WO2010151074A2 - Photosensitizer containing conjugates of quantum dot-chlorine derivatives and composition for treating and diagnosing cancer containing same for photodynamic therapy - Google Patents

Photosensitizer containing conjugates of quantum dot-chlorine derivatives and composition for treating and diagnosing cancer containing same for photodynamic therapy Download PDF

Info

Publication number
WO2010151074A2
WO2010151074A2 PCT/KR2010/004134 KR2010004134W WO2010151074A2 WO 2010151074 A2 WO2010151074 A2 WO 2010151074A2 KR 2010004134 W KR2010004134 W KR 2010004134W WO 2010151074 A2 WO2010151074 A2 WO 2010151074A2
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
quantum dot
chlorine
conjugate
znte
Prior art date
Application number
PCT/KR2010/004134
Other languages
French (fr)
Korean (ko)
Other versions
WO2010151074A3 (en
Inventor
안웅식
배수미
바토그토크흐간트므르
문란영
Original Assignee
주식회사 진코스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 진코스 filed Critical 주식회사 진코스
Publication of WO2010151074A2 publication Critical patent/WO2010151074A2/en
Publication of WO2010151074A3 publication Critical patent/WO2010151074A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/0071PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/52Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • A61K47/546Porphyrines; Porphyrine with an expanded ring system, e.g. texaphyrine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to a photosensitizer containing a conjugate of a quantum dot-chlorine derivative and a composition for treating and diagnosing cancer for use in photodynamic therapy comprising the same.
  • Photodynamic therapy is a medical treatment using a combination of light and photosensitizer (PS).
  • PS photosensitizer
  • the mechanism of action is largely dependent on the molecular mechanism of tumor-selective accumulation of photosensitive agents and the interaction of light with photosensitive agents. It can be divided into tumor destruction mechanism. Each factor is not harmful by itself, but when combined with oxygen, they can produce lethal cytotoxic agents that inactivate tumor cells [Sternberg ED et al., Tetrahedron , 1998, 54 : 4151-4202; Kadish KM et al., The Porphyrin Handbook. 2000, Vol 6 : 158-161.
  • PDT exhibits dual selectivity, in which the PS is preferentially absorbed by the diseased tissue, and the PS is activated by irradiating light in specific areas. PDT kills cells through the production of singlet oxygen and other reactive oxygen species (ROS), which overwhelms numerous antioxidant defense mechanisms in the cell and causes oxidative damage to the cell's macromolecules [Weisberger KR et al., Cancer Res , 1976, 36 : 2326-2329.
  • ROS reactive oxygen species
  • the photochemical reactions that generate ROS and singlet oxygen, which are putative cytotoxic agents formed during PDT, are represented by a modified Jablonsky diagram (FIG. 1).
  • the PS is electrically excited from the bottom singlet state (S 0 ) through the excited singlet state [S 1 , ( ⁇ 10 -6 s)] with short half-life [T 1. , ( ⁇ 10 -2 s)].
  • the excited singlet state PS which has a short half-life, can perform a non-radioactive process of intersecting systems (ISC).
  • the excited triplet state PS can perform two kinds of reactions [Macdonald JI et al., J Porphyrins Phthalocyanines , 2001, 5 : 105-129.]. First, it can participate in an electron-transfer process with a biological substrate to form radicals and radical ions that can produce superoxide ions, peroxide products such as O 2 ⁇ after interaction with oxygen [Type I reaction]. Alternatively, it can carry out a photochemical process known as a type II reaction in which stable triplet oxygen ( 3 O 2 ) is converted to singlet oxygen ( 1 O 2 ) with a short half-life but high reactivity.
  • the tumor cell killing effect of PDT is related to the depth of light penetration within the cancer mass.
  • the effect of light in tissues decreases exponentially with distance [Moser JG. In Photodynamic Tumor Therapy-2 nd & 3 rd Generation Photosensitizers . Harwood Academic Publishers, London, 1997: 3-8].
  • Tissue weakness is affected by optimal absorption, scattering by endogenous molecules and drug chromophores themselves.
  • the maximum transmittance of skin tissue is in the 700-800 nm region, and the development of a photosensitizer that exhibits maximum absorption within this region remains a major challenge. Effective penetration at 630 nm was between 1 and 3 mm, while light penetration of at least 6 mm was observed at 700-850 nm.
  • the ideal PS should exhibit strong absorption in the near infrared region.
  • PS is defined as a species that induces chemical or physical modification of other species under the absorption of light.
  • Clinicians and chemists have different views on the ideal PS [Kirchner C et al., Nano Lett, 2005, 5 , 331.].
  • the chemist can place more emphasis on the high degree of extinction and the high quantum yield of singlet oxygen, while the clinician can further emphasize low toxicity and high selectivity.
  • both clinical PDTs and ideal PSs are clinically appropriate and allison et al. [Zheng H. Technology in Cancer Research & Treatment , 2005, 4 : 283-293] and Castano et al. [Anna C et al., Photochem] Photobiol , 2006, 82 : 617-625] agree that at least some of the following criteria reported by:
  • tetrapyrrole macrocycles are often used as PS. Strong absorption in the red region of the visible spectrum is a very desirable feature for effective photosensitisers because it allows for the treatment of thicker tumors (Johnson CK et al., Tetrahedron Lett , 1998, 39 : 4619-4622). . For this reason, tetrapyrroles such as porphyrin, chlorine, bacteriochlorin, porphysin, phthalocyanine, naphthalocyanine, and expanded porphyrin have been synthesized and PDT efficacy has been evaluated. PS can be classified by their chemical structure and origin.
  • porphyrin-based eg photoprine, ALA / PpIX and BPD-MA
  • chlorine-based eg perpurin and bacteriochlorine
  • dyes eg phthalocyanine, naphthalocyanine
  • PDT drug The only widely used PDT drug at present is known to be “photoprine II”, which has the ability of porphyrin to accumulate tumors and its normally low toxicity, which has, for example, a series of disadvantages:
  • Photoprint (PF) (porpyrmer sodium) is a porphyrin oligomer complex and was first approved by a health care agency in 1993 for PDT of bladder cancer in Canada [Tian YY et al., Laser Phys. Lett, 2008, 5 , 764-767], several countries in Europe, the United States, and Asia, are currently approved for specific clinical applications and are being studied for use in other malignant and nonmalignant diseases [Menezes PFC et al. , Laser Phys , 2007, 17 , 461-467. Photoacid (PS) and photogram (PG) is the corresponding photosensitizer produced in Germany and Russia, respectively.
  • PS photoacid
  • PG photogram
  • Photogem is the most used photosensitizer in Brazil [Menezes PFC et al., Laser Phys , 2007, 17 , 461-467; Menezes PFC et al., Laser Phys, 2005, 15 , 435-442. These three HpDs are known to exhibit the same chemical and photophysical, diagnostic, and therapeutic characteristics as PF [Sokolov VV et al., Proc. SPIE , 1995, 2325 , 367-374; Mironov AF et al., J. Photochem. Photobiol, B, 1990, 4 , 297-306.
  • Quantum dots have emerged as an important class of materials that offer great potential for other types of applications ranging from energy conversion to biomedical science.
  • Quantum dots are usually fluorescent semiconductor nanocrystals with diameters on the order of 2-10 nanometers, or approximately 200-10,000 atoms [Daniele Gerion et al., J. Phys. Chem. B. 2001, 105, 8861-8871.
  • General structures of QDs include inorganic cores, inorganic shells, and aqueous organic coatings in which biomolecules are bound.
  • the size of the QDs provides them with unique optimal properties that can be adjusted from the UV region to the infrared region by changing their size, shape and composition [Burda C.
  • the present inventors have found that through the preparation of the quantum dot-chlorine derivative conjugates, the PDT efficiency of the photosensitizer can be significantly improved and the present invention has been completed.
  • quantum dots which are potential candidates for fluorescence imaging.
  • the present invention provides a photosensitizer containing a conjugate of quantum dot-chlorine derivatives.
  • the quantum dot is CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, PbS, PbSe, PbTe, GeS , GeSe, GeTe, SnS, SnSe, SnTe, PbS, PbSe and PbTe.
  • the quantum dots include CdSe / ZnS, ZnTe / ZnSe, ZnSe / ZnTe, ZnTe / ZnO, ZnO / ZnTe, ZnSe / ZnO, ZnO / ZnSe, ZnS / ZnO, ZnO / ZnS, ZnTe / ZnS, ZnS / ZnS , InP / ZnTe and ZnTe / InP is characterized in that the quantum dot of the core / shell structure selected from the group consisting of.
  • the chlorine derivative is photodiazine, ladchlorin (Radachlorin), 2- (1-hexylethyl) -2- divinyl pyrophorovide- ⁇ (HPPH) [2- (1-hexylethyl) -2 It can be selected from -devinylpyropheophorbide- ⁇ (HPPH)], or mono -L- aspartyl chlorin e 6 (NPe 6) [mono -L-aspartylchlorin e 6 (NPe 6)].
  • the photosensitizers containing the conjugates of the quantum dot-chlorine derivatives are characterized by exhibiting photosensitizing activity against light in the range of 650 nm to 800 nm.
  • the present invention provides a method for preparing a conjugate of a quantum dot-chlorine derivative comprising the following steps:
  • the quantum dots are fluorescent nanoparticles.
  • the quantum dots most preferably include a CdSe core and a ZnS shell.
  • chlorine derivatives are compounds that can be activated by light in order to exhibit a photodynamic therapeutic effect.
  • the linker functional group is preferably ethylenediamine.
  • the chlorine derivative is extracted from Spirulina maxima algae.
  • the ligand is preferably 3-mercaptopropionic acid.
  • the hydrophilic organic amine is preferably N-methyl-D-glucosamine.
  • the method for preparing a chlorine derivative having a linker functional group comprises the following steps:
  • the methyl pheophoride-a is a chlorine derivative having the structure of formula (1).
  • R 1 and R 2 are CH 3 .
  • the mono-Boc-protected ethylenediamine is tert -butyl-N- (2-aminoethyl) carbamate having a structure of formula (2).
  • the Boc is a residue of di- tert -butyl-dicarbonate.
  • the protected chlorine derivative is a compound having the structure of formula (3).
  • R 1 and R 2 are CH 3 and R 3 is COO (CH 3 ) 3 .
  • the chlorine derivative from which the Boc functional group is removed is a compound having the structure of Formula 4 below.
  • R is H.
  • the method for preparing a quantum dot with a ligand attached comprises the following steps:
  • a method for preparing a quantum dot-chlorine derivative conjugate by conjugating a quantum dot with a ligand attached to a chlorine derivative having a linker functional group comprises the following steps:
  • the coupling agent is 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDCHCI) and N -hydroxysulfosuccinimide (Sulfo-NHS).
  • EDCHCI 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • Sulfo-NHS N -hydroxysulfosuccinimide
  • the method for converting a covalently linked quantum dot-chlorine derivative conjugate to a water soluble conjugate by treating a hydrophilic organic amine comprises the following steps:
  • the present invention provides a composition for treating or diagnosing cancer for use in photodynamic therapy comprising a photosensitive agent containing a conjugate of a quantum dot-chlorine derivative as an active ingredient.
  • the photosensitive agent is characterized in that the light is activated in vitro or in vivo for the light beam in the range of 650 nm to 800 nm.
  • the cancer may be selected from the group consisting of skin, digestive, urinary, genital, respiratory, circulatory, brain and nervous system cancers.
  • the cancer is lung cancer, non-small cell lung cancer, colon cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, uterine cancer, ovarian cancer, rectal cancer, stomach cancer, anal muscle cancer, colon cancer, breast cancer, fallopian tube carcinoma, endometrial carcinoma Cervical carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, endocrine gland cancer, thyroid cancer, parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, chronic or acute Among the group consisting of leukemia, lymphocytic lymphoma, bladder cancer, kidney or ureter cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system (CNS) tumor, primary central nervous system lymphoma, spinal cord tumor, brain stem glioma and pituitary adenoma It may be selected, but is not necessarily limited thereto.
  • CNS central nervous system
  • the QD-photosensitizer conjugates of the invention are soluble in water and thus can be administered intravenously in the form of a solution.
  • composition for treating or diagnosing cancer of the present invention is intravenous injection, intraperitoneal injection, intramuscular injection, intracranial injection, intratumoral injection, intraepithelial injection, dermal penetration, esophageal administration, abdominal administration, arterial injection, intraarticular injection , And oral administration.
  • the present invention is a composition
  • a photosensitive agent containing a conjugate of a quantum dot-chlorine derivative as an active ingredient
  • kits for cancer treatment for use in photodynamic therapy comprising a light source for irradiating light with a wavelength in the range of 650 nm to 800 nm.
  • Chlorine is a compound having a structure of Formula 5, and is a large heterocyclic aromatic ring composed of pyrrole and pyrroline connected by four methine linkages at the center.
  • Magnesium-containing chlorine is called chlorophyll and is the central photosensitive pigment in the chloroplast.
  • the chlorine derivative means a compound having the chlorine as a basic skeleton structure. Chlorine and chlorine derivatives are effectively used as photosensitizers in photodynamic therapy because of their photosensitization.
  • Standards for optimal photosensitizers in PDT include strong absorption of light, low dark toxicity, high light toxicity, high quantum yield of singlet oxygen, high selectivity, fast excretion, ease of synthesis, pure composition , Excellent solubility in water, stability to photobleaching, and the like.
  • Chlorine and chlorine derivatives are selective for tumor tissue and in the absence of light, they are low in toxicity, rapidly excreted in the body and can be manufactured in large quantities from inexpensive raw materials.
  • one of the chlorine derivatives that may be used as a preferred embodiment may be photoditazine, but is not limited thereto.
  • Photodiazine is an N-methyl-D-glucosamine derivative of chlorine e 6 and has the structure of Formula 6 (FIG. 2).
  • the photodithazine of the present invention can be produced from the pheophorbide a based on chlorophyll-a derivatives by a known method, and commercially available products can also be used.
  • Photodiazine (PZ) exhibits strong absorption in the 650-680 nm range, which is soluble in water and more passes through biological tissue than at 630 nm where porphyrin is excited.
  • Photodiazine has the following bioactivity:
  • the chlorine derivative has a disadvantage in that it is difficult to penetrate into a tumor deeply located as a photosensitizer and thus does not cure completely and has a high possibility of recurrence.
  • Quantum dots are fluorescent semiconductor nanocrystals that have a unique glow and distribute them to many dye molecules, which store excitation energy and exist on the surface of quantum dots and produce singlet oxygen. In addition, they are effective photon collectors because of their broad absorption spectrum. Quantum dots have a narrow emission spectrum, and the photon absorption of the quantum dots can be controlled by the spectral transparent window of the human skin. Furthermore, quantum dots are carriers for drug delivery with high photostability.
  • Quantum dots are fluorescent nanocrystals approximately 2-10 nm in size and are biocompatible.
  • the quantum dots can be surface coated to make them water-soluble, biocompatible, target-specific, and functionalized.
  • a conjugate of the quantum dot and a chlorine derivative is provided. Since the conjugates of the quantum dot-chlorine derivatives of the present invention have minimal light scattering and absorption in the near infrared region of the spectrum by quantum dots, relatively low intensity light can be used to penetrate the tissue to a depth of several centimeters, More deeply located tumors may be accessed. In the conjugates of the quantum dot-chlorine derivatives of the present invention, due to the large transition dipole moment of the quantum dots, the quantum dots are strong absorbers, making them suitable agents for PDT applications.
  • CdSe QDs can be used to sensitize PDT agents by fluorescence resonance energy transfer (FRET) mechanisms.
  • FRET fluorescence resonance energy transfer
  • the production of singlet oxygen in CdSe QDs involves two steps. First, photoexcitation moves from the QD to the photosensitive agent. Secondly, the dye transfers energy to oxygen present in the enclosed solvent.
  • photoexcitation moves from the QD to the photosensitive agent.
  • the dye transfers energy to oxygen present in the enclosed solvent.
  • it can be used as an imaging, energy collector ( 1 O 2 ) and drug carrier through chemical coupling of a photosensitizer for PDT, a fluorescent (quantum dot) for enriched material for fluorescence diagnostics and MRI (FIG. 3).
  • conjugate of the quantum dot and the chlorine derivative of the present invention is excellent in water solubility and light stability, and has less side effects such as dark toxicity, exotherm, isomers, and impurities.
  • the term "inhibition of cell proliferation", “inhibition of cell growth” or similar form is used to suppress an increase in cell number, to any extent to any inhibition, for example, about 20% or more, about 50% or more, about That means containing over 90%, over 99% and complete inhibition ie 100% inhibition.
  • photodynamic therapy refers to a treatment by a combination of a photosensitizer (drug), light and oxygen.
  • a photosensitizer drug
  • oxygen oxygen
  • a chlorine derivative such as photoditagen having a linker functional group is prepared, and a ligand is attached to a quantum dot including a CdSe core and a ZnS shell, and then the chlorine derivative is attached to the quantum dot through the linker functional group and the ligand.
  • Conjugation synthesizes a conjugate of quantum dot-chlorine derivatives.
  • the linker functional group and the ligand should be selected to enable fluorescence resonance energy transfer (FRET) of the quantum dots after the quantum dots and the chlorine derivative are conjugated.
  • FRET fluorescence resonance energy transfer
  • ethylenediamine is used as the linker functional group and 3-mercaptopropionic acid is used as the ligand, but any one can be used as long as the two compounds can be conjugated to enable energy transfer of quantum dots.
  • the conjugate of the quantum dot and the chlorine derivative was found to have a markedly marked cell growth inhibitory effect compared to the chlorine derivative alone when irradiated with a laser.
  • CaSki cell line which is a cervical cancer cell line
  • MTT assay MTT assay
  • the method for preparing the conjugates of the quantum dot-chlorine derivatives of the present invention comprises the following steps:
  • the first is to modify chlorine compounds isolated from natural materials, and the second is to synthesize from pyrrole in a multi-step synthesis process. Any of these may be used, but in the present invention, a method of separating chlorophyll-a from natural materials and using it as a substrate is used to undergo further modification.
  • the starting material, methyl pheophorbid-a is obtained from Spirulina maxima algae. This process is briefly shown in Scheme 1 below.
  • the photosensitizer to be synthesized must have high purity, which is one of the characteristics required for the ideal photosensitizer, this is one of the important parts for producing a conjugate composed of the photosensitizer and quantum dots.
  • one of the main purposes is to synthesize a water-soluble photosensitizer. Therefore, the two methyl ester groups in the chlorine-e 6 derivatives are hydrolyzed under alkaline conditions and converted to carboxylic acid groups to make them water soluble. Such modifications must be performed before conjugation to the nanoparticles. After hydrolysis, the protecting group must be removed from the photosensitizer to bond to the nanoparticles. This process is briefly shown in Scheme 2 below.
  • Quantum dots must first react with 3-mercaptopropionic acid to functionalize the surface with carboxyl groups. Carboxylation of the quantum dots makes it possible to covalently bond the quantum dots to a photosensitiser having amino linker functionality. This process is briefly shown in Scheme 3 below.
  • the conjugation is carried out using the carbodiimide coupling technique.
  • This process involves a zero-length crosslinker, 1-ethyl-3- [3-dimethylaminopropyl] carbodiimide, in the presence of a hydrophilic activating functional group, N-hydroxysulfosuccinimide (Sulfo-NHS).
  • EDCHCI hydrochloride
  • the final step is to make the conjugate water soluble by complexing between N-methyl-D-glucosamine and two carboxyl groups in the conjugate. This process is briefly shown in Scheme 5 below.
  • the absorption maximum point of the QD-chlorine derivative conjugate was reduced to 656 nm as compared to the maximum point of the chlorine derivative alone (663.8 nm).
  • cancer cells can be diagnosed by utilizing the fluorescence of quantum dots in the QD-photosensitizer conjugate.
  • the present invention can be usefully used as a single agent for the treatment and diagnosis of cancer by chemically conjugating a photosensitizer for photodynamic therapy and a quantum dot, which is a phosphor for enhancing substances for fluorescence diagnosis and MRI.
  • 1 shows a modified Jablonsky diagram. Where 1 is absorption, 2 is non-radioactive decay, 3 is fluorescence, 4 is cross-over, 5 is phosphorescence, and 6 is energy transfer.
  • Figure 2 shows the structure of the photoditazine.
  • Figure 3 illustrates the fluorescence resonance energy transfer between quantum dots and chlorine derivatives.
  • FIG. 8 compares the fluorescence emission spectra of quantum dots (QD), carboxylated quantum dots (QDCOOH) and pre-bonded photosensitizers (PS).
  • QD quantum dots
  • QDCOOH carboxylated quantum dots
  • PS pre-bonded photosensitizers
  • FIG. 11 shows the results of cell growth inhibition after treatment of CaSki cell line, which is a cervical cancer cell line, with quantum dot-chlorine derivative conjugates and chlorine derivatives of 0.03125 and 0.0625 uM, respectively, without laser irradiation.
  • CaSki cell line which is a cervical cancer cell line with 0.03125 and 0.0625 uM of quantum dot-chlorine derivative conjugate and chlorine derivative, respectively.
  • the dried Spirulina maxima (Spirulina maxima) birds 500 g for 2 hours and refluxed to 2 L of acetone under nitrogen. The supernatant was then filtered over Whatman filter paper on a Buener funnel when hot and extra acetone was added to the remaining solid above. The extraction and filtration were repeated three times according to the same procedure. The green filtrate was evaporated and the residue was redissolved in 300 ml of acetone, cooled in a refrigerator and filtered to remove red solid impurities. The filtrate containing pheophytin-a was evaporated and treated with methanol solution of 5% sulfuric acid (500 ml) for 12.5 hours at room temperature under dark, nitrogen.
  • the solution was diluted with dichloromethane ( ⁇ 500 ml) and rinsed with water ( ⁇ 500 ml), rinsed with 10% aqueous sodium bicarbonate solution ( ⁇ 500 ml) and then rinsed three times with water.
  • the organic layer was separated, dried over anhydrous sodium sulfate and evaporated to dryness.
  • the residue was purified by column chromatography eluting with 2% acetone in dichloromethane on silica gel 60 (230-400 mesh). The product was recrystallized from dichloromethane / methanol.
  • Example 3 Preparation chlorin -e 6 -13 1 -N- (2- Boc-NH- ethyl) -amide -15 2 chlorine from -e 6 -13 1 -N- (2- amino-ethyl) -amide -15 2 (17 3 -dicarboxylic acid, PS, compound 4) synthesis
  • UV-vis (CH 3 OH + CH 2 Cl 2 ): ⁇ max , nm (Abs) 663.8 (0.71), 607.2 (0.22), 531.3 (0.23), 502.0 (0.30), 405.1 (2.08) and 330.2 (0.95).
  • MES buffer solution (2 ml, 0.1M, pH 5.0) is added to a mixture of carboxylated quantum dots (10 mg) dissolved in deionized water (1 ml) to which 1 M NaOH solution (3 drops) is added and the mixture was stirred at room temperature.
  • a solution of EDCHCI (10 mg) and sulfo-NHS (27.6 mg) in MES buffer solution (1 ml, 0.1M, pH 5.0) was added and the pH of the reaction mixture was adjusted to 1M NaOH solution (about 3 drops). Immediately adjusted to 6.3. The reaction mixture was stirred at rt for 30 min.
  • the remaining unreacted EDC was then quenched by the addition of 2-mercaptoethanol (3.5 ml, 14.3 mol / L) and the mixture was left for 10 minutes.
  • the pH of the reaction mixture was raised to 7.4 using concentrated PBS.
  • a solution of chlorine-e6 derivative in PBS buffer (2 ml, pH 7.4) was added to the solution containing the activated quantum dots and stirred slowly at room temperature for 2 hours.
  • the reaction was quenched for 10 minutes by adding glycine solution (1 ml, 14 mg) to hydrolyze the unreacted sulfo-NHS groups on the quantum dot surface.
  • the reaction solution was filtered through a hydrophilic cellulose acetate syringe filter (0.45 mm).
  • the filtered conjugate solution was purified by dialysis using a 12-14 kDa MWCO microcentrifuge tube with 4 buffer exchanges for 48 hours to remove byproducts and unreacted compounds.
  • the fluorescence spectra of the quantum dot alone, the photosensitizer alone and the conjugate were compared.
  • Figure 8 is a three-17 prepared in Example 3, when excited at 330 nm - a comparison of the fluorescence spectra of the dicarboxylic acid (PS), a quantum dot and a carboxylated quantum dots prepared in Example 4.
  • PS dicarboxylic acid
  • Quantum dots prepared in Example 4.
  • both quantum dots (611-612 nm) and photosensitizer (666 nm) exhibit effective strong emission in the 600-700 nm range.
  • the fluorescence emission spectrum of the quantum dot-photosensitizer conjugate showed two peaks overlapping each other at 611.6 nm and 640 nm when excited at 330 nm. Among these peaks the emission peak at 611.6 nm is indicative of the presence of quantum dots in the conjugate.
  • the emission peak at 640 nm indicates the presence of a photosensitizer in the conjugate, but the wavelength of this peak was reduced compared to the photosensitiser alone (666 nm, FIG. 8).
  • CaSki cell lines in DMEM (Dulbecco's modified eagle's medium) medium (Gibco, Rockville, MD, USA), 5% fetal bovine serum (Gibco, Rockville, MD, USA), 0.37% sodium bicarbonate, 20 mM HEPES and streptoto Mycin / penicillin (Gibco, Rockville, MD, USA) was used to add and incubated in 37 °C, 5% CO 2 incubator.
  • CaSki cell lines were dispensed into 3 wells in 96 well plates at 3 ⁇ 10 3 , and medium was changed after 12 hours after treatment with quantum dot-chlorine derivative conjugates and chlorine derivatives at concentrations of 0.03125 and 0.0625 uM, respectively. After medium replacement, the cell growth inhibition effect of the group irradiated with 662 ⁇ 3 nm laser and the group irradiated with 6.25J / Cm 2 was observed after 24 hours by MTT assay.
  • FIGS. 11 and 12 show the results for the group not irradiated with laser. As can be seen from FIG. 11, when the laser was not irradiated, that is, when there was no light, the chlorine derivative alone and the conjugate of the present invention did not show cell growth inhibitory effects. 12 shows the results for the group irradiated with the laser. As can be seen from Figure 12, compared with the chlorine derivative alone, the cell growth inhibitory effect was significantly superior in the conjugate of the present invention.

