WO2010150344A1 - Vapor compression cycle device - Google Patents

Vapor compression cycle device Download PDF

Info

Publication number
WO2010150344A1
WO2010150344A1 PCT/JP2009/061358 JP2009061358W WO2010150344A1 WO 2010150344 A1 WO2010150344 A1 WO 2010150344A1 JP 2009061358 W JP2009061358 W JP 2009061358W WO 2010150344 A1 WO2010150344 A1 WO 2010150344A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
compressor
intermediate pressure
vapor compression
Prior art date
Application number
PCT/JP2009/061358
Other languages
French (fr)
Japanese (ja)
Inventor
哲英 横山
利秀 幸田
慎 関屋
英明 前山
太郎 加藤
多佳志 岡崎
宗 野本
美保子 下地
圭 佐々木
雷人 河村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011519406A priority Critical patent/JP5383802B2/en
Priority to PCT/JP2009/061358 priority patent/WO2010150344A1/en
Publication of WO2010150344A1 publication Critical patent/WO2010150344A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures

Definitions

  • the present invention relates to a vapor compression cycle device applied to, for example, an air conditioner, a heat pump type hot water heater, a refrigerator-freezer, and the like.
  • a vapor compression cycle including a vapor compression refrigeration cycle and a heat pump cycle is widely used in air conditioners, heat pump water heaters, refrigerators and refrigerators, and the like.
  • the demand for further energy saving and higher efficiency has increased, and the two-stage compression injection cycle using economizers has been attracting attention and has been promoted and promoted to more diverse applications and wider areas. ing.
  • Non-Patent Document 1 describes a two-stage compression injection cycle using a two-stage rotary compressor in a cold district CO2 heat pump water heater.
  • Non-Patent Document 1 describes that there are the following problems (1) and (2) when a two-stage compression injection cycle is operated with a heat pump hot water supply operation under a low external temperature condition.
  • (1) The temperature of the refrigerant discharged from the compressor rises abnormally.
  • (2) The compression ratio (Pd / Ps) becomes higher when the pressure Ps on the suction side and the pressure Pd on the discharge side of the compressor are increased, and the compression ratio is biased toward the higher-stage compression section. To do.
  • Non-Patent Document 1 when heat pump hot water supply operation is performed under a low external temperature condition, the following effects (A) and (B) can be obtained by injecting gas (in a gas-like manner) into the intermediate connecting portion of the compressor. There is a description about.
  • Patent Document 1 discloses a two-stage compression injection cycle using a compressor whose operating capacity is adjusted by an unloader mechanism, and is a first stage equipped with an economizer means as a circuit for injecting into an intermediate connecting portion of the compressor.
  • a two-stage compression injection cycle provided with a bypass and a second bypass that bypasses the economizer means.
  • the second bypass passage flows. There is a description about switching to be injected.
  • Non-Patent Document 1 describes the effect of gas (gas taste) injection during high compression ratio operation in a two-stage compression injection cycle using a two-stage compressor. However, Non-Patent Document 1 does not describe the effect of liquid (gas-like) injection.
  • Patent Document 1 describes a method of using liquid injection as a countermeasure when the discharge temperature rapidly rises in an unloader type compressor capable of capacity control. However, Patent Document 1 does not describe use of liquid injection in a general positive displacement compressor.
  • a general positive displacement type two-stage compressor two compression parts having a predetermined excluded volume are connected in series by an intermediate coupling part.
  • a general positive displacement two-stage compressor has a low-stage compression section that compresses a low-pressure refrigerant to an intermediate pressure and a high-stage compression section that compresses an intermediate-pressure refrigerant to a high pressure in series by an intermediate connection section.
  • the ratio of the low-stage excluded volume and the high-stage excluded volume is determined in advance.
  • a two-stage compression injection cycle using a general positive displacement two-stage compressor is operated in a wide compressor ratio range from a low compression ratio to a high compression ratio.
  • This invention is intended to ensure high efficiency and high reliability in a vapor compression cycle using a positive displacement compressor.
  • the vapor compression cycle apparatus is: A main refrigerant circuit in which a compressor having a compression portion whose exclusion volume is determined in advance, a condenser, a main decompression mechanism, and an evaporator are sequentially connected; An injection circuit connected to inject the refrigerant distributed between the condenser of the main refrigerant circuit and the main pressure reducing mechanism into an intermediate pressure portion where the refrigerant has an intermediate pressure in the compressor.
  • the compression ratio balance between the low-stage compression section and the high-stage compression section of the compressor can be improved, and high efficiency and high reliability of the vapor compression cycle apparatus are ensured. can do.
  • FIG. 1 is a configuration diagram of a vapor compression refrigeration cycle according to Embodiment 1.
  • FIG. FIG. 3 is a configuration diagram of a vapor compression refrigeration cycle according to Embodiment 2.
  • FIG. 5 is a configuration diagram of a vapor compression refrigeration cycle according to Embodiment 3.
  • FIG. 6 is a configuration diagram of a vapor compression refrigeration cycle according to Embodiment 4.
  • FIG. 6 is a configuration diagram of a vapor compression refrigeration cycle according to a fifth embodiment.
  • the gas refrigerant includes not only a gas refrigerant having a dryness of 1 but also a so-called gas-like refrigerant having a dryness of 0.5 or more.
  • the liquid refrigerant is not only a liquid refrigerant having a dryness of 0, but also a so-called liquid refrigerant having a dryness of less than 0.5 (especially 0.2 or less or preferably 0.1 or less). Including.
  • FIG. 1 is a configuration diagram of a vapor compression cycle apparatus according to the first embodiment.
  • broken line arrows indicate the flow of the refrigerant.
  • the condenser 6 is disposed on the outdoor unit side
  • the evaporator 8 is disposed on the cooling utilization side (indoor unit side)
  • a refrigeration apparatus utilizing the vapor compression refrigeration cycle or This is a dedicated air conditioner for cooling.
  • the vapor compression cycle apparatus includes a main refrigerant circuit 9 in which a two-stage compressor 10, a condenser 6, a main decompression mechanism 7, and an evaporator 8 are sequentially connected.
  • a two-stage compressor 10 two compression parts whose exclusion volumes are determined in advance are connected in series by an intermediate coupling part 3 (intermediate pressure part) and are arranged in the hermetic shell 4. That is, the two-stage compressor 10 sucks low-pressure refrigerant through the suction muffler 5, compresses the sucked low-pressure refrigerant to an intermediate pressure, and high pressure compresses the intermediate-pressure refrigerant to a high pressure.
  • the vapor compression cycle apparatus bypasses the main decompression mechanism 7 and the evaporator 8 so that the liquid refrigerant distributed at the branch point 17 between the condenser 6 and the main decompression mechanism 7 of the main refrigerant circuit 9
  • An injection circuit 11 connected so as to be injected into the intermediate coupling portion 3 of the stage compressor 10 is provided.
  • An injection decompression circuit 12 and an HIC heat exchanger 13 are sequentially connected to the injection circuit 11.
  • the injection decompression circuit 12 decompresses the liquid refrigerant distributed at the branch point 17.
  • the HIC heat exchanger 13 exchanges heat between the liquid refrigerant flowing between the condenser 6 of the main refrigerant circuit 9 and the main decompression mechanism 7 and the liquid refrigerant distributed at the branch point 17 and decompressed by the injection decompression circuit 12. . That is, the HIC heat exchanger 13 is an economizer that increases the refrigeration capacity based on the refrigerant decompression effect by the injection decompression circuit 12. Then, as a result of heat exchange by the HIC heat exchanger 13, the liquid refrigerant distributed at the branch point 17 and decompressed by the injection decompression circuit 12 becomes a gas refrigerant and is injected into the intermediate connecting portion 3. That is, the vapor compression cycle device constitutes an economizer cycle.
  • a four-way valve 14 (switching unit) is connected to the injection circuit 11.
  • the four-way valve 14 injects the liquid refrigerant decompressed by the injection decompression circuit 12 into the intermediate connection part 3 via the HIC heat exchanger 13, or enters the intermediate connection part 3 without going through the HIC heat exchanger 13. Switch whether to inject.
  • the refrigerant distributed at the branch point 17 and decompressed by the injection decompression circuit 12 is injected into the intermediate connecting portion 3 via the HIC heat exchanger 13.
  • the four-way valve 14 the refrigerant distributed at the branching point 17 and decompressed by the injection decompression circuit 12 can be injected into the intermediate connecting portion 3 without going through the HIC heat exchanger 13.
  • the four-way valve 14 converts the liquid refrigerant decompressed by the injection decompression circuit 12 into a gas refrigerant by the HIC heat exchanger 13 and injects it into the intermediate connection part 3 or injects it into the intermediate connection part 3 as a liquid refrigerant. Is switched.
  • a flow path that passes through the HIC heat exchanger 13 in FIG. 1, a solid line portion of the four-way valve 14 and a flow path that passes through the HIC heat exchanger 13).
  • the first flow path 15 is called, and the flow path not passing through the HIC heat exchanger 13 (the broken line portion of the four-way valve 14 in FIG. 1) is called the second flow path 16. That is, the injection circuit 11 is branched into two flow paths, the first flow path 15 and the second flow path 16.
  • the vapor compression cycle apparatus has a pressure sensor 20m for detecting the refrigerant pressure (intermediate pressure Pm) in the intermediate connecting portion 3, and a pressure for detecting the refrigerant pressure (intake pressure Ps) on the suction side of the two-stage compressor 10.
  • a sensor 20s and a pressure sensor 20d for detecting the pressure (discharge pressure Pd) of the refrigerant on the discharge side of the two-stage compressor 10 are provided.
  • the pressure sensor 20m detects the pressure between the injection decompression circuit 12 and the intermediate connecting portion 3.
  • the pressure sensor 20 s detects the pressure between the evaporator 8 and the suction muffler 5.
  • the pressure sensor 20 d detects the pressure between the two-stage compressor 10 and the condenser 6.
  • the pressure sensor 20m the pressure sensor 20s, and the pressure sensor 20d here
  • coolant which heat-exchanges with the HIC heat exchanger 13, the evaporator 8, and the condenser 6 is demonstrated.
  • the pressure may be estimated from the physical property value of the refrigerant to be used, and the intermediate pressure Pm, the suction pressure Ps, and the discharge pressure Pd may be obtained.
  • the vapor compression cycle apparatus includes a control unit 30 that controls switching of the four-way valve 14. Next, switching control of the four-way valve 14 by the control unit 30 will be described.
  • the compression ratio (Pm / Ps) of the low-stage compressor 1 and the compression ratio of the high-stage compressor 2 (Pd / Pm) becomes equal.
  • the compression ratio balance between the low-stage compressor 1 and the high-stage compressor 2 is good, and the compressor efficiency is almost maximized.
  • an economizer that injects a gas refrigerant into the intermediate connecting portion 3 is used.
  • the excluded volume ratio (high-stage compression portion 2) is set so that the intermediate pressure Pm increases and approaches the optimum value.
  • the control unit 30 lowers the intermediate pressure Pm by switching the four-way valve 14 and injecting the liquid refrigerant into the intermediate connecting unit 3 when the control reference examples 1 to 3 shown below are satisfied. This prevents the compression from being biased toward the lower stage.
  • the compression ratio (Pd / Ps) When the compression ratio (Pd / Ps) is small, the compression ratio is biased to the low stage side, and the balance between the compression ratio of the high stage and the low stage becomes poor, so that the compressor efficiency decreases. Therefore, the intermediate pressure Pm is lowered by switching the four-way valve 14 and injecting liquid refrigerant from the second flow path 16. This brings the compression ratio closer to the optimum value and improves the compressor efficiency.
  • the chattering phenomenon in which the vane separates from the rolling piston and repeatedly collides with the rolling piston causes deterioration in the durability of the compressor and generation of noise. Therefore, the intermediate pressure Pm is lowered by switching the four-way valve 14 and injecting liquid refrigerant from the second flow path 16. As the intermediate pressure Pm decreases, the operating range in which the compressor can operate stably can be expanded, and the reliability can be improved. In the case of performing control based on the control reference example 2, it is not necessary to detect the suction pressure Ps. Therefore, when only the control based on the control reference example 2 is performed, the vapor compression cycle apparatus does not need to include the pressure sensor 20s.
  • the above-mentioned basic formula “Pd ⁇ Ps ⁇ (V1 / V2) ns ” may be corrected to “Pm> a (Ps ⁇ (V1 / V2) ns ) + b” by predetermined correction values a and b. is there.
  • the ideal intermediate pressure Pm_i can be obtained from Ps / (V2 / V1) ns .
  • the ideal intermediate pressure Pm_i becomes higher than the discharge pressure Pd, the same state as in the case of the control reference example 2 may occur. Therefore, also in this case, the intermediate pressure Pm is lowered by switching the four-way valve 14 and injecting the liquid refrigerant from the second flow path 16.
  • the intermediate pressure Pm decreases, the operating range in which the compressor can stably operate can be expanded, and the effect of improving reliability can be obtained. Note that when performing control based on the control reference example 3, it is not necessary to detect the intermediate pressure Pm. Therefore, when only the control based on the control reference example 3 is performed, the vapor compression cycle apparatus does not need to include the pressure sensor 20m.
  • the vapor compression cycle apparatus connects the intermediate connecting portion 3 and the discharge side of the two-stage compressor 10 and prevents a refrigerant from flowing from the discharge side of the two-stage compressor 10 to the intermediate connecting portion 3 side.
  • a check valve circuit 19 provided with 18 is provided.
  • the vapor compression cycle apparatus injects the gas refrigerant from the injection circuit 11 to the intermediate connecting portion 3 during the high efficiency operation and the high compression ratio operation.
  • the vapor compression cycle apparatus according to Embodiment 1 switches so as to inject the liquid refrigerant from the injection circuit 11 to the intermediate connecting portion 3.
  • FIG. FIG. 2 is a configuration diagram of a vapor compression cycle apparatus according to the second embodiment.
  • solid arrows indicate the flow of the refrigerant.
  • the condenser 6 is disposed on the outdoor unit side, the evaporator 8 is disposed on the cooling utilization side (indoor unit side), and a refrigeration apparatus utilizing the vapor compression refrigeration cycle, or It was an air conditioner for cooling only.
  • the condenser 6 is disposed on the heating utilization side (indoor unit side)
  • the evaporator 8 is disposed on the outdoor unit side, and the hot water supply utilizing the vapor compression refrigeration cycle. ⁇ It is a heating device or a heating-only air conditioner.
  • the vapor compression cycle apparatus includes pressure sensors 20m, 20s, and 20d, detects the pressure of each part, and the control unit 30 performs switching control of the four-way valve 14 based on the detected pressure.
  • the vapor compression cycle apparatus includes a temperature sensor 21 h that measures the temperature of the refrigerant in the HIC heat exchanger 13, a temperature sensor 21 e that measures the temperature of the refrigerant in the evaporator 8, and condensation.
  • the temperature sensor 21c which measures the temperature of the refrigerant
  • the temperature sensor 21h measures the temperature of the refrigerant flowing through the injection circuit 11 side.
  • the controller 30 estimates the intermediate pressure Pm, the suction pressure Ps, and the discharge pressure Pd, respectively, from the temperatures measured by the temperature sensors 21h, e, and c and the physical property values of the refrigerant. And the control part 30 performs switching control of the four-way valve 14 similarly to Embodiment 1 based on the estimated intermediate pressure Pm, the suction pressure Ps, and the discharge pressure Pd.
  • FIG. 3 is a configuration diagram of a vapor compression cycle apparatus according to the third embodiment.
  • the broken line arrows indicate the refrigerant flow during the cooling operation
  • the solid line arrows indicate the refrigerant flow during the heating operation.
  • the vapor compression cycle apparatus according to the third embodiment only the parts different from the vapor compression cycle apparatus according to the first embodiment will be described.
  • the condenser 6 is disposed on the outdoor unit side
  • the evaporator 8 is disposed on the cooling utilization side (indoor unit side)
  • the vapor compression cycle apparatus according to Embodiment 3 is a vapor compression refrigeration cycle that is assumed to be used for air conditioning or the like that can be switched between warm and warm. Therefore, the vapor compression cycle apparatus according to Embodiment 3 includes an outdoor heat exchanger 26, an indoor heat exchanger 28, and a four-way valve 24 for switching between cooling and heating. The four-way valve 24 is switched to a heating circuit 24a indicated by a solid line in the case of heating use, and is switched to a cooling circuit 24b indicated by a broken line in the case of cooling use.
  • the vapor compression cycle apparatus includes two decompression mechanisms 27 and 29 and a heat recovery receiver 25 in the main refrigerant circuit 9.
  • the heat recovery type receiver 25 is connected between the two pressure reducing mechanisms and is connected to the suction side of the two-stage compressor 10.
  • One of the two decompression mechanisms is the first main decompression mechanism 27 provided between the indoor heat exchanger 28 and the heat recovery type receiver 25, and the other decompression mechanism is the outdoor heat exchange.
  • a second main decompression mechanism 29 provided between the heat exchanger 26 and the HIC heat exchanger 13.
  • the first main decompression mechanism 27 and the second main decompression mechanism 29 are expanded in the order of two stages, and in the cooling application, the second main decompression mechanism 29 and the first main decompression mechanism 27 are arranged in the order of two stages. Inflate. Since the heat of the high-pressure side condenser is recovered by the HIC heat exchanger 13 or the heat recovery type receiver 25, a large subcool can be taken. Furthermore, the superheat on the suction side of the two-stage compressor 10 can be increased by the heat recovered by the heat recovery type receiver 25. Therefore, the vapor compression cycle apparatus according to Embodiment 3 is a circuit advantageous for heating operation.
  • the control unit 30 in the vapor compression cycle apparatus according to the third embodiment performs switching control of the four-way valve 14 similar to the control unit 30 in the vapor compression cycle apparatus according to the first embodiment.
  • FIG. 4 is a configuration diagram of a vapor compression cycle apparatus according to the fourth embodiment.
  • broken line arrows indicate the flow of the refrigerant.
  • the vapor compression cycle apparatus according to the fourth embodiment only the parts different from the vapor compression cycle apparatus according to the first embodiment will be described.
  • the vapor compression cycle apparatus according to Embodiment 1 uses the HIC heat exchanger 13 as an economizer.
  • the vapor compression cycle apparatus according to Embodiment 4 uses the gas-liquid separator 23 as an economizer.
  • the refrigerant distributed at the branch point 17 is decompressed by the injection decompression circuit 12, and then gas-liquid separation is performed by the gas-liquid separator 23.
  • the compression ratio (Pd / Ps) is large, the separated gas refrigerant is injected into the intermediate connecting portion 3 via the first flow path 15. Further, the separated liquid refrigerant is joined to the main refrigerant circuit 9 at the junction 22 without being injected into the intermediate connecting portion 3.
  • the compression ratio (Pd / Ps) is small, particularly when the control reference examples 1 to 3 described in the first embodiment are satisfied, the separated liquid refrigerant is intermediately connected via the second flow path 16. Inject into part 3. Further, the separated gas refrigerant joins the main refrigerant circuit 9 at the junction 22 without being injected into the intermediate connecting portion 3.
  • FIG. 5 is a configuration diagram of a vapor compression cycle apparatus according to the fifth embodiment.
  • broken line arrows indicate the flow of the refrigerant.
  • the vapor compression cycle apparatus according to the fifth embodiment only parts different from the vapor compression cycle apparatus according to the fourth embodiment will be described.
  • the vapor compression cycle apparatus is a two-stage compression / two-stage expansion vapor compression cycle that is assumed to be used exclusively for cooling purposes, as in the first embodiment.
  • the vapor compression cycle apparatus according to Embodiment 5 is a two-stage compression single-stage expansion type vapor compression cycle that is assumed to be used exclusively for cooling applications.
  • the liquid refrigerant condensed by the condenser 6 is decompressed by the second main decompression mechanism 29 and enters the gas-liquid separator 23 via the four-way valve 14.
  • the gas refrigerant is injected into the intermediate connecting portion 3 via the first flow path 15.
  • the liquid refrigerant flows into the main refrigerant circuit 9 and is further depressurized by the first main decompression mechanism 27 and then evaporated by the evaporator 8.
  • the compression ratio (Pd / Ps) is small, particularly when the control reference examples 1 to 3 described in the first embodiment are satisfied, the liquid refrigerant condensed by the condenser 6 is second main decompression mechanism 29. The pressure is reduced and injected from the four-way valve 14 via the second flow path 16 to the intermediate connecting portion 3.
  • the vapor compression cycle apparatus using the two-stage compressor in which the low-stage compression unit 1 and the high-stage compression unit 2 are connected in series by the intermediate coupling unit 3 has been described.
  • a positive displacement compressor in which the rejection volume ratio between the low-stage side and the high-stage side is determined in advance by injecting refrigerant into the intermediate pressure section the same effect can be obtained without using a two-stage compressor.
  • the same effect can be obtained by using a positive displacement compressor such as a reciprocating compressor, a rotary compressor, a scroll compressor, or a screw compressor.
  • a rolling piston type two-stage rotary compressor is used, an effect of suppressing vane jumping can be obtained, so that a great effect can be obtained.
  • a low-stage compression unit that compresses a low-pressure refrigerant to an intermediate pressure and a high-stage compression unit that compresses an intermediate-pressure refrigerant to a high pressure are connected in series at the intermediate pressure unit. Then, a compressor incorporating the ratio of the low-stage excluded volume and the high-stage excluded volume is connected to the condenser, the main decompression mechanism, and the evaporator to form a main refrigerant circuit, and the main refrigerant circuit is condensed.
  • a first injection circuit (a first injection circuit) connected so that a part of the liquid refrigerant distributed between the compressor and the main decompression mechanism bypasses the main decompression mechanism and the evaporator and is injected into the intermediate pressure portion of the compressor.
  • a second injection circuit (second flow path 16) for bypassing the economizer means of the first injection circuit and allowing a part of the liquid refrigerant of the main refrigerant circuit to flow into the intermediate pressure part of the compressor; and the first injection Means for selectively switching between the circuit side and the second injection circuit side, and from the bypass pressure reducing mechanism to the intermediate pressure part among the pipes constituting the intermediate pressure part, the first injection circuit and the second injection circuit.
  • a pressure sensor is installed in a part to reach, and the switching means is controlled by the detected output so that a part of the liquid refrigerant flows through the second injection circuit side when the pressure of the intermediate pressure part is equal to or higher than a predetermined set pressure. It is characterized by doing.
  • the pressure Pm of the intermediate pressure portion detected by the pressure sensor, and the suction pressure Ps and the discharge pressure Pd detected by attaching pressure sensors to the suction side and the discharge side of the compressor Pm> (Ps ⁇ Pd) 0.5
  • the switching means and the control function are provided so that a part of the liquid refrigerant flows to the second injection circuit side.
  • the pressure Pm of the intermediate pressure portion detected by the pressure sensor and the discharge pressure Pd detected by attaching a pressure sensor to the discharge side of the compressor are: Pm ⁇ Pd
  • the vapor compression cycle apparatus includes a low-stage compression unit that compresses a low-pressure refrigerant to an intermediate pressure, and a high-stage compression unit that compresses an intermediate-pressure refrigerant to a high pressure.
  • a low-stage compression unit that compresses a low-pressure refrigerant to an intermediate pressure
  • a high-stage compression unit that compresses an intermediate-pressure refrigerant to a high pressure.
  • a second injection circuit for bypassing the economizer means of the first injection circuit to flow the liquid refrigerant of the main refrigerant circuit to the intermediate pressure part of the compressor; and the liquid of the main refrigerant circuit Means for selectively switching a path for bypassing a part of the refrigerant to the intermediate pressure portion of the compressor between the first injection circuit side and the second injection circuit side, and pressure sensors on the suction side and the discharge side of the compressor; And the detected suction pressure Ps and discharge pressure Pd are Pd ⁇ Ps ⁇ (V1 / V2) ns When the above relationship holds, the switching means and the control function are provided so that a part of the liquid refrigerant flows to the second injection circuit side.
  • the means for switching is a four-way valve.
  • the low-stage compression mechanism and the high-stage compression mechanism form a compression chamber by dividing the inside of the cylinder by a rotor that rotates eccentrically in each cylinder and a vane that is pressed against the rotor, and compresses the refrigerant. It is a rolling piston type two-stage rotary compressor.
  • the present invention is characterized in that a check valve is provided in a circuit that bypasses between the intermediate pressure portion and the high-stage discharge portion of the compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

In a vapor compression cycle using a positive-displacement compressor, high efficiency and high reliability are secured.  The vapor compression cycle comprises an injection circuit (11) so connected that the refrigerant distributed between a condenser (8) and a main pressure-reducing mechanism (7) in a main refrigerant circuit (9) is injected into the intermediate pressure section of a compressor (10) where the refrigerant has an intermediate pressure.  The injection circuit (11) is branched, by a four-way valve (14), into a first flow passage (15) extending through a HIC heat exchanger (13) serving as an economizer and a second flow passage (16) not extending through the HIC heat exchanger (13).  When the pressure of the refrigerant at the intermediate pressure section is higher than a predetermined pressure, the four-way valve (14) is so changed over that the refrigerant is injected into the intermediate pressure section via the second flow passage (16).

