三获取单元, 用于获取至少一个小区的小区 ID和相关于所述联合多 点传送集合共性的虚拟 ID;
第四获取单元, 通过对所述至少一对虚拟 ID和小区 ID的计算获取对 应的至少一个参考信号导频位置;
所述规定的导频位置为: 所述第四获取单元获取的至少一个参考信号 导频位置中的任意一个当前接收到参考信号的参考信号导频位置; 或者 第一接收单元, 用于接收至少一条包含参考信号导频位置的高层信令; 所述规定的导频位置为: 所述第一接收单元接收的至少一个参考信号 导频位置中的任意一个当前接收到参考信号的参考信号导频位置。
19、 一种参考信号的处理***, 其特征在于, 包括:
参考信号的处理装置, 用于在规定的导频位置发送参考信号到目标用 户设备, 其中, 所述规定的导频位置与所属联合多点传送集合内的其它各 小区的参考信号导频位置相互正交分开; 和 /或, 用于对发送的数据符号进 行数据打孔, 所述数据打孔的位置对应所述联合多点传送集合内的其它各 小区的至少一个参考信号导频位置;
用户设备, 用于在规定的导频位置接收参考信号, 其中, 提供服务的 联合多点传送集合内的其它各小区的参考信号在对应所述规定的导频位置 上进行了数据打孔, 检测并根据所述参考信号测量对应的下行信道, 对于 所述其它各小区的数据符号经过数据打孔的位置不进行检测;
所述其它各小区为: 除对应所述规定的导频位置的小区以外的小区。
20、 根据权利要求 19所述的参考信号的处理***, 其特征在于, 所述 参考信号处理装置通过至少一个参考信号端口发送参考信号到目标用户设 备;
所述参考信号处理装置在规定的导频位置发送参考信号到目标用户设 备为: 所述参考信号处理装置通过所述至少一个参考信号端口中的部分参 考信号端口在规定的导频位置发送参考信号;
所述至少一个参考信号端口中的另一部分参考信号端口与所述部分参 考信号端口在不同的周期发送各自对应的参考信号, 和 /或, 所述至少一个 参考信号端口中的另一部分参考信号端口与所述部分参考信号端口发送参 考信号的周期的长短不同。
PCT/CN2010/074657 2009-06-29 2010-06-29 参考信号的处理方法、装置及*** WO2011000302A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012518015A JP5527780B2 (ja) 2009-06-29 2010-06-29 参照信号処理方法、装置およびシステム
EP10793597.5A EP2451202B1 (en) 2009-06-29 2010-06-29 Method, device and system for reference signal processing
CN201080003641.2A CN102388635B (zh) 2009-06-29 2010-06-29 参考信号的处理方法、装置及***
US13/340,337 US8879484B2 (en) 2009-06-29 2011-12-29 Method, apparatus, and system for processing reference signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910139568 2009-06-29
CN200910139568.0 2009-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/340,337 Continuation US8879484B2 (en) 2009-06-29 2011-12-29 Method, apparatus, and system for processing reference signal

Publications (1)

Publication Number Publication Date
WO2011000302A1 true WO2011000302A1 (zh) 2011-01-06

Family

ID=43410493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074657 WO2011000302A1 (zh) 2009-06-29 2010-06-29 参考信号的处理方法、装置及***

Country Status (5)

Country Link
US (1) US8879484B2 (zh)
EP (2) EP3306968A1 (zh)
JP (1) JP5527780B2 (zh)
CN (1) CN102388635B (zh)
WO (1) WO2011000302A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034110A (ja) * 2011-08-02 2013-02-14 Sharp Corp 基地局、端末、通信システムおよび通信方法
JP2013524616A (ja) * 2010-03-29 2013-06-17 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるセル間干渉調整に対する測定方法及び装置
JP2014501074A (ja) * 2010-11-11 2014-01-16 聯發科技股▲ふん▼有限公司 チャネル状態情報測定を設定する方法、および、それを用いた通信装置
WO2014112043A1 (ja) * 2013-01-16 2014-07-24 株式会社日立製作所 無線通信方法、及び無線通信システム
US9729293B2 (en) 2011-08-02 2017-08-08 Sharp Kabushiki Kaisha Terminal, base station, and method for terminal to report received power of reference signals to base station
EP2765809B1 (en) * 2011-10-03 2018-02-21 Ntt Docomo, Inc. Mobile communication method, wireless base station, and mobile station
CN108092758A (zh) * 2011-04-28 2018-05-29 三菱电机株式会社 通信***
US10517934B2 (en) * 2014-08-25 2019-12-31 ProTransit Nanotherapy, LLC Compositions and methods for the treatment of photoaging and other conditions