Abstract

The present invention relates to a photosensitizer containing conjugates of quantum dot-chlorine derivatives and a composition for treating and diagnosing cancer containing the same for photodynamic therapy. The conjugates of the present invention can be used as a single medicine for treating and diagnosing cancer.

Description

양자점-클로린 유도체의 접합체를 함유하는 광감작제 및 이를 포함하는 광역학 치료에 사용하기 위한 암 치료 및 진단용 조성물Photosensitizers containing conjugates of quantum dot-chlorine derivatives and compositions for treating and diagnosing cancer for use in photodynamic therapy comprising the same
본 발명은 양자점-클로린 유도체의 접합체를 함유하는 광감작제 및 이를 포함하는 광역학 치료에 사용하기 위한 암 치료 및 진단용 조성물에 관한 것이다.The present invention relates to a photosensitizer containing a conjugate of a quantum dot-chlorine derivative and a composition for treating and diagnosing cancer for use in photodynamic therapy comprising the same.
광역학적 치료(PDT)는 빛과 광감작제(PS)의 조합을 이용한 의학적 치료로서, 작용기전은 크게 광감각제의 종양 선택적 축적에 대한 분자적 기전과 광감각제와 빛의 상호작용에 따른 종양 파괴기전으로 나눌 수 있다. 각 인자는 그 자체로 해롭지 않으나, 산소와 결합되었을 때, 이들은 종양 세포를 비활성화하는 치사의 세포독성 작용제를 생산할 수 있다[Sternberg ED et al., Tetrahedron, 1998, 54: 4151-4202; Kadish KM et al., The Porphyrin Handbook. 2000, Vol 6: 158-161].Photodynamic therapy (PDT) is a medical treatment using a combination of light and photosensitizer (PS). The mechanism of action is largely dependent on the molecular mechanism of tumor-selective accumulation of photosensitive agents and the interaction of light with photosensitive agents. It can be divided into tumor destruction mechanism. Each factor is not harmful by itself, but when combined with oxygen, they can produce lethal cytotoxic agents that inactivate tumor cells [Sternberg ED et al., Tetrahedron , 1998, 54 : 4151-4202; Kadish KM et al., The Porphyrin Handbook. 2000, Vol 6 : 158-161.
PDT는 이중 선택성을 나타내는데, 병든 조직에 의해서 PS가 우선적으로 흡수되고, 특정 영역의 빛을 조사함으로써 PS가 활성화된다. PDT는, 세포 내 수많은 항산화 방어 메커니즘을 압도하고 세포의 거대분자에 산화적 손상을 야기하는, 일중항산소 및 다른 반응산소종(ROS)의 생산을 통해 세포를 사멸시킨다[Weishaupt KR et al., Cancer Res, 1976, 36: 2326-2329].PDT exhibits dual selectivity, in which the PS is preferentially absorbed by the diseased tissue, and the PS is activated by irradiating light in specific areas. PDT kills cells through the production of singlet oxygen and other reactive oxygen species (ROS), which overwhelms numerous antioxidant defense mechanisms in the cell and causes oxidative damage to the cell's macromolecules [Weishaupt KR et al., Cancer Res , 1976, 36 : 2326-2329.
PDT 도중 형성되는 추정상의 세포독성 작용제가 되는 일중항산소와 ROS를 발생시키는 광화학적 반응은 변형된 야블론스키 다이아그램(도 1)에 의해 나타내어진다. 요컨대, 빛의 흡수 이후에 PS는 반감기가 짧은 여기된 일중항 상태[S1, (~10-6s)]를 통해 바닥 일중항 상태(S0)로부터 전기적으로 여기된 삼중항 상태[T1, (~10-2s)]로 변형된다. PDT에 관한 특별히 중요한 것은 반감기가 짧은 여기된 일중항 상태 PS가 계간 교차(ISC)의 비-방사성 과정을 수행할 수 있다는 점이다. 이는 스핀 반전을 필요로 하여 이에 의하여 PS를 전자 스핀 평행을 가지는 상대적으로 반감기가 긴 여기된 삼중항 상태(T1)으로 전환하기 때문에 스핀-금지(spin-forbidden) 과정이다. 어떠한 '금지' 경로도 '허용' 과정보다 가능성이 더 낮으나, 우수한 PS는 매우 높은 효율로 '금지' ISC 경로를 수행한다. 여기된 삼중항 상태 PS는 두 가지 종류의 반응을 수행할 수 있다[Macdonald JI et al., J Porphyrins Phthalocyanines, 2001, 5: 105-129.]. 첫째, 이는 산소와 상호작용 이후에 슈퍼옥사이드 이온, O2 -과 같은 과산화 생성물을 생산할 수 있는 라디칼 및 라디칼 이온을 형성하기 위하여 생물학적 기질과 함께 전자-전달 과정에 참여할 수 있다[타입 I 반응]. 양자택일적으로, 이는 안정한 삼중항 산소(3O2)가 반감기는 짧으나 큰 반응성을 가지는 일중항 산소(1O2)로 전환하게 되는 타입 II 반응으로서 알려진 광화학적 과정을 수행할 수 있다.The photochemical reactions that generate ROS and singlet oxygen, which are putative cytotoxic agents formed during PDT, are represented by a modified Jablonsky diagram (FIG. 1). In short, after absorption of light, the PS is electrically excited from the bottom singlet state (S 0 ) through the excited singlet state [S 1 , (~ 10 -6 s)] with short half-life [T 1. , (~ 10 -2 s)]. Of particular importance for the PDT is that the excited singlet state PS, which has a short half-life, can perform a non-radioactive process of intersecting systems (ISC). This is a spin-forbidden process because it requires spin inversion and thereby converts PS into a relatively long-lived excited triplet state T 1 with electron spin parallelism. Any 'ban' route is less likely than the 'allow' process, but a good PS performs a 'ban' ISC route with very high efficiency. The excited triplet state PS can perform two kinds of reactions [Macdonald JI et al., J Porphyrins Phthalocyanines , 2001, 5 : 105-129.]. First, it can participate in an electron-transfer process with a biological substrate to form radicals and radical ions that can produce superoxide ions, peroxide products such as O 2 after interaction with oxygen [Type I reaction]. Alternatively, it can carry out a photochemical process known as a type II reaction in which stable triplet oxygen ( 3 O 2 ) is converted to singlet oxygen ( 1 O 2 ) with a short half-life but high reactivity.
더 나아가, PDT의 종양세포치사 효과는 암 덩어리 내의 빛 침투 깊이와 관련된다. 조직 내 빛의 영향은 거리에 대해 기하급수적으로 감소한다[Moser JG. In Photodynamic Tumor Therapy-2 nd & 3 rd Generation Photosensitizers. Harwood Academic Publishers, London, 1997: 3-8]. 조직의 약화는 최적의 흡수, 내인성 분자 및 약물 발색단 자체에 의한 산란에 의해 영향을 받는다. 피부 조직의 최대 투과율은 700-800 nm 영역에 있고, 이 영역 내에서 최대 흡수를 나타내는 광감작제의 개발이 주요한 도전으로 남아 있다. 630 nm에서의 유효한 침투는 1 내지 3 mm 사이인데 반하여, 700-850 nm에서는 최소한 6 mm의 빛 침투가 관찰되었다. 따라서, 이상적인 PS는 근적외선 영역에서 강한 흡수를 나타내야만 한다.Furthermore, the tumor cell killing effect of PDT is related to the depth of light penetration within the cancer mass. The effect of light in tissues decreases exponentially with distance [Moser JG. In Photodynamic Tumor Therapy-2 nd & 3 rd Generation Photosensitizers . Harwood Academic Publishers, London, 1997: 3-8]. Tissue weakness is affected by optimal absorption, scattering by endogenous molecules and drug chromophores themselves. The maximum transmittance of skin tissue is in the 700-800 nm region, and the development of a photosensitizer that exhibits maximum absorption within this region remains a major challenge. Effective penetration at 630 nm was between 1 and 3 mm, while light penetration of at least 6 mm was observed at 700-850 nm. Thus, the ideal PS should exhibit strong absorption in the near infrared region.
PS는 빛의 흡수 하에서 다른 화학종의 화학적 또는 물리적 변형을 유도하는 화학종으로서 정의된다. 임상의와 화학자는 이상적인 PS에 대해 다른 견해를 가진다[Kirchner C et al., Nano Lett, 2005, 5, 331.]. 예를 들어, 화학자는 높은 절멸 정도와 일중항 산소의 높은 양자 수율을 보다 더 강조할 수 있고, 이에 반하여 임상의는 낮은 독성과 높은 선택성을 더욱 강조할 수 있다. 그럼에도 불구하고, 양쪽 모두 임상적 PDT와 이상적 PS가 임상적으로 적절하고 Allison 등[Zheng H. Technology in Cancer Research & Treatment, 2005, 4: 283-293]과 Castano 등[Anna C et al., Photochem Photobiol, 2006, 82: 617-625]에 의해 보고된 하기 기준의 몇몇을 최소한 충족해야만 한다는 점에 동의한다.PS is defined as a species that induces chemical or physical modification of other species under the absorption of light. Clinicians and chemists have different views on the ideal PS [Kirchner C et al., Nano Lett, 2005, 5 , 331.]. For example, the chemist can place more emphasis on the high degree of extinction and the high quantum yield of singlet oxygen, while the clinician can further emphasize low toxicity and high selectivity. Nevertheless, both clinical PDTs and ideal PSs are clinically appropriate and allison et al. [Zheng H. Technology in Cancer Research & Treatment , 2005, 4 : 283-293] and Castano et al. [Anna C et al., Photochem] Photobiol , 2006, 82 : 617-625] agree that at least some of the following criteria reported by:
1. 가시광선 스펙트럼의 적색 부분에서의 강한 흡수(>650 nm),1. strong absorption (> 650 nm) in the red portion of the visible spectrum,
2. 94 kJ/mol-1보다 큰 삼중항 에너지를 가진 삼중항 형성의 높은 양자 수율,2. High quantum yield of triplet formation with triplet energy greater than 94 kJ / mol -1 ,
3. 일중항 산소 생성의 높은 양자 수율(반감기가 긴 여기 상태),3. high quantum yield of singlet oxygen production (excitation state with long half-life),
4. 낮은 암흑(dark) 독성,4. low dark toxicity,
5. 종양 조직 대 건강한 조직, 특별히 피부에서의 농축 선택성을 나타내야만 함; 일반적인 피부 감작은 피해야만 함; 특정 치료 모달리티는 피부 감작을 필요로 하며, 이때 피부의 급속한 감작 및 탈감작이 바람직함,5. exhibit concentrated selectivity in tumor tissue versus healthy tissue, especially skin; General skin sensitization should be avoided; Certain treatment modalities require skin sensitization, where rapid sensitization and desensitization of the skin is desired,
6. 약물의 단순한 제형화; 제형화된 약물은 긴 저장 기간을 가져야만 함,6. Simple formulation of the drug; Formulated drugs must have a long shelf life,
7. 체내로부터 급속하게 제거되는 약물 동력학적 프로파일,7. pharmacokinetic profile that is rapidly removed from the body,
8. 상기 특성들의 향상을 가능하게 하는 용이한 유도체화(측쇄)의 선택권,8. the option of easy derivatization (side chain) to enable the improvement of these properties,
9. 쉽게 입수가능한 출발 물질로부터의 용이한 합성, 다수-킬로그램 스케일로의 쉬운 변형,9. Easy synthesis from readily available starting materials, easy modification to multi-kg scale,
10. 1O2 양자 수율을 감소시키는 것으로 인한 체내에서의 자기-응집이 없음.10. No self-aggregation in the body due to decreasing 1 O 2 quantum yield.
PDT 분야에서, 테트라피롤 거대 고리가 PS로서 종종 사용된다. 가시광선 스펙트럼의 적색 영역에서의 강한 흡수는 이것이 더 두꺼운 종양의 치료를 가능하게 하기 때문에 효과적인 광감작제를 위한 매우 바람직한 특징이다[Johnson CK et al., Tetrahedron Lett, 1998, 39: 4619-4622]. 이러한 이유 때문에, 포르피린, 클로린, 박테리오클로린, 포피신, 프탈로시아닌, 나프탈로시아닌, 그리고 확장된 포르피린과 같은 테트라피롤이 합성되어지고 PDT 효능이 평가되어 왔다. PS는 이들의 화학적 구조와 유래에 의하여 분류될 수 있다. 일반적으로 이들은 3 개의 넓은 부류로 나뉠 수 있다: (i) 포르피린-기초(예를 들어 포토프린, ALA/PpIX 및 BPD-MA), (ii) 클로린-기초(예를 들어 퍼푸린 및 박테리오클로린), 및 (iii) 염료(예를 들어 프탈로시아닌, 나프탈로시아닌).In the field of PDT, tetrapyrrole macrocycles are often used as PS. Strong absorption in the red region of the visible spectrum is a very desirable feature for effective photosensitisers because it allows for the treatment of thicker tumors (Johnson CK et al., Tetrahedron Lett , 1998, 39 : 4619-4622). . For this reason, tetrapyrroles such as porphyrin, chlorine, bacteriochlorin, porphysin, phthalocyanine, naphthalocyanine, and expanded porphyrin have been synthesized and PDT efficacy has been evaluated. PS can be classified by their chemical structure and origin. In general, they can be divided into three broad classes: (i) porphyrin-based (eg photoprine, ALA / PpIX and BPD-MA), (ii) chlorine-based (eg perpurin and bacteriochlorine) And (iii) dyes (eg phthalocyanine, naphthalocyanine).
현재 유일하게 널리 사용되는 PDT 약제는, 포피린의 종양 축적 특성 능력과 정상적으로 낮은 독성을 가지는, "포토프린 II"인 것으로 알려져 있으며, 이는 예를 들어 하기의 일련의 단점을 가진다:The only widely used PDT drug at present is known to be “photoprine II”, which has the ability of porphyrin to accumulate tumors and its normally low toxicity, which has, for example, a series of disadvantages:
- 낮은 치료율, 종양을 덮는 피부에 대하여는 0.8, 종양을 둘러싸는 피부에 대하여는 1.1, 그리고 근육에 대하여는 2(5까지)에 필적함;Low treatment rate, comparable to 0.8 for skin covering tumor, 1.1 for skin surrounding tumor and 2 (up to 5) for muscle;
- 매우 긴(2.5-3개월) 클리어런스 기간, 이는 주로 큰 전신으로 주입된 투여량과 정상 단백질 및 당단백질에 대한 높은 비특이적 친화도에 기인함;Very long (2.5-3 months) clearance period, mainly due to large systemically injected doses and high nonspecific affinity for normal proteins and glycoproteins;
- 조직으로의 적은 630 nm 광선 투과의 결과로서 일중항산소의 낮은 수율과 관계된 낮은 PDT 효능;Low PDT efficacy associated with low yield of singlet oxygen as a result of low 630 nm light transmission into the tissue;
- 상피 조직에 대한 상당한 친화력, 이 때문에 일광에 대한 증가된 피부 민감도와 더불어 치료 도중 및 이후에 피부가 붉은 색이 됨;Significant affinity for epithelial tissue, due to which the skin becomes red during and after treatment, with increased skin sensitivity to sunlight;
- 환자에 대한 "포토프린 II" 투여와 종양 병소에 대한 조사 사이에 24-72 시간의 휴지 기간 필요, 이는 치료율이 종양 조직에 비해 정상 조직으로부터의 더욱 급속한 클리어런스에 의해 증가한다는 점과, 세포독성의 현저한 성장(재분배 효과)과 관계되며, 이러한 휴지 기간 중 환자는 어두운 실내에 머물러야만 함.A 24-72 hour rest period between the administration of “photoprine II” to the patient and the investigation of the tumor lesion, which means that the treatment rate is increased by more rapid clearance from normal tissues than tumor tissues, and cytotoxicity Is associated with significant growth (redistribution effect) during which the patient must stay in a dark room.
"포토프린 II"(및 이의 유사체 포토겜, 포토산 등)의 이러한 단점은 소위 "2 세대 광감작제"로 불리는, 광감작제에 대한 강력한 연구 필요성으로 이어지게 되었다.These shortcomings of "photoprine II" (and analogues thereof photograms, photoacids, etc.) have led to the need for a strong study of photosensitizers, called "second generation photosensitizers".
현재, 많은 수의 광감작제가 다양한 단계의 시도 중에 있다. 그러나, 이들 중 단지 소수만이 규제 승인을 받았다[Tian YY et al., Laser Phys. Lett, 2008, 5, 746-751]. 헤마토포피린 유사체 (HpD) 및 이의 더욱 정제된 형태는 PDT에서 사용된 첫 번째 광감작제이었으며, 이들은 첫번째 세대로 언급된다[Bonnett R et al., Tetrahedron, 2001, 57, 9513-9547]. 포토프린 (PF)(포르피르머 소듐)은 포피린 올리고머 복합체이며, 캐나다에서 1993년에 방광암의 PDT를 위하여 건강관리기관의 승인을 첫번째로 받았고[Tian YY et al., Laser Phys. Lett, 2008, 5, 764-767], 유럽, 미국 및 아시아의 몇몇 국가에서 특별한 임상적 적용을 위하여 현재 승인을 받았으며, 다른 악성 및 비악성 질병에서 사용하기 위하여 연구 중에 있다[Menezes PFC et al., Laser Phys, 2007, 17, 461-467]. 포토산 (PS) 및 포토겜 (PG)은 각각 독일 및 러시아에서 제조된 상응하는 광감작제이다. 포토겜 (PG)은 브라질에서 가장 많이 사용되는 광감작제이다[Menezes PFC et al., Laser Phys, 2007, 17, 461-467; Menezes PFC et al., Laser Phys, 2005, 15, 435-442]. 이러한 세 가지의 HpD는 PF와 동일한 화학적 및 광물리학적 특성과, 진단적 및 치료적 특징을 나타내는 것으로 알려져 있다[Sokolov VV et al., Proc. SPIE, 1995, 2325, 367-374; Mironov AF et al., J. Photochem. Photobiol, B, 1990, 4, 297-306]. At present, a large number of photosensitizers are under various stages of trial. However, only a few of them have received regulatory approval [Tian YY et al., Laser Phys. Lett, 2008, 5 , 746-751. Hematopophyrin analogs (HpD) and their more purified forms were the first photosensitizers used in PDT, which are referred to as the first generation (Bonnett R et al., Tetrahedron, 2001, 57 , 9513-9547). Photoprint   (PF) (porpyrmer sodium) is a porphyrin oligomer complex and was first approved by a health care agency in 1993 for PDT of bladder cancer in Canada [Tian YY et al., Laser Phys. Lett, 2008, 5 , 764-767], several countries in Europe, the United States, and Asia, are currently approved for specific clinical applications and are being studied for use in other malignant and nonmalignant diseases [Menezes PFC et al. , Laser Phys , 2007, 17 , 461-467. Photoacid   (PS) and photogram   (PG) is the corresponding photosensitizer produced in Germany and Russia, respectively. Photogem   (PG) is the most used photosensitizer in Brazil [Menezes PFC et al., Laser Phys , 2007, 17 , 461-467; Menezes PFC et al., Laser Phys, 2005, 15 , 435-442. These three HpDs are known to exhibit the same chemical and photophysical, diagnostic, and therapeutic characteristics as PF [Sokolov VV et al., Proc. SPIE , 1995, 2325 , 367-374; Mironov AF et al., J. Photochem. Photobiol, B, 1990, 4 , 297-306.