Description

蒸気圧縮サイクル装置Vapor compression cycle equipment
 この発明は、例えば、空調機、ヒートポンプ式給湯機、冷凍冷蔵庫等に適用される蒸気圧縮サイクル装置に関する。 The present invention relates to a vapor compression cycle device applied to, for example, an air conditioner, a heat pump type hot water heater, a refrigerator-freezer, and the like.
 空調機、ヒートポンプ式給湯機、冷凍冷蔵庫等では、蒸気圧縮式冷凍サイクルとヒートポンプサイクルとを含む蒸気圧縮サイクルが広く用いられている。
 近年、地球温暖化防止を図る観点から、一層の省エネルギー化、高効率化の要望が高まり、エコノマイザ手段を用いた二段圧縮インジェクションサイクルが注目され、より多様な用途やより広い地域に普及促進されている。
A vapor compression cycle including a vapor compression refrigeration cycle and a heat pump cycle is widely used in air conditioners, heat pump water heaters, refrigerators and refrigerators, and the like.
In recent years, from the viewpoint of preventing global warming, the demand for further energy saving and higher efficiency has increased, and the two-stage compression injection cycle using economizers has been attracting attention and has been promoted and promoted to more diverse applications and wider areas. ing.
 非特許文献1には、寒冷地対応のCO2ヒートポンプ給湯機において、二段ロータリ圧縮機を用いた二段圧縮インジェクションサイクルについての記載がある。
 特に、非特許文献1には、二段圧縮インジェクションサイクルを、外気温の低い条件でヒートポンプ給湯運転する場合には、以下の(1)(2)の課題があることについての記載がある。
(1)圧縮機から吐出される冷媒の温度が異常に上昇する。
(2)圧縮機の吸入側の圧力Psと吐出側の圧力Pdとした場合の圧縮比(Pd/Ps)が高くなり、さらに高段側の圧縮部に圧縮比が偏るため圧縮機効率が低下する。
 そして、非特許文献1には、外気温の低い条件でヒートポンプ給湯運転する場合に圧縮機の中間連結部にガス(ガス気味に)インジェクションすると以下の(A)(B)の効果が得られることについての記載がある。
(A)圧縮機吐出温度の上昇が抑制される。
(B)中間圧が上昇し、低段側の圧縮部と高段側の圧縮部との圧縮比のバランスが改善されるため、圧縮機の効率が改善される。
Non-Patent Document 1 describes a two-stage compression injection cycle using a two-stage rotary compressor in a cold district CO2 heat pump water heater.
In particular, Non-Patent Document 1 describes that there are the following problems (1) and (2) when a two-stage compression injection cycle is operated with a heat pump hot water supply operation under a low external temperature condition.
(1) The temperature of the refrigerant discharged from the compressor rises abnormally.
(2) The compression ratio (Pd / Ps) becomes higher when the pressure Ps on the suction side and the pressure Pd on the discharge side of the compressor are increased, and the compression ratio is biased toward the higher-stage compression section. To do.
In Non-Patent Document 1, when heat pump hot water supply operation is performed under a low external temperature condition, the following effects (A) and (B) can be obtained by injecting gas (in a gas-like manner) into the intermediate connecting portion of the compressor. There is a description about.
(A) An increase in compressor discharge temperature is suppressed.
(B) The intermediate pressure increases, and the balance of the compression ratio between the low-stage compression section and the high-stage compression section is improved, so that the efficiency of the compressor is improved.
 また、特許文献1には、アンローダ機構により運転容量が調節される圧縮機を用いた二段圧縮インジェクションサイクルであって、圧縮機の中間連結部にインジェクションする回路として、エコノマイザ手段を備えた第1バイパス路と、エコノマイザ手段をバイパスする第2バイパス路とが設けられた二段圧縮インジェクションサイクルについての記載がある。
 特に、特許文献1には、圧縮機の最低容量時に容量を低減すべき指令信号が出力されたとき、あるいは、圧縮機吐出管温度が所定の設定値以上のときに、第2バイパス路を流れてインジェクションされるよう切替えることについての記載がある。
Further, Patent Document 1 discloses a two-stage compression injection cycle using a compressor whose operating capacity is adjusted by an unloader mechanism, and is a first stage equipped with an economizer means as a circuit for injecting into an intermediate connecting portion of the compressor. There is a description of a two-stage compression injection cycle provided with a bypass and a second bypass that bypasses the economizer means.
In particular, in Patent Document 1, when a command signal whose capacity is to be reduced is output at the minimum capacity of the compressor, or when the compressor discharge pipe temperature is equal to or higher than a predetermined set value, the second bypass passage flows. There is a description about switching to be injected.
特開平3-67958号公報Japanese Patent Laid-Open No. 3-67958
 非特許文献1には、二段圧縮機を用いた二段圧縮インジェクションサイクルにおいて、高圧縮比運転時にガス(ガス気味に)インジェクションすることの効果について記載されている。しかし、非特許文献1には、液(ガス気味に)インジェクションする効果については記載されていない。 Non-Patent Document 1 describes the effect of gas (gas taste) injection during high compression ratio operation in a two-stage compression injection cycle using a two-stage compressor. However, Non-Patent Document 1 does not describe the effect of liquid (gas-like) injection.
 また、特許文献1には、アンローダ式の容量制御可能な圧縮機において、吐出温度が急上昇した場合の対策として液インジェクションを利用する方法が記載されている。しかし、特許文献1には、一般的な容積式圧縮機において、液インジェクションを利用することについては記載されていない。 Further, Patent Document 1 describes a method of using liquid injection as a countermeasure when the discharge temperature rapidly rises in an unloader type compressor capable of capacity control. However, Patent Document 1 does not describe use of liquid injection in a general positive displacement compressor.
 一般的な容積式の二段圧縮機は、予め排除容積の決められた2つの圧縮部が中間連結部により直列により接続されている。つまり、一般的な容積式の二段圧縮機は、低圧の冷媒を中間圧まで圧縮する低段圧縮部と、中間圧の冷媒を高圧まで圧縮する高段圧縮部とが中間連結部により直列に連結されており、低段排除容積と高段排除容積との比率が予め決まっている。
 一般的な容積式の二段圧縮機を用いた二段圧縮インジェクションサイクルは、低圧縮比から高圧縮比までの広い圧縮機比範囲で稼動される。しかし、広い運転範囲で圧縮機の信頼性と効率が急激に低下しないように設計することは難しい。特に、低圧縮比の条件において低段圧縮部と高段圧縮部との圧縮比のバランスを改善することが難しい。
 なお、一般的な容積式の二段圧縮機では、低段圧縮部と高段圧縮部との圧縮比のバランスを改善することが、圧縮機効率と信頼性の観点で重要である。
In a general positive displacement type two-stage compressor, two compression parts having a predetermined excluded volume are connected in series by an intermediate coupling part. In other words, a general positive displacement two-stage compressor has a low-stage compression section that compresses a low-pressure refrigerant to an intermediate pressure and a high-stage compression section that compresses an intermediate-pressure refrigerant to a high pressure in series by an intermediate connection section. The ratio of the low-stage excluded volume and the high-stage excluded volume is determined in advance.
A two-stage compression injection cycle using a general positive displacement two-stage compressor is operated in a wide compressor ratio range from a low compression ratio to a high compression ratio. However, it is difficult to design the compressor so that the reliability and efficiency of the compressor do not drop rapidly over a wide operating range. In particular, it is difficult to improve the balance of the compression ratio between the low-stage compression section and the high-stage compression section under the condition of a low compression ratio.
In a general positive displacement two-stage compressor, it is important in terms of compressor efficiency and reliability to improve the balance of the compression ratio between the low-stage compression section and the high-stage compression section.
 この発明は、容積式の圧縮機を用いた蒸気圧縮サイクルにおいて、高効率と高信頼性を確保することを目的とする。 This invention is intended to ensure high efficiency and high reliability in a vapor compression cycle using a positive displacement compressor.
 この発明に係る蒸気圧縮サイクル装置は、
 予め排除容積が決定された圧縮部を有する圧縮機と、凝縮器と、主減圧機構と、蒸発器とを順次接続した主冷媒回路と、
 前記主冷媒回路の前記凝縮器と前記主減圧機構との間で分配された冷媒を、前記圧縮機において冷媒が中間圧となる中間圧部へ注入するように接続したインジェクション回路であって、所定の乾き度よりも乾き度の高い乾き冷媒を前記中間圧部へ注入するための第1流路と、前記所定の乾き度よりも乾き度の低い湿り冷媒を前記中間圧部へ注入するための第2流路とに分岐したインジェクション回路と、
 前記インジェクション回路へ分配された冷媒を、前記第1流路と前記第2流路とのいずれの流路を介して前記中間圧部へ注入させるかを選択的に切り替える切替部と、
 前記中間圧部における冷媒の圧力が所定の圧力よりも高い場合に、前記第2流路を介して前記中間圧部へ注入させるように前記切替部を制御する制御部と
を備えることを特徴とする。
The vapor compression cycle apparatus according to the present invention is:
A main refrigerant circuit in which a compressor having a compression portion whose exclusion volume is determined in advance, a condenser, a main decompression mechanism, and an evaporator are sequentially connected;
An injection circuit connected to inject the refrigerant distributed between the condenser of the main refrigerant circuit and the main pressure reducing mechanism into an intermediate pressure portion where the refrigerant has an intermediate pressure in the compressor. A first flow path for injecting a dry refrigerant having a higher dryness than the predetermined dryness into the intermediate pressure portion, and a wet flow refrigerant having a lower dryness than the predetermined dryness to the intermediate pressure portion. An injection circuit branched into the second flow path;
A switching unit that selectively switches whether the refrigerant distributed to the injection circuit is injected into the intermediate pressure unit through which of the first channel and the second channel;
A control unit that controls the switching unit so that the intermediate pressure unit is injected into the intermediate pressure unit via the second flow path when the pressure of the refrigerant in the intermediate pressure unit is higher than a predetermined pressure. To do.
 この発明に係る蒸気圧縮サイクル装置によれば、圧縮機の低段側の圧縮部と高段側の圧縮部との圧縮比バランスを改善でき、蒸気圧縮サイクル装置の高効率と高信頼性を確保することができる。 According to the vapor compression cycle apparatus according to the present invention, the compression ratio balance between the low-stage compression section and the high-stage compression section of the compressor can be improved, and high efficiency and high reliability of the vapor compression cycle apparatus are ensured. can do.
実施の形態1に係る蒸気圧縮冷凍サイクルの構成図。1 is a configuration diagram of a vapor compression refrigeration cycle according to Embodiment 1. FIG. 実施の形態2に係る蒸気圧縮冷凍サイクルの構成図。FIG. 3 is a configuration diagram of a vapor compression refrigeration cycle according to Embodiment 2. 実施の形態3に係る蒸気圧縮冷凍サイクルの構成図。FIG. 5 is a configuration diagram of a vapor compression refrigeration cycle according to Embodiment 3. 実施の形態4に係る蒸気圧縮冷凍サイクルの構成図。FIG. 6 is a configuration diagram of a vapor compression refrigeration cycle according to Embodiment 4. 実施の形態5に係る蒸気圧縮冷凍サイクルの構成図。FIG. 6 is a configuration diagram of a vapor compression refrigeration cycle according to a fifth embodiment.
 以下、図に基づき、この発明の実施の形態について説明する。
 以下の説明において、ガス冷媒(乾き冷媒)とは、乾き度1のガス冷媒だけでなく、例えば乾き度0.5以上のいわゆるガス気味の冷媒をも含む。また、液冷媒(湿り冷媒)とは、乾き度0の液冷媒だけでなく、例えば乾き度0.5未満(特に0.2以下あるいは0.1以下が望ましい)のいわゆる液気味の冷媒をも含む。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the following description, the gas refrigerant (dry refrigerant) includes not only a gas refrigerant having a dryness of 1 but also a so-called gas-like refrigerant having a dryness of 0.5 or more. Further, the liquid refrigerant (wet refrigerant) is not only a liquid refrigerant having a dryness of 0, but also a so-called liquid refrigerant having a dryness of less than 0.5 (especially 0.2 or less or preferably 0.1 or less). Including.
 実施の形態1.
 図1は、実施の形態1に係る蒸気圧縮サイクル装置の構成図である。なお、図1において、破線矢印は、冷媒の流れを示す。
 実施の形態1に係る蒸気圧縮サイクル装置は、凝縮器6を室外機側に、蒸発器8を冷却利用側(室内機側)に配置し、蒸気圧縮冷凍サイクルを利用した冷凍冷蔵装置、あるいは、冷房専用空調機である。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a vapor compression cycle apparatus according to the first embodiment. In FIG. 1, broken line arrows indicate the flow of the refrigerant.
In the vapor compression cycle apparatus according to the first embodiment, the condenser 6 is disposed on the outdoor unit side, the evaporator 8 is disposed on the cooling utilization side (indoor unit side), and a refrigeration apparatus utilizing the vapor compression refrigeration cycle, or This is a dedicated air conditioner for cooling.
 図1に示すように、蒸気圧縮サイクル装置は、二段圧縮機10と、凝縮器6と、主減圧機構7と、蒸発器8とを順次接続した主冷媒回路9を備える。
 二段圧縮機10は、予め排除容積が決定された2つの圧縮部が中間連結部3(中間圧部)により直列に接続され密閉シェル4内に配置されている。つまり、二段圧縮機10は、吸入マフラ5を介して低圧の冷媒を吸入し、吸入した低圧の冷媒を中間圧まで圧縮する低段圧縮部1と、中間圧の冷媒を高圧まで圧縮する高段圧縮部2とが中間連結部3により直列に連結された圧縮機である。
As shown in FIG. 1, the vapor compression cycle apparatus includes a main refrigerant circuit 9 in which a two-stage compressor 10, a condenser 6, a main decompression mechanism 7, and an evaporator 8 are sequentially connected.
In the two-stage compressor 10, two compression parts whose exclusion volumes are determined in advance are connected in series by an intermediate coupling part 3 (intermediate pressure part) and are arranged in the hermetic shell 4. That is, the two-stage compressor 10 sucks low-pressure refrigerant through the suction muffler 5, compresses the sucked low-pressure refrigerant to an intermediate pressure, and high pressure compresses the intermediate-pressure refrigerant to a high pressure. A compressor in which the stage compression unit 2 is connected in series by the intermediate connection unit 3.
 また、蒸気圧縮サイクル装置は、主冷媒回路9の凝縮器6と主減圧機構7との間の分岐点17で分配された液冷媒を、主減圧機構7及び蒸発器8をバイパスして、二段圧縮機10の中間連結部3へ注入するように接続したインジェクション回路11を備える。
 インジェクション回路11には、インジェクション減圧回路12とHIC熱交換器13とが順次接続される。インジェクション減圧回路12は、分岐点17で分配された液冷媒を減圧する。HIC熱交換器13は、主冷媒回路9の凝縮器6と主減圧機構7との間を流れる液冷媒と、分岐点17で分配されインジェクション減圧回路12で減圧された液冷媒とを熱交換する。つまり、HIC熱交換器13は、インジェクション減圧回路12による冷媒の減圧効果に基づき冷凍能力を増大させるエコノマイザである。そして、HIC熱交換器13で熱交換された結果、分岐点17で分配されインジェクション減圧回路12で減圧された液冷媒はガス冷媒となり、中間連結部3へ注入される。
 すなわち、蒸気圧縮サイクル装置は、エコノマイザサイクルを構成する。
In addition, the vapor compression cycle apparatus bypasses the main decompression mechanism 7 and the evaporator 8 so that the liquid refrigerant distributed at the branch point 17 between the condenser 6 and the main decompression mechanism 7 of the main refrigerant circuit 9 An injection circuit 11 connected so as to be injected into the intermediate coupling portion 3 of the stage compressor 10 is provided.
An injection decompression circuit 12 and an HIC heat exchanger 13 are sequentially connected to the injection circuit 11. The injection decompression circuit 12 decompresses the liquid refrigerant distributed at the branch point 17. The HIC heat exchanger 13 exchanges heat between the liquid refrigerant flowing between the condenser 6 of the main refrigerant circuit 9 and the main decompression mechanism 7 and the liquid refrigerant distributed at the branch point 17 and decompressed by the injection decompression circuit 12. . That is, the HIC heat exchanger 13 is an economizer that increases the refrigeration capacity based on the refrigerant decompression effect by the injection decompression circuit 12. Then, as a result of heat exchange by the HIC heat exchanger 13, the liquid refrigerant distributed at the branch point 17 and decompressed by the injection decompression circuit 12 becomes a gas refrigerant and is injected into the intermediate connecting portion 3.
That is, the vapor compression cycle device constitutes an economizer cycle.
 また、インジェクション回路11には、四方弁14(切替部)が接続される。四方弁14は、インジェクション減圧回路12で減圧された液冷媒を、HIC熱交換器13を経由して中間連結部3へ注入するか、HIC熱交換器13を経由せずに中間連結部3へ注入するかを切替える。つまり、上記説明では、分岐点17で分配され、インジェクション減圧回路12で減圧された冷媒は、HIC熱交換器13を経由して中間連結部3へ注入されるとした。しかし、四方弁14を切替えることにより、分岐点17で分配され、インジェクション減圧回路12で減圧された冷媒を、HIC熱交換器13を経由させずに中間連結部3へ注入することができる。
 すなわち、四方弁14は、インジェクション減圧回路12で減圧された液冷媒を、HIC熱交換器13でガス冷媒にして中間連結部3へ注入するか、液冷媒のまま中間連結部3へ注入するかを切替える。ここで、四方弁14によって切替えられる2つの流路のうち、HIC熱交換器13を経由する流路(図1において、四方弁14の実線部及びHIC熱交換器13を経由する流路)を第1流路15と呼び、HIC熱交換器13を経由しない流路(図1において、四方弁14の破線部)を第2流路16と呼ぶ。つまり、インジェクション回路11は、この第1流路15と第2流路16との2つの流路に分岐している。
In addition, a four-way valve 14 (switching unit) is connected to the injection circuit 11. The four-way valve 14 injects the liquid refrigerant decompressed by the injection decompression circuit 12 into the intermediate connection part 3 via the HIC heat exchanger 13, or enters the intermediate connection part 3 without going through the HIC heat exchanger 13. Switch whether to inject. In other words, in the above description, the refrigerant distributed at the branch point 17 and decompressed by the injection decompression circuit 12 is injected into the intermediate connecting portion 3 via the HIC heat exchanger 13. However, by switching the four-way valve 14, the refrigerant distributed at the branching point 17 and decompressed by the injection decompression circuit 12 can be injected into the intermediate connecting portion 3 without going through the HIC heat exchanger 13.
That is, the four-way valve 14 converts the liquid refrigerant decompressed by the injection decompression circuit 12 into a gas refrigerant by the HIC heat exchanger 13 and injects it into the intermediate connection part 3 or injects it into the intermediate connection part 3 as a liquid refrigerant. Is switched. Here, of the two flow paths switched by the four-way valve 14, a flow path that passes through the HIC heat exchanger 13 (in FIG. 1, a solid line portion of the four-way valve 14 and a flow path that passes through the HIC heat exchanger 13). The first flow path 15 is called, and the flow path not passing through the HIC heat exchanger 13 (the broken line portion of the four-way valve 14 in FIG. 1) is called the second flow path 16. That is, the injection circuit 11 is branched into two flow paths, the first flow path 15 and the second flow path 16.
 また、蒸気圧縮サイクル装置は、中間連結部3の冷媒の圧力(中間圧Pm)を検出する圧力センサ20mと、二段圧縮機10の吸入側の冷媒の圧力(吸入圧Ps)を検出する圧力センサ20sと、二段圧縮機10の吐出側の冷媒の圧力(吐出圧Pd)を検出する圧力センサ20dとを備える。
 圧力センサ20mは、インジェクション減圧回路12と中間連結部3との間における圧力を検出する。圧力センサ20sは、蒸発器8と吸入マフラ5との間における圧力を検出する。圧力センサ20dは、二段圧縮機10と凝縮器6との間における圧力を検出する。
 なお、ここでは、圧力センサ20m、圧力センサ20s、圧力センサ20dにより、各部の圧力を検出するものとして説明するが、HIC熱交換器13、蒸発器8、凝縮器6で熱交換する冷媒の温度を測定し、使用する冷媒の物性値から圧力を推定し、中間圧Pm、吸入圧Ps、吐出圧Pdを求めてもよい。
Further, the vapor compression cycle apparatus has a pressure sensor 20m for detecting the refrigerant pressure (intermediate pressure Pm) in the intermediate connecting portion 3, and a pressure for detecting the refrigerant pressure (intake pressure Ps) on the suction side of the two-stage compressor 10. A sensor 20s and a pressure sensor 20d for detecting the pressure (discharge pressure Pd) of the refrigerant on the discharge side of the two-stage compressor 10 are provided.
The pressure sensor 20m detects the pressure between the injection decompression circuit 12 and the intermediate connecting portion 3. The pressure sensor 20 s detects the pressure between the evaporator 8 and the suction muffler 5. The pressure sensor 20 d detects the pressure between the two-stage compressor 10 and the condenser 6.
In addition, although it demonstrates as what detects the pressure of each part with the pressure sensor 20m, the pressure sensor 20s, and the pressure sensor 20d here, the temperature of the refrigerant | coolant which heat-exchanges with the HIC heat exchanger 13, the evaporator 8, and the condenser 6 is demonstrated. The pressure may be estimated from the physical property value of the refrigerant to be used, and the intermediate pressure Pm, the suction pressure Ps, and the discharge pressure Pd may be obtained.
 また、蒸気圧縮サイクル装置は、四方弁14の切り替えを制御する制御部30を備える。
 次に、制御部30による四方弁14の切り替え制御について説明する。
Further, the vapor compression cycle apparatus includes a control unit 30 that controls switching of the four-way valve 14.
Next, switching control of the four-way valve 14 by the control unit 30 will be described.
 一般的に、二段圧縮機は、中間圧Pmが最適値(Ps×Pd)0.5に等しいとき、低段圧縮部1の圧縮比(Pm/Ps)と高段圧縮部2の圧縮比(Pd/Pm)とが等しくなる。そして、このとき、低段圧縮部1と高段圧縮部2との圧縮比のバランスがよく、圧縮機効率がほぼ最大となる。
 蒸気圧縮サイクル装置では、室内と室外の温度差が大きい場合、すなわち、圧縮比(Pd/Ps)が大きい場合、中間連結部3へガス冷媒を注入するエコノマイザを用いる。そのため、圧縮比(Pd/Ps)が大きい場合において、中間連結部3へガス冷媒を注入した場合に、中間圧Pmが上昇して最適値に近づくように、排除容積比(高段圧縮部2の排除容積V2/低段圧縮部1の排除容積V1)を設計する。つまり、そのような排除容積比となるように、低段圧縮部1と高段圧縮部2との排除容積を設計する。
 しかし、この排除容積比のままで、室内と室外の温度差が小さい場合、すなわち、圧縮比(Pd/Ps)が小さい場合、低段側に圧縮が偏ってしまう。
 そこで、制御部30は、以下に示す制御基準例1~3に該当する場合には、四方弁14を切り替えて中間連結部3へ液冷媒を注入することにより、中間圧Pmを下げる。これにより、低段側に圧縮が偏ることを防止する。
Generally, in the two-stage compressor, when the intermediate pressure Pm is equal to the optimum value (Ps × Pd) 0.5 , the compression ratio (Pm / Ps) of the low-stage compressor 1 and the compression ratio of the high-stage compressor 2 (Pd / Pm) becomes equal. At this time, the compression ratio balance between the low-stage compressor 1 and the high-stage compressor 2 is good, and the compressor efficiency is almost maximized.
In the vapor compression cycle apparatus, when the temperature difference between the room and the room is large, that is, when the compression ratio (Pd / Ps) is large, an economizer that injects a gas refrigerant into the intermediate connecting portion 3 is used. Therefore, in the case where the compression ratio (Pd / Ps) is large, when the gas refrigerant is injected into the intermediate coupling portion 3, the excluded volume ratio (high-stage compression portion 2) is set so that the intermediate pressure Pm increases and approaches the optimum value. Is designed to be an exclusion volume V2 / an exclusion volume V1) of the low-stage compression section 1. That is, the exclusion volume of the low-stage compression unit 1 and the high-stage compression unit 2 is designed so as to have such an exclusion volume ratio.
However, when the temperature difference between the room and the outside is small, that is, when the compression ratio (Pd / Ps) is small, the compression is biased to the lower stage side with this excluded volume ratio.
Therefore, the control unit 30 lowers the intermediate pressure Pm by switching the four-way valve 14 and injecting the liquid refrigerant into the intermediate connecting unit 3 when the control reference examples 1 to 3 shown below are satisfied. This prevents the compression from being biased toward the lower stage.
 <制御基準例1>
圧力センサ20m,20s,20dにより検出した中間圧Pm、吸入圧Ps、吐出圧Pdが、
Pm>(Ps×Pd)0.5
の関係の場合。
 なお、上記基本式「Pm>(Ps×Pd)0.5」は、所定の補正値a,bにより、「Pm>a((Ps×Pd)0.5)+b」と補正される場合もある。
<Control standard example 1>
The intermediate pressure Pm, suction pressure Ps, and discharge pressure Pd detected by the pressure sensors 20m, 20s, and 20d are
Pm> (Ps × Pd) 0.5
If the relationship.
The basic formula “Pm> (Ps × Pd) 0.5 ” may be corrected to “Pm> a ((Ps × Pd) 0.5 ) + b” by predetermined correction values a and b. is there.
 圧縮比(Pd/Ps)が小さい場合、低段側に圧縮比が偏り、高段と低段の圧縮比のバランスが悪い状態となるため、圧縮機効率が低下する。そこで、四方弁14を切替えて、第2流路16から液冷媒を注入することにより、中間圧Pmを下げる。これにより、圧縮比を最適値に近づけて、圧縮機効率を改善する。 When the compression ratio (Pd / Ps) is small, the compression ratio is biased to the low stage side, and the balance between the compression ratio of the high stage and the low stage becomes poor, so that the compressor efficiency decreases. Therefore, the intermediate pressure Pm is lowered by switching the four-way valve 14 and injecting liquid refrigerant from the second flow path 16. This brings the compression ratio closer to the optimum value and improves the compressor efficiency.
 <制御基準例2>
 圧力センサ20m,20dにより検出した中間圧Pm、吐出圧Pdが、
Pm≧Pd
の関係の場合。
 なお、上記基本式「Pm≧Pd」は、所定の補正値a,bにより、「Pm>a(Pd)+b」と補正される場合もある。
<Control standard example 2>
The intermediate pressure Pm and discharge pressure Pd detected by the pressure sensors 20m and 20d are
Pm ≧ Pd
If the relationship.
The basic expression “Pm ≧ Pd” may be corrected as “Pm> a (Pd) + b” by predetermined correction values a and b.
 圧縮比(Pd/Ps)が小さい場合、低段側圧縮だけで吐出圧Pdに達して、中間圧Pmが吐出圧Pdよりも高くなる状態が起こり得る。この状態では、高段圧縮部2では有効な圧縮仕事をしないため、圧縮機損失のみが増加し圧縮機効率が低下する。
 特に、二段圧縮機としてローリングピストン方式等の圧縮機を用いた場合には、高段圧縮部2のシリンダ内では過圧縮と、ベーンがローリングピストンから離れてしまうベーン跳びを繰り返す不安定な状態となる。その結果、圧縮機効率が著しく低下する。さらに、ベーンが、ローリングピストンと離脱して、ローリングピストンへ衝突することを繰り返すチャタリング現象により、圧縮機の耐久性の低下と騒音発生の原因になる。
 そこで、四方弁14を切替えて、第2流路16から液冷媒を注入することにより、中間圧Pmを下げる。中間圧Pmが下がる分、圧縮機が安定動作可能な運転範囲を広げることができ、信頼性が向上できる。
 なお、制御基準例2に基づく制御を行う場合には、吸入圧Psを検出する必要はない。したがって、制御基準例2に基づく制御のみを行う場合には、蒸気圧縮サイクル装置は圧力センサ20sを備える必要はない。
When the compression ratio (Pd / Ps) is small, there is a possibility that the discharge pressure Pd is reached only by the low-stage compression, and the intermediate pressure Pm becomes higher than the discharge pressure Pd. In this state, since the high-stage compression unit 2 does not perform effective compression work, only the compressor loss increases and the compressor efficiency decreases.
In particular, when a compressor such as a rolling piston system is used as the two-stage compressor, an unstable state in which overcompression and vane jumping in which the vane separates from the rolling piston repeats in the cylinder of the high-stage compression unit 2. It becomes. As a result, the compressor efficiency is significantly reduced. Further, the chattering phenomenon in which the vane separates from the rolling piston and repeatedly collides with the rolling piston causes deterioration in the durability of the compressor and generation of noise.
Therefore, the intermediate pressure Pm is lowered by switching the four-way valve 14 and injecting liquid refrigerant from the second flow path 16. As the intermediate pressure Pm decreases, the operating range in which the compressor can operate stably can be expanded, and the reliability can be improved.
In the case of performing control based on the control reference example 2, it is not necessary to detect the suction pressure Ps. Therefore, when only the control based on the control reference example 2 is performed, the vapor compression cycle apparatus does not need to include the pressure sensor 20s.
 <制御基準例3>
 圧力センサ20s,20dにより検出した吸入圧Ps、吐出圧Pdが、
Pd≦Ps×(V1/V2)ns(=Pm_i)
(V1:低段圧縮部1の排除容積,V2:高段圧縮部2の排除容積,ns:冷媒の等エントロピ指数)
の関係の場合。
 なお、上記基本式「Pd≦Ps×(V1/V2)ns」は、所定の補正値a,bにより、「Pm>a(Ps×(V1/V2)ns)+b」と補正される場合もある。
<Control standard example 3>
The suction pressure Ps and the discharge pressure Pd detected by the pressure sensors 20s and 20d are
Pd ≦ Ps × (V1 / V2) ns (= Pm_i)
(V1: exclusion volume of the low-stage compression unit 1, V2: exclusion volume of the high-stage compression unit 2, ns: isentropic index of the refrigerant)
If the relationship.
The above-mentioned basic formula “Pd ≦ Ps × (V1 / V2) ns ” may be corrected to “Pm> a (Ps × (V1 / V2) ns ) + b” by predetermined correction values a and b. is there.
 インジェクション回路11から中間連結部3へ冷媒を注入しない場合、理想的な中間圧Pm_iは、Ps/(V2/V1)nsから求めることができる。理想的な中間圧Pm_iが吐出圧Pdよりも高くなる場合には、制御基準例2の場合と同様の状態が発生する虞がある。
 そこで、この場合にも、四方弁14を切替えて、第2流路16から液冷媒を注入することにより、中間圧Pmを下げる。中間圧Pmが下がる分、圧縮機が安定動作可能な運転範囲を広げることができ、信頼性が向上する効果が得られる。
 なお、制御基準例3に基づく制御を行う場合には、中間圧Pmを検出する必要はない。したがって、制御基準例3に基づく制御のみを行う場合には、蒸気圧縮サイクル装置は圧力センサ20mを備える必要はない。
When the refrigerant is not injected from the injection circuit 11 into the intermediate connecting portion 3, the ideal intermediate pressure Pm_i can be obtained from Ps / (V2 / V1) ns . When the ideal intermediate pressure Pm_i becomes higher than the discharge pressure Pd, the same state as in the case of the control reference example 2 may occur.
Therefore, also in this case, the intermediate pressure Pm is lowered by switching the four-way valve 14 and injecting the liquid refrigerant from the second flow path 16. As the intermediate pressure Pm decreases, the operating range in which the compressor can stably operate can be expanded, and the effect of improving reliability can be obtained.
Note that when performing control based on the control reference example 3, it is not necessary to detect the intermediate pressure Pm. Therefore, when only the control based on the control reference example 3 is performed, the vapor compression cycle apparatus does not need to include the pressure sensor 20m.
 また、蒸気圧縮サイクル装置は、中間連結部3と二段圧縮機10の吐出側とを接続し、二段圧縮機10の吐出側から中間連結部3側へ冷媒が流れることを防ぐ逆止弁18が設けられた逆止弁回路19を備える。
 中間圧Pmが吐出圧Pdよりも高くなると(Pm≧Pd)、制御基準例2で説明したように、圧縮機効率の著しい低下と、圧縮機の耐久性の低下とを引き起こす。そこで、中間圧Pmが吐出圧Pdよりも高くなった場合に、逆止弁回路19へ冷媒を流す。つまり、高段圧縮部2をバイパスして、中間連結部3から二段圧縮機10の吐出側へ冷媒を流す。これにより、高段圧縮部2による過圧縮等の圧縮機損失が改善される。また、高段圧縮部2における圧縮動作が不安定になることを抑制でき、信頼性の向上を図ることができる。
In addition, the vapor compression cycle apparatus connects the intermediate connecting portion 3 and the discharge side of the two-stage compressor 10 and prevents a refrigerant from flowing from the discharge side of the two-stage compressor 10 to the intermediate connecting portion 3 side. A check valve circuit 19 provided with 18 is provided.
When the intermediate pressure Pm becomes higher than the discharge pressure Pd (Pm ≧ Pd), as described in the control reference example 2, the compressor efficiency is remarkably lowered and the compressor durability is lowered. Therefore, when the intermediate pressure Pm becomes higher than the discharge pressure Pd, the refrigerant flows to the check valve circuit 19. That is, the high-stage compression unit 2 is bypassed and the refrigerant flows from the intermediate connection unit 3 to the discharge side of the two-stage compressor 10. Thereby, compressor losses, such as overcompression by the high stage compression part 2, are improved. Further, it is possible to suppress the compression operation in the high-stage compression unit 2 from becoming unstable, and it is possible to improve the reliability.
 以上のように、実施の形態1に係る蒸気圧縮サイクル装置は、高効率運転時、及び、高圧縮比運転時には、インジェクション回路11から中間連結部3へガス冷媒を注入する。一方、実施の形態1に係る蒸気圧縮サイクル装置は、圧縮比が小さい場合には、インジェクション回路11から中間連結部3へ液冷媒を注入するように切替える。これにより、圧縮比が小さい場合には、中間圧Pmを下げる効果が得られ、低段圧縮部1と高段圧縮部2との圧縮比のバランスが改善される。その結果、圧縮比が小さい場合であっても、圧縮機が高効率に安定して動作する運転範囲を広げることができ、蒸気圧縮冷凍サイクル装置のCOP(Coefficient Of Performance)と信頼性とが向上する。 As described above, the vapor compression cycle apparatus according to the first embodiment injects the gas refrigerant from the injection circuit 11 to the intermediate connecting portion 3 during the high efficiency operation and the high compression ratio operation. On the other hand, when the compression ratio is small, the vapor compression cycle apparatus according to Embodiment 1 switches so as to inject the liquid refrigerant from the injection circuit 11 to the intermediate connecting portion 3. Thereby, when the compression ratio is small, an effect of lowering the intermediate pressure Pm is obtained, and the balance of the compression ratio between the low stage compression unit 1 and the high stage compression unit 2 is improved. As a result, even when the compression ratio is small, the operating range in which the compressor operates stably with high efficiency can be expanded, and the COP (Coefficient of Performance) and reliability of the vapor compression refrigeration cycle apparatus are improved. To do.
 実施の形態2.
 図2は、実施の形態2に係る蒸気圧縮サイクル装置の構成図である。なお、図2において、実線矢印は、冷媒の流れを示す。
 実施の形態2に係る蒸気圧縮サイクル装置について、実施の形態1に係る蒸気圧縮サイクル装置と異なる部分のみ説明する。
Embodiment 2. FIG.
FIG. 2 is a configuration diagram of a vapor compression cycle apparatus according to the second embodiment. In FIG. 2, solid arrows indicate the flow of the refrigerant.
With respect to the vapor compression cycle apparatus according to the second embodiment, only parts different from the vapor compression cycle apparatus according to the first embodiment will be described.
 実施の形態1に係る蒸気圧縮サイクル装置は、凝縮器6を室外機側に、蒸発器8を冷却利用側(室内機側)に配置し、蒸気圧縮冷凍サイクルを利用した冷凍冷蔵装置、あるいは、冷房専用空調機であった。これに対して、実施の形態2に係る蒸気圧縮サイクル装置は、凝縮器6を加熱利用側(室内機側)に、蒸発器8を室外機側に配置し、蒸気圧縮冷凍サイクルを利用した給湯・加熱装置、あるいは、暖房専用空調機である。 In the vapor compression cycle apparatus according to the first embodiment, the condenser 6 is disposed on the outdoor unit side, the evaporator 8 is disposed on the cooling utilization side (indoor unit side), and a refrigeration apparatus utilizing the vapor compression refrigeration cycle, or It was an air conditioner for cooling only. In contrast, in the vapor compression cycle apparatus according to Embodiment 2, the condenser 6 is disposed on the heating utilization side (indoor unit side), the evaporator 8 is disposed on the outdoor unit side, and the hot water supply utilizing the vapor compression refrigeration cycle.・ It is a heating device or a heating-only air conditioner.
 また、実施の形態1に係る蒸気圧縮サイクル装置は、圧力センサ20m,20s,20dを備え、各部の圧力を検出し、検出した圧力に基づき制御部30が四方弁14の切り替え制御をした。
 これに対して、実施の形態2に係る蒸気圧縮サイクル装置は、HIC熱交換器13における冷媒の温度を測定する温度センサ21hと、蒸発器8における冷媒の温度を測定する温度センサ21eと、凝縮器6における冷媒の温度を測定する温度センサ21cを備える。なお、温度センサ21hは、インジェクション回路11側を流れる冷媒の温度を測定する。制御部30は、温度センサ21h,e,cにより測定した温度と、冷媒の物性値から、それぞれ中間圧Pm、吸入圧Ps、吐出圧Pdを推定する。そして、制御部30は、推定した中間圧Pm、吸入圧Ps、吐出圧Pdに基づき、実施の形態1と同様に、四方弁14の切り替え制御を行う。
Moreover, the vapor compression cycle apparatus according to Embodiment 1 includes pressure sensors 20m, 20s, and 20d, detects the pressure of each part, and the control unit 30 performs switching control of the four-way valve 14 based on the detected pressure.
In contrast, the vapor compression cycle apparatus according to the second embodiment includes a temperature sensor 21 h that measures the temperature of the refrigerant in the HIC heat exchanger 13, a temperature sensor 21 e that measures the temperature of the refrigerant in the evaporator 8, and condensation. The temperature sensor 21c which measures the temperature of the refrigerant | coolant in the container 6 is provided. The temperature sensor 21h measures the temperature of the refrigerant flowing through the injection circuit 11 side. The controller 30 estimates the intermediate pressure Pm, the suction pressure Ps, and the discharge pressure Pd, respectively, from the temperatures measured by the temperature sensors 21h, e, and c and the physical property values of the refrigerant. And the control part 30 performs switching control of the four-way valve 14 similarly to Embodiment 1 based on the estimated intermediate pressure Pm, the suction pressure Ps, and the discharge pressure Pd.
 以上のように構成した実施の形態2に係る蒸気圧縮サイクル装置においても、実施の形態1に係る蒸気圧縮サイクル装置と同様の効果を得ることができる。 Also in the vapor compression cycle apparatus according to the second embodiment configured as described above, the same effect as that of the vapor compression cycle apparatus according to the first embodiment can be obtained.
 実施の形態3.
 図3は、実施の形態3に係る蒸気圧縮サイクル装置の構成図である。なお、図3において、破線矢印は冷房運転時における冷媒の流れを示し、実線矢印は暖房運転時における冷媒の流れを示す。
 実施の形態3に係る蒸気圧縮サイクル装置について、実施の形態1に係る蒸気圧縮サイクル装置と異なる部分のみ説明する。
Embodiment 3 FIG.
FIG. 3 is a configuration diagram of a vapor compression cycle apparatus according to the third embodiment. In FIG. 3, the broken line arrows indicate the refrigerant flow during the cooling operation, and the solid line arrows indicate the refrigerant flow during the heating operation.
Regarding the vapor compression cycle apparatus according to the third embodiment, only the parts different from the vapor compression cycle apparatus according to the first embodiment will be described.
 実施の形態1に係る蒸気圧縮サイクル装置は、凝縮器6を室外機側に、蒸発器8を冷却利用側(室内機側)に配置し、蒸気圧縮冷凍サイクルを利用した冷凍冷蔵装置、あるいは、冷房専用空調機であった。これに対して、実施の形態3に係る蒸気圧縮サイクル装置は、冷暖切り替え可能な空気調和等に用いることを想定した蒸気圧縮冷凍サイクルである。
 そのため、実施の形態3に係る蒸気圧縮サイクル装置は、室外側熱交換器26、室内側熱交換器28と冷暖を切替えるための四方弁24を備える。四方弁24は、暖房用途の場合には、実線で示した暖房用回路24aに切替えられ、冷房用途の場合は破線で示した冷房用回路24bに切替えられる。
In the vapor compression cycle apparatus according to the first embodiment, the condenser 6 is disposed on the outdoor unit side, the evaporator 8 is disposed on the cooling utilization side (indoor unit side), and a refrigeration apparatus utilizing the vapor compression refrigeration cycle, or It was an air conditioner for cooling only. In contrast, the vapor compression cycle apparatus according to Embodiment 3 is a vapor compression refrigeration cycle that is assumed to be used for air conditioning or the like that can be switched between warm and warm.
Therefore, the vapor compression cycle apparatus according to Embodiment 3 includes an outdoor heat exchanger 26, an indoor heat exchanger 28, and a four-way valve 24 for switching between cooling and heating. The four-way valve 24 is switched to a heating circuit 24a indicated by a solid line in the case of heating use, and is switched to a cooling circuit 24b indicated by a broken line in the case of cooling use.
 また、実施の形態3に係る蒸気圧縮サイクル装置は、主冷媒回路9に2つの減圧機構27,29と、熱回収型レシーバー25とを備える。
 熱回収型レシーバー25は、2つの減圧機構の間に接続されるとともに、二段圧縮機10の吸入側に接続される。
 2つの減圧機構のうち1つの減圧機構は、室内側熱交換器28と熱回収型レシーバー25の間に設けられた第1主減圧機構27であり、もう1つの減圧機構は、室外側熱交換器26とHIC熱交換器13の間に設けられた第2主減圧機構29である。そして、暖房用途の場合は第1主減圧機構27、第2主減圧機構29の順に2段膨張を行い、冷房用途の場合は第2主減圧機構29、第1主減圧機構27の順に2段膨張を行う。
 高圧側の凝縮器の熱は、HIC熱交換器13、または、熱回収型レシーバー25で回収されるので、サブクールを大きくとることができる。さらに、熱回収型レシーバー25で回収した熱により、二段圧縮機10の吸入側のスーパヒートを大きくとることができる。したがって、実施の形態3に係る蒸気圧縮サイクル装置は、暖房運転に有利な回路となっている。
The vapor compression cycle apparatus according to Embodiment 3 includes two decompression mechanisms 27 and 29 and a heat recovery receiver 25 in the main refrigerant circuit 9.
The heat recovery type receiver 25 is connected between the two pressure reducing mechanisms and is connected to the suction side of the two-stage compressor 10.
One of the two decompression mechanisms is the first main decompression mechanism 27 provided between the indoor heat exchanger 28 and the heat recovery type receiver 25, and the other decompression mechanism is the outdoor heat exchange. A second main decompression mechanism 29 provided between the heat exchanger 26 and the HIC heat exchanger 13. In the heating application, the first main decompression mechanism 27 and the second main decompression mechanism 29 are expanded in the order of two stages, and in the cooling application, the second main decompression mechanism 29 and the first main decompression mechanism 27 are arranged in the order of two stages. Inflate.
Since the heat of the high-pressure side condenser is recovered by the HIC heat exchanger 13 or the heat recovery type receiver 25, a large subcool can be taken. Furthermore, the superheat on the suction side of the two-stage compressor 10 can be increased by the heat recovered by the heat recovery type receiver 25. Therefore, the vapor compression cycle apparatus according to Embodiment 3 is a circuit advantageous for heating operation.
 なお、実施の形態3に係る蒸気圧縮サイクル装置における制御部30は、実施の形態1に係る蒸気圧縮サイクル装置における制御部30と同様の四方弁14の切り替え制御を行う。 The control unit 30 in the vapor compression cycle apparatus according to the third embodiment performs switching control of the four-way valve 14 similar to the control unit 30 in the vapor compression cycle apparatus according to the first embodiment.
 以上のように構成した実施の形態3に係る蒸気圧縮サイクル装置においても、実施の形態1に係る蒸気圧縮サイクル装置と同様の効果を得ることができる。 Also in the vapor compression cycle apparatus according to the third embodiment configured as described above, the same effect as that of the vapor compression cycle apparatus according to the first embodiment can be obtained.
 実施の形態4.
 図4は、実施の形態4に係る蒸気圧縮サイクル装置の構成図である。なお、図4において、破線矢印は冷媒の流れを示す。
 実施の形態4に係る蒸気圧縮サイクル装置について、実施の形態1に係る蒸気圧縮サイクル装置と異なる部分のみ説明する。
Embodiment 4 FIG.
FIG. 4 is a configuration diagram of a vapor compression cycle apparatus according to the fourth embodiment. In FIG. 4, broken line arrows indicate the flow of the refrigerant.
Regarding the vapor compression cycle apparatus according to the fourth embodiment, only the parts different from the vapor compression cycle apparatus according to the first embodiment will be described.
 実施の形態1に係る蒸気圧縮サイクル装置は、エコノマイザとしてHIC熱交換器13を用いた。これに対して、実施の形態4に係る蒸気圧縮サイクル装置は、エコノマイザとして気液分離器23を用いる。 The vapor compression cycle apparatus according to Embodiment 1 uses the HIC heat exchanger 13 as an economizer. On the other hand, the vapor compression cycle apparatus according to Embodiment 4 uses the gas-liquid separator 23 as an economizer.
 実施の形態4に係る蒸気圧縮サイクル装置において、インジェクション回路11では、分岐点17で分配された冷媒をインジェクション減圧回路12で減圧した後、気液分離器23で気液分離する。
 ここで、圧縮比(Pd/Ps)が大きい場合、分離されたガス冷媒を第1流路15を経由して中間連結部3へ注入する。また、分離された液冷媒は、中間連結部3へ注入されることなく、合流点22で主冷媒回路9へ合流する。
 一方、圧縮比(Pd/Ps)が小さい場合、特に実施の形態1で説明した制御基準例1~3を満たす場合には、分離された液冷媒を第2流路16を経由して中間連結部3へ注入する。また、分離されたガス冷媒は、中間連結部3へ注入されることなく、合流点22で主冷媒回路9へ合流する。
In the vapor compression cycle apparatus according to the fourth embodiment, in the injection circuit 11, the refrigerant distributed at the branch point 17 is decompressed by the injection decompression circuit 12, and then gas-liquid separation is performed by the gas-liquid separator 23.
Here, when the compression ratio (Pd / Ps) is large, the separated gas refrigerant is injected into the intermediate connecting portion 3 via the first flow path 15. Further, the separated liquid refrigerant is joined to the main refrigerant circuit 9 at the junction 22 without being injected into the intermediate connecting portion 3.
On the other hand, when the compression ratio (Pd / Ps) is small, particularly when the control reference examples 1 to 3 described in the first embodiment are satisfied, the separated liquid refrigerant is intermediately connected via the second flow path 16. Inject into part 3. Further, the separated gas refrigerant joins the main refrigerant circuit 9 at the junction 22 without being injected into the intermediate connecting portion 3.
 以上のように構成した実施の形態4に係る蒸気圧縮サイクル装置においても、実施の形態1に係る蒸気圧縮サイクル装置と同様の効果を得ることができる。 Also in the vapor compression cycle apparatus according to the fourth embodiment configured as described above, the same effect as that of the vapor compression cycle apparatus according to the first embodiment can be obtained.
 実施の形態5.
 図5は、実施の形態5に係る蒸気圧縮サイクル装置の構成図である。なお、図5において、破線矢印は冷媒の流れを示す。
 実施の形態5に係る蒸気圧縮サイクル装置について、実施の形態4に係る蒸気圧縮サイクル装置と異なる部分のみ説明する。
Embodiment 5 FIG.
FIG. 5 is a configuration diagram of a vapor compression cycle apparatus according to the fifth embodiment. In FIG. 5, broken line arrows indicate the flow of the refrigerant.
Regarding the vapor compression cycle apparatus according to the fifth embodiment, only parts different from the vapor compression cycle apparatus according to the fourth embodiment will be described.
 実施の形態4に係る蒸気圧縮サイクル装置は、実施の形態1と同様に、冷却用途専用に用いることを想定した二段圧縮二段膨張式蒸気圧縮サイクルであった。これに対して、実施の形態5に係る蒸気圧縮サイクル装置は、冷却用途専用に用いることを想定した二段圧縮一段膨張式蒸気圧縮サイクルである。 The vapor compression cycle apparatus according to the fourth embodiment is a two-stage compression / two-stage expansion vapor compression cycle that is assumed to be used exclusively for cooling purposes, as in the first embodiment. On the other hand, the vapor compression cycle apparatus according to Embodiment 5 is a two-stage compression single-stage expansion type vapor compression cycle that is assumed to be used exclusively for cooling applications.
 ここで、圧縮比(Pd/Ps)が大きい場合、凝縮器6で凝縮された液冷媒は、第2主減圧機構29で減圧され、四方弁14を経由して気液分離器23へ入る。気液分離器23で気液分離された冷媒のうち、ガス冷媒は第1流路15を経由して中間連結部3へ注入される。また、分離された冷媒のうち、液冷媒は、主冷媒回路9へ流れ、第1主減圧機構27でさらに減圧された後、蒸発器8で蒸発される。
 一方、圧縮比(Pd/Ps)が小さい場合、特に実施の形態1で説明した制御基準例1~3を満たす場合には、凝縮器6で凝縮された液冷媒は、第2主減圧機構29で減圧され、四方弁14から第2流路16を経由して中間連結部3へ注入される。
Here, when the compression ratio (Pd / Ps) is large, the liquid refrigerant condensed by the condenser 6 is decompressed by the second main decompression mechanism 29 and enters the gas-liquid separator 23 via the four-way valve 14. Of the refrigerant separated by the gas-liquid separator 23, the gas refrigerant is injected into the intermediate connecting portion 3 via the first flow path 15. Among the separated refrigerants, the liquid refrigerant flows into the main refrigerant circuit 9 and is further depressurized by the first main decompression mechanism 27 and then evaporated by the evaporator 8.
On the other hand, when the compression ratio (Pd / Ps) is small, particularly when the control reference examples 1 to 3 described in the first embodiment are satisfied, the liquid refrigerant condensed by the condenser 6 is second main decompression mechanism 29. The pressure is reduced and injected from the four-way valve 14 via the second flow path 16 to the intermediate connecting portion 3.
 以上のように構成した実施の形態5に係る蒸気圧縮サイクル装置においても、実施の形態1に係る蒸気圧縮サイクル装置と同様の効果を得ることができる。 Also in the vapor compression cycle apparatus according to the fifth embodiment configured as described above, the same effect as that of the vapor compression cycle apparatus according to the first embodiment can be obtained.
 なお、以上の実施の形態では、低段圧縮部1と高段圧縮部2とを中間連結部3で直列に接続した二段圧縮機を用いた蒸気圧縮サイクル装置について説明した。しかし、中間圧部へ冷媒を注入することにより低段側と高段側との排除容積比率が予め決定されている容積式圧縮機であれば、二段圧縮機でなくても同様の効果を得ることができる。例えば、往復式圧縮機、ロータリ式圧縮機、スクロール式圧縮機、スクリュー式圧縮機等の容積式圧縮機を用いても同様の効果が得られる。特に、ローリングピストン式二段ロータリ圧縮機を用いた場合には、ベーン跳びを抑える効果が得られるので、大きな効果を得ることができる。 In the above embodiment, the vapor compression cycle apparatus using the two-stage compressor in which the low-stage compression unit 1 and the high-stage compression unit 2 are connected in series by the intermediate coupling unit 3 has been described. However, if a positive displacement compressor in which the rejection volume ratio between the low-stage side and the high-stage side is determined in advance by injecting refrigerant into the intermediate pressure section, the same effect can be obtained without using a two-stage compressor. Obtainable. For example, the same effect can be obtained by using a positive displacement compressor such as a reciprocating compressor, a rotary compressor, a scroll compressor, or a screw compressor. In particular, when a rolling piston type two-stage rotary compressor is used, an effect of suppressing vane jumping can be obtained, so that a great effect can be obtained.
 以上の実施の形態をまとめると次のようになる。
 以上の実施の形態に係る蒸気圧縮サイクル装置は、低圧の冷媒を中間圧まで圧縮する低段圧縮部と、中間圧の冷媒を高圧まで圧縮する高段圧縮部とを中間圧部で直列に連結して、低段排除容積と高段排除容積との比率が組込まれる圧縮機を、凝縮器、主減圧機構及び蒸発器と順次接続してなる主冷媒回路を形成し、前記主冷媒回路の凝縮器と主減圧機構との間で分配される液冷媒の一部が前記主減圧機構及び蒸発器をバイパスして、前記圧縮機の中間圧部に注入するよう接続した第1インジェクション回路(第1流路15)と、前記第1インジェクション回路を流れる冷媒の減圧効果により冷房能力及び暖房能力を増大させるエコノマイザ手段を備えた蒸気圧縮サイクル装置において、
前記第1インジェクション回路のエコノマイザ手段をバイパスして前記主冷媒回路の液冷媒の一部を前記圧縮機の中間圧部に流入させる第2インジェクション回路(第2流路16)と、前記第1インジェクション回路側と前記第2インジェクション回路側とに選択的に切替える手段を備え、前記中間圧部、前記第1インジェクション回路及び前記第2インジェクション回路を構成する配管のうちでバイパス減圧機構から中間圧部に至る部位に圧力センサを設置し、検知した出力により前記中間圧部の圧力が所定の設定圧力以上であるときに前記液冷媒の一部が第2インジェクション回路側を流れるように前記切替える手段を制御することを特徴とする。
The above embodiment can be summarized as follows.
In the vapor compression cycle apparatus according to the above embodiment, a low-stage compression unit that compresses a low-pressure refrigerant to an intermediate pressure and a high-stage compression unit that compresses an intermediate-pressure refrigerant to a high pressure are connected in series at the intermediate pressure unit. Then, a compressor incorporating the ratio of the low-stage excluded volume and the high-stage excluded volume is connected to the condenser, the main decompression mechanism, and the evaporator to form a main refrigerant circuit, and the main refrigerant circuit is condensed. A first injection circuit (a first injection circuit) connected so that a part of the liquid refrigerant distributed between the compressor and the main decompression mechanism bypasses the main decompression mechanism and the evaporator and is injected into the intermediate pressure portion of the compressor. In the vapor compression cycle apparatus provided with economizer means for increasing the cooling capacity and the heating capacity by the flow path 15) and the pressure reducing effect of the refrigerant flowing through the first injection circuit,
A second injection circuit (second flow path 16) for bypassing the economizer means of the first injection circuit and allowing a part of the liquid refrigerant of the main refrigerant circuit to flow into the intermediate pressure part of the compressor; and the first injection Means for selectively switching between the circuit side and the second injection circuit side, and from the bypass pressure reducing mechanism to the intermediate pressure part among the pipes constituting the intermediate pressure part, the first injection circuit and the second injection circuit. A pressure sensor is installed in a part to reach, and the switching means is controlled by the detected output so that a part of the liquid refrigerant flows through the second injection circuit side when the pressure of the intermediate pressure part is equal to or higher than a predetermined set pressure. It is characterized by doing.
 また、前記圧力センサにより検出した前記中間圧部の圧力Pmと、前記圧縮機の吸入側及び吐出側に圧力センサを取り付けて検出した吸入圧Ps、吐出圧Pdが、
Pm>(Ps×Pd)0.5
の関係が成り立つとき、前記液冷媒の一部が第2インジェクション回路側に流れるように、前記切替える手段、及び、制御機能を備えたことを特徴とする。
Further, the pressure Pm of the intermediate pressure portion detected by the pressure sensor, and the suction pressure Ps and the discharge pressure Pd detected by attaching pressure sensors to the suction side and the discharge side of the compressor,
Pm> (Ps × Pd) 0.5
When the above relationship holds, the switching means and the control function are provided so that a part of the liquid refrigerant flows to the second injection circuit side.
 さらに、前記圧力センサにより検出した前記中間圧部の圧力Pmと、前記圧縮機の吐出側に圧力センサを取り付けて検出した吐出圧Pdが、
Pm≧Pd
の関係が成り立つとき、前記液冷媒の一部が第2インジェクション回路側に流れるように、前記切替える手段、及び、制御機能を備えたことを特徴とする。
Furthermore, the pressure Pm of the intermediate pressure portion detected by the pressure sensor and the discharge pressure Pd detected by attaching a pressure sensor to the discharge side of the compressor are:
Pm ≧ Pd
When the above relationship holds, the switching means and the control function are provided so that a part of the liquid refrigerant flows to the second injection circuit side.
 また、さらに、以上の実施の形態に係る蒸気圧縮サイクル装置は、低圧の冷媒を中間圧まで圧縮する低段圧縮部と、中間圧の冷媒を高圧まで圧縮する高段圧縮部とを中間圧部で直列に連結して、低段排除容積と高段排除容積との比率が組込まれる圧縮機を、凝縮器、主減圧機構及び蒸発器と順次接続してなる主冷媒回路を形成し、前記主冷媒回路の凝縮器と主減圧機構との間で分配される液冷媒の一部が前記主減圧機構及び蒸発器をバイパスして、前記圧縮機の中間圧部に注入するよう接続する第1インジェクション回路(第1流路15)と、前記第1インジェクション回路を流れる冷媒の減圧効果により冷房能力及び暖房能力を増大させるエコノマイザ手段を備えた蒸気圧縮サイクル装置において、
前記第1インジェクション回路のエコノマイザ手段をバイパスして前記主冷媒回路の液冷媒を前記圧縮機の中間圧部に流通させる第2インジェクション回路(第2流路16)と、前記主冷媒回路の前記液冷媒の一部を前記圧縮機の中間圧部にバイパスさせる経路を第1インジェクション回路側と第2インジェクション回路側とに選択的に切替える手段を備え、前記圧縮機の吸入側及び吐出側に圧力センサを取り付けて、検出した吸入圧Ps、吐出圧Pdが
Pd≦Ps×(V1/V2)ns
の関係が成り立つとき、前記液冷媒の一部が第2インジェクション回路側に流れるように、前記切替える手段、及び、制御機能を備えたことを特徴とする。
Furthermore, the vapor compression cycle apparatus according to the above embodiment includes a low-stage compression unit that compresses a low-pressure refrigerant to an intermediate pressure, and a high-stage compression unit that compresses an intermediate-pressure refrigerant to a high pressure. Are connected in series to form a main refrigerant circuit in which the compressor in which the ratio of the low-stage excluded volume and the high-stage excluded volume is incorporated is sequentially connected to the condenser, the main decompression mechanism, and the evaporator, A first injection for connecting a part of the liquid refrigerant distributed between the condenser of the refrigerant circuit and the main decompression mechanism so as to bypass the main decompression mechanism and the evaporator and inject into the intermediate pressure portion of the compressor. In the vapor compression cycle apparatus provided with an economizer means for increasing a cooling capacity and a heating capacity by a circuit (first flow path 15) and a pressure reducing effect of the refrigerant flowing through the first injection circuit,
A second injection circuit (second flow path 16) for bypassing the economizer means of the first injection circuit to flow the liquid refrigerant of the main refrigerant circuit to the intermediate pressure part of the compressor; and the liquid of the main refrigerant circuit Means for selectively switching a path for bypassing a part of the refrigerant to the intermediate pressure portion of the compressor between the first injection circuit side and the second injection circuit side, and pressure sensors on the suction side and the discharge side of the compressor; And the detected suction pressure Ps and discharge pressure Pd are Pd ≦ Ps × (V1 / V2) ns
When the above relationship holds, the switching means and the control function are provided so that a part of the liquid refrigerant flows to the second injection circuit side.
 また、前記切替える手段は四方弁であることを特徴とする。 Further, the means for switching is a four-way valve.
 さらに、前記低段圧縮機構と前記高段圧縮機構は、それぞれのシリンダ内を偏心回転するロータと、前記ロータに押し付けられたベーンにより前記シリンダ内を区画して圧縮室を形成し、冷媒を圧縮するローリングピストン式二段ロータリ圧縮機であることを特徴とする。 Further, the low-stage compression mechanism and the high-stage compression mechanism form a compression chamber by dividing the inside of the cylinder by a rotor that rotates eccentrically in each cylinder and a vane that is pressed against the rotor, and compresses the refrigerant. It is a rolling piston type two-stage rotary compressor.
 また、さらに、前記圧縮機の中間圧部と高段吐出部との間をバイパスする回路に逆止弁を設けたことを特徴とする。 Further, the present invention is characterized in that a check valve is provided in a circuit that bypasses between the intermediate pressure portion and the high-stage discharge portion of the compressor.
 1 低段圧縮部、2 高段圧縮部、3 中間連結部、4 密閉シェル、5 吸入マフラ、6 凝縮器、7 主減圧機構、8 蒸発器、9 主冷媒回路、10 二段圧縮機、11 インジェクション回路、12 インジェクション減圧回路、13 HIC熱交換器、14 四方弁、15 第1流路、16 第2流路、17 分岐点、18 逆止弁、19 逆止弁回路、20 圧力センサ、21 温度センサ、23 気液分離器、24 四方弁、24a 暖房用回路、24b 冷房用回路、25 熱回収型レシーバー、26 室外側熱交換器、27 第1主減圧機構、28 室内側熱交換器、29 第2主減圧機構、30 制御部。 1 Low-stage compression section, 2 High-stage compression section, 3 Intermediate connection section, 4 Sealed shell, 5 Suction muffler, 6 Condenser, 7 Main decompression mechanism, 8 Evaporator, 9 Main refrigerant circuit, 10 Two-stage compressor, 11 Injection circuit, 12 injection decompression circuit, 13 HIC heat exchanger, 14 four-way valve, 15 first flow path, 16 second flow path, 17 branch point, 18 check valve, 19 check valve circuit, 20 pressure sensor, 21 Temperature sensor, 23 gas-liquid separator, 24 four-way valve, 24a heating circuit, 24b cooling circuit, 25 heat recovery receiver, 26 outdoor heat exchanger, 27 first main decompression mechanism, 28 indoor heat exchanger, 29 Second main decompression mechanism, 30 control unit.

Claims (6)

  1.  予め排除容積が決定された圧縮部を有する圧縮機と、凝縮器と、主減圧機構と、蒸発器とを順次接続した主冷媒回路と、
     前記主冷媒回路の前記凝縮器と前記主減圧機構との間で分配された冷媒を、前記圧縮機において冷媒が中間圧となる中間圧部へ注入するように接続したインジェクション回路であって、所定の乾き度よりも乾き度の高い乾き冷媒を前記中間圧部へ注入するための第1流路と、前記所定の乾き度よりも乾き度の低い湿り冷媒を前記中間圧部へ注入するための第2流路とに分岐したインジェクション回路と、
     前記インジェクション回路へ分配された冷媒を、前記第1流路と前記第2流路とのいずれの流路を介して前記中間圧部へ注入させるかを選択的に切り替える切替部と、
     前記中間圧部における冷媒の圧力が所定の圧力よりも高い場合に、前記第2流路を介して前記中間圧部へ注入させるように前記切替部を制御する制御部と
    を備えることを特徴とする蒸気圧縮サイクル装置。
    A main refrigerant circuit in which a compressor having a compression portion whose exclusion volume is determined in advance, a condenser, a main decompression mechanism, and an evaporator are sequentially connected;
    An injection circuit connected to inject the refrigerant distributed between the condenser of the main refrigerant circuit and the main pressure reducing mechanism into an intermediate pressure portion where the refrigerant has an intermediate pressure in the compressor. A first flow path for injecting a dry refrigerant having a higher dryness than the predetermined dryness into the intermediate pressure portion, and a wet flow refrigerant having a lower dryness than the predetermined dryness to the intermediate pressure portion. An injection circuit branched into the second flow path;
    A switching unit that selectively switches whether the refrigerant distributed to the injection circuit is injected into the intermediate pressure unit through which of the first channel and the second channel;
    A control unit that controls the switching unit so that the intermediate pressure unit is injected into the intermediate pressure unit via the second flow path when the pressure of the refrigerant in the intermediate pressure unit is higher than a predetermined pressure. Vapor compression cycle device.
  2.  前記制御部は、前記中間圧部の冷媒の圧力Pmと、前記圧縮機の吸入側の冷媒の圧力Psと、前記圧縮機の吐出側の冷媒の圧力Pdとが、Pm>(Ps×Pd)0.5である場合に、前記第2流路へ冷媒が流れるように前記切替部を制御する
    ことを特徴とする請求項1に記載の蒸気圧縮サイクル装置。
    In the control unit, the refrigerant pressure Pm in the intermediate pressure unit, the refrigerant pressure Ps on the suction side of the compressor, and the refrigerant pressure Pd on the discharge side of the compressor are Pm> (Ps × Pd). 2. The vapor compression cycle device according to claim 1, wherein when the value is 0.5 , the switching unit is controlled so that the refrigerant flows into the second flow path.
  3.  前記制御部は、前記中間圧部の冷媒の圧力Pmと、前記圧縮機の吐出側の冷媒の圧力Pdとが、Pm≧Pdである場合に、前記第2流路へ冷媒が流れるように前記切替部を制御する
    ことを特徴とする請求項1に記載の蒸気圧縮サイクル装置。
    When the pressure Pm of the refrigerant in the intermediate pressure part and the pressure Pd of the refrigerant on the discharge side of the compressor are Pm ≧ Pd, the control unit is configured to cause the refrigerant to flow into the second flow path. The vapor compression cycle apparatus according to claim 1, wherein the switching unit is controlled.
  4.  予め排除容積が決定された圧縮部を有する圧縮機と、凝縮器と、主減圧機構と、蒸発器とを順次接続した主冷媒回路と、
     前記主冷媒回路の前記凝縮器と前記主減圧機構との間で分配された冷媒を、前記圧縮機において冷媒が中間圧となる中間圧部へ注入するように接続したインジェクション回路であって、所定の乾き度よりも乾き度の高い乾き冷媒を前記中間圧部へ注入するための第1流路と、前記所定の乾き度よりも乾き度の低い湿り冷媒を前記中間圧部へ注入するための第2流路とに分岐したインジェクション回路と、
     前記インジェクション回路へ分配された冷媒を、前記第1流路と前記第2流路とのいずれの流路を介して前記中間圧部へ注入させるかを選択的に切り替える切替部と、
     2つの圧縮部のうち低段側の圧縮部の排除容積をV1、高段側の圧縮部の排除容積をV2とし、冷媒の等エントロピ指数をnsとした場合に、前記圧縮機の吸入側の冷媒の圧力Psと、前記圧縮機の吐出側の冷媒の圧力Pdとが、Pd≦Ps/(V2/V1)nsである場合に、前記第2流路へ冷媒が流れるように前記切替部を制御する制御部と
    を備えることを特徴とする蒸気圧縮サイクル装置。
    A main refrigerant circuit in which a compressor having a compression portion whose exclusion volume is determined in advance, a condenser, a main decompression mechanism, and an evaporator are sequentially connected;
    An injection circuit connected to inject the refrigerant distributed between the condenser of the main refrigerant circuit and the main pressure reducing mechanism into an intermediate pressure portion where the refrigerant has an intermediate pressure in the compressor. A first flow path for injecting a dry refrigerant having a higher dryness than the predetermined dryness into the intermediate pressure portion, and a wet flow refrigerant having a lower dryness than the predetermined dryness to the intermediate pressure portion. An injection circuit branched into the second flow path;
    A switching unit that selectively switches whether the refrigerant distributed to the injection circuit is injected into the intermediate pressure unit through which of the first channel and the second channel;
    Of the two compressors, when the displacement volume of the low-stage compression unit is V1, the displacement volume of the high-stage compression unit is V2, and the isentropic index of the refrigerant is ns, the suction side of the compressor When the pressure Ps of the refrigerant and the pressure Pd of the refrigerant on the discharge side of the compressor satisfy Pd ≦ Ps / (V2 / V1) ns , the switching unit is set so that the refrigerant flows into the second flow path. A vapor compression cycle apparatus comprising: a control unit that controls the vapor compression cycle apparatus.
  5.  前記切替部は、四方弁である
    ことを特徴とする請求項1又は4に記載の蒸気圧縮サイクル装置。
    The vapor compression cycle apparatus according to claim 1 or 4, wherein the switching unit is a four-way valve.
  6.  前記蒸気圧縮サイクル装置は、さらに
     前記中間圧部と前記圧縮機の吐出側とを接続し、前記圧縮機の吐出側から前記中間圧部側へ冷媒が流れることを防ぐ逆止弁を有する逆止弁回路
    を備えることを特徴とする請求項1又は4に記載の蒸気圧縮サイクル装置。
    The vapor compression cycle device further includes a check valve that connects the intermediate pressure portion and a discharge side of the compressor and prevents a refrigerant from flowing from the discharge side of the compressor to the intermediate pressure portion side. The vapor compression cycle apparatus according to claim 1, further comprising a valve circuit.
PCT/JP2009/061358 2009-06-23 2009-06-23 Vapor compression cycle device WO2010150344A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011519406A JP5383802B2 (en) 2009-06-23 2009-06-23 Vapor compression cycle equipment
PCT/JP2009/061358 WO2010150344A1 (en) 2009-06-23 2009-06-23 Vapor compression cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/061358 WO2010150344A1 (en) 2009-06-23 2009-06-23 Vapor compression cycle device

Publications (1)

Publication Number Publication Date
WO2010150344A1 true WO2010150344A1 (en) 2010-12-29

Family

ID=43386140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061358 WO2010150344A1 (en) 2009-06-23 2009-06-23 Vapor compression cycle device

Country Status (2)

Country Link
JP (1) JP5383802B2 (en)
WO (1) WO2010150344A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108735A (en) * 2011-11-24 2013-06-06 Fuji Electric Co Ltd Refrigeration cycle device
JP2014043993A (en) * 2012-08-27 2014-03-13 Mitsubishi Heavy Ind Ltd Air conditioner
JP2017026238A (en) * 2015-07-24 2017-02-02 株式会社富士通ゼネラル Heat pump cycle device
CN112629089A (en) * 2020-12-24 2021-04-09 珠海格力电器股份有限公司 Control method of heat pump system, storage medium and heat pump system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105020924A (en) * 2015-07-30 2015-11-04 天津大学 Air source enhanced vapor injection heat pump system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157446A (en) * 1983-02-22 1984-09-06 松下電器産業株式会社 Refrigeration cycle device
JPH03105156A (en) * 1989-09-18 1991-05-01 Daikin Ind Ltd Freezer with economizer and its operation controlling method
JPH0480545A (en) * 1990-07-20 1992-03-13 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JPH05302760A (en) * 1992-04-27 1993-11-16 Matsushita Refrig Co Ltd Refrigerating cycle
JPH0611198A (en) * 1991-02-08 1994-01-21 Mitsubishi Electric Corp Refrigerating device
JP2001133058A (en) * 1999-11-05 2001-05-18 Matsushita Electric Ind Co Ltd Refrigeration cycle
JP2004108334A (en) * 2002-09-20 2004-04-08 Sanyo Electric Co Ltd Refrigerant circuit device
JP2006090563A (en) * 2004-09-21 2006-04-06 Hitachi Ltd Refrigerating device
JP2007010282A (en) * 2005-07-04 2007-01-18 Hitachi Ltd Two-stage compression type refrigeration cycle device
JP2007178042A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154726A (en) * 2005-12-02 2007-06-21 Toshiba Kyaria Kk Hermetic compressor and refrigeration cycle device
JP2010071614A (en) * 2008-09-22 2010-04-02 Hitachi Appliances Inc Refrigerating device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157446A (en) * 1983-02-22 1984-09-06 松下電器産業株式会社 Refrigeration cycle device
JPH03105156A (en) * 1989-09-18 1991-05-01 Daikin Ind Ltd Freezer with economizer and its operation controlling method
JPH0480545A (en) * 1990-07-20 1992-03-13 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JPH0611198A (en) * 1991-02-08 1994-01-21 Mitsubishi Electric Corp Refrigerating device
JPH05302760A (en) * 1992-04-27 1993-11-16 Matsushita Refrig Co Ltd Refrigerating cycle
JP2001133058A (en) * 1999-11-05 2001-05-18 Matsushita Electric Ind Co Ltd Refrigeration cycle
JP2004108334A (en) * 2002-09-20 2004-04-08 Sanyo Electric Co Ltd Refrigerant circuit device
JP2006090563A (en) * 2004-09-21 2006-04-06 Hitachi Ltd Refrigerating device
JP2007010282A (en) * 2005-07-04 2007-01-18 Hitachi Ltd Two-stage compression type refrigeration cycle device
JP2007178042A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108735A (en) * 2011-11-24 2013-06-06 Fuji Electric Co Ltd Refrigeration cycle device
JP2014043993A (en) * 2012-08-27 2014-03-13 Mitsubishi Heavy Ind Ltd Air conditioner
JP2017026238A (en) * 2015-07-24 2017-02-02 株式会社富士通ゼネラル Heat pump cycle device
CN112629089A (en) * 2020-12-24 2021-04-09 珠海格力电器股份有限公司 Control method of heat pump system, storage medium and heat pump system

Also Published As

Publication number Publication date
JPWO2010150344A1 (en) 2012-12-06
JP5383802B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
US8109111B2 (en) Refrigerating apparatus having an intermediate-pressure refrigerant gas-liquid separator for performing refrigeration cycle
US6581397B1 (en) Refrigerating device
JP5430667B2 (en) Heat pump equipment
JP5871959B2 (en) Air conditioner
US9395105B2 (en) Refrigeration cycle device
JP5593618B2 (en) Refrigeration equipment
WO2006028218A1 (en) Refrigerating apparatus
WO2007110908A9 (en) Refrigeration air conditioning device
EP2770276B1 (en) Heat pump
US9222706B2 (en) Refrigeration cycle apparatus and operating method of same
JP5186949B2 (en) Refrigeration equipment
JP5734031B2 (en) Refrigeration air conditioner
JP5383802B2 (en) Vapor compression cycle equipment
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JPWO2015063846A1 (en) Air conditioner
JP2014119221A (en) Refrigeration device
JP2011214753A (en) Refrigerating device
US20220011020A1 (en) Refrigeration cycle device
JP2006138525A (en) Freezing device, and air conditioner
JP5659908B2 (en) Heat pump equipment
JP5659909B2 (en) Heat pump equipment
JP4104112B2 (en) Air conditioner
WO2020071293A1 (en) Refrigeration cycle device
JP4767340B2 (en) Heat pump control device
JP2010159967A (en) Heat pump device and outdoor unit for the heat pump device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011519406

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09846477

Country of ref document: EP

Kind code of ref document: A1