WO2010147159A1 - Device for determining the state of droplet application, method for determining the state of droplet application, and droplet application device employing the same - Google Patents

Device for determining the state of droplet application, method for determining the state of droplet application, and droplet application device employing the same Download PDF

Info

Publication number
WO2010147159A1
WO2010147159A1 PCT/JP2010/060228 JP2010060228W WO2010147159A1 WO 2010147159 A1 WO2010147159 A1 WO 2010147159A1 JP 2010060228 W JP2010060228 W JP 2010060228W WO 2010147159 A1 WO2010147159 A1 WO 2010147159A1
Authority
WO
WIPO (PCT)
Prior art keywords
application
droplet
coating
region
area
Prior art date
Application number
PCT/JP2010/060228
Other languages
French (fr)
Japanese (ja)
Inventor
裕 岩田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010147159A1 publication Critical patent/WO2010147159A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04586Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads of a type not covered by groups B41J2/04575 - B41J2/04585, or of an undefined type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04558Control methods or devices therefor, e.g. driver circuits, control circuits detecting presence or properties of a dot on paper

Definitions

  • the present invention relates to a droplet coating apparatus, a coating state determination apparatus after processing, and a coating state determination method that perform processing on the surface of a substrate or a sheet by droplet coating means.
  • printers that apply ink droplets to recording media such as paper and OHP, and devices that apply functional ink to flat display panel substrates have been widely used by printing devices for micro droplets typified by the inkjet method. Has been.
  • ink droplets are ejected from a head nozzle and applied and printed by landing on the surface to be coated.
  • the landing state of the discharged ink droplets depends on the condition of the discharge, and the expected landing state is expected. Changes that do not affect print quality degradation and reduce the value of the coated media.
  • the volume variation of the ejected ink droplets the state in which the ink droplets are driven to eject but the ink droplets cannot be separated from the nozzles, and the ejection itself is not performed (hereinafter referred to as non-ejection), There are variations and fluctuations in the flying direction of ink ejected from the nozzles.
  • a method of observing the state of ink application and detecting the difference between the change in shade of the coated surface by the ink to be applied and the change in shade of the actual coated surface (For example, see Patent Document 1)
  • a decrease in discharge condition is determined by detecting a difference between a change in density of an application surface due to an ink to be applied and an actual change in density of an application surface, and a plurality of maintenance conditions are determined. This is a method for preventing a decrease in print quality using the method.
  • the recording apparatus in Patent Document 3 is a method in which a drop in discharge condition is determined by detecting a drop in density or presence / absence of an application surface for each nozzle, and a nozzle used is selected or complementary application is performed using another nozzle. .
  • a plurality of droplets are applied to the same application region on the surface to be coated.
  • a plurality of droplets with slightly different application times and positions are landed on the same application region.
  • the coating process is performed by mixing.
  • the next landing droplet is applied to the application surface of the droplet that has landed early in the same region, and the application region to be applied has the discharge state of each droplet.
  • the application area depends on the combination.
  • the drop in the discharge condition that may occur in the coating process may occur in any discharge droplet, or the first droplet (hereinafter referred to as the first droplet) when the droplet is discharged from the standby state. Or the like, which may occur in droplets that are ejected continuously for a while from the initial droplet, etc., all of which may cause variations in the volume, non-ejection, ejection position, etc. of the ejected droplets.
  • the application shape differs depending on the combination of the discharge condition of the initial droplet during application and the combination of the discharge condition of the landing droplet following the initial droplet.
  • the discharge performance is reduced to the extent that the first droplet is not ejected, it can be recovered by performing a maintenance operation that increases the number of discarded ejected droplets in the discarded eject that discards and ejects a large number of droplets to the ejection port. High nature.
  • the ejection performance is restored by maintenance that sucks ink from the nozzles of the inkjet head, such as replacing all the ink in the head as well as the vicinity of the nozzles of the inkjet head. To do.
  • an apparatus for applying functional ink to a flat display panel substrate has been widely used, but in application to such a manufacturing apparatus, the purpose of printing is not the recording of an image to be visually observed, but the substrate surface. It is necessary to provide functionality by arranging the ink on the top.
  • an insulating film of the gate line is formed, and then the source line is formed.
  • the gate line and the source line are short-circuited or have a low insulating property, and a signal current is generated when driving the liquid crystal display substrate. Leaks and causes display defects on the liquid crystal display.
  • a droplet containing an insulating material is ejected by an ink jet method to a defective film formation region in a region where a gate line and a source line intersect or a region where a storage capacitor is formed.
  • the correction portion where the droplet is applied is locally applied with the thickness of the gate line so as to cover a portion (convex portion) protruding in the thickness direction from the surface.
  • the coverage of the convex portion is important. For example, in the case of repairing an insulating film, it is important to ensure the insulating characteristics of the formed insulating film, but the insulating characteristics depend on the film thickness and shape.
  • a third application is applied in which the opposite end is also wetted with ink and the droplet is applied to the center of the convex portion.
  • a correction method in which a sufficient amount of ink that can secure a desired film thickness in the process is applied and the liquids are combined to function as a single liquid so that the convexity is well covered and both sides can be wetted uniformly. Etc. are considered.
  • the amount of wetting in the first coating step decreases, and the first droplet drops when the droplets are combined in the third coating step.
  • the connectivity at the end of the convex portion wetted in one application step is lowered, and the ink applied in the third application step spreads widely beyond the wetted region of the end portion of the convex portion.
  • an object of the present invention is to provide an apparatus for performing appropriate maintenance control for accurately determining the type of drop in ejection property and maintaining the ejection state in a droplet printing and coating apparatus that applies and mixes a plurality of droplets. There is to do.
  • a droplet application state determination device provides a droplet application in a coating device that discharges a plurality of droplets with different time positions at different positions in the same application region of a surface to be applied.
  • An application state determination device a coating area measuring unit that measures a coating area after coating, a coating area recognition unit that recognizes a difference between a desired coating area and a coating area measured by the coating area measuring unit;
  • An application state determination unit that determines the discharge state of each droplet by the application region measuring unit and the application region recognition unit.
  • a droplet coating apparatus of the present invention includes the above-described droplet coating state determination device and a maintenance unit that performs maintenance of the inkjet head, and is based on the determination result of the coating state determination unit.
  • the maintenance operation is performed by selecting the type of maintenance of the inkjet head.
  • the droplet applying apparatus configured as described above, the ink consumption can be suppressed and the maintenance time can be reduced in order to perform the appropriate maintenance operation according to the non-ejection according to the time from the start of the ejection to the application region and the decrease in the ejection amount. It is possible to eliminate the increase in.
  • this droplet application state determination method is a method for determining a droplet application state in a coating apparatus that discharges a plurality of droplets by providing a time difference at different positions in the same application region of the surface to be coated.
  • a method for determining a coating state a coating region measuring step for measuring a coating region after coating, a coating region recognition step for recognizing a difference between a desired coating region and a coating region measured by the coating region measuring means, It has a coating state determination step of determining the discharge state of each droplet based on the results obtained by the coating region measurement step and the coating region recognition step.
  • the droplet application state determination method it is possible to provide a method for determining non-discharge or a decrease in the discharge amount according to the time from the start of discharge to the application region. it can.
  • the maintenance operation of the droplet applying apparatus is performed using this method, it is possible to suppress the ink consumption and increase the maintenance time.
  • the present invention relates to a droplet application state determination apparatus in a coating apparatus that discharges a plurality of droplets by providing a time difference at different positions within the same coating region of a surface to be coated. It has application area recognition means, and it has application state determination means for determining the discharge state of each droplet. Therefore, it is possible to determine non-ejection and a decrease in the ejection amount according to the time from the start of ejection to the application region. Further, since determination is made based on the direction of the application area from the reference position in the application area and the size of the application area, more accurate and short-time measurement is possible.
  • the droplet coating apparatus of the present invention includes the above-described droplet coating state determination device and a maintenance unit that performs maintenance, by selecting and performing an appropriate maintenance operation, it is possible to reduce ink consumption and reduce maintenance time. The increase can be eliminated. Further, by using the droplet application determination method of the present invention, it becomes possible to determine non-ejection and a decrease in the ejection amount according to the time from the start of ejection to the application region.
  • FIG. 1 is a side view schematically showing a substrate surface correcting device by droplet discharge as an example of a droplet applying apparatus according to an embodiment of the present invention. It is a block diagram of the inkjet unit in which the droplet discharge process part by this invention was integrated. It is a block diagram which shows the structure of the droplet coating device by this invention.
  • FIG. 5 is a diagram for explaining a correction coating operation in a case where droplets cannot be ejected in the first step, and (a) to (c) show each step.
  • FIG. 6 is a diagram for explaining an event that occurs when a foreign object adheres in an obliquely upward direction that is in the vicinity of a film part defect part, and (a) to (c) show each process.
  • the measurement by direction as shown in FIG. 1A, when the substrate is viewed from above, the axial direction to the right is L0 (0 [degree]), and all directions are measured up to L315 in units of 45 [degree]. .
  • the measurement is performed by a method in which the surface state of the surface to be coated on which droplets have been coated is imaged with an imaging camera and the coating area is measured from the captured image data.
  • the area in each direction Dav is an average area.
  • the average area and the determination reference area can be set for each direction, and are stored in an image processing unit 53 described later.
  • a region indicating the size of application a rectangular region circumscribing the application region is measured as shown in FIG.
  • the circumscribed rectangular area is an area for the entire application area regardless of the center position of the correction application.
  • F0 indicates a rectangular area circumscribing in two directions L90 and L270 orthogonal to L0.
  • F45 indicates a direction orthogonal to L45
  • F90 indicates a direction orthogonal to L90
  • F135 indicates a rectangular area circumscribing two directions L45 and L225 orthogonal to L135.
  • the area in each direction Fav is an average area.
  • the average area and the determination reference area can be set for each rectangular inclination, and are stored in the image processing unit 53.
  • a coating area is measured for each of a plurality of radial directions from the correction coating center (S30), and a circumscribed rectangular coating area is measured (S31). Although the measurement of the circumscribed rectangular coating area was performed individually, the initial drop may be measured.
  • the measured circumscribed rectangular area is confirmed (S32), and it is checked whether any one of the circumscribed rectangular application areas F0 to F135 exceeds the upper limit / lower limit management value. If it does not exceed the control value, it is determined that there is no abnormality in the application shape / region, and the process proceeds to STEP 40 for checking the positional deviation. When it exceeds the control value, it is determined that there is a high possibility that an abnormality has occurred in the application shape or region, and the process proceeds to S33.
  • S33 the application area for each direction from L0 to L315 measured in S30 is confirmed, and it is checked whether the change of the application area is isotropic and uniform. If there is no anisotropy in the application region and the change is uniform, it is determined that there is no change in the application shape, and the process proceeds to S41 for checking the application region. If the change in the coating area is partial and anisotropic, the process proceeds to S34.
  • the center-of-gravity position of the application area is measured, and when a positional deviation occurs exceeding the upper limit management value with respect to the correction position, it is determined that the application position is misaligned, and the head-to-head distance 18 is reset by resetting the landing position. .
  • the upper limit control value is not exceeded, it is determined that the product is a normal product.
  • the increase / decrease of the circumscribed rectangular area is confirmed (S41), and if the circumscribed rectangular application area exceeds the upper limit management value, it is determined that the ink viscosity is decreased. Moreover, there is a possibility that the coating amount increases and the liquid repellency of the substrate surface decreases. If the lower limit management value is exceeded, it is determined that the ink viscosity has increased. In addition, there is a possibility that the coating amount decreases and the liquid repellency of the substrate surface increases.
  • a maintenance operation that replaces the ink in the inkjet head such as ink suction maintenance, is performed.
  • a print coating apparatus capable of mixing and applying a plurality of liquid droplets in a desired region, it is possible to realize an apparatus that accurately determines a decrease in ejection performance and performs appropriate maintenance control to maintain the ejection state. .
  • FIG. 3 is a schematic diagram showing a schematic configuration of a substrate surface correcting device by droplet discharge as an example of a droplet applying device according to an embodiment of the present invention.
  • the droplet means a discharge liquid of insulating ink having an electrical insulating function.
  • the droplet applying apparatus includes X and Y orthogonal positions relative to each other between an inkjet unit 4 as an example of a processing unit and a substrate 1 to be processed as an example of an object to be processed.
  • a member pattern is formed on the substrate surface by being moved by a two-axis automatic moving stage and ejecting member ink from the ink jet head in the ink jet unit 4 to the processing surface (also referred to as substrate surface) of the substrate 1 during the movement.
  • substrate surface also referred to as substrate surface
  • an insulating film member is applied.
  • the inkjet unit 4 and the substrate 1 are mounted on separate axes.
  • the substrate 1 is sucked and fixed to the suction positioning part 2.
  • the suction positioning unit 2 sucks and fixes the substrate 1 placed on the suction positioning unit 2 from a substrate transport device (not shown). Further, the suction positioning unit 2 measures the position in the orthogonal direction of the apparatus, the positional deviation amount and the inclination amount of the substrate 1 by a substrate position measurement camera (not shown), and finely adjusts the position and posture of the substrate 1. It has a shaft.
  • the X axis 3 is a stage axis that automatically moves the substrate 1 in the left-right direction of FIG. 3 and mounts the suction positioning unit 2, and is mounted on the apparatus surface plate unit 8.
  • the moving direction of the X axis 3 is referred to as the X direction.
  • the inkjet unit 4 that performs inkjet application and the substrate 1 are relatively moved to an arbitrary position in the X direction along a plane parallel to the surface of the substrate 1.
  • a linear motor is used for the propulsion shaft, an encoder function using a linear scale is mounted, an operation command is performed by position command control using a pulse command, and motor drive control is performed by a servo driver.
  • the servo driver measures the position of the stage in the moving direction based on an encoder signal based on a linear scale, and performs feedback processing in a closed loop.
  • the inkjet unit 4 has a configuration as shown in FIG. 4, and an inkjet head 10 that applies droplets to the substrate 1 by an inkjet method, and an ink supply unit 11 that stably supplies droplet ink to the inkjet head 10.
  • the microscope camera 9 that observes the state of the substrate surface and measures it as image data is a unit attached to the unit base plate 12.
  • the Y axis 5 is a stage axis that automatically moves the inkjet unit 4 in the front-rear direction of FIG.
  • the moving direction of the Y axis 5 is referred to as the Y direction.
  • the inkjet unit 4 that performs inkjet application and the substrate 1 are relatively moved to an arbitrary position in the Y axis direction along a plane parallel to the surface of the substrate 1.
  • a linear motor is used for the propulsion shaft as with the X-axis 3, and an encoder function based on a linear scale is installed.
  • the operation command is controlled by position command control using a pulse command, and the motor drive control is performed by a servo driver. ing.
  • the servo driver measures the position of the stage in the moving direction based on an encoder signal based on a linear scale, and performs feedback processing in a closed loop.
  • the Y axis 5 is fixed to the gantry frame 6, and the gantry frame 6 is mounted on the apparatus surface plate 8.
  • the inkjet head 10 or the microscope camera 9 can be arranged at an arbitrary position with respect to the surface of the substrate 1 to perform application or observation processing.
  • a nozzle plate having a plurality of nozzle holes is formed on the substrate to be processed of the inkjet head 10 of the inkjet unit 4.
  • the nozzle hole of the nozzle plate is set to have a diameter of 10 to 20 ⁇ m.
  • a piezo actuator and its electrode are formed on a part of the side wall of the partition wall in the nozzle hole.
  • a voltage is applied to the piezo actuator and its electrodes to generate an electric field between both sides of the partition wall, and the partition wall itself is subjected to shear deformation, thereby generating discharge energy and discharging ink as droplets from the nozzle holes. .
  • a plurality of nozzle holes are arranged in a straight line to constitute a nozzle row.
  • a drive signal is given to each nozzle hole, and ejection is performed by outputting the drive signal to each nozzle hole, so that dot patterns of various coating droplets can be formed on the substrate surface.
  • the ink supply unit 11 is connected to the ink jet head 10 to stably supply ink to 10. In addition to the stable supply of ink, the ink supply unit supplies ink accompanying an ink suction maintenance operation of the inkjet maintenance unit 7 described later.
  • the microscope camera 9 is a camera capable of imaging with a microscope having an autofocus function for observing the substrate surface and obtaining image data, has a bright field optical system, has a magnification of 10 times, and the camera has 1600 ⁇ 1200 pixels.
  • a CCD area sensor having a pixel area of 0.44 square [ ⁇ m], and the surface of the substrate to be processed can be observed.
  • FIG. 5 is a block diagram showing the configuration of the droplet applying apparatus.
  • the inkjet head 10 is supplied with ink from the ink supply unit 11, and the ink supply unit 11 is controlled by the inkjet control device 52 so that ink is stably supplied.
  • the ink jet control device 52 has a function of controlling the ink jet head 10 and outputting a drive signal necessary for ink ejection to a piezo actuator related to a nozzle to be ejected.
  • the inkjet head 10 ejects droplets from the nozzles in response to the drive signal.
  • the image data captured by the microscope camera 9 is transferred to the image processing unit 53.
  • An image processing unit (application area measurement means, application area recognition means, application state determination means) 53 takes in image data captured by the microscope camera 9 and performs numerical processing to measure the position / brightness of the surface state of the substrate surface.
  • the surface state in this example is the surface state of the TFT substrate.
  • a reference position for example, a position from the correction application center position to the boundary portion of the application area can be measured as the application area.
  • the orthogonal axis control unit 54 is a control unit that controls the X axis 3 and the Y axis 5. Based on the command of the main controller 50, the orthogonal axis control unit 54 performs pulse command control for position control on the X axis 3 and the Y axis 5, and the X axis 3 and the Y axis 5 are linear with the servo driver. It consists of a motor.
  • the suction positioning control unit 55 sucks and fixes the substrate 1 when the substrate 1 is placed on the suction positioning unit 2, and controls the position and posture of the substrate 1.
  • the inkjet maintenance unit 7 performs a maintenance operation for keeping the discharge condition of the inkjet head 10 constant under the control of the inkjet maintenance control unit 56. Wipe operation for wiping the nozzle surface after sucking ink in the head and refreshing the ink state in the head together with high-viscosity ink in the vicinity of the nozzle, and similarly, the ink state is refreshed by discarding and discharging ink by the inkjet control device 52 Therefore, an ink suction portion that receives ink and a cap operation that prevents drying of the inkjet head surface are possible.
  • a plurality of ink suction amounts can be set according to the level required for maintenance, and can be selected and executed during maintenance.
  • a plurality of ejection droplet numbers can be set and selected at the time of maintenance.