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11223459B2 (en) 2009-02-10 2022-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Mapping user data onto a time-frequency resource grid in a coordinated multi-point wireless communication system
US8837396B2 (en) 2009-02-10 2014-09-16 Telefonaktiebolaget L M Ericsson (Publ) Mapping user data onto a time-frequency resource grid in a coordinated multi-point wireless communication sytem
KR101754970B1 (ko) 2010-01-12 2017-07-06 삼성전자주식회사 무선 통신 시스템의 채널 상태 측정 기준신호 처리 장치 및 방법
JP5749542B2 (ja) * 2011-03-31 2015-07-15 ソフトバンクモバイル株式会社 移動通信システム及び基地局装置
US8792924B2 (en) * 2011-05-06 2014-07-29 Futurewei Technologies, Inc. System and method for multi-cell access
KR102120106B1 (ko) * 2011-10-13 2020-06-17 엘지전자 주식회사 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
US9520979B2 (en) 2012-09-09 2016-12-13 Lg Electronics Inc. Method and apparatus for transmitting and receiving data
CN102932850B (zh) * 2012-11-05 2016-03-02 华为技术有限公司 基站、网络***和通信方法
US9014115B2 (en) * 2012-11-23 2015-04-21 Hitachi, Ltd. Method and apparatus for handling downlink reference signal interference to PDSCH in long term evolution coordinated multipoint transmission
KR20150106931A (ko) * 2013-01-18 2015-09-22 노키아 솔루션스 앤드 네트웍스 오와이 휴면 모드에서 다수의 셀들로부터 기준 신호 송신
EP4099746A4 (en) * 2020-03-04 2023-10-04 Sony Group Corporation WIRELESS BASE STATION AND WIRELESS TERMINAL
CN113890707B (zh) * 2021-09-26 2023-05-30 中国联合网络通信集团有限公司 通信方法、装置、设备以及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020085641A1 (en) * 2000-12-29 2002-07-04 Motorola, Inc Method and system for interference averaging in a wireless communication system
CN101340227A (zh) * 2008-08-15 2009-01-07 中兴通讯股份有限公司 下行参考信号的发送方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1921463B (zh) 2005-08-23 2010-05-05 中兴通讯股份有限公司 正交频分复用移动通信***的信道估计方法和实现装置
CN101536563A (zh) * 2006-11-13 2009-09-16 Lm爱立信电话有限公司 无线电信***
KR101307123B1 (ko) * 2007-05-04 2013-09-10 삼성전자주식회사 직교 주파수 분할 다중 접속 시스템에서의 데이터 송수신방법 및 장치
CN101340228B (zh) * 2008-08-07 2014-05-28 中兴通讯股份有限公司南京分公司 一种参考信号的传输方法
CN104168098B (zh) * 2008-10-20 2017-11-14 交互数字专利控股公司 在wtru内实施的利用载波聚合传送ul控制信息的方法和wtru
KR101619446B1 (ko) 2008-12-02 2016-05-10 엘지전자 주식회사 하향링크 mimo시스템에 있어서 rs 전송 방법
CN101453438B (zh) * 2008-12-11 2011-05-25 上海无线通信研究中心 提高多点协作传输效率的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020085641A1 (en) * 2000-12-29 2002-07-04 Motorola, Inc Method and system for interference averaging in a wireless communication system
CN101340227A (zh) * 2008-08-15 2009-01-07 中兴通讯股份有限公司 下行参考信号的发送方法和装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225450B2 (en) 2010-03-29 2015-12-29 Lg Electronics Inc. Method and apparatus for measurement for inter-cell interference coordination in radio communication system
JP2013524616A (ja) * 2010-03-29 2013-06-17 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるセル間干渉調整に対する測定方法及び装置
US9788316B2 (en) 2010-03-29 2017-10-10 Lg Electronics Inc. Method and apparatus for measurement for inter-cell interference coordination in radio communication system
US9161236B2 (en) 2010-03-29 2015-10-13 Lg Electronics Inc. Method and apparatus for measurement for inter-cell interference coordination in radio communication system
JP2014501074A (ja) * 2010-11-11 2014-01-16 聯發科技股▲ふん▼有限公司 チャネル状態情報測定を設定する方法、および、それを用いた通信装置
CN108390749A (zh) * 2011-04-28 2018-08-10 三菱电机株式会社 通信***
CN108092758A (zh) * 2011-04-28 2018-05-29 三菱电机株式会社 通信***
US9729293B2 (en) 2011-08-02 2017-08-08 Sharp Kabushiki Kaisha Terminal, base station, and method for terminal to report received power of reference signals to base station
JP2013034110A (ja) * 2011-08-02 2013-02-14 Sharp Corp 基地局、端末、通信システムおよび通信方法
US10142949B2 (en) 2011-08-02 2018-11-27 Sharp Kabushiki Kaisha Terminal, and base station for measurement of downlink received power and configuration of appropriate received power
US10779247B2 (en) 2011-08-02 2020-09-15 Sharp Kabushiki Kaisha Communication system, terminal, and base station
EP2765809B1 (en) * 2011-10-03 2018-02-21 Ntt Docomo, Inc. Mobile communication method, wireless base station, and mobile station
JP5883954B2 (ja) * 2013-01-16 2016-03-15 株式会社日立製作所 無線通信方法
JPWO2014112043A1 (ja) * 2013-01-16 2017-01-19 株式会社日立製作所 無線通信方法
WO2014112043A1 (ja) * 2013-01-16 2014-07-24 株式会社日立製作所 無線通信方法、及び無線通信システム
US10517934B2 (en) * 2014-08-25 2019-12-31 ProTransit Nanotherapy, LLC Compositions and methods for the treatment of photoaging and other conditions