양자점(Quantum dots, QDs)은 에너지 전환으로부터 생물의학까지 걸친 다른 종류의 응용 범위에 큰 가능성을 주는 중요한 물질의 종류로서 부각되어 왔다. 양자점은 대개 2-10 나노미터 정도의 직경, 또는 대략 200-10,000개 원자를 가진 형광성 반도체 나노결정이다[Daniele Gerion et al., J. Phys. Chem. B. 2001, 105, 8861-8871]. QDs의 일반적 구조는 무기 중심핵, 무기 쉘, 및 생체분자가 결합되어 있는 수성 유기 코팅을 포함한다. 더 나아가, QDs의 크기는, 이들의 크기, 형상 및 조성을 변화시킴으로써 UV 영역으로부터 적외선 영역으로 조정될 수 있는 독특한 최적의 특성을 이들에게 제공한다[Burda C. et al., Chem. Rev. 105, 1025-1102]. 지금까지, 생물 의학 분야에서 행해진 반도체 QDs에 대한 대부분의 저술은 형광 이미징 응용에 초점이 맞추어져 왔다[Jyoti K et al., Trends in Cell biology, 2004, 14, 497-504]. Quantum dots (QDs) have emerged as an important class of materials that offer great potential for other types of applications ranging from energy conversion to biomedical science. Quantum dots are usually fluorescent semiconductor nanocrystals with diameters on the order of 2-10 nanometers, or approximately 200-10,000 atoms [Daniele Gerion et al., J. Phys. Chem. B. 2001, 105, 8861-8871. General structures of QDs include inorganic cores, inorganic shells, and aqueous organic coatings in which biomolecules are bound. Furthermore, the size of the QDs provides them with unique optimal properties that can be adjusted from the UV region to the infrared region by changing their size, shape and composition [Burda C. et al., Chem. Rev. 105, 1025-1102. To date, most writings on semiconductor QDs in the biomedical field have focused on fluorescence imaging applications [Jyoti K et al., Trends in Cell biology, 2004, 14, 497-504].
본 발명자는 양자점-클로린 유도체 접합체의 제조를 통해, 광감작제의 PDT 효율을 현저히 향상시킬 수 있음을 발견하고, 본 발명을 완성하였다.The present inventors have found that through the preparation of the quantum dot-chlorine derivative conjugates, the PDT efficiency of the photosensitizer can be significantly improved and the present invention has been completed.
본 발명의 목적은 광감작제 중 클로린 유도체를 형광 이미징을 위한 가능성이 있는 후보 물질인 양자점에 결합시키고자 하는 것이다. 양자점-클로린 유도체 접합체의 제조를 통해, 광감작제의 PDT 효율을 향상시킬 수 있으며, 또한 양자점은 암 부위로의 약물 전달체로서 작용한다.It is an object of the present invention to bind chlorine derivatives in photosensitizers to quantum dots which are potential candidates for fluorescence imaging. Through the preparation of the quantum dot-chlorine derivative conjugates, PDT efficiency of the photosensitizer can be improved, and the quantum dots also act as drug carriers to cancer sites.
하나의 양태로서, 본 발명은 양자점(quantum dot)-클로린 유도체의 접합체를 함유하는 광감작제를 제공한다.In one embodiment, the present invention provides a photosensitizer containing a conjugate of quantum dot-chlorine derivatives.
본 발명에서, 상기 양자점은 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, PbS, PbSe, PbTe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbS, PbSe 및 PbTe로 이루어진 군에서 선택될 수 있다.In the present invention, the quantum dot is CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, PbS, PbSe, PbTe, GeS , GeSe, GeTe, SnS, SnSe, SnTe, PbS, PbSe and PbTe.
구체적인 양태로서, 상기 양자점은 CdSe/ZnS, ZnTe/ZnSe, ZnSe/ZnTe, ZnTe/ZnO, ZnO/ZnTe, ZnSe/ZnO, ZnO/ZnSe, ZnS/ZnO, ZnO/ZnS, ZnTe/ZnS, ZnS/ZnTe, InP/ZnTe 및 ZnTe/InP로 이루어진 군에서 선택되는 코어/쉘 구조의 양자점인 것을 특징으로 한다.In a specific embodiment, the quantum dots include CdSe / ZnS, ZnTe / ZnSe, ZnSe / ZnTe, ZnTe / ZnO, ZnO / ZnTe, ZnSe / ZnO, ZnO / ZnSe, ZnS / ZnO, ZnO / ZnS, ZnTe / ZnS, ZnS / ZnS , InP / ZnTe and ZnTe / InP is characterized in that the quantum dot of the core / shell structure selected from the group consisting of.
본 발명에서, 상기 클로린 유도체는 포토디타진, 라다클로린(Radachlorin), 2-(1-헥실에틸)-2-디비닐피로페오포르비드-α(HPPH)[2-(1-hexylethyl)-2-devinylpyropheophorbide-α(HPPH)], 또는 모노-L-아스파르틸클로린 e6 (NPe6)[mono-L-aspartylchlorin e6 (NPe6)]로부터 선택하여 사용할 수 있다.In the present invention, the chlorine derivative is photodiazine, ladchlorin (Radachlorin), 2- (1-hexylethyl) -2- divinyl pyrophorovide-α (HPPH) [2- (1-hexylethyl) -2 It can be selected from -devinylpyropheophorbide-α (HPPH)], or mono -L- aspartyl chlorin e 6 (NPe 6) [mono -L-aspartylchlorin e 6 (NPe 6)].
본 발명에서, 양자점-클로린 유도체의 접합체를 함유하는 광감각제는 650 nm 내지 800 nm 범위의 광선에 대하여 광감작 활성을 보이는 것을 특징으로 한다.In the present invention, the photosensitizers containing the conjugates of the quantum dot-chlorine derivatives are characterized by exhibiting photosensitizing activity against light in the range of 650 nm to 800 nm.
다른 하나의 양태로서, 본 발명은 하기 단계를 포함하는 양자점-클로린 유도체의 접합체의 제조방법을 제공한다:In another aspect, the present invention provides a method for preparing a conjugate of a quantum dot-chlorine derivative comprising the following steps:
링커 작용기를 가진 클로린 유도체를 제조하는 단계;Preparing a chlorine derivative having a linker functional group;
양자점에 리간드를 부착시키는 단계;Attaching a ligand to the quantum dots;
상기에서 제조된 링커 작용기를 가진 클로린 유도체에 리간드가 부착된 양자점을 접합시켜 양자점-클로린 유도체의 접합체를 얻는 단계; 및Conjugating a quantum dot to which a ligand is attached to a chlorine derivative having a linker functional group prepared above to obtain a conjugate of a quantum dot-chlorine derivative; And
상기에서 얻은 양자점-클로린 유도체의 접합체를 친수성 유기 아민으로 처리하여 수용성 접합체로 전환시키는 단계.Converting the conjugate of the quantum dot-chlorine derivative obtained above into a water-soluble conjugate by treating with a hydrophilic organic amine.
본 발명에서, 상기 양자점은 형광 나노입자이다.In the present invention, the quantum dots are fluorescent nanoparticles.
본 발명에서, 상기 양자점은 가장 바람직하기로는 CdSe 중심핵과 ZnS 쉘을 포함한다.In the present invention, the quantum dots most preferably include a CdSe core and a ZnS shell.
본 발명에서, 클로린 유도체는 광역학적 치료 효과를 나타내기 위하여 빛에 의하여 활성화될 수 있는 화합물이다.In the present invention, chlorine derivatives are compounds that can be activated by light in order to exhibit a photodynamic therapeutic effect.
본 발명에서, 상기 링커 작용기는 바람직하기로는 에틸렌디아민이다.In the present invention, the linker functional group is preferably ethylenediamine.
본 발명에서, 상기 클로린 유도체는 스피루리나 맥시마(Spirulina maxima) 조류로부터 추출된 것이다.In the present invention, the chlorine derivative is extracted from Spirulina maxima algae.
본 발명에서, 상기 리간드는 바람직하기로는 3-머캡토프로피온산이다.In the present invention, the ligand is preferably 3-mercaptopropionic acid.
본 발명에서, 상기 친수성 유기 아민은 바람직하기로는 N-메틸-D-글루코사민이다.In the present invention, the hydrophilic organic amine is preferably N-methyl-D-glucosamine.
바람직한 일 양태로서, 링커 작용기를 가진 클로린 유도체를 제조하는 방법은 하기 단계를 포함한다:In a preferred embodiment, the method for preparing a chlorine derivative having a linker functional group comprises the following steps:
스피루리나 맥시마(Spirulina maxima)로부터 메틸 페오포르비드-a를 얻는 단계;Obtaining methyl pheophorbid-a from Spirulina maxima ;
상기 메틸 페오포르비드-a를 모노-Boc-보호화 에틸렌디아민으로 반응시켜 보호화된 클로린 유도체를 얻는 단계;Reacting the methyl pheophorbide-a with mono-Boc-protected ethylenediamine to obtain a protected chlorine derivative;
상기 보호화된 클로린 유도체 내 에스테르기를 가수분해시키는 단계; 및Hydrolyzing the ester groups in the protected chlorine derivatives; And
상기 보호화된 클로린 유도체로부터 보호하는 Boc 작용기를 제거하는 단계.Removing the protecting Boc function from the protected chlorine derivative.
본 발명에서, 상기 메틸 페오포르비드-a는 하기 화학식 1의 구조를 가진 클로린 유도체이다.In the present invention, the methyl pheophoride-a is a chlorine derivative having the structure of formula (1).
화학식 1
Figure PCTKR2010004134-appb-C000001
Formula 1
Figure PCTKR2010004134-appb-C000001
상기 식에서, R1 및 R2는 CH3이다.Wherein R 1 and R 2 are CH 3 .
본 발명에서, 상기 모노-Boc-보호화 에틸렌디아민은 하기 화학식 2의 구조를 가진 터트-부틸-N-(2-아미노에틸)카르바메이트이다.In the present invention, the mono-Boc-protected ethylenediamine is tert -butyl-N- (2-aminoethyl) carbamate having a structure of formula (2).
화학식 2
Figure PCTKR2010004134-appb-C000002
Formula 2
Figure PCTKR2010004134-appb-C000002
본 발명에서, 상기 Boc은 디-터트-부틸-디카르보네이트의 잔기이다.In the present invention, the Boc is a residue of di- tert -butyl-dicarbonate.
본 발명에서, 상기 보호화된 클로린 유도체는 하기 화학식 3의 구조를 가진 화합물이다.In the present invention, the protected chlorine derivative is a compound having the structure of formula (3).
화학식 3
Figure PCTKR2010004134-appb-C000003
Formula 3
Figure PCTKR2010004134-appb-C000003
상기 식에서, R1 및 R2는 CH3이고, R3는 COO(CH3)3이다.Wherein R 1 and R 2 are CH 3 and R 3 is COO (CH 3 ) 3 .
본 발명에서, Boc 작용기가 제거된 클로린 유도체는 하기 화학식 4의 구조를 가진 화합물이다.In the present invention, the chlorine derivative from which the Boc functional group is removed is a compound having the structure of Formula 4 below.
화학식 4
Figure PCTKR2010004134-appb-C000004
Formula 4
Figure PCTKR2010004134-appb-C000004
상기 식에서, R은 H이다.Wherein R is H.
바람직한 일 양태로서, 리간드가 부착된 양자점을 제조하는 방법은 하기 단계를 포함한다:In a preferred embodiment, the method for preparing a quantum dot with a ligand attached comprises the following steps:
양자점을 리간드와 반응시키는 단계; 및Reacting the quantum dots with a ligand; And
상기 반응 혼합물로부터 리간드가 부착된 양자점을 분리하는 단계.Separating a quantum dot to which a ligand is attached from the reaction mixture.
바람직한 일 양태로서, 링커 작용기를 가진 클로린 유도체에 리간드가 부착된 양자점을 접합시켜 양자점-클로린 유도체 접합체를 제조하는 방법은 하기 단계를 포함한다:In a preferred embodiment, a method for preparing a quantum dot-chlorine derivative conjugate by conjugating a quantum dot with a ligand attached to a chlorine derivative having a linker functional group comprises the following steps:
버퍼 용액으로 이루어진 매질 내에서 커플링제를 통해 리간드가 부착된 양자점과 링커 작용기를 가진 클로린 유도체를 반응시켜 공유결합적으로 연결된 양자점-클로린 유도체 접합체를 얻는 단계; 및Reacting a quantum dot to which a ligand is attached with a chlorine derivative having a linker functional group through a coupling agent in a medium consisting of a buffer solution to obtain a covalently linked quantum dot-chlorine derivative conjugate; And
투석을 통해 공유결합적으로 연결된 양자점-클로린 유도체 접합체를 회수하는 단계.Recovering the quantum dot-chlorine derivative conjugate covalently linked via dialysis.
본 발명에서, 상기 커플링제는 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드 하이드로클로라이드(EDCHCI) 및 N-히드록시설포숙신이미드(Sulfo-NHS)이다.In the present invention, the coupling agent is 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDCHCI) and N -hydroxysulfosuccinimide (Sulfo-NHS).
바람직한 일 양태로서, 공유결합적으로 연결된 양자점-클로린 유도체 접합체를 친수성 유기 아민을 처리하여 수용성 접합체로 전환하는 방법은 하기 단계를 포함한다:In a preferred embodiment, the method for converting a covalently linked quantum dot-chlorine derivative conjugate to a water soluble conjugate by treating a hydrophilic organic amine comprises the following steps:
수성 매질 내에서 공유결합적으로 연결된 양자점-클로린 유도체 접합체를 친수성 유기 아민과 반응시켜 안정한 수용성 양자점-클로린 유도체 접합체를 얻는 단계; 및Reacting the quantum dot-chlorine derivative conjugate covalently linked in an aqueous medium with a hydrophilic organic amine to obtain a stable water soluble quantum dot-chlorine derivative conjugate; And
안정한 수용성 양자점-클로린 유도체 접합체를 수용액으로서 회수하는 단계.Recovering the stable water soluble quantum dot-chlorine derivative conjugate as an aqueous solution.
다른 하나의 양태로서, 본 발명은 양자점-클로린 유도체의 접합체를 함유하는 광감각제를 유효성분으로 포함하는 광역학 치료에 사용하기 위한 암 치료용 또는 진단용 조성물을 제공한다.As another aspect, the present invention provides a composition for treating or diagnosing cancer for use in photodynamic therapy comprising a photosensitive agent containing a conjugate of a quantum dot-chlorine derivative as an active ingredient.
본 발명에서, 상기 광감각제는 650 nm 내지 800 nm 범위의 광선에 대하여 생체 외 또는 생체 내에서 광활성화되는 것을 특징으로 한다.In the present invention, the photosensitive agent is characterized in that the light is activated in vitro or in vivo for the light beam in the range of 650 nm to 800 nm.
본 발명에서, 상기 암은 피부, 소화기, 비뇨기, 생식기, 호흡기, 순환기, 뇌 및 신경계의 암으로 이루어진 군 중에서 선택될 수 있다.In the present invention, the cancer may be selected from the group consisting of skin, digestive, urinary, genital, respiratory, circulatory, brain and nervous system cancers.
보다 구체적으로, 상기 암은 폐암, 비소세포성 폐암, 결장암, 골암, 췌장암, 피부암, 두부 또는 경부 암, 자궁암, 난소암, 직장암, 위암, 항문부근암, 결장암, 유방암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호지킨병(Hodgkin's disease), 식도암, 소장암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장 또는 수뇨관암, 신장세포 암종, 신장골반 암종, 중추신경계(CNS; central nervous system) 종양, 1차 중추신경계 림프종, 척수 종양, 뇌간 신경교종 및 뇌하수체 선종으로 이루어진 군 중에서 선택될 수 있으나, 반드시 이에 한정되는 것은 아니다.More specifically, the cancer is lung cancer, non-small cell lung cancer, colon cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, uterine cancer, ovarian cancer, rectal cancer, stomach cancer, anal muscle cancer, colon cancer, breast cancer, fallopian tube carcinoma, endometrial carcinoma Cervical carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, endocrine gland cancer, thyroid cancer, parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, chronic or acute Among the group consisting of leukemia, lymphocytic lymphoma, bladder cancer, kidney or ureter cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system (CNS) tumor, primary central nervous system lymphoma, spinal cord tumor, brain stem glioma and pituitary adenoma It may be selected, but is not necessarily limited thereto.
본 발명의 QD-광감작제 접합체는 물에 용해 가능하며, 이에 따라 용액의 형태로서 정맥 내로 투여 가능하다.The QD-photosensitizer conjugates of the invention are soluble in water and thus can be administered intravenously in the form of a solution.
따라서, 본 발명의 암 치료용 또는 진단용 조성물은 정맥 주사, 복강내 주사, 근육내 주사, 두개 내 주사, 종양 내 주사, 상피내 주사, 피부관통전달, 식도 투여, 복부 투여, 동맥 주사, 관절내 주사, 및 구강내 투여로 이루어진 군 중에서 선택된 경로로 투여될 수 있다.Therefore, the composition for treating or diagnosing cancer of the present invention is intravenous injection, intraperitoneal injection, intramuscular injection, intracranial injection, intratumoral injection, intraepithelial injection, dermal penetration, esophageal administration, abdominal administration, arterial injection, intraarticular injection , And oral administration.
다른 하나의 양태로서, 본 발명은 양자점-클로린 유도체의 접합체를 함유하는 광감각제를 유효성분으로 포함하는 조성물; 및As another aspect, the present invention is a composition comprising a photosensitive agent containing a conjugate of a quantum dot-chlorine derivative as an active ingredient; And
파장이 650 nm 내지 800nm 범위인 광선을 조사하기 위한 광원을 포함하는, 광역학 치료에 사용하기 위한 암 치료용 키트를 제공한다.Provided is a kit for cancer treatment for use in photodynamic therapy, comprising a light source for irradiating light with a wavelength in the range of 650 nm to 800 nm.
이하, 본 발명의 구성을 상세히 설명한다.Hereinafter, the configuration of the present invention will be described in detail.
클로린(chlorin)은 하기 화학식 5의 구조를 가지는 화합물로서 중심에 4개의 메틴 결합(linkage)으로 연결된 피롤과 피롤린으로 이루어진 거대한 헤테로고리 방향성 환이다. 마그네슘-함유 클로린은 클로로필로 불리며, 엽록체 내 중심 광감작 색소이다.Chlorine is a compound having a structure of Formula 5, and is a large heterocyclic aromatic ring composed of pyrrole and pyrroline connected by four methine linkages at the center. Magnesium-containing chlorine is called chlorophyll and is the central photosensitive pigment in the chloroplast.
화학식 5
Figure PCTKR2010004134-appb-C000005
Formula 5
Figure PCTKR2010004134-appb-C000005
본 발명에서, 클로린 유도체는 상기 클로린을 기본 골격 구조로 가지는 화합물을 의미한다. 클로린 및 클로린 유도체는 이들의 광감작성 때문에 광역학적 치료에서 광감작제로서 효과적으로 이용된다. In the present invention, the chlorine derivative means a compound having the chlorine as a basic skeleton structure. Chlorine and chlorine derivatives are effectively used as photosensitizers in photodynamic therapy because of their photosensitization.
PDT에 있어 최적의 광감작제를 위한 기준으로는 빛에 대한 강한 흡수력, 낮은 암흑 독성, 높은 광(light) 독성, 일중항산소의 높은 양자 수율, 높은 선택성, 빠른 배설, 합성의 용이성, 순수한 조성, 물에 대한 우수한 용해도, 광탈색에 대한 안정성 등의 특성이 있다.Standards for optimal photosensitizers in PDT include strong absorption of light, low dark toxicity, high light toxicity, high quantum yield of singlet oxygen, high selectivity, fast excretion, ease of synthesis, pure composition , Excellent solubility in water, stability to photobleaching, and the like.
