WO2010150667A1 - 電池制御装置及び電池制御方法 - Google Patents

電池制御装置及び電池制御方法 Download PDF

Info

Publication number
WO2010150667A1
WO2010150667A1 PCT/JP2010/059914 JP2010059914W WO2010150667A1 WO 2010150667 A1 WO2010150667 A1 WO 2010150667A1 JP 2010059914 W JP2010059914 W JP 2010059914W WO 2010150667 A1 WO2010150667 A1 WO 2010150667A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
discharge capacity
value
unit
charge
Prior art date
Application number
PCT/JP2010/059914
Other languages
English (en)
French (fr)
Inventor
阿部 浩幸
哲也 八田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN201080028086.9A priority Critical patent/CN102460198B/zh
Priority to EP10791985.4A priority patent/EP2447729B1/en
Priority to JP2011519750A priority patent/JP5519665B2/ja
Publication of WO2010150667A1 publication Critical patent/WO2010150667A1/ja
Priority to US13/295,496 priority patent/US8810203B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery control device and a battery control method for controlling a secondary battery.
  • Patent Document 1 relates to charge / discharge control of a plurality of NaS batteries.
  • Patent Document 1 when a power storage device including a plurality of NaS batteries provided in a power supply network is followed by a power source whose output changes irregularly in a short time, such as natural energy, an error in the calculation value of the discharge capacity occurs. Since it is easy to generate
  • Patent Document 1 mentions that correction of the calculated value of the discharge capacity of the NaS battery is sequentially performed one by one.
  • Patent Document 1 the correction of the calculated value of the discharge capacity in Patent Document 1 is delayed in the correction of the calculated value of the discharge capacity of the NaS battery that requires correction of the calculated value of the discharge capacity, or the discharge capacity is calculated at a time interval shorter than necessary. There is a case in which the correction of the value is performed and the calculation value of the unnecessary discharge capacity is corrected. Such improper correction is undesirable because it greatly affects the output of the power storage device.
  • the present invention has been made to solve this problem, and the calculation value of the discharge capacity of the secondary battery that requires correction of the calculation value of the discharge capacity is corrected, and the calculation value of the unnecessary discharge capacity is corrected.
  • An object of the present invention is to provide a battery control device and a battery control method that are not performed.
  • 1st invention is a battery control apparatus which controls a secondary battery, Comprising: The electric current measurement part which measures the charging / discharging electric current value of a secondary battery, and the charging / discharging electric current value measured by the said electric current measurement part are integrated
  • accumulated A discharge capacity calculation unit that calculates the calculated value of the discharge capacity of the secondary battery and corrects the calculated value of the discharge capacity of the secondary battery that is charged and discharged to the discharge depth at which the calculated value of the discharge capacity is corrected;
  • An estimation error calculation unit that calculates an estimation error of a calculation value of the discharge capacity calculated by the discharge capacity calculation unit, and a secondary battery in which the estimation error calculated by the estimation error calculation unit exceeds a first threshold value
  • a first comparison unit that is a candidate for correction of the calculation value, a first threshold value holding unit that holds the first threshold value, a bidirectional converter that controls charging / discharging of the secondary battery, and a calculation value of the discharge capacity Discharge depth at which correction is performed for all or part of the secondary batteries that
  • the estimation error calculation unit includes a factor expressed by an integration from the time when the calculation value of the previous discharge capacity is corrected to the current time. Calculate the estimation error.
  • the estimation error calculation unit calculates an estimation error including a factor that increases as the correction amount in the correction of the previous calculation value of the discharge capacity increases. To do.
  • the estimation error calculation unit is a factor that increases as a time change of the charge / discharge current value measured by the current measurement unit increases.
  • the estimation error including is calculated.
  • the estimation error calculation unit includes an estimation factor that increases as a charge / discharge current value measured by the current measurement unit increases. Calculate the error.
  • the discharge capacity calculation unit is configured such that the charge / discharge current value measured by the current measurement unit is smaller than a reference value. Stops the integration of the charge / discharge current value, and the estimation error calculation unit includes an estimation factor that increases as the charge / discharge current value increases when the charge / discharge current value measured by the current measurement unit is smaller than a reference value. Calculate the error.
  • the estimation error calculation unit is an offset with respect to a true charge / discharge current value included in the charge / discharge current value measured by the current measurement unit. An estimation error including a factor that increases as becomes larger is calculated.
  • the battery control device further includes a housing that houses the current measurement unit, and a temperature sensor that measures a temperature inside the housing, and the estimation error
  • the calculation unit calculates an estimation error including a factor that increases as the temperature measured by the temperature sensor increases from the reference temperature.
  • the estimation error calculator calculates an estimation error including a factor that reflects the operating state of the bidirectional converter.
  • a first selection unit that selects a number of secondary batteries that are allowed in the descending order of the estimation error calculated by the calculation target value of the discharge capacity, and the charge / discharge command unit includes the first charging unit. The bi-directional converter is charged and discharged until the secondary battery selected by the selection unit reaches a discharge depth at which correction is performed.
  • the eleventh invention is the battery control device according to any one of the first to tenth inventions, wherein the estimated error calculated by the estimated error calculating unit is compared with a second threshold not exceeding the first threshold.
  • a second comparison unit that uses a secondary battery in which the estimation error calculated by the estimation error calculation unit exceeds the second threshold as a candidate for correcting the calculation value of the discharge capacity, and a second threshold that holds the second threshold
  • a charge / discharge command unit that adjusts all or part of the secondary batteries that are candidates for correction of the calculated value of discharge capacity by the second comparison unit to a discharge depth at which correction is performed.
  • the bidirectional converter is charged and discharged until it becomes.
  • the number of secondary batteries selected as candidates for correction of the calculated value of the discharge capacity by the second comparison section is two or more
  • the number of secondary batteries allowed in the descending order of the estimation error calculated by the estimation error calculation unit from the secondary batteries selected as candidates for correction of the calculation value of the discharge capacity by the two comparison units is calculated.
  • the correction target of the discharge capacity calculation value is not selected.
  • indication part makes the said bidirectional converter charge / discharge until it becomes the discharge depth by which correction
  • the charge / discharge for correcting the calculated value of the discharge capacity in the time zone to which the current time belongs can be performed simultaneously.
  • Chargeable / dischargeable number determination unit that determines the number of secondary batteries, and chargeable / dischargeable number that holds the number of secondary batteries that can be charged / discharged simultaneously for correction of the calculated value of discharge capacity for each time zone
  • the charge / discharge command unit further includes a rechargeable battery until the discharge depth at which correction is performed on a secondary battery that does not exceed the number of secondary batteries determined by the correctable number determination unit.
  • the current measuring unit includes a Hall current detector.
  • a fifteenth aspect of the present invention is the battery control device according to any one of the first to thirteenth aspects, wherein the charge / discharge command unit sets a target value of charge / discharge power, and the bidirectional converter has a charge / discharge power of The charge / discharge of the secondary battery is controlled so as to be a target value, and the current measuring unit measures the voltage of the secondary battery, and the target value of the charge / discharge power set by the charge / discharge command unit
  • a charge / discharge current value calculation unit that calculates a charge / discharge current value from the voltage measured by the voltage measurement unit and the efficiency of the bidirectional converter, and an efficiency holding unit that holds the efficiency of the bidirectional converter, Prepare.
  • the current measuring unit includes a voltage measuring unit that measures the voltage of the secondary battery, and an AC side of the bidirectional converter.
  • Charging / discharging which calculates a charging / discharging electric current value from the electric power measurement part which measures input-output electric power, the voltage measured by the said voltage measurement part, the input-output electric power measured by the said electric power measurement part, and the efficiency of the said bidirectional converter
  • a current value calculation unit and an efficiency holding unit that holds the efficiency of the bidirectional converter.
  • a display unit that displays a comparison result of the estimation error calculation unit and the first comparison unit, and a calculated value of the discharge capacity
  • An operation unit that receives an input of a command to charge / discharge the secondary battery to the depth of discharge at which the correction is performed, and the charge / discharge command unit is a target of correction of the calculated value of the discharge capacity that the operation unit has received the input.
  • the bi-directional converter is charged and discharged until the secondary battery reaches the discharge depth at which correction is performed.
  • An eighteenth aspect of the invention is a battery control method for controlling a secondary battery, in which a) a step of measuring a charge / discharge current value of the secondary battery, and b) a charge / discharge current value measured in step a).
  • a secondary battery whose estimated error exceeds the first threshold is set as a candidate for correction of the calculated value of discharge capacity; and e) correction of all or part of secondary batteries as candidates for correction of discharge capacity.
  • Charging and discharging until reaching the depth of discharge and f) correcting the calculated value of the discharge capacity of the secondary battery charged and discharged to the depth of discharge where correction of the calculated value of discharge capacity is performed.
  • the secondary battery whose estimation error exceeds the first threshold value is a candidate for the correction of the calculated value of the discharge capacity, the calculation of the discharge capacity of the secondary battery that requires the correction of the calculated value of the discharge capacity. The value is corrected, and the calculation value of the unnecessary discharge capacity is not corrected.
  • the secondary battery in which an error is accumulated in the calculated value of the discharge capacity becomes subject to correction of the calculated value of the discharge capacity, the calculated value of the discharge capacity is corrected in a timely manner.
  • the calculated value of the discharge capacity is corrected in a timely manner.
  • a secondary battery in which errors caused by the response speed of the current measurement unit, the frequency characteristics of the current measurement unit, the measurement interval of the charge / discharge current value, etc. have a large effect on the calculated discharge capacity. Since the calculation target value of the discharge capacity is corrected earlier, the calculation value of the discharge capacity is corrected in a timely manner.
  • an error caused by the non-linearity of the current measurement unit, an error proportional to the measurement value of the current measurement unit included in the measurement value of the current measurement unit, or the like has a great influence on the calculated discharge capacity. Since the given secondary battery becomes an object of correction of the calculated value of the discharge capacity, the calculated value of the discharge capacity is corrected in a timely manner.
  • the secondary battery in which the error caused by the stop of the integration of the charge / discharge current value in the discharge capacity calculation unit has had a great influence on the calculated value of the discharge capacity is subject to correction of the calculated value of the discharge capacity. Since this becomes faster, the calculated value of the discharge capacity is corrected in a timely manner.
  • a secondary battery in which an error caused by an offset with respect to a true charge / discharge current value included in the charge / discharge current value measured by the current measurement unit has a large influence on a calculated value of discharge capacity. Since the calculation target value of the discharge capacity is corrected earlier, the calculated discharge capacity value is corrected in a timely manner.
  • the secondary battery in which the error due to the temperature characteristic of the current measuring unit has a great influence on the calculated value of the discharge capacity becomes subject to correction of the calculated value of the discharge capacity.
  • the calculated value of the discharge capacity is corrected in a timely manner.
  • the secondary battery in which the error caused by the operating state of the bidirectional converter has had a great influence on the calculated value of the discharge capacity is quickly subject to the correction of the calculated value of the discharge capacity. Therefore, the calculated value of the discharge capacity is corrected in a timely manner.
  • the charge / discharge control of the secondary battery is automated.
  • the calculation value of the discharge capacity is corrected from the secondary battery having a large estimation error and the necessity of correcting the calculation value of the discharge capacity, and the calculation of the discharge capacity of many secondary batteries. Since correction of values is difficult to start at the same time, the influence on the overall output of a plurality of secondary batteries is suppressed.
  • the number of secondary batteries whose discharge capacity calculation value is corrected does not exceed the number determined for each time zone. Influence is suppressed.
  • the charge / discharge current value is directly measured, the charge / discharge current value is measured with high accuracy.
  • the accuracy of measurement of the charge / discharge current value is improved.
  • a small charge / discharge current can be measured.
  • the first embodiment relates to a power storage device 1002.
  • FIG. 1 is a block diagram of a power storage device 1002 according to the first embodiment.
  • the power storage device 1002 includes a NaS battery (sodium-sulfur battery) 1004 that stores power, a connection line 1006 that connects the system 1902 and the NaS battery 1004, and a charge / discharge current of the NaS battery 1004.
  • Hall current detector 1008 that measures the value I
  • housing 1009 that houses the Hall current detector 1008, temperature sensor 1110 that measures the temperature T inside the housing 1009
  • power supplied from the NaS battery 1004 to the system 1902 Is converted from direct current to alternating current to convert the power supplied from the system 1902 to the NaS battery 1004 from AC to direct current, and the power supplied from the NaS battery 1004 to the system 1902 is boosted to increase the power from the system 1902 to the battery.
  • Other types of secondary batteries may be adopted instead of the NaS battery.
  • Hall current detector 1008 bidirectional converter 1112 and transformer 1114 are inserted into connection line 1006. Hall current detector 1008 is connected to the DC side of bidirectional converter 1112, and transformer 1114 is connected to the AC side of bidirectional converter 1112.
  • the Hall current detector 1008, temperature sensor 1110, bidirectional converter 1112, transformer 1114, control unit 1116, display unit 1115, and operation unit 1117 constitute a NaS battery control device that controls NaS battery 1004.
  • the control unit 1116 calculates the discharge capacity of the NaS battery 1004 by accumulating the charge / discharge current value I of the NaS battery 1004, and calculates the SOC (State Of ; Charge) from the calculated value of the discharge capacity.
  • the control unit 1116 specifies whether or not the NaS battery 1004 is a candidate for correction of the calculated value of discharge capacity, and determines the NaS battery 1004 that has been specified as a candidate for correction of the calculated value of discharge capacity as the calculated value of discharge capacity. Then, the calculated value of the discharge capacity of the charged NaS battery 1004 is corrected.
  • FIG. 2 is a circuit diagram of the module 1120 of the NaS battery 1004.
  • the module 1120 is a serial connection body in which blocks 1122 are connected in series
  • the block 1122 is a parallel connection body in which strings 1124 are connected in parallel
  • the string 1124 is a series connection in which cells 1126 are connected in series. It is a connected body.
  • the number of blocks 1122 connected in series, the number of strings 1124 connected in parallel, and the number of cells 1126 connected in series are increased or decreased according to the specifications of the module 1120.
  • the NaS battery 1004 includes one or more modules 1120.
  • the number of modules 1120 is increased or decreased according to the specifications of the NaS battery 1004.
  • Hall current detector 1008 measures charge / discharge current value I of NaS battery 1004.
  • the Hall current detector 1008 detects the magnetic field generated by the charge / discharge current with the Hall element, and outputs the Hall element output after processing it with an A / D converter or other attached circuit.
  • a current sensor according to another principle and a necessary attached circuit may be employed as the current measuring unit.
  • the charging / discharging current value I is directly measured by using the hall current detector 1008 as a current measuring unit, the charging / discharging current value I is measured with high accuracy.
  • the Hall current detector 1008 has a problem that the charge / discharge current value I measured by the Hall current detector 1008 includes an offset with respect to the true charge / discharge current value (hereinafter simply referred to as “the offset of the Hall current detector 1008”). There is. Further, the Hall current detector 1008 has a problem that the offset of the Hall current detector 1008 varies depending on the charge / discharge current value I and the temperature T inside the housing 1009. Furthermore, the Hall current detector 1008 has a non-linearity problem that the charge / discharge current value I measured by the Hall current detector 1008 is not exactly proportional to the true charge / discharge current value.
  • the charge / discharge current value I measured by the Hall current detector 1008 has a problem that an error proportional to the charge / discharge current value I is included. These problems cause an error in the calculated value of the discharge capacity calculated by integrating the charge / discharge current value I.
  • the estimated error Er (t2) of the calculated value of the discharge capacity resulting from these problems is calculated, and when the estimated error Er (t2) is large, the NaS battery 1004 is discharged. It is identified as a candidate for correction of the calculation value.
  • FIG. 3 is a diagram showing the relationship between the estimation error Er (t2) and the error.
  • the error shown in FIG. 3 is a value obtained by subtracting the actual discharge capacity from the calculated value of the discharge capacity.
  • the estimated error Er (t2) is not an estimated value of the error size itself but an estimated value of the error range. Therefore, as shown in FIG. 3, even when the estimation error becomes a large value, the error value indicated by the black dot plot points may be small if a plurality of error factors cancel each other.