Also Published As

Publication number Publication date
JP5527780B2 (ja) 2014-06-25
EP2451202A4 (en) 2012-09-19
US8879484B2 (en) 2014-11-04
CN102388635A (zh) 2012-03-21
JP2012531858A (ja) 2012-12-10
EP3306968A1 (en) 2018-04-11
EP2451202B1 (en) 2017-08-23
US20120099547A1 (en) 2012-04-26
EP2451202A1 (en) 2012-05-09
CN102388635B (zh) 2014-10-08

Similar Documents

Publication Publication Date Title
WO2011000302A1 (zh) 参考信号的处理方法、装置及***
EP2848065B1 (en) Method and apparatus for performing epdcch resource element mapping in a communication network
RU2604639C1 (ru) Способ обработки улучшенного физического канала управления нисходящей линии связи, устройство на стороне сети и пользовательское оборудование
EP2472940B1 (en) Method and apparatus for performing channel measurement for cell
WO2017133416A1 (zh) 无线局域网中协作传输的方法及装置
US20140204812A1 (en) Method and device for indicating control channel
EP2675078A2 (en) Wireless communication system using multiple transmission and reception points
WO2013166904A1 (zh) 一种dmrs处理方法和装置
WO2014048076A1 (zh) 控制信息发送方法、接收方法和设备
CN104798329A (zh) 用于发送数据的方法和设备以及用于发送数据的方法和设备
WO2012006931A1 (zh) 一种csi-rs的发送方法、检测方法及其装置
CN108476104A (zh) 用于窄带上行链路单音调传输的***和方法
US9236980B2 (en) Control channel transmitting, receiving method, base station and terminal
WO2015172364A1 (zh) 一种基站、用户设备及通信信号的发送、接收方法
JPWO2016143718A1 (ja) 無線通信システム、無線通信方法、無線lan基地局装置および無線lan端末装置
WO2010105405A1 (zh) 一种下行功率分配方法、装置和***
WO2017097115A1 (zh) 信道探测报告传输方法及装置、存储介质
WO2011150783A1 (zh) 无线网络中的数据传输方法和装置
WO2010036084A2 (en) Apparatus and method for transmitting and receiving data in wireless communication system using relay
US10070271B2 (en) Method and system for configuring, sending and receiving physical multicast channel
CN102892201B (zh) Phich符号数据的传输方法和装置
WO2014169839A1 (zh) 同步信号的处理方法、装置及***、信道估计方法及装置
WO2013044754A1 (zh) 多个接入点时配置csi-rs的方法、基站及接入点
WO2015035619A1 (zh) 一种信息传输的方法、装置及***
WO2014180258A1 (zh) Mbsfn区域内的载波资源处理方法、装置和***

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003641.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793597

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518015

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010793597

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010793597

Country of ref document: EP