클로린 및 클로린 유도체는 종양조직에 대한 선택성을 가지며 빛이 없는 상태에서는 독성이 낮고 체내에서 빠르게 배출되며 저렴한 가격의 원료 물질로부터 대량으로 제조가 가능하다. Chlorine and chlorine derivatives are selective for tumor tissue and in the absence of light, they are low in toxicity, rapidly excreted in the body and can be manufactured in large quantities from inexpensive raw materials.
상기와 같은 특성들을 고려할 때 바람직한 일 실시예로서 사용할 수 있는 클로린 유도체 중의 하나는 포토디타진(Photoditazine)일 수 있으나 이에 제한되지는 않는다.In view of the above properties, one of the chlorine derivatives that may be used as a preferred embodiment may be photoditazine, but is not limited thereto.
포토디타진은 클로린 e6의 N-메틸-D-글루코사민 유도체로서 하기 화학식 6의 구조를 가진다(도 2). 본 발명의 포토디타진은 클로로필-a 유도체를 기초로 하여 페오포르비드 a로부터 공지의 방법으로 제조될 수 있고, 시판중인 제품을 사용할 수도 있다.Photodiazine is an N-methyl-D-glucosamine derivative of chlorine e 6 and has the structure of Formula 6 (FIG. 2). The photodithazine of the present invention can be produced from the pheophorbide a based on chlorophyll-a derivatives by a known method, and commercially available products can also be used.
화학식 6
Figure PCTKR2010004134-appb-C000006
Formula 6
Figure PCTKR2010004134-appb-C000006
포토디타진 (PZ)은, 물에 녹을 수 있고, 포피린이 여기되는 630nm에서보다 생물학적 조직을 더 통과하는 650-680 nm 범위에서 강력한 흡수를 나타낸다. Photodiazine   (PZ) exhibits strong absorption in the 650-680 nm range, which is soluble in water and more passes through biological tissue than at 630 nm where porphyrin is excited.
포토디타진은 아래와 같은 생활성을 가진다:Photodiazine has the following bioactivity:
- 스펙트럼의 장파장 적색 영역에서의 강력한 흡수 밴드(λmax663 nm, e=38.200 M-1cm-1);Strong absorption band in the long wavelength red region of the spectrum (λ max 663 nm, e = 38.200 M −1 cm −1 );
- 비록 663 nm 밴드에서의 분자 여기에 관하여, 분해능이 나쁠지라도, 650 내지 680 nm 사이에서의 형광성(밴드의 절반 너비) 및, 동시에 75%의 높은 상호전환 양자 수율을 가짐;With respect to molecular excitation in the 663 nm band, although having poor resolution, it has a fluorescence (half width of the band) between 650 and 680 nm and a high interconversion quantum yield of 75% at the same time;
- 낮은 암흑 치사 독성의 특징이 확인됨;-Characterized by low dark lethal toxicity;
- 포토디타진 대비 최대값은 4-6 h p.i.로 관찰되었고, 근육-대-종양 비율의 최대값은 대략 15로 관찰되었으며, 전체 클리어런스 기간은 24-36 h p.i.로 관찰됨; The maximum value for photoditagen was observed at 4-6 h p.i., the maximum value of muscle-to-tumor ratio was observed at approximately 15, and the overall clearance period was observed at 24-36 h p.i .;
- 물에 대한 우수한 용해도를 가지고 정맥 주사 액제가 가능함;Intravenous fluids with good solubility in water;
- 2 년 이상 동안 수용액 상으로 어두운 곳에서 안정함.Stable in the dark with an aqueous solution for at least 2 years.
- 포토디타진의 단점으로서, 이의 발열성이 언급될 수 있음;As a disadvantage of photoditagen, its exotherm may be mentioned;
다만, 상기 클로린 유도체는 광감작제로서 깊은 곳에 위치한 종양에는 침투가 어려워 치료 효율이 떨어져 완치가 안되며 재발의 가능성이 높다는 단점이 있다.However, the chlorine derivative has a disadvantage in that it is difficult to penetrate into a tumor deeply located as a photosensitizer and thus does not cure completely and has a high possibility of recurrence.
한편, 양자점은 형광성 반도체 나노결정으로서, 고유한 광채를 가지며, 여기 에너지를 저장하고 양자점 표면에 존재하고 일중항산소를 생산하는, 많은 염료 분자들에 이를 분배한다. 또한, 이들의 흡수 스펙트럼이 넓기 때문에 효과적인 광자 수집자이다. 양자점은 좁은 방출 스펙트럼을 가지며, 양자점의 광자 흡수는 인체 피부의 스펙트럼 투명 창으로 조절될 수 있다. 더 나아가, 양자점은 높은 광안정성을 가지고 약물 전달을 위한 운반체이다.Quantum dots, on the other hand, are fluorescent semiconductor nanocrystals that have a unique glow and distribute them to many dye molecules, which store excitation energy and exist on the surface of quantum dots and produce singlet oxygen. In addition, they are effective photon collectors because of their broad absorption spectrum. Quantum dots have a narrow emission spectrum, and the photon absorption of the quantum dots can be controlled by the spectral transparent window of the human skin. Furthermore, quantum dots are carriers for drug delivery with high photostability.
양자점은 대략 2-10 nm 크기의 형광 나노결정이며 생체적합적이다. 본 발명에서, 양자점을 표면 코팅하여, 이들을 수용성이고, 생체 적합적이며, 타깃 특이적으로 할 수 있고, 기능기화할 수 있다. Quantum dots are fluorescent nanocrystals approximately 2-10 nm in size and are biocompatible. In the present invention, the quantum dots can be surface coated to make them water-soluble, biocompatible, target-specific, and functionalized.
본 발명의 일 구현예에 따르면, 상기 양자점과 클로린 유도체의 접합체를 제공한다. 본 발명의 양자점-클로린 유도체의 접합체는 양자점에 의하여 스펙트럼의 근적외선 영역에서 최소한의 빛 산란과 흡수가 있기 때문에, 상대적으로 낮은 세기의 빛은 수 센티미터의 깊이로 조직을 통과하는데 사용될 수 있으며, 이에 따라 더 깊이 자리잡은 종양에 접근하게 될 수 있다. 본 발명의 양자점-클로린 유도체의 접합체에 있어서, 양자점의 커다란 전이 쌍극자 모멘트로 인하여, 양자점은 강한 흡수체이므로, PDT 응용을 위한 적합한 작용제가 된다. According to one embodiment of the present invention, a conjugate of the quantum dot and a chlorine derivative is provided. Since the conjugates of the quantum dot-chlorine derivatives of the present invention have minimal light scattering and absorption in the near infrared region of the spectrum by quantum dots, relatively low intensity light can be used to penetrate the tissue to a depth of several centimeters, More deeply located tumors may be accessed. In the conjugates of the quantum dot-chlorine derivatives of the present invention, due to the large transition dipole moment of the quantum dots, the quantum dots are strong absorbers, making them suitable agents for PDT applications.
또한, 본 발명의 양자점과 클로린 유도체의 접합체는 일중항산소의 생성을 최대화 한다. CdSe QDs는 형광 공명 에너지 이동(FRET) 메커니즘에 의하여 PDT 작용제를 감작하는데 사용될 수 있다. FRET를 위하여, CdSe QDs에서 일중항산소의 생성은 두 단계를 수반한다. 첫째로, 광여기는 QD로부터 광감각제로 이동한다. 둘째로, 염료는 에너지를 둘러싸인 용매 내에 존재하는 산소로 이동시킨다. 이에 따라 일중항산소가 증가하게 되어 광감작제의 PDT 효율을 향상시킬 수 있으며, 또한 양자점 암 부위로의 약물 전달체로서 작용하게 되어 양자점과 클로린 유도체의 접합체가 암 부위로 효과적으로 전달되게 된다. 즉, 다시 말해 PDT를 위한 광감작제, 형광 진단과 MRI를 위한 강화 물질용 형광체(양자점)의 화학적 결합을 통해 이미징(imaging), 에너지 수집자(1O2) 및 약물 전달체로서 이용될 수 있는 것이다(도 3). In addition, the conjugate of the quantum dot and the chlorine derivative of the present invention maximizes the production of singlet oxygen. CdSe QDs can be used to sensitize PDT agents by fluorescence resonance energy transfer (FRET) mechanisms. For FRET, the production of singlet oxygen in CdSe QDs involves two steps. First, photoexcitation moves from the QD to the photosensitive agent. Secondly, the dye transfers energy to oxygen present in the enclosed solvent. Thus, it is possible to increase the singlet oxygen be possible to improve the efficiency of PDT light sensitizer, and also causes the quantum dot is to act as a drug delivery system to the cancer site is the conjugates of quantum dots and chlorin derivatives effectively delivered to the cancer site. In other words, it can be used as an imaging, energy collector ( 1 O 2 ) and drug carrier through chemical coupling of a photosensitizer for PDT, a fluorescent (quantum dot) for enriched material for fluorescence diagnostics and MRI (FIG. 3).
또한, 본 발명의 양자점과 클로린 유도체의 접합체는 수용성 및 광안정성이 우수하고, 암흑독성, 발열, 이성체, 불순물 등의 부작용이 적다. In addition, the conjugate of the quantum dot and the chlorine derivative of the present invention is excellent in water solubility and light stability, and has less side effects such as dark toxicity, exotherm, isomers, and impurities.
본 발명에서 "세포 증식 억제", "세포 성장 저해" 또는 이와 유사한 형태의 용어는 세포수의 증가현상을 억제하는 것으로 어느정도까지의 모든 저해, 예를 들어 약 20 % 이상, 약 50 % 이상, 약 90 % 이상, 약 99 % 이상과 완벽한 억제 즉, 100 % 저해를 포함하는 뜻이다.In the present invention, the term "inhibition of cell proliferation", "inhibition of cell growth" or similar form is used to suppress an increase in cell number, to any extent to any inhibition, for example, about 20% or more, about 50% or more, about That means containing over 90%, over 99% and complete inhibition ie 100% inhibition.
본 발명에서 "광역학 치료(PDT)"란 광감작제(약물), 빛 그리고 산소의 조합에 의한 치료를 말한다. 구체적으로, 먼저 광감작제를 인체에 투여하게 되면 광감작제가 병소 즉, 종양 조직에 축적되게 되고 이후 가시광선을 조사하게 되면 일중항산소의 생산을 최대화하여 종양이 선택적으로 파괴되는 것이다.In the present invention, "photodynamic therapy (PDT)" refers to a treatment by a combination of a photosensitizer (drug), light and oxygen. Specifically, when the first photosensitizer is administered to the human body, the photosensitizer accumulates in the lesion, that is, the tumor tissue, and when the visible light is irradiated, the tumor is selectively destroyed by maximizing the production of singlet oxygen.
본 발명의 일 실시예에서는 링커 작용기를 가진 포토디타진과 같은 클로린 유도체를 제조하고, CdSe 중심핵과 ZnS 쉘을 포함하는 양자점에 리간드를 부착한 뒤, 상기 링커 작용기와 리간드를 통해 클로린 유도체를 양자점에 접합시켜 양자점-클로린 유도체의 접합체를 합성한다.In one embodiment of the present invention, a chlorine derivative such as photoditagen having a linker functional group is prepared, and a ligand is attached to a quantum dot including a CdSe core and a ZnS shell, and then the chlorine derivative is attached to the quantum dot through the linker functional group and the ligand. Conjugation synthesizes a conjugate of quantum dot-chlorine derivatives.
본 발명에서, 링커 작용기와 리간드는 양자점과 클로린 유도체가 접합된 후 양자점의 형광 공명 에너지 전이(FRET)가 가능한 것으로 선택해야 한다. 본 발명에서는 이러한 링커 작용기로서 에틸렌디아민을 사용하고 리간드로서 3-머캡토프로피온산을 사용하였으나, 양자점의 에너지 전이가 가능하도록 상기 두 화합물을 접합시킬 수 있는 것이라면 어느 것이나 사용 가능하다.In the present invention, the linker functional group and the ligand should be selected to enable fluorescence resonance energy transfer (FRET) of the quantum dots after the quantum dots and the chlorine derivative are conjugated. In the present invention, ethylenediamine is used as the linker functional group and 3-mercaptopropionic acid is used as the ligand, but any one can be used as long as the two compounds can be conjugated to enable energy transfer of quantum dots.
본 발명의 구체적 실시예에서, 양자점과 클로린 유도체의 접합체는 레이저를 조사했을 때 클로린 유도체 단독 물질에 비하여 현저히 뚜렷한 세포 성장 저해 효과를 나타내는 것으로 확인되었다. 구체적으로 자궁경부암 세포주인 CaSki 세포주를 클로린 유도체 단독 물질 및 양자점-클로린 유도체의 접합체로 각각 처리한 후 배양한 다음 레이저를 조사하고 세포 성장 저해 효과를 MTT 분석법으로 관찰한 결과, 클로린 유도체 단독에 비해 접합체에서 현저히 우수한 세포 성장 저해 효과가 나타남을 알 수 있었다.In a specific embodiment of the present invention, the conjugate of the quantum dot and the chlorine derivative was found to have a markedly marked cell growth inhibitory effect compared to the chlorine derivative alone when irradiated with a laser. Specifically, CaSki cell line, which is a cervical cancer cell line, was treated with conjugates of chlorine derivatives alone and quantum dot-chlorine derivatives, and then cultured, and then irradiated with laser and observed cell growth inhibition effect by MTT assay. It can be seen that the remarkably excellent cell growth inhibitory effect at.
본 발명의 양자점-클로린 유도체의 접합체를 제조하는 방법은 하기 단계를 포함한다:The method for preparing the conjugates of the quantum dot-chlorine derivatives of the present invention comprises the following steps:
링커 작용기를 가진 클로린 유도체를 제조하는 단계;Preparing a chlorine derivative having a linker functional group;
양자점에 리간드를 부착시키는 단계;Attaching a ligand to the quantum dots;
상기에서 제조된 링커 작용기를 가진 클로린 유도체에 리간드가 부착된 양자점을 접합시켜 양자점-클로린 유도체의 접합체를 얻는 단계; 및Conjugating a quantum dot to which a ligand is attached to a chlorine derivative having a linker functional group prepared above to obtain a conjugate of a quantum dot-chlorine derivative; And
상기에서 얻은 양자점-클로린 유도체의 접합체를 친수성 유기 아민으로 처리하여 수용성 접합체로 전환시키는 단계.Converting the conjugate of the quantum dot-chlorine derivative obtained above into a water-soluble conjugate by treating with a hydrophilic organic amine.
이하, 본 발명의 양자점-클로린 유도체 접합체를 제조하는 방법을 바람직한 일 실시예를 들어 상세히 설명한다.Hereinafter, a method for preparing a quantum dot-chlorine derivative conjugate of the present invention will be described in detail with reference to a preferred embodiment.
1. 출발 물질 준비1. Preparation of starting materials
광역학 치료를 위한 장파장을 흡수하는 클로린계 광감작제를 얻는 주요 합성 방법은 2가지가 있다. 첫째로는 천연 소재로부터 분리된 클로린 화합물을 변형시키는 방법이며 두번째로는 다단계 합성 과정으로 피롤로부터 합성하는 방법이다. 이들 중 어느 것을 사용해도 되나 본 발명에서는 천연 소재로부터 클로로필-a를 분리하여 이를 기질로 사용하여 추가적인 변형을 거치는 방법을 사용하였다. 본 발명에서, 출발 물질 즉, 메틸 페오포르비드-a는 스피루리나 맥시마(Spirulina maxima) 조류로부터 얻는다. 이 과정을 간략히 나타내면 하기 반응식 1과 같다.There are two main synthetic methods for obtaining chlorine-based photosensitisers that absorb long wavelengths for photodynamic therapy. The first is to modify chlorine compounds isolated from natural materials, and the second is to synthesize from pyrrole in a multi-step synthesis process. Any of these may be used, but in the present invention, a method of separating chlorophyll-a from natural materials and using it as a substrate is used to undergo further modification. In the present invention, the starting material, methyl pheophorbid-a , is obtained from Spirulina maxima algae. This process is briefly shown in Scheme 1 below.
[반응식 1] Scheme 1
Figure PCTKR2010004134-appb-I000001
Figure PCTKR2010004134-appb-I000001
보다 구체적으로 설명하면, 스피루리나 맥시마(Spirulina maxima) 조류를 질소 대기하에서 아세톤으로 환류하여 페오피틴-a를 함유하는 분획을 추출한다. 그 다음 상기 분획을 냉각하여 침전물을 제거함으로써 상기 분획 내 불순물을 제거한다. 그 후, 상기 분획에 5% 황산의 메탄올 용액을 처리하여 에스테르교환반응 및 디메탈레이션(demetallation)을 수행한다. 반응 후, 출발 물질을 컬럼 크로마토그래피로 정제한다.More specifically, by reflux with acetone Spirulina maxima (Spirulina maxima) under a nitrogen atmosphere and algae extracts a fraction containing pheophytin -a. The fractions are then removed by cooling the fractions to remove precipitates. Thereafter, the fraction is treated with a methanol solution of 5% sulfuric acid to perform transesterification and demetallation. After the reaction, the starting material is purified by column chromatography.
2. 메틸 페오포르비드-a로부터 클로린 e6-계 광감작제 합성2. Synthesis of Chlorine e 6 -Based Photosensitizer from Methyl Pheophorvid-a
합성되는 광감작제가 이상적인 광감작제에게 요구되는 특성들 중 하나인 높은 순도를 가져야만 하기 때문에, 이 부분이 광감작제와 양자점으로 이루어진 접합체를 제조하기 위해 중요한 부분 중 하나이다.Since the photosensitizer to be synthesized must have high purity, which is one of the characteristics required for the ideal photosensitizer, this is one of the important parts for producing a conjugate composed of the photosensitizer and quantum dots.
접합을 위한 링커 작용기로서 사용하기 위한 아미노기를 함유하는 클로린-e6 유도체를 얻고자 한다. 아민을 포함하는 친핵체(nucleophiles)의 작용으로 메틸 페오포르피드-a 내 외부 고리를 개환시키는 것이 클로린-e6 분자의 외부둘레 위치에 다양한 작용기를 도입하기 위한 편리한 방법으로 사용될 수 있다. 따라서, 메틸 페오포르비드-a를 실온에서 디클로로메탄 또는 클로로포름 내에서 과량의 모노-Boc 보호화 에틸렌디아민으로 반응시켜 클로린-e6 유도체를 얻는다. 에틸렌디아민의 한쪽 말단에 위치한 아미노기가 보호됨으로써, 반응이 선택적으로 수행되고, 아울러 추가적인 반응을 수행하기 편리하다.It is intended to obtain chlorine-e 6 derivatives containing amino groups for use as linker functional groups for conjugation. Ring opening of the outer ring in methyl pheophorpid-a by the action of nucleophiles comprising amines can be used as a convenient way to introduce various functional groups at the outer circumferential position of the chlorine-e 6 molecule. Thus, methyl pheophorbide-a is reacted with excess mono-Boc protected ethylenediamine in dichloromethane or chloroform at room temperature to give chlorine-e 6 derivatives. By protecting the amino group located at one end of the ethylenediamine, the reaction is carried out selectively and it is convenient to carry out further reactions.