  • Bidirectional converter 1112 charges / discharges NaS battery 1004 according to the charge / discharge command, and controls charging / discharging of NaS battery 1004 so that the charge / discharge power becomes a target value.
  • the bidirectional converter 1112 controls charging / discharging of the NaS battery 1004 so that the charging / discharging power command value transmitted from the control unit 1116 matches the actual charging / discharging power, and calculates an error in the calculated value of the discharge capacity. In order to eliminate, the NaS battery 1004 is charged / discharged.
  • the bidirectional converter 1112 is also called “PCS (Power Conversion System)”, “AC / DC converter”, or the like.
  • PCS Power Conversion System
  • AC / DC converter AC / DC converter
  • Mutual conversion between direct current and alternating current in the bidirectional converter 1112 is performed by a PWM (Pulse Width Modulation) inverter or the like.
  • FIG. 4 is a block diagram of the control unit 1116. Each of the blocks in FIG. 4 may be realized by causing an embedded computer including at least a CPU and a memory to execute a control program, or may be realized by hardware.
  • Control unit 1116 transmits the input charge / discharge power command value to bidirectional converter 1112.
  • the charge / discharge power command value may be input from the operation unit 1117 or may be input from a microgrid control system of a microgrid including the power storage device 1002 via a communication line.
  • the control unit 1116 includes a discharge capacity calculation unit 1130 that calculates a calculation value of the discharge capacity of the NaS battery 1004, an SOC calculation unit 1131 that calculates the SOC of the NaS battery 1004, and a discharge capacity calculation unit 1130.
  • the estimation error calculation unit 1132 that calculates the estimation error Er (t2) of the calculation value of the discharge capacity calculated by the above, the comparison unit 1140 that compares the estimation error Er (t2) and the threshold value TH, and the threshold value that holds the threshold value TH
  • a holding unit 1142 and a charge / discharge command unit 1136 that commands the bidirectional converter 1112 to charge / discharge the NaS battery 1004 and set a target value of charge / discharge power.
  • “Calculation” includes not only calculation by an arithmetic expression but also processing such as conversion by a numerical table and calculation by an analog arithmetic circuit.
  • the discharge capacity calculator 1130 integrates the charge / discharge current value I of the NaS battery 1004 measured by the Hall current detector 1008, and calculates the calculated value of the discharge capacity of the NaS battery 1004. However, the discharge capacity calculation unit 1130 stops the accumulation of the charge / discharge current value I while the magnitude of the charge / discharge current value I is smaller than the reference value. This is because when the charge / discharge current value I measured by the Hall current detector 1008 is small, the offset of the Hall current detector 1008 is likely to have a large influence on the charge / discharge current value I. It is.
  • the discharge capacity calculation unit 1130 corrects the calculated value of the discharge capacity when the NaS battery 1004 to be corrected of the calculated value of the discharge capacity is charged and discharged to the discharge depth at which the correction is performed.
  • FIG. 5 is a graph showing the relationship between the discharge depth of NaS battery 1004 and the voltage.
  • charging proceeds at the end of charging in the two-phase region (near the left end of the graph of FIG. 5) in which sodium sulfide (Na 2 S 5 ) and elemental sulfur (S) are present as the positive electrode active material.
  • Na 2 S 5 sodium sulfide
  • S elemental sulfur
  • the voltage of the NaS battery 1004 increases.
  • the voltage is substantially constant regardless of the depth of discharge.
  • the voltage decreases as the discharge depth increases.
  • the calculation value of the discharge capacity is corrected in a state in which the NaS battery 1004 is charged until the depth of discharge reaches the end of charging, or in a state in which the NaS battery 1004 is discharged until the depth of discharge reaches the one-phase region. .
  • the SOC calculation unit 1131 calculates the SOC from the remaining capacity and the rated capacity determined from the discharge capacity.
  • Mode of operation of power storage device 1002 The mode of operation of the power storage device 1002 is broadly divided into pattern operation and power smoothing operation.
  • the pattern operation is an operation in which charging / discharging is performed in accordance with fluctuations in the daily power demand.
  • pattern operation is generally performed in which charging is performed at night when power demand is low and discharging is performed during the day when power demand is low.
  • charge / discharge power for each time is often set in advance.
  • Power smoothing operation is an operation that performs charging and discharging according to shorter fluctuations in power demand.
  • the NaS battery 1004 is relatively rarely charged and discharged until the discharge depth at which the correction is performed. Therefore, the NaS battery is used to correct the calculated value of the discharge capacity. The situation where 1004 must be charged and discharged is relatively easy to occur. On the other hand, charging / discharging the NaS battery 1004 for correcting the calculated value of the discharge capacity affects the output of the power storage device 1002, and therefore, the calculation of the discharge capacity is performed only when correction of the calculated value of the discharge capacity is necessary. It is desirable that correction of the value is performed so that unnecessary calculation of the discharge capacity is not corrected.
  • the power storage device 1002 of the first embodiment calculates the estimated error Er (t2) of the calculated value of the discharge capacity so that the power smoothing operation can be performed, and the estimated error Er (t2) is large. Only when it is necessary to correct the calculated value, the NaS battery 1004 is set as a candidate for correcting the calculated value of discharge capacity. However, this does not prevent the power storage device 1002 from performing pattern operation.
  • the estimated error calculator 1132 calculates the estimated error Er (t2) of the calculated value of the discharge capacity calculated by the discharge capacity calculator 1130.
  • the estimated error Er (t2) is a collection of factors that reflect the cause of the error in the calculated value of the discharge capacity.
  • Causes of errors in the calculated value of discharge capacity include, for example, the time elapsed since the previous correction of the calculated value of discharge capacity, the time when charge / discharge was performed, the charge / discharge power, and the large fluctuation in charge / discharge power. There are height, steepness, number of times.
  • the estimated error Er (t2) of the calculated value of the discharge capacity at the current time t2 is calculated as the sum of the following first and second terms according to the equation (1).
  • an estimation error Er (t2) calculated as a product of the first term and the second term shown in the equation (2) may be used.
  • the estimation error Er (t2) is integrated (discretized) from the time t1 when the calculation value of the previous discharge capacity is corrected to the current time t2. Including the sum of cases).
  • the NaS battery 1004 becomes subject to correction of the calculated value of the discharge capacity earlier, so that the calculated value of the discharge capacity is corrected in a timely manner.
  • the estimation error Er (t2) is a factor that increases as the correction amount error in the previous correction of the calculation value of the discharge capacity increases, for example, a factor proportional to the correction amount error. including.
  • an average value of correction amounts for two or more corrections may be employed.
  • the integrand of the integral of the first term in equation (1) is calculated as the sum of the following first to fourth terms.
  • the charge / discharge current value I is acquired from the Hall current detector 1008.
  • the temperature T is acquired from the temperature sensor 1110.
  • the operating state of bidirectional converter 1112 is acquired from charge / discharge command unit 1136.
  • the first term of the integrand is a factor that increases as the time change dI / dt increases.
  • the correction coefficient a (I) is preferably a function of the charge / discharge current value I.
  • the correction coefficient a (I) may be a constant that does not depend on the charge / discharge current value I as long as the accuracy of the estimation error Er (t2) is allowed to be slightly reduced.
  • the first term of the integrand is a factor proportional to the time change dI / dt.
  • the time change dI / dt of the first term of the integrand of the estimation error Er (t2) calculated by the equations (1) and (2) is the time It is also desirable that the absolute value
  • the calculated value of the discharge capacity is affected more than when the charge / discharge current value I does not change, so the time change dI / dt is changed to the time change dI / dt.
  • the estimated error Er (t2) is appropriately calculated in both cases where the charge / discharge current value I increases and decreases.
  • the correction coefficient b (I) of the second term of the integrand includes a factor that increases as the charge / discharge current value I increases, for example, a factor proportional to the charge / discharge current value I.
  • a factor proportional to the charge / discharge current value I As a result, errors due to the non-linearity of the Hall current detector 1008, errors proportional to the charge / discharge current value I included in the charge / discharge current value I measured by the Hall current detector 1008, and the like have a large effect on the charge state. Since the NaS battery 1004 becomes subject to correction of the calculated value of discharge capacity earlier, the calculated value of discharge capacity is corrected in a timely manner.
  • the correction coefficient b (I) preferably includes a factor that increases as the charge / discharge current value I increases, for example, a factor proportional to the charge / discharge current value I, when the charge / discharge current value I is smaller than the reference value. .
  • the NaS battery 1004 becomes the target of correction of the calculated value of the discharge capacity. Since it becomes faster, the calculated value of the discharge capacity is corrected in a timely manner.
  • the correction coefficient b (I) includes a factor that increases as the offset of the Hall current detector 1008 increases, for example, a factor that is proportional to the offset of the Hall current detector 1008.
  • the offset of the Hall current detector 1008 tends to increase after a large charge / discharge current flows.
  • the offset of the Hall current detector 1008 is calculated from the history of the charge / discharge current value I.
  • the correction coefficient c (T) of the third term of the integrand is a factor that increases as the temperature T moves away from the reference temperature.
  • the reference temperature is set to 25 ° C., for example.
  • the offset of the Hall current detector 1008 may have a positive temperature coefficient, may have a negative temperature coefficient, or may vary irregularly when the temperature T changes. Therefore, it is desirable that the correction coefficient c (T) is set by actually measuring the temperature characteristics of the Hall current detector 1008.
  • the correction coefficient c (T) is multiplied by a correction coefficient f (I) that decreases as the charge / discharge current value I decreases.
  • the correction coefficient f (I) may be a constant that does not depend on the charge / discharge current value I as long as the accuracy of the estimation error Er (t2) is allowed to be slightly reduced.
  • the correction coefficient d of the fourth term of the integrand is a factor reflecting the operation state of the bidirectional converter 1112, for example, 0 when the bidirectional converter 1112 is stopped and no charge / discharge current flows, When the direction converter 1112 is operated and charging / discharging current flows, a constant d1 is obtained. When the bidirectional converter 1112 is in operation standby and a weak charging / discharging current may flow, the constant d2 is obtained. It is desirable to be.
  • the constant d1 is larger than the constant d2 (d1> d2).
  • the NaS battery is subject to correction of the calculated value of the discharge capacity, so that The calculated capacity value is corrected in a timely manner.
  • the Hall current detector 1008 includes an A / D converter
  • a quantization error associated with A / D conversion occurs.
  • the quantization error has a large influence on the calculated value of the discharge capacity due to the correction coefficient d
  • the NaS battery becomes a target for correction of the calculated value of the discharge capacity, so that the calculated value of the discharge capacity is appropriate. It is corrected to.
  • equation (1) It is also acceptable to modify equation (1). For example, if it is permitted to slightly reduce the accuracy of the estimation error Er (t2) and it is required to reduce the resources used to calculate the estimation error Er (t2), the contribution of the above factors Small factors may be omitted. Further, if it is allowed to increase resources used for the calculation of the estimation error Er (t2), factors other than the above-described factors may be included in the estimation error Er (t2).
  • the comparison unit 1140 acquires the estimation error Er (t2) from the estimation error calculation unit 1132, compares the estimation error Er (t2) with the threshold value TH, and if the estimation error Er (t2) exceeds the threshold value TH, the NaS battery 1004 is a candidate for correcting the calculated value of the discharge capacity. As a result, the NaS battery 2004 whose estimated error Er (t2) exceeds the threshold value TH becomes a candidate for correction of the calculated value of the discharge capacity. Therefore, when correction of the calculated value of the discharge capacity is necessary, the discharge capacity of the NaS battery 2004 is reduced. The calculated value is corrected, and the unnecessary calculated value of the discharge capacity is not corrected.
  • the charge / discharge command unit 1136 outputs a charge / discharge command signal to the bidirectional converter 1112.
  • the charge / discharge command unit 1136 sets a target value of charge / discharge power and outputs the charge / discharge command signal to the bidirectional converter 1112 when outputting the charge / discharge command signal.
  • the NaS battery 1004 that is a candidate for correcting the calculated value of the discharge capacity by the comparison unit 1140 is directly subjected to correction of the discharge capacity.
  • the charging / discharging for correcting the discharge capacity may be permitted only when the current time is a time zone in which the correction of the discharge capacity is permitted.
  • the correction candidate NaS battery 1004 may be discharged to a discharge depth at which the calculated discharge capacity is manually corrected.
  • the power storage device 1002 uses the estimated error Er (t2) and estimated error Er (t2) of the calculated value of the discharge capacity of the NaS battery 1004 as threshold values. Whether or not TH is exceeded is displayed on the display unit 1115, and a command for correcting the calculated value of the discharge capacity is received by the operation unit 1117.
  • the operation unit 1117 may accept an input of the time for starting the charge / discharge for correcting the calculated value of the discharge capacity.
  • the command for correcting the calculated value of the discharge capacity received by the operation unit 1117 is sent to the charge / discharge command unit 1136.
  • the charge / discharge command unit 1136 causes the bidirectional converter 1004 to charge / discharge the NaS battery 1004 until the discharge depth at which the correction is performed is reached.
  • the operator of the power storage device 1002 When manually correcting the calculated value of the discharge capacity, the operator of the power storage device 1002 refers to the information displayed on the display unit 1115 and considers the current and future status of the microgrid including the power storage device 1002. Then, a command for correcting the calculated value of the discharge capacity is input from the operation unit 1117. Items to be considered by the operator include a distributed power source that is undergoing maintenance inspection or scheduled for maintenance inspection, forecasting power demand for loads derived from temperature, and a power purchase plan with a macro system outside the microgrid. .
  • the second embodiment relates to a power storage device 2002.
  • FIG. 6 is a block diagram of the power storage device 2002 of the second embodiment.
  • a temperature sensor 2110 a bidirectional converter 2112 that converts power supplied from the NaS battery 2004 to the system 2902 from direct current to alternating current and converts power supplied from the system 2902 to the NaS battery 2004 from alternating current to direct current, and an NaS battery Transformer that boosts power supplied from system 2902 to system 2902 and reduces power supplied from system 2902 to battery NaS
  • a control unit 2116 for controlling the power storage device 2002
  • a display portion 2115 for displaying information
  • an operation unit 2117 receives an operation, the.
  • connection line 2006, one Hall current detector 2008, one bidirectional converter 2112 and one transformer 2114 are provided corresponding to each of the plurality of NaS batteries 2004, and the Hall current detector 2008, bidirectional converter 2112 and The transformer 2114 is inserted into the connection line 2006.
  • Hall current detector 2008 is connected to the DC side of bidirectional converter 2112, and transformer 2114 is connected to the AC side of bidirectional converter 2112.
  • Each of the plurality of Hall current detectors 2008 is accommodated in a separate housing 2009. Two or more hall current detectors 2008 among the plurality of hall current detectors 2008 may be accommodated in one housing, or all of the plurality of hall current detectors 2008 are accommodated in one housing. May be.
  • One temperature sensor 2110 is provided corresponding to each of the plurality of housings 2009. When two or more Hall current detectors 2008 are accommodated in one housing, a temperature sensor 2110 is provided for each housing, and one temperature sensor 2110 is shared by two or more Hall current detectors 2008.
  • FIG. 6 shows four NaS batteries 2004, but the number of NaS batteries is increased or decreased according to the specifications of the power storage device 2002. Other types of secondary batteries may be adopted instead of the NaS battery.
  • the Hall current detector 2008, temperature sensor 2110, bidirectional converter 2112, transformer 2114, control unit 2116, display unit 2115, and operation unit 2117 constitute a NaS battery control device that controls a plurality of NaS batteries 2004.
  • the discharge capacity is calculated, and the SOC is calculated from the calculated value of the discharge capacity.
  • the control unit 2116 identifies the NaS battery 2004 that requires correction of the calculated value of discharge capacity as a candidate for correction of the calculated value of discharge capacity, and all or part of the specified NaS battery 2004 up to the discharge capacity to be corrected.
  • the calculated value of the discharge capacity of the charged / discharged NaS battery 2004 is corrected.
  • FIG. 7 is a block diagram of the control unit 2116.
  • Each of the blocks in FIG. 7 may be realized by causing an embedded computer including at least a CPU and a memory to execute a control program, or may be realized by hardware.
  • the control unit 2116 converts the charge / discharge command values of the plurality of NaS batteries 2004 to the plurality of bidirectional converters so that the input charge / discharge power command value matches the total charge / discharge power of the plurality of NaS batteries 2004. 2112 is transmitted to each of them.
  • the charge / discharge power command value may be input from the operation unit 2117 or may be input from a microgrid control system of a microgrid including the power storage device 2002 via a communication line.
  • the control unit 2116 includes a discharge capacity calculation unit 2130 that calculates a calculation value of the discharge capacity of the NaS battery 2004, an SOC calculation unit 2131 that calculates the SOC of the NaS battery 2004, and a discharge capacity calculation unit 2130.
  • a charging / discharging command unit 2136 that commands the bidirectional converter 2112 to charge / discharge the NaS battery 2004 and sets a target value of charging / discharging power.
  • One discharge capacity calculation unit 2130, estimated error calculation unit 2132, and SOC calculation unit 2131 may be provided corresponding to each of the plurality of NaS batteries 2004, or shared by all of the plurality of NaS batteries 2004. May be.