  • the main control device 50 performs system control of the device by combining various control units constituting the device described in the description of FIG. 5, and the control conditions and program are stored in the main storage device 51. .
  • FIG. 6 is a diagram showing the relationship among a TFT substrate 15 as an example of the substrate 1, an inkjet head 10, and a microscope camera 9.
  • a gate bus line pattern 16 and a source bus line pattern. 17 is formed on the processing surface of the substrate 1, there are a gate bus line pattern 16 and a source bus line pattern. 17 is formed.
  • the surface of the substrate is observed by the microscope camera 9 within the range of the imaging visual field 13.
  • the inkjet head 10 is arranged so that the droplets 14 ejected from the nozzles land on the substrate 1 at a position (a different place in the same application region) that is a distance 18 between the heads from the center position of the imaging visual field 13.
  • the defect position of the gate insulating film to which the droplet having the insulating function is to be applied is positioned at the center of the imaging visual field 13 and then the head is moved by the distance 18 between the heads, the droplet is discharged at a desired position. Can be applied.
  • the arrow in the figure indicates the direction of movement, and the Y axis 5 is used for movement in the apparatus.
  • the coordinates of the application position on the image are measured by the image processing unit 53 and calculated as an offset amount from the center position of the field of view to the application position. By applying correction to the distance 18 and moving, it can be applied to a desired position without being aligned with the center of the imaging visual field 13.
  • FIG. 7 is a diagram showing the relationship among the substrate 1, the inkjet head 10 and the microscope camera 9 in FIG.
  • the inkjet head 10 has a plurality of nozzle holes, but only one is used for coating in this example. In the figure, the relationship when applying using the nozzle 20 is illustrated. The position of the nozzle hole to be ejected may be changed, and the inter-head distance 18 is changed according to the position of the nozzle to be used.
  • the substrate 1 is received by the suction positioning unit 2 from a substrate transport device (not shown) and is sucked and fixed (S1).
  • the position in the orthogonal direction of the apparatus, the positional deviation amount and the inclination amount of the substrate 1 are measured by the substrate position measuring camera, and the position and posture of the substrate 1 with respect to the apparatus are finely adjusted by the XY ⁇ axes (S2).
  • information on the defect of the transferred substrate is received by communication from a database device outside the device (S3).
  • the defect information includes the coordinates of a defect that exists on the substrate 1 and is to be corrected, and uses information extracted in an inspection process in a separate process.
  • the X axis 3 and the Y axis 5 are moved so that the defect coordinate position can be positioned at the center of the imaging field 13 of the microscope camera 9 (S4).
  • the defect is often observed at a position shifted from the center of the imaging visual field 13.
  • This deviation amount includes errors included in the received defect coordinates and positioning errors between the X axis 3 and the Y axis 5.
  • the operator specifies a correction application position for the defect in the imaging field 13 (S5).
  • the application position is moved to the center position of the imaging visual field 13 so that ink is applied to the pattern crossing defect portion 205 and insulation can be secured.
  • S6 and S7 are repeated, and the coating operation from the first step to the third step is repeated.
  • the Y-axis 5 is an offset amount from the center of the imaging visual field 13 to the designated correction coating position so that the nozzle for coating the droplet for correction moves to the designated correction coating position. Add and move.
  • the shift amount is added and moved (S6).
  • any one of the coating operations from the first step to the third step is performed (S7).
  • the discharge conditions the number of droplets and their discharge interval
  • the X axis 3 and the Y axis 5 are moved so that the defect correction position can be positioned at the center of the imaging field 13 of the microscope camera 9, and coating is performed.
  • the image processing unit 53 calculates the application area of the circumscribed rectangle of the area, the application area for each direction, the center of gravity position of the application area, and the like, and determines the presence and type of application abnormality.
  • the X-axis 3 and the Y-axis 5 are moved from the substrate 1 to retreat to a position where the substrate can be conveyed, and the substrate 1 is released by suction by the suction positioning unit 2 (S11).
  • a substrate transfer device (not shown) carries the substrate 1 out of the device (S12).
  • the board can be corrected by the above flow.
  • Example 1 Next, an example in which a pattern is actually formed on the TFT substrate will be described.
  • FIG. 9 is an external view of the surface of a TFT substrate on which a gate insulating film or the like is formed after the gate wiring pattern is formed on the TFT substrate.
  • the gate wiring pattern is formed by forming a conductive material using a vacuum apparatus and patterning using a photolithography technique. To be precise, there are two types of wiring patterns: a gate line and an auxiliary capacitance line. Since the gate layer pattern is formed at the same time, it is called a gate wiring pattern. After this step, the source wiring pattern is formed.
  • the gate insulating film is formed on the entire surface by a CVD (Chemical / Vapor / Deposition) apparatus or the like, and insulates the gate wiring pattern and the source wiring pattern to individually enable driving of each wiring signal. In addition, a semiconductor layer is formed over the gate insulating film in the same process.
  • a film-deficient portion 202 of the gate insulating film is generated on the auxiliary capacitance line 206 on the gate wiring pattern 201. This is mainly caused by foreign matters adhering to the substrate surface before or during film formation.
  • the position where the source wiring pattern is formed in the next process is formed at a position expressed by a one-dot chain line of the source wiring pattern position 203. If there is a film defect in the gate insulating film, leakage of signals of the gate wiring pattern 201, the pattern intersection defect portion 205 at the source wiring pattern position 203, and the source wiring pattern occurs on the auxiliary capacitance line 206, and normal TFTs Switching driving cannot be performed, and the manufactured TFT substrate becomes defective.
  • the case of the film part defect part 202 is a defect that becomes a defect, and the case where the film part defect part 202 exists on the pattern intersection 204 where such a pattern intersects in the imaging field of view 13 As the defect portion 205, the pattern cross defect portion 205 is positioned at the center of the imaging visual field 13 and ink droplets are applied.
  • the gate insulating film missing portion 202 is generated on the auxiliary capacitance line 206, but even in the case where the gate insulating film missing portion is generated on the gate wiring pattern 201, the source is similarly applied. Signal leakage occurs between the wiring and normal TFT switching drive cannot be performed. As described above, the influence of the film portion defect portion 202 is common to the storage capacitor line 206 and the gate wiring pattern 201. In the following description, both the gate wiring pattern 201 and the auxiliary capacitance line 206 will be referred to as a gate wiring pattern.
  • FIG. 10 is a cross-sectional view of a substrate on which a gate wiring pattern and a gate insulating film are formed.
  • a lower wiring 302 as a gate wiring pattern is formed in a convex shape on a glass substrate 301, and a gate insulating film is formed on the entire surface including the upper wiring 302. 303 is deposited.
  • a semiconductor layer 304 necessary for forming a TFT is also formed in the same process.
  • the lower wiring 302 which is a gate wiring pattern is the same as the gate wiring pattern 201 of FIG.
  • FIG. 11 is a diagram for explaining a correction coating operation in which an insulating ink droplet having an insulating function is applied to the film portion defect portion 202 on the pattern cross defect portion 205 described in FIG. Show.
  • FIG. 11A shows a defect state before correction.
  • the gate insulating film 303 and the semiconductor layer 304 are partially missing from the shape described in FIG. A part of shows a bare state.
  • the insulating ink is applied by a method of stably applying a region where a film thickness of a droplet capable of ensuring insulation can be obtained on the substrate surface having a convex shape due to the gate wiring pattern. It consists of a coating process.
  • the inkjet head 10 is disposed above the normal line 305 that is the center position in the width direction of the lower wiring 302 that is the gate wiring pattern, and is shifted in one direction in the width direction. Ink droplets 14 including insulating droplets are applied.
  • the ink jet head 10 is arranged above the direction shifted in the direction opposite to the direction shifted in FIG. Apply.
  • the ink jet head 10 is disposed substantially above the normal line 305 from the center position in the width direction of the lower wiring 302 and includes an insulating material. Drops 14 are applied.
  • the arrangement position of the inkjet head 10 in the third step is preferably arranged between the discharge position in the first application step and the discharge position in the second application step, more preferably the discharge in the first application step.
  • An intermediate position between the position and the discharge position in the second coating step is preferable.
  • the base coating is performed in a region where the coating region is suppressed by applying a smaller amount of ink droplets than the amount of droplets necessary to obtain insulation
  • the third step It is preferable to apply the amount of droplets necessary to obtain insulation.
  • the application area can be suppressed and the application area can be made uniform as compared with the case of applying to the normal substrate surface by utilizing the lyophilicity with the base ink already applied.
  • Drops 310 can be disposed, and a coating film having insulating properties can be formed by heating and drying the droplets 310.
  • FIG. 12 is a diagram showing the measurement direction of the application area after the correction application.
  • FIG. 12A shows a defect state before correction similar to FIG.
  • FIG. 12B shows a state in which corrective application is normally performed in the corrective application process in a defective portion suitable for good ejection properties and correction, and this shows a state in which an application area for each direction is measured.
  • the coating droplet spreads in a certain region in a circular manner and covers the film portion defect portion 202 by the correction coating process described with reference to FIG.
  • This application state is measured radially in eight directions from the center position of the correction application that is equivalent to the position of the normal line 305 described in FIG.
  • FIG. 12B shows that uniform areas can be applied in each direction area and circumscribed rectangular area, and the measured value is an average area. It can be said that it is judged that the measurement result is within the normal control value, and that a good application has been made.
  • the example of the device for applying a correction droplet of the TFT gate insulating film has been described above.
  • a device for performing a coating process, and a coating state determination such as a coating abnormality by measuring a coating region from a coating region after coating.
  • the application state determination apparatus that determines the cause of the application abnormality may be configured as an independent inspection apparatus.
  • Example 2 Example in which the initial droplet is not ejected
  • the ejection performance is reduced, and the droplets in the first step are driven in spite of the normal driving of the piezo actuator during correction application.
  • the correction application operation in the case where the ejection could not be performed will be described.
  • the inkjet head 10 is moved to a predetermined position and the piezo actuator is driven, but the ink droplet 14 is not ejected.
  • the ink droplets 14 are ejected normally.
  • the ink droplet 14 is normally ejected.
  • Such a drop in discharge performance is mainly due to the fact that thickened ink solids remain in the vicinity of the nozzle discharge holes or the discharge of the nozzles as the time during which the nozzle plate surface of the inkjet head 10 is separated from the inkjet maintenance unit 7 becomes longer. It is considered that non-ejection occurs because the ink in the hole is thickened and the shearing force when driving the piezo actuator does not cause the ink to separate from the nozzle plate. However, if the driving of the piezo actuator is continued, the ink in the vicinity of the nozzle ejection hole is agitated and the ink ejection performance is slightly recovered. Therefore, the first droplet and several droplets following the first droplet are not ejected. However, in the second and third steps, there is a case where the coating is normally performed. Alternatively, a sufficient amount of ink liquid is not applied in the first step.
  • the ink is applied in the direction of the region to be applied in the first step at the time of coating in the third step.
  • the application area is deformed into a shape in which the application area exceeds the upper limit control value in the direction of the first process as shown in FIG. 14, and the application area on the opposite side of the first process has this influence. Receive less.
  • the area of the application area becomes larger in the axial direction of the base application direction in which ejection failure has occurred, and the area measured from the center position of the correction application has a larger area in the direction of base application in which ejection failure has occurred. Change.
  • the amount of droplets on the lower wiring 302 is smaller than the amount of droplets necessary to obtain insulation, and the correction fails and the insulation cannot be ensured.
  • L90 shows a large value that exceeds the upper limit management value than usual, and L180, L225, L270, L315, and L0 slightly decrease.
  • F0 shows the largest value than the upper limit management value
  • F45 and F135 also increase
  • F90 slightly decreases.
  • the circumscribed rectangular application area F0 in the first process direction increases beyond the upper / lower limit management value and is within the allowable range. It becomes outside (S32).
  • the direction-specific application area becomes larger than the upper limit value of L90, which is the first process direction, and the direction-specific application area measurement value of L270, which is 180 degrees opposite to the first process direction, slightly decreases.
  • a change with anisotropy of the coating region is obtained in the opposite direction (S33).
  • the maintenance operation with the action of stirring and replacing the ink in the vicinity of the nozzles in the inkjet head is carried out by discarding discharge maintenance with a large number of ejected drops ( S34).
  • Maintenance may be performed by a method other than this combination, which requires different types of maintenance operations depending on various factors such as the degree of ink drying, the airflow environment in the apparatus, and the load of ink supply. Therefore, the maintenance operation means suitable for the apparatus can be correlated and executed.
  • the ejection failure may be determined only in the direction in which the size varies depending on the direction, without passing through the size determination of the circumscribed rectangle.
  • FIG. 15 shows a case where foreign matter has adhered in an obliquely upward direction in the vicinity of the film portion defect portion 202.
  • the coating ink adheres to the foreign matter, the following phenomenon occurs.
  • the applied ink adheres to the foreign matter and is sucked so as to cover the periphery and surface of the foreign matter, so that most of the applied ink is applied to the foreign matter side.
  • the second step of FIG. 16B since the coating is performed by offsetting to the side opposite to the foreign matter, the influence of the foreign matter is small.
  • the base in the first step is located at a position closer to the foreign matter as shown in FIG. The amount of droplets is smaller than the amount of droplets necessary to obtain insulation, and correction fails and insulation cannot be ensured.
  • the foreign matter is not only particles or dust, but also occupies the uneven shape that does not exist at the normal time to attract or alienate the ink with respect to the spread of wet ink such as pattern formation abnormality, and abnormal wiring pattern formation shape Etc. are also included.
  • FIG. 17 shows an explanatory diagram relating to the film defect 202 in this case in the same manner as FIG. In the following, only the film defect portion is shown in FIGS. 17B, 17C, and 17D.
  • (B) of FIG. 17 is explanatory drawing at the time of performing normal application
  • Dav is shorter in the direction of L225 than in the other direction. Accordingly, in the direction of L225, Dmin and Dmax, which are upper and lower limit management values, are similarly shortened, and this becomes a normal reference region.
  • (C) of FIG. 17 is an explanation of the case where there is no application or insufficient application due to poor ejection properties in the application of the first step, as in FIG.
  • the area in the direction of the first process is larger, and the area in the direction of L225 is shorter than the other direction due to the influence of the drain pattern wiring 210, but the normal upper and lower limit control values are not affected. Therefore, it is determined that there is no change, and the change in the coating area is only the change in the direction of the first step.
  • (D) of FIG. 17 is an explanation in the case where the application region is biased to the foreign matter side due to the nearby foreign matter, as in (b) of FIG. Here, there is no influence on the measurement region.
  • the presence / absence and amount of change of the application region are determined based on the region change amount based on the normal region and its management value. This makes it possible to grasp the type of change in the application region due to ejection failure or foreign matter.
  • FIG. 18 illustrates a case where application position deviation occurs.
  • the occurrence of the application position deviation is mainly caused by the deviation of the mechanical relative relationship between the landing position of the ejected ink on the substrate surface and the imaging position of the microscope camera 9 and the contamination in the vicinity of the nozzle plate ejection hole of the inkjet head 10. It is generated by changing.
  • the landing positions are shifted in any of the first step, the second step, and the third step, so that FIG. As shown in FIG. 2, the coating area is shifted as a whole.
  • the image processing unit 53 measures the image center-of-gravity position of the applied area, the amount of deviation from the center position of the application area with respect to the center position of the correction application is measured, and when the position deviation amount exceeds the upper limit (S40). , It is determined that a positional deviation has occurred.
  • the upper limit value of the positional deviation amount is preset in the image processing unit 53.
  • FIG. 20 illustrates a case in which the application region becomes large at the time of an abnormality in which the viscosity of the ink is lowered.
  • the viscosity of the ink may change due to various factors that maintain the inkjet head 10.
  • FIG. 20A is an explanatory diagram in the case where there is a film defect portion 202, as in FIG.
  • FIG. 20 is explanatory drawing at the time of apply
  • the viscosity is low immediately after the maintenance for sucking ink from the inkjet head 10, and the viscosity increases when application is repeated.
  • a case is described in which the viscosity is lowered due to the effect of ink supplied immediately after maintenance.
  • the coating area is enlarged, the film thickness is lowered, so that the insulation is also lowered.
  • the circumscribed rectangular application areas F0 to F135 are both larger than the upper limit management value (S32). , S41) Thereby, it is determined that the decrease in ink viscosity is the cause. In addition, other factors may be caused by an increase in the amount of ink applied and a decrease in liquid repellency on the substrate surface.
  • the coating area decreases.
  • the film thickness leads to enhanced insulation, the problem itself is not an immediate problem.
  • the film thickness becomes too large, the inter-substrate gap space between the color filter substrate and the color filter substrate that is bonded to face the TFT substrate. Becomes narrower.
  • the circumscribed rectangular coating areas F0 to F135 are all smaller than the upper limit management value (S32), and the direction-specific coating areas L0 to L315 are uniformly changed and the size is reduced (S33). , S41), it is determined that the ink viscosity has increased. As other factors, it can be considered that the ink application amount is decreased and the liquid repellency of the substrate surface is increased.
  • a maintenance operation having an ink replacement action in the inkjet head such as ink suction maintenance, is performed to remove the cause of the application apparatus factor.
  • Example 2 and Example 3 described above when the amount of displacement of the assumed application position is smaller than the width between the upper and lower limit management values of the area determination, Instead of judging the circumscribed rectangular area, it is possible to judge ejection failure or adhesion of foreign matter only in the direction in which the direction-specific area changes.
  • the case where the discharge property of the initial droplet or the droplet following the initial droplet is reduced has been described, but a large number of substrate coating processes If the operation is continued, there is a case where the liquid droplets are not ejected during the application, in contrast to the initial liquid droplets, due to a decrease in ejection properties. In this case, the application at the position of the second process or the third process becomes insufficient, and in particular, when application failure to the second process occurs, the application by direction in the direction of the application position of the second process. The area becomes larger.
  • the droplet application state determination device of the present invention is a droplet application state in a coating apparatus that discharges a plurality of droplets at different positions in the same application region of the surface to be coated.
  • An application region measuring unit that measures a coating region after coating
  • a coating region recognition unit that recognizes a difference between a desired coating region and a coating region measured by the coating region measuring unit, and the coating
  • An application state determination unit that determines the discharge state of each droplet by the area measurement unit and the application area recognition unit is provided.
  • the application state determination apparatus having the above-described configuration, it is possible to determine non-discharge or a decrease in the discharge amount according to the time from the start of discharge to the application region. Therefore, by selecting and performing an appropriate maintenance operation, ink consumption It is possible to reduce the amount and increase the maintenance time.