또한, 주목적 중의 하나는 수용성 광감작제를 합성하는 것이다. 그러므로, 클로린-e6 유도체 내 2개의 메틸 에스테르 기를 알칼리 조건에서 가수분해하고 카르복실산기로 전환시켜 수용성이 되도록 만든다. 이러한 변형은 나노입자에 접합하기 전에 수행되어야만 한다. 가수분해 후에, 보호기는 나노입자에 접합시키기 위하여 광감작제로부터 제거되어야만 한다. 이 과정을 간략히 나타내면 하기 반응식 2와 같다.In addition, one of the main purposes is to synthesize a water-soluble photosensitizer. Therefore, the two methyl ester groups in the chlorine-e 6 derivatives are hydrolyzed under alkaline conditions and converted to carboxylic acid groups to make them water soluble. Such modifications must be performed before conjugation to the nanoparticles. After hydrolysis, the protecting group must be removed from the photosensitizer to bond to the nanoparticles. This process is briefly shown in Scheme 2 below.
[반응식 2] Scheme 2
Figure PCTKR2010004134-appb-I000002
Figure PCTKR2010004134-appb-I000002
3. 클로린-e6 계 광감작제와 양자점 나노입자의 접합3. Conjugation of Chlorin-e 6 Photosensitizer with Quantum Dot Nanoparticles
본 발명에서는 상업적으로 입수가능하고 화학적으로 밝혀진 양자점을 사용하였다. 양자점은 첫째로 3-머캡토프로피온산으로 반응시켜 표면을 카르복실기로 작용기화시켜야 한다. 양자점의 카르복실화는 양자점을 아미노 링커 작용기를 가진 광감작제에 공유결합적으로 접합시킬 수 있게 만든다. 이 과정을 간략히 나타내면 하기 반응식 3과 같다.In the present invention, commercially available and chemically identified quantum dots were used. Quantum dots must first react with 3-mercaptopropionic acid to functionalize the surface with carboxyl groups. Carboxylation of the quantum dots makes it possible to covalently bond the quantum dots to a photosensitiser having amino linker functionality. This process is briefly shown in Scheme 3 below.
[반응식 3] Scheme 3
Figure PCTKR2010004134-appb-I000003
Figure PCTKR2010004134-appb-I000003
둘째로, 카르보디이미드 커플링 기법을 이용하여 접합을 수행한다. 이 과정은 친수성 활성화 작용기, N-히드록시설포숙신이미드(Sulfo-NHS)의 존재 하에, 영-길이(zero-length) 가교제, 1-에틸-3-[3-디메틸아미노프로필]카르보디이미드 하이드로클로라이드(EDCHCI)를 사용함으로써 카르복실산-작용기화된 양자점과 1차 아민을 함유하는 분자 간에 안정한 아미드 결합을 형성함으로써 수행된다. 이 과정을 간략히 나타내면 하기 반응식 4와 같다.Second, the conjugation is carried out using the carbodiimide coupling technique. This process involves a zero-length crosslinker, 1-ethyl-3- [3-dimethylaminopropyl] carbodiimide, in the presence of a hydrophilic activating functional group, N-hydroxysulfosuccinimide (Sulfo-NHS). By using hydrochloride (EDCHCI) to form stable amide bonds between carboxylic acid-functionalized quantum dots and molecules containing primary amines. This process is briefly shown in Scheme 4 below.
[반응식 4] Scheme 4
Figure PCTKR2010004134-appb-I000004
Figure PCTKR2010004134-appb-I000004
4. N-메틸-D-글루코사민을 이용한 접합체의 착물화4. Complexation of Conjugates with N-Methyl-D-Glucosamine
마지막 단계는 N-메틸-D-글루코사민과, 접합체 내 2개의 카르복실기 간의 착물화를 통해 접합체를 수용성이 되도록 만드는 것이다. 이 과정을 간략히 나타내면 하기 반응식 5와 같다.The final step is to make the conjugate water soluble by complexing between N-methyl-D-glucosamine and two carboxyl groups in the conjugate. This process is briefly shown in Scheme 5 below.
[반응식 5] Scheme 5
Figure PCTKR2010004134-appb-I000005
Figure PCTKR2010004134-appb-I000005
QD-클로린 유도체 접합체의 흡수 최대점은, 클로린 유도체 단독의 최대점(663.8 nm)과 비교하였을 때 656 nm로 감소되었다.The absorption maximum point of the QD-chlorine derivative conjugate was reduced to 656 nm as compared to the maximum point of the chlorine derivative alone (663.8 nm).
단독의 클로린 유도체를 뛰어넘는 QD-클로린 유도체의 명백한 장점으로는 QDs의 더욱 큰 흡수 계수(광감작제와 함께 효과적으로 에너지를 전달하는 능력과 더불어)가 포함된다. 대상이 되는 타깃 분자에 대한 능력, 이미징 가능 출력 및 공유 결합하는 QD-클로린 유도체 콘쥬게이트는 이미징 및 광역학적 치료를 위한 다기능적인 프로브로서 이용될 수 있다. 더 나아가, 클로린 유도체-QD의 결합을 개발함으로써, 클로린 유도체 단독일 때 보여지는, 암흑(dark) 독성, 발열 및 아이소머 불순물의 함량의 부작용은 감소될 수 있다. 결과적으로 향상된 효과와 감소된 부작용을 가지는 새로운 약물이 암을 치료할 수 있게 된다. 또한 이와 동시에 QD 및 광감작제가 공동으로 발생하는 형광성으로 인해 종양을 진단할 수 있다.Obvious advantages of QD-chlorine derivatives over chlorine derivatives alone include the greater absorption coefficients of QDs (along with their ability to effectively transfer energy with photosensitisers). The ability, imageable output, and covalently binding QD-chlorine derivative conjugates to target target molecules can be used as multifunctional probes for imaging and photodynamic therapy. Furthermore, by developing the binding of chlorine derivatives-QDs, side effects of the dark toxicity, exothermic and content of isomer impurities seen when chlorine derivatives alone can be reduced. As a result, new drugs with improved effects and reduced side effects can cure cancer. At the same time, tumors can be diagnosed due to the co-fluorescence of QDs and photosensitisers.
본 발명에서는 QD-광감작제 접합체 내 양자점의 형광성을 이용함으로써, 암세포를 진단할 수 있다.In the present invention, cancer cells can be diagnosed by utilizing the fluorescence of quantum dots in the QD-photosensitizer conjugate.
본 발명은 광역학 치료를 위한 광감작제와 형광 진단 및 MRI를 위한 강화 물질용 형광체인 양자점을 화학적으로 접합시킴으로써 암 치료와 진단을 위한 단일 약제로서 유용하게 사용될 수 있다.The present invention can be usefully used as a single agent for the treatment and diagnosis of cancer by chemically conjugating a photosensitizer for photodynamic therapy and a quantum dot, which is a phosphor for enhancing substances for fluorescence diagnosis and MRI.
도 1은 변형된 야블론스키 다이아그램을 나타낸 것이다. 여기에서 1은 흡수, 2는 비방사성 붕괴, 3은 형광, 4는 계간 교차, 5는 인광, 6은 에너지 전달을 의미한다.1 shows a modified Jablonsky diagram. Where 1 is absorption, 2 is non-radioactive decay, 3 is fluorescence, 4 is cross-over, 5 is phosphorescence, and 6 is energy transfer.
도 2는 포토디타진의 구조를 나타낸 것이다.Figure 2 shows the structure of the photoditazine.
도 3은 양자점과 클로린 유도체 사이의 형광 공명 에너지 이동을 도식화 한 것이다.Figure 3 illustrates the fluorescence resonance energy transfer between quantum dots and chlorine derivatives.
도 4는 173-디카르복실산(PS)의 UV 스펙트럼이다.4 is the UV spectrum of 17 3 -dicarboxylic acid (PS).
도 5는 카르복실화되기 전 양자점의 UV 스펙트럼이다.5 is the UV spectrum of quantum dots before carboxylation.
도 6은 카르복실화된 양자점의 UV 스펙트럼이다.6 is the UV spectrum of carboxylated quantum dots.
도 7은 양자점과 클로린-e6 유도체의 수용성 접합체의 UV 스펙트럼이다.7 is a UV spectrum of a water soluble conjugate of quantum dots and chlorine-e 6 derivatives.
도 8은 양자점(QD), 카르복실화된 양자점(QDCOOH) 및 접합 전 광감작제(PS)의 형광 방출 스펙트럼을 비교한 것이다. FIG. 8 compares the fluorescence emission spectra of quantum dots (QD), carboxylated quantum dots (QDCOOH) and pre-bonded photosensitizers (PS).
도 9는 접합 후 본 발명의 접합체의 형광 방출 스펙트럼을 나타낸다.9 shows the fluorescence emission spectrum of the conjugates of the present invention after conjugation.
도 10은 양자점 단독(A), 카르복실화된 양자점(B), 및 양자점과 클로린-e6 유도체의 접합체(C)의 TEM 이미지를 측정한 결과이다.10 shows the results of measuring TEM images of quantum dots alone (A), carboxylated quantum dots (B), and conjugates (C) of quantum dots and chlorine-e 6 derivatives.
도 11은 레이저를 조사하지 않았을 때 0.03125 및 0.0625 uM의 양자점-클로린 유도체 접합체와 클로린 유도체를 각각 자궁경부암 세포주인 CaSki 세포주에 처리한 후 세포 성장 저해 효과를 조사한 결과이다.FIG. 11 shows the results of cell growth inhibition after treatment of CaSki cell line, which is a cervical cancer cell line, with quantum dot-chlorine derivative conjugates and chlorine derivatives of 0.03125 and 0.0625 uM, respectively, without laser irradiation.
도 12는 레이저를 조사하였을 때 0.03125 및 0.0625 uM의 양자점-클로린 유도체 접합체와 클로린 유도체를 각각 자궁경부암 세포주인 CaSki 세포주에 처리한 후 세포 성장 저해 효과를 조사한 결과이다.12 shows the results of investigating the effect of inhibiting cell growth after treatment of CaSki cell line, which is a cervical cancer cell line with 0.03125 and 0.0625 uM of quantum dot-chlorine derivative conjugate and chlorine derivative, respectively.
이하, 본 발명을 실시 예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시 예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시 예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.
실시예 1: 스피루리나 맥시마 조류로부터 메틸페오포르비드-a(MPa, 화합물 1)의 합성Example 1 Synthesis of Methylfephoformide-a (MPa, Compound 1) from Spirulina Maxima Algae
건조된 스피루리나 맥시마(Spirulina maxima) 조류 500 g을 2 시간 동안 질소 하에서 2 L의 아세톤으로 환류시켰다. 그 다음 상청액을 뜨거울 때 뷰너 깔때기 상에서 와트만 여과지로 여과시키고, 여분의 아세톤을 상기에서 남은 고형물에 첨가하였다. 상기 동일한 과정에 따라 추출과 여과 과정을 3회 반복하였다. 녹색 여과액을 증발시키고 잔사물을 300 ml의 아세톤에 다시 용해시킨 후 냉장고에서 냉각시킨 다음 적색의 고형 불순물을 제거하기 위하여 여과하였다. 페오피틴-a를 함유하는 여과액을 증발시키고, 질소 하, 어두운 곳, 실온에서 12.5 시간 동안 5% 황산의 메탄올 용액(500 ml)으로 처리하였다. 상기 용액을 디클로로메탄(~500 ml)으로 희석하고 물(~500 ml)로 헹구고, 10% 탄산수소나트륨 수용액(~500 ml)으로 헹군 다음 다시 물로 3회 헹구었다. 유기층을 분리해내고 무수 황산나트륨 상에서 건조한 다음 건조한 상태가 되도록 증발시켰다. 잔사물을 실리카 겔 60(230-400 메쉬) 상에서 디클로로메탄 내 2% 아세톤으로 용출시켜 컬럼 크로마토그래피함으로써 정제하였다. 생성물을 디클로로메탄/메탄올로 재결정시켰다. The dried Spirulina maxima (Spirulina maxima) birds 500 g for 2 hours and refluxed to 2 L of acetone under nitrogen. The supernatant was then filtered over Whatman filter paper on a Buener funnel when hot and extra acetone was added to the remaining solid above. The extraction and filtration were repeated three times according to the same procedure. The green filtrate was evaporated and the residue was redissolved in 300 ml of acetone, cooled in a refrigerator and filtered to remove red solid impurities. The filtrate containing pheophytin-a was evaporated and treated with methanol solution of 5% sulfuric acid (500 ml) for 12.5 hours at room temperature under dark, nitrogen. The solution was diluted with dichloromethane (˜500 ml) and rinsed with water (˜500 ml), rinsed with 10% aqueous sodium bicarbonate solution (˜500 ml) and then rinsed three times with water. The organic layer was separated, dried over anhydrous sodium sulfate and evaporated to dryness. The residue was purified by column chromatography eluting with 2% acetone in dichloromethane on silica gel 60 (230-400 mesh). The product was recrystallized from dichloromethane / methanol.
수율: (1.99 g) 0.4%. Yield: (1.99 g) 0.4%.
R f : 불순물로부터 분리된 순수한 MPa에 대하여 0.4(디클로로메탄 내 2% 아세톤). R f : 0.4 (2% acetone in dichloromethane) for pure MPa isolated from impurities.
UV-vis (CH 2 Cl 2 ): λ max, nm (log ε) 667.6 (0.655), 610.4 (0.124), 537.7 (0.145), 507.9 (0.158), 412.5 (1.52). UV-vis (CH 2 Cl 2 ): λ max , nm (log ε) 667.6 (0.655), 610.4 (0.124), 537.7 (0.145), 507.9 (0.158), 412.5 (1.52).
1 H-NMR (300 MHz, CDCl 3 , TMS int ): δ H, ppm 9.50 (1H, s, 5-meso-H), 9.35 (1H, s, 10-meso-H), 8.55 (1H, s, 20-meso-H), 7.97 (1H, m, 31-CH), 6.30 및 6.19 (2H, dd, 32-CH 2 ), 6.25 (1H, s, 132-CH), 4.46 (1H, m, 18-CH), 4.21 (1H, m, 17-CH), 3.88 (3H, s, 134-OCH 3 ), 3.65 (2H, q, 81-CH 2 ), 3.68 (3H, s, 174-OCH 3 ), 3.57 (3H, s, 121-CH 3 ), 3.39 (3H, s, 21-CH 3 ), 3.21 (3H, s, 71-CH 3 ), 2.63-2.17 (4H, m, 171 및 172 - 2 × CH 2 ), 1.81 (3H, d, 181-CH 3 ), 1.68 (3H, t, 82-CH 3 ), 0.53 및 -1.63 (2H, 각각 s, br, 2 × NH). 1 H-NMR (300 MHz, CDCl 3 , TMS int ): δ H , ppm 9.50 (1H, s, 5-meso- H ), 9.35 (1H, s, 10-meso- H ), 8.55 (1H, s , 20-meso- H ), 7.97 (1H, m, 3 1 -C H ), 6.30 and 6.19 (2H, dd, 3 2 -C H 2 ), 6.25 (1H, s, 13 2 -C H ), 4.46 (1H, m, 18-C H ), 4.21 (1H, m, 17-C H ), 3.88 (3H, s, 13 4 -OC H 3 ), 3.65 (2H, q, 8 1 -C H 2 ), 3.68 (3H, s, 17 4 -OC H 3 ), 3.57 (3H, s, 12 1 -C H 3 ), 3.39 (3H, s, 2 1 -C H 3 ), 3.21 (3H, s, 7 1 -C H 3), 2.63-2.17 (4H, m, 17 1 and 17 2 - 2 × C H 2 ), 1.81 (3H, d, 18 1 -C H 3), 1.68 (3H, t, 8 2 -C H 3 ), 0.53 and -1.63 (2H, s, br, 2 x N H , respectively).
실시예 2: 메틸 페오포르비드-a로부터 클로린-e6-131-N-(2-Boc-NH-에틸)아미드-152(173-디메틸 에스테르, 화합물 2) 합성Example 2: Preparation of methyl formate peoh bead -a chlorin -e 6 -13 1 -N- (2- Boc-NH- ethyl) -amide from 2 -15 (17, 3-dimethyl ester, Compound 2) Synthesis
CH2CI2 (7 ml) 내 메틸 페오포르비드-a (509 mg, 0.839 mmol) 및 TEA (4 방울)의 용액을 과량의 터트-부틸-N-(2-아미노에틸)카바메이트로 38 시간 동안 실온의 어두운 곳에서 처리하였다. 반응물을 TLC(디클로로메탄 내 10% 아세톤에서)를 통해 모니터하였다. 출발 물질이 사라진 후에, 반응 혼합물을 진공 하에서 농축시켰다. 잔사물을 실리카 겔 60(63-200 메쉬) 상에서 디클로로메탄 내 10% 아세톤으로 이루어진 용액으로 용출시켜 컬럼 크로마토그래피를 수행하여 정제하였다. 용매는 감압 하에 제거하고 잔사물을 디클로로메탄/헥산으로 재결정시켜 정제하였다.A solution of methyl pheophorbid-a (509 mg, 0.839 mmol) and TEA (4 drops) in CH 2 CI 2 (7 ml) was added with an excess of tert -butyl-N- (2-aminoethyl) carbamate for 38 hours. Treatment in the dark at room temperature. The reaction was monitored via TLC (at 10% acetone in dichloromethane). After the starting material disappeared, the reaction mixture was concentrated in vacuo. The residue was purified by column chromatography, eluting with silica gel 60 (63-200 mesh) with a solution of 10% acetone in dichloromethane. The solvent was removed under reduced pressure and the residue was purified by recrystallization from dichloromethane / hexanes.
수율: 532.4 mg (82.7%). Yield: 532.4 mg (82.7%).
R f : 0.21 (아세톤:디클로로메탄 1:9 용액 내). R f : 0.21 (in acetone: dichloromethane 1: 9 solution).
UV-vis (CH 2 Cl 2 ): λmax, nm (Abs) 663.6 (0.86), 607.5 (0.21), 527.0 (0.21), 500.4 (0.33), 401.5 (2.29) and 331.1 (0.839). UV-vis (CH 2 Cl 2 ): λmax, nm (Abs) 663.6 (0.86), 607.5 (0.21), 527.0 (0.21), 500.4 (0.33), 401.5 (2.29) and 331.1 (0.839).
1 H-NMR (500 MHz, CDCl 3 ): δH, ppm 9.68 (1H, s, 5-meso-H), 9.62 (1H, s, 10-meso-H), 8.79 (1H, s, 20-meso-H), 8.07 (1H, m, J 18.25 Hz, J 12 Hz, 31-CH), 6.85 (1H, br s, 131-NH), 6.34 (1H, dd, J 17.75 Hz, J 1.5 Hz, 32-CH (trans)), 6.13 (1H, dd, J 11.25 Hz, J 1.5 Hz, 32-CH (cis)), 5.53 (1H, d, J 19 Hz, 151a-CH), 5.27 (1H, d, J 19 Hz, 151b-CH), 5.32 (br s, 1H, 133-NH), 4.46 (1H, m, 17-CH), 4.38 (1H, m, 18-CH), 3.93-3.75 (2H, m, 132-CH2), 3.79 (2H, q, 81-CH 2 ), 3.77 (3H, s, 153-CH 3 ), 3.59 (3H, s, 174-CH 3 ), 3.54 (3H, s, 121-CH 3 ), 3.57-3.53 (2H, m, 133-CH2), 3.48 (3H, s, 21-CH 3 ), 3.30 (3H, s, 71-CH 3 ), 2.56-1.77 (4H, m, 171-CH2, 172-CH 2 ), 1.73-1.69 (6H, m, 181-CH 3 , 82-CH 3 서로 겹침), 1.41 (9H, s, 134-(CH3)3), -1.57 (1H, br s, 21-NH), -1.78 (1H, br s, 23-NH). One H-NMR (500 MHz, CDCl 3 ): δH, ppm 9.68 (1H, s, 5-meso-H), 9.62 (1H, s, 10-meso-H), 8.79 (1H, s, 20-meso-H), 8.07 (1H, m, J 18.25 Hz, J 12 Hz, 3One-CH), 6.85 (1H, broad s, 13One-NH), 6.34 (1H, doublet of doublets, J 17.75 Hz, J 1.5 Hz, 32-CH (trans)), 6.13 (1H, doublet of doublets, J 11.25 Hz, J 1.5 Hz, 32-CH (cis)), 5.53 (1H, d, J 19 Hz, 151a-CH), 5.27 (1H, d, J 19 Hz, 151b-CH), 5.32 (br s, 1 H, 133-NH), 4.46 (1H, m, 17-C)H), 4.38 (1H, m, 18-CH), 3.93-3.75 (2H, m, 132-CH2), 3.79 (2H, q, 8One-CH                  2 ), 3.77 (3H, s, 153-CH                  3 ), 3.59 (3H, s, 174-CH                  3 ), 3.54 (3H, s, 12One-CH                  3 ), 3.57-3.53 (2H, m, 133-CH2), 3.48 (3H, s, 2One-CH                  3 ), 3.30 (3H, s, 7One-CH                  3 ), 2.56-1.77 (4H, m, 17One-CH2, 172-CH                  2 ), 1.73-1.69 (6H, m, 18One-CH                  3 , 82-CH                  3 Overlapping), 1.41 (9H, s, 134-(CH3)3), -1.57 (1H, br s, 21-NH), -1.78 (1H, br s, 23-NH).
실시예 3: 클로린-e6-131-N-(2-Boc-NH-에틸)아미드-152로부터 클로린-e6-131-N-(2-아미노에틸)아미드-152(173-디카르복실산, PS, 화합물 4) 합성Example 3: Preparation chlorin -e 6 -13 1 -N- (2- Boc-NH- ethyl) -amide -15 2 chlorine from -e 6 -13 1 -N- (2- amino-ethyl) -amide -15 2 (17 3 -dicarboxylic acid, PS, compound 4) synthesis