  • the discharge capacity calculation unit 2130 integrates the charge / discharge current values Im of the plurality of NaS batteries 2004 measured by the Hall current detector 2008, and calculates the calculated value of the discharge capacity of each of the plurality of NaS batteries 2004. However, the discharge capacity calculation unit 2130 stops integration of the charge / discharge current value Im while the charge / discharge current value Im is smaller than the reference value.
  • the discharge capacity calculation unit 2130 corrects the calculated value of the discharge capacity when the NaS battery 2004 that is the target of correction of the calculated value of the discharge capacity is charged and discharged to the depth of discharge at which the correction is performed.
  • the SOC calculation unit 2131 calculates the SOC from the remaining capacity and the rated capacity determined from the discharge capacity for each of the plurality of NaS batteries.
  • the power storage device 2002 of the second embodiment includes a plurality of NaS batteries 2004. Therefore, the total charge / discharge power P1 of the NaS battery 2004 charged / discharged for correcting the discharge capacity, and the charge / discharge power of the NaS batteries 2004 other than the NaS battery 2004 charged / discharged for correction of the discharge capacity
  • P2 PIN ⁇ P1
  • the estimation error calculation unit 2132 calculates the estimated error Erm (t2) of the calculated value of the discharge capacity calculated by the discharge capacity calculation unit 2130 for each of the plurality of NaS batteries 2004.
  • the estimated error Erm (t2) is a collection of factors that reflect the cause of the error in the calculated value of the discharge capacity.
  • Causes of errors in the calculated value of discharge capacity include, for example, the time elapsed since the previous correction of the calculated value of discharge capacity, the time when charge / discharge was performed, the charge / discharge power, and the large amount of fluctuation in charge / discharge power. There are height, steepness, number of times.
  • the estimated error Erm (t2) of the calculated value of the discharge capacity at the current time t2 of the mth NaS battery 2004 is calculated as the sum of the following first term and second term according to equation (3). .
  • Equation (5) shows that the charge / discharge current value “I” is replaced with “Im”, the correction amount “error” is replaced with “error”, and the measurement error “Er (t2)” is replaced with “Erm (t2)”. Is the same as the equation (1).
  • the time change dIm / dt of the first term of the integrand of the estimation error Er (t2) calculated by the equation (5) is the absolute value
  • the NaS battery 2004 is subject to correction of the calculated value of the discharge capacity earlier, so that the calculated value of the discharge capacity is corrected in a timely manner. Then, the target for correcting the calculated value of the discharge capacity is appropriately selected.
  • FIG. 8 is a block diagram of the correction target determination unit 2134.
  • the correction target determination unit 2134 includes a comparison unit 2140 that compares the estimated error Erm (t2) and the threshold value TH, a threshold value holding unit 2142 that holds the threshold value TH, and correction of the calculated value of the discharge capacity.
  • the selection unit 2144 that selects the target NaS battery 2004, and the number of secondary batteries 2004 that can be charged / discharged for correcting the calculated value of the discharge capacity in the time zone to which the current time belongs (hereinafter, A chargeable / dischargeable number determining unit 2144 for determining the “chargeable / dischargeable number”) and a chargeable / dischargeable number holding unit 2148 for holding the chargeable / dischargeable number for each time period.
  • the comparison unit 2140 acquires the estimated error Erm (t2) of each of the plurality of NaS batteries 2004 from the estimation error calculation unit 2132, and compares the estimated error Erm (t2) with the threshold value TH for each of the plurality of NaS batteries 2004.
  • the NaS battery 2004 whose estimated error Erm (t2) exceeds the threshold value TH is taken as a candidate for correcting the calculated value of the discharge capacity.
  • the NaS battery 2004 whose estimated error Er (t2) exceeds the threshold value TH becomes a candidate for correction of the calculated value of discharge capacity, the calculated value of discharge capacity of the NaS battery 2004 that requires correction of the calculated value of discharge capacity. Is corrected, and the calculation of the unnecessary discharge capacity is not corrected.
  • the selection unit 2144 selects one NaS battery 2004 having the largest estimated error Erm (t2) from the NaS batteries 2004 that are candidates for correction of the discharge capacity calculation value as a target for correction of the discharge capacity calculation value. Thereby, since correction of the calculated value of the discharge capacity of two or more NaS batteries 2004 is not started at the same time, the influence on the output of the power storage device 2002 is suppressed.
  • the selection unit 2144 sets the number of NaS batteries 2004 that are allowed in descending order of the estimated error Er (t2) from the NaS battery 2004 that is a candidate for correction of the calculated value of discharge capacity to the calculated value of discharge capacity. Select as correction target. Thereby, since correction of the calculated value of the discharge capacity of the NaS battery 2004 that is larger than the allowable number is not started at the same time, the influence on the output of the power storage device 2002 is suppressed.
  • the “allowable number” is a number obtained by subtracting the number of NaS batteries 2004 that are actually performing charge / discharge for correcting the calculation value of the discharge capacity from the chargeable / dischargeable number.
  • the chargeable / dischargeable number determining unit 2146 refers to the information held in the chargeable / dischargeable number holding unit 2148 and determines the chargeable / dischargeable number in that time zone.
  • the selection unit 2144 When there is no restriction on the chargeable / dischargeable number, since there is no restriction that only a part of the NaS battery 2004 that is a candidate for correction of the discharge capacity calculation value must be the target of correction of the discharge capacity calculation value, the selection unit 2144 The chargeable / dischargeable number determining unit 2146 and the chargeable / dischargeable number holding unit 2148 are omitted, and all of the NaS batteries 2004 that are candidates for correcting the calculation value of the discharge capacity are subject to correction of the calculation value of the discharge capacity.
  • FIG. 9 is a flowchart illustrating a process that is repeatedly performed to determine a target of correction of the calculated value of the discharge capacity.
  • the estimated error Erm (t2) of each of the plurality of NaS batteries 2004 is acquired from the estimated error calculator 2132 (step S201).
  • the comparison unit 2140 compares the estimated error Erm (t2) with the threshold value TH, and specifies a NaS battery 2004 that is a candidate for correcting the discharge capacity calculation value (step S202). ).
  • the chargeable / dischargeable number determining unit 2146 determines the chargeable / dischargeable number in the time zone to which the current time belongs. It is determined (step S204).
  • the selection unit 2144 uses the target NaS for correction of the calculated value of discharge capacity. If the battery 2004 is selected (step S206) and the number is zero, the process ends without selecting the NaS battery 2004 to be corrected for the discharge capacity calculation value.
  • the charge / discharge command unit 2136 outputs a charge / discharge command signal to the bidirectional converter 2112 inserted in the connection line 2006 that connects the NaS battery 2004 subject to correction of the calculated value of the discharge capacity and the system 2902. As a result, the NaS battery 2004 subject to correction of the calculated value of discharge capacity is charged and discharged to the discharge depth at which correction is performed.
  • the charging / discharging command unit 2136 sets a target value of charging / discharging power and outputs it to the bidirectional converter 2112 when outputting the charging / discharging command signal.
  • the third embodiment relates to a correction target determination unit 3134 that is employed instead of the correction target determination unit 2134 of the second embodiment.
  • FIG. 10 is a block diagram of the correction target determination unit 3134 of the third embodiment.
  • the correction target determination unit 3134 includes a first comparison unit 3140 that compares the estimation error Erm (t2) and the first threshold value TH1, and a first threshold value that holds the first threshold value TH1. Holding unit 3142, first selection unit 3144 that selects NaS battery 2004 that is the target of correction of the calculated value of discharge capacity, and second comparison unit that compares estimated error Erm (t2) with second threshold TH2.
  • the second threshold TH2 does not exceed the first threshold TH1 (TH2 ⁇ TH1).
  • the first comparison unit 3140 acquires the estimated error Erm (t2) of the calculated value of each discharge capacity of the plurality of NaS batteries 2004 from the estimated error calculation unit 2132, The estimated error Erm (t2) and the first threshold value TH1 are compared for each of the plurality of NaS batteries 2004, and the NaS battery 2004 whose estimated error Erm (t2) exceeds the first threshold value TH1 is corrected for the calculated value of the discharge capacity.
  • the first selection unit 3144 has an estimated error Erm (t2) from the NaS battery 2004 that is a candidate for correcting the calculated value of the discharge capacity by the first comparison unit 3140. Select the largest NaS battery. The number of NaS batteries 2004 that are allowed in descending order of the estimated error Er (t2) may be selected from the NaS batteries 2004 that are candidates for correction of the calculated value of the discharge capacity by the first comparison unit 3140. The first selection unit 3144 may be omitted, and all of the NaS batteries 2004 that are candidates for correction of the discharge capacity calculation value by the first comparison unit 3140 may be targets for correction of the discharge capacity calculation value.
  • the second comparison unit 3150 compares the estimated error Erm (t2) with the second threshold TH2 for each of the plurality of NaS batteries 2004, and the NaS battery 2004 with the estimated error Erm (t2) exceeding the second threshold TH2. Is a candidate for correcting the calculated value of the discharge capacity.
  • the second selection unit 3154 uses the second comparison unit 3150 to discharge the discharge capacity.
  • One battery having the largest estimated error Erm (t2) is selected from the NaS batteries 2004 that are candidates for correction of the calculated value for the correction of the calculated value of the discharge capacity.
  • the number of NaS batteries 2004 that are allowed in descending order of the estimated error Erm (t2) may be selected from the NaS batteries 2004 that are candidates for correction of the calculated value of the discharge capacity by the second comparison unit 3150.
  • the second selection unit 3154 corrects the calculated value of the discharge capacity when the number of NaS batteries 2004 that are candidates for correcting the calculated value of the discharge capacity by the second comparison unit 3150 is one or less.
  • the target of is not selected.
  • the second selection unit 3154 may be omitted, and all of the NaS batteries 2004 that are candidates for correction of the discharge capacity calculation value by the second comparison unit 3150 may be targets for correction of the discharge capacity calculation value.
  • FIG. 11 and FIG. 12 are flowcharts showing processing that is repeatedly performed to determine the NaS battery 1004 that is the target of correction of the calculated value of discharge capacity.
  • the estimated error Erm (t2) of each of the plurality of NaS batteries 2004 is acquired from the estimated error calculator 2132 ( Step S301).
  • the first comparison unit 3140 compares the estimated error Erm (t2) with the first threshold value TH1, and the NaS battery 2004 that is a candidate for correcting the discharge capacity calculation value is obtained. It is identified (step S302).
  • the number determining unit 3146 determines the chargeable / dischargeable number for correcting the calculated value of the discharge capacity in the time zone to which the current time belongs (step 304).
  • the first selection unit 3144 corrects the calculated value of discharge capacity. If the target NaS battery 2004 is selected (step S306) and the number is zero (“NO” in step S305), the process ends without selecting the target NaS battery 2004 for correcting the calculated value of the discharge capacity.
  • the number of NaS batteries 2004 selected as the target for correcting the discharge capacity calculation value is NaS that allows correction of the discharge capacity calculation value.
  • the number of batteries 2004 has been reached (“NO” in step S312), charging / discharging for correcting the discharge capacity calculation value cannot be newly started, and the process ends.
  • the comparison with the second threshold value TH2 is subsequently performed as shown in FIG. Done.
  • the comparison with the second threshold value TH2 is performed.
  • the second comparison unit 3150 compares the estimated error Erm (t2) with the second threshold value TH2, and specifies a NaS battery 2004 that is a candidate for correcting the calculated discharge capacity (step S307).
  • the chargeable / dischargeable number determining unit 3146 The chargeable / dischargeable number in the time zone to which the current time belongs is determined (step S309).
  • the second selection unit 3154 corrects the calculated value of discharge capacity. If the target NaS battery 2004 is selected (step S311) and the number of NaS batteries 2004 to which correction of the calculation value of discharge capacity is allowed is zero, the target NaS battery 2004 of correction of the calculation value of discharge capacity is The process ends without being selected.
  • the calculation value of the discharge capacity is corrected from the NaS battery 2004 having a large estimated error Erm (t2) and a high necessity for correcting the calculation value of the discharge capacity. Since correction of the calculated value of the discharge capacity of many NaS batteries 2004 is not started at the same time, the influence on the output of the power storage device 2002 is suppressed.
  • the fourth embodiment relates to a current measuring unit 4008 employed in place of the Hall current detector 1008 of the first embodiment.
  • FIG. 13 is a block diagram of the current measurement unit 4008 of the fourth embodiment.
  • the current measuring unit 4008 calculates a voltage measuring unit 4502 that measures the voltage of the NaS battery 1004, an efficiency holding unit 4504 that holds the efficiency of the bidirectional converter 1112, and a charge / discharge current value I. And a charge / discharge current value calculation unit 4506.
  • the charge / discharge current calculation unit 4506 calculates the charge / discharge current value of the NaS battery 1004 from the target value of charge / discharge power set by the charge / discharge command unit 1136, the voltage measured by the voltage measurement unit 4502, and the efficiency of the bidirectional converter 1112. I is calculated.
  • a small charge / discharge current can be measured.
  • the Hall current detector 1008 of the first embodiment and the current measurement unit 4008 of the fourth embodiment may be combined.
  • the current measurement unit 4008 of the fourth embodiment measures the charge / discharge current value I
  • the Hall current detector 1008 measures the charge / discharge current value I. It may be.
  • the current measuring unit 4008 of the fourth embodiment may be adopted instead of the Hall current detector 2008 of the second embodiment.
  • the fifth embodiment relates to a current measuring unit 5008 employed in place of the Hall current detector 1008 of the first embodiment.
  • FIG. 14 is a block diagram of a current measuring unit 5008 according to the fifth embodiment.
  • the current measuring unit 5008 includes a voltage measuring unit 5502 that measures the voltage of the NaS battery 1004, an efficiency holding unit 5504 that holds the efficiency of the bidirectional converter 1112, and an alternating current of the bidirectional converter 1112.
  • a power measurement unit 5506 that measures the input / output power on the side, and a charge / discharge current value calculation unit 5508 that calculates the charge / discharge current value I.
  • the charge / discharge current value calculation unit 5508 calculates a charge / discharge current value from the voltage measured by the voltage measurement unit 5502, the input / output power measured by the power measurement unit 5506, and the efficiency of the bidirectional converter 1112.
  • the charge / discharge current value is measured with high accuracy.
  • the current measurement on the AC side of the bidirectional converter 1112 is not a Hall current detector as in the first embodiment, but a winding type that can measure with high accuracy from a large current to a small current without an offset. This is because it can also be performed by a current detector having a current transformer.
  • current detectors with a wound current transformer and current detectors with Hall elements do not require components that can withstand high voltages and large currents, as compared to current detectors with shunt resistors. Also has the advantage of being easier.
  • the sixth embodiment relates to a microgrid 6000 including the power storage device 1002 of the first embodiment.
  • the power storage device 2002 of the second embodiment may be employed in the microgrid 6000.
  • FIG. 15 is a block diagram of the microgrid 6000 of the sixth embodiment.
  • a “microgrid” is a small-scale power supply network in which a distributed power source is installed in a place where power is demanded, and is also called a “distributed energy system” or the like.
  • the distributed power source 6002, the load 6004, and the power storage device 1002 of the first embodiment are connected to the system 6006.
  • the operation of the distributed power source 6002, the load 6004, and the power storage device 1002 is controlled by the microgrid control system 6008.
  • the distributed power source 6002 is not particularly limited, but a generator using sunlight or other natural energy, for example, a solar power generator is used.
  • a fuel cell or the like that uses, as a fuel, a gas produced using raw garbage, waste wood, waste plastic, or the like as a raw material may be used as the distributed power source 6002.
  • All or part of the power generated by the distributed power source 6002 is transmitted to the power storage device 1002 via the grid 6006 and stored in the power storage device 1002.
  • an output change request is sent from the power storage device 1002 to the microgrid control system 6008. Subsequently, the power storage device 1002 receives permission to change the target value of charge / discharge power, and charges / discharges the NaS battery 1004 by stopping the power smoothing operation or changing the load follow-up target value.
  • the power smoothing operation in which the SOC is generally maintained is often performed near the middle between the end of charging and the end of discharging, and thus the power storage device 1002 of the first embodiment is preferably used.
  • the power storage device 1002 of the first embodiment is also used when performing pattern operation.
  • the power storage device 1002 performs a pattern operation according to a preset operation pattern
  • the calculated operation value of the discharge capacity can be corrected by charging / discharging according to the set operation pattern. Therefore, charge / discharge is performed.
  • charging / discharging according to the set operation pattern charging / discharging is performed many times before reaching the depth of discharge where the calculated discharge capacity can be corrected, or until reaching the depth of discharge where the calculated value of discharging capacity can be corrected.
  • the power storage device 1002 requests the microgrid control system 6008 to change the output, and changes the target value of the charge / discharge power after receiving permission to change the target value of the output.
  • the NaS battery 2004 subject to correction of the calculation value of the discharge capacity is charged until the discharge depth is corrected. While discharging, it may be possible to control charging / discharging of another NaS battery 2004 so that the output of the power storage device 2002 matches the charging / discharging power command value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 放電容量の演算値の補正が必要な場合に放電容量の演算値が補正され、不必要な放電容量の演算値の補正が行われない電池制御装置を提供する。電力貯蔵装置は、電力を貯蔵するNaS電池と、NaS電池の充放電電流値Iを計測するホール電流検出器と、電力を直流と交流との間で相互に変換する双方向変換器と、電力貯蔵装置を制御する制御部と、を備える。制御部は、NaS電池の充放電電流値Iを積算してNaS電池の放電容量の演算値を演算する。制御部は、放電容量の演算値の推定誤差Er(t2)を演算し、放電容量の演算値の補正が必要となったNaS電池1004を特定し、当該NaS電池を放電容量の演算値の補正が行われる放電深度まで充放電させ、充放電させたNaS電池の放電容量の演算値を補正する。

Description

電池制御装置及び電池制御方法
 本発明は、二次電池を制御する電池制御装置及び電池制御方法に関する。
 特許文献1は、複数のNaS電池の充放電の制御に関する。
 特許文献1は、電力供給網に設けられた複数のNaS電池を備える電力貯蔵装置を自然エネルギー等の短時間で出力が不規則に変化する電源に追随させると、放電容量の演算値の誤差が発生しやすいため、放電容量の演算値の補正を行わなければならないことに言及している。
 また、特許文献1は、NaS電池の放電容量の演算値の補正を1台ずつ順番に行うことに言及している。
特開2008-84677号公報
 しかし、特許文献1の放電容量の演算値の補正は、放電容量の演算値の補正が必要なNaS電池の放電容量の演算値の補正が遅れたり、必要以上に短い時間間隔で放電容量の演算値の補正が行われ、不必要な放電容量の演算値の補正が行われたりするという問題を生じる場合がある。このような不適切な補正は、電力貯蔵装置の出力に大きな影響を与えるため、望ましくない。
 本発明は、この問題を解決するためになされたもので、放電容量の演算値の補正が必要な二次電池の放電容量の演算値が補正され、不必要な放電容量の演算値の補正が行われない電池制御装置及び電池制御方法を提供することを目的とする。
 上述の課題を解決するための手段を以下に示す。
 第1の発明は、二次電池を制御する電池制御装置であって、二次電池の充放電電流値を計測する電流計測部と、前記電流計測部により計測された充放電電流値を積算して二次電池の放電容量の演算値を演算し、放電容量の演算値の補正が行われる放電深度まで充放電された二次電池の放電容量の演算値を補正する放電容量演算部と、前記放電容量演算部により演算された放電容量の演算値の推定誤差を演算する推定誤差演算部と、前記推定誤差演算部により演算された推定誤差が第1の閾値を超える二次電池を放電容量の演算値の補正の候補とする第1の比較部と、第1の閾値を保持する第1の閾値保持部と、二次電池の充放電を制御する双方向変換器と、放電容量の演算値の補正の候補の二次電池の全部又は一部を補正が行われる放電深度になるまで前記双方向変換器に充放電させる充放電指令部と、を備える。
 第2の発明は、第1の発明の電池制御装置において、前記推定誤差演算部は、前回の放電容量の演算値の補正が行われた時刻から現在の時刻までの積分であらわされる因子を含む推定誤差を演算する。
 第3の発明は、第1又は第2の発明の電池制御装置において、前記推定誤差演算部は、前回の放電容量の演算値の補正における補正量が大きくなるほど大きくなる因子を含む推定誤差を演算する。
 第4の発明は、第1ないし第3のいずれかの発明の電池制御装置において、前記推定誤差演算部は、前記電流計測部により計測された充放電電流値の時間変化が大きくなるほど大きくなる因子を含む推定誤差を演算する。
 第5の発明は、第1ないし第4のいずれかの発明の電池制御装置において、前記推定誤差演算部は、前記電流計測部により計測された充放電電流値が大きくなるほど大きくなる因子を含む推定誤差を演算する。
 第6の発明は、第1ないし第5のいずれかの発明の電池制御装置において、前記放電容量演算部は、前記電流計測部により計測された充放電電流値が基準値より小さくなっている間は充放電電流値の積算を停止し、前記推定誤差演算部は、前記電流計測部により計測された充放電電流値が基準値より小さい場合に充放電電流値が大きくなるほど大きくなる因子を含む推定誤差を演算する。
 第7の発明は、第1ないし第6のいずれかの電池制御装置において、前記推定誤差演算部は、前記電流計測部により計測された充放電電流値に含まれる真の充放電電流値に対するオフセットが大きくなるほど大きくなる因子を含む推定誤差を演算する。
 第8の発明は、第1ないし第7のいずれかの電池制御装置において、前記電流計測部を収容するハウジングと、前記ハウジングの内部の温度を計測する温度センサと、をさらに備え、前記推定誤差演算部は、前記温度センサにより計測された温度が基準温度から離れるほど大きくなる因子を含む推定誤差を演算する。
 第9の発明は、第1ないし第8のいずれかの発明の電池制御装置において、前記推定誤差演算部は、前記双方向変換器の運転状態を反映する因子を含む推定誤差を演算する。
 第10の発明は、第1ないし第9のいずれかの発明の電池制御装置において、前記第1の比較部により放電容量の演算値の補正の候補とされた二次電池から前記推定誤差演算部により演算された推定誤差が大きい順に許容される数の二次電池を放電容量の演算値の補正の対象として選択する第1の選択部、をさらに備え、前記充放電指令部は、前記第1の選択部により選択された二次電池を補正が行われる放電深度になるまで前記双方向変換器に充放電させる。
 第11の発明は、第1ないし第10のいずれかの発明の電池制御装置において、前記推定誤差演算部により演算された推定誤差と第1の閾値を超えない第2の閾値とを比較し前記推定誤差演算部により演算された推定誤差が第2の閾値を超える二次電池を放電容量の演算値の補正の候補とする第2の比較部と、第2の閾値を保持する第2の閾値保持部と、をさらに備え、前記充放電指令部は、前記第2の比較部により放電容量の演算値の補正の候補とされた二次電池の全部又は一部を補正が行われる放電深度になるまで前記双方向変換器に充放電させる。
 第12の発明は、第11の発明の電池制御装置において、前記第2の比較部により放電容量の演算値の補正の候補とされた二次電池の数が2個以上である場合は前記第2の比較部により放電容量の演算値の補正の候補とされた二次電池から前記推定誤差演算部により演算された推定誤差が大きい順に許容される数の二次電池を放電容量の演算値の補正の対象として選択し前記第2の比較部により放電容量の演算値の補正の候補とされた二次電池の数が1個以下である場合は放電容量の演算値の補正の対象を選択しない第2の選択部、をさらに備え、前記充放電指令部は、前記第2の選択部により選択された二次電池を補正が行われる放電深度になるまで前記双方向変換器に充放電させる。
 第13の発明は、第1ないし第12のいずれかの発明の電池制御装置において、現在の時刻が属する時間帯における放電容量の演算値の補正のための充放電を同時に行うことが可能な二次電池の数を決定する充放電可能数決定部と、時間帯ごとの放電容量の演算値の補正のための充放電を同時に行うことが可能な二次電池の数を保持する充放電可能数保持部と、をさらに備え、前記充放電指令部は、前記補正可能数決定部が決定した二次電池の数を超えない二次電池を補正が行われる放電深度になるまで前記双方向変換器に充放電させる。
 第14の発明は、第1ないし第13のいずれかの発明の電池制御装置において、前記電流計測部は、ホール電流検出器、を備える。
 第15の発明は、第1ないし第13のいずれかの発明の電池制御装置において、前記充放電指令部は、充放電電力の目標値を設定し、前記双方向変換器は、充放電電力が目標値となるように二次電池の充放電を制御し、前記電流計測部は、二次電池の電圧を計測する電圧計測部と、前記充放電指令部により設定された充放電電力の目標値、前記電圧計測部により計測された電圧及び前記双方向変換器の効率から充放電電流値を演算する充放電電流値演算部と、前記双方向変換器の効率を保持する効率保持部と、を備える。
 第16の発明は、第1ないし第13のいずれかの発明の電池制御装置において、前記電流計測部は、二次電池の電圧を計測する電圧計測部と、前記双方向変換器の交流側の入出力電力を計測する電力計測部と、前記電圧計測部により計測された電圧、前記電力計測部により計測された入出力電力及び前記双方向変換器の効率から充放電電流値を演算する充放電電流値演算部と、前記双方向変換器の効率を保持する効率保持部と、を備える。
 第17の発明は、第1ないし第9のいずれかの発明の電池制御装置において、前記推定誤差演算部及び前記第1の比較部の比較結果を表示する表示部と、放電容量の演算値の補正が行われる放電深度まで二次電池を充放電させる命令の入力を受け付ける操作部と、を備え、前記充放電指令部は、前記操作部が入力を受け付けた放電容量の演算値の補正の対象の二次電池を補正が行われる放電深度になるまで前記双方向変換器に充放電させる。
 第18の発明は、二次電池を制御する電池制御方法であって、a) 二次電池の充放電電流値を計測する工程と、b) 前記工程a)により計測された充放電電流値を積算して二次電池の放電容量の演算値を演算する工程と、c) 前記工程b)により演算された放電容量の演算値の推定誤差を演算する工程と、d) 前記工程c)により演算された推定誤差が第1の閾値を超える二次電池を放電容量の演算値の補正の候補とする工程と、e) 放電容量の補正の候補の二次電池の全部又は一部を補正が行われる放電深度になるまで充放電させる工程と、f) 放電容量の演算値の補正が行われる放電深度まで充放電された二次電池の放電容量の演算値を補正する工程と、を備える。
 本発明によれば、推定誤差が第1の閾値を超える二次電池が放電容量の演算値の補正の候補になるので、放電容量の演算値の補正が必要な二次電池の放電容量の演算値が補正され、不必要な放電容量の演算値の補正が行われない。
 第2の発明によれば、放電容量の演算値に誤差が蓄積した二次電池が放電容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正される。
 第3の発明によれば、放電容量の演算値の誤差が大きくなりやすい二次電池が放電容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正される。
 第4の発明によれば、電流計測部の応答速度、電流計測部の周波数特性、充放電電流値の計測間隔等に起因する誤差が放電容量の演算値に大きな影響を与えた二次電池が放電容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正される。
 第5の発明によれば、電流計測部の非直線性に起因する誤差、電流計測部の計測値に含まれる電流計測部の計測値に比例する誤差等が放電容量の演算値に大きな影響を与えた二次電池が放電容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正される。
 第6の発明によれば、放電容量演算部における充放電電流値の積算の停止に起因する誤差が放電容量の演算値に大きな影響を与えた二次電池が放電容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正される。
 第7の発明によれば、電流計測部により計測された充放電電流値に含まれる真の充放電電流値に対するオフセットに起因する誤差が放電容量の演算値に大きな影響を与えた二次電池が放電容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正される。
 第8の発明によれば、電流計測部の温度特性に起因する誤差が放電容量の演算値に大きな影響を与えた二次電池が放電容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正される。
 第9の発明によれば、双方向変換器の運転状態に起因する誤差が放電容量の演算値に大きな影響を与えた二次電池が放電容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正される。
 第10の発明によれば、放電容量の演算値の補正が必要な二次電池の放電容量の演算値が自動的に補正されるので、二次電池の充放電の制御が自動化される。
 第11の発明によれば、許容される数より多い二次電池の放電容量の演算値の補正が同時に開始されにくいので、複数の二次電池の全体の出力への影響が抑制される。
 第12の発明によれば、推定誤差が大きく放電容量の演算値の補正の必要性が高い二次電池から放電容量の演算値の補正が行われるとともに、多数の二次電池の放電容量の演算値の補正が同時に開始されにくいので、複数の二次電池の全体の出力への影響が抑制される。
 第13の発明によれば、許容された数以上の二次電池の放電容量の演算値の補正が同時に開始されないので、複数の二次電池の全体の出力への影響が抑制される。
 また、第13の発明によれば、放電容量の演算値の補正が行われる二次電池の数が時間帯ごとに定められた数を超えないので、複数の二次電池の全体の出力への影響が抑制される。
 第14の発明によれば、充放電電流値が直接計測されるので、充放電電流値が高い精度で測定される。
 第15の発明によれば、計測された充放電電流値に含まれる真の充放電電流値に対するオフセットが減少するので、充放電電流値の計測の精度が向上する。
 第16の発明によれば、小さな充放電電流を計測することができる。
第1実施形態の電力貯蔵装置のブロック図である。 NaS電池のモジュールの回路図である。 推定誤差と誤差との関係を示す図である。 第1実施形態の制御部のブロック図である。 NaS電池の放電深度と電圧との関係を示すグラフである。 第2実施形態の電力貯蔵装置のブロック図である。 第2実施形態の制御部のブロック図である。 第2実施形態の補正対象決定部のブロック図である。 第2実施形態の放電容量の演算値の補正の対象を決定する処理を示すフローチャートである。 第3実施形態の補正対象決定部のブロック図である。 第3実施形態の放電容量の演算値の補正の対象を決定する処理を示すフローチャートである。 第3実施形態の放電容量の演算値の補正の対象を決定する処理を示すフローチャートである。 第4実施形態の電流計測部のブロック図である。 第5実施形態の電流計測部のブロック図である。 マイクログリッドのブロック図である。
 この発明の目的、特徴、局面及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
 (1 第1実施形態)
 第1実施形態は、電力貯蔵装置1002に関する。
 (電力貯蔵装置1002の概略)
 図1は、第1実施形態の電力貯蔵装置1002のブロック図である。
 図1に示すように、電力貯蔵装置1002は、電力を貯蔵するNaS電池(ナトリウム-硫黄電池)1004と、系統1902とNaS電池1004とを接続する接続線1006と、NaS電池1004の充放電電流値Iを計測するホール電流検出器1008と、ホール電流検出器1008を収容するハウジング1009と、ハウジング1009の内部の温度Tを計測する温度センサ1110と、NaS電池1004から系統1902へ供給される電力を直流から交流へ変換し系統1902からNaS電池1004へ供給される電力を交流から直流へ変換する双方向変換器1112と、NaS電池1004から系統1902へ供給される電力を昇圧し系統1902から電池NaSへ供給される電力を降圧する変圧器1114と、電力貯蔵装置1002を制御する制御部1116と、情報を表示する表示部1115と操作を受け付ける操作部1117と、を備える。NaS電池に代えて他の種類の二次電池を採用してもよい。
 ホール電流検出器1008、双方向変換器1112及び変圧器1114は、接続線1006に挿入される。ホール電流検出器1008は、双方向変換器1112の直流側に接続され、変圧器1114は双方向変換器1112の交流側に接続される。
 ホール電流検出器1008、温度センサ1110、双方向変換器1112、変圧器1114、制御部1116、表示部1115及び操作部1117は、NaS電池1004を制御するNaS電池制御装置を構成する。制御部1116は、NaS電池1004の充放電電流値Iを積算してNaS電池1004の放電容量を演算し、放電容量の演算値からSOC(State Of Charge;充電状態)を演算する。制御部1116は、NaS電池1004が放電容量の演算値の補正の候補であるか否かを特定し、放電容量の演算値の補正の候補であると特定したNaS電池1004を放電容量の演算値の補正が行われる放電深度まで充放電させ、充放電させたNaS電池1004の放電容量の演算値を補正する。
 (NaS電池1004)
 図2は、NaS電池1004のモジュール1120の回路図である。
 図2に示すように、モジュール1120は、ブロック1122を直列接続した直列接続体であり、ブロック1122は、ストリング1124を並列接続した並列接続体であり、ストリング1124は、セル1126を直列接続した直列接続体である。ブロック1122の直列接続数、ストリング1124の並列接続数及びセル1126の直列接続数は、モジュール1120の仕様に応じて増減される。
 NaS電池1004は、1個以上のモジュール1120を備える。モジュール1120の数は、NaS電池1004の仕様に応じて増減される。
 (ホール電流検出器1008)
 ホール電流検出器1008は、NaS電池1004の充放電電流値Iを計測する。
 ホール電流検出器1008は、充放電電流が発生させた磁界をホール素子で検出し、ホール素子の出力をA/Dコンバータその他の付属回路で処理してから出力する。ホール電流検出器1008に変えて他の原理による電流センサ及び必要な付属回路を電流計測部として採用してもよい。
 ホール電流検出器1008を電流計測部として用いることにより、充放電電流値Iが直接測定されるので、充放電電流値Iが高い精度で測定される。
 ホール電流検出器1008には、ホール電流検出器1008により計測された充放電電流値Iが真の充放電電流値に対するオフセット(以下では単に「ホール電流検出器1008のオフセット」という)を含むという問題がある。また、ホール電流検出器1008には、ホール電流検出器1008のオフセットが充放電電流値I及びハウジング1009の内部の温度Tによって変動するという問題がある。さらに、ホール電流検出器1008には、ホール電流検出器1008により計測された充放電電流値Iが真の充放電電流値に正確に比例しないという非直線性の問題がある。加えて、ホール電流検出器1008により計測された充放電電流値Iには、充放電電流値Iに比例する誤差が含まれるという問題がある。これらの問題は、充放電電流値Iを積算することによって演算される放電容量の演算値の誤差の原因となる。
 第1実施形態の電力貯蔵装置1002では、これらの問題に起因する放電容量の演算値の推定誤差Er(t2)を演算し、推定誤差Er(t2)が大きい場合にNaS電池1004を放電容量の演算値の補正の候補であると特定する。
 図3は、推定誤差Er(t2)と誤差との関係を示す図である。図3に示す誤差は、放電容量の演算値から実際の放電容量を減じた値である。推定誤差Er(t2)は、誤差の大きさそのものの推定値ではなく、誤差範囲の推定値である。したがって、図3に示すように、推定誤差が大きな値になっても複数の誤差の要因が相殺しあうと黒丸のプロット点で示す誤差の値は小さくなる場合がある。
 (双方向変換器1112)
 双方向変換器1112は、充放電指令に従ってNaS電池1004を充放電させ、充放電電力が目標値となるようにNaS電池1004の充放電を制御する。双方向変換器1112は、制御部1116から伝達された充放電電力指令値と実際の充放電電力とが一致するようにNaS電池1004の充放電を制御するとともに、放電容量の演算値の誤差を解消するためにNaS電池1004を充放電させる。
 双方向変換器1112は、「PCS(Power Conversion System)」「交直変換器」等とも呼ばれる。双方向変換器1112における直流と交流との相互変換は、PWM(Pulse Width Modulation)インバータ等により行われる。
 (制御部1116の概略)
 図4は、制御部1116のブロック図である。図4のブロックの各々は、少なくともCPU及びメモリを備える組み込みコンピュータに制御プログラムを実行させることにより実現されてもよいし、ハードウエアにより実現されてもよい。制御部1116は、入力された充放電電力指令値を双方向変換器1112へ伝達する。充放電電力指令値は、操作部1117から入力される場合もあるし、電力貯蔵装置1002を含むマイクログリッドのマイクログリッド制御システムから通信回線を経由して入力されることもある。
 図4に示すように、制御部1116は、NaS電池1004の放電容量の演算値を演算する放電容量演算部1130と、NaS電池1004のSOCを演算するSOC演算部1131と、放電容量演算部1130により演算された放電容量の演算値の推定誤差Er(t2)を演算する推定誤差演算部1132と、推定誤差Er(t2)と閾値THとを比較する比較部1140と、閾値THを保持する閾値保持部1142と、双方向変換器1112にNaS電池1004の充放電を指令し充放電電力の目標値を設定する充放電指令部1136と、を備える。「演算」には、演算式による演算だけでなく、数値テーブルによる変換、アナログ演算回路による演算等の処理が含まれる。
 (放電容量の演算値の演算)
 放電容量演算部1130は、ホール電流検出器1008により計測されたNaS電池1004の充放電電流値Iを積算し、NaS電池1004の放電容量の演算値を演算する。ただし、放電容量演算部1130は、充放電電流値Iの大きさが基準値より小さくなっている間は充放電電流値Iの積算を停止する。このようにするのは、ホール電流検出器1008により計測された充放電電流値Iが小さいときには、ホール電流検出器1008のオフセットが充放電電流値Iに大きな影響を与えている可能性が高いからである。
 (放電容量の演算値の補正)
 放電容量演算部1130は、放電容量の演算値の補正の対象のNaS電池1004が補正が行われる放電深度まで充放電されると、放電容量の演算値を補正する。
 図5は、NaS電池1004の放電深度と電圧との関係を示すグラフである。
 図5に示すように、ナトリウム硫化物(Na25)及び単体イオウ(S)が正極活物質として存在する二相域の充電末(図5のグラフの左端付近)においては、充電がすすむほどNaS電池1004の電圧は高くなる。充電末以外の二相域においては、電圧は放電深度によらず概ね一定である。ナトリウム硫化物(Na2x)のみが正極活物質として存在する一相域においては、電圧は放電深度が深くなると低下する。
 したがって、放電容量の演算値の補正は、放電深度が充電末になるまでNaS電池1004が充電された状態、又は、放電深度が一相域になるまでNaS電池1004が放電された状態で行われる。
 (SOCの演算)
 SOC演算部1131は、放電容量から決まる残存容量及び定格容量からSOCを演算する。
 (電力貯蔵装置1002の運転の形態)
 電力貯蔵装置1002の運転の形態は、パターン運転と電力平滑運転とに大別される。
 パターン運転とは、1日の電力需要の変動に応じて充放電を行う運転である。例えば、電力需要が少ない夜間に充電を行い、電力需要が少ない昼間に放電を行うパターン運転が一般的に行われている。パターン運転が行われる場合、時間ごとの充放電電力があらかじめ設定されることが多い。
 電力平滑運転とは、より短い電力需要の変動に応じて充放電を行う運転である。
 (電力貯蔵装置1002の運転と放電容量の演算値の補正との関係)
 電力貯蔵装置1002がパターン運転を行う場合、補正が行われる放電深度になるまでNaS電池1004が充放電されることが比較的多いので、放電容量の演算値の補正のためにNaS電池1004を充放電しなければならない事態は比較的発生しにくい。
 しかし、電力貯蔵装置1002が電力平滑運転を行う場合、補正が行われる放電深度になるまでNaS電池1004が充放電されることが比較的少ないので、放電容量の演算値の補正のためにNaS電池1004を充放電しなければならない事態は比較的発生しやすい。一方、放電容量の演算値の補正のためにNaS電池1004を充放電することは、電力貯蔵装置1002の出力に影響を与えるため、放電容量の演算値の補正が必要な場合のみ放電容量の演算値の補正が行われ、不必要な放電容量の演算値の補正が行われないようにすることが望ましい。そこで、第1実施形態の電力貯蔵装置1002では、電力平滑運転を行うことができるように、放電容量の演算値の推定誤差Er(t2)を演算し、推定誤差Er(t2)が大きく放電容量の演算値の補正が必要な場合にのみNaS電池1004を放電容量の演算値の補正の候補とする。ただし、このことは、電力貯蔵装置1002がパターン運転を行うことを妨げない。
 (推定誤差Er(t2)の演算)
 推定誤差演算部1132は、放電容量演算部1130により演算された放電容量の演算値の推定誤差Er(t2)を演算する。
 (推定誤差Er(t2))
 推定誤差Er(t2)は、放電容量の演算値の誤差の原因を反映する因子の集まりである。放電容量の演算値の誤差の原因には、例えば、前回の放電容量の演算値の補正から現在までに経過した時間、充放電が行われた時間、充放電電力、充放電電力の変動の大きさ・急峻さ・回数等がある。
 例えば、現在の時刻t2における放電容量の演算値の推定誤差Er(t2)は、式(1)にしたがって、次の第1項及び第2項の和として演算される。
 (第1項)時刻tにおける推定誤差Er(t2)の増加をあらわす被積分関数の前回の放電容量の演算値の補正が行われた時刻t1から現在の時刻t2までの時間tについての積分;
 (第2項)前回の放電容量の演算値の補正における補正量errorと定数eとの積;
Figure JPOXMLDOC01-appb-M000001
 式(1)で演算される演算誤差Er(t2)に代えて、式(2)に示す第1項と第2項との積として演算される推定誤差Er(t2)を用いてもよい。
Figure JPOXMLDOC01-appb-M000002
 式(1)の第1項に示すように、推定誤差Er(t2)は、前回の放電容量の演算値の補正が行われた時刻t1から現在の時刻t2までの積分(離散化されている場合の総和も含む)であらわされる因子を含む。これにより、放電容量の演算値に誤差が蓄積した場合にNaS電池1004が放電容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正される。
 式(1)の第2項に示すように、推定誤差Er(t2)は、前回の放電容量の演算値の補正における補正量errorが大きくなるほど大きくなる因子、例えば、補正量errorに比例する因子を含む。1回の補正の補正量errorに代えて2回以上の補正の補正量の平均値を採用してもよい。これにより、放電容量の演算値の誤差が大きくなりやすい場合にNaS電池1004が放電容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正される。
 式(1)の第1項の積分の被積分関数は、次の第1項~第4項の和として演算される。
 (第1項)充放電電流値Iの関数である補正係数a(I)と充放電電流値Iの時間変化dI/dtとの積a(I)×dI/dt;
 (第2項)放電電流値Iの関数である補正係数b(I);
 (第3項)充放電電流値Iの関数である補正係数f(I)とハウジング1009の内部の温度Tの関数である補正係数c(T)との積;
 (第4項)双方向変換器1112の運転状態に応じた値をとる補正係数d;
 充放電電流値Iは、ホール電流検出器1008から取得される。温度Tは、温度センサ1110から取得される。双方向変換器1112の運転状態は、充放電指令部1136から取得される。
 被積分関数の第1項は、時間変化dI/dtが大きくなるほど大きくなる因子であることが望ましい。これにより、ホール電流検出器1008の応答速度、ホール電流検出器1008の周波数特性、充放電電流Iの計測間隔等に起因する誤差が放電容量の演算値に大きな影響を与えた場合にNaS電池1004が放電容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正される。
 ホール電流検出器1008の周波数特性はわずかではあるが充放電電流値Iの影響を受けるので、補正係数a(I)は充放電電流値Iの関数であることが望ましい。ただし、推定誤差Er(t2)の精度をわずかに低下させることが許容されるのであれば、補正係数a(I)が充放電電流値Iに依存しない定数であってもよい。この場合、被積分関数の第1項は、時間変化dI/dtに比例する因子となる。
 式(3)及び式(4)に示すように、式(1)及び式(2)で演算される推定誤差Er(t2)の被積分関数の第1項の時間変化dI/dtが、時間変化dI/dtの絶対値|dI/dt|に置き換えられることも望ましい。充放電電流値Iが増加する場合及び減少する場合のいずれの場合も充放電電流値Iが変化しない場合よりも放電容量の演算値が影響を受けるので、時間変化dI/dtを時間変化dI/dtの絶対値|dI/dt|に置き換えることにより、充放電電流値Iが増加する場合及び減少する場合のいずれの場合も推定誤差Er(t2)が適切に演算される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 被積分関数の第2項の補正係数b(I)は、充放電電流値Iが大きくなるほど大きくなる因子、例えば、充放電電流値Iに比例する因子を含むことが望ましい。これにより、ホール電流検出器1008の非直線性に起因する誤差、ホール電流検出器1008により計測された充放電電流値Iに含まれる充放電電流値Iに比例する誤差等が充電状態に大きな影響を与えた場合にNaS電池1004が放電容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正される。
 また、補正係数b(I)は、充放電電流値Iが基準値より小さい場合に充放電電流値Iが大きくなるほど大きくなる因子、例えば、充放電電流値Iに比例する因子を含むことが望ましい。これにより、放電容量演算部1130における充放電電流値Iの積算の停止に起因する誤差が放電容量の演算値に大きな影響を与えた場合にNaS電池1004が放電容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正される。
 さらに、補正係数b(I)は、ホール電流検出器1008のオフセットが大きくなるほど大きくなる因子、例えば、ホール電流検出器1008のオフセットに比例する因子を含むことが望ましい。これにより、ホール電流検出器1008のオフセットに起因する誤差が放電容量の演算値に大きな影響を与えた場合にNaS電池1004が放電用容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正される。
 ホール電流検出器1008のオフセットは、大きな充放電電流が流れた後に大きくなる傾向がある。一般的には、ホール電流検出器1008のオフセットは、充放電電流値Iの履歴から演算される。
 被積分関数の第3項の補正係数c(T)は、温度Tが基準温度から離れるほど大きくなる因子であることが望ましい。基準温度は、例えば、25℃に定められる。これにより、温度センサ1110の温度特性に起因する誤差が放電容量の演算値に大きな影響を与えた場合にNaS電池1004が放電電流の演算値の補正の対象になるのが早くなるので放電容量の演算値が適時に補正される。
 ホール電流検出器1008のオフセットは、正の温度係数を有する場合もあるし、負の温度係数を有する場合もあし、温度Tが変化したときに不規則に変化する場合もある。このため、補正係数c(T)は、ホール電流検出器1008の温度特性を実測して設定することが望ましい。
 温度Tの影響は、充放電電流値Iが小さいときには強くあらわれないので、補正係数c(T)には、充放電電流値Iが小さくなると小さくなる補正係数f(I)がかけられる。ただし、推定誤差Er(t2)の精度をわずかに低下させることが許容されるのであれば、補正係数f(I)が充放電電流値Iに依存しない定数であってもよい。
 被積分関数の第4項の補正係数dは、双方向変換器1112の運転状態を反映する因子、例えば、双方向変換器1112が停止されており充放電電流が流れないときは0となり、双方向変換器1112が運転されており充放電電流が流れるときは定数d1となり、双方向変換器1112が運転待機中であり微弱な充放電電流が流れる可能性があるときは定数d2となる因子であることが望ましい。定数d1は定数d2よりも大きい(d1>d2)。これにより、双方向変換器1112の運転状態に起因する誤差が放電容量の演算値に大きな影響を与えた場合にNaS電池が放電容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正される。
 ホール電流検出器1008がA/Dコンバータを含む場合には、A/D変換に伴う量子化誤差が生じる。補正係数dにより、当該量子化誤差が放電容量の演算値に大きな影響を与えた場合にNaS電池が放電容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正される。
 式(1)を変形することも許容される。例えば、推定誤差Er(t2)の精度をわずかに低下させることが許容され、推定誤差Er(t2)の演算に使用する資源を減らすことが要求されるのであれば、上述の因子のうち寄与が小さい因子を省略してもよい。また、推定誤差Er(t2)の演算に使用する資源を増やすことが許容されるのであれば、上述の因子以外の因子を推定誤差Er(t2)に含めてもよい。
 (推定誤差Er(t2)の演算の意義)
 放電容量の演算値の誤差の原因に応じて充放電電流値Iを補正し、補正された充放電電流値Iを積算して放電容量を計算することも考えられる。しかし、そのような補正には、経時変化や不確定性を考慮することが困難である、多くの演算資源を必要とする、等の問題がある。
 これに対して、推定誤差Er(t2)を演算して放電容量の演算値を適時に補正するようにすれば、必要な演算資源は比較的少なくてすむ。
 (推定誤差Er(t2)と閾値THとの比較)
 比較部1140は、推定誤差Er(t2)を推定誤差演算部1132から取得し、推定誤差Er(t2)と閾値THとを比較し、推定誤差Er(t2)が閾値THを超える場合にNaS電池1004を放電容量の演算値の補正の候補とする。これにより、推定誤差Er(t2)が閾値THを超えるNaS電池2004が放電容量の演算値の補正の候補になるので、放電容量の演算値の補正が必要な場合にNaS電池2004の放電容量の演算値が補正され、不必要な放電容量の演算値の補正が行われない。
 (充放電の指令及び充放電電力の目標値)
 充放電指令部1136は、双方向変換器1112に充放電指令信号を出力する。これにより、放電容量の演算値の補正の対象のNaS電池1004は、補正が行われる放電深度まで充放電される。充放電指令部1136は、充放電指令信号の出力にあたって、充放電電力の目標値を設定し双方向変換器1112に出力する。比較部1140により放電容量の演算値の補正の候補となったNaS電池1004は、そのまま、放電容量の補正の対象となる。ただし、現在の時刻が放電容量の補正を許可する時間帯である場合にのみ、放電容量の補正のための充放電を許可するようにしてもよい。
 (放電容量の演算値の補正の手動実行)
 放電容量の演算値の補正の候補のNaS電池1004を自動で放電容量の演算値の補正が行われる放電深度まで放電させる放電容量の演算値の補正の自動実行を停止し、放電容量の演算値の補正の候補のNaS電池1004を手動で放電容量の演算値の補正が行われる放電深度まで放電させるようにしてもよい。
 そのような放電容量の演算値の補正の手動実行を可能にするため、電力貯蔵装置1002は、NaS電池1004の放電容量の演算値の推定誤差Er(t2)及び推定誤差Er(t2)が閾値THを超えているか否かを表示部1115に表示し、放電容量の演算値の補正の命令を操作部1117で受け付ける。放電容量の演算値の補正の命令に加えて、放電容量の演算値の補正のための充放電を開始する時間の入力を操作部1117が受け付けてもよい。操作部1117が入力を受け付けた放電容量の演算値の補正の命令は、充放電指令部1136へ送られる。充放電指令部1136は、放電容量の演算値の補正の命令が与えられると、NaS電池1004を補正が行われる放電深度になるまで双方向変換器1004に充放電させる。
 放電容量の演算値の補正を手動実行する場合、電力貯蔵装置1002の操作者は、表示部1115に表示された情報を参照し、電力貯蔵装置1002を含むマイクログリッドの現在及び将来の状況を考慮し、放電容量の演算値の補正の命令を操作部1117から入力する。操作者が考慮する事項には、保守点検中又は保守点検の予定がある分散型電源、気温から導かれる負荷の電力需要予測、マイクログリッドの外部のマクロ系統との間の売買電計画等がある。
 (2 第2実施形態)
 第2実施形態は、電力貯蔵装置2002に関する。
 (電力貯蔵装置2002の概略)
 図6は、第2実施形態の電力貯蔵装置2002のブロック図である。
 図6に示すように、電力貯蔵装置2002は、電力を貯蔵するNaS電池2004と、系統2902とNaS電池2004とを接続する接続線2006と、NaS電池2004の充放電電流値Im(m=1,2,3,4)を計測するホール電流検出器2008と、ホール電流検出器2008を収容するハウジング2009と、ハウジング2009の内部の温度Tm(m=1,2,3,4)を計測する温度センサ2110と、NaS電池2004から系統2902へ供給される電力を直流から交流へ変換し系統2902からNaS電池2004へ供給される電力を交流から直流へ変換する双方向変換器2112と、NaS電池2004から系統2902へ供給される電力を昇圧し系統2902から電池NaSへ供給される電力を降圧する変圧器2114と、電力貯蔵装置2002を制御する制御部2116と、情報を表示する表示部2115と、操作を受け付ける操作部2117と、を備える。
 接続線2006、ホール電流検出器2008、双方向変換器2112及び変圧器2114は、複数のNaS電池2004の各々に対応して1個ずつ設けられ、ホール電流検出器2008、双方向変換器2112及び変圧器2114は、接続線2006に挿入される。ホール電流検出器2008は、双方向変換器2112の直流側に接続され、変圧器2114は、双方向変換器2112の交流側に接続される。複数のホール電流検出器2008の各々は、別々のハウジング2009に収容される。なお、複数のホール電流検出器2008のうちの2個以上のホール電流検出器2008を1個のハウジングに収容してもよいし、複数のホール電流検出器2008の全部を1個のハウジングに収容してもよい。温度センサ2110は、複数のハウジング2009の各々に対応して1個ずつ設けられる。1個のハウジングに2個以上のホール電流検出器2008が収容される場合は、ハウジングごとに温度センサ2110が設けられ、2個以上のホール電流検出器2008で1個の温度センサ2110が共用される。
 図6には、4個のNaS電池2004が示されているが、NaS電池の数は電力貯蔵装置2002の仕様に応じて増減される。NaS電池に代えて他の種類の二次電池を採用してもよい。
 ホール電流検出器2008、温度センサ2110、双方向変換器2112、変圧器2114、制御部2116、表示部2115及び操作部2117は、複数のNaS電池2004を制御するNaS電池制御装置を構成する。制御部2116は、m番目(m=1,2,3,4)のNaS電池2004の充放電電流値Imを積算してm番目(m=1,2,3,4)のNaS電池2004の放電容量を演算し、放電容量の演算値からSOCを演算する。制御部2116は、放電容量の演算値の補正が必要なNaS電池2004を放電容量の演算値の補正の候補として特定し、補正が行われる放電容量まで特定したNaS電池2004の全部又は一部を充放電させ、充放電させたNaS電池2004の放電容量の演算値を補正する。
 第2実施形態のNaS電池2004、ホール電流検出器2008、温度センサ2110、双方向変換器2112及び変圧器1114としては、それぞれ、第1実施形態のNaS電池1004、ホール電流検出器1008、温度センサ1110、双方向変換器1112及び変圧器1114と同様のものが採用される。
 (制御部2116の概略)
 図7は、制御部2116のブロック図である。図7のブロックの各々は、少なくともCPU及びメモリを備える組み込みコンピュータに制御プログラムを実行させることにより実現されてもよいし、ハードウエアにより実現されてもよい。制御部2116は、入力された充放電電力指令値と複数のNaS電池2004の充放電電力の合計とが一致するように複数のNaS電池2004の各々の充放電指令値を複数の双方向変換器2112の各々へ伝達する。充放電電力指令値は、操作部2117から入力される場合もあるし、電力貯蔵装置2002を含むマイクログリッドのマイクログリッド制御システムから通信回線を経由して入力されることもある。
 図7に示すように、制御部2116は、NaS電池2004の放電容量の演算値を演算する放電容量演算部2130と、NaS電池2004のSOCを演算するSOC演算部2131と、放電容量演算部2130により演算された放電容量の演算値の推定誤差Erm(t2)(m=1,2,3,4)を演算する推定誤差演算部2132と、放電容量の演算値の補正の対象のNaS電池2004を決定する補正対象決定部2134と、双方向変換器2112にNaS電池2004の充放電を指令し充放電電力の目標値を設定する充放電指令部2136と、を備える。放電容量演算部2130、推定誤差演算部2132及びSOC演算部2131は、複数のNaS電池2004の各々に対応して1個ずつ設けられてもよいし、複数のNaS電池2004の全部について共用であってもよい。
 (放電容量の演算値の演算)
 放電容量演算部2130は、ホール電流検出器2008により計測された複数のNaS電池2004の各々の充放電電流値Imを積算し、複数のNaS電池2004の各々の放電容量の演算値を演算する。ただし、放電容量演算部2130は、充放電電流値Imの大きさが基準値より小さくなっている間は充放電電流値Imの積算を停止する。
 (放電容量の演算値の補正)
 放電容量演算部2130は、放電容量の演算値の補正の対象のNaS電池2004が補正が行われる放電深度まで充放電されると、放電容量の演算値を補正する。
 (SOCの演算)
 SOC演算部2131は、複数のNaS電池の各々について放電容量から決まる残存容量及び定格容量からSOCを演算する。
 (放電容量の演算値の補正が電力貯蔵装置2002の出力に与える影響)
 放電容量の演算値の補正のために充放電を行うことは、電力貯蔵装置2002の出力に影響を与える場合がある。ただし、第1実施形態の電力貯蔵装置1002と異なり、第2実施形態の電力貯蔵装置2002は、複数のNaS電池2004を備える。このため、放電容量の補正のために充放電しているNaS電池2004の充放電電力の合計P1、放電容量の補正のために充放電しているNaS電池2004以外のNaS電池2004の充放電電力の合計P2及び入力された充放電電力指令値PINとの間に、P2=PIN-P1という関係が成立する場合は、電力貯蔵装置2002の出力を変更する必要はない。この関係が成立しない場合は、電力貯蔵装置2002の出力を変更するか、放電容量の補正のための充放電を中止する必要が生じる。
 (推定誤差Er(t2)の演算)
 推定誤差演算部2132は、複数のNaS電池2004の各々について放電容量演算部2130により演算された放電容量の演算値の推定誤差Erm(t2)を演算する。
 (推定誤差Erm(t2))
 推定誤差Erm(t2)は、放電容量の演算値の誤差の原因を反映する因子の集まりである。放電容量の演算値の誤差の原因には、例えば、前回の放電容量の演算値の補正から現在までに経過した時間、充放電が行われた時間、充放電電力、充放電電力の変動の大きさ・急峻さ・回数等がある。
 例えば、m番目のNaS電池2004の現在の時刻t2における放電容量の演算値の推定誤差Erm(t2)は、式(3)にしたがって、次の第1項及び第2項の和として演算される。
 (第1項)時刻tにおける推定誤差Erm(t2)の増加をあらわす被積分関数の前回の放電容量の演算値の補正が行われた時刻t1から現在の時刻t2までの時間tについての積分;
 (第2項)前回の放電容量の演算値の補正における補正量errormと定数eとの積;
Figure JPOXMLDOC01-appb-M000005
 式(5)は、充放電電流値「I」が「Im」へ、補正量「error」が「errorm」へ、測定誤差「Er(t2)」が「Erm(t2)」へ置き換えられた点を除いては、式(1)と同様の演算式である。
 式(6)に示すように、式(5)で演算される推定誤差Er(t2)の被積分関数の第1項の時間変化dIm/dtが、時間変化dIm/dtの絶対値|dIm/dt|に置き換えられることも望ましい。
Figure JPOXMLDOC01-appb-M000006
 この演算式により、誤差が放電容量の演算値に大きな影響を与えた場合にNaS電池2004が放電容量の演算値の補正の対象になるのが早くなるので、放電容量の演算値が適時に補正され、放電容量の演算値の補正の対象が適切に選択される。
 (放電容量の演算値の補正の対象の決定)
 図8は、補正対象決定部2134のブロック図である。
 図8に示すように、補正対象決定部2134は、推定誤差Erm(t2)と閾値THとを比較する比較部2140と、閾値THを保持する閾値保持部2142と、放電容量の演算値の補正の対象のNaS電池2004を選択する選択部2144と、現在の時刻が属する時間帯における放電容量の演算値の補正のための充放電を行うことが可能な二次電池2004の数(以下では、「充放電可能数」という)を決定する充放電可能数決定部2144と、時間帯ごとの充放電可能数を保持する充放電可能数保持部2148と、を備える。
 比較部2140は、複数のNaS電池2004の各々の推定誤差Erm(t2)を推定誤差演算部2132から取得し、複数のNaS電池2004の各々について推定誤差Erm(t2)と閾値THとを比較し、推定誤差Erm(t2)が閾値THを超えるNaS電池2004を放電容量の演算値の補正の候補とする。これにより、推定誤差Er(t2)が閾値THを超えるNaS電池2004が放電容量の演算値の補正の候補になるので、放電容量の演算値の補正が必要なNaS電池2004の放電容量の演算値が補正され、不必要な放電容量の演算値の補正が行われない。
 選択部2144は、放電容量の演算値の補正の候補のNaS電池2004から推定誤差Erm(t2)が最も大きい1個のNaS電池2004を放電容量の演算値の補正の対象として選択する。これにより、2個以上のNaS電池2004の放電容量の演算値の補正が同時に開始されないので、電力貯蔵装置2002の出力への影響が抑制される。
 放電容量の演算値の補正の対象のNaS電池2004の数が1個であることは必須ではない。すなわち、一般的には、選択部2144は、放電容量の演算値の補正の候補のNaS電池2004から推定誤差Er(t2)が大きい順に許容される数のNaS電池2004を放電容量の演算値の補正の対象として選択する。これにより、許容される数より多いNaS電池2004の放電容量の演算値の補正が同時に開始されないので、電力貯蔵装置2002の出力への影響が抑制される。
 「許容される数」とは、充放電可能数から放電容量の演算値の補正のための充放電を実際に行っているNaS電池2004の数を減じた数である。
 充放電可能数決定部2146は、充放電可能数保持部2148に保持された情報を参照し、その時間帯における充放電可能数を決定する。
 充放電可能数に制約がない場合は、放電容量の演算値の補正の候補のNaS電池2004の一部のみを放電容量の演算値の補正の対象としなければならない制約がなくなるので、選択部2144、充放電可能数決定部2146、充放電可能数保持部2148は省略され、放電容量の演算値の補正の候補のNaS電池2004の全部が放電容量の演算値の補正の対象になる。
 (放電容量の演算値の補正の対象を決定する処理)
 図9は、放電容量の演算値の補正の対象を決定するために繰り返し行われる処理を示すフローチャートである。
 図9に示すように、放電容量の演算値の補正の対象の決定にあたっては、複数のNaS電池2004の各々の推定誤差Erm(t2)が推定誤差演算部2132から取得される(ステップS201)。
 推定誤差Erm(t2)が取得された後に、比較部2140により推定誤差Erm(t2)と閾値THとが比較され、放電容量の演算値の補正の候補のNaS電池2004が特定される(ステップS202)。
 閾値THとの比較の結果、放電容量の演算値の補正の候補のNaS電池2004がない場合(ステップS203で"NO")は、放電容量の演算値の補正の対象のNaS電池2004が選択されないまま、処理が終了する。
 一方、放電容量の演算値の補正の候補のNaS電池2004がある場合(ステップS203で"YES")は、充放電可能数決定部2146により、現在の時刻が属する時間帯における充放電可能数が決定される(ステップS204)。
 その結果、放電容量の演算値の補正が許容されるNaS電池2004の数が1個以上であれば(ステップS205で"YES")、選択部2144により放電容量の演算値の補正の対象のNaS電池2004が選択され(ステップS206)、0個であれば、放電容量の演算値の補正の対象のNaS電池2004が選択されないまま処理が終了する。
 (充放電の指令及び充放電電力の目標値)
 充放電指令部2136は、放電容量の演算値の補正の対象のNaS電池2004と系統2902とを接続する接続線2006に挿入された双方向変換器2112に充放電指令信号を出力する。これにより、放電容量の演算値の補正の対象のNaS電池2004は、補正が行われる放電深度まで充放電される。充放電指令部2136は、充放電指令信号の出力にあたって、充放電電力の目標値を設定し双方向変換器2112に出力する。
 (放電容量の演算値の補正の手動実行)
 第2実施形態の電力貯蔵装置2022においても、第1実施形態の電力貯蔵装置1022と同様に、放電容量の演算値の補正の手動実行を可能にするため、複数のNaS電池2004の放電容量の各々の演算値の推定誤差Erm(t2)及び推定誤差Erm(t2)が閾値THを超えているか否かを表示部2117に表示させ、複数のNaS電池2004の各々について放電容量の演算値の補正が行われる放電深度まで放電させる命令の入力を操作部2117で受けつける。
 (3 第3実施形態)
 第3実施形態は、第2実施形態の補正対象決定部2134に代えて採用される補正対象決定部3134に関する。
 図10は、第3実施形態の補正対象決定部3134のブロック図である。
 図10に示すように、補正対象決定部3134は、推定誤差Erm(t2)と第1の閾値TH1とを比較する第1の比較部3140と、第1の閾値TH1を保持する第1の閾値保持部3142と、放電容量の演算値の補正の対象のNaS電池2004を選択する第1の選択部3144と、推定誤差Erm(t2)と第2の閾値TH2とを比較する第2の比較部3150と、第2の閾値TH2を保持する第2の閾値保持部3152と、放電容量の演算値の補正の対象のNaS電池2004を選択する第2の選択部3154と、現在の時刻が属する時間帯における充放電可能数を決定する充放電可能数決定部3146と、時間帯ごとの充放電可能数を保持する充放電可能数保持部3148と、備える。第2の閾値TH2は、第1の閾値TH1を超えない(TH2<TH1)。
 第1の比較部3140は、第2実施形態の比較部2140と同様に、複数のNaS電池2004の各々の放電容量の演算値の推定誤差Erm(t2)を推定誤差演算部2132から取得し、複数のNaS電池2004の各々について推定誤差Erm(t2)と第1の閾値TH1とを比較し、推定誤差Erm(t2)が第1の閾値TH1を超えるNaS電池2004を放電容量の演算値の補正の候補とする。
 第1の選択部3144は、第2実施形態の選択部2144と同様に、第1の比較部3140により放電容量の演算値の補正の候補とされたNaS電池2004から推定誤差Erm(t2)が最も大きい1個のNaS電池を選択する。第1の比較部3140により放電容量の演算値の補正の候補とされたNaS電池2004から推定誤差Er(t2)が大きい順に許容される数のNaS電池2004を選択してもよい。第1の選択部3144を省略し、第1の比較部3140により放電容量の演算値の補正の候補とされたNaS電池2004の全部を放電容量の演算値の補正の対象としてもよい。
 第2の比較部3150は、複数のNaS電池2004の各々について推定誤差Erm(t2)と第2の閾値TH2とを比較し、推定誤差Erm(t2)が第2の閾値TH2を超えるNaS電池2004を放電容量の演算値の補正の候補とする。
 第2の選択部3154は、第2の比較部3150により放電容量の演算値の補正の候補とされたNaS電池2004の数が2個以上である場合は、第2の比較部3150により放電容量の演算値の補正の候補とされたNaS電池2004から推定誤差Erm(t2)が最も大きい1個の電池を放電容量の演算値の補正の対象として選択する。第2の比較部3150により放電容量の演算値の補正の候補とされたNaS電池2004から推定誤差Erm(t2)が大きい順に許容される数のNaS電池2004を選択してもよい。また、第2の選択部3154は、第2の比較部3150により放電容量の演算値の補正の候補とされたNaS電池2004の数が1個以下である場合は、放電容量の演算値の補正の対象を選択しない。第2の選択部3154を省略し、第2の比較部3150により放電容量の演算値の補正の候補とされたNaS電池2004の全部を放電容量の演算値の補正の対象としてもよい。
 (放電容量の演算値の補正の対象を決定する処理)
 図11及び図12は、放電容量の演算値の補正の対象のNaS電池1004を決定するために繰り返し行われる処理を示すフローチャートである。
 図11に示すように、放電容量の演算値の補正の対象のNaS電池2004の決定にあたっては、複数のNaS電池2004の各々の推定誤差Erm(t2)が推定誤差演算部2132から取得される(ステップS301)。
 推定誤差Erm(t2)が取得された後に、第1の比較部3140により推定誤差Erm(t2)と第1の閾値TH1とが比較され、放電容量の演算値の補正の候補のNaS電池2004が特定される(ステップS302)。
 第1の閾値TH1との比較の結果、放電容量の演算値の補正の候補のNaS電池2004がある場合(ステップS303で"YES")は、放電容量の演算値の補正のための充放電可能数決定部3146により、現在の時刻が属する時間帯における放電容量の演算値の補正のための充放電可能数が決定される(ステップ304)。
 その結果、放電容量の演算値の補正が許容されるNaS電池2004の数が1個以上であれば(ステップS305で"YES")、第1の選択部3144により放電容量の演算値の補正の対象のNaS電池2004が選択され(ステップS306)、0個であれば(ステップS305で"NO")、放電容量の演算値の補正の対象のNaS電池2004が選択されないまま処理が終了する。
 放電容量の演算値の補正の対象のNaS電池2004が選択された結果、放電容量の演算値の補正の対象として選択されたNaS電池2004の数が放電容量の演算値の補正が許容されるNaS電池2004の数に達した場合(ステップS312で"NO")は、新たに放電容量の演算値の補正のための充放電を開始することはできないので、処理が終了する。
 一方、第1の閾値TH1との比較の結果、放電容量の演算値の補正の対象のNaS電池2004がない場合は、続いて、図12に示すように、第2の閾値TH2との比較が行われる。放電容量の演算値の補正が許容されるNaS電池2004の数よりも放電容量の演算値の補正の対象として選択されたNaS電池2004の数が少ない場合(ステップS312で"YES")も、続いて、図12に示すように、第2の閾値TH2との比較が行われる。
 すなわち、第2の比較部3150により推定誤差Erm(t2)と第2の閾値TH2とが比較され、放電容量の演算値の補正の候補のNaS電池2004が特定される(ステップS307)。
 第2の閾値TH2との比較の結果、2個以上の放電容量の演算値の補正の候補のNaS電池2004がある場合は(ステップS308で"YES")、充放電可能数決定部3146により、現在の時刻が属する時間帯における充放電可能数が決定される(ステップS309)。
 その結果、放電容量の演算値の補正が許容されるNaS電池2004の数が1個以上であれば(ステップS310で"YES")、第2の選択部3154により放電容量の演算値の補正の対象のNaS電池2004が選択され(ステップS311)、放電容量の演算値の補正が許容されるNaS電池2004の数が0個であれば、放電容量の演算値の補正の対象のNaS電池2004が選択されないまま処理が終了する。
 第3実施形態の補正対象決定部3134によれば、推定誤差Erm(t2)が大きく放電容量の演算値の補正の必要性が高いNaS電池2004から放電容量の演算値の補正が行われるとともに、多数のNaS電池2004の放電容量の演算値の補正が同時に開始されないので、電力貯蔵装置2002の出力への影響が抑制される。
 (4 第4実施形態)
 第4実施形態は、第1実施形態のホール電流検出器1008に代えて採用される電流計測部4008に関する。
 図13は、第4実施形態の電流計測部4008のブロック図である。
 図13に示すように、電流計測部4008は、NaS電池1004の電圧を計測する電圧計測部4502と、双方向変換器1112の効率を保持する効率保持部4504と、充放電電流値Iを演算する充放電電流値演算部4506と、を備える。
 充放電電流演算部4506は、充放電指令部1136により設定された充放電電力の目標値、電圧計測部4502により計測された電圧及び双方向変換器1112の効率からNaS電池1004の充放電電流値Iを演算する。
 第4実施形態の電流計測部4008によれば、小さな充放電電流を計測することができる。なお、第1実施形態のホール電流検出器1008と第4実施形態の電流計測部4008とを組み合わせてもよい。例えば、充放電電流が小さいときは第4実施形態の電流計測部4008が充放電電流値Iを計測し、充放電電流が大きいときはホール電流検出器1008が充放電電流値Iを計測するようにしてもよい。また、第2実施形態のホール電流検出器2008に代えて第4実施形態の電流計測部4008を採用してもよい。
 (5 第5実施形態)
 第5実施形態は、第1実施形態のホール電流検出器1008に代えて採用される電流計測部5008に関する。
 図14は、第5実施形態の電流計測部5008のブロック図である。
 図14に示すように、電流計測部5008は、NaS電池1004の電圧を計測する電圧計測部5502と、双方向変換器1112の効率を保持する効率保持部5504と、双方向変換器1112の交流側の入出力電力を計測する電力計測部5506と、充放電電流値Iを演算する充放電電流値演算部5508と、を備える。
 充放電電流値演算部5508は、電圧計測部5502により計測された電圧、電力計測部5506により計測された入出力電力及び前記双方向変換器1112の効率から充放電電流値を演算する。
 第5実施形態の電流計測部5008によれば、計測された充放電電流値に含まれる真の充放電電流値に対するオフセットが減少するので、充放電電流値が高い精度で測定される。これは、双方向変換器1112の交流側における電流測定は、第1実施形態のようなホール電流検出器ではなく、オフセットがなく大電流から小電流まで高い精度で測定が可能な巻線式のカレントトランスを備える電流検出器により行うこともできるからである。
 なお、巻線式のカレントトランスを備える電流検出器に代えて、シャント抵抗を備える電流検出器を採用することもできる。ただし、巻線式のカレントトランスを備える電流検出器やホール素子を備える電流検出器には、シャント抵抗を備える電流検出器と比較して、高電圧や大電流に耐えうる部品が不要になり絶縁も容易になるという利点がある。
 (6 第6実施形態)
 第6実施形態は、第1実施形態の電力貯蔵装置1002を含むマイクログリッド6000に関する。第1実施形態の電力貯蔵装置1002に代えて、第2実施形態の電力貯蔵装置2002をマイクログリッド6000において採用してもよい。
 図15は、第6実施形態のマイクログリッド6000のブロック図である。「マイクログリッド」とは、電力の需要地に分散型電源を設置した小規模の電力供給網であり、「分散型エネルギーシステム」等とも呼ばれる。
 図15に示すように、マイクログリッド6000においては、分散型電源6002、負荷6004及び第1実施形態の電力貯蔵装置1002が系統6006に接続される。分散型電源6002、負荷6004及び電力貯蔵装置1002の運転は、マイクログリッド制御システム6008により制御される。
 分散型電源6002としては、特に制限されないが、太陽光その他の自然エネルギーを利用した発電機、例えば、太陽光発電装置が用いられる。生ごみ・廃木・廃プラスチック等を原料として製造されたガスを燃料に用いる燃料電池等を分散型電源6002として用いてもよい。
 分散型電源6002により発電された電力の全部又は一部は、系統6006を経由して電力貯蔵装置1002へ送電され、電力貯蔵装置1002に蓄積される。
 マイクログリッド6000を構成する電力貯蔵装置1002においてNaS電池1004の放電容量の演算値の補正が行われる場合、電力貯蔵装置1002からマイクログリッド制御システム6008へ出力の変更の要求が送られる。続いて、電力貯蔵装置1002は、充放電電力の目標値の変更の許可を受け、電力平滑運転を停止するか又は負荷追従目標値を変更することにより、NaS電池1004を充放電する。
 マイクログリッド6000では、充電末と放電末との中間付近にSOCが概ね維持される電力平滑運転が行われることが多いため、第1実施形態の電力貯蔵装置1002が好適に用いられる。ただし、第1実施形態の電力貯蔵装置1002は、パターン運転を行う場合にも用いられる。電力貯蔵装置1002があらかじめ設定された運転パターンに応じてパターン運転を行う場合、設定された運転パターンにしたがった充放電により放電容量の演算値の補正が可能であれば、設定された運転パターンにしたがって充放電を行う。設定された運転パターンにしたがった充放電では放電容量の演算値の補正が可能な放電深度に至らない場合や放電容量の演算値の補正が可能な放電深度に至るまでに多数回の充放電が設定されている場合等は、電力貯蔵装置1002は、マイクログリッド制御システム6008に出力の変更を要求し、出力の目標値の変更の許可を受けたあとに充放電電力の目標値を変更する。
 第1実施形態の電力貯蔵装置1002に代えて第2実施形態の電力貯蔵装置2002を採用した場合、放電容量の演算値の補正の対象のNaS電池2004を補正が行われる放電深度になるまで充放電しながら電力貯蔵装置2002の出力が充放電電力指令値と一致するように他のNaS電池2004の充放電を制御することが可能な場合もある。
 (7 その他)
 この発明は詳細に説明されたが、上述の説明は全ての局面において例示であって、この発明は上述の説明に限定されない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定されうる。特に、第1実施形態~第6実施形態で説明した事項を組み合わせることは当然に予定されている。

Claims (18)

  1.  二次電池を制御する電池制御装置であって、
     二次電池の充放電電流値を計測する電流計測部と、
     前記電流計測部により計測された充放電電流値を積算して二次電池の放電容量の演算値を演算し、放電容量の演算値の補正が行われる放電深度まで充放電された二次電池の放電容量の演算値を補正する放電容量演算部と、
     前記放電容量演算部により演算された放電容量の演算値の推定誤差を演算する推定誤差演算部と、
     前記推定誤差演算部により演算された推定誤差が第1の閾値を超える二次電池を放電容量の演算値の補正の候補とする第1の比較部と、
     第1の閾値を保持する第1の閾値保持部と、
     二次電池の充放電を制御する双方向変換器と、
     放電容量の演算値の補正の候補の二次電池の全部又は一部を補正が行われる放電深度になるまで前記双方向変換器に充放電させる充放電指令部と、
    を備える電池制御装置。
  2.  請求項1の電池制御装置において、
     前記推定誤差演算部は、
     前回の放電容量の演算値の補正が行われた時刻から現在の時刻までの積分であらわされる因子を含む推定誤差を演算する、
    電池制御装置。
  3.  請求項1又は請求項2の電池制御装置において、
     前記推定誤差演算部は、
     前回の放電容量の演算値の補正における補正量が大きくなるほど大きくなる因子を含む推定誤差を演算する、
    電池制御装置。
  4.  請求項1の電池制御装置において、
     前記推定誤差演算部は、
     前記電流計測部により計測された充放電電流値の時間変化が大きくなるほど大きくなる因子を含む推定誤差を演算する、
    電池制御装置。
  5.  請求項1の電池制御装置において、
     前記推定誤差演算部は、
     前記電流計測部により計測された充放電電流値が大きくなるほど大きくなる因子を含む推定誤差を演算する、
    電池制御装置。
  6.  請求項1の電池制御装置において、
     前記放電容量演算部は、
     前記電流計測部により計測された充放電電流値が基準値より小さくなっている間は充放電電流値の積算を停止し、
     前記推定誤差演算部は、
     前記電流計測部により計測された充放電電流値が基準値より小さい場合に充放電電流値が大きくなるほど大きくなる因子を含む推定誤差を演算する、
    電池制御装置。
  7.  請求項1の電池制御装置において、
     前記推定誤差演算部は、
     前記電流計測部により計測された充放電電流値に含まれる真の充放電電流値に対するオフセットが大きくなるほど大きくなる因子を含む推定誤差を演算する、
    電池制御装置。
  8.  請求項1の電池制御装置において、
     前記電流計測部を収容するハウジングと、
     前記ハウジングの内部の温度を計測する温度センサと、
    をさらに備え、
     前記推定誤差演算部は、
     前記温度センサにより計測された温度が基準温度から離れるほど大きくなる因子を含む推定誤差を演算する、
    電池制御装置。
  9.  請求項1の電池制御装置において、
     前記推定誤差演算部は、
     前記双方向変換器の運転状態を反映する因子を含む推定誤差を演算する、
    電池制御装置。
  10.  請求項1の電池制御装置において、
     前記第1の比較部により放電容量の演算値の補正の候補とされた二次電池から前記推定誤差演算部により演算された推定誤差が大きい順に許容される数の二次電池を放電容量の演算値の補正の対象として選択する第1の選択部、
    をさらに備え、
     前記充放電指令部は、
     前記第1の選択部により選択された二次電池を補正が行われる放電深度になるまで前記双方向変換器に充放電させる、
    電池制御装置。
  11.  請求項1の電池制御装置において、
     前記推定誤差演算部により演算された推定誤差と第1の閾値を超えない第2の閾値とを比較し前記推定誤差演算部により演算された推定誤差が第2の閾値を超える二次電池を放電容量の演算値の補正の候補とする第2の比較部と、
     第2の閾値を保持する第2の閾値保持部と、
    をさらに備え、
     前記充放電指令部は、
     前記第2の比較部により放電容量の演算値の補正の候補とされた二次電池の全部又は一部を補正が行われる放電深度になるまで前記双方向変換器に充放電させる、
    電池制御装置。
  12.  請求項11の電池制御装置において、
     前記第2の比較部により放電容量の演算値の補正の候補とされた二次電池の数が2個以上である場合は前記第2の比較部により放電容量の演算値の補正の候補とされた二次電池から前記推定誤差演算部により演算された推定誤差が大きい順に許容される数の二次電池を放電容量の演算値の補正の対象として選択し前記第2の比較部により放電容量の演算値の補正の候補とされた二次電池の数が1個以下である場合は放電容量の演算値の補正の対象を選択しない第2の選択部、
    をさらに備え、
     前記充放電指令部は、
     前記第2の選択部により選択された二次電池を補正が行われる放電深度になるまで前記双方向変換器に充放電させる、
    電池制御装置。
  13.  請求項1の電池制御装置において、
     現在の時刻が属する時間帯における放電容量の演算値の補正のための充放電を同時に行うことが可能な二次電池の数を決定する充放電可能数決定部と、
     時間帯ごとの放電容量の演算値の補正のための充放電を同時に行うことが可能な二次電池の数を保持する充放電可能数保持部と、
    をさらに備え、
     前記充放電指令部は、
     前記補正可能数決定部が決定した二次電池の数を超えない二次電池を補正が行われる放電深度になるまで前記双方向変換器に充放電させる、
    電池制御装置。
  14.  請求項1のいずれかの電池制御装置において、
     前記電流計測部は、
     ホール電流検出器、
    を備える電池制御装置。
  15.  請求項1の電池制御装置において、
     前記充放電指令部は、
     充放電電力の目標値を設定し、
     前記双方向変換器は、
     充放電電力が目標値となるように二次電池の充放電を制御し、
     前記電流計測部は、
     二次電池の電圧を計測する電圧計測部と、
     前記充放電指令部により設定された充放電電力の目標値、前記電圧計測部により計測された電圧及び前記双方向変換器の効率から充放電電流値を演算する充放電電流値演算部と、
     前記双方向変換器の効率を保持する効率保持部と、
    を備える電池制御装置。
  16.  請求項1の電池制御装置において、
     前記電流計測部は、
     二次電池の電圧を計測する電圧計測部と、
     前記双方向変換器の交流側の入出力電力を計測する電力計測部と、
     前記電圧計測部により計測された電圧、前記電力計測部により計測された入出力電力
    及び前記双方向変換器の効率から充放電電流値を演算する充放電電流値演算部と、
     前記双方向変換器の効率を保持する効率保持部と、
    を備える電池制御装置。
  17.  請求項1の電池制御装置において、
     前記推定誤差演算部及び前記第1の比較部の比較結果を表示する表示部と、
     放電容量の演算値の補正が行われる放電深度まで二次電池を充放電させる命令の入力を受け付ける操作部と、
    を備え、
     前記充放電指令部は、
     前記操作部が入力を受け付けた放電容量の演算値の補正の対象の二次電池を補正が行われる放電深度になるまで前記双方向変換器に充放電させる、
    電池制御装置。
  18.  二次電池を制御する電池制御方法であって、
     a) 二次電池の充放電電流値を計測する工程と、
     b) 前記工程a)により計測された充放電電流値を積算して二次電池の放電容量の演算値を演算する工程と、
     c) 前記工程b)により演算された放電容量の演算値の推定誤差を演算する工程と、
     d) 前記工程c)により演算された推定誤差が第1の閾値を超える二次電池を放電容量の演算値の補正の候補とする工程と、
     e) 放電容量の補正の候補の二次電池の全部又は一部を補正が行われる放電深度になるまで充放電させる工程と、
     f) 放電容量の演算値の補正が行われる放電深度まで充放電された二次電池の放電容量の演算値を補正する工程と、
    を備える電池制御方法。
PCT/JP2010/059914 2009-06-24 2010-06-11 電池制御装置及び電池制御方法 WO2010150667A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080028086.9A CN102460198B (zh) 2009-06-24 2010-06-11 电池控制装置和电池控制方法
EP10791985.4A EP2447729B1 (en) 2009-06-24 2010-06-11 Battery control apparatus and battery control method
JP2011519750A JP5519665B2 (ja) 2009-06-24 2010-06-11 電池制御装置及び電池制御方法
US13/295,496 US8810203B2 (en) 2009-06-24 2011-11-14 Battery control device and battery control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-149810 2009-06-24
JP2009149810 2009-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/295,496 Continuation US8810203B2 (en) 2009-06-24 2011-11-14 Battery control device and battery control method

Publications (1)

Publication Number Publication Date
WO2010150667A1 true WO2010150667A1 (ja) 2010-12-29

Family

ID=43386439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059914 WO2010150667A1 (ja) 2009-06-24 2010-06-11 電池制御装置及び電池制御方法

Country Status (5)

Country Link
US (1) US8810203B2 (ja)
EP (1) EP2447729B1 (ja)
JP (1) JP5519665B2 (ja)
CN (1) CN102460198B (ja)
WO (1) WO2010150667A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130234669A1 (en) * 2011-08-31 2013-09-12 North Carolina State University Intelligent integrated battery module
US11285813B2 (en) 2017-03-28 2022-03-29 Gs Yuasa International Ltd. Estimation device for estimating an SOC of an energy storage device, energy storage apparatus including estimation device for estimating an SOC of an energy storage device, and estimation method for estimating an SOC of an energy storage device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
JP2011083082A (ja) * 2009-10-05 2011-04-21 Panasonic Electric Works Co Ltd 蓄電システム
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
JP6206396B2 (ja) * 2012-02-28 2017-10-04 日本電気株式会社 調整機器制御システム、調整機器制御方法、およびプログラム
EP2837944B1 (en) * 2012-04-30 2019-05-01 LG Chem, Ltd. Method and apparatus for estimating parameters of a secondary battery
WO2014115294A1 (ja) * 2013-01-25 2014-07-31 日立ビークルエナジー株式会社 電池制御装置、電池システム
US9548619B2 (en) * 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
KR101451009B1 (ko) * 2013-03-27 2014-10-15 주식회사 엘지씨엔에스 직렬 연결된 다수 개의 전지 직류 마이크로그리드 충방전 시스템
JP2015154593A (ja) * 2014-02-14 2015-08-24 ソニー株式会社 充放電制御装置、電池パック、電子機器、電動車両および充放電制御方法
DE102014210010A1 (de) * 2014-05-26 2015-11-26 Younicos Ag Verfahren und Vorrichtung zum Betrieb eines elektrischen Energiespeichersystems
EP3208882B1 (en) * 2014-10-17 2021-01-06 Mitsubishi Electric Corporation Charge-discharge control device
JP6507040B2 (ja) * 2015-06-08 2019-04-24 株式会社マキタ 充電器
US9841466B2 (en) * 2015-12-30 2017-12-12 Thunder Power New Energy Vehicle Development Company Limited Dynamic battery level indicator
US10114079B2 (en) * 2016-02-24 2018-10-30 Ford Global Technologies, Llc System and method for identifying vehicle battery decay
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
CN107677876A (zh) * 2016-08-02 2018-02-09 重庆无线绿洲通信技术有限公司 一种双极性信号的动态测量方法及装置
KR102515606B1 (ko) * 2017-10-31 2023-03-28 삼성에스디아이 주식회사 배터리 충전량 표시 방법 및 이를 수행하는 배터리 팩 및 전자 기기
WO2019145997A1 (ja) * 2018-01-23 2019-08-01 Tdk株式会社 直流給電システム
TWI745800B (zh) * 2018-12-21 2021-11-11 美商米沃奇電子工具公司 電池組充電器、控制電池組充電器之操作的方法及用於電池組充電器之充電電路
KR20210016795A (ko) * 2019-08-05 2021-02-17 주식회사 엘지화학 에너지 허브 장치 및 에너지 관리 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268985A (ja) * 1997-03-27 1998-10-09 Toshiba Corp 電源制御装置および電源制御方法
JP2003197275A (ja) * 2001-12-27 2003-07-11 Panasonic Ev Energy Co Ltd 二次電池の分極電圧推定方法、二次電池の残存容量推定方法および装置、並びに電池パックシステム
JP2008084677A (ja) 2006-09-27 2008-04-10 Ngk Insulators Ltd ナトリウム−硫黄電池の制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60020821T2 (de) * 1999-10-08 2006-05-11 Yazaki Corp. Verfahren zur berechnung der kapazität einer batterie und vorrichtung dafür
JP4097183B2 (ja) * 2001-12-27 2008-06-11 パナソニックEvエナジー株式会社 二次電池の残存容量推定方法および装置、並びに電池パックシステム
JP4130425B2 (ja) * 2003-07-29 2008-08-06 パナソニックEvエナジー株式会社 二次電池の充放電電気量推定方法および装置、二次電池の分極電圧推定方法および装置、並びに二次電池の残存容量推定方法および装置
JP4075762B2 (ja) * 2003-10-10 2008-04-16 トヨタ自動車株式会社 二次電池における残存容量の算出装置および算出方法
CN1862279B (zh) * 2005-05-11 2010-04-28 苏州润源电气技术有限公司 电池组老化率估算、故障检测方法和电池组管理监测装置
KR100669475B1 (ko) * 2005-12-21 2007-01-16 삼성에스디아이 주식회사 배터리의 soc 보정 방법 및 이를 이용한 배터리 관리시스템
JP5102483B2 (ja) * 2006-11-29 2012-12-19 プライムアースEvエナジー株式会社 異常検出装置、異常検出方法、及び異常検出プログラム
US7750640B2 (en) * 2006-12-27 2010-07-06 Panasonic Ev Energy Co., Ltd. Electromotive force computing device and state of charge estimating device
CN101303397A (zh) * 2008-06-25 2008-11-12 河北工业大学 锂离子电池组剩余电能计算方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268985A (ja) * 1997-03-27 1998-10-09 Toshiba Corp 電源制御装置および電源制御方法
JP2003197275A (ja) * 2001-12-27 2003-07-11 Panasonic Ev Energy Co Ltd 二次電池の分極電圧推定方法、二次電池の残存容量推定方法および装置、並びに電池パックシステム
JP2008084677A (ja) 2006-09-27 2008-04-10 Ngk Insulators Ltd ナトリウム−硫黄電池の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2447729A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130234669A1 (en) * 2011-08-31 2013-09-12 North Carolina State University Intelligent integrated battery module
US9444275B2 (en) * 2011-08-31 2016-09-13 North Carolina State University Intelligent integrated battery module
US11285813B2 (en) 2017-03-28 2022-03-29 Gs Yuasa International Ltd. Estimation device for estimating an SOC of an energy storage device, energy storage apparatus including estimation device for estimating an SOC of an energy storage device, and estimation method for estimating an SOC of an energy storage device

Also Published As

Publication number Publication date
CN102460198B (zh) 2014-09-10
US20120056591A1 (en) 2012-03-08
US8810203B2 (en) 2014-08-19
JP5519665B2 (ja) 2014-06-11
JPWO2010150667A1 (ja) 2012-12-10
CN102460198A (zh) 2012-05-16
EP2447729A1 (en) 2012-05-02
EP2447729A4 (en) 2016-05-11
EP2447729B1 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP5519665B2 (ja) 電池制御装置及び電池制御方法
US8928288B2 (en) Controller, controller network and control method
JP6304392B2 (ja) 充放電管理装置
EP2487772A1 (en) Control device, control device network, and control method
US10476272B2 (en) Power generation facility and power generation control device
JP6430775B2 (ja) 蓄電池装置
EP2495576A1 (en) Method for controlling secondary cell and power storage device
US10424931B2 (en) Storage battery system
EP3082210B1 (en) Power generation system and method with energy management
JP2011135708A (ja) 電源システム
KR20190057716A (ko) 태양광 발전 연계형 전기 에너지 저장 시스템, 및 그 충/방전 제어 방법
KR101677835B1 (ko) 에너지 저장 시스템의 배터리 상태 측정 방법
JP5507946B2 (ja) バッテリ制御ユニット
WO2016063351A1 (ja) 充放電管理装置
JP7055945B2 (ja) 蓄電池システム
JP6922800B2 (ja) 蓄電池システムおよびその充放電ロス演算装置
EP3098894B1 (en) Apparatus for calculating charging/discharging conditions employable in sodium-sulfur secondary battery
JP2016111735A (ja) 電力制御システムおよび電力制御方法
JP2016015803A (ja) 負荷平準化装置
JP2019030162A (ja) 分散型電源システム
JP6993300B2 (ja) 蓄電システム
dos Reis Marques et al. Advanced Management System for Lithium-ion Batteries in Hybrid Inverters Optimized for Photovoltaic Systems Connected to the Grid
JP2017067627A (ja) 電池管理システム
JP2023030704A (ja) 電力制御装置
JP2020043747A (ja) 電力供給システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028086.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011519750

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010791985

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE