WO2010150488A1 - Power supply protection circuit and motor drive device provided with same - Google Patents

Power supply protection circuit and motor drive device provided with same Download PDF

Info

Publication number
WO2010150488A1
WO2010150488A1 PCT/JP2010/003992 JP2010003992W WO2010150488A1 WO 2010150488 A1 WO2010150488 A1 WO 2010150488A1 JP 2010003992 W JP2010003992 W JP 2010003992W WO 2010150488 A1 WO2010150488 A1 WO 2010150488A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
transistor
power supply
protection circuit
power
Prior art date
Application number
PCT/JP2010/003992
Other languages
French (fr)
Japanese (ja)
Inventor
磯田峰明
鴨木豊
岸本憲一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080028192.7A priority Critical patent/CN102804538B/en
Priority to JP2011519560A priority patent/JP5590031B2/en
Publication of WO2010150488A1 publication Critical patent/WO2010150488A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off

Definitions

  • the present invention relates to a power supply protection circuit that protects a power supply and circuit components connected to the power supply from an overcurrent, and a motor drive device including the same.
  • the conventional method of suppressing inrush current disclosed in Patent Document 1 includes a main switch that electrically connects a power source to the load side, and an auxiliary switch that is connected between the power source and the load side via a current limiting resistor.
  • the detection means for detecting the voltage on the load side and the control means for controlling these switches are provided. When the voltage drop on the load side is detected by the detection means, the control means turns off the main switch and turns on the auxiliary switch. When the detection means detects that the voltage on the load side has increased, the control means turns on the main switch and turns off the auxiliary switch.
  • the conventional method for preventing the inrush current as described above has a configuration in which a control means such as a microcomputer switches the switch, so it is necessary to control a relay as a switch through the control wiring, and the wiring is routed.
  • a control means such as a microcomputer switches the switch
  • a relay as a switch through the control wiring, and the wiring is routed.
  • the configuration uses a switch or a relay that utilizes contact or non-contact of a mechanical contact, for example, compared to a non-contact switch made of semiconductor, there are problems such as poor contact and longevity that reduce reliability. there were.
  • mechanical switches and relays have problems such as difficulty in miniaturization compared to semiconductors.
  • the present invention has been made to solve such a problem, and a power supply protection circuit capable of improving reliability with a simple configuration for power supply protection and circuit protection, and a motor drive including the same Providing equipment.
  • the power supply protection circuit of the present invention is a power supply protection circuit in which a DC power supply is connected to an input terminal having a positive voltage with respect to the ground terminal, and DC power is output from the output terminal, between the input terminal and the output terminal.
  • a current suppression unit provided; and a transistor having a source and drain connected in parallel with the current suppression unit.
  • the power protection circuit of the present invention applies a ground terminal voltage to the gate of the transistor when the output terminal voltage exceeds a predetermined voltage, and applies to the transistor gate when the output terminal voltage is lower than the predetermined voltage.
  • a switching control circuit for applying a voltage at the input terminal, and the transistor is a P-channel transistor.
  • the voltage at the output terminal is low at the moment when a positive voltage is supplied from the DC power supply to the input terminal, so that the voltage at the input terminal is applied to the gate of the transistor. That is, the voltage between the source and gate of the transistor is almost zero, and the transistor is turned off. As a result, a current flows from the input end to the output end via the current suppression unit, so that the current is output for a while from the moment the positive voltage is supplied.
  • the voltage at the output end increases, the voltage at the ground end is applied to the gate of the transistor. That is, the gate voltage with respect to the source of the transistor is a negative voltage, and the transistor is P-channel, so that the transistor is turned on. As a result, a current flows from the input terminal to the output terminal via the source and drain of the transistor, and DC power is supplied to the load in a state where the current is not suppressed.
  • the power supply protection circuit of the present invention uses a transistor, which is a semiconductor element, instead of a conventional mechanical switch or relay, so that it can be downsized and improved in reliability. Can be planned.
  • this transistor is a P-channel transistor, the transistor can be turned on and off by simple control such that the voltage at the ground end or the voltage at the input end is switched and applied to the gate.
  • the control of the transistor connected in parallel to the current suppression unit can also be configured with a simple circuit without a microcomputer or the like, and can be arranged together with the current suppression unit and the transistor, for example, on the same printed circuit board. Accordingly, there is no need for long wiring and the number of components can be reduced, so that occurrence of poor contact can be suppressed, and as a result, reliability can be improved.
  • the power supply protection circuit includes a voltage detector in which the switching control circuit detects the voltage at the output terminal and outputs a switching signal based on the detected voltage, and the voltage at the input terminal and the ground according to the switching signal.
  • a switching circuit that selects one of the end voltages and supplies the selected voltage to the gate of the transistor.
  • the switch circuit is configured to select the voltage at the ground terminal when the voltage at the output terminal exceeds a predetermined voltage, and to select the voltage at the input terminal when the voltage at the output terminal is lower than the predetermined voltage.
  • the voltage at the output terminal becomes high, the voltage at the ground terminal is output from the switch circuit and supplied to the gate of the transistor. That is, the gate voltage with respect to the source of the transistor is a negative voltage, and the transistor is turned on. As a result, a current flows from the input end to the output end via the source and drain of the transistor.
  • the switching control circuit can be configured with a very simple circuit, the reliability can be improved.
  • a semiconductor switch element as the switch circuit, it is possible to prevent contact failure and increase the life compared to a configuration using a mechanical switch or relay. Reliability can be increased.
  • the switching control circuit when the above-described transistor is the first transistor, the switching control circuit has a PNP in which the emitter is connected to the input terminal and the collector is connected to the ground via the first resistor.
  • the switching control circuit can be configured with a very simple circuit, the reliability can be improved.
  • the power supply protection circuit of this invention is the structure which used the current suppression part as the resistor.
  • the current suppression unit may be a constant current source circuit that outputs a constant current.
  • the current suppression unit may be a series circuit of a resistor and a fuse.
  • the power source protection circuit of the present invention is a power source protection circuit in which a DC power source is connected to an input terminal having a negative voltage with respect to the ground terminal, and DC power is output from the output terminal. And a transistor having a source and a drain connected in parallel with the current suppressing unit. Furthermore, when the absolute value of the output terminal voltage exceeds a predetermined voltage, the power supply protection circuit of the present invention applies a ground terminal voltage to the gate of the transistor, and the absolute value of the output terminal voltage is lower than the predetermined voltage. And a switching control circuit for applying a voltage at the input terminal to the gate of the transistor, and the transistor is an N-channel transistor. With such a configuration, a power source protection circuit against a negative voltage that can improve reliability with a simple configuration can be realized.
  • the power source protection circuit of the present invention is a power source protection circuit in which a DC power source is connected to an input terminal having a positive voltage with respect to the ground terminal, and DC power is output from the output terminal.
  • a first transistor having a source-drain connected in between, an emitter connected to an input terminal, a PNP-type second transistor connected to a ground terminal via a first resistor, and an anode output And a diode having a cathode connected to the ground end via a second resistor.
  • the power supply protection circuit of the present invention has a configuration in which the base of the second transistor is connected to the cathode of the diode, and the collector of the second transistor is connected to the gate of the first transistor. With such a configuration, when an abnormality such as a short circuit occurs in the load, the first transistor operates to cut off the abnormal overcurrent, so that the load and the power source can be protected from the abnormal overcurrent. .
  • the motor drive device of the present invention is configured to include the power supply protection circuit and an inverter that operates with DC power supplied via the power supply protection circuit, and to drive the motor by the inverter. With such a configuration, a motor driving device having a highly reliable power supply protection function can be realized.
  • the power supply protection function can be realized with a small number of parts using a semiconductor element, and therefore, it is possible to provide a power supply protection circuit capable of improving reliability with a simple configuration. Moreover, according to the motor drive device of the present invention, since such a power supply protection circuit is provided, it is possible to provide a motor drive device that can improve reliability with a simple configuration.
  • FIG. 1 is a block diagram of a power protection circuit according to Embodiment 1 of the present invention.
  • FIG. 2 is a characteristic diagram of a transistor of the power supply protection circuit in the same embodiment.
  • FIG. 3 is a diagram showing an operation waveform of each part of the power supply protection circuit in the same embodiment.
  • FIG. 4 is a circuit diagram of a power supply protection circuit in the same embodiment.
  • FIG. 5 is an operation explanatory diagram of the switching control circuit of the power protection circuit in the same embodiment.
  • FIG. 6 is a block diagram showing another configuration example of the power protection circuit in the same embodiment.
  • FIG. 7 is a block diagram showing another configuration example of the power protection circuit in the same embodiment.
  • FIG. 8 is a block diagram of the motor drive device according to Embodiment 2 of the present invention.
  • FIG. 1 is a block diagram of a power protection circuit 10 according to Embodiment 1 of the present invention.
  • the power protection circuit 10 is disposed between the DC power supply 50 and the load L.
  • the load L is an electric circuit, an electronic circuit, or the like that is operated by electric power supplied from the DC power supply 50, and will be described as the load L here.
  • DC power is normally supplied directly from the DC power supply 50 to the load L.
  • the DC power supply 50 is connected via the power protection circuit 10. In this configuration, DC power is supplied to the load L.
  • the power supply protection circuit 10 suppresses the inrush current from the DC power supply 50 to the load L side. Further, even when an abnormality such as a short circuit occurs in the load L and an overcurrent flows, the power supply protection circuit 10 acts to suppress this overcurrent, so that the load L and the DC power supply 50 are destroyed by the overcurrent. Can be prevented.
  • DC power is supplied from the DC power supply 50 to the input terminal VI to the power supply protection circuit 10 with the ground terminal GND as the ground.
  • the ground side that is a 0 (V) reference voltage of the DC power supply 50 is connected to the ground terminal GND, and the positive voltage side that is a DC voltage Vc that is a positive voltage with respect to this reference voltage is connected to the input terminal VI.
  • FIG. 1 shows an example in which an electrolytic capacitor Cl is connected so as to be parallel to the load L. Such an electrolytic capacitor Cl is normally connected to the load L in this way in order to remove ripples and noise included in the supply voltage from the DC power supply 50.
  • the power supply protection circuit 10 includes a current suppression resistor Rp as a current suppression unit, a transistor Q1 serving as a first transistor, and a switching control circuit 20.
  • the current suppression resistor Rp is provided between the input terminal VI and the output terminal VO.
  • the source and drain of the transistor Q1 are connected in parallel with the current suppressing resistor Rp. That is, the source S of the transistor Q1 is connected to the input terminal VI, and the drain D of the transistor Q1 is connected to the output terminal VO.
  • the transistor Q1 functions as a switch that performs electrical connection / disconnection, that is, on / off, between the input terminal VI and the output terminal VO. The on / off state of the transistor Q1 is switched based on the gate voltage of the transistor Q1.
  • the switching control circuit 20 includes a voltage detector 21 and a switch circuit 22.
  • the voltage detector 21 detects the voltage of the output terminal VO and outputs a switching signal Ssw based on the detected voltage.
  • the switch circuit 22 selects either the voltage at the input terminal VI or the voltage at the ground terminal GND according to the switching signal Ssw, and supplies the selected voltage to the gate G of the transistor Q1. At this time, the switch circuit 22 selects the voltage of the ground terminal GND when the voltage of the output terminal VO exceeds a predetermined voltage by the switching signal Ssw, and inputs the voltage when the voltage of the output terminal VO is lower than the predetermined voltage. Select the voltage at end VI.
  • the switching control circuit 20 applies the voltage of the ground terminal GND to the gate G of the transistor Q1 when the voltage of the output terminal VO exceeds a predetermined voltage. Further, the switching control circuit 20 applies the voltage of the input terminal VI to the gate G of the transistor Q1 when the voltage of the output terminal VO is lower than a predetermined voltage.
  • the transistor Q1 is a P-channel transistor. More specifically, for example, it is a P-channel MOS type field effect transistor (FET).
  • FET field effect transistor
  • FIG. 2 is a characteristic diagram of the transistor Q1 of the power supply protection circuit 10 according to the first embodiment of the present invention.
  • FIG. 2 shows an example of the characteristics of the drain current Id with respect to the gate-source voltage Vgs of the P-channel transistor.
  • the transistor Q1 is used as a switch for switching between a closed state and an open state based on such characteristics.
  • the switch 51 of the DC power supply 50 when the switch 51 of the DC power supply 50 is turned on and DC power is supplied from the DC power supply 50 to the load L via the power supply protection circuit 10 configured as described above, at least the current is supplied from the moment of supply. A direct current flows into the electrolytic capacitor Cl through the suppression resistor Rp. For this reason, the voltage of the output terminal VO becomes lower as the voltage of the output terminal VO is closer to the ground terminal GND. Therefore, the voltage at the input terminal VI is output from the switch circuit 22 and supplied to the gate G of the transistor Q1. Thereby, the voltage of the source S connected to the input terminal VI and the voltage of the gate G become substantially equal. That is, the gate-source voltage Vgs of the transistor Q1 is substantially 0 (V).
  • the voltage detector 21 determines that the predetermined voltage has been exceeded, and switches the switch circuit 22 so as to select the voltage at the ground terminal GND. From the switch circuit 22, the voltage at the ground terminal GND is output and supplied to the gate G of the transistor Q1.
  • a positive voltage is supplied to the source S of the transistor Q1 connected to the input terminal VI.
  • the voltage of the gate G that is the voltage of the ground terminal GND is a negative voltage with respect to the source S. That is, since the gate-source voltage Vgs becomes the voltage Von shown in FIG.
  • the drain current Id flows, and the source-drain of the transistor Q1 is turned on, that is, closed.
  • a current flows from the input terminal VI to the output terminal VO via the source and drain of the transistor Q1, and the DC power is supplied to the load L in a state where the current is not suppressed.
  • the transistor Q1 is preferably a transistor with low on-resistance.
  • FIG. 3 is a diagram showing operation waveforms of the power supply protection circuit 10 according to the first embodiment of the present invention.
  • FIG. 3 shows a state in which DC power is supplied from the DC power supply 50 at time T0 and then the voltage at the output terminal VO is stabilized.
  • the switching control circuit 20 determines that the voltage at the output terminal VO is lower than the predetermined voltage Vth, and applies the voltage at the input terminal VI to the gate G of the transistor Q1. Then, as shown in FIG. 3, the voltage Vgs of the gate G with respect to the source S becomes substantially 0 (V).
  • the source and drain of the transistor Q1 are in a high resistance state, and the source and drain are equivalent to an off state. Therefore, a state in which a direct current flows from the input terminal VI into the electrolytic capacitor Cl only through the current suppression resistor Rp continues. During this time, as shown in FIG. 3, the voltage at the output terminal VO gradually increases.
  • the switching control circuit 20 applies the voltage at the ground terminal GND to the gate G of the transistor Q1. Accordingly, the voltage Vgs of the gate G with respect to the source S becomes a negative voltage, so that the low resistance state is established between the source and drain of the transistor Q1, and the source and drain are equivalent to the on state. That is, DC power is output from the output terminal VO in a state equivalent to the direct connection between the input terminal VI and the output terminal VO.
  • the power supply protection circuit 10 supplies power in a current-suppressed state after the DC power supply 50 is turned on until the voltage at the output terminal VO becomes close to the supply voltage Vc.
  • An excessive current such as an inrush current flowing into the capacitor Cl can be suppressed.
  • the switching control circuit 20 applies the voltage at the input terminal VI to the gate G of the transistor Q1 to turn off the transistor Q1. For this reason, electric power is supplied from the DC power supply 50 to the load L side only through the current suppression resistor Rp.
  • the current suppression resistor Rp can suppress an excessive current flow to the load L side, and can prevent the load L and the DC power supply 50 from being destroyed or abnormal heat generation of the load L.
  • the power supply protection circuit 10 uses the transistor Q1, which is a semiconductor element, and can be reduced in size.
  • the transistor Q1 is a P-channel transistor.
  • the transistor Q1 can be turned on / off by simple control such as switching between the voltage at the ground terminal GND or the voltage at the input terminal VI and applying the desired protection to the gate G. Functions can be realized.
  • the power protection circuit 10 that transmits the positive voltage to the load L can be configured as a simple circuit, and is controlled together with the current suppression resistor Rp and the transistor Q1 such as the switching control circuit 20 on the same printed circuit board. Circuits can also be placed. Further, it is easy to integrate the transistor Q1 and the switching control circuit 20 into one IC.
  • FIG. 4 is a circuit diagram of the power supply protection circuit 10 according to the first embodiment of the present invention.
  • the switching control circuit 30 includes a transistor Q2 serving as a second transistor, a diode D1, a first resistor R1, and a second resistor R2.
  • the transistor Q2 is a PNP type bipolar transistor.
  • the emitter E of the transistor Q2 is connected to the input terminal VI.
  • the collector C of the transistor Q2 is connected to the ground terminal GND through the resistor R1.
  • the transistor Q2 is used as a switching element, and the emitter-collector is turned on and off based on the voltage applied between the emitter base of the transistor Q2. As a result, either the voltage at the ground terminal GND or the voltage at the input terminal VI is output from the collector C of the transistor Q2.
  • the anode A of the diode D1 is connected to the output terminal VO.
  • the cathode K of the diode D1 is connected to the ground terminal GND through the resistor R2.
  • the diode D1 is provided to generate a voltage used for switching the transistor Q2.
  • the diode D1 also serves to prevent an input current from flowing from the input terminal VI to the output terminal VO via the emitter E and base B of the transistor Q2.
  • the base B of the transistor Q2 is connected to the cathode K of the diode D1, and the collector C of the transistor Q2 is connected to the gate G of the transistor Q1.
  • FIG. 5 is an operation explanatory diagram of the switching control circuit 30 of the power protection circuit 10 according to the first embodiment of the present invention. Next, the operation of the switching control circuit 30 configured as described above and the power supply protection circuit 10 including the switching control circuit 30 will be described with reference to FIGS. 4 and 5.
  • the voltage at the output terminal VO is substantially the voltage at the ground terminal GND. That is, the voltage of the base B with respect to the emitter E of the transistor Q2 increases in the negative voltage direction. Therefore, a base current flows from the emitter E of the transistor Q2 connected to the input terminal VI to the ground terminal GND through the base B and the resistor R2. As a result, the transistor Q2 is turned on, and the collector C of the transistor Q2 is almost at the voltage of the input terminal VI. This voltage is applied to the gate G of the transistor Q1. Since the voltage Vgs between the gate and source of the transistor Q1 is almost 0 (V), the transistor Q1 is turned off. As a result, a current flows from the input terminal VI to the output terminal VO only through the current suppression resistor Rp.
  • FIG. 5 shows the voltage applied to the base B with the voltage of the emitter E as a reference.
  • the voltage is constant because the voltage is based on the emitter E.
  • the ground terminal GND is used as a reference, the voltage of the emitter E is naturally the voltage of the input terminal VI.
  • FIG. 5 shows a state in which a positive voltage is supplied from the DC power supply 50 to the input terminal VI at time T0.
  • FIG. 5 shows the voltage Vbe between the emitter and base of the transistor Q2. When a voltage that exceeds the emitter-base voltage Vbe in the negative direction is applied, the transistor Q2 is turned on.
  • the voltage applied to the base B of the transistor Q2 at this time is as follows.
  • a voltage Vtd obtained by adding the voltage Vd between both ends of the diode D1 to the voltage Vsd between the source and drain of the transistor Q1 is applied to the base B.
  • the transistor Q1 is preferably a transistor having a low on-resistance, a voltage close to the voltage Vd across the diode D1 is applied to the base B.
  • the base current does not flow through the transistor Q2, the voltage between the emitter E and the base B becomes the applied voltage Vtd, approximately the voltage Vd across the diode D1.
  • the voltage between the emitter E and the base B is a voltage Vb as shown by the solid line in FIG.
  • a voltage Vd slightly lower than the voltage Vbe is continuously applied between the emitter E and the base B by the diode D1.
  • the switching characteristic of the transistor Q1 becomes a desired characteristic by appropriately selecting the diode type of the diode of the on voltage Vd as the diode D1 with respect to the voltage Vbe that determines the on / off of the transistor Q2. Can be set easily.
  • the power supply protection circuit 10 supplies DC power so that current gradually flows to the electrolytic capacitor Cl and the load L via the current suppression resistor Rp from the time when DC power is supplied from the DC power supply 50. Inrush current that becomes a large current can be suppressed. Further, for example, even when a failure such as a short circuit of the electrolytic capacitor Cl occurs, the protection function works to detect a voltage abnormality of the output terminal VO and supply a direct current through the current suppression resistor Rp. Therefore, it is possible to protect the load L and the DC power supply 50 of the supply source from an overcurrent due to the above.
  • the power protection circuit of the present invention includes a current suppression unit provided between an input end and an output end, and a transistor having a source and drain connected in parallel with the current suppression unit. Further, the power protection circuit of the present invention applies a ground terminal voltage to the gate of the transistor when the output terminal voltage exceeds a predetermined voltage, and applies to the transistor gate when the output terminal voltage is lower than the predetermined voltage. And a switching control circuit for applying a voltage at the input terminal, and the transistor is a P-channel transistor. For this reason, it is possible to reduce the size and improve the reliability by using the transistor, which is a semiconductor element, instead of the conventional mechanical switch or relay.
  • this transistor is a P-channel transistor, the transistor can be turned on and off by simple control such as switching between the voltage at the ground end and the voltage at the input end to the gate. A protection function can be realized.
  • the control of the transistor connected in parallel to the current suppression unit can also be configured with a simple circuit without a microcomputer or the like, and can be arranged together with the current suppression unit and the transistor, for example, on the same printed circuit board.
  • there is no need for long wiring and the number of parts can be small, so that occurrence of poor contact can be suppressed, and as a result, reliability can be improved.
  • the reliability can be further improved. Therefore, according to the power protection circuit of the present invention, it is possible to provide a power protection circuit capable of improving reliability with a simple configuration.
  • FIG. 6 is a block diagram showing a power supply protection circuit 11 as another configuration example of the power supply protection circuit according to the first embodiment of the present invention.
  • FIG. 6 shows an example in which a constant current source circuit Dp is used as such a current suppressing unit.
  • the current suppression resistor Rp for example, a large amount of current flows into the electrolytic capacitor Cl when the power is turned on, and the amount of current decreases as time elapses.
  • the current suppressing effect at the time of turning on the power is reduced, and it takes time to switch to the transistor Q1.
  • the current suppressing unit is a constant current source circuit
  • the charging current to the electrolytic capacitor Cl can be constant, so that the amount of current when the power is turned on can be suppressed and the time for switching to the transistor Q1 can be shortened.
  • the current suppression unit may be a circuit in which a current suppression resistor Rp and a temperature interrupting fuse, for example, are connected in series.
  • FIG. 7 is a block diagram showing a power supply protection circuit 12 as still another configuration example of the power supply protection circuit according to the first embodiment of the present invention.
  • FIG. 7 shows an example in which such a current suppression unit is a series circuit of a current suppression resistor Rp and a fuse Fp. With such a configuration, when an inrush current or an overcurrent occurs, power supply can be interrupted by the fuse Fp.
  • the power protection circuit when a positive voltage is supplied has been described.
  • a negative voltage it can be realized by the following configuration. That is, a current suppression unit provided between an input terminal and an output terminal to which a negative voltage is supplied, a transistor whose source and drain are connected in parallel with the current suppression unit, and an absolute value of the voltage at the output terminal is a predetermined value
  • a switching control circuit that applies a voltage at the ground end to the gate of the transistor when exceeding the voltage, and applies a voltage at the input end to the gate of the transistor when the absolute value of the voltage at the output end is lower than a predetermined voltage.
  • This transistor is an N-channel transistor.
  • the configuration example in which power is supplied via the current suppression unit and the load and the power source are protected from overcurrent when the power is turned on or when an abnormality such as a load short circuit is described.
  • the protection function can be realized even if the configuration is not provided. That is, a power supply protection circuit in which a DC power source is connected to an input terminal having a positive voltage with respect to the ground terminal and DC power is output from the output terminal.
  • the power protection circuit is connected to, for example, an input terminal and an output terminal.
  • a first transistor having a source-drain connected in between, an emitter connected to an input terminal, a PNP-type second transistor connected to a ground terminal via a first resistor, and an anode output And a diode having a cathode connected to the ground end via a second resistor, a base of the second transistor connected to the cathode of the diode, and a collector of the second transistor serving as the first transistor It is good also as a structure connected to this gate. Even if the power supply protection circuit has such a configuration, if an abnormality such as a short circuit occurs in the load, the first transistor operates so as to cut off an abnormal overcurrent. While improving reliability, it is possible to protect the load and power supply from abnormal overcurrent.
  • FIG. 8 is a block diagram of motor drive device 100 according to Embodiment 2 of the present invention.
  • the motor drive device 100 includes the power supply protection circuit 10 described in the first embodiment and an inverter 60 for driving the motor 70.
  • the inverter 60 is supplied with DC power via the power protection circuit 10.
  • the motor drive device 100 includes the power supply protection circuit 10 with improved reliability, the motor drive device of the present invention provides a motor drive device that can improve reliability with a simple configuration. can do.
  • the power supply protection circuit 11 or the power supply protection circuit 12 may be used instead of the power supply protection circuit 10.
  • the power protection circuit of the present invention and the motor driving device including the power protection circuit can provide a highly reliable power protection function with a simple configuration.
  • a vehicle-mounted electric device or a vehicle that requires high reliability is used. It is useful for a motor drive device that drives a motor for electric appliances, and other electric devices and motor drive devices for home appliances and industrial use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

Disclosed is a power supply protection circuit which is provided with: a current suppressing resistor (Rp) provided between an input terminal (VI) and an output terminal (VO); a transistor (Q1) wherein the source and the drain are connected in parallel to the current suppressing resistor (Rp) as a current suppressing section; and a switch control circuit (20), which applies the voltage of an ground terminal (GND) to the gate (G) of the transistor (Q1) when the voltage of the output terminal (VO) exceeds a predetermined voltage, and applies the voltage of the input terminal (VI) to the gate (G) of the transistor (Q1) when the voltage of the output terminal (VO) is lower than the predetermined voltage. The transistor (Q1) can be turned on and off only by means of simple control by having a P-channel transistor as the transistor (Q1).

Description

電源保護回路およびそれを備えたモータ駆動装置Power supply protection circuit and motor drive device including the same
 本発明は、過電流から電源やその電源に接続される回路部品などを保護する電源保護回路およびそれを備えたモータ駆動装置に関する。 The present invention relates to a power supply protection circuit that protects a power supply and circuit components connected to the power supply from an overcurrent, and a motor drive device including the same.
 従来、このような保護機能を実現する手法として、例えば、電源からの突入電流を抑制し、回路部品の破壊防止を図るような技術が提案されている。特許文献1に開示された従来の突入電流を抑制する方式は、電源を負荷側に電気接続するメインスイッチと、電源と負荷側との間に電流制限抵抗器を介して接続される補助スイッチと、負荷側の電圧を検出する検出手段と、これらスイッチを制御する制御手段とを設けた構成としている。そして、検出手段により負荷側の電圧低下を検出すると、制御手段は、メインスイッチをオフにし、補助スイッチをオンにする。また、検出手段により負荷側の電圧が高くなったのを検出すると、制御手段は、メインスイッチをオンにし、補助スイッチをオフにする。このような動作を行うことによって、例えば、電源が立ち上がったとき、まず、電流制限抵抗器を介して電力が負荷に供給され、負荷側の電解コンデンサに充電されることになる。そして、電解コンデンサの電圧が十分に高くなると、メインスイッチを介して電力が負荷に供給される。すなわち、電解コンデンサの電圧は十分に高くなっているので電解コンデンサに充電する充電電流の量は過大とならず、従来、このような突入電流抑制の方式によって回路部品の破壊などを防止していた。 Conventionally, as a technique for realizing such a protection function, for example, a technique has been proposed in which inrush current from a power source is suppressed to prevent destruction of circuit components. The conventional method of suppressing inrush current disclosed in Patent Document 1 includes a main switch that electrically connects a power source to the load side, and an auxiliary switch that is connected between the power source and the load side via a current limiting resistor. The detection means for detecting the voltage on the load side and the control means for controlling these switches are provided. When the voltage drop on the load side is detected by the detection means, the control means turns off the main switch and turns on the auxiliary switch. When the detection means detects that the voltage on the load side has increased, the control means turns on the main switch and turns off the auxiliary switch. By performing such an operation, for example, when the power supply is turned on, first, power is supplied to the load via the current limiting resistor, and the electrolytic capacitor on the load side is charged. Then, when the voltage of the electrolytic capacitor becomes sufficiently high, power is supplied to the load via the main switch. In other words, since the voltage of the electrolytic capacitor is sufficiently high, the amount of charging current charged in the electrolytic capacitor is not excessive, and conventionally, the destruction of circuit components has been prevented by such an inrush current suppression method. .
 しかしながら、上述したような従来の突入電流を防止する方式は、マイコンなどの制御手段がスイッチを切り替える構成であったため、制御用配線を介してスイッチとしてのリレーなどを制御する必要があり、配線引き回しなどによって信頼性が低下するなどの課題があった。また、機械的接点の接触、非接触を利用したスイッチやリレーを用いた構成であったため、例えば半導体による非接触スイッチに比べて、接触不良や寿命など、これらによっても信頼性が低下する課題があった。さらに、このような機械式のスイッチやリレーは、半導体に比べて小型化が難しいなどの課題もあった。 However, the conventional method for preventing the inrush current as described above has a configuration in which a control means such as a microcomputer switches the switch, so it is necessary to control a relay as a switch through the control wiring, and the wiring is routed. There was a problem such as a decrease in reliability. In addition, since the configuration uses a switch or a relay that utilizes contact or non-contact of a mechanical contact, for example, compared to a non-contact switch made of semiconductor, there are problems such as poor contact and longevity that reduce reliability. there were. Furthermore, such mechanical switches and relays have problems such as difficulty in miniaturization compared to semiconductors.
特開平2-231922号公報JP-A-2-231922
 本発明は、このような課題を解決するためになされたものであり、電源保護や回路保護に対して、簡易な構成で信頼性の向上を可能とした電源保護回路およびそれを備えたモータ駆動装置を提供する。 The present invention has been made to solve such a problem, and a power supply protection circuit capable of improving reliability with a simple configuration for power supply protection and circuit protection, and a motor drive including the same Providing equipment.
 本発明の電源保護回路は、グランド端に対して正電圧となる入力端に直流電源が接続され、出力端から直流電力を出力する電源保護回路であって、入力端と出力端との間に設けた電流抑制部と、電流抑制部と並列にソースドレイン間が接続されたトランジスタとを備える。さらに本発明の電源保護回路は、出力端の電圧が所定の電圧を超えるとき、トランジスタのゲートにグランド端の電圧を印加し、出力端の電圧が所定の電圧よりも低いとき、トランジスタのゲートに入力端の電圧を印加する切替制御回路とを備え、トランジスタをPチャンネル型トランジスタとした構成である。 The power supply protection circuit of the present invention is a power supply protection circuit in which a DC power supply is connected to an input terminal having a positive voltage with respect to the ground terminal, and DC power is output from the output terminal, between the input terminal and the output terminal. A current suppression unit provided; and a transistor having a source and drain connected in parallel with the current suppression unit. Further, the power protection circuit of the present invention applies a ground terminal voltage to the gate of the transistor when the output terminal voltage exceeds a predetermined voltage, and applies to the transistor gate when the output terminal voltage is lower than the predetermined voltage. And a switching control circuit for applying a voltage at the input terminal, and the transistor is a P-channel transistor.
 このような構成により、入力端に直流電源から正電圧が供給された瞬間は出力端の電圧が低いため、トランジスタのゲートに入力端の電圧が印加される。すなわち、トランジスタのソースゲート間の電圧はほぼゼロとなり、トランジスタはオフとなる。これによって、入力端から出力端へは、電流抑制部を介して電流が流れることになるため、正電圧を供給した瞬間からしばらくは、電流を抑制した状態で出力することになる。 With such a configuration, the voltage at the output terminal is low at the moment when a positive voltage is supplied from the DC power supply to the input terminal, so that the voltage at the input terminal is applied to the gate of the transistor. That is, the voltage between the source and gate of the transistor is almost zero, and the transistor is turned off. As a result, a current flows from the input end to the output end via the current suppression unit, so that the current is output for a while from the moment the positive voltage is supplied.
 この後、出力端の電圧が高くなると、トランジスタのゲートにはグランド端の電圧が印加される。すなわち、トランジスタのソースに対するゲート電圧は負電圧となり、トランジスタはPチャンネル型であるため、トランジスタはオンとなる。これによって、入力端から出力端へは、トランジスタのソースドレイン間を介して、電流が流れることになり、負荷には電流抑制されないような状態で直流電力が供給される。 After this, when the voltage at the output end increases, the voltage at the ground end is applied to the gate of the transistor. That is, the gate voltage with respect to the source of the transistor is a negative voltage, and the transistor is P-channel, so that the transistor is turned on. As a result, a current flows from the input terminal to the output terminal via the source and drain of the transistor, and DC power is supplied to the load in a state where the current is not suppressed.
 また、本発明の電源保護回路は、従来の機械式のスイッチやリレーに代えて、このように半導体素子であるトランジスタを利用しているため、小型化を図ることができ、信頼性の向上を図ることができる。そして、特に、このトランジスタをPチャンネル型トランジスタとしているため、ゲートに対して、単にグランド端の電圧か入力端の電圧かを切り替えて印加するような簡易な制御のみで、このトランジスタをオンオフできる。このため、電流抑制部に並列に接続するトランジスタの制御も、マイコンなど必要なく簡易な回路で構成でき、電流抑制部やトランジスタとともに、例えば同一のプリント基板上などに配置できる。よって、長い配線引き回しなど必要なく、部品点数も少なくてよいため接触不良などの発生も抑制でき、その結果、信頼性の向上を図ることが可能となる。 In addition, the power supply protection circuit of the present invention uses a transistor, which is a semiconductor element, instead of a conventional mechanical switch or relay, so that it can be downsized and improved in reliability. Can be planned. In particular, since this transistor is a P-channel transistor, the transistor can be turned on and off by simple control such that the voltage at the ground end or the voltage at the input end is switched and applied to the gate. For this reason, the control of the transistor connected in parallel to the current suppression unit can also be configured with a simple circuit without a microcomputer or the like, and can be arranged together with the current suppression unit and the transistor, for example, on the same printed circuit board. Accordingly, there is no need for long wiring and the number of components can be reduced, so that occurrence of poor contact can be suppressed, and as a result, reliability can be improved.
 また、本発明の電源保護回路は、切替制御回路が、出力端の電圧を検出し、検出した電圧に基づく切替信号を出力する電圧検出器と、切替信号に応じて、入力端の電圧とグランド端の電圧とのいずれかを選択し、選択した電圧をトランジスタのゲートに供給するスイッチ回路とを備える。そして、スイッチ回路は、出力端の電圧が所定の電圧を超えるとき、グランド端の電圧を選択し、出力端の電圧が所定の電圧よりも低いとき、入力端の電圧を選択する構成である。 The power supply protection circuit according to the present invention includes a voltage detector in which the switching control circuit detects the voltage at the output terminal and outputs a switching signal based on the detected voltage, and the voltage at the input terminal and the ground according to the switching signal. A switching circuit that selects one of the end voltages and supplies the selected voltage to the gate of the transistor. The switch circuit is configured to select the voltage at the ground terminal when the voltage at the output terminal exceeds a predetermined voltage, and to select the voltage at the input terminal when the voltage at the output terminal is lower than the predetermined voltage.
 このような構成により、入力端に直流電源から正電圧が供給された瞬間は出力端の電圧が低いため、スイッチ回路から入力端の電圧が出力され、トランジスタのゲートに供給される。すなわち、トランジスタのソースゲート間の電圧はほぼゼロとなり、トランジスタはオフとなる。これによって、入力端から出力端へは、電流抑制部を介して電流が流れる。 With such a configuration, since the voltage at the output end is low at the moment when a positive voltage is supplied from the DC power supply to the input end, the voltage at the input end is output from the switch circuit and supplied to the gate of the transistor. That is, the voltage between the source and gate of the transistor is almost zero, and the transistor is turned off. As a result, a current flows from the input end to the output end via the current suppressing unit.
 この後、出力端の電圧が高くなると、スイッチ回路からグランド端の電圧が出力され、トランジスタのゲートに供給される。すなわち、トランジスタのソースに対するゲート電圧は負電圧となり、トランジスタはオンとなる。これによって、入力端から出力端へは、トランジスタのソースドレイン間を介して、電流が流れる。 After this, when the voltage at the output terminal becomes high, the voltage at the ground terminal is output from the switch circuit and supplied to the gate of the transistor. That is, the gate voltage with respect to the source of the transistor is a negative voltage, and the transistor is turned on. As a result, a current flows from the input end to the output end via the source and drain of the transistor.
 このように、切替制御回路は、非常に簡易な回路で構成できるため、信頼性の向上を図ることが可能となる。また、スイッチ回路として、半導体のスイッチ素子を用いた構成とすることにより、機械式のスイッチやリレーを用いた構成に比べて、接触不良を防止や高寿命化を図ることができ、これによっても信頼性を高めることができる。 Thus, since the switching control circuit can be configured with a very simple circuit, the reliability can be improved. In addition, by using a semiconductor switch element as the switch circuit, it is possible to prevent contact failure and increase the life compared to a configuration using a mechanical switch or relay. Reliability can be increased.
 また、本発明の電源保護回路は、上述のトランジスタを第1のトランジスタとしたとき、切替制御回路が、エミッタを入力端に接続し、コレクタを第1の抵抗器を介してグランドに接続したPNP型の第2のトランジスタと、アノードを出力端に接続し、カソードを第2の抵抗器を介してグランド端に接続したダイオードとを備える。そして、第2のトランジスタのベースをダイオードのカソードに接続し、第2のトランジスタのコレクタを第1のトランジスタのゲートに接続した構成である。 In the power protection circuit of the present invention, when the above-described transistor is the first transistor, the switching control circuit has a PNP in which the emitter is connected to the input terminal and the collector is connected to the ground via the first resistor. A second transistor of the type, and a diode having an anode connected to the output terminal and a cathode connected to the ground terminal via a second resistor. The base of the second transistor is connected to the cathode of the diode, and the collector of the second transistor is connected to the gate of the first transistor.
 このような構成により、入力端に直流電源から正電圧が供給された瞬間は、出力端の電圧が低いため、入力端の第2のトランジスタのエミッタからベースおよび第2の抵抗器を介してグランド端へとベース電流が流れる。このため、第2のトランジスタはオン状態となり、第2のトランジスタのコレクタは、ほぼ入力端の電圧となる。この電圧が第1のトランジスタのゲートに印加される。すなわち、第1のトランジスタのソースゲート間の電圧は、ほぼゼロとなるため、第1のトランジスタはオフとなる。これによって、入力端から出力端へは、電流抑制部を介して電流が流れる。 With such a configuration, at the moment when a positive voltage is supplied to the input terminal from the DC power supply, the voltage at the output terminal is low, so the emitter of the second transistor at the input terminal is grounded via the base and the second resistor. Base current flows to the end. Therefore, the second transistor is turned on, and the collector of the second transistor is almost at the voltage at the input end. This voltage is applied to the gate of the first transistor. That is, since the voltage between the source and gate of the first transistor is almost zero, the first transistor is turned off. As a result, a current flows from the input end to the output end via the current suppressing unit.
 この後、出力端の電圧が高くなると、第2のトランジスタのエミッタとダイオードのカソードとの間の電圧が小さくなり、ベース電流が流れなくなって、第2のトランジスタはオフ状態となる。そして、第1のトランジスタのゲートにはグランド端の電圧が印加される。すなわち、第1のトランジスタのソースに対するゲート電圧は負電圧となり、第1のトランジスタはオンとなる。これによって、入力端から出力端へは、第1のトランジスタのソースドレイン間を介して、電流が流れることになる。 Thereafter, when the voltage at the output terminal increases, the voltage between the emitter of the second transistor and the cathode of the diode decreases, the base current stops flowing, and the second transistor is turned off. A voltage at the ground end is applied to the gate of the first transistor. That is, the gate voltage with respect to the source of the first transistor is a negative voltage, and the first transistor is turned on. As a result, a current flows from the input end to the output end via the source and drain of the first transistor.
 このように、切替制御回路は、非常に簡易な回路で構成できるため、信頼性の向上を図ることが可能となる。また、本発明の電源保護回路は、電流抑制部を、抵抗器とした構成である。また、本発明の電源保護回路は、電流抑制部を、一定の電流を出力する定電流源回路としてもよい。また、本発明の電源保護回路は、電流抑制部を、抵抗器とヒューズとの直列回路としてもよい。このような構成により、電源投入時や負荷短絡のような異常時には、このような電流抑制部を介して電源供給するため、過電流による負荷や電源の破壊などを防止できる。 Thus, since the switching control circuit can be configured with a very simple circuit, the reliability can be improved. Moreover, the power supply protection circuit of this invention is the structure which used the current suppression part as the resistor. In the power protection circuit of the present invention, the current suppression unit may be a constant current source circuit that outputs a constant current. In the power supply protection circuit of the present invention, the current suppression unit may be a series circuit of a resistor and a fuse. With such a configuration, since power is supplied via such a current suppressing unit when power is turned on or when an abnormality such as a load short-circuit occurs, it is possible to prevent damage to the load or power due to overcurrent.
 また、本発明の電源保護回路は、グランド端に対して負電圧となる入力端に直流電源が接続され、出力端から直流電力を出力する電源保護回路であって、入力端と出力端との間に設けた電流抑制部と、電流抑制部と並列にソースドレイン間が接続されたトランジスタとを備える。さらに本発明の電源保護回路は、出力端の電圧の絶対値が所定の電圧を超えるとき、トランジスタのゲートにグランド端の電圧を印加し、出力端の電圧の絶対値が所定の電圧よりも低いとき、トランジスタのゲートに入力端の電圧を印加する切替制御回路とを備え、トランジスタをNチャンネル型トランジスタとした構成である。このような構成により、簡易な構成で信頼性の向上を可能とした負電圧に対する電源保護回路も実現できる。 The power source protection circuit of the present invention is a power source protection circuit in which a DC power source is connected to an input terminal having a negative voltage with respect to the ground terminal, and DC power is output from the output terminal. And a transistor having a source and a drain connected in parallel with the current suppressing unit. Furthermore, when the absolute value of the output terminal voltage exceeds a predetermined voltage, the power supply protection circuit of the present invention applies a ground terminal voltage to the gate of the transistor, and the absolute value of the output terminal voltage is lower than the predetermined voltage. And a switching control circuit for applying a voltage at the input terminal to the gate of the transistor, and the transistor is an N-channel transistor. With such a configuration, a power source protection circuit against a negative voltage that can improve reliability with a simple configuration can be realized.
 また、本発明の電源保護回路は、グランド端に対して正電圧となる入力端に直流電源が接続され、出力端から直流電力を出力する電源保護回路であって、入力端と出力端との間にソースドレイン間が接続された第1のトランジスタと、エミッタを入力端に接続し、コレクタを第1の抵抗器を介してグランド端に接続したPNP型の第2のトランジスタと、アノードを出力端に接続し、カソードを第2の抵抗器を介してグランド端に接続したダイオードとを備える。さらに本発明の電源保護回路は、第2のトランジスタのベースをダイオードのカソードに接続し、第2のトランジスタのコレクタを第1のトランジスタのゲートに接続した構成である。このような構成により、負荷に短絡のような異常が生じた場合、第1のトランジスタは異常な過電流を遮断するように動作するため、異常な過電流から負荷や電源を保護することができる。 The power source protection circuit of the present invention is a power source protection circuit in which a DC power source is connected to an input terminal having a positive voltage with respect to the ground terminal, and DC power is output from the output terminal. A first transistor having a source-drain connected in between, an emitter connected to an input terminal, a PNP-type second transistor connected to a ground terminal via a first resistor, and an anode output And a diode having a cathode connected to the ground end via a second resistor. Furthermore, the power supply protection circuit of the present invention has a configuration in which the base of the second transistor is connected to the cathode of the diode, and the collector of the second transistor is connected to the gate of the first transistor. With such a configuration, when an abnormality such as a short circuit occurs in the load, the first transistor operates to cut off the abnormal overcurrent, so that the load and the power source can be protected from the abnormal overcurrent. .
 また、本発明のモータ駆動装置は、上記電源保護回路と、電源保護回路を介して供給された直流電力により動作するインバータとを備え、インバータによりモータを駆動する構成である。このような構成により、高い信頼性の電源保護機能を有したモータ駆動装置を実現できる。 Also, the motor drive device of the present invention is configured to include the power supply protection circuit and an inverter that operates with DC power supplied via the power supply protection circuit, and to drive the motor by the inverter. With such a configuration, a motor driving device having a highly reliable power supply protection function can be realized.
 本発明の電源保護回路によれば、半導体素子を利用したわずかな部品点数で、電源保護機能を実現できるため、簡易な構成で信頼性の向上を可能とした電源保護回路を提供することができる。また、本発明のモータ駆動装置によれば、このような電源保護回路を備えるため、簡易な構成で信頼性の向上を可能としたモータ駆動装置を提供することができる。 According to the power supply protection circuit of the present invention, the power supply protection function can be realized with a small number of parts using a semiconductor element, and therefore, it is possible to provide a power supply protection circuit capable of improving reliability with a simple configuration. . Moreover, according to the motor drive device of the present invention, since such a power supply protection circuit is provided, it is possible to provide a motor drive device that can improve reliability with a simple configuration.
図1は、本発明の実施の形態1における電源保護回路のブロック図である。FIG. 1 is a block diagram of a power protection circuit according to Embodiment 1 of the present invention. 図2は、同実施の形態における、電源保護回路のトランジスタの特性図である。FIG. 2 is a characteristic diagram of a transistor of the power supply protection circuit in the same embodiment. 図3は、同実施の形態における、電源保護回路の各部の動作波形を示す図である。FIG. 3 is a diagram showing an operation waveform of each part of the power supply protection circuit in the same embodiment. 図4は、同実施の形態における、電源保護回路の回路図である。FIG. 4 is a circuit diagram of a power supply protection circuit in the same embodiment. 図5は、同実施の形態における、電源保護回路の切替制御回路の動作説明図である。FIG. 5 is an operation explanatory diagram of the switching control circuit of the power protection circuit in the same embodiment. 図6は、同実施の形態における、電源保護回路の他の構成例を示すブロック図である。FIG. 6 is a block diagram showing another configuration example of the power protection circuit in the same embodiment. 図7は、同実施の形態における、電源保護回路の他の構成例を示すブロック図である。FIG. 7 is a block diagram showing another configuration example of the power protection circuit in the same embodiment. 図8は、本発明の実施の形態2におけるモータ駆動装置のブロック図である。FIG. 8 is a block diagram of the motor drive device according to Embodiment 2 of the present invention.
 以下、本発明の実施の形態における電源保護回路およびそれを備えたモータ駆動装置について図面を参照しながら説明する。 Hereinafter, a power supply protection circuit and a motor driving apparatus including the same according to an embodiment of the present invention will be described with reference to the drawings.
 (実施の形態1)
 図1は、本発明の実施の形態1における電源保護回路10のブロック図である。図1に示すように、電源保護回路10は、直流電源50と負荷L間に配置される。負荷Lは直流電源50から供給された電力によって動作する電気回路や電子回路などであり、ここでは負荷Lとして説明する。このような負荷Lに電源を供給する場合、通常、直流電源50から負荷Lに対して直接に直流電力を供給するが、本実施の形態では、電源保護回路10を介して、直流電源50から負荷Lに直流電力を供給する構成である。本実施の形態では、このような構成とすることにより、電源保護回路10によって直流電源50から負荷L側への突入電流を抑制している。また、負荷Lにおいてショートのような異常が発生し、過電流が流れた場合も、電源保護回路10はこの過電流を抑制するように作用するため、過電流による負荷Lや直流電源50の破壊などを防止できる。
(Embodiment 1)
FIG. 1 is a block diagram of a power protection circuit 10 according to Embodiment 1 of the present invention. As shown in FIG. 1, the power protection circuit 10 is disposed between the DC power supply 50 and the load L. The load L is an electric circuit, an electronic circuit, or the like that is operated by electric power supplied from the DC power supply 50, and will be described as the load L here. When power is supplied to such a load L, DC power is normally supplied directly from the DC power supply 50 to the load L. In the present embodiment, the DC power supply 50 is connected via the power protection circuit 10. In this configuration, DC power is supplied to the load L. In the present embodiment, by adopting such a configuration, the power supply protection circuit 10 suppresses the inrush current from the DC power supply 50 to the load L side. Further, even when an abnormality such as a short circuit occurs in the load L and an overcurrent flows, the power supply protection circuit 10 acts to suppress this overcurrent, so that the load L and the DC power supply 50 are destroyed by the overcurrent. Can be prevented.
 電源保護回路10には、直流電源50からグランド端GNDをグランドとして、入力端VIに直流電力が供給される。直流電源50の0(V)の基準電圧となるグランド側がグランド端GNDに接続され、この基準電圧に対して正電圧の直流電圧Vcとなる正電圧側が入力端VIに接続される。 DC power is supplied from the DC power supply 50 to the input terminal VI to the power supply protection circuit 10 with the ground terminal GND as the ground. The ground side that is a 0 (V) reference voltage of the DC power supply 50 is connected to the ground terminal GND, and the positive voltage side that is a DC voltage Vc that is a positive voltage with respect to this reference voltage is connected to the input terminal VI.
 また、電源保護回路10の出力端VOから直流電源50の直流電力が出力され、負荷Lに供給される。図1では、負荷Lに並列となるように、電解コンデンサClが接続された一例を示している。このような電解コンデンサClは、直流電源50からの供給電圧に含まれるリップルやノイズなどを除去するため、通常このように負荷Lに接続される。 Further, the DC power of the DC power supply 50 is output from the output terminal VO of the power protection circuit 10 and supplied to the load L. FIG. 1 shows an example in which an electrolytic capacitor Cl is connected so as to be parallel to the load L. Such an electrolytic capacitor Cl is normally connected to the load L in this way in order to remove ripples and noise included in the supply voltage from the DC power supply 50.
 次に、電源保護回路10は、電流抑制部としての電流抑制抵抗器Rpと、第1のトランジスタとするトランジスタQ1と、切替制御回路20とを備える。図1に示すように、電流抑制抵抗器Rpは、入力端VIと出力端VOとの間に設けている。そして、トランジスタQ1のソースドレイン間が、電流抑制抵抗器Rpと並列となるように接続される。すなわち、トランジスタQ1のソースSは、入力端VIに接続され、トランジスタQ1のドレインDは、出力端VOに接続される。詳細については、以下で説明するが、トランジスタQ1は、入力端VIと出力端VOとの間の電気的接続、非接続、すなわちオンオフを行うスイッチとして機能する。また、トランジスタQ1のオンオフは、トランジスタQ1のゲート電圧に基づいて切り替えられる。 Next, the power supply protection circuit 10 includes a current suppression resistor Rp as a current suppression unit, a transistor Q1 serving as a first transistor, and a switching control circuit 20. As shown in FIG. 1, the current suppression resistor Rp is provided between the input terminal VI and the output terminal VO. The source and drain of the transistor Q1 are connected in parallel with the current suppressing resistor Rp. That is, the source S of the transistor Q1 is connected to the input terminal VI, and the drain D of the transistor Q1 is connected to the output terminal VO. As will be described in detail below, the transistor Q1 functions as a switch that performs electrical connection / disconnection, that is, on / off, between the input terminal VI and the output terminal VO. The on / off state of the transistor Q1 is switched based on the gate voltage of the transistor Q1.
 また、切替制御回路20は、電圧検出器21とスイッチ回路22とを備える。電圧検出器21は、出力端VOの電圧を検出し、検出した電圧に基づく切替信号Sswを出力する。スイッチ回路22は、この切替信号Sswに応じて、入力端VIの電圧とグランド端GNDの電圧とのいずれかを選択し、選択した電圧をトランジスタQ1のゲートGに供給する。このとき、スイッチ回路22は、切替信号Sswによって、出力端VOの電圧が所定の電圧を超えるとき、グランド端GNDの電圧を選択し、出力端VOの電圧が所定の電圧よりも低いとき、入力端VIの電圧を選択する。 The switching control circuit 20 includes a voltage detector 21 and a switch circuit 22. The voltage detector 21 detects the voltage of the output terminal VO and outputs a switching signal Ssw based on the detected voltage. The switch circuit 22 selects either the voltage at the input terminal VI or the voltage at the ground terminal GND according to the switching signal Ssw, and supplies the selected voltage to the gate G of the transistor Q1. At this time, the switch circuit 22 selects the voltage of the ground terminal GND when the voltage of the output terminal VO exceeds a predetermined voltage by the switching signal Ssw, and inputs the voltage when the voltage of the output terminal VO is lower than the predetermined voltage. Select the voltage at end VI.
 すなわち、切替制御回路20は、出力端VOの電圧が所定の電圧を超えるとき、トランジスタQ1のゲートGにグランド端GNDの電圧を印加する。また、切替制御回路20は、出力端VOの電圧が所定の電圧よりも低いとき、トランジスタQ1のゲートGに入力端VIの電圧を印加する。 That is, the switching control circuit 20 applies the voltage of the ground terminal GND to the gate G of the transistor Q1 when the voltage of the output terminal VO exceeds a predetermined voltage. Further, the switching control circuit 20 applies the voltage of the input terminal VI to the gate G of the transistor Q1 when the voltage of the output terminal VO is lower than a predetermined voltage.
 そして、本実施の形態では、トランジスタQ1をPチャンネル型トランジスタとしている。より具体的には、例えば、Pチャンネル型のMOSタイプの電界効果トランジスタ(FET)である。 In this embodiment, the transistor Q1 is a P-channel transistor. More specifically, for example, it is a P-channel MOS type field effect transistor (FET).
 図2は、本発明の実施の形態1における電源保護回路10のトランジスタQ1の特性図である。図2では、Pチャンネル型トランジスタのゲートソース間電圧Vgsに対する、ドレイン電流Idの特性の一例を示している。図2に示すように、Pチャンネル型トランジスタは、ソースSに対してゲート電圧が負電圧となるとき、ソースドレイン間の抵抗が小さくなり、ソースSに対してゲート電圧が0(V)以上になると、ソースドレイン間の抵抗が非常に大きくなる。すなわち、ソースドレイン間は、ソースSに対してゲート電圧が負電圧のときオンとなり、0(V)以上でオフとなる。本実施の形態では、このような特性に基づき、閉状態と開状態とに切り替えるスイッチとしてトランジスタQ1を利用している。 FIG. 2 is a characteristic diagram of the transistor Q1 of the power supply protection circuit 10 according to the first embodiment of the present invention. FIG. 2 shows an example of the characteristics of the drain current Id with respect to the gate-source voltage Vgs of the P-channel transistor. As shown in FIG. 2, when the gate voltage with respect to the source S becomes a negative voltage, the resistance between the source and the drain becomes small, and the gate voltage with respect to the source S becomes 0 (V) or more. Then, the resistance between the source and drain becomes very large. That is, between the source and the drain is turned on when the gate voltage is negative with respect to the source S, and turned off when the gate voltage is 0 (V) or more. In the present embodiment, the transistor Q1 is used as a switch for switching between a closed state and an open state based on such characteristics.
 例えば直流電源50のスイッチ51がオンされて、このように構成された電源保護回路10を介して負荷L側に、直流電源50から直流電力が供給された場合、供給された瞬間から、少なくとも電流抑制抵抗器Rpを介して電解コンデンサClに直流電流が流れ込む。このため、出力端VOの電圧は、ほぼグランド端GNDの電圧に近いほど低くなっている。よって、スイッチ回路22から入力端VIの電圧が出力され、トランジスタQ1のゲートGに供給される。これにより、入力端VIに接続されたソースSの電圧とゲートGの電圧とは、ほぼ等しくなる。すなわち、トランジスタQ1のゲートソース間電圧Vgsは、ほぼ0(V)となる。このとき、ゲートソース間電圧Vgsは図2に示す電圧Voffとなるため、ドレイン電流Idは流れず、トランジスタQ1のソースドレイン間はオフ、すなわち開状態となる。これによって、入力端VIから出力端VOへは、電流抑制抵抗器Rpのみを介して電流が流れることになる。このため、正電圧を供給した瞬間からしばらくは、電流抑制抵抗器Rpによって電流を抑制した状態で、負荷L側に直流電力が供給される。 For example, when the switch 51 of the DC power supply 50 is turned on and DC power is supplied from the DC power supply 50 to the load L via the power supply protection circuit 10 configured as described above, at least the current is supplied from the moment of supply. A direct current flows into the electrolytic capacitor Cl through the suppression resistor Rp. For this reason, the voltage of the output terminal VO becomes lower as the voltage of the output terminal VO is closer to the ground terminal GND. Therefore, the voltage at the input terminal VI is output from the switch circuit 22 and supplied to the gate G of the transistor Q1. Thereby, the voltage of the source S connected to the input terminal VI and the voltage of the gate G become substantially equal. That is, the gate-source voltage Vgs of the transistor Q1 is substantially 0 (V). At this time, since the gate-source voltage Vgs becomes the voltage Voff shown in FIG. 2, the drain current Id does not flow, and the source-drain of the transistor Q1 is turned off, that is, opened. As a result, a current flows from the input terminal VI to the output terminal VO only through the current suppression resistor Rp. For this reason, DC power is supplied to the load L side for a while from the moment when the positive voltage is supplied while the current is suppressed by the current suppression resistor Rp.
 この後、除々に電解コンデンサClが充電されるため、出力端VOの電圧も高くなる。すると、電圧検出器21は、所定の電圧を超えたと判定し、グランド端GNDの電圧を選択するようにスイッチ回路22を切り替える。スイッチ回路22からは、グランド端GNDの電圧が出力され、トランジスタQ1のゲートGに供給される。ここで、入力端VIに接続されたトランジスタQ1のソースSには、正電圧が供給されている。このため、このソースSを基準に考えると、グランド端GNDの電圧となるゲートGの電圧は、ソースSに対して負電圧となる。すなわち、ゲートソース間電圧Vgsは図2に示す電圧Vonとなるため、ドレイン電流Idが流れ、トランジスタQ1のソースドレイン間はオン、すなわち閉状態となる。これによって、入力端VIから出力端VOへは、トランジスタQ1のソースドレイン間を介して、電流が流れることになり、負荷Lには電流抑制されないような状態で直流電力が供給される。なお、このように、トランジスタQ1のソースドレイン間を介して直流電力を出力するため、トランジスタQ1は、オン抵抗の低いトランジスタとすることが好ましい。 Thereafter, since the electrolytic capacitor Cl is gradually charged, the voltage at the output terminal VO also increases. Then, the voltage detector 21 determines that the predetermined voltage has been exceeded, and switches the switch circuit 22 so as to select the voltage at the ground terminal GND. From the switch circuit 22, the voltage at the ground terminal GND is output and supplied to the gate G of the transistor Q1. Here, a positive voltage is supplied to the source S of the transistor Q1 connected to the input terminal VI. For this reason, when the source S is considered as a reference, the voltage of the gate G that is the voltage of the ground terminal GND is a negative voltage with respect to the source S. That is, since the gate-source voltage Vgs becomes the voltage Von shown in FIG. 2, the drain current Id flows, and the source-drain of the transistor Q1 is turned on, that is, closed. As a result, a current flows from the input terminal VI to the output terminal VO via the source and drain of the transistor Q1, and the DC power is supplied to the load L in a state where the current is not suppressed. Note that in this manner, since DC power is output through the source and drain of the transistor Q1, the transistor Q1 is preferably a transistor with low on-resistance.
 図3は、本発明の実施の形態1における電源保護回路10の動作波形を示す図である。図3では、時間T0において直流電源50から直流電力を供給し、その後、出力端VOの電圧が安定するまでの様子を示している。 FIG. 3 is a diagram showing operation waveforms of the power supply protection circuit 10 according to the first embodiment of the present invention. FIG. 3 shows a state in which DC power is supplied from the DC power supply 50 at time T0 and then the voltage at the output terminal VO is stabilized.
 図3に示すように、時間T0において直流電源50から直流電力が投入されると、入力端VIの電圧は直流電源50の電圧Vcとなる。一方、時間T0において、電流抑制抵抗器Rpを介して電解コンデンサClに直流電流が流れ込むため、出力端VOの電圧は、ほぼグランド端GNDの電圧に近い。このため、切替制御回路20は、出力端VOの電圧が所定の電圧Vthよりも低いと判定し、トランジスタQ1のゲートGに、入力端VIの電圧を印加する。すると、図3に示すように、ソースSを基準としたゲートGの電圧Vgsはほぼ0(V)となる。これによって、トランジスタQ1のソースドレイン間は高抵抗状態となり、ソースドレイン間はオフ状態と等価となる。よって、入力端VIから電流抑制抵抗器Rpのみを介して電解コンデンサClに直流電流が流れ込む状態が継続する。この間、図3に示すように、出力端VOの電圧は除々に高くなる。そして、出力端VOの電圧が所定の電圧Vthを超える時間T1になると、切替制御回路20は、トランジスタQ1のゲートGに、グランド端GNDの電圧を印加する。これにより、ソースSを基準としたゲートGの電圧Vgsは負電圧となるため、トランジスタQ1のソースドレイン間は低抵抗状態となり、ソースドレイン間はオン状態と等価となる。すなわち、入力端VIと出力端VOとが直接接続されたのと等価な状態で、出力端VOから直流電力が出力される。 As shown in FIG. 3, when DC power is input from the DC power supply 50 at time T0, the voltage at the input terminal VI becomes the voltage Vc of the DC power supply 50. On the other hand, since a direct current flows into the electrolytic capacitor Cl through the current suppression resistor Rp at time T0, the voltage at the output terminal VO is substantially close to the voltage at the ground terminal GND. For this reason, the switching control circuit 20 determines that the voltage at the output terminal VO is lower than the predetermined voltage Vth, and applies the voltage at the input terminal VI to the gate G of the transistor Q1. Then, as shown in FIG. 3, the voltage Vgs of the gate G with respect to the source S becomes substantially 0 (V). As a result, the source and drain of the transistor Q1 are in a high resistance state, and the source and drain are equivalent to an off state. Therefore, a state in which a direct current flows from the input terminal VI into the electrolytic capacitor Cl only through the current suppression resistor Rp continues. During this time, as shown in FIG. 3, the voltage at the output terminal VO gradually increases. When the time T1 when the voltage at the output terminal VO exceeds the predetermined voltage Vth is reached, the switching control circuit 20 applies the voltage at the ground terminal GND to the gate G of the transistor Q1. Accordingly, the voltage Vgs of the gate G with respect to the source S becomes a negative voltage, so that the low resistance state is established between the source and drain of the transistor Q1, and the source and drain are equivalent to the on state. That is, DC power is output from the output terminal VO in a state equivalent to the direct connection between the input terminal VI and the output terminal VO.
 以上説明したように、電源保護回路10は、直流電源50を投入後、出力端VOの電圧が供給電圧Vcに近い電圧となるまで、電流抑制状態で電力供給するため、電源投入時に、例えば電解コンデンサClに流れ込む突入電流のような過大電流を抑制できる。また、例えば、負荷Lとする電気回路や電解コンデンサClにおいて短絡のような異常が発生した場合、出力端VOの電圧が低下する。出力端VOの電圧が低下すると、切替制御回路20は、トランジスタQ1のゲートGに入力端VIの電圧を印加し、トランジスタQ1をオフ状態とする。このため、直流電源50から電流抑制抵抗器Rpのみを介して負荷L側へと電力供給することになる。すなわち、電流抑制抵抗器Rpによって、負荷L側への過大な電流の流れ込みを抑制でき、負荷Lや直流電源50の破壊や、負荷Lの異常な発熱などを防止できる。 As described above, the power supply protection circuit 10 supplies power in a current-suppressed state after the DC power supply 50 is turned on until the voltage at the output terminal VO becomes close to the supply voltage Vc. An excessive current such as an inrush current flowing into the capacitor Cl can be suppressed. Further, for example, when an abnormality such as a short circuit occurs in the electric circuit serving as the load L or the electrolytic capacitor Cl, the voltage at the output terminal VO decreases. When the voltage at the output terminal VO decreases, the switching control circuit 20 applies the voltage at the input terminal VI to the gate G of the transistor Q1 to turn off the transistor Q1. For this reason, electric power is supplied from the DC power supply 50 to the load L side only through the current suppression resistor Rp. In other words, the current suppression resistor Rp can suppress an excessive current flow to the load L side, and can prevent the load L and the DC power supply 50 from being destroyed or abnormal heat generation of the load L.
 さらに、上述した構成のように、電源保護回路10は、半導体素子であるトランジスタQ1を利用しており、小型化を図ることができる。そして、特に、本実施の形態では、このトランジスタQ1をPチャンネル型トランジスタとしている。このため、上述したように、ゲートGに対して、単にグランド端GNDの電圧か入力端VIの電圧かを切り替えて印加するような簡易な制御のみで、このトランジスタQ1をオンオフでき、所望の保護機能を実現できる。このように、正電圧を負荷Lに伝送する電源保護回路10は簡易な回路で構成でき、電流抑制抵抗器RpやトランジスタQ1とともに、例えば同一のプリント基板上などに切替制御回路20のような制御回路も配置できる。また、トランジスタQ1と切替制御回路20とを1つのICとするような集積化も容易である。 Furthermore, as in the configuration described above, the power supply protection circuit 10 uses the transistor Q1, which is a semiconductor element, and can be reduced in size. In particular, in this embodiment, the transistor Q1 is a P-channel transistor. For this reason, as described above, the transistor Q1 can be turned on / off by simple control such as switching between the voltage at the ground terminal GND or the voltage at the input terminal VI and applying the desired protection to the gate G. Functions can be realized. As described above, the power protection circuit 10 that transmits the positive voltage to the load L can be configured as a simple circuit, and is controlled together with the current suppression resistor Rp and the transistor Q1 such as the switching control circuit 20 on the same printed circuit board. Circuits can also be placed. Further, it is easy to integrate the transistor Q1 and the switching control circuit 20 into one IC.
 次に電源保護回路10のさらに詳細な構成の一例について説明する。図4は、本発明の実施の形態1における電源保護回路10の回路図である。図4に示すように、切替制御回路30は、第2のトランジスタとするトランジスタQ2と、ダイオードD1と、第1の抵抗器R1と、第2の抵抗器R2とを備える。 Next, an example of a more detailed configuration of the power supply protection circuit 10 will be described. FIG. 4 is a circuit diagram of the power supply protection circuit 10 according to the first embodiment of the present invention. As shown in FIG. 4, the switching control circuit 30 includes a transistor Q2 serving as a second transistor, a diode D1, a first resistor R1, and a second resistor R2.
 トランジスタQ2は、PNP型のバイポーラトランジスタである。トランジスタQ2のエミッタEは、入力端VIに接続される。また、トランジスタQ2のコレクタCは、抵抗器R1を介してグランド端GNDに接続される。ここで、トランジスタQ2は、スイッチ素子として利用しており、トランジスタQ2のエミッタベース間に印加される電圧に基づき、エミッタコレクタ間がオンオフされる。これによって、トランジスタQ2のコレクタCからは、グランド端GNDの電圧と入力端VIの電圧とのいずれかの電圧が出力される。 The transistor Q2 is a PNP type bipolar transistor. The emitter E of the transistor Q2 is connected to the input terminal VI. The collector C of the transistor Q2 is connected to the ground terminal GND through the resistor R1. Here, the transistor Q2 is used as a switching element, and the emitter-collector is turned on and off based on the voltage applied between the emitter base of the transistor Q2. As a result, either the voltage at the ground terminal GND or the voltage at the input terminal VI is output from the collector C of the transistor Q2.
 また、ダイオードD1のアノードAは、出力端VOに接続される。ダイオードD1のカソードKは、抵抗器R2を介してグランド端GNDに接続される。ダイオードD1は、トランジスタQ2をスイッチ操作するために利用する電圧を生成するために設けている。また、ダイオードD1は、入力端VIからトランジスタQ2のエミッタEおよびベースBを介して、入力電流が出力端VOまで流れ込むのを防止する役目も果たす。そして、トランジスタQ2のベースBがダイオードD1のカソードKに接続され、トランジスタQ2のコレクタCがトランジスタQ1のゲートGに接続される。 The anode A of the diode D1 is connected to the output terminal VO. The cathode K of the diode D1 is connected to the ground terminal GND through the resistor R2. The diode D1 is provided to generate a voltage used for switching the transistor Q2. The diode D1 also serves to prevent an input current from flowing from the input terminal VI to the output terminal VO via the emitter E and base B of the transistor Q2. The base B of the transistor Q2 is connected to the cathode K of the diode D1, and the collector C of the transistor Q2 is connected to the gate G of the transistor Q1.
 図5は、本発明の実施の形態1における電源保護回路10の切替制御回路30の動作説明図である。次に、図4および図5を参照しながら、以上のように構成された切替制御回路30、およびこの切替制御回路30を備えた電源保護回路10の動作について説明する。 FIG. 5 is an operation explanatory diagram of the switching control circuit 30 of the power protection circuit 10 according to the first embodiment of the present invention. Next, the operation of the switching control circuit 30 configured as described above and the power supply protection circuit 10 including the switching control circuit 30 will be described with reference to FIGS. 4 and 5.
 まず、入力端VIに直流電源50から正電圧が供給された瞬間は、上述したように、出力端VOの電圧はほぼグランド端GNDの電圧となる。すなわち、トランジスタQ2のエミッタEを基準にしたベースBの電圧は、負電圧方向に高くなる。このため、入力端VIに接続されたトランジスタQ2のエミッタEから、ベースBおよび抵抗器R2を介して、グランド端GNDへとベース電流が流れることになる。これにより、トランジスタQ2はオン状態となり、トランジスタQ2のコレクタCは、ほぼ入力端VIの電圧となる。この電圧がトランジスタQ1のゲートGに印加される。そして、トランジスタQ1のゲートソース間の電圧Vgsはほぼ0(V)となるため、トランジスタQ1はオフ状態となる。これによって、入力端VIから出力端VOへは、電流抑制抵抗器Rpのみを介して電流が流れる。 First, at the moment when a positive voltage is supplied to the input terminal VI from the DC power supply 50, as described above, the voltage at the output terminal VO is substantially the voltage at the ground terminal GND. That is, the voltage of the base B with respect to the emitter E of the transistor Q2 increases in the negative voltage direction. Therefore, a base current flows from the emitter E of the transistor Q2 connected to the input terminal VI to the ground terminal GND through the base B and the resistor R2. As a result, the transistor Q2 is turned on, and the collector C of the transistor Q2 is almost at the voltage of the input terminal VI. This voltage is applied to the gate G of the transistor Q1. Since the voltage Vgs between the gate and source of the transistor Q1 is almost 0 (V), the transistor Q1 is turned off. As a result, a current flows from the input terminal VI to the output terminal VO only through the current suppression resistor Rp.
 ここで、トランジスタQ2のベースBに印加される電圧について説明する。図5は、エミッタEの電圧を基準にして、ベースBに印加される電圧を示している。なお、図5では、エミッタEを基準にした電圧を示しているため一定となっているが、グランド端GNDを基準にすると、当然のことながらエミッタEの電圧は入力端VIの電圧となる。また、図5では、時間T0において、入力端VIに直流電源50から正電圧が供給された様子を示している。また、図5では、トランジスタQ2のエミッタベース間の電圧Vbeを示している。このエミッタベース間の電圧Vbeを負方向に超える電圧が印加されると、トランジスタQ2はオンとなり、超えない場合はオフとなる。 Here, the voltage applied to the base B of the transistor Q2 will be described. FIG. 5 shows the voltage applied to the base B with the voltage of the emitter E as a reference. In FIG. 5, the voltage is constant because the voltage is based on the emitter E. However, when the ground terminal GND is used as a reference, the voltage of the emitter E is naturally the voltage of the input terminal VI. FIG. 5 shows a state in which a positive voltage is supplied from the DC power supply 50 to the input terminal VI at time T0. FIG. 5 shows the voltage Vbe between the emitter and base of the transistor Q2. When a voltage that exceeds the emitter-base voltage Vbe in the negative direction is applied, the transistor Q2 is turned on.
 図5に示すように、時間T0において、エミッタEを基準にすると、ベースBには、電流抑制抵抗器Rpの両端電圧VrpにダイオードD1の両端電圧Vdを加えた電圧Vrdが印加される。このとき、図5に示すように、この印加される電圧Vrdは、電圧Vbeを負方向に超える電圧となるため、エミッタEからベースBへとベース電流が流れ、トランジスタQ2はオンとなる。なお、この時点において電圧Vrdが印加された瞬間にベース電流が流れ始めるため、エミッタEとベースBとの間の電圧は、印加される電圧Vrdではなく、ベース電流の流れによってトランジスタQ2から生じる電圧Vbeとなる。すなわち、エミッタEとベースBとの間の電圧は、図5の実線で示すような電圧Vbとなる。 As shown in FIG. 5, at time T0, when the emitter E is used as a reference, a voltage Vrd obtained by adding the voltage Vd across the diode D1 to the voltage Vrp across the current suppression resistor Rp is applied to the base B. At this time, as shown in FIG. 5, since the applied voltage Vrd exceeds the voltage Vbe in the negative direction, a base current flows from the emitter E to the base B, and the transistor Q2 is turned on. Since the base current starts to flow at the moment when the voltage Vrd is applied at this time, the voltage between the emitter E and the base B is not the applied voltage Vrd but the voltage generated from the transistor Q2 by the flow of the base current. Vbe. That is, the voltage between the emitter E and the base B is a voltage Vb as shown by the solid line in FIG.
 その後、時間の経過とともに、例えば電解コンデンサClへの充電電流が減少するため、電流抑制抵抗器Rpの両端電圧Vrpも減少する。このため、図5に示すように、時間の経過とともに、電圧Vrdは電圧Vbeに近くなる。 Thereafter, with the passage of time, for example, the charging current to the electrolytic capacitor Cl decreases, so the voltage Vrp across the current suppressing resistor Rp also decreases. For this reason, as shown in FIG. 5, the voltage Vrd approaches the voltage Vbe with time.
 そして、時間T1において、電圧Vrdが電圧Vbeを負方向に超えなくなると、エミッタEからベースBへのベース電流が遮断される。このため、トランジスタQ2はオフ状態となり、トランジスタQ1のゲートGにはグランド端GNDの電圧が印加される。そして、トランジスタQ1のソースSに対するゲートGの電圧は負電圧となるため、トランジスタQ1はオン状態となる。これによって、入力端VIから出力端VOへは、トランジスタQ1のソースドレイン間を介して、電流が流れることになる。 When the voltage Vrd does not exceed the voltage Vbe in the negative direction at time T1, the base current from the emitter E to the base B is cut off. For this reason, the transistor Q2 is turned off, and the voltage of the ground terminal GND is applied to the gate G of the transistor Q1. Since the voltage of the gate G with respect to the source S of the transistor Q1 is a negative voltage, the transistor Q1 is turned on. As a result, a current flows from the input terminal VI to the output terminal VO through the source and drain of the transistor Q1.
 ここで、この時点での、トランジスタQ2のベースBに印加される電圧は次のようになる。このとき、トランジスタQ1はオン状態であるため、エミッタEを基準にすると、ベースBには、トランジスタQ1のソースドレイン間電圧VsdにダイオードD1の両端電圧Vdを加えた電圧Vtdが印加される。実際には、トランジスタQ1はオン抵抗の低いトランジスタとすることが好適であるため、ベースBには、ダイオードD1の両端電圧Vdに近い電圧が印加される。また、このとき、トランジスタQ2にはベース電流が流れていないため、エミッタEとベースBとの間の電圧は、印加される電圧Vtd、近似的にはダイオードD1の両端電圧Vdとなる。すなわち、エミッタEとベースBとの間の電圧は、図5の実線で示すような電圧Vbとなる。図5に示す電圧Vbからわかるように、一旦トランジスタQ1がオン状態になると、エミッタEとベースBとの間には、ダイオードD1によって、電圧Vbeよりも少し低い電圧Vdの印加が継続される。このような動作からわかるように、トランジスタQ2のオンオフを決める電圧Vbeに対して、オン電圧Vdのダイオードの品種をダイオードD1として適切に選定することで、トランジスタQ1の切替特性が所望の特性となるように容易に設定することができる。 Here, the voltage applied to the base B of the transistor Q2 at this time is as follows. At this time, since the transistor Q1 is in the on state, when the emitter E is used as a reference, a voltage Vtd obtained by adding the voltage Vd between both ends of the diode D1 to the voltage Vsd between the source and drain of the transistor Q1 is applied to the base B. Actually, since the transistor Q1 is preferably a transistor having a low on-resistance, a voltage close to the voltage Vd across the diode D1 is applied to the base B. At this time, since the base current does not flow through the transistor Q2, the voltage between the emitter E and the base B becomes the applied voltage Vtd, approximately the voltage Vd across the diode D1. That is, the voltage between the emitter E and the base B is a voltage Vb as shown by the solid line in FIG. As can be seen from the voltage Vb shown in FIG. 5, once the transistor Q1 is turned on, a voltage Vd slightly lower than the voltage Vbe is continuously applied between the emitter E and the base B by the diode D1. As can be seen from such operation, the switching characteristic of the transistor Q1 becomes a desired characteristic by appropriately selecting the diode type of the diode of the on voltage Vd as the diode D1 with respect to the voltage Vbe that determines the on / off of the transistor Q2. Can be set easily.
 また、負荷Lにおいてショートのような異常が発生して過電流が流れた場合、この過電流は、トランジスタQ1のソースドレイン間を流れる。このため、トランジスタQ1のソースドレイン間には、トランジスタQ1のオン抵抗とこの過電流とによる電圧Vsdが発生する。そして、この、電圧VsdにダイオードD1の両端電圧Vdを加えた電圧Vtdが電圧Vbeを負方向に超えると、トランジスタQ2にベース電流が流れ出し、トランジスタQ1はオフ状態へと切り替えられる。そして、電流抑制抵抗器Rpによって、この過電流が抑制されることになる。 Further, when an overcurrent flows due to an abnormality such as a short circuit in the load L, the overcurrent flows between the source and drain of the transistor Q1. Therefore, a voltage Vsd is generated between the source and drain of the transistor Q1 due to the on-resistance of the transistor Q1 and this overcurrent. When the voltage Vtd obtained by adding the voltage Vd across the diode D1 to the voltage Vsd exceeds the voltage Vbe in the negative direction, a base current flows out to the transistor Q2, and the transistor Q1 is switched to the off state. The overcurrent is suppressed by the current suppression resistor Rp.
 このように、電源保護回路10は、直流電源50から直流電力を供給した時点から、電流抑制抵抗器Rpを介して電解コンデンサClや負荷Lに除々に電流が流れるように直流電力を供給するため、大電流となる突入電流を抑制できる。また、例えば、電解コンデンサClの短絡などの故障が生じた場合も、出力端VOの電圧異常を検出し、電流抑制抵抗器Rpを介して直流電流を供給するように保護機能が働くため、故障による過電流から負荷Lや供給元の直流電源50の保護を図ることができる。 In this way, the power supply protection circuit 10 supplies DC power so that current gradually flows to the electrolytic capacitor Cl and the load L via the current suppression resistor Rp from the time when DC power is supplied from the DC power supply 50. Inrush current that becomes a large current can be suppressed. Further, for example, even when a failure such as a short circuit of the electrolytic capacitor Cl occurs, the protection function works to detect a voltage abnormality of the output terminal VO and supply a direct current through the current suppression resistor Rp. Therefore, it is possible to protect the load L and the DC power supply 50 of the supply source from an overcurrent due to the above.
 以上説明したように、本発明の電源保護回路は、入力端と出力端との間に設けた電流抑制部と、電流抑制部と並列にソースドレイン間が接続されたトランジスタとを備える。さらに本発明の電源保護回路は、出力端の電圧が所定の電圧を超えるとき、トランジスタのゲートにグランド端の電圧を印加し、出力端の電圧が所定の電圧よりも低いとき、トランジスタのゲートに入力端の電圧を印加する切替制御回路とを備え、トランジスタをPチャンネル型トランジスタとした構成である。このため、従来の機械式のスイッチやリレーに代えて、このように半導体素子であるトランジスタを利用することにより、小型化を図ることができ、信頼性の向上を図ることができる。そして、このトランジスタをPチャンネル型トランジスタとしているため、ゲートに対して、単にグランド端の電圧か入力端の電圧かを切り替えて印加するような簡易な制御のみで、このトランジスタをオンオフでき、所望の保護機能を実現できる。このため、電流抑制部に並列に接続するトランジスタの制御も、マイコンなど必要なく簡易な回路で構成でき、電流抑制部やトランジスタとともに、例えば同一のプリント基板上などに配置できる。そして、長い配線引き回しなど必要なく、部品点数も少なくてよいため接触不良などの発生も抑制でき、その結果、信頼性の向上を図ることが可能となる。また、例えばトランジスタQ1と図4の切替制御回路30とを1つのICに集積化することによって、より信頼性を高めることができる。したがって、本発明の電源保護回路によれば、簡易な構成で信頼性の向上を可能とした電源保護回路を提供することができる。 As described above, the power protection circuit of the present invention includes a current suppression unit provided between an input end and an output end, and a transistor having a source and drain connected in parallel with the current suppression unit. Further, the power protection circuit of the present invention applies a ground terminal voltage to the gate of the transistor when the output terminal voltage exceeds a predetermined voltage, and applies to the transistor gate when the output terminal voltage is lower than the predetermined voltage. And a switching control circuit for applying a voltage at the input terminal, and the transistor is a P-channel transistor. For this reason, it is possible to reduce the size and improve the reliability by using the transistor, which is a semiconductor element, instead of the conventional mechanical switch or relay. Since this transistor is a P-channel transistor, the transistor can be turned on and off by simple control such as switching between the voltage at the ground end and the voltage at the input end to the gate. A protection function can be realized. For this reason, the control of the transistor connected in parallel to the current suppression unit can also be configured with a simple circuit without a microcomputer or the like, and can be arranged together with the current suppression unit and the transistor, for example, on the same printed circuit board. Further, there is no need for long wiring and the number of parts can be small, so that occurrence of poor contact can be suppressed, and as a result, reliability can be improved. Further, for example, by integrating the transistor Q1 and the switching control circuit 30 of FIG. 4 in one IC, the reliability can be further improved. Therefore, according to the power protection circuit of the present invention, it is possible to provide a power protection circuit capable of improving reliability with a simple configuration.
 なお、以上の説明では、電流抑制部を電流抑制抵抗器Rpとした一例を挙げて説明したが、電流抑制部はこれに限定されず、例えば、一定の電流を出力する定電流源回路としてもよい。図6は、本発明の実施の形態1における電源保護回路の他の構成例としての電源保護回路11を示すブロック図である。図6では、このような電流抑制部として定電流源回路Dpとした一例を示している。電流抑制抵抗器Rpとした場合、例えば電解コンデンサClに流れ込む電流は、電源投入時は多く流れ、また一方時間の経過とともに電流量が少なくなる。このため、電源投入時の電流抑制効果が少なくなるとともにトランジスタQ1へと切り替えるまでに時間がかかることになる。これに対し、電流抑制部を定電流源回路とした場合、電解コンデンサClへの充電電流は一定とできるため、電源投入時の電流量を抑えるとともに、トランジスタQ1へと切り替える時間の短縮を図れる。 In the above description, the current suppression unit is described as an example of the current suppression resistor Rp. However, the current suppression unit is not limited to this, and for example, as a constant current source circuit that outputs a constant current. Good. FIG. 6 is a block diagram showing a power supply protection circuit 11 as another configuration example of the power supply protection circuit according to the first embodiment of the present invention. FIG. 6 shows an example in which a constant current source circuit Dp is used as such a current suppressing unit. In the case of the current suppression resistor Rp, for example, a large amount of current flows into the electrolytic capacitor Cl when the power is turned on, and the amount of current decreases as time elapses. For this reason, the current suppressing effect at the time of turning on the power is reduced, and it takes time to switch to the transistor Q1. On the other hand, when the current suppressing unit is a constant current source circuit, the charging current to the electrolytic capacitor Cl can be constant, so that the amount of current when the power is turned on can be suppressed and the time for switching to the transistor Q1 can be shortened.
 また、電流抑制部を、電流抑制抵抗器Rpと例えば温度遮断型ヒューズなどとを直列接続した回路としてもよい。図7は、本発明の実施の形態1における電源保護回路のさらに他の構成例としての電源保護回路12を示すブロック図である。図7では、このような電流抑制部として、電流抑制抵抗器RpとヒューズFpとの直列回路とした一例を示している。このような構成とすることにより、突入電流や過電流が生じた場合、ヒューズFpによって電力供給を遮断することができる。 Also, the current suppression unit may be a circuit in which a current suppression resistor Rp and a temperature interrupting fuse, for example, are connected in series. FIG. 7 is a block diagram showing a power supply protection circuit 12 as still another configuration example of the power supply protection circuit according to the first embodiment of the present invention. FIG. 7 shows an example in which such a current suppression unit is a series circuit of a current suppression resistor Rp and a fuse Fp. With such a configuration, when an inrush current or an overcurrent occurs, power supply can be interrupted by the fuse Fp.
 また、以上の説明では、正電圧が供給される場合の電源保護回路について説明したが、負電圧が供給される場合には、次のような構成とすることにより実現できる。すなわち、負電圧が供給される入力端と出力端との間に設けた電流抑制部と、電流抑制部と並列にソースドレイン間が接続されたトランジスタと、出力端の電圧の絶対値が所定の電圧を超えるとき、トランジスタのゲートにグランド端の電圧を印加し、出力端の電圧の絶対値が所定の電圧よりも低いとき、トランジスタのゲートに入力端の電圧を印加する切替制御回路とを備え、このトランジスタをNチャンネル型トランジスタとする。このような構成とすることにより正電圧が供給される場合と同様に、簡易な構成で信頼性の向上を可能とした電源保護回路を実現できる。 In the above description, the power protection circuit when a positive voltage is supplied has been described. However, when a negative voltage is supplied, it can be realized by the following configuration. That is, a current suppression unit provided between an input terminal and an output terminal to which a negative voltage is supplied, a transistor whose source and drain are connected in parallel with the current suppression unit, and an absolute value of the voltage at the output terminal is a predetermined value A switching control circuit that applies a voltage at the ground end to the gate of the transistor when exceeding the voltage, and applies a voltage at the input end to the gate of the transistor when the absolute value of the voltage at the output end is lower than a predetermined voltage. This transistor is an N-channel transistor. By adopting such a configuration, a power supply protection circuit capable of improving reliability with a simple configuration can be realized as in the case where a positive voltage is supplied.
 また、以上の説明では、電源投入時や負荷短絡のような異常時に、電流抑制部を介して電源供給し、過電流から負荷や電源の保護を図る構成例について説明したが、電流抑制部を設けない構成とすることによっても保護機能を実現できる。すなわち、グランド端に対して正電圧となる入力端に直流電源が接続され、出力端から直流電力を出力する電源保護回路であって、この電源保護回路を、例えば、入力端と出力端との間にソースドレイン間が接続された第1のトランジスタと、エミッタを入力端に接続し、コレクタを第1の抵抗器を介してグランド端に接続したPNP型の第2のトランジスタと、アノードを出力端に接続し、カソードを第2の抵抗器を介してグランド端に接続したダイオードとを備え、第2のトランジスタのベースをダイオードのカソードに接続し、第2のトランジスタのコレクタを第1のトランジスタのゲートに接続した構成としてもよい。電源保護回路をこのような構成とすることによっても、負荷に短絡のような異常が生じた場合、第1のトランジスタは異常な過電流を遮断するように動作するため、やはり、簡易な構成で信頼性の向上を図りながら、異常な過電流から負荷や電源を保護することができる。 In the above description, the configuration example in which power is supplied via the current suppression unit and the load and the power source are protected from overcurrent when the power is turned on or when an abnormality such as a load short circuit is described. The protection function can be realized even if the configuration is not provided. That is, a power supply protection circuit in which a DC power source is connected to an input terminal having a positive voltage with respect to the ground terminal and DC power is output from the output terminal. The power protection circuit is connected to, for example, an input terminal and an output terminal. A first transistor having a source-drain connected in between, an emitter connected to an input terminal, a PNP-type second transistor connected to a ground terminal via a first resistor, and an anode output And a diode having a cathode connected to the ground end via a second resistor, a base of the second transistor connected to the cathode of the diode, and a collector of the second transistor serving as the first transistor It is good also as a structure connected to this gate. Even if the power supply protection circuit has such a configuration, if an abnormality such as a short circuit occurs in the load, the first transistor operates so as to cut off an abnormal overcurrent. While improving reliability, it is possible to protect the load and power supply from abnormal overcurrent.
 (実施の形態2)
 図8は、本発明の実施の形態2におけるモータ駆動装置100のブロック図である。図8に示すように、モータ駆動装置100は、実施の形態1で説明した電源保護回路10とモータ70を駆動するためのインバータ60とを備える。そして、インバータ60には電源保護回路10を介して直流電力が供給される。このように、モータ駆動装置100は、信頼性の向上を高めた電源保護回路10を備えるため、本発明のモータ駆動装置は、簡易な構成で信頼性の向上を可能としたモータ駆動装置を提供することができる。なお、当然のことながら、電源保護回路10に代えて、電源保護回路11や電源保護回路12であってもよい。
(Embodiment 2)
FIG. 8 is a block diagram of motor drive device 100 according to Embodiment 2 of the present invention. As shown in FIG. 8, the motor drive device 100 includes the power supply protection circuit 10 described in the first embodiment and an inverter 60 for driving the motor 70. The inverter 60 is supplied with DC power via the power protection circuit 10. Thus, since the motor drive device 100 includes the power supply protection circuit 10 with improved reliability, the motor drive device of the present invention provides a motor drive device that can improve reliability with a simple configuration. can do. As a matter of course, the power supply protection circuit 11 or the power supply protection circuit 12 may be used instead of the power supply protection circuit 10.
 本発明の電源保護回路およびそれを備えたモータ駆動装置は、簡易な構成で高い信頼性を有した電源保護機能が得られるため、例えば、高い信頼性が要求される車載用の電気装置や車載用のモータを駆動するモータ駆動装置、その他家電や産業用の電気装置やモータ駆動装置に有用である。 The power protection circuit of the present invention and the motor driving device including the power protection circuit can provide a highly reliable power protection function with a simple configuration. For example, a vehicle-mounted electric device or a vehicle that requires high reliability is used. It is useful for a motor drive device that drives a motor for electric appliances, and other electric devices and motor drive devices for home appliances and industrial use.
 D1  ダイオード
 Q1  (第1の)トランジスタ
 Q2  (第2の)トランジスタ
 R1  (第1の)抵抗器
 R2  (第2の)抵抗器
 Rp  電流抑制抵抗器(電流抑制部)
 Cl  電解コンデンサ
 L  負荷
 Dp  定電流源回路
 Fp  ヒューズ
 10,11,12  電源保護回路
 20,30  切替制御回路
 21  電圧検出器
 22  スイッチ回路
 50  直流電源
 51  スイッチ
 60  インバータ
 70  モータ
 100  モータ駆動装置
D1 diode Q1 (first) transistor Q2 (second) transistor R1 (first) resistor R2 (second) resistor Rp current suppression resistor (current suppression unit)
Cl electrolytic capacitor L load Dp constant current source circuit Fp fuse 10, 11, 12 power protection circuit 20, 30 switching control circuit 21 voltage detector 22 switch circuit 50 DC power supply 51 switch 60 inverter 70 motor 100 motor drive device

Claims (10)

  1. グランド端に対して正電圧となる入力端に直流電源が接続され、出力端から直流電力を出力する電源保護回路であって、
    前記入力端と前記出力端との間に設けた電流抑制部と、
    前記電流抑制部と並列にソースドレイン間が接続されたトランジスタと、
    前記出力端の電圧が所定の電圧を超えるとき、前記トランジスタのゲートに前記グランド端の電圧を印加し、前記出力端の電圧が所定の電圧よりも低いとき、前記トランジスタのゲートに前記入力端の電圧を印加する切替制御回路とを備え、
    前記トランジスタをPチャンネル型トランジスタとしたことを特徴とする電源保護回路。
    A power supply protection circuit in which a DC power supply is connected to an input terminal having a positive voltage with respect to a ground terminal, and DC power is output from an output terminal,
    A current suppressing portion provided between the input end and the output end;
    A transistor in which a source and a drain are connected in parallel with the current suppressing unit;
    When the voltage at the output terminal exceeds a predetermined voltage, the voltage at the ground terminal is applied to the gate of the transistor, and when the voltage at the output terminal is lower than the predetermined voltage, the gate of the transistor has the input terminal. A switching control circuit for applying a voltage,
    A power supply protection circuit, wherein the transistor is a P-channel transistor.
  2. 前記切替制御回路は、
    前記出力端の電圧を検出し、検出した電圧に基づく切替信号を出力する電圧検出器と、
    前記切替信号に応じて、前記入力端の電圧と前記グランド端の電圧とのいずれかを選択し、選択した電圧を前記トランジスタのゲートに供給するスイッチ回路とを備え、
    前記スイッチ回路は、前記出力端の電圧が所定の電圧を超えるとき、前記グランド端の電圧を選択し、前記出力端の電圧が所定の電圧よりも低いとき、前記入力端の電圧を選択することを特徴とする請求項1に記載の電源保護回路。
    The switching control circuit includes:
    A voltage detector that detects the voltage at the output end and outputs a switching signal based on the detected voltage;
    A switch circuit that selects one of the voltage at the input terminal and the voltage at the ground terminal in accordance with the switching signal and supplies the selected voltage to the gate of the transistor;
    The switch circuit selects the ground terminal voltage when the output terminal voltage exceeds a predetermined voltage, and selects the input terminal voltage when the output terminal voltage is lower than the predetermined voltage. The power supply protection circuit according to claim 1.
  3. 前記スイッチ回路は、半導体のスイッチ素子を用いて構成されることを特徴とする請求項2に記載の電源保護回路。 The power supply protection circuit according to claim 2, wherein the switch circuit is configured using a semiconductor switch element.
  4. 前記トランジスタを第1のトランジスタとしたとき、
    前記切替制御回路は、
    エミッタを前記入力端に接続し、コレクタを第1の抵抗器を介して前記グランド端に接続したPNP型の第2のトランジスタと、
    アノードを前記出力端に接続し、カソードを第2の抵抗器を介して前記グランド端に接続したダイオードとを備え、
    前記第2のトランジスタのベースを前記ダイオードのカソードに接続し、前記第2のトランジスタのコレクタを前記第1のトランジスタのゲートに接続したことを特徴とする請求項1に記載の電源保護回路。
    When the transistor is a first transistor,
    The switching control circuit includes:
    A PNP-type second transistor having an emitter connected to the input terminal and a collector connected to the ground terminal via a first resistor;
    A diode having an anode connected to the output terminal and a cathode connected to the ground terminal via a second resistor;
    2. The power protection circuit according to claim 1, wherein a base of the second transistor is connected to a cathode of the diode, and a collector of the second transistor is connected to a gate of the first transistor.
  5. 前記電流抑制部は、抵抗器であることを特徴とする請求項1から4のいずれか1項に記載の電源保護回路。 The power supply protection circuit according to claim 1, wherein the current suppression unit is a resistor.
  6. 前記電流抑制部は、一定の電流を出力する定電流源回路であることを特徴とする請求項1から4のいずれか1項に記載の電源保護回路。 5. The power supply protection circuit according to claim 1, wherein the current suppressing unit is a constant current source circuit that outputs a constant current. 6.
  7. 前記電流抑制部は、抵抗器とヒューズとの直列回路であることを特徴とする請求項1から4のいずれか1項に記載の電源保護回路。 5. The power supply protection circuit according to claim 1, wherein the current suppression unit is a series circuit of a resistor and a fuse.
  8. グランド端に対して負電圧となる入力端に直流電源が接続され、出力端から直流電力を出力する電源保護回路であって、
    前記入力端と前記出力端との間に設けた電流抑制部と、
    前記電流抑制部と並列にソースドレイン間が接続されたトランジスタと、
    前記出力端の電圧の絶対値が所定の電圧を超えるとき、前記トランジスタのゲートに前記グランド端の電圧を印加し、前記出力端の電圧の絶対値が所定の電圧よりも低いとき、前記トランジスタのゲートに前記入力端の電圧を印加する切替制御回路とを備え、
    前記トランジスタをNチャンネル型トランジスタとしたことを特徴とする電源保護回路。
    A power protection circuit in which a DC power source is connected to an input terminal that is a negative voltage with respect to a ground terminal, and DC power is output from an output terminal,
    A current suppressing portion provided between the input end and the output end;
    A transistor in which a source and a drain are connected in parallel with the current suppressing unit;
    When the absolute value of the voltage at the output terminal exceeds a predetermined voltage, the voltage at the ground terminal is applied to the gate of the transistor, and when the absolute value of the voltage at the output terminal is lower than a predetermined voltage, A switching control circuit for applying a voltage of the input terminal to the gate,
    A power supply protection circuit, wherein the transistor is an N-channel transistor.
  9. グランド端に対して正電圧となる入力端に直流電源が接続され、出力端から直流電力を出力する電源保護回路であって、
    前記入力端と前記出力端との間にソースドレイン間が接続された第1のトランジスタと、エミッタを前記入力端に接続し、コレクタを第1の抵抗器を介して前記グランド端に接続したPNP型の第2のトランジスタと、アノードを前記出力端に接続し、カソードを第2の抵抗器を介して前記グランド端に接続したダイオードとを備え、
    前記第2のトランジスタのベースを前記ダイオードのカソードに接続し、前記第2のトランジスタのコレクタを前記第1のトランジスタのゲートに接続したことを特徴とする電源保護回路。
    A power supply protection circuit in which a DC power supply is connected to an input terminal having a positive voltage with respect to a ground terminal, and DC power is output from an output terminal,
    A first transistor in which a source and a drain are connected between the input end and the output end, a PNP in which an emitter is connected to the input end, and a collector is connected to the ground end via a first resistor. A second transistor of the type, and a diode having an anode connected to the output terminal and a cathode connected to the ground terminal via a second resistor,
    A power supply protection circuit, wherein a base of the second transistor is connected to a cathode of the diode, and a collector of the second transistor is connected to a gate of the first transistor.
  10. 請求項1から9のいずれか1項に記載の電源保護回路と、
    前記電源保護回路を介して供給された前記直流電力により動作するインバータとを備え、前記インバータによりモータを駆動することを特徴とするモータ駆動装置。
    A power protection circuit according to any one of claims 1 to 9,
    And a motor driven by the inverter, wherein the motor is driven by the DC power supplied via the power protection circuit.
PCT/JP2010/003992 2009-06-24 2010-06-16 Power supply protection circuit and motor drive device provided with same WO2010150488A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080028192.7A CN102804538B (en) 2009-06-24 2010-06-16 Power supply protection circuit and motor drive device provided with same
JP2011519560A JP5590031B2 (en) 2009-06-24 2010-06-16 Power supply protection circuit and motor drive device including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009149456 2009-06-24
JP2009-149456 2009-06-24

Publications (1)

Publication Number Publication Date
WO2010150488A1 true WO2010150488A1 (en) 2010-12-29

Family

ID=43386276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003992 WO2010150488A1 (en) 2009-06-24 2010-06-16 Power supply protection circuit and motor drive device provided with same

Country Status (3)

Country Link
JP (1) JP5590031B2 (en)
CN (1) CN102804538B (en)
WO (1) WO2010150488A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463955A (en) * 2014-04-29 2017-02-22 三菱电机株式会社 Power switch device and system using same
JP2019532608A (en) * 2016-08-22 2019-11-07 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Circuit device and electronic control device for coupling electronic control device to voltage supply
JP2020505901A (en) * 2017-01-11 2020-02-20 カリィ テクノロジCaly Technologies Devices for protection of electrical equipment
EP3722142B1 (en) * 2017-12-28 2023-08-16 Yura Corporation Co., Ltd. Electric vehicle power relay assembly and driving method therefor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362842A (en) * 2014-10-20 2015-02-18 矽力杰半导体技术(杭州)有限公司 Switching power supply and surge protection circuit and method adaptive to same
CN104734135A (en) * 2015-04-10 2015-06-24 航天科技控股集团股份有限公司 Vehicle speed sensor power supply protective circuit for vehicle
ES2870091T3 (en) * 2015-04-28 2021-10-26 Marici Holdings The Netherlands Bv Method and arrangement for grounding a photovoltaic system and photovoltaic system
CN105514930B (en) * 2016-01-15 2017-11-03 周金滚 The control method of protection device and protection device
JP2017135897A (en) * 2016-01-28 2017-08-03 パナソニックIpマネジメント株式会社 Power supply control device, motor driving device and power supply control method
CN107592104A (en) * 2017-07-24 2018-01-16 张家港市华为电子有限公司 A kind of on-off circuit of mosfet transistor
JP7028245B2 (en) * 2017-07-28 2022-03-02 株式会社村田製作所 DC voltage supply circuit
JP2019146300A (en) * 2018-02-16 2019-08-29 株式会社東芝 Driver circuit
JP6965902B2 (en) * 2019-02-01 2021-11-10 オムロン株式会社 Overcurrent protection circuit and switching circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08272464A (en) * 1995-03-31 1996-10-18 Mitsubishi Electric Corp Dc power supply
JP2000209777A (en) * 1999-01-08 2000-07-28 Nec Corp Power supply circuit and method for preventing rush current
JP2003189464A (en) * 2001-12-21 2003-07-04 Sanken Electric Co Ltd Rush current preventive circuit
JP2005253195A (en) * 2004-03-04 2005-09-15 Matsushita Electric Ind Co Ltd Power supply device
JP2008022597A (en) * 2006-07-11 2008-01-31 Meidensha Corp Dc power supply for electronic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022579A (en) * 2007-09-18 2008-01-31 Hitachi Ltd Video information output device and video information output method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08272464A (en) * 1995-03-31 1996-10-18 Mitsubishi Electric Corp Dc power supply
JP2000209777A (en) * 1999-01-08 2000-07-28 Nec Corp Power supply circuit and method for preventing rush current
JP2003189464A (en) * 2001-12-21 2003-07-04 Sanken Electric Co Ltd Rush current preventive circuit
JP2005253195A (en) * 2004-03-04 2005-09-15 Matsushita Electric Ind Co Ltd Power supply device
JP2008022597A (en) * 2006-07-11 2008-01-31 Meidensha Corp Dc power supply for electronic apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463955A (en) * 2014-04-29 2017-02-22 三菱电机株式会社 Power switch device and system using same
EP3125391A4 (en) * 2014-04-29 2017-10-18 Mitsubishi Electric Corporation Power switch device and system using same
US9935480B2 (en) 2014-04-29 2018-04-03 Mitsubishi Electric Corporation Power switch device and system using same
CN106463955B (en) * 2014-04-29 2020-01-21 三菱电机株式会社 Power switching device and system using same
JP2019532608A (en) * 2016-08-22 2019-11-07 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Circuit device and electronic control device for coupling electronic control device to voltage supply
JP2020505901A (en) * 2017-01-11 2020-02-20 カリィ テクノロジCaly Technologies Devices for protection of electrical equipment
EP3722142B1 (en) * 2017-12-28 2023-08-16 Yura Corporation Co., Ltd. Electric vehicle power relay assembly and driving method therefor

Also Published As

Publication number Publication date
CN102804538B (en) 2014-12-03
CN102804538A (en) 2012-11-28
JPWO2010150488A1 (en) 2012-12-06
JP5590031B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5590031B2 (en) Power supply protection circuit and motor drive device including the same
JP5315026B2 (en) Semiconductor device
US8497728B2 (en) Electronic control apparatus having switching element and drive circuit
US6674657B2 (en) Overvoltage-protective device for power system, AC/DC converter and DC/DC converter constituting the power system
EP2071726B1 (en) Load driving device
US20070064370A1 (en) Semiconductor integrated circuit device, power supply apparatus, and electric appliance
JP4271169B2 (en) Semiconductor device
JP7443679B2 (en) semiconductor equipment
US8379360B2 (en) Overcurrent protection circuit and in-vehicle display device
JP5201268B2 (en) Semiconductor drive device
US9640978B2 (en) Protection circuit for an inverter as well as inverter system
US20080247108A1 (en) Load drive device
US9343901B2 (en) Power system and short-circuit protection circuit thereof
KR20140103068A (en) Power supply protection system
JP3964833B2 (en) Intelligent power device and load short circuit protection method thereof
JP4263685B2 (en) Protection circuit
JP5953099B2 (en) Load control and protection system, and operation and use thereof
US20070103988A1 (en) Circuit arrangement and method for controlling an inductive load
US11228305B2 (en) Load drive circuit configured to prevent a flyback current
CN112671053A (en) Electronic circuit with dual voltage supply circuit
JP6519498B2 (en) Switching power supply
JP6724539B2 (en) Load drive
JP2004294404A (en) Disconnection detecting circuit
JP6628564B2 (en) Control circuit of semiconductor relay module
US11264795B2 (en) Electronic circuit breaker and method for operating same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028192.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791812

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519560

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10791812

Country of ref document: EP

Kind code of ref document: A1