THF (10 ml) 내 클로린-e6-131-N-(2-Boc-NH-에틸)아미드-152(173-디메틸 에스테르, 화합물 2)(240 mg, 0.313 mmol)와, 탈이온수(10 ml)에 용해된 LiOH (600 mg, 25.05 mmol)의 혼합물을 대기 하에서 12 시간 동안 실온에서 교반하였다. 그 후, 반응 혼합물을 용액의 pH가 7이 될 때까지 2N 염산으로 중화시켰다. 그 다음, 상기 혼합물을 디클로로메탄으로 추출하고 유기층을 분리하였다. 수층은 무색이 될 때까지 디클로로메탄으로 추출하였다. 모든 유기층을 모아서 물로 3회 헹구고 무수 황산 나트륨 상에서 건조시켰다. 용매는 회전 증발기에 의해 제거되었다. 잔사물을 디클로로메탄 내 30% 메탄올로 용출시켜 실리카 상에서 컬럼 크로마토그래피하여 정제함으로써 Rf=0.12(1:4/메탄올:디클로로메탄)를 가진 주 생성물(화합물 3)을 얻었다. 용매는 감압 하에 제거하고 잔사물을 다음 단계에 곧바로 사용하였다. 가수분해된 잔사물을 디클로로메탄(6 ml)과 TFA(6 ml)의 혼합물 내에서 40 분 동안 실온 하에서 교반하였다. 그 후, 용매는 건조되도록 진공 하에서 제거되고 잔사물은 미량의 산을 제거하기 위하여 디클로로메탄과 물로 추출하였다. 녹색 현탁액 형상의 유기층은 물로 3회 헹구고 무수 황산 나트륨으로 건조되었다. 용매는 진공 하에서 농축시키고 잔사물은 에틸 아세테이트, 디클로로메탄, 메탄올로 각 1회씩, 그리고 에테르로 2회 각각 10 분 동안 3000 rpm으로 원심분리함으로써 연속하여 헹구었다. 그 후, 잔사물을 밤새 진공 오븐에서 건조시켰다. 생성물인 173-디카르복실산(PS)의 UV 스펙트럼을 측정한 결과 도 4와 같았다.THF (10 ml) in chlorin -e 6 -13 1 -N- (2- Boc-NH- ethyl) -amide -15 2 (17, 3-dimethyl ester, Compound 2) (240 mg, 0.313 mmol) and deionized water A mixture of LiOH (600 mg, 25.05 mmol) dissolved in (10 ml) was stirred at rt for 12 h under air. The reaction mixture was then neutralized with 2N hydrochloric acid until the pH of the solution reached 7. The mixture was then extracted with dichloromethane and the organic layer was separated. The aqueous layer was extracted with dichloromethane until it was colorless. All organic layers were combined, rinsed three times with water and dried over anhydrous sodium sulfate. Solvent was removed by rotary evaporator. The residue was purified by column chromatography on silica eluting with 30% methanol in dichloromethane to give the main product (Compound 3) with R f = 0.12 (1: 4 / methanol: dichloromethane). The solvent was removed under reduced pressure and the residue was used directly in the next step. The hydrolyzed residue was stirred in a mixture of dichloromethane (6 ml) and TFA (6 ml) for 40 minutes at room temperature. The solvent was then removed under vacuum to dry and the residue was extracted with dichloromethane and water to remove traces of acid. The organic layer in the form of a green suspension was washed three times with water and dried over anhydrous sodium sulfate. The solvent was concentrated in vacuo and the residue was rinsed continuously by centrifugation at 3000 rpm for 10 min each with ethyl acetate, dichloromethane, methanol once, and twice with ether. Thereafter, the residue was dried in a vacuum oven overnight. As a result of measuring the UV spectrum of the product 17 3 -dicarboxylic acid (PS) it was as shown in FIG.
수율: 151.8 mg (65.6%). Yield: 151.8 mg (65.6%).
R f : 0.44 (메탄올 내). R f : 0.44 (in methanol).
UV-vis (CH 3 OH+CH 2 Cl 2 ): λmax, nm (Abs) 663.8 (0.71), 607.2 (0.22), 531.3 (0.23), 502.0 (0.30), 405.1 (2.08) and 330.2 (0.95). UV-vis (CH 3 OH + CH 2 Cl 2 ): λmax, nm (Abs) 663.8 (0.71), 607.2 (0.22), 531.3 (0.23), 502.0 (0.30), 405.1 (2.08) and 330.2 (0.95).
발광 (H 2 O): λexc= 330 nm, λem= 666 nm (1) (도 8) Luminescence (H 2 O): λ exc = 330 nm, λ em = 666 nm (1) (FIG. 8)
FT-IR (KBr 펠렛): 3600-2400 cm-1 (매우 넓음, O-H stretch), 3300-3400 (primary N-H stretch), 3000 (C-H stretch), 1700 (C=O stretch) 및 1140 (C-N stretch). FT-IR (KBr pellet): 3600-2400 cm -1 (very wide, OH stretch), 3300-3400 (primary NH stretch), 3000 (CH stretch), 1700 (C = O stretch) and 1140 (CN stretch) .
1 H-NMR (500 MHz, DMSO): δH, ppm 9.72 (2H, s, 5- 및 10-meso-H 겹침), 9.09 (2H, s, 기저에서 br, 20-meso-H, 131-NH 겹침), 8.33 (1H, m, J 17.75 Hz, J 12 Hz, 31-CH), 6.45 (1H, dd, J 18.5 Hz, J 1 Hz, 32-CH (trans)), 6.17 (1H, dd, J 11.5 Hz, J 1 Hz, 32-CH (cis)), 5.19 (2H, m, 151-CH 2 ), 4.58 (2H, m, 17-CH 및 18-CH 겹침), 3.82 (6H, m 기저에서 넓어짐, 81-CH 2 , 132-CH2 및 133-NH2 겹침), 3.53 (3H, s, 121-CH 3 ), 3.47 (3H, s, 21-CH 3 ), 3.32 (3H, s, 71-CH 3 ), 3.20 (2H, m, 133-CH2), 2.70-2.00 (4H, m, 171-CH2, 172-CH 2 ), 1.68 (6H, m, 181-CH 3 및 82-CH 3 겹침), -1.82 및 -2.16 (2H, 각각 br s, 21- 및 23-NH). 1 H-NMR (500 MHz, DMSO): δ H , ppm 9.72 (2H, s, 5- and 10-meso- H overlap), 9.09 (2H, s, br at bottom, 20-meso- H , 13 1 -NH overlap), 8.33 (1H, m, J 17.75 Hz, J 12 Hz, 3 1 -C H ), 6.45 (1H, dd, J 18.5 Hz, J 1 Hz, 3 2 -C H (trans) ), 6.17 (1H, dd, J 11.5 Hz, J 1 Hz, 3 2 -C H (cis) ), 5.19 (2H, m, 15 1 -C H 2 ), 4.58 (2H, m, 17-C H and 18 -C H overlap), 3.82 (6H, m widening at base, 8 1 -C H 2 , 13 2 -CH 2 and 13 3 -NH 2 overlap), 3.53 (3H, s, 12 1 -C H 3 ), 3.47 (3H, s, 2 1 -C H 3 ), 3.32 (3H, s, 7 1 -C H 3 ), 3.20 (2H, m, 13 3 -CH 2 ), 2.70-2.00 (4H, m, 17 1 -CH 2 , 17 2 -C H 2 ), 1.68 (6H, m, overlapping 18 1 -C H 3 and 8 2 -C H 3 ), -1.82 and -2.16 (2H, br s, 21- and 23-N H ).
HRMS (FAB): m/z 639.3297 (71.2%), (MH+. C36H43N6O5은 639.3295을 필요로 한다). HRMS (FAB): m / z 639.3297 (71.2%), (MH + .C 36 H 43 N 6 O 5 requires 639.3295).
실시예 4: 양자점의 카르복실화(QDCOOH)Example 4 Carboxylation of Quantum Dots (QDCOOH)
톨루엔 내 양자점의 용액 5 ml (10 mg/ml)를 취하여 무수 메탄올(30 ml)로 침전시켰다. 상기 침전물을 20 분 동안 3000 rpm으로 원심분리하였다. 이러한 과정을 3회 이상 반복하였다. 그 다음 상기 젖은 침전물을 5 ml의 DMF와 2 ml의 3-머캡토프로피온산의 혼합물 내에서 재현탁시켰다. 상기 혼합물은 서서히 투명하게 되었고 어두운 곳에서 대기 하에 6 시간 동안 실온에서 교반하였다. 그 후, 상기 반응 혼합물에 에테르를 첨가하고 침전물을 5 분 동안 3000 rpm에서 원심분리함으로써 수집한 다음 상기 침전물을 무수 메탄올로 헹구고 5 분 동안 3000 rpm에서 원심분리하였다. 이러한 과정을 2회 이상 반복하였다. 젖은 침전물을 5 분 동안 3000 rpm에서 에테르로부터 원심분리하였다. 소량의 1M NaOH 용액을 첨가하여 카르복실화된 양자점을 수용액으로 변형시켰다. 카르복실화되기 전 양자점의 UV 스펙트럼을 측정한 결과 도 5와 같았으며, 카르복실화된 양자점의 UV 스펙트럼을 측정한 결과 도 6과 같았다.5 ml (10 mg / ml) of a solution of quantum dots in toluene was taken and precipitated with anhydrous methanol (30 ml). The precipitate was centrifuged at 3000 rpm for 20 minutes. This process was repeated three more times. The wet precipitate was then resuspended in a mixture of 5 ml of DMF and 2 ml of 3-mercaptopropionic acid. The mixture slowly became clear and stirred at room temperature for 6 hours under air in the dark. Thereafter, ether was added to the reaction mixture and the precipitate was collected by centrifugation at 3000 rpm for 5 minutes, and then the precipitate was rinsed with anhydrous methanol and centrifuged at 3000 rpm for 5 minutes. This process was repeated two more times. The wet precipitate was centrifuged from ether at 3000 rpm for 5 minutes. A small amount of 1M NaOH solution was added to transform the carboxylated quantum dots into an aqueous solution. As a result of measuring the UV spectrum of the quantum dots before carboxylation was as shown in Figure 5, the UV spectrum of the carboxylated quantum dots was measured as shown in FIG.
UV-vis (H 2 O): λmax, nm (Abs) 600 (0.18) 및 336.5 (0.55). UV-vis (H 2 O): λmax, nm (Abs) 600 (0.18) and 336.5 (0.55).
발광 (H 2 O): λexc= 330 nm, λem= 611.7 nm (0.99) (도 8) Luminescence (H 2 O): λ exc = 330 nm, λ em = 611.7 nm (0.99) (FIG. 8)
FT-IR (KBr 펠렛): 2400-3500 cm-1 (O-H stretch, 매우 넓음), 2920 (C-H stretch), 1700 (C=O stretch) 및 1260 (C-O stretch). FT-IR (KBr pellet): 2400-3500 cm -1 (OH stretch, very wide), 2920 (CH stretch), 1700 (C = O stretch) and 1260 (CO stretch).
실시예 5: 양자점과 클로린-e6 유도체의 접합체 제조 및 상기 접합체의 착물화(QD-PS)Example 5 Preparation of Conjugates of Quantum Dots and Chlorin-e 6 Derivatives and Complexation of the Conjugates (QD-PS)
MES 버퍼 용액 (2 ml, 0.1M, pH 5.0)을, 1M NaOH 용액(3 방울)이 첨가된 탈이온수(1 ml) 내에 용해된 카르복실화된 양자점(10 mg)의 혼합물에 첨가하고 상기 혼합물을 실온에서 교반하였다. 상기 혼합물에, MES 버퍼 용액(1 ml, 0.1M, pH 5.0) 내 EDCHCI (10 mg) 및 설포-NHS (27.6 mg)의 용액을 첨가하고 반응 혼합물의 pH를 1M NaOH 용액(약 3 방울)으로 즉시 6.3으로 조정하였다. 상기 반응 혼합물을 실온에서 30 분 동안 교반하였다. 그 후, 남아 있는 미반응 EDC는 2-머캡토에탄올(3.5 ml, 14.3 mol/L)을 첨가하여 퀀칭시키고 상기 혼합물은 10 분 동안 그대로 두었다. 반응 혼합물의 pH를 농축 PBS를 이용하여 7.4로 올렸다. 그 다음, PBS 버퍼 (2 ml, pH 7.4) 내 클로린-e6 유도체 용액을 상기 활성화된 양자점을 함유하는 용액에 첨가하고 실온에서 2 시간 동안 천천히 교반하였다. 양자점 표면 상의 미반응된 설포-NHS 기를 가수분해하기 위하여 상기 반응물에 글리신 용액 (1 ml, 14 mg)을 첨가함으로써 10 분 동안 퀀칭시켰다. 상기 반응 용액을 친수성 셀룰로즈 아세테이트 시린지 필터(0.45 mm)로 여과하였다. 여과된 접합체 용액을 12-14 kDa MWCO 마이크로원심분리 튜브를 이용하여 48 시간 동안 4회 버퍼 교환 하면서 투석함으로써 정제하여 부산물과 미반응 화합물을 제거하였다. MES buffer solution (2 ml, 0.1M, pH 5.0) is added to a mixture of carboxylated quantum dots (10 mg) dissolved in deionized water (1 ml) to which 1 M NaOH solution (3 drops) is added and the mixture Was stirred at room temperature. To this mixture, a solution of EDCHCI (10 mg) and sulfo-NHS (27.6 mg) in MES buffer solution (1 ml, 0.1M, pH 5.0) was added and the pH of the reaction mixture was adjusted to 1M NaOH solution (about 3 drops). Immediately adjusted to 6.3. The reaction mixture was stirred at rt for 30 min. The remaining unreacted EDC was then quenched by the addition of 2-mercaptoethanol (3.5 ml, 14.3 mol / L) and the mixture was left for 10 minutes. The pH of the reaction mixture was raised to 7.4 using concentrated PBS. Then, a solution of chlorine-e6 derivative in PBS buffer (2 ml, pH 7.4) was added to the solution containing the activated quantum dots and stirred slowly at room temperature for 2 hours. The reaction was quenched for 10 minutes by adding glycine solution (1 ml, 14 mg) to hydrolyze the unreacted sulfo-NHS groups on the quantum dot surface. The reaction solution was filtered through a hydrophilic cellulose acetate syringe filter (0.45 mm). The filtered conjugate solution was purified by dialysis using a 12-14 kDa MWCO microcentrifuge tube with 4 buffer exchanges for 48 hours to remove byproducts and unreacted compounds.
투석 후, 상기 접합체는 과량의 N-메틸-D-글루코사민(16 mg)과 3 시간 동안 반응시켜 수용성 접합체를 얻었다. 그 후, 결과적으로 얻은 용액을 시린지 필터(0.45 mm)를 이용하여 여과하였다. 여과된 혼합물을 추가적인 특성 조사 및 시험관내 및 생체내 실험을 위하여 4℃에서 보관하였다. 생성물인 양자점과 클로린-e6 유도체의 수용성 접합체의 UV 스펙트럼을 측정한 결과 도 7과 같았다.After dialysis, the conjugate was reacted with excess N-methyl-D-glucosamine (16 mg) for 3 hours to obtain a water soluble conjugate. The resulting solution was then filtered using a syringe filter (0.45 mm). The filtered mixture was stored at 4 ° C. for further characterization and in vitro and in vivo experiments. As a result of measuring the UV spectrum of the water-soluble conjugate of the product quantum dots and chlorine-e 6 derivatives were as shown in FIG.
UV-vis (H 2 O): λmax, nm (Abs) 656.0 (0.29), 501.0 (0.18), 403.6 (0.92), 및 341.2 (0.37). UV-vis (H 2 O): λmax, nm (Abs) 656.0 (0.29), 501.0 (0.18), 403.6 (0.92), and 341.2 (0.37).
발광 (H 2 O): λexc= 330 nm, λem= 611.6 (QD part), 640 nm (PS part) (도 9) Luminescence (H 2 O): λ exc = 330 nm, λ em = 611.6 (QD part), 640 nm (PS part) (FIG. 9)
본 발명에서 양자점과 클로린 유도체(광감작제)간 접합을 확인하기 위하여, 양자점 단독, 광감작제 단독 및 접합체 간 형광 스펙트럼을 비교하였다.In order to confirm the conjugation between the quantum dot and the chlorine derivative (photosensitizer) in the present invention, the fluorescence spectra of the quantum dot alone, the photosensitizer alone and the conjugate were compared.
도 8은 330 nm에서 여기되었을 때 상기 실시예 3에서 제조한 173-디카르복실산(PS), 양자점 및 상기 실시예 4에서 제조한 카르복실화된 양자점의 형광 스펙트럼을 비교한 것이다. Figure 8 is a three-17 prepared in Example 3, when excited at 330 nm - a comparison of the fluorescence spectra of the dicarboxylic acid (PS), a quantum dot and a carboxylated quantum dots prepared in Example 4.
도 9는 330 nm에서 여기되었을 때 본 실시예 5에서 제조된 양자점-광감작제 접합체의 형광 스펙트럼을 나타낸다.9 shows the fluorescence spectrum of the quantum dot-photosensitizer conjugate prepared in Example 5 when excited at 330 nm.
도 8을 통해 알 수 있듯이, 일반적으로, 양자점(611-612 nm)과 광감작제(666 nm) 모두 600-700 nm 범위에서 효과적으로 강한 방출을 나타낸다. 그러나, 도 9를 통해 알 수 있듯이, 양자점-광감작제 접합체의 형광 방출 스펙트럼은 330 nm에서 여기되었을 때 2개의 피크가 611.6 nm 및 640 nm에서 서로 겹치는(overlapped) 것으로 나타났다. 이러한 피크 중에 611.6 nm에서의 방출 피크는 접합체 내 양자점의 존재를 나타내는 것이다. 이와 비슷하게, 640 nm에서의 방출 피크는 접합체 내 광감작제의 존재를 나타내는 것이나, 이 피크의 파장은 광감작제 단독(666 nm, 도 8)보다 감소되었다.As can be seen from FIG. 8, in general, both quantum dots (611-612 nm) and photosensitizer (666 nm) exhibit effective strong emission in the 600-700 nm range. However, as can be seen from FIG. 9, the fluorescence emission spectrum of the quantum dot-photosensitizer conjugate showed two peaks overlapping each other at 611.6 nm and 640 nm when excited at 330 nm. Among these peaks the emission peak at 611.6 nm is indicative of the presence of quantum dots in the conjugate. Similarly, the emission peak at 640 nm indicates the presence of a photosensitizer in the conjugate, but the wavelength of this peak was reduced compared to the photosensitiser alone (666 nm, FIG. 8).
한편, 양자점 단독(A), 상기 실시예 4에서 제조한 카르복실화된 양자점(B), 및 본 실시예 5에서 제조한 양자점과 클로린-e6 유도체의 접합체(C)의 TEM 이미지를 측정하여 그 결과를 도 10에 나타내었다. 도 10을 통해 양자점과 클로린 유도체(광감작제)간 접합을 확인할 수 있었다.On the other hand, by measuring the TEM image of the quantum dot alone (A), the carboxylated quantum dot (B) prepared in Example 4, and the conjugate (C) of the quantum dot and chlorine-e 6 derivative prepared in Example 5 The results are shown in FIG. 10, the conjugation between the quantum dot and the chlorine derivative (photosensitizer) was confirmed.
실험예 1: 본 발명 양자점-클로린 유도체 접합체의 세포 성장 저해 효과 조사Experimental Example 1 Investigation of Cell Growth Inhibition Effect of the Present Quantum Dot-Chlorin Derivative Conjugate
상기 실시예 5에서 제조된 양자점과 클로린-e6 유도체의 접합체에 의한 암세포의 성장 억제 효과를 확인하기 위하여 자궁경부암 세포주인 CaSki 세포주에서 세포성장 저해 효과를 조사하였다. In order to confirm the growth inhibitory effect of cancer cells by the conjugate of the quantum dot and chlorine-e 6 derivative prepared in Example 5, the cell growth inhibition effect was investigated in CaSki cell line, which is a cervical cancer cell line.
CaSki 세포주는 DMEM (Dulbecco's modified eagle's medium) 배지 (Gibco, Rockville, MD, USA)에 5% 우태아혈청 (Gibco, Rockville, MD, USA), 0.37% 탄산수소나트륨(sodium bicarbonate), 20mM HEPES 그리고 스트렙토마이신/페니실린 (Gibco, Rockville, MD, USA)을 첨가하여 사용하였으며, 37℃, 5% CO2 배양기에서 배양하였다.CaSki cell lines in DMEM (Dulbecco's modified eagle's medium) medium (Gibco, Rockville, MD, USA), 5% fetal bovine serum (Gibco, Rockville, MD, USA), 0.37% sodium bicarbonate, 20 mM HEPES and streptoto Mycin / penicillin (Gibco, Rockville, MD, USA) was used to add and incubated in 37 ℃, 5% CO 2 incubator.
CaSki 세포주를 96 well plate에 3X103으로 분주한 후, 각각 0.03125 및 0.0625 uM의 농도로 양자점-클로린 유도체 접합체와 클로린 유도체를 처리한 후 12시간 후에 배지를 교체하였다. 배지 교체 후, 662±3 nm 레이저를 조사하지 않은 그룹과 6.25J/Cm2로 조사한 그룹의 세포 성장 저해 효과를 24시간 후에 MTT assay 법으로 관찰하였다.CaSki cell lines were dispensed into 3 wells in 96 well plates at 3 × 10 3 , and medium was changed after 12 hours after treatment with quantum dot-chlorine derivative conjugates and chlorine derivatives at concentrations of 0.03125 and 0.0625 uM, respectively. After medium replacement, the cell growth inhibition effect of the group irradiated with 662 ± 3 nm laser and the group irradiated with 6.25J / Cm 2 was observed after 24 hours by MTT assay.
그 결과를 도 11 및 도 12에 각각 나타내었다. 도 11은 레이저를 조사하지 않은 그룹에 대한 결과이다. 도 11을 통해 알 수 있는 바와 같이, 레이저를 조사하지 않았을 때 즉, 빛이 없을 때 클로린 유도체 단독 물질과 본 발명의 접합체는 모두 세포 성장 저해 효과를 나타내지 않았다. 도 12는 레이저를 조사한 그룹에 대한 결과이다. 도 12를 통해 알 수 있는 바와 같이, 클로린 유도체 단독 물질에 비해 본 발명의 접합체에서 현저히 우수한 세포 성장 저해 효과가 나타났다.The results are shown in FIGS. 11 and 12, respectively. 11 shows the results for the group not irradiated with laser. As can be seen from FIG. 11, when the laser was not irradiated, that is, when there was no light, the chlorine derivative alone and the conjugate of the present invention did not show cell growth inhibitory effects. 12 shows the results for the group irradiated with the laser. As can be seen from Figure 12, compared with the chlorine derivative alone, the cell growth inhibitory effect was significantly superior in the conjugate of the present invention.

Claims (16)

  1. 양자점-클로린 유도체의 접합체를 함유하는 광감작제.A photosensitizer containing a conjugate of quantum dot-chlorine derivatives.
  2. 제1항에 있어서, 상기 양자점은 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, PbS, PbSe, PbTe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbS, PbSe 및 PbTe로 이루어진 군에서 선택되는 것임을 특징으로 하는 광감작제.The method of claim 1, wherein the quantum dot is CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, PbS, PbSe, PbTe Photosensitive agent, characterized in that selected from the group consisting of, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbS, PbSe and PbTe.
  3. 제1항에 있어서, 상기 양자점은 CdSe/ZnS, ZnTe/ZnSe, ZnSe/ZnTe, ZnTe/ZnO, ZnO/ZnTe, ZnSe/ZnO, ZnO/ZnSe, ZnS/ZnO, ZnO/ZnS, ZnTe/ZnS, ZnS/ZnTe, InP/ZnTe 및 ZnTe/InP로 이루어진 군에서 선택되는 코어/쉘 구조의 양자점인 것을 특징으로 하는 광감작제.The method of claim 1, wherein the quantum dot is CdSe / ZnS, ZnTe / ZnSe, ZnSe / ZnTe, ZnTe / ZnO, ZnO / ZnTe, ZnSe / ZnO, ZnO / ZnSe, ZnS / ZnO, ZnO / ZnS, ZnTe / ZnS, Zn / ZnTe, InP / ZnTe and ZnTe / InP is a photo-sensitizer, characterized in that the core / shell quantum dot selected from the group consisting of.
  4. 제1항에 있어서, 상기 클로린 유도체는 포토디타진, 라다클로린(Radachlorin), 2-(1-헥실에틸)-2-디비닐피로페오포르비드-α(HPPH)[2-(1-hexylethyl)-2-devinylpyropheophorbide-α(HPPH)], 또는 모노-L-아스파르틸클로린 e6 (NPe6)[mono-L-aspartylchlorin e6 (NPe6)]인 것을 특징으로 하는 광감작제.The method of claim 1, wherein the chlorine derivative is photoditazine, Radachlorin, 2- (1-hexylethyl) -2-divinylpyrophorovide-α (HPPH) [2- (1-hexylethyl) -2-devinylpyropheophorbide-α (HPPH) ], or mono -L- aspartyl chlorin e 6, characterized in that the photosensitizer (NPe 6) [mono-L -aspartylchlorin e 6 (NPe 6)].
  5. 제1항에 있어서, 상기 광감각제는 650 nm 내지 800 nm 범위의 광선에 대하여 광감작 활성을 보이는 광감작제.The light sensitizer of claim 1, wherein the light sensitizer exhibits photosensitivity activity to light rays ranging from 650 nm to 800 nm.
  6. 제1항 내지 제5항 중 어느 한 항에 따른 광감각제를 유효성분으로 포함하는 광역학 치료에 사용하기 위한 암 치료용 또는 진단용 조성물.A cancer treatment or diagnostic composition for use in photodynamic therapy comprising the photosensitive agent according to any one of claims 1 to 5 as an active ingredient.
  7. 제6항에 있어서, 상기 광감각제는 650 nm 내지 800 nm 범위의 광선에 대하여 생체 외 또는 생체 내에서 광활성화되는 것을 특징으로 하는 조성물.The composition of claim 6, wherein the photosensitizer is photoactivated in vitro or in vivo for light rays ranging from 650 nm to 800 nm.
  8. 제6항에 있어서, 상기 암은 피부, 소화기, 비뇨기, 생식기, 호흡기, 순환기, 뇌 및 신경계의 암으로 이루어진 군 중에서 선택되는 것을 특징으로 하는 조성물.The composition of claim 6, wherein the cancer is selected from the group consisting of skin, digestive, urinary, genital, respiratory, circulatory, brain and nervous system cancers.
  9. 제8항에 있어서, 상기 암은 폐암, 비소세포성 폐암, 결장암, 골암, 췌장암, 피부암, 두부 또는 경부 암, 자궁암, 난소암, 직장암, 위암, 항문부근암, 결장암, 유방암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호지킨병(Hodgkin's disease), 식도암, 소장암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장 또는 수뇨관암, 신장세포 암종, 신장골반 암종, 중추신경계(CNS; central nervous system) 종양, 1차 중추신경계 림프종, 척수 종양, 뇌간 신경교종 및 뇌하수체 선종으로 이루어진 군에서 선택되는 것을 특징으로 하는 조성물.The method of claim 8, wherein the cancer is lung cancer, non-small cell lung cancer, colon cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, uterine cancer, ovarian cancer, rectal cancer, gastric cancer, anal muscle cancer, colon cancer, breast cancer, fallopian tube carcinoma, uterus Endometrial carcinoma, cervical carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, endocrine adenocarcinoma, thyroid cancer, parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, chronic Or acute leukemia, lymphocytic lymphoma, bladder cancer, kidney or ureter cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system (CNS) tumor, primary central nervous system lymphoma, spinal cord tumor, brain stem glioma and pituitary adenoma Compositions selected from the group.
  10. 제6항에 있어서, 정맥 주사, 복강내 주사, 근육내 주사, 두개 내 주사, 종양 내 주사, 상피내 주사, 피부관통전달, 식도 투여, 복부 투여, 동맥 주사, 관절내 주사, 및 구강내 투여로 이루어진 군 중에서 선택된 경로로 투여되는 것을 특징으로 하는 조성물.The method of claim 6, wherein the intravenous injection, intraperitoneal injection, intramuscular injection, intracranial injection, intratumoral injection, intraepithelial injection, dermal penetration, esophageal administration, abdominal administration, arterial injection, intraarticular injection, and oral administration. A composition, characterized in that administered by a route selected from the group consisting of.
  11. 제1항 내지 제5항 중 어느 한 항에 따른 광감각제를 유효성분으로 포함하는 조성물; 및A composition comprising the photosensitive agent according to any one of claims 1 to 5 as an active ingredient; And
    파장이 650 nm 내지 800 nm 범위인 광선을 조사하기 위한 광원을 포함하는, 광역학 치료에 사용하기 위한 암 치료용 키트.A cancer therapy kit for use in photodynamic therapy comprising a light source for irradiating light with a wavelength in the range of 650 nm to 800 nm.
  12. 제11항에 있어서, 상기 암은 피부, 소화기, 비뇨기, 생식기, 호흡기, 순환기, 뇌 및 신경계의 암으로 이루어진 군 중에서 선택되는 것을 특징으로 하는 암 치료용 키트.The kit for treating cancer of claim 11, wherein the cancer is selected from the group consisting of skin, digestive, urinary, genital, respiratory, circulatory, brain, and nervous system cancers.
  13. 하기 단계를 포함하는 양자점-클로린 유도체의 접합체의 제조방법:Method for producing a conjugate of quantum dot-chlorine derivatives comprising the following steps:
    링커 작용기를 가진 클로린 유도체를 제조하는 단계;Preparing a chlorine derivative having a linker functional group;
    양자점에 리간드를 부착시키는 단계;Attaching a ligand to the quantum dots;
    상기에서 제조된 링커 작용기를 가진 클로린 유도체에 리간드가 부착된 양자점을 접합시켜 양자점-클로린 유도체의 접합체를 얻는 단계; 및Conjugating a quantum dot to which a ligand is attached to a chlorine derivative having a linker functional group prepared above to obtain a conjugate of a quantum dot-chlorine derivative; And
    상기에서 얻은 양자점-클로린 유도체의 접합체를 친수성 유기 아민으로 처리하여 수용성 접합체로 전환시키는 단계.Converting the conjugate of the quantum dot-chlorine derivative obtained above into a water-soluble conjugate by treating with a hydrophilic organic amine.
  14. 제13항에 있어서, 상기 링커 작용기는 에틸렌디아민인 제조방법.The method of claim 13, wherein the linker functional group is ethylenediamine.
  15. 제13항에 있어서, 상기 리간드는 3-머캡토프로피온산인 제조방법.The method of claim 13, wherein the ligand is 3-mercaptopropionic acid.
  16. 제13항에 있어서, 상기 친수성 유기 아민은 N-메틸-D-글루코사민인 제조방법.The method of claim 13, wherein the hydrophilic organic amine is N-methyl-D-glucosamine.
PCT/KR2010/004134 2009-06-26 2010-06-25 Photosensitizer containing conjugates of quantum dot-chlorine derivatives and composition for treating and diagnosing cancer containing same for photodynamic therapy WO2010151074A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090057910 2009-06-26
KR10-2009-0057910 2009-06-26

Publications (2)

Publication Number Publication Date
WO2010151074A2 true WO2010151074A2 (en) 2010-12-29
WO2010151074A3 WO2010151074A3 (en) 2011-05-19

Family

ID=43387066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004134 WO2010151074A2 (en) 2009-06-26 2010-06-25 Photosensitizer containing conjugates of quantum dot-chlorine derivatives and composition for treating and diagnosing cancer containing same for photodynamic therapy

Country Status (2)

Country Link
KR (1) KR101288460B1 (en)
WO (1) WO2010151074A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2717920A2 (en) * 2011-06-11 2014-04-16 University Of Central Florida Research Foundation, Inc. Activatable nanoprobes for intracellular drug delivery
RU2638446C1 (en) * 2016-12-14 2017-12-13 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Method for directed destruction of cancer cells
CN107722075A (en) * 2017-10-09 2018-02-23 大连理工大学 A kind of chlorin glucoside compounds and preparation method and application

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101668561B1 (en) 2015-07-13 2016-10-21 원광대학교산학협력단 Composition for photodynamic therapy of cancer diseases using gene expressing green fluorescent protein and rose bengal and method for photodynamic therapy using thereof
US20170049891A1 (en) * 2015-08-17 2017-02-23 Nanoco Technologies Ltd. 5-aminolevulinic acid conjugated quantum dot nanoparticle
KR101911725B1 (en) 2017-01-16 2018-12-28 주식회사 코어파마 Composition for photodynamic therapy using gene expressing red fluorescent protein and tin ethyl etiopurpurin and method for photodynamic therapy using thereof
KR102277244B1 (en) * 2019-09-03 2021-07-13 인제대학교 산학협력단 Carbon quantum dots-polypyrrole nano composite for bioimaging and photothermal therapeutics and method for manufacturing the same
KR102256817B1 (en) 2019-09-09 2021-05-26 한국교통대학교산학협력단 Self­Healing Electro Chemical wireless diagnosing method using Hydrogel with Carbon quantum dot
KR102294374B1 (en) 2019-09-09 2021-08-26 한국교통대학교산학협력단 Electro Chemical wireless diagnosing method using Carbon quantum dot
CN114933904B (en) * 2022-06-14 2024-02-06 中国医科大学 Ultrathin shell chiral cadmium selenide/cadmium sulfide material for optical diagnosis and treatment and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080104495A (en) * 2007-05-28 2008-12-03 전남대학교산학협력단 Kits and methods for biological detection using quantum dots

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080104495A (en) * 2007-05-28 2008-12-03 전남대학교산학협력단 Kits and methods for biological detection using quantum dots

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BECHET, DENISE ET AL.: 'Nanoparticles as vehicles for delivery of photodynamic therapy agents' TRENDS IN BIOTECHNOLOGY vol. 26, no. 11, 2008, pages 612 - 621 *
CHO, SUNG JU ET AL.: 'Long-Term Exposure to CdTe Quantum Dots Causes Functional Impairments in Live Cells' LANGMUIR vol. 23, 2007, pages 1974 - 1980 *
SHAN, YAMING ET AL.: 'NHS-mediated QDs-peptide/protein conjugation and its application for cell labeling' TALANTA vol. 75, 2008, pages 1008 - 1014 *
TSAY, M. JAMES ET AL.: 'Singlet Oxygen Production by Peptide-Coated Quantum Dot- Photosensitizer Conjugates.' J. AM. CHEM. SOC. vol. 129, 2007, pages 6865 - 6871 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2717920A2 (en) * 2011-06-11 2014-04-16 University Of Central Florida Research Foundation, Inc. Activatable nanoprobes for intracellular drug delivery
EP2717920A4 (en) * 2011-06-11 2015-04-29 Univ Central Florida Res Found Activatable nanoprobes for intracellular drug delivery
US9474809B2 (en) 2011-06-11 2016-10-25 University Of Central Florida Research Foundation, Inc. Activatable nanoprobes for intracellular drug delivery
RU2638446C1 (en) * 2016-12-14 2017-12-13 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Method for directed destruction of cancer cells
CN107722075A (en) * 2017-10-09 2018-02-23 大连理工大学 A kind of chlorin glucoside compounds and preparation method and application

Also Published As

Publication number Publication date
KR20110000524A (en) 2011-01-03
WO2010151074A3 (en) 2011-05-19
KR101288460B1 (en) 2013-07-26

Similar Documents

Publication Publication Date Title
WO2010151074A2 (en) Photosensitizer containing conjugates of quantum dot-chlorine derivatives and composition for treating and diagnosing cancer containing same for photodynamic therapy
US5770730A (en) Synthesis of carbodimide analogs of chlorins and bacteriochlorins and their use for diagnosis and treatment of cancer
US8658433B2 (en) Dye compounds as photoactive agents
EP1443972A4 (en) Pathological tissue detection and treatment employing targeted benzoindole optical agents
WO1997032885A9 (en) Synthesis of isoimide of chlorins and bacteriochlorins and their use for diagnosis and treatment of cancer
Lee et al. Use of the chlorophyll derivative, purpurin-18, for syntheses of sensitizers for use in photodynamic therapy
WO2011090333A2 (en) Chlorine derivative/unsaturated fatty acid conjugates, photosensitizers comprising same, and cancer treatment compositions to be used in photodynamic therapy comprising same
JP2002020389A (en) Long wavelength absorption bacteriochlorin alkyl ether analogue
Luan et al. Phthalocyanine-cRGD conjugate: synthesis, photophysical properties and in vitro biological activity for targeting photodynamic therapy
WO2003032900A2 (en) Carbocyanine dyes for tandem, photodiagnostic and therapeutic applications
AU2005275220B2 (en) Adduct of fluorescent dye and tumor avid tetrapyrrole
US20020169107A1 (en) Novel aromatic azides for type I phototherapy
US8664392B2 (en) Pyrazine derivatives for bioconjugation
Meng et al. Amino acid derivatives of pyropheophorbide-a ethers as photosensitizer: Synthesis and photodynamic activity
WO2003065888A1 (en) Dye-bioconjugates for simultaneous optical diagnostic and therapeutic applications
EP2201897A2 (en) Tumor targeted photodiagnostic-phototherapeutic agents
AU2003279973A1 (en) Azo compounds for type i phototherapy
WO2010151073A2 (en) Conjugates of anticancer chemotherapeutic agent-chlorine derivatives, photosensitizer containing same and composition for treating cancer containing same
EP3870558A1 (en) Novel compounds and uses of same for near-infrared cherenkov luminescence imaging and/or for deep tissue treatment by cherenkov dynamic phototherapy
Zhang et al. Synthesis and cellular properties of a 1 3 1 substituted chlorin e 6-nevirapine conjugate
AU2004238410B2 (en) Amphiphilic trisulfonated porphyrazines for photodynamic applications in medicine
WO2016047947A2 (en) Tetrapyrazinoporphyrazine derivative for photodynamic therapy and method for preparing same
WO2016159661A1 (en) Cell containing photosensitizer, preparation method thereof, and use thereof
WO2018012778A1 (en) Photosensitizer-peptide conjugate comprising degradable linker, and composition for photodynamic diagnosis or treatment comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792356

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.03.2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10792356

Country of ref document: EP

Kind code of ref document: A2