  • the application state determination device is determined by the correlation between the direction of the application region from the reference position in the application region and the size of the application region, and in particular, using the first droplet among a plurality of droplets in the application region. It has an application state determination means to be determined. According to the application state determination apparatus having the above-described configuration, it is possible to determine the case where the initial droplet that is likely to be generated at the time of discharge or the subsequent non-discharge of the droplet or the decrease in the discharge volume has occurred. By implementing this, it is possible to suppress ink consumption and increase maintenance time.
  • a droplet coating apparatus of the present invention has the above-described droplet coating state determination device and a maintenance unit that performs maintenance of the inkjet head, and the inkjet head based on the determination result of the coating state determination unit
  • the maintenance operation is performed by selecting the type of maintenance.
  • the droplet applying apparatus configured as described above, the ink consumption can be suppressed and the maintenance time can be reduced in order to perform the appropriate maintenance operation according to the non-ejection according to the time from the start of the ejection to the application region and the decrease in the ejection amount. It is possible to eliminate the increase in.
  • the droplet applying apparatus is characterized in that a droplet is applied on a wiring pattern whose application target is a convex shape.
  • the droplet coating apparatus having the above-described configuration, in the process of accurately applying droplets to the surface to be coated having the lower wiring and applying the base coating and ensuring the film thickness, the time from the start of discharge to the coating region Since appropriate maintenance operation is performed according to the corresponding non-ejection or the decrease in the ejection amount, it is possible to suppress the ink consumption and increase the maintenance time.
  • the above-described droplet coating apparatus is characterized in that the coating process applies a droplet having an insulating property to the defective portion of the gate insulating film of the TFT substrate.
  • the appropriate maintenance operation is performed according to the non-ejection according to the time from the start of ejection to the coating region and the decrease in the ejection amount. Therefore, it is possible to suppress ink consumption and increase maintenance time.
  • this droplet application state determination method is an application method of a droplet in a coating apparatus that discharges a plurality of droplets at different positions in the same application region on the surface to be coated.
  • a coating region measuring step for measuring a coating region after coating, a coating region recognition step for recognizing a difference between a desired coating region and a coating region measured by the coating region measuring means, and the coating is characterized by having an application state determination step of determining the discharge state of each droplet based on the results obtained by the region measurement step and the application region recognition step.
  • a method for determining non-discharge or a decrease in the discharge amount according to the time from the start of discharge to the application region can be provided. be able to.
  • the maintenance operation of the droplet applying apparatus is performed using this method, it is possible to suppress the ink consumption and increase the maintenance time.
  • the present invention can be suitably used for a droplet coating apparatus that performs processing on the surface of a substrate or a sheet.

Landscapes

  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Disclosed is a method for determining the state of application of droplets in an application device which discharges a plurality of droplets with a time difference in different places in the same application region on a surface to be coated. The method includes the following steps: an application region measurement step for measuring the application region after application of the droplets; an application region identification step for identifying the difference between the required application region and the application region measured by means of the application region measurement step; and an application state determination step for determining the discharge state of the respective droplets using the results obtained from the application region measurement step and the application region identification step.

Description

液滴塗布状態判定装置および液滴塗布状態判定方法及びそれを用いた液滴塗布装置Droplet application state determination apparatus, droplet application state determination method, and droplet application apparatus using the same
 この発明は、液滴の塗布手段により基板やシートの表面に加工処理などを行なう、液滴塗布装置および加工処理後の塗布状態判定装置、塗布状態判定方法に関する。 The present invention relates to a droplet coating apparatus, a coating state determination apparatus after processing, and a coating state determination method that perform processing on the surface of a substrate or a sheet by droplet coating means.
 近年、インクジェット方式に代表される微少液滴の印刷装置により、インク液滴を紙やOHP等の記録媒体へ塗布するプリンターや、フラットディスプレイパネル基板への機能性インクの塗布を行なう装置が広く利用されてきている。 In recent years, printers that apply ink droplets to recording media such as paper and OHP, and devices that apply functional ink to flat display panel substrates have been widely used by printing devices for micro droplets typified by the inkjet method. Has been.
 インクジェット方式では、インク液滴をヘッドノズルより吐出し、被塗布面へ着弾させることにより塗布印刷を行なうが、吐出されるインク液滴の着弾状態は、吐出のコンディションにより左右され、着弾状態の予期しない変化は印刷品質の劣化に影響し、塗布媒体の価値を低下させる。吐出のコンディションの低下としては、吐出するインク液滴の体積変動や、インク液滴の吐出駆動を行なったがインク液滴がノズルより離脱できず吐出そのものがされない状態(以下不吐出と記す)や、ノズルから吐出するインク飛翔方向のばらつきや変動等がある。 In the ink jet method, ink droplets are ejected from a head nozzle and applied and printed by landing on the surface to be coated. The landing state of the discharged ink droplets depends on the condition of the discharge, and the expected landing state is expected. Changes that do not affect print quality degradation and reduce the value of the coated media. As a drop in the condition of ejection, the volume variation of the ejected ink droplets, the state in which the ink droplets are driven to eject but the ink droplets cannot be separated from the nozzles, and the ejection itself is not performed (hereinafter referred to as non-ejection), There are variations and fluctuations in the flying direction of ink ejected from the nozzles.
 これらの印刷品質の低下原因を判断する手段として、インクを塗布した状態を観察して本来塗布されるべきインクによる被塗布面の濃淡変化と、実際の塗布面の濃淡変化の差を検出する方法がある(例えば、特許文献1参照)
 特許文献1における記録装置では、本来塗布されるべきインクによる被塗布面の濃淡変化と、実際の塗布面の濃淡変化の差を検出することにより、吐出のコンディションの低下を判断し、複数の保全方法を用いて印刷品質の低下を防止する方法である。
As a means for judging the cause of the decrease in print quality, a method of observing the state of ink application and detecting the difference between the change in shade of the coated surface by the ink to be applied and the change in shade of the actual coated surface (For example, see Patent Document 1)
In the recording apparatus disclosed in Japanese Patent Laid-Open No. 2004-260, a decrease in discharge condition is determined by detecting a difference between a change in density of an application surface due to an ink to be applied and an actual change in density of an application surface, and a plurality of maintenance conditions are determined. This is a method for preventing a decrease in print quality using the method.
 また、塗布処理を行なう領域とは別の場所に塗布を行い、本来塗布されるべきインクによる被塗布面の濃淡変化から、塗布面のサイズと円径形状との差異を検出する方法がある(例えば、特許文献2参照)。 In addition, there is a method in which application is performed at a place different from the region where the application process is performed, and the difference between the size of the application surface and the circular shape is detected from the change in shade of the application surface due to the ink to be applied ( For example, see Patent Document 2).
 特許文献2におけるデバイス製造装置では、別の場所での試し吐出による本来塗布されるべき円径形状の塗布面の濃淡変化から、塗布面のサイズと形状の相違を検出して、吐出のコンディションの低下を判断して、使用ノズルの選択や、保全方法を用いて印刷品質の低下を防止する方法である。 In the device manufacturing apparatus in Patent Document 2, a difference in the size and shape of the coating surface is detected from the change in shading of the circular-shaped coating surface that should be applied by trial discharge at another location, and the condition of the discharge is detected. This is a method of judging the deterioration and preventing the deterioration of the print quality by selecting the use nozzle and using the maintenance method.
 また、塗布位置の粗調整と微調整を塗布面の位置を計測して行った後、個別のノズル毎の塗布面の濃淡の低下・有無を検出する方法がある(例えば、特許文献3参照)。 In addition, there is a method of detecting a decrease / presence / absence of shading of the coating surface for each individual nozzle after performing rough adjustment and fine adjustment of the coating position by measuring the position of the coating surface (see, for example, Patent Document 3). .
 特許文献3における記録装置では、ノズル毎の塗布面の濃淡の低下や有無を検出することにより、吐出コンディションの低下を判断して、使用ノズルの選択や、他ノズルによる補完塗布を行なう方法である。 The recording apparatus in Patent Document 3 is a method in which a drop in discharge condition is determined by detecting a drop in density or presence / absence of an application surface for each nozzle, and a nozzle used is selected or complementary application is performed using another nozzle. .
日本国公開特許公報「特開2001-162784号公報」Japanese Patent Publication “Japanese Patent Laid-Open No. 2001-162784” 日本国公開特許公報「特開2003-282247号公報」Japanese Patent Publication “JP 2003-282247 A” 日本国公開特許公報「特開2006-181842号公報」Japanese Patent Publication “Japanese Patent Laid-Open No. 2006-181842”
 被塗布面に対する液滴の塗布は複数の液滴を同一の塗布領域に塗布することが多く、この場合同一の塗布領域には、塗布される時間や位置が微少に異なる複数の液滴が着弾し混合されることによって塗布処理が行われる。このような塗布処理では、同一の領域内に早く着弾した液滴の塗布面に対し、次の着弾液滴が塗布されることとなり、塗布される塗布領域は、各々の液滴の吐出状態の組み合わせに依存した塗布領域となる。 In many cases, a plurality of droplets are applied to the same application region on the surface to be coated. In this case, a plurality of droplets with slightly different application times and positions are landed on the same application region. Then, the coating process is performed by mixing. In such a coating process, the next landing droplet is applied to the application surface of the droplet that has landed early in the same region, and the application region to be applied has the discharge state of each droplet. The application area depends on the combination.
 塗布処理において発生する可能性のある吐出コンディションの低下は、どの吐出液滴にも共通して発生するものや、待機状態から液滴を吐出する際の第1滴目の液滴(以下初滴と記す)や、初滴からしばらくの間連続して吐出する液滴に発生するものの等があり、いずれも吐出される液滴の体積や不吐出や吐出位置の変動等が起こりえる。 The drop in the discharge condition that may occur in the coating process may occur in any discharge droplet, or the first droplet (hereinafter referred to as the first droplet) when the droplet is discharged from the standby state. Or the like, which may occur in droplets that are ejected continuously for a while from the initial droplet, etc., all of which may cause variations in the volume, non-ejection, ejection position, etc. of the ejected droplets.
 この結果、塗布時の初滴の吐出コンディションや、初滴に続く着弾液滴の吐出コンディションの組み合わせによる相互作用によって、塗布形状が異なる結果となる。 As a result, the application shape differs depending on the combination of the discharge condition of the initial droplet during application and the combination of the discharge condition of the landing droplet following the initial droplet.
 上記に示す従来の技術では、本来塗布されるべきインクによる被塗布面の濃淡変化と、実際の塗布面の濃淡変化の差を検出することにより、吐出コンディションの低下の有無の判定できるものであるが、塗布時の各々の液滴の着弾時間の前後関係と吐出位置と吐出コンディションの関係によって、様々な形態となる塗布領域の変化に対して、適切な吐出コンディション低下の状態の種類が判断できず、吐出コンディションの種類に合わせた最適な保全等の選択ができないという問題がある。 In the conventional technique described above, it is possible to determine whether or not the discharge condition is reduced by detecting the difference between the change in density of the coated surface due to the ink to be applied and the change in density of the actual coated surface. However, depending on the relationship between the landing time of each droplet at the time of application and the relationship between the discharge position and the discharge condition, it is possible to determine the appropriate type of discharge condition deterioration for changes in the application area in various forms. Therefore, there is a problem that it is not possible to select optimum maintenance or the like according to the type of discharge condition.
 また、初滴が不吐出になる程度の吐出性の低下であれば、多数の液滴を排出口に捨て吐出する捨て吐出において捨て吐出液滴数を増加するメンテナンス動作を実施すれば回復する可能性が高い。しかし、インク粘度の変動が生じる場合には、インクジェットヘッドのノズル近辺だけでなくヘッド内のインクを全てフレッシュなインクに置換するような、インクジェットヘッドのノズルからインクを吸引するメンテナンスにより吐出性を回復する。このようなケースでは、インク粘度が低下したと誤判定されると、いたずらにインクを消費するメンテナンスを誤選択して、インク消費コストとメンテナンス時間を増大させるという課題がある。また、インク粘度の変化が連続すると、インク自体が劣化したと判断され、新しいインクに交換する等、同様にインクの消費が増えるという問題もある。 In addition, if the discharge performance is reduced to the extent that the first droplet is not ejected, it can be recovered by performing a maintenance operation that increases the number of discarded ejected droplets in the discarded eject that discards and ejects a large number of droplets to the ejection port. High nature. However, when the ink viscosity fluctuates, the ejection performance is restored by maintenance that sucks ink from the nozzles of the inkjet head, such as replacing all the ink in the head as well as the vicinity of the nozzles of the inkjet head. To do. In such a case, if it is erroneously determined that the ink viscosity has decreased, there is a problem that maintenance for consuming ink is erroneously selected to increase ink consumption cost and maintenance time. In addition, if the change in the ink viscosity continues, it is determined that the ink itself has deteriorated, and there is a problem that the ink consumption similarly increases, such as replacement with a new ink.
 このように、本来塗布されるべきインクによる被塗布面の濃淡変化と、実際の塗布面の濃淡変化の差の検出だけでは、複数の液滴を塗布状態で混合する条件で塗布する際に発生した吐出性の低下の種類を判断し、適切な保全処理を施すことが困難であった。 In this way, only the detection of the difference between the change in shade on the coated surface due to the ink to be applied and the change in shade on the actual coated surface occurs when coating with a condition where multiple droplets are mixed in the coated state. It was difficult to determine the type of dischargeability deterioration and to perform appropriate maintenance processing.
 特に、フラットディスプレイパネル基板への機能性インクの塗布を行なう装置が広く利用されてきているが、このような製造装置への適用では、印刷の目的が目視される画像の記録ではなく、基板面上にインクを配置構成することにより機能性を持たせることが必要となる。 In particular, an apparatus for applying functional ink to a flat display panel substrate has been widely used, but in application to such a manufacturing apparatus, the purpose of printing is not the recording of an image to be visually observed, but the substrate surface. It is necessary to provide functionality by arranging the ink on the top.
 例えば液晶ディスプレイパネルのTFT(Thin Film Transistor)基板のゲート絶縁膜を形成する工程においてゲート絶縁膜の欠損を修正する生産装置の場合について、詳細に説明する。 For example, a case of a production apparatus that corrects a defect in a gate insulating film in a process of forming a gate insulating film on a TFT (Thin Film Transistor) substrate of a liquid crystal display panel will be described in detail.
 ゲート線を形成後、ソース線を形成する前にゲート線の絶縁膜を成膜してから、ソース線を形成する。ここでゲート線上にソース線が形成される部分のゲート絶縁膜に欠損があると、ゲート線とソース線が短絡もしくは絶縁性の低い状態となり、液晶ディスプレイ基板となった際の信号駆動時に信号電流がリークし、液晶ディスプレイの表示不良の原因となる。このゲート絶縁膜の修正方法としては、ゲート線とソース線が交差する領域、若しくは保持容量が形成される領域における成膜不良箇所に対し、絶縁材料を含む液滴をインクジェット方式で吐出し、ゲート線、もしくは保持容量線を覆う絶縁膜を形成させて修正する方法がある。この場合、液滴を塗布する修正箇所はゲート線の厚みにより、面から厚み方向に突出した部分(凸部)を覆うように局所的にインクを塗布することになる。このような場合、凸部の被覆性が重要となる。例えば絶縁膜修正の場合、形成される絶縁膜の絶縁特性が確保されることが重要であるが、絶縁特性は膜厚や形状に依存する。 After forming the gate line, before forming the source line, an insulating film of the gate line is formed, and then the source line is formed. Here, if there is a defect in the gate insulating film where the source line is formed on the gate line, the gate line and the source line are short-circuited or have a low insulating property, and a signal current is generated when driving the liquid crystal display substrate. Leaks and causes display defects on the liquid crystal display. As a method for correcting the gate insulating film, a droplet containing an insulating material is ejected by an ink jet method to a defective film formation region in a region where a gate line and a source line intersect or a region where a storage capacitor is formed. There is a method of correcting by forming an insulating film covering the wire or the storage capacitor line. In this case, the correction portion where the droplet is applied is locally applied with the thickness of the gate line so as to cover a portion (convex portion) protruding in the thickness direction from the surface. In such a case, the coverage of the convex portion is important. For example, in the case of repairing an insulating film, it is important to ensure the insulating characteristics of the formed insulating film, but the insulating characteristics depend on the film thickness and shape.
 仮に、塗布膜に偏りが発生すると、凸部の被覆性が悪くなり、十分に凸部が被覆できない、あるいは凸部端部の膜厚が薄くなり、十分な絶縁特性が確保できず、絶縁膜としての機能を果さないなどの問題が発生する。これには凸部の両側で均一かつ凸部の被覆性良く液体を塗布することが重要である。これに対応する方法として、凸部中心よりもずらして液滴を塗布する第一の塗布工程によりあらかじめ凸部端部のどちらか片側をインクで濡れるように塗布し、次に凸部中心よりも第1の塗布工程の反対側にずらして液滴を塗布する第2の塗布工程により、反対側端部もインクで濡れるように塗布し、さらに凸部中心に液滴を塗布する第三の塗布工程で所望の膜厚を確保できる充分な量のインクを塗布して液体を結合させ、一つの液体として機能させることにより、凸部の被覆性がよく、両側を均一に濡らすことができる修正方法等が考えられる。このような組み合わせ塗布において初滴で不吐出や、吐出体積が少なくなる等が発生すると、第一の塗布工程での濡れ量が少なくなり、第三の塗布工程で液滴を結合させる際に第一の塗布工程で濡らした凸部端部での結合性が低下して第三の塗布工程で塗布したインクが凸部端部の濡らした領域を超えて、広く広がった状態となる。 If unevenness occurs in the coating film, the coverage of the convex part is deteriorated, and the convex part cannot be sufficiently covered, or the film thickness at the end of the convex part becomes thin, and sufficient insulation characteristics cannot be secured. The problem of not fulfilling the function occurs. For this purpose, it is important to apply the liquid uniformly on both sides of the convex part and with good coverage of the convex part. As a method corresponding to this, in the first application step of applying the liquid droplet by shifting from the center of the convex portion, one end of the convex portion is applied in advance so that it is wetted with ink, and then, more than the center of the convex portion. In the second application step of applying droplets by shifting to the opposite side of the first application step, a third application is applied in which the opposite end is also wetted with ink and the droplet is applied to the center of the convex portion. A correction method in which a sufficient amount of ink that can secure a desired film thickness in the process is applied and the liquids are combined to function as a single liquid so that the convexity is well covered and both sides can be wetted uniformly. Etc. are considered. In such combination coating, if non-ejection or a decrease in ejection volume occurs in the first droplet, the amount of wetting in the first coating step decreases, and the first droplet drops when the droplets are combined in the third coating step. The connectivity at the end of the convex portion wetted in one application step is lowered, and the ink applied in the third application step spreads widely beyond the wetted region of the end portion of the convex portion.
 そこで、本発明の課題は、複数の液滴を塗布し混合させる液滴の印刷塗布装置において、吐出性の低下の種類を正確に判断し、吐出状態を保つ適切な保全制御を行なう装置を提供することにある。 Accordingly, an object of the present invention is to provide an apparatus for performing appropriate maintenance control for accurately determining the type of drop in ejection property and maintaining the ejection state in a droplet printing and coating apparatus that applies and mixes a plurality of droplets. There is to do.
 上記課題を解決するため、この発明の液滴塗布状態判定装置は、被塗布面の同一の塗布領域内の位置の異なる場所に時間差を設けて複数の液滴を吐出する塗布装置における液滴の塗布状態の判定装置であって、塗布後の塗布領域を計測する塗布領域計測手段と、所望の塗布領域と前記塗布領域計測手段により計測した塗布領域との差異を認識する塗布領域認識手段と、前記塗布領域計測手段及び塗布領域認識手段により、各々の液滴の吐出状態を判断する塗布状態判定手段を有している。上記構成の塗布状態判定装置によれば、塗布領域への吐出開始からの時間に応じた不吐出や吐出量の低下を判断できるため、適切な保全動作を選択して実施することで、インク消費量の抑制とメンテナンス時間の増加を無くすことが可能となる。 In order to solve the above-described problems, a droplet application state determination device according to the present invention provides a droplet application in a coating device that discharges a plurality of droplets with different time positions at different positions in the same application region of a surface to be applied. An application state determination device, a coating area measuring unit that measures a coating area after coating, a coating area recognition unit that recognizes a difference between a desired coating area and a coating area measured by the coating area measuring unit; An application state determination unit that determines the discharge state of each droplet by the application region measuring unit and the application region recognition unit. According to the application state determination apparatus having the above-described configuration, it is possible to determine non-discharge or a decrease in the discharge amount according to the time from the start of discharge to the application region. Therefore, by selecting and performing an appropriate maintenance operation, ink consumption It is possible to reduce the amount and increase the maintenance time.
 また、上記課題を解決するため、この発明の液滴塗布装置は、上記の液滴塗布状態判定装置と、インクジェットヘッドのメンテナンスを行なう保全部を有し、塗布状態判定手段の判定結果を元に、インクジェットヘッドのメンテナンスの種類を選択して保全動作を行なうことを特徴としている。上記構成の液滴塗布装置によれば、塗布領域への吐出開始からの時間に応じた不吐出や吐出量の低下に応じた適切な保全動作を実施する為、インク消費量の抑制とメンテナンス時間の増加を無くすことが可能となる。 In order to solve the above problems, a droplet coating apparatus of the present invention includes the above-described droplet coating state determination device and a maintenance unit that performs maintenance of the inkjet head, and is based on the determination result of the coating state determination unit. The maintenance operation is performed by selecting the type of maintenance of the inkjet head. According to the droplet applying apparatus configured as described above, the ink consumption can be suppressed and the maintenance time can be reduced in order to perform the appropriate maintenance operation according to the non-ejection according to the time from the start of the ejection to the application region and the decrease in the ejection amount. It is possible to eliminate the increase in.
 また、上記課題を解決するため、この液滴塗布状態判定方法は、被塗布面の同一の塗布領域内の位置の異なる場所に時間差を設けて複数の液滴を吐出する塗布装置における液滴の塗布状態の判定方法であって、塗布後の塗布領域を計測する塗布領域計測工程と、所望の塗布領域と前記塗布領域計測手段により計測した塗布領域との差異を認識する塗布領域認識工程と、前記塗布領域計測工程及び塗布領域認識工程により得られた結果によって、各々の液滴の吐出状態を判断する塗布状態判定工程を有することを特徴としている。上記液滴塗布状態判定方法によれば、塗布領域への吐出開始からの時間に応じた不吐出や吐出量の低下を判断する方法を提供できる為、液滴塗布状態判定装置を製作することができる。また、この方法を用いて、液滴塗布装置の保全動作を実施した場合には、インク消費量の抑制とメンテナンス時間の増加を無くすことができる。 In addition, in order to solve the above-described problem, this droplet application state determination method is a method for determining a droplet application state in a coating apparatus that discharges a plurality of droplets by providing a time difference at different positions in the same application region of the surface to be coated. A method for determining a coating state, a coating region measuring step for measuring a coating region after coating, a coating region recognition step for recognizing a difference between a desired coating region and a coating region measured by the coating region measuring means, It has a coating state determination step of determining the discharge state of each droplet based on the results obtained by the coating region measurement step and the coating region recognition step. According to the droplet application state determination method, it is possible to provide a method for determining non-discharge or a decrease in the discharge amount according to the time from the start of discharge to the application region. it can. In addition, when the maintenance operation of the droplet applying apparatus is performed using this method, it is possible to suppress the ink consumption and increase the maintenance time.
 本発明は、被塗布面の同一の塗布領域内の位置の異なる場所に時間差を設けて複数の液滴を吐出する塗布装置における液滴の塗布状態の判定装置であって、塗布領域計測手段及び塗布領域認識手段を有しており、これらにより各々の液滴の吐出状態を判断する塗布状態判定手段を有している。したがって、塗布領域への吐出開始からの時間に応じた不吐出や吐出量の低下を判断できる。また、塗布領域内の基準位置からの塗布領域の方向と塗布領域の大きさによって判断するので、より正確で短時間の測定が可能となる。また、本発明の液滴塗布装置は上記液滴塗布状態判定装置とメンテナンスを行なう保全部とを備えるため、適切な保全動作を選択して実施することで、インク消費量の抑制とメンテナンス時間の増加を無くすことができる。また、本発明の液滴塗布判定方法を用いることにより、塗布領域への吐出開始からの時間に応じた不吐出や吐出量の低下を判断できるようになる。 The present invention relates to a droplet application state determination apparatus in a coating apparatus that discharges a plurality of droplets by providing a time difference at different positions within the same coating region of a surface to be coated. It has application area recognition means, and it has application state determination means for determining the discharge state of each droplet. Therefore, it is possible to determine non-ejection and a decrease in the ejection amount according to the time from the start of ejection to the application region. Further, since determination is made based on the direction of the application area from the reference position in the application area and the size of the application area, more accurate and short-time measurement is possible. In addition, since the droplet coating apparatus of the present invention includes the above-described droplet coating state determination device and a maintenance unit that performs maintenance, by selecting and performing an appropriate maintenance operation, it is possible to reduce ink consumption and reduce maintenance time. The increase can be eliminated. Further, by using the droplet application determination method of the present invention, it becomes possible to determine non-ejection and a decrease in the ejection amount according to the time from the start of ejection to the application region.
 以上のことから、複数の液滴を同一の塗布領域内に位置をずらして塗布する際に、吐出性が低下した場合でも、液滴の吐出性の低下による塗布異常を簡単に検出することができるようになり、吐出性の低下の種類に応じた適切な保全処理を行なうこと可能となる。 From the above, even when a plurality of droplets are applied in the same application region while shifting their positions, even if the discharge property is reduced, it is possible to easily detect an application abnormality due to a drop in the droplet discharge property. As a result, it is possible to perform appropriate maintenance processing according to the type of discharge deterioration.
本発明による塗布状態判定方法を説明するための平面図であり、(a)は塗布領域の計測方向を計測する方法を示し、(b)は、塗布領域に外接する矩形の領域を計測する方法を示している。It is a top view for demonstrating the application | coating state determination method by this invention, (a) shows the method of measuring the measurement direction of an application area | region, (b) is the method of measuring the rectangular area | region which circumscribes the application area | region. Is shown. 本発明による塗布状態の判定方法を示した図である。It is the figure which showed the determination method of the application state by this invention. 本発明の実施形態に係る液滴塗布装置の一例としての、液滴吐出による基板面修正装置を概略的に示す側面図である。1 is a side view schematically showing a substrate surface correcting device by droplet discharge as an example of a droplet applying apparatus according to an embodiment of the present invention. 本発明による液滴吐出処理部が組み込まれたインクジェットユニットの構成図である。It is a block diagram of the inkjet unit in which the droplet discharge process part by this invention was integrated. 本発明による液滴塗布装置の構成を示すブロック図である。It is a block diagram which shows the structure of the droplet coating device by this invention. 基板とインクジェットヘッドと顕微鏡カメラの関係を示した図である。It is the figure which showed the relationship between a board | substrate, an inkjet head, and a microscope camera. 図6の基板とインクジェットヘッドと顕微鏡カメラの関係を上面より示した図である。It is the figure which showed the relationship between the board | substrate of FIG. 6, an inkjet head, and a microscope camera from the upper surface. 本発明に係る装置による修正動作フローを示した図である。It is the figure which showed the correction operation | movement flow by the apparatus which concerns on this invention. ゲート配線パターン形成後に、ゲート絶縁膜等を成膜した基板の表面外観図である。It is a surface external view of the board | substrate which formed the gate insulating film etc. after forming the gate wiring pattern. ゲート配線パターンとゲート絶縁膜等を形成した基板の断面図である。It is sectional drawing of the board | substrate in which the gate wiring pattern, the gate insulating film, etc. were formed. パターン交差部上の膜部欠損部に、絶縁機能を有する絶縁インク液滴を塗布して修正する、本発明の修正塗布動作を説明する図であり、(a)~(e)はその各工程を示している。It is a figure explaining the correction | amendment application | coating operation | movement of this invention which apply | coats and corrects the insulation ink droplet which has an insulation function to the film | membrane part defect | deletion part on a pattern crossing part, (a)-(e) is each process Is shown. 修正塗布後の塗布領域の計測方向を説明する図であり、(a)は、修正前の欠損状態を示し、(b)は、修正された塗布領域を方向別に計測する様を示している。It is a figure explaining the measurement direction of the application | coating area | region after correction application | coating, (a) shows the defect | deletion state before correction | amendment, (b) has shown that the corrected application | coating area | region is measured according to direction. 第一の工程における液滴の吐出できなかった事例での修正塗布動作を説明する図であり、(a)~(c)はその各工程を示している。FIG. 5 is a diagram for explaining a correction coating operation in a case where droplets cannot be ejected in the first step, and (a) to (c) show each step. 第一の工程の方向に塗布領域が上限管理値を超えて変形した場合の説明図である。It is explanatory drawing when a coating area | region deform | transforms exceeding an upper limit management value in the direction of a 1st process. 修正塗布後の塗布領域の計測方向を説明する図であり、(a)は膜部欠損部の近隣である斜め上方向に異物が付着して場合を示し、(b)は、当該異物により塗布領域が異物側に偏った場合を示している。It is a figure explaining the measurement direction of the application | coating area | region after correction | amendment application | coating, (a) shows the case where a foreign material has adhered to the diagonally upward direction which is the vicinity of a film | membrane part defect | deletion part, (b) is applied with the said foreign material The case where the area is biased toward the foreign object side is shown. 膜部欠損部の近隣である斜め上方向に異物が付着した場合に発生する事象を説明する図であり、(a)~(c)はその各工程を示している。FIG. 6 is a diagram for explaining an event that occurs when a foreign object adheres in an obliquely upward direction that is in the vicinity of a film part defect part, and (a) to (c) show each process. 塗布したインク塗布領域がドレインパターン配線の影響を受けるケースについて説明する図であり、(a)は、基板上の膜部欠損部を示し、(b)~(d)は、膜部欠損部のみを示している。It is a figure explaining the case where the applied ink application area receives the influence of drain pattern wiring, (a) shows the film part defect | deletion part on a board | substrate, (b)-(d) shows only a film part defect | deletion part Is shown. 塗布位置ズレの発生の状態を説明する図であり、(a)は、修正前の欠損状態を示し、(b)は、塗布領域が全体にずれた状態をしめしている。It is a figure explaining the state of generation | occurrence | production of application | coating position shift, (a) shows the defect state before correction, (b) has shown the state which the application | coating area | region shifted | deviated to the whole. 塗布位置ズレの発生の事例での修正塗布動作を説明する図であり、(a)~(c)はその各工程を示している。It is a figure explaining the correction application operation in the case of occurrence of application position deviation, and (a) to (c) show the respective steps. インクの粘度が低下した異常時に、塗布領域が大きくなったケースを示す図であり、(a)は修正前の欠損状態を示し、(b)は、塗布領域が全般に拡大している様を示している。It is a figure which shows the case where the application area | region became large at the time of abnormality which the viscosity of the ink fell, (a) shows the defect | deletion state before correction, (b) shows that the application area | region has expanded in general. Show.
 以下、発明の具体的な実施の形態について説明を行なうが、本発明は本実施形態に限定されるものではなく、本発明の範囲内で種々変更して実施することができる。 Hereinafter, specific embodiments of the present invention will be described, but the present invention is not limited to the present embodiments, and various modifications can be made within the scope of the present invention.
 (塗布状態の判定方法の原理説明)
 以下、本発明の液滴塗布状態判定装置における、塗布領域計測手段と塗布領域認識手段による液滴の塗布状態の原理的な判定方法について、詳細に説明する。
(Explanation of the principle of the application state judgment method)
Hereinafter, a principle determination method of a droplet application state by the application region measurement unit and the application region recognition unit in the droplet application state determination device of the present invention will be described in detail.
 まず塗布領域を方向別に計測する方法について図1の(a)に基づいて説明する。方向別計測は図1の(a)に示すように、基板を上面よりみて右方向への軸方向をL0(0[度])とし、45[度]単位で、L315まで全方位を測定する。測定は、液滴を塗布処理した被塗布面の表面状態を撮像カメラで撮像し、撮像された画像データより塗布領域を計測する方法で行っている。 First, a method for measuring the application area by direction will be described with reference to FIG. In the measurement by direction, as shown in FIG. 1A, when the substrate is viewed from above, the axial direction to the right is L0 (0 [degree]), and all directions are measured up to L315 in units of 45 [degree]. . The measurement is performed by a method in which the surface state of the surface to be coated on which droplets have been coated is imaged with an imaging camera and the coating area is measured from the captured image data.
 通常の塗布領域は、各方向Davの領域が平均的な領域となる。また、塗布領域にはばらつきがあり、塗布領域の良好な下限領域をDmin、上限領域をDmaxとし、上下限を超えた場合、塗布領域に異常を生じたと判断する。この平均的領域と判断基準の領域は、各方向別に設定が可能であり、後述する画像処理部53に格納されている。また塗布の大きさを示す領域として、図1の(b)に示すように、塗布領域に外接する矩形の領域を計測する。外接する矩形の領域は修正塗布の中央位置と関係なく、塗布領域全体に対する領域である。F0はL0に直交するL90とL270の2方向に外接する矩形の領域を示している。同様にF45はL45に直交する方向、F90はL90に直交する方向、F135はL135に直交するL45とL225の2方向に外接する矩形の領域を示している。各方向Favの領域が平均的な領域となる。また、塗布領域にはばらつきがあり、矩形塗布領域の良好な下限領域をFmin、上限領域をFmaxとし、上下限を超えた場合、塗布領域に異常を生じたと判断する。この平均的領域と判断基準の領域は、各矩形の傾き別に設定が可能であり、画像処理部53に格納されるようになっている。 In the normal application area, the area in each direction Dav is an average area. In addition, there are variations in the application area, and when the lower limit area of the application area is Dmin and the upper limit area is Dmax and the upper and lower limits are exceeded, it is determined that an abnormality has occurred in the application area. The average area and the determination reference area can be set for each direction, and are stored in an image processing unit 53 described later. Further, as a region indicating the size of application, a rectangular region circumscribing the application region is measured as shown in FIG. The circumscribed rectangular area is an area for the entire application area regardless of the center position of the correction application. F0 indicates a rectangular area circumscribing in two directions L90 and L270 orthogonal to L0. Similarly, F45 indicates a direction orthogonal to L45, F90 indicates a direction orthogonal to L90, and F135 indicates a rectangular area circumscribing two directions L45 and L225 orthogonal to L135. The area in each direction Fav is an average area. Further, there is a variation in the application area, and when the lower limit area of the rectangular application area is Fmin and the upper limit area is Fmax and the upper and lower limits are exceeded, it is determined that an abnormality has occurred in the application area. The average area and the determination reference area can be set for each rectangular inclination, and are stored in the image processing unit 53.
 このような判定手法により画像処理部53、修正塗布工程後毎に、これら各方向別塗布領域、外接矩形塗布領域を計測し、判断基準の上下限の管理値内であるか、管理値外に大きいか、小さいかを判断することができる。 By such a determination method, each time after the image processing unit 53 and the correction application process, the application area for each direction and the circumscribed rectangular application area are measured, and whether they are within the management value of the upper and lower limits of the judgment criterion or outside the management value It can be judged whether it is large or small.
 したがって、塗布領域が所望の領域になければ、吐出不良と判断し、後述するインクジェットヘッドのメンテナンスを実施することにより、正確な塗布状態を保つことが可能となる。 Therefore, if the application region is not in the desired region, it is possible to maintain an accurate application state by determining that the discharge is defective and performing maintenance of the inkjet head described later.
 次に塗布状態の判定方法を図2により説明する。 Next, a method for determining the application state will be described with reference to FIG.
 まず、修正塗布中心より放射状の多数方向の各方向別に塗布領域を計測(S30)し、外接矩形の塗布領域を計測する(S31)。個々では外接矩形の塗布領域の計測を行なったが、初滴を計測しても良い。 First, a coating area is measured for each of a plurality of radial directions from the correction coating center (S30), and a circumscribed rectangular coating area is measured (S31). Although the measurement of the circumscribed rectangular coating area was performed individually, the initial drop may be measured.
 次に、計測した外接矩形領域を確認し(S32)、外接矩形の塗布領域F0~F135のいずれかひとつでも、上限・下限の管理値を超えているかチェックする。管理値を超えていない場合、塗布形状・領域に異常は無いとして、位置ズレのチェックのためSTEP40へ移行する。管理値を超えている場合、塗布形状または領域に異常が発生した可能性が高いとして、S33へ移行する。 Next, the measured circumscribed rectangular area is confirmed (S32), and it is checked whether any one of the circumscribed rectangular application areas F0 to F135 exceeds the upper limit / lower limit management value. If it does not exceed the control value, it is determined that there is no abnormality in the application shape / region, and the process proceeds to STEP 40 for checking the positional deviation. When it exceeds the control value, it is determined that there is a high possibility that an abnormality has occurred in the application shape or region, and the process proceeds to S33.
 S33では、S30で計測したL0からL315の各方向別の塗布領域を確認し、塗布領域の変化が等方性であり一様であるかをチェックする。塗布領域に異方性がなく一様な変化である場合、塗布形状に変化は無いとして、塗布領域のチェックの為S41へ移行する。塗布領域の変化が部分的であり異方性がある場合には、S34へ移行する。 In S33, the application area for each direction from L0 to L315 measured in S30 is confirmed, and it is checked whether the change of the application area is isotropic and uniform. If there is no anisotropy in the application region and the change is uniform, it is determined that there is no change in the application shape, and the process proceeds to S41 for checking the application region. If the change in the coating area is partial and anisotropic, the process proceeds to S34.
 S34では、方向別塗布領域が上限管理値を超えている方向が、第一の工程方向に超えている場合には、初滴または初滴に続く液滴の吐出性が低下していると判断し、吐出滴数の多い捨て吐出メンテナンスを行なう。第一の工程方向以外の方向に越えている場合には、異物等により塗布領域異常が生じたと判断し、インクジェットに対するメンテナンスは行なわない。このとき複数の方向に上限管理値を超えている場合には、第1の工程方向に該当するか否かは、塗布領域の変化量の最長の方向が、第一の工程方向またはその隣接の方向が該当するか否かで判断を行なう。 In S34, when the direction in which the direction-specific application area exceeds the upper limit management value exceeds the first process direction, it is determined that the discharge property of the initial droplet or the droplet following the initial droplet is deteriorated. Disposable discharge maintenance with a large number of discharged droplets. If it exceeds the direction other than the first process direction, it is determined that an application region abnormality has occurred due to foreign matter or the like, and maintenance for the inkjet is not performed. At this time, if the upper limit control value is exceeded in a plurality of directions, whether or not the first process direction corresponds is determined by whether the longest direction of change in the application region is the first process direction or its adjacent Judgment is made based on whether the direction is appropriate.
 S40では、塗布領域の重心位置により位置ズレを確認する。 In S40, the positional deviation is confirmed based on the position of the center of gravity of the application area.
 塗布領域の重心位置を計測し、修正位置に対し、上限管理値を超えて位置ズレが発生した場合には、塗布位置ズレと判断し、着弾位置の再設定によりヘッド間距離18を再設定する。上限管理値を超えていない場合、正常な塗布である良品と判断する。 The center-of-gravity position of the application area is measured, and when a positional deviation occurs exceeding the upper limit management value with respect to the correction position, it is determined that the application position is misaligned, and the head-to-head distance 18 is reset by resetting the landing position. . When the upper limit control value is not exceeded, it is determined that the product is a normal product.
 次に、外接矩形の領域の増減を確認(S41)し、外接矩形の塗布領域が上限管理値を超えている場合には、インク粘度低下と判断する。また塗布量増大、基板面の撥液性低下の可能性もある。下限管理値を超えている場合には、インク粘度増大と判断する。また塗布量減少、基板面の撥液性増大の可能性もある。インク粘度低下・インク粘度増大時には、インクの吸引メンテナンス等のインクジェットヘッド内のインクを置換する作用のある保全動作を行なう。 Next, the increase / decrease of the circumscribed rectangular area is confirmed (S41), and if the circumscribed rectangular application area exceeds the upper limit management value, it is determined that the ink viscosity is decreased. Moreover, there is a possibility that the coating amount increases and the liquid repellency of the substrate surface decreases. If the lower limit management value is exceeded, it is determined that the ink viscosity has increased. In addition, there is a possibility that the coating amount decreases and the liquid repellency of the substrate surface increases. When the ink viscosity is lowered or the ink viscosity is increased, a maintenance operation that replaces the ink in the inkjet head, such as ink suction maintenance, is performed.
 上限管理値・下限管理値の何れも超えている計測値がある場合には、どちらの影響量が強いかを判断する為、上限・下限の各々について超えている塗布領域量の総和を求め、総和量の大きい方に超えていると判断する。 When there is a measurement value that exceeds both the upper limit control value and the lower limit control value, in order to determine which influence amount is strong, obtain the sum of the application area amount exceeding each of the upper limit and lower limit, It is judged that the sum is over the larger one.
 本実施形態の内容により、所望の領域に複数の液滴を混合して塗布できる印刷塗布装置において、吐出性の低下を正確に判断し、吐出状態を保つ適切な保全制御を行なう装置を実現できる。 According to the contents of the present embodiment, in a print coating apparatus capable of mixing and applying a plurality of liquid droplets in a desired region, it is possible to realize an apparatus that accurately determines a decrease in ejection performance and performs appropriate maintenance control to maintain the ejection state. .
 (発明の実施の形態)
 以下、上記手法を実際の液晶ディスプレイパネルに用いられるTFT(Thin Film Transistor:薄膜トランジスタ)基板の製造工程において、ゲート絶縁膜を形成した表面の欠陥に対し、電気的な絶縁機能を有する液滴を吐出し、ゲート絶縁膜の修正を行なう、TFT基板の修正装置の事例について適用した場合の説明を行なう。
(Embodiment of the Invention)
Hereinafter, in the manufacturing process of a TFT (Thin Film Transistor) substrate used in an actual liquid crystal display panel, the above method is used to discharge a droplet having an electrical insulating function against a surface defect on which a gate insulating film is formed. Then, a description will be given of the case where the present invention is applied to a case of a TFT substrate correcting device for correcting a gate insulating film.
 図3はこの発明の実施形態の液滴塗布装置の一例としての、液滴吐出による基板面修正装置の概略構成を表す模式図である。ここで液滴とは電気的な絶縁機能を有する絶縁インクの吐出液を意味する。 FIG. 3 is a schematic diagram showing a schematic configuration of a substrate surface correcting device by droplet discharge as an example of a droplet applying device according to an embodiment of the present invention. Here, the droplet means a discharge liquid of insulating ink having an electrical insulating function.
 この液滴塗布装置は、図3に示すように、処理部の一例としてのインクジェットユニット4と被処理物の一例としての処理対象の基板1との、相対的な位置を直交するX・Yの2軸の自動移動ステージにより移動させ、移動中にインクジェットユニット4内のインクジェットヘッドより基板1の処理面(基板面とも称する)へ部材インクを吐出することにより、基板面上に部材パターンを形成するものである。この第1実施形態の部材としては、絶縁性のある膜部材を塗布する。上記液滴塗布装置では、インクジェットユニット4と基板1は個別の軸に搭載されている。 As shown in FIG. 3, the droplet applying apparatus includes X and Y orthogonal positions relative to each other between an inkjet unit 4 as an example of a processing unit and a substrate 1 to be processed as an example of an object to be processed. A member pattern is formed on the substrate surface by being moved by a two-axis automatic moving stage and ejecting member ink from the ink jet head in the ink jet unit 4 to the processing surface (also referred to as substrate surface) of the substrate 1 during the movement. Is. As the member of the first embodiment, an insulating film member is applied. In the droplet applying apparatus, the inkjet unit 4 and the substrate 1 are mounted on separate axes.
 基板1は、吸着位置決め部2に吸着されて固定される。この吸着位置決め部2は、図示しない基板搬送装置から吸着位置決め部2に載置された基板1を吸着固定する。また、吸着位置決め部2は、図示しない基板位置計測カメラにより、装置の直交方向の位置と基板1の位置ズレ量と傾き量を計測し、基板1の位置と姿勢を微調整するためのXYθステージ軸を備えている。 The substrate 1 is sucked and fixed to the suction positioning part 2. The suction positioning unit 2 sucks and fixes the substrate 1 placed on the suction positioning unit 2 from a substrate transport device (not shown). Further, the suction positioning unit 2 measures the position in the orthogonal direction of the apparatus, the positional deviation amount and the inclination amount of the substrate 1 by a substrate position measurement camera (not shown), and finely adjusts the position and posture of the substrate 1. It has a shaft.
 X軸3は、基板1を図3の左右方向へ自動移動し、吸着位置決め部2を搭載するステージ軸であり装置定盤部8に搭載されている。X軸3の移動方向をX方向と称する。上記X軸3によって、インクジェット塗布を行なうインクジェットユニット4と基板1とを、基板1の表面に平行な平面に沿ったX方向に任意の場所へ相対的に移動させる。本実施形態では、推進軸にリニアモータを用いており、リニアスケールによるエンコーダ機能を搭載し、動作指令はパルス指令による位置指令制御で行い、サーボドライバによりモーター駆動制御を行っている。サーボドライバは、リニアスケールによるエンコーダ信号によりステージの移動方向への位置を計測し、クローズドループでフィードバック処理を行っている。 The X axis 3 is a stage axis that automatically moves the substrate 1 in the left-right direction of FIG. 3 and mounts the suction positioning unit 2, and is mounted on the apparatus surface plate unit 8. The moving direction of the X axis 3 is referred to as the X direction. By the X axis 3, the inkjet unit 4 that performs inkjet application and the substrate 1 are relatively moved to an arbitrary position in the X direction along a plane parallel to the surface of the substrate 1. In this embodiment, a linear motor is used for the propulsion shaft, an encoder function using a linear scale is mounted, an operation command is performed by position command control using a pulse command, and motor drive control is performed by a servo driver. The servo driver measures the position of the stage in the moving direction based on an encoder signal based on a linear scale, and performs feedback processing in a closed loop.
 インクジェットユニット4は、図4に示すような構成となっており、基板1にインクジェット方式により液滴を塗布するインクジェットヘッド10と、インクジェットヘッド10に液滴インクを安定して供給するインク供給部11と、基板表面の状態を観察し画像データとして計測する顕微鏡カメラ9がユニットベースプレート12に取り付けられたユニットである。 The inkjet unit 4 has a configuration as shown in FIG. 4, and an inkjet head 10 that applies droplets to the substrate 1 by an inkjet method, and an ink supply unit 11 that stably supplies droplet ink to the inkjet head 10. The microscope camera 9 that observes the state of the substrate surface and measures it as image data is a unit attached to the unit base plate 12.
 Y軸5はインクジェットユニット4を図3の前後方向へ自動移動するステージ軸である。Y軸5の移動方向をY方向と称する。Y軸5によって、インクジェット塗布を行なうインクジェットユニット4と基板1とを、基板1の表面に平行な平面に沿ったY軸方向に任意の場所へ相対的に移動させる。本実施形態では、X軸3と同様に推進軸にリニアモータを用いており、リニアスケールによるエンコーダ機能を搭載し、動作指令はパルス指令による位置指令制御で行い、サーボドライバによりモーター駆動制御を行っている。サーボドライバは、リニアスケールによるエンコーダ信号によりステージの移動方向への位置を計測し、クローズドループでフィードバック処理を行っている。 The Y axis 5 is a stage axis that automatically moves the inkjet unit 4 in the front-rear direction of FIG. The moving direction of the Y axis 5 is referred to as the Y direction. By the Y axis 5, the inkjet unit 4 that performs inkjet application and the substrate 1 are relatively moved to an arbitrary position in the Y axis direction along a plane parallel to the surface of the substrate 1. In this embodiment, a linear motor is used for the propulsion shaft as with the X-axis 3, and an encoder function based on a linear scale is installed. The operation command is controlled by position command control using a pulse command, and the motor drive control is performed by a servo driver. ing. The servo driver measures the position of the stage in the moving direction based on an encoder signal based on a linear scale, and performs feedback processing in a closed loop.
 Y軸5はガントリーフレーム6に固定されており、ガントリーフレーム6は装置定盤部8に搭載される。 The Y axis 5 is fixed to the gantry frame 6, and the gantry frame 6 is mounted on the apparatus surface plate 8.
 これらの構成により、基板1の表面に対し、任意の位置にインクジェットヘッド10または顕微鏡カメラ9を配置させ、塗布または観察処理を行なうことができる。 With these configurations, the inkjet head 10 or the microscope camera 9 can be arranged at an arbitrary position with respect to the surface of the substrate 1 to perform application or observation processing.
 インクジェットユニット4のインクジェットヘッド10の被処理基板側には、複数のノズル孔を有するノズルプレートが形成されている。上記ノズルプレートのノズル孔は、直径10~20μmに設定されている。ノズル孔内の隔壁側面の一部にピエゾアクチュエータとその電極を形成している。上記ピエゾアクチュエータとその電極に電圧を印加して隔壁の両側面の間に電界を発生させて隔壁自体をせん断変形させることにより、吐出エネルギーを発生させて、インクを液滴としてノズル孔より吐出する。このノズル孔は、直線状に複数配置されてノズル列を構成している。上記ノズル孔毎に駆動信号が与えられ、ノズル孔毎への駆動信号の出力により吐出を行い、各種の塗布液滴のドットパターンを基板面に形成することができる。また、インクジェットヘッド10にはこのインク供給部11が接続され、インクを10に安定供給している。インク供給部はインクの安定供給の他、後述するインクジェット保全部7のインク吸引保全動作に伴うインクの供給を行なう。 A nozzle plate having a plurality of nozzle holes is formed on the substrate to be processed of the inkjet head 10 of the inkjet unit 4. The nozzle hole of the nozzle plate is set to have a diameter of 10 to 20 μm. A piezo actuator and its electrode are formed on a part of the side wall of the partition wall in the nozzle hole. A voltage is applied to the piezo actuator and its electrodes to generate an electric field between both sides of the partition wall, and the partition wall itself is subjected to shear deformation, thereby generating discharge energy and discharging ink as droplets from the nozzle holes. . A plurality of nozzle holes are arranged in a straight line to constitute a nozzle row. A drive signal is given to each nozzle hole, and ejection is performed by outputting the drive signal to each nozzle hole, so that dot patterns of various coating droplets can be formed on the substrate surface. Further, the ink supply unit 11 is connected to the ink jet head 10 to stably supply ink to 10. In addition to the stable supply of ink, the ink supply unit supplies ink accompanying an ink suction maintenance operation of the inkjet maintenance unit 7 described later.
 顕微鏡カメラ9は、基板面を観察し画像データを得るオートフォーカス機能を有する顕微鏡撮像が可能なカメラであり、明視野の光学系を有し、倍率は10倍、カメラは画素数1600×1200画素、画素領域0.44正方[μm]のCCDエリアセンサであり、被処理基板面を観察可能である。 The microscope camera 9 is a camera capable of imaging with a microscope having an autofocus function for observing the substrate surface and obtaining image data, has a bright field optical system, has a magnification of 10 times, and the camera has 1600 × 1200 pixels. A CCD area sensor having a pixel area of 0.44 square [μm], and the surface of the substrate to be processed can be observed.
 図5は上記液滴塗布装置の構成を示すブロック図である。 FIG. 5 is a block diagram showing the configuration of the droplet applying apparatus.
 インクジェットヘッド10は、インク供給部11よりインクを供給され、インク供給部11は、インクジェット制御装置52により安定的にインクが供給されるように制御される。インクジェット制御装置52はインクジェットヘッド10を制御し、インクの吐出に必要な駆動信号を吐出対象のノズルに関するピエゾアクチュエータに対して出力する機能を備えている。上記駆動信号によりインクジェットヘッド10はノズルより液滴を吐出する。顕微鏡カメラ9で撮像した画像データは画像処理部53へ転送される。画像処理部(塗布領域計測手段、塗布領域認識手段、塗布状態判定手段)53は、顕微鏡カメラ9で撮像した画像データを取り込み、数値処理して基板面の表面状態の位置・明るさ等の計測結果を演算するとともに、塗布領域を複数の方向・位置等の方法により計測し管理基準値に判定・出力・記憶する機能を持つ。本例での表面状態とは、TFT基板の表面状態である。塗布領域の計測では、修正位置を指定した際、塗布前の基板面の観察画像を記憶し、修正塗布後に基板面の観察画像を取得、塗布前の画像との差分を抽出することで、塗布されたことによる画像明度変調成分を取り出し、塗布領域を得る。この塗布領域に対し、基準となる位置(基準位置)、たとえば修正塗布中心位置から塗布された塗布領域の境界部分までの位置を塗布領域として測定できるようになっている。 The inkjet head 10 is supplied with ink from the ink supply unit 11, and the ink supply unit 11 is controlled by the inkjet control device 52 so that ink is stably supplied. The ink jet control device 52 has a function of controlling the ink jet head 10 and outputting a drive signal necessary for ink ejection to a piezo actuator related to a nozzle to be ejected. The inkjet head 10 ejects droplets from the nozzles in response to the drive signal. The image data captured by the microscope camera 9 is transferred to the image processing unit 53. An image processing unit (application area measurement means, application area recognition means, application state determination means) 53 takes in image data captured by the microscope camera 9 and performs numerical processing to measure the position / brightness of the surface state of the substrate surface. In addition to calculating the result, it has the function of measuring the application area by a plurality of methods such as directions and positions, and determining, outputting, and storing it as a management reference value. The surface state in this example is the surface state of the TFT substrate. In the measurement of the application area, when the correction position is specified, the observation image of the substrate surface before application is stored, the observation image of the substrate surface is acquired after correction application, and the difference from the image before application is extracted to apply The image lightness modulation component due to this is taken out to obtain a coating region. With respect to this application area, a reference position (reference position), for example, a position from the correction application center position to the boundary portion of the application area can be measured as the application area.
 直交軸制御部54は、X軸3とY軸5を制御する制御部である。主制御装置50の指令に基づいて、直交軸制御部54は、X軸3とY軸5に対し位置制御のためのパルス指令制御を行い、X軸3とY軸5は、サーボドライバとリニアモータより構成されている。 The orthogonal axis control unit 54 is a control unit that controls the X axis 3 and the Y axis 5. Based on the command of the main controller 50, the orthogonal axis control unit 54 performs pulse command control for position control on the X axis 3 and the Y axis 5, and the X axis 3 and the Y axis 5 are linear with the servo driver. It consists of a motor.
 吸着位置決め制御部55は、吸着位置決め部2に基板1が載置されたときに、基板1を吸着して固定し、基板1の位置と姿勢を制御する。 The suction positioning control unit 55 sucks and fixes the substrate 1 when the substrate 1 is placed on the suction positioning unit 2, and controls the position and posture of the substrate 1.
 インクジェット保全部7は、インクジェット保全制御部56の制御により、インクジェットヘッド10の吐出コンディションを一定に保つ保全動作を行なう。ヘッド内のインクを吸引してノズル付近の高粘度インクとともにヘッド内のインク状態をリフレッシュ後にノズル面をワイピングするワイプ動作や、インクジェット制御装置52によりインクを捨て吐出して同様にインク状態をリフレッシュする為、インクを受けるインク吸引部や、インクジェットヘッド面の乾燥を防止するキャップ動作が可能である。 The inkjet maintenance unit 7 performs a maintenance operation for keeping the discharge condition of the inkjet head 10 constant under the control of the inkjet maintenance control unit 56. Wipe operation for wiping the nozzle surface after sucking ink in the head and refreshing the ink state in the head together with high-viscosity ink in the vicinity of the nozzle, and similarly, the ink state is refreshed by discarding and discharging ink by the inkjet control device 52 Therefore, an ink suction portion that receives ink and a cap operation that prevents drying of the inkjet head surface are possible.
 インクの吸引による保全動作については、保全に必要なレベルに応じて、インクの吸引量を複数設定でき、保全時に選択して実施できる。また、捨て吐出保全についても同様に、吐出滴数を複数設定でき、保全時に選択して実施できる。 保全 Regarding the maintenance operation by ink suction, a plurality of ink suction amounts can be set according to the level required for maintenance, and can be selected and executed during maintenance. Similarly, for the discarded discharge maintenance, a plurality of ejection droplet numbers can be set and selected at the time of maintenance.
 主制御装置50は、図5の説明で述べた装置を構成する様々な制御部を組み合わせて装置のシステム制御を行なうものであり、その制御条件とプログラムは、主記憶装置51に記憶されている。 The main control device 50 performs system control of the device by combining various control units constituting the device described in the description of FIG. 5, and the control conditions and program are stored in the main storage device 51. .
 図6は、基板1の一例としてのTFT基板15とインクジェットヘッド10と顕微鏡カメラ9の関係を示した図であり、基板1の処理表面には、ゲートバスラインのパターン16とソースバスラインのパターン17が形成されている。この基板表面を顕微鏡カメラ9が撮像視野13の範囲内で観察する。インクジェットヘッド10は撮像視野13の中心位置よりヘッド間距離18だけ離れた場所(同一の塗布領域内の異なる場所)にノズルより吐出した液滴14が基板1に着弾するよう配置されている。このため、撮像視野13の中心に絶縁機能を有する液滴を塗布したいゲート絶縁膜の欠損位置を位置決めした後、ヘッド間距離18だけヘッドを移動して吐出を行なうと、所望の位置に液滴を塗布することが出来る。 FIG. 6 is a diagram showing the relationship among a TFT substrate 15 as an example of the substrate 1, an inkjet head 10, and a microscope camera 9. On the processing surface of the substrate 1, there are a gate bus line pattern 16 and a source bus line pattern. 17 is formed. The surface of the substrate is observed by the microscope camera 9 within the range of the imaging visual field 13. The inkjet head 10 is arranged so that the droplets 14 ejected from the nozzles land on the substrate 1 at a position (a different place in the same application region) that is a distance 18 between the heads from the center position of the imaging visual field 13. For this reason, when the defect position of the gate insulating film to which the droplet having the insulating function is to be applied is positioned at the center of the imaging visual field 13 and then the head is moved by the distance 18 between the heads, the droplet is discharged at a desired position. Can be applied.
 図の矢印は移動方向を示し、装置ではY軸5が移動に用いられる。 The arrow in the figure indicates the direction of movement, and the Y axis 5 is used for movement in the apparatus.
 また塗布したいゲート絶縁膜の欠損箇所が撮像視野13内に観察できれば、画像上の塗布位置の座標を画像処理部53により計測し視野中心位置からの塗布位置へのオフセット量として算出し、ヘッド間距離18の距離に補正を加えて移動することで、撮像視野13の中心に位置あわせしなくても所望の位置に塗布することができる。 Further, if the missing portion of the gate insulating film to be applied can be observed in the imaging field of view 13, the coordinates of the application position on the image are measured by the image processing unit 53 and calculated as an offset amount from the center position of the field of view to the application position. By applying correction to the distance 18 and moving, it can be applied to a desired position without being aligned with the center of the imaging visual field 13.
 図7は、図6の基板1とインクジェットヘッド10と顕微鏡カメラ9の関係を上面より示した図である。インクジェットヘッド10には複数のノズル孔があるが、塗布に用いるのは本説明例では1個である。図ではノズル20を用いて塗布する際の関係を図示している。吐出するノズル孔の位置は変更してもよく、使用するノズルの位置に応じてヘッド間距離18は変更される。 FIG. 7 is a diagram showing the relationship among the substrate 1, the inkjet head 10 and the microscope camera 9 in FIG. The inkjet head 10 has a plurality of nozzle holes, but only one is used for coating in this example. In the figure, the relationship when applying using the nozzle 20 is illustrated. The position of the nozzle hole to be ejected may be changed, and the inter-head distance 18 is changed according to the position of the nozzle to be used.
 次に上記背説明を行なった液滴塗布装置について基板を修正する動作フローを図8により説明する。 Next, an operation flow for correcting the substrate in the droplet applying apparatus described above will be described with reference to FIG.
 図示しない基板搬送装置から基板1を吸着位置決め部2に受け取り、吸着固定する(S1)。次に基板位置計測カメラにより、装置の直交方向の位置と基板1の位置ズレ量と傾き量を計測し、XYθ軸により装置に対する基板1の位置と姿勢を微調整する(S2)。その後、搬送された基板の欠陥の情報を、装置外のデータベース装置より通信により受信する(S3)。欠陥情報には、基板1に存在し修正対象となる欠陥の座標が含まれており、別工程での検査工程にて抽出された情報を用いる。 The substrate 1 is received by the suction positioning unit 2 from a substrate transport device (not shown) and is sucked and fixed (S1). Next, the position in the orthogonal direction of the apparatus, the positional deviation amount and the inclination amount of the substrate 1 are measured by the substrate position measuring camera, and the position and posture of the substrate 1 with respect to the apparatus are finely adjusted by the XYθ axes (S2). Thereafter, information on the defect of the transferred substrate is received by communication from a database device outside the device (S3). The defect information includes the coordinates of a defect that exists on the substrate 1 and is to be corrected, and uses information extracted in an inspection process in a separate process.
 それから、欠陥座標位置を顕微鏡カメラ9の撮像視野13の中央に位置決めできるようにX軸3とY軸5を移動する(S4)。このとき欠陥は撮像視野13の中央よりずれた位置に観察されることが多い。このずれ量には、受信した欠陥座標に含まれる誤差と、X軸3とY軸5の位置決め誤差が含まれる。次に、撮像視野13内で欠陥に対する修正塗布位置をオペレータが指定する(S5)。パターン交差欠陥部205にインクが塗布し絶縁性を確保できるように、塗布位置を撮像視野13の中心位置に移動する。次にS6、S7を繰り返し第一の工程から第三の工程の塗布動作を繰り返す。ここで、修正用の液滴を塗布するノズルを、指定された修正塗布位置に移動する様、Y軸5はヘッド間距離18移動に撮像視野13の中央から指定した修正塗布位置までのオフセット量を加えて移動する。このときオフセット量にはヘッド間距離18に加え、各工程の配線パターンの幅方向にずらした位置に塗布する場合には、そのずらし量を加えて移動する(S6)。また、第一の工程から第三の工程のいずれかの塗布動作を行なう(S7)。このとき、塗布時の吐出条件(液滴数やその吐出間隔)は任意に設定できる。 Then, the X axis 3 and the Y axis 5 are moved so that the defect coordinate position can be positioned at the center of the imaging field 13 of the microscope camera 9 (S4). At this time, the defect is often observed at a position shifted from the center of the imaging visual field 13. This deviation amount includes errors included in the received defect coordinates and positioning errors between the X axis 3 and the Y axis 5. Next, the operator specifies a correction application position for the defect in the imaging field 13 (S5). The application position is moved to the center position of the imaging visual field 13 so that ink is applied to the pattern crossing defect portion 205 and insulation can be secured. Next, S6 and S7 are repeated, and the coating operation from the first step to the third step is repeated. Here, the Y-axis 5 is an offset amount from the center of the imaging visual field 13 to the designated correction coating position so that the nozzle for coating the droplet for correction moves to the designated correction coating position. Add and move. At this time, in addition to the distance 18 between the heads in the offset amount, when coating is performed at a position shifted in the width direction of the wiring pattern in each process, the shift amount is added and moved (S6). Further, any one of the coating operations from the first step to the third step is performed (S7). At this time, the discharge conditions (the number of droplets and their discharge interval) at the time of application can be arbitrarily set.
 S8では、第一の工程から第三の工程の塗布動作を行った後、欠陥修正位置を顕微鏡カメラ9の撮像視野13の中央に位置決めできるようにX軸3とY軸5を移動し、塗布領域の外接矩形の塗布領域、各方向別の塗布領域、塗布領域の重心位置等を画像処理部53により演算し、塗布異常の有無の検出と種類を判断する。 In S8, after performing the coating operation from the first step to the third step, the X axis 3 and the Y axis 5 are moved so that the defect correction position can be positioned at the center of the imaging field 13 of the microscope camera 9, and coating is performed. The image processing unit 53 calculates the application area of the circumscribed rectangle of the area, the application area for each direction, the center of gravity position of the application area, and the like, and determines the presence and type of application abnormality.
 次に、塗布異常の判断結果に従い、インクの吐出性が低下している場合や、吐出性の低下が疑わしい場合には、原因に応じたメンテナンス動作を行なう(S9)。さらに、欠陥情報の全てを修正したか判断する。修正済みであればS11へ移行し、未修正欠陥が残っていればS4へ移行する(S10)。 Next, according to the determination result of the application abnormality, if the ink ejection performance is lowered or if the ejection performance decline is suspected, a maintenance operation corresponding to the cause is performed (S9). Further, it is determined whether all the defect information has been corrected. If it has been corrected, the process proceeds to S11, and if an uncorrected defect remains, the process proceeds to S4 (S10).
 次に、X軸3とY軸5を基板1上より移動して基板搬送可能な位置へ退避移動し、吸着位置決め部2により基板1を吸着解除する(S11)。最後に、図示しない基板搬送装置が基板1を装置外へ搬出する(S12)。 Next, the X-axis 3 and the Y-axis 5 are moved from the substrate 1 to retreat to a position where the substrate can be conveyed, and the substrate 1 is released by suction by the suction positioning unit 2 (S11). Finally, a substrate transfer device (not shown) carries the substrate 1 out of the device (S12).
 以上のフローにより基板が修正できる。 The board can be corrected by the above flow.
 (実施例1)
 次に、実際にTFT基板にパターンを形成した例を説明する。
Example 1
Next, an example in which a pattern is actually formed on the TFT substrate will be described.
 図9はTFT基板において、ゲート配線パターン形成後に、ゲート絶縁膜等を成膜した基板の表面外観図である。 FIG. 9 is an external view of the surface of a TFT substrate on which a gate insulating film or the like is formed after the gate wiring pattern is formed on the TFT substrate.
 ゲート配線パターンは、真空装置による導電性材料の成膜および、フォトリソグラフィー技術によるパターニングによって形成されるものであり、正確にはゲート線と補助容量線の2種類の配線パターンがあるが、ここではゲートレイヤーのパターン形成で同時に形成されるので、ゲート配線パターンと称している。この工程より後には、ソース配線パターンのパターン形成が行なわれる。ゲート絶縁膜は、CVD(Chemical・Vapor・Deposition)装置等により全面に形成されるもので、ゲート配線パターンとソース配線パターンを絶縁して、各々の配線信号駆動を個別に可能にしている。また、ゲート絶縁膜上には、半導体層も同じ工程で成膜される。 The gate wiring pattern is formed by forming a conductive material using a vacuum apparatus and patterning using a photolithography technique. To be precise, there are two types of wiring patterns: a gate line and an auxiliary capacitance line. Since the gate layer pattern is formed at the same time, it is called a gate wiring pattern. After this step, the source wiring pattern is formed. The gate insulating film is formed on the entire surface by a CVD (Chemical / Vapor / Deposition) apparatus or the like, and insulates the gate wiring pattern and the source wiring pattern to individually enable driving of each wiring signal. In addition, a semiconductor layer is formed over the gate insulating film in the same process.
 ゲート配線パターン201上に補助容量線206上にゲート絶縁膜の膜部欠損部202が発生している。これは成膜前あるいは成膜中に基板面に異物等が付着することが主原因で発生する。次工程でソース配線パターンが形成される位置は、ソース配線パターン位置203の一点鎖線で表現される位置に形成される。ゲート絶縁膜に膜欠損があると、補助容量線206上にゲート配線パターン201とソース配線パターン位置203のパターン交差欠陥部205とソース配線パターンの各々の信号のリークが発生し、正常なTFTのスイッチング駆動ができなくなり、製造したTFT基板は不良となる。このため膜部欠損部202のケースは不良となる欠損であり、撮像視野13内に、このようなパターンが交差するパターン交差箇所204上に膜部欠損部202がある場合を欠陥のあるパターン交差欠陥部205とし、撮像視野13の中心にパターン交差欠陥部205を位置決めしてインク液滴を塗布する。 A film-deficient portion 202 of the gate insulating film is generated on the auxiliary capacitance line 206 on the gate wiring pattern 201. This is mainly caused by foreign matters adhering to the substrate surface before or during film formation. The position where the source wiring pattern is formed in the next process is formed at a position expressed by a one-dot chain line of the source wiring pattern position 203. If there is a film defect in the gate insulating film, leakage of signals of the gate wiring pattern 201, the pattern intersection defect portion 205 at the source wiring pattern position 203, and the source wiring pattern occurs on the auxiliary capacitance line 206, and normal TFTs Switching driving cannot be performed, and the manufactured TFT substrate becomes defective. For this reason, the case of the film part defect part 202 is a defect that becomes a defect, and the case where the film part defect part 202 exists on the pattern intersection 204 where such a pattern intersects in the imaging field of view 13 As the defect portion 205, the pattern cross defect portion 205 is positioned at the center of the imaging visual field 13 and ink droplets are applied.
 また、図9では補助容量線206上にゲート絶縁膜の膜部欠損部202が発生しているが、ゲート配線パターン201上にゲート絶縁膜の膜欠損部が発生しているケースでも同様にソース配線との間で信号のリークが発生し、正常なTFTのスイッチング駆動ができなくなる。このように膜部欠損部202の影響は、補助容量線206・ゲート配線パターン201に共通したものとなる。以降の説明ではゲート配線パターン201及び補助容量線206を共に、ゲート配線パターンと称して説明する。 In FIG. 9, the gate insulating film missing portion 202 is generated on the auxiliary capacitance line 206, but even in the case where the gate insulating film missing portion is generated on the gate wiring pattern 201, the source is similarly applied. Signal leakage occurs between the wiring and normal TFT switching drive cannot be performed. As described above, the influence of the film portion defect portion 202 is common to the storage capacitor line 206 and the gate wiring pattern 201. In the following description, both the gate wiring pattern 201 and the auxiliary capacitance line 206 will be referred to as a gate wiring pattern.
 図10はゲート配線パターンとゲート絶縁膜等を形成した基板の断面図である、ガラス基板301上にゲート配線パターである下配線302が凸形状で形成され、その上を含む全面にゲート絶縁膜303が成膜される。ゲート絶縁膜303上には、TFTを形成する際に必要な半導体層304も同工程にて成膜される。ゲート配線パターンである下配線302は図9のゲート配線パターン201と同じものである。 FIG. 10 is a cross-sectional view of a substrate on which a gate wiring pattern and a gate insulating film are formed. A lower wiring 302 as a gate wiring pattern is formed in a convex shape on a glass substrate 301, and a gate insulating film is formed on the entire surface including the upper wiring 302. 303 is deposited. On the gate insulating film 303, a semiconductor layer 304 necessary for forming a TFT is also formed in the same process. The lower wiring 302 which is a gate wiring pattern is the same as the gate wiring pattern 201 of FIG.
 図11は、図9で説明したパターン交差欠陥部205上の膜部欠損部202に、絶縁機能を有する絶縁インク液滴を塗布して修正する修正塗布動作を説明する図であり、断面図で示している。図11の(a)は修正前の欠損状態を示したもので、図10で説明した形状に対しゲート絶縁膜303と半導体層304が一部欠損しており、ゲート配線パターンである下配線302の一部が剥き出しの状態を示している。本修正塗布動作では、ゲート配線パターンによる凸形状となった基板面に対し、絶縁性を確保できる液滴の膜厚が得られる領域を安定的に塗布する方法で、絶縁インクを塗布する、修正塗布工程からなる。 FIG. 11 is a diagram for explaining a correction coating operation in which an insulating ink droplet having an insulating function is applied to the film portion defect portion 202 on the pattern cross defect portion 205 described in FIG. Show. FIG. 11A shows a defect state before correction. The gate insulating film 303 and the semiconductor layer 304 are partially missing from the shape described in FIG. A part of shows a bare state. In this correction coating operation, the insulating ink is applied by a method of stably applying a region where a film thickness of a droplet capable of ensuring insulation can be obtained on the substrate surface having a convex shape due to the gate wiring pattern. It consists of a coating process.
 図11の(b)から(e)ではこの修正塗布工程について説明する。 11 (b) to 11 (e), this correction coating process will be described.
 修正塗布工程は、第一の工程として、ゲート配線パターンである下配線302の幅方向の中心位置である法線305より、幅方向のある一方向にずれた上方にインクジェットヘッド10を配置し、絶縁液滴を含むインク滴14を塗布する。次に、図11の(c)に示すように、第二の工程として、(b)でずらした方向とは反対方向にずらした上方にインクジェットヘッド10を配置し、絶縁材料を含むインク滴14を塗布する。次に、図11の(d)に示すように、第三の工程として、下配線302の幅方向の中心位置からの法線305の略上にインクジェットヘッド10が配置され、絶縁材料を含むインク滴14が塗布される。第三の工程におけるインクジェットヘッド10の配置位置は第一の塗布工程における吐出位置と第二の塗布工程における吐出位置との間に配置されるのが好ましく、さらに好ましくは第一の塗布工程における吐出位置と第二の塗布工程における吐出位置との中間が好ましい。さらには、第一の塗布工程における吐出位置と第二の塗布工程における吐出位置の中間であり、かつ下配線302の幅方向の中心位置からの法線305の真上に配置するのが最も好ましい。 In the correction coating process, as a first process, the inkjet head 10 is disposed above the normal line 305 that is the center position in the width direction of the lower wiring 302 that is the gate wiring pattern, and is shifted in one direction in the width direction. Ink droplets 14 including insulating droplets are applied. Next, as shown in FIG. 11C, as a second step, the ink jet head 10 is arranged above the direction shifted in the direction opposite to the direction shifted in FIG. Apply. Next, as shown in FIG. 11D, as a third step, the ink jet head 10 is disposed substantially above the normal line 305 from the center position in the width direction of the lower wiring 302 and includes an insulating material. Drops 14 are applied. The arrangement position of the inkjet head 10 in the third step is preferably arranged between the discharge position in the first application step and the discharge position in the second application step, more preferably the discharge in the first application step. An intermediate position between the position and the discharge position in the second coating step is preferable. Furthermore, it is most preferable to arrange between the discharge position in the first application step and the discharge position in the second application step and directly above the normal line 305 from the center position in the width direction of the lower wiring 302. .
 さらに、第一・第二の工程では、絶縁性を得るのに必要な液滴量より少ない量のインク滴を塗布することで塗布領域を抑えた領域の下地的塗布を行い、第三の工程で絶縁性を得るのに必要な液滴量を塗布するのが好ましい。その際に、既に塗布された下地的インクとの親液性を利用して、通常の基板面に塗布するよりも塗布領域を抑えることができ、塗布領域の均一化を図れるからである。このような第一~第三の修正塗布工程を経ることで、図11の(e)に示すように下配線302の被覆性がよく、両側を均一に濡らすように欠陥部へ塗布した塗布液滴310を配置することができ、これを加熱乾燥することで絶縁特性を有する塗布膜を形成することができる。 Further, in the first and second steps, the base coating is performed in a region where the coating region is suppressed by applying a smaller amount of ink droplets than the amount of droplets necessary to obtain insulation, and the third step It is preferable to apply the amount of droplets necessary to obtain insulation. In this case, the application area can be suppressed and the application area can be made uniform as compared with the case of applying to the normal substrate surface by utilizing the lyophilicity with the base ink already applied. By passing through the first to third correction coating processes, the coating solution applied to the defective portion so that the lower wiring 302 has good coverage as shown in FIG. Drops 310 can be disposed, and a coating film having insulating properties can be formed by heating and drying the droplets 310.
 次にこのような修正塗布工程における吐出状態の計測方法を説明する。 Next, a method for measuring the discharge state in such a correction coating process will be described.
 図12は修正塗布後の塗布領域の計測方向を示した図である。図12の(a)は図11の(a)と同様の修正前の欠損状態を示している。図12の(b)は、良好な吐出性と修正に適した欠損箇所における修正塗布工程において正常に修正塗布ができており、これを方向別の塗布領域を計測した様を示している。塗布液滴は図11で説明した修正塗布工程により、円形に一定の領域で広がり、膜部欠損部202を覆っている。この塗布状態を、図11で説明した法線305の位置と同等である修正塗布の中央位置より、8方向に放射状に計測する。 FIG. 12 is a diagram showing the measurement direction of the application area after the correction application. FIG. 12A shows a defect state before correction similar to FIG. FIG. 12B shows a state in which corrective application is normally performed in the corrective application process in a defective portion suitable for good ejection properties and correction, and this shows a state in which an application area for each direction is measured. The coating droplet spreads in a certain region in a circular manner and covers the film portion defect portion 202 by the correction coating process described with reference to FIG. This application state is measured radially in eight directions from the center position of the correction application that is equivalent to the position of the normal line 305 described in FIG.
 図12の(b)では、各方向別領域、外接矩形領域共、均一な領域の塗布ができており、計測値は平均的な領域となっている様を示しており、画像処理部53は正常管理値内の計測結果と判断し良好な塗布ができている状態といえる。 FIG. 12B shows that uniform areas can be applied in each direction area and circumscribed rectangular area, and the measured value is an average area. It can be said that it is judged that the measurement result is within the normal control value, and that a good application has been made.
 上記、TFTゲート絶縁膜の修正液滴の塗布装置の事例で説明をしたが、このうち、塗布処理を行なう装置と、塗布後に塗布領域から塗布領域を計測して塗布異常等の塗布状態判定と、塗布異状の原因を判断する塗布状態判定装置を独立した検査装置として構成してもよい。 The example of the device for applying a correction droplet of the TFT gate insulating film has been described above. Among these, a device for performing a coating process, and a coating state determination such as a coating abnormality by measuring a coating region from a coating region after coating. The application state determination apparatus that determines the cause of the application abnormality may be configured as an independent inspection apparatus.
 また電気的な絶縁性を有する液滴を塗布する事例について説明したが、他の機能性を有する液滴であってもよい。 In addition, although the example of applying a droplet having electrical insulation has been described, it may be a droplet having other functionality.
 (実施例2)初滴が不吐出であった場合の例
 図13では吐出性が低下し、修正塗布時に正常なピエゾアクチュエータの駆動を行なったにも関わらず、第一の工程における液滴の吐出できなかった事例での修正塗布動作を説明する。図13の(a)の第一の工程では、インクジェットヘッド10を所定位置に移動しピエゾアクチュエータを駆動するが、インク滴14は吐出されない。図13の(b)の第二の工程では、インク滴14は正常に吐出される。図13の(c)の第3の工程でも、インク滴14は正常に吐出される。このような吐出性の低下は、主にインクジェットヘッド10のノズルプレート面がインクジェット保全部7から離れる時間が長くなるにつれ、ノズルの吐出孔付近に増粘したインク固形分が残ったり、ノズルの吐出孔内のインクが増粘することにより、ピエゾアクチュエータ駆動時のせん断力では、インクがノズルプレートから離脱しない為不吐出が発生すると考えられる。しかし、ピエゾアクチュエータ駆動を駆動し続けると、ノズルの吐出孔付近のインクが攪拌され、インクの吐出性が若干回復するため、初滴や、初滴に続く数滴が吐出されず第一の工程は不吐出になるが、第二・第三の工程では正常に塗布するケースが発生する。あるいは、第一の工程で充分な量のインク液が塗布されない。
(Example 2) Example in which the initial droplet is not ejected In FIG. 13, the ejection performance is reduced, and the droplets in the first step are driven in spite of the normal driving of the piezo actuator during correction application. The correction application operation in the case where the ejection could not be performed will be described. In the first step of FIG. 13A, the inkjet head 10 is moved to a predetermined position and the piezo actuator is driven, but the ink droplet 14 is not ejected. In the second step of FIG. 13B, the ink droplets 14 are ejected normally. In the third step of FIG. 13C, the ink droplet 14 is normally ejected. Such a drop in discharge performance is mainly due to the fact that thickened ink solids remain in the vicinity of the nozzle discharge holes or the discharge of the nozzles as the time during which the nozzle plate surface of the inkjet head 10 is separated from the inkjet maintenance unit 7 becomes longer. It is considered that non-ejection occurs because the ink in the hole is thickened and the shearing force when driving the piezo actuator does not cause the ink to separate from the nozzle plate. However, if the driving of the piezo actuator is continued, the ink in the vicinity of the nozzle ejection hole is agitated and the ink ejection performance is slightly recovered. Therefore, the first droplet and several droplets following the first droplet are not ejected. However, in the second and third steps, there is a case where the coating is normally performed. Alternatively, a sufficient amount of ink liquid is not applied in the first step.
 このようなケースでは、第一の工程でのインク付着が無い又は少ないため、下地的塗布の効果が無い又は不足し、第三の工程での塗布時に第一の工程で塗布する領域方向にインク液が広がり、図14に示すような第一の工程の方向に塗布領域が上限管理値を超え大きくなった形状に塗布領域が変形し、また第一の工程の反対側の塗布領域がこの影響を受け少なくなる。このような事例では、塗布領域の領域は、不吐出となった下地塗布方向の軸方向に大きくなるとともに、修正塗布の中央位置より計測した領域は不吐出となった下地塗布方向に大きく領域が変化する。これにより、下配線302上の液滴量は絶縁性を得るに必要な液滴量より少なくなり、修正に失敗し絶縁性を確保できなくなる。 In such a case, since there is no or little ink adhesion in the first step, there is no or insufficient effect of the underlying coating, and the ink is applied in the direction of the region to be applied in the first step at the time of coating in the third step. As the liquid spreads, the application area is deformed into a shape in which the application area exceeds the upper limit control value in the direction of the first process as shown in FIG. 14, and the application area on the opposite side of the first process has this influence. Receive less. In such a case, the area of the application area becomes larger in the axial direction of the base application direction in which ejection failure has occurred, and the area measured from the center position of the correction application has a larger area in the direction of base application in which ejection failure has occurred. Change. As a result, the amount of droplets on the lower wiring 302 is smaller than the amount of droplets necessary to obtain insulation, and the correction fails and the insulation cannot be ensured.
 図1で説明した計測方法により、各方向別塗布領域は、L90が通常より上限管理値を超える大きな値を示し、L180、L225,L270,L315,L0が微減する。外接矩形塗布領域は、F0が最も上限管理値より大きな値を示し、F45、F135も増加、F90は微減する。 With the measurement method described with reference to FIG. 1, L90 shows a large value that exceeds the upper limit management value than usual, and L180, L225, L270, L315, and L0 slightly decrease. In the circumscribed rectangular coating area, F0 shows the largest value than the upper limit management value, F45 and F135 also increase, and F90 slightly decreases.
 図2で説明した判定方法により、このように第一の工程で塗布不足がある場合には、第一の工程方向の外接矩形塗布領域であるF0が上下限管理値を超えて増加し許容範囲外となる(S32)。次に、方向別塗布領域が第一の工程方向であるL90の上限値を超えて大きくなり、第一の工程方向とは180度反対側のL270の方向別塗布領域計測値が微減少となり、対向する方向に対し塗布領域の異方性の有る変化が得られる(S33)。 According to the determination method described with reference to FIG. 2, when there is insufficient application in the first process as described above, the circumscribed rectangular application area F0 in the first process direction increases beyond the upper / lower limit management value and is within the allowable range. It becomes outside (S32). Next, the direction-specific application area becomes larger than the upper limit value of L90, which is the first process direction, and the direction-specific application area measurement value of L270, which is 180 degrees opposite to the first process direction, slightly decreases. A change with anisotropy of the coating region is obtained in the opposite direction (S33).
 このような外接矩形塗布領域の変化と、第一の工程の方向に塗布領域が変化する異方性のある方向別塗布領域変化の計測結果が得られる場合には、初滴や、初滴に続く数滴が不吐出になっている可能性が最も高いと判断し、吐出滴数の多い捨て吐出メンテナンスにより、インクジェットヘッド内のノズル付近のインクを攪拌・置換する作用のある保全動作を行なう(S34)。この組み合わせ以外の方法で保全を行なってもよく、これらは、インクの乾燥度合いや、装置内の気流の環境や、インク供給の負荷等、様々な要因により必要とされる保全動作の種類は異なる為、装置に適した保全動作の手段を相関付けて実施することができる。 If the measurement result of the change in the circumscribed rectangular application area and the change in the application area according to the direction in which the application area changes in the direction of the first process is obtained, the first drop or the first drop Judging that the next few drops are most likely to be non-ejecting, the maintenance operation with the action of stirring and replacing the ink in the vicinity of the nozzles in the inkjet head is carried out by discarding discharge maintenance with a large number of ejected drops ( S34). Maintenance may be performed by a method other than this combination, which requires different types of maintenance operations depending on various factors such as the degree of ink drying, the airflow environment in the apparatus, and the load of ink supply. Therefore, the maintenance operation means suitable for the apparatus can be correlated and executed.
 また、外接矩形のサイズが変化した後、方向別のサイズを計測する説明としたが、想定される塗布位置の位置ズレ量が、サイズ判定の上限・下限管理値間の幅よりも小さい場合には、外接矩形のサイズ判断を経ずに、方向別のサイズの変化のある方向のみで吐出性不良を判断しても良い。 In addition, after the size of the circumscribed rectangle has changed, it has been described that the size for each direction is measured, but when the amount of displacement of the assumed application position is smaller than the width between the upper and lower limit management values for size determination In this case, the ejection failure may be determined only in the direction in which the size varies depending on the direction, without passing through the size determination of the circumscribed rectangle.
 (実施例3)隣接する箇所に異物が付着した例
 図15では、膜部欠損部202の近隣である斜め上方向に異物が付着していたケースを示している。このようなケースでは、異物に塗布インクが付着する為、次のような事象が発生する。図16の(a)の第一の工程では、塗布したインクが異物に付着し、異物の周囲・表面を覆うように吸い寄せされる為、塗布インクの大半が異物側に偏って塗布される。図16の(b)の第二の工程では、異物とは反対側にオフセットして塗布するため、異物による影響は少ない。図16の(c)の第三の工程では、図15の(b)に示すように第一の工程での下地が異物よりの位置にあるため、これに引き寄せられ、下配線302上の液滴量は絶縁性を得るに必要な液滴量より少なくなり、修正に失敗し絶縁性を確保できなくなる。
(Example 3) Example in which foreign matter adheres to adjacent portions FIG. 15 shows a case where foreign matter has adhered in an obliquely upward direction in the vicinity of the film portion defect portion 202. In such a case, since the coating ink adheres to the foreign matter, the following phenomenon occurs. In the first step of FIG. 16A, the applied ink adheres to the foreign matter and is sucked so as to cover the periphery and surface of the foreign matter, so that most of the applied ink is applied to the foreign matter side. In the second step of FIG. 16B, since the coating is performed by offsetting to the side opposite to the foreign matter, the influence of the foreign matter is small. In the third step of FIG. 16C, the base in the first step is located at a position closer to the foreign matter as shown in FIG. The amount of droplets is smaller than the amount of droplets necessary to obtain insulation, and correction fails and insulation cannot be ensured.
 図1で説明した計測方法により、異物方向に外接矩形塗布領域F45が上下限管理値を超えて増加し、かつ異物方向の方向別塗布領域L135が上限管理値より大きくなる計測値が得られる。図2で説明した判定方法により、異物が付着している場合には、異物が付着した方向の外接矩形塗布領域F45が上下限管理値を超えて増加し許容範囲外となる(S32)。次に、方向別塗布領域が第一の工程方向とは違う異物の方向であるL135の上限値を超えて大きくなり、異物方向とは180度反対側のL315の方向別塗布領域計測値が微減少となり、対向する方向に対し塗布領域の異方性の有る変化が得られる(S33)。 1, a measurement value is obtained in which the circumscribed rectangular application area F45 increases in the foreign substance direction beyond the upper and lower limit management values, and the direction-specific application area L135 in the foreign substance direction becomes larger than the upper limit management value. When the foreign matter is attached according to the determination method described with reference to FIG. 2, the circumscribed rectangular coating area F45 in the direction in which the foreign matter is attached increases beyond the upper and lower limit management values and falls outside the allowable range (S32). Next, the direction-specific application area becomes larger than the upper limit value of L135, which is the direction of foreign matter different from the first process direction, and the direction-specific application area measurement value of L315, which is 180 degrees opposite to the foreign matter direction, is small. As a result, a change with anisotropy of the coating region is obtained in the opposite direction (S33).
 このような外接矩形塗布領域の変化と、第一の工程の方向とは別の方向に塗布領域が変化する異方性のある方向別塗布領域変化の計測結果が得られる場合には、異物付着等の異常が見られる可能性が最も高いと判断できる。 If the measurement result of the change in the circumscribed rectangular application area and the change in the application area by direction with anisotropy in which the application area changes in a direction different from the direction of the first process, It can be judged that there is the highest possibility that abnormalities such as
 ここで異物とはパーティクルやダストとよばれるものの他、パターン形成異常等の塗布インクの濡れ広がりに対し、インクを引き寄せるまたは疎外する正常時には存在しない凹凸形状を占めており、配線パターンの形成形状異常等も含む。 In this case, the foreign matter is not only particles or dust, but also occupies the uneven shape that does not exist at the normal time to attract or alienate the ink with respect to the spread of wet ink such as pattern formation abnormality, and abnormal wiring pattern formation shape Etc. are also included.
 (実施例4)隣接する他のパターンの影響を受ける例
 図17では、TFT回路を構成する際のドレインパターン配線210がパターン交差欠陥部205の近傍に配置された基板において、塗布したインク塗布領域がドレインパターン配線210の影響を受けるケースについて説明する。この場合の膜部欠損部202に関する説明図を図12の(a)と同様に図17の(a)に示す。以下、図17の(b)(c)(d)については、膜部欠損部のみ図示することにする。
(Embodiment 4) Example affected by other adjacent patterns In FIG. 17, the applied ink application region on the substrate where the drain pattern wiring 210 when forming the TFT circuit is arranged in the vicinity of the pattern crossing defect portion 205. A case in which is affected by the drain pattern wiring 210 will be described. FIG. 17A shows an explanatory diagram relating to the film defect 202 in this case in the same manner as FIG. In the following, only the film defect portion is shown in FIGS. 17B, 17C, and 17D.
 図17の(b)は図12の(b)と同様、膜部欠損部202に対し、吐出性が良好な状態で正常な塗布を行った場合の説明図である。ここではドレインパターン配線210の影響で、塗布領域は、正常な塗布であっても方向別に長さが異なる。この場合DavはL225の方向では他方向に比べ短くなる。これに伴いL225の方向では上限下限の管理値であるDmin、Dmaxも同様に短くなり、これが正常な基準の領域になる。 (B) of FIG. 17 is explanatory drawing at the time of performing normal application | coating with a favorable discharge property with respect to the film | membrane part defect | deletion part 202 similarly to (b) of FIG. Here, due to the influence of the drain pattern wiring 210, the length of the coating region varies depending on the direction even in the case of normal coating. In this case, Dav is shorter in the direction of L225 than in the other direction. Accordingly, in the direction of L225, Dmin and Dmax, which are upper and lower limit management values, are similarly shortened, and this becomes a normal reference region.
 図17の(c)は図14と同様、第一の工程の塗布で吐出性不良により塗布が無い又は不足している場合の説明である。ここでは、第一の工程の方向に領域が大きくなっているとともに、L225の方向の領域は他方向にくらべドレインパターン配線210の影響で短くなっているものの、正常な上限下限の管理値に対しては正常であり変化無しと判断し、塗布領域の変化としては第一の工程の方向の変化のみとしている。 (C) of FIG. 17 is an explanation of the case where there is no application or insufficient application due to poor ejection properties in the application of the first step, as in FIG. Here, the area in the direction of the first process is larger, and the area in the direction of L225 is shorter than the other direction due to the influence of the drain pattern wiring 210, but the normal upper and lower limit control values are not affected. Therefore, it is determined that there is no change, and the change in the coating area is only the change in the direction of the first step.
 図17の(d)は図15の(b)と同様、近傍の異物により塗布領域が異物側に偏った場合の説明である。ここでは、計測領域に対する影響は無い。 (D) of FIG. 17 is an explanation in the case where the application region is biased to the foreign matter side due to the nearby foreign matter, as in (b) of FIG. Here, there is no influence on the measurement region.
 このように、塗布領域は正常な状態での領域とその管理値を基準として、そこからの領域変化量をもって、変化の有無と量を判断する。これにより、吐出性不良や異物等による塗布領域の変化の種別を捉えることが可能となる。 In this way, the presence / absence and amount of change of the application region are determined based on the region change amount based on the normal region and its management value. This makes it possible to grasp the type of change in the application region due to ejection failure or foreign matter.
 この例では、塗布異常ではない為塗布領域に変化は無く、塗布領域認識手段では異常として認識されない。 In this example, since there is no application abnormality, there is no change in the application area, and the application area recognition means does not recognize it as an abnormality.
 以上今までの実施例では、不吐出・異物がある場合の、塗布領域の異変に伴う計測・原因判別方法について説明したが、次に他のケースについて説明する。 In the above-described embodiments, the measurement / cause determination method associated with the change in the application area when there is non-ejection / foreign matter has been described. Next, another case will be described.
 塗布不良の他のケースとしては、塗布位置ズレ・インクの粘性変化による塗布領域の変化が考えられる。 As another case of coating failure, it is conceivable that the coating area changes due to coating position deviation and ink viscosity change.
 (実施例5)塗布位置ズレが発生した場合の例
 図18は、塗布位置ズレが発生したケースを説明するものである。塗布位置ズレの発生は主に、吐出したインクの基板面への着弾位置と顕微鏡カメラ9の撮像位置の機械的な相対関係のズレや、インクジェットヘッド10のノズルプレート吐出孔付近の汚れにより吐出方向が変化することにより発生する。このような場合、図19の(a)~(c)に示すように、第一の工程・第二の工程・第三の工程のいずれも着弾位置がずれることにより、図18の(b)に示す様に、塗布領域が全体にずれた状態となる。
(Example 5) Example when application position deviation occurs FIG. 18 illustrates a case where application position deviation occurs. The occurrence of the application position deviation is mainly caused by the deviation of the mechanical relative relationship between the landing position of the ejected ink on the substrate surface and the imaging position of the microscope camera 9 and the contamination in the vicinity of the nozzle plate ejection hole of the inkjet head 10. It is generated by changing. In such a case, as shown in FIGS. 19A to 19C, the landing positions are shifted in any of the first step, the second step, and the third step, so that FIG. As shown in FIG. 2, the coating area is shifted as a whole.
 この塗布領域を計測すると、各方向別の塗布領域には変化が見慣れるが、外接矩形の塗布領域で計測する塗布領域自体の領域は変化が無いことが分かる。 When this application area is measured, the change is familiar in the application area in each direction, but it can be seen that the area of the application area itself measured in the circumscribed rectangular application area does not change.
 図2で説明した判定方法により、すなわち、外接矩形の塗布領域に変化がなければ、各方向別の塗布領域は関係ないと判断でき(S32)、塗布領域の中心位置を、塗布により濃淡が変化した領域の画像重心位置として画像処理部53により計測することで、修正塗布の中心位置に対する塗布領域の中心位置とのズレ量を測定し、位置ズレ量が上限値を超えた場合(S40)は、位置ズレ発生と判断する。位置ズレ量の上限値は画像処理部53に予め設定されている。 2, that is, if there is no change in the circumscribed rectangular application region, it can be determined that the application region in each direction is irrelevant (S 32), and the density of the central position of the application region is changed by application. When the image processing unit 53 measures the image center-of-gravity position of the applied area, the amount of deviation from the center position of the application area with respect to the center position of the correction application is measured, and when the position deviation amount exceeds the upper limit (S40). , It is determined that a positional deviation has occurred. The upper limit value of the positional deviation amount is preset in the image processing unit 53.
 (実施例6)インクの粘度が低下した場合の例
 図20は、インクの粘度が低下した異常時に、塗布領域が大きくなったケースを説明するものである。インクジェットヘッド10を保全する最の様々な要因で、インクの粘度が変化することがある、
 図20の(a)は図12の(a)と同様、膜部欠損部202がある場合の説明図である。
(Example 6) Example in which the viscosity of the ink is lowered FIG. 20 illustrates a case in which the application region becomes large at the time of an abnormality in which the viscosity of the ink is lowered. The viscosity of the ink may change due to various factors that maintain the inkjet head 10.
FIG. 20A is an explanatory diagram in the case where there is a film defect portion 202, as in FIG.
 図20の(b)は膜部欠損部202に対しインク粘度が低下した状態で塗布を行った場合の説明図である。粘度が低いので塗布領域が全般に拡大している様を示している。 (B) of FIG. 20 is explanatory drawing at the time of apply | coating with the ink viscosity falling with respect to the film | membrane part defect | deletion part 202. FIG. Since the viscosity is low, it shows that the coating area is generally expanded.
 通常インクジェットヘッド10からインクを吸引するメンテナンスを行なった直後は粘度が低く、塗布を繰り返すと粘度が高くなる。ここではメンテナンス直後に供給されるインクの影響で粘度が低くなったケースを説明している。塗布領域が拡大すると膜厚が低下するので、絶縁性もこれに伴い低下する。 Normally, the viscosity is low immediately after the maintenance for sucking ink from the inkjet head 10, and the viscosity increases when application is repeated. Here, a case is described in which the viscosity is lowered due to the effect of ink supplied immediately after maintenance. When the coating area is enlarged, the film thickness is lowered, so that the insulation is also lowered.
 図2で説明した判定方法により、外接矩形の塗布領域F0~F135が共に上限管理値より大きくなり(S32) 方向別の塗布領域L0~L315は一様な変化でかつサイズが大きくなり、(S33,S41)これによりインク粘度の低下が原因と判断する。またこれ以外の要因として、インク塗布量の増大、基板面の撥液性の低下も原因として考えられる。 With the determination method described in FIG. 2, the circumscribed rectangular application areas F0 to F135 are both larger than the upper limit management value (S32). , S41) Thereby, it is determined that the decrease in ink viscosity is the cause. In addition, other factors may be caused by an increase in the amount of ink applied and a decrease in liquid repellency on the substrate surface.
 またインク粘度が増大すると、反対に塗布領域が縮小する。ただしこの場合膜厚が絶縁性の強化につながるので、それ自体がただちに問題になるわけではないが、膜厚があまりに厚くなると、TFT基板に対向して張り合わせるカラーフィルタ基板との基板間ギャップ空間が狭くなる。 Also, when the ink viscosity increases, the coating area decreases. However, in this case, since the film thickness leads to enhanced insulation, the problem itself is not an immediate problem. However, if the film thickness becomes too large, the inter-substrate gap space between the color filter substrate and the color filter substrate that is bonded to face the TFT substrate. Becomes narrower.
 図2で説明した判定方法により、外接矩形の塗布領域F0~F135が共に上限管理値より小さくなり(S32)、方向別の塗布領域L0~L315が一様な変化でかつサイズが小さくなり(S33,S41)、これによりインク粘度が増大したと判断する。またこれ以外の要因として、インク塗布量の減少、基板面の撥液性の増大も原因としては考えられる。いずれにしてもまず、インクの吸引メンテナンス等のインクジェットヘッド内のインクの置換作用のある保全動作を行い、塗布装置要因の原因を取り除く。 With the determination method described in FIG. 2, the circumscribed rectangular coating areas F0 to F135 are all smaller than the upper limit management value (S32), and the direction-specific coating areas L0 to L315 are uniformly changed and the size is reduced (S33). , S41), it is determined that the ink viscosity has increased. As other factors, it can be considered that the ink application amount is decreased and the liquid repellency of the substrate surface is increased. In any case, first, a maintenance operation having an ink replacement action in the inkjet head, such as ink suction maintenance, is performed to remove the cause of the application apparatus factor.
 上記説明を行なった実施例2、実施例3について、別の方法によれば、想定される塗布位置の位置ズレ量が、領域判定の上限・下限管理値間の幅よりも小さい場合には、外接矩形の領域判断を経ずに、方向別の領域の変化のある方向のみで吐出性不良または異物付着を判断しても良い。 For Example 2 and Example 3 described above, according to another method, when the amount of displacement of the assumed application position is smaller than the width between the upper and lower limit management values of the area determination, Instead of judging the circumscribed rectangular area, it is possible to judge ejection failure or adhesion of foreign matter only in the direction in which the direction-specific area changes.
 さらに、本実施の形態での方向別の領域計測値を用いた判定例として、初滴または初滴に続く液滴の吐出性が低下している場合について説明したが、多数の基板の塗布処理を続けると、吐出性の低下で、初滴とは逆に塗布途中で液滴が不吐出になるケースがある。この場合、第2の工程や第3の工程の位置の塗布が不十分となり、特に第2の工程への塗布不良が発生した場合には、第2の工程の塗布位置の方向に方向別塗布領域が大きくなる。 Furthermore, as an example of determination using the direction-specific region measurement values in the present embodiment, the case where the discharge property of the initial droplet or the droplet following the initial droplet is reduced has been described, but a large number of substrate coating processes If the operation is continued, there is a case where the liquid droplets are not ejected during the application, in contrast to the initial liquid droplets, due to a decrease in ejection properties. In this case, the application at the position of the second process or the third process becomes insufficient, and in particular, when application failure to the second process occurs, the application by direction in the direction of the application position of the second process. The area becomes larger.
 塗布途中で不吐出になるケースでは、インクの吸引メンテナンス等のインクジェットヘッド内のノズル付近のインクを置換する作用のある保全動作を行なう。 In case of non-ejection during application, perform maintenance operations that replace ink near the nozzles in the inkjet head, such as ink suction maintenance.
 このように吐出の時間経過とその吐出時の位置の方向の塗布領域の変化には相関がありこれまで説明したケース以外でも様々な事例が発生する。 As described above, there is a correlation between the discharge time lapse and the change in the application region in the direction of the position at the time of discharge, and various cases other than the cases described so far occur.
 従って本実施例に示すような外接矩形の塗布領域や方向別の塗布領域の変化を計測して、吐出開始からの時間との相関を確認し判断することで、吐出性の低下の種類または、基板面の異常を判断することができる。 Therefore, by measuring the change in the circumscribed rectangular application area and the application area for each direction as shown in the present embodiment, and confirming and judging the correlation with the time from the start of the discharge, An abnormality of the substrate surface can be determined.
 以上のように、本発明の液滴塗布状態判定装置は、被塗布面の同一の塗布領域内の位置の異なる場所に時間差を設けて複数の液滴を吐出する塗布装置における液滴の塗布状態の判定装置であって、塗布後の塗布領域を計測する塗布領域計測手段と、所望の塗布領域と前記塗布領域計測手段により計測した塗布領域との差異を認識する塗布領域認識手段と、前記塗布領域計測手段及び塗布領域認識手段により、各々の液滴の吐出状態を判断する塗布状態判定手段を有している。上記構成の塗布状態判定装置によれば、塗布領域への吐出開始からの時間に応じた不吐出や吐出量の低下を判断できるため、適切な保全動作を選択して実施することで、インク消費量の抑制とメンテナンス時間の増加を無くすことが可能となる。 As described above, the droplet application state determination device of the present invention is a droplet application state in a coating apparatus that discharges a plurality of droplets at different positions in the same application region of the surface to be coated. An application region measuring unit that measures a coating region after coating, a coating region recognition unit that recognizes a difference between a desired coating region and a coating region measured by the coating region measuring unit, and the coating An application state determination unit that determines the discharge state of each droplet by the area measurement unit and the application area recognition unit is provided. According to the application state determination apparatus having the above-described configuration, it is possible to determine non-discharge or a decrease in the discharge amount according to the time from the start of discharge to the application region. Therefore, by selecting and performing an appropriate maintenance operation, ink consumption It is possible to reduce the amount and increase the maintenance time.
 また上記塗布状態判定装置は、塗布領域内の基準位置からの塗布領域の方向と塗布領域の大きさの相関関係により判断され、特に塗布領域内の複数の液滴のうち、初滴を用いて判断される塗布状態判定手段を有している。上記構成の塗布状態判定装置によれば、さらに、吐出時に発生しやすい初滴やこれに続く液滴の不吐出や吐出体積低下が発生した場合を判断できる為、適切な保全動作を選択して実施することで、インク消費量の抑制とメンテナンス時間の増加を無くすことが可能となる。 Further, the application state determination device is determined by the correlation between the direction of the application region from the reference position in the application region and the size of the application region, and in particular, using the first droplet among a plurality of droplets in the application region. It has an application state determination means to be determined. According to the application state determination apparatus having the above-described configuration, it is possible to determine the case where the initial droplet that is likely to be generated at the time of discharge or the subsequent non-discharge of the droplet or the decrease in the discharge volume has occurred. By implementing this, it is possible to suppress ink consumption and increase maintenance time.
 上記課題を解決するため、この発明の液滴塗布装置は上記の液滴塗布状態判定装置と、インクジェットヘッドのメンテナンスを行なう保全部を有し、塗布状態判定手段の判定結果を元に、インクジェットヘッドのメンテナンスの種類を選択して保全動作を行なうことを特徴としている。上記構成の液滴塗布装置によれば、塗布領域への吐出開始からの時間に応じた不吐出や吐出量の低下に応じた適切な保全動作を実施する為、インク消費量の抑制とメンテナンス時間の増加を無くすことが可能となる。 In order to solve the above problems, a droplet coating apparatus of the present invention has the above-described droplet coating state determination device and a maintenance unit that performs maintenance of the inkjet head, and the inkjet head based on the determination result of the coating state determination unit The maintenance operation is performed by selecting the type of maintenance. According to the droplet applying apparatus configured as described above, the ink consumption can be suppressed and the maintenance time can be reduced in order to perform the appropriate maintenance operation according to the non-ejection according to the time from the start of the ejection to the application region and the decrease in the ejection amount. It is possible to eliminate the increase in.
 また、上記液滴塗布装置は、塗布対象が凸形状の配線パターン上に液滴を塗布することを特徴としている。上記構成の液滴塗布装置によれば、下配線を有する被塗布面に、下地塗布と膜厚確保の塗布を精度良く液滴の塗布を行なう処理において、塗布領域への吐出開始からの時間に応じた不吐出や吐出量の低下に応じた適切な保全動作を実施する為、インク消費量の抑制とメンテナンス時間の増加を無くすことが可能となる。 Further, the droplet applying apparatus is characterized in that a droplet is applied on a wiring pattern whose application target is a convex shape. According to the droplet coating apparatus having the above-described configuration, in the process of accurately applying droplets to the surface to be coated having the lower wiring and applying the base coating and ensuring the film thickness, the time from the start of discharge to the coating region Since appropriate maintenance operation is performed according to the corresponding non-ejection or the decrease in the ejection amount, it is possible to suppress the ink consumption and increase the maintenance time.
 さらに、上記液滴塗布装置は、塗布処理がTFT基板のゲート絶縁膜の欠損部に絶縁性を有する液滴を塗布することを特徴としている。上記構成の液滴塗布装置によれば、ゲート配線パターンに適した下地塗布処理において、塗布領域への吐出開始からの時間に応じた不吐出や吐出量の低下に応じた適切な保全動作を実施する為、インク消費量の抑制とメンテナンス時間の増加を無くすことが可能となる。 Furthermore, the above-described droplet coating apparatus is characterized in that the coating process applies a droplet having an insulating property to the defective portion of the gate insulating film of the TFT substrate. According to the droplet coating apparatus configured as described above, in the base coating process suitable for the gate wiring pattern, the appropriate maintenance operation is performed according to the non-ejection according to the time from the start of ejection to the coating region and the decrease in the ejection amount. Therefore, it is possible to suppress ink consumption and increase maintenance time.
 上記課題を解決するため、この液滴塗布状態判定方法は、被塗布面の同一の塗布領域内の位置の異なる場所に時間差を設けて複数の液滴を吐出する塗布装置における液滴の塗布状態の判定方法であって、塗布後の塗布領域を計測する塗布領域計測工程と、所望の塗布領域と前記塗布領域計測手段により計測した塗布領域との差異を認識する塗布領域認識工程と、前記塗布領域計測工程及び塗布領域認識工程により得られた結果によって、各々の液滴の吐出状態を判断する塗布状態判定工程を有することを特徴としている。上記構成の液滴塗布状態判定方法によれば、塗布領域への吐出開始からの時間に応じた不吐出や吐出量の低下を判断する方法を提供できる為、液滴塗布状態判定装置を製作することができる。また、この方法を用いて、液滴塗布装置の保全動作を実施した場合には、インク消費量の抑制とメンテナンス時間の増加を無くすことができる。 In order to solve the above-described problem, this droplet application state determination method is an application method of a droplet in a coating apparatus that discharges a plurality of droplets at different positions in the same application region on the surface to be coated. A coating region measuring step for measuring a coating region after coating, a coating region recognition step for recognizing a difference between a desired coating region and a coating region measured by the coating region measuring means, and the coating The present invention is characterized by having an application state determination step of determining the discharge state of each droplet based on the results obtained by the region measurement step and the application region recognition step. According to the droplet application state determination method having the above-described configuration, a method for determining non-discharge or a decrease in the discharge amount according to the time from the start of discharge to the application region can be provided. be able to. In addition, when the maintenance operation of the droplet applying apparatus is performed using this method, it is possible to suppress the ink consumption and increase the maintenance time.
 発明の詳細な説明の項においてなされた具体的な実施態様または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する特許請求事項との範囲内で、種々変更して実施することができるものである。 Specific embodiments or examples made in the section of the detailed description of the invention are intended to clarify the technical contents of the present invention, and are limited to such specific examples and are interpreted in a narrow sense. The present invention should not be changed, and various modifications can be made within the scope of the spirit of the present invention and the following claims.
 本発明は、基板やシートの表面に加工処理などを行なう液滴塗布装置に対して好適に利用できる。 The present invention can be suitably used for a droplet coating apparatus that performs processing on the surface of a substrate or a sheet.
 1 基板
 2 吸着位置決め部
 3 X軸
 4 インクジェットユニット
 5 Y軸
 6 ガントリーフレーム
 7 インクジェット保全部
 8 装置定盤部
 9 顕微鏡カメラ
 10 インクジェットヘッド
 11 インク供給部
 12 ユニットベースプレート
 13 撮像視野
 14 液滴
 15 TFT基板
 16 ゲートバスラインのパターン
 17 ソースバスラインのパターン
 18 ヘッド間距離
 20 ノズル
 50 主制御装置
 51 主記憶装置
 52 インクジェット制御装置
 53 画像処理部(塗布領域計測手段、塗布領域認識手段、塗布状態判定手段)
 54 直交軸制御部
 55 吸着位置決め制御部
 56 インクジェット保全制御部
 201 ゲート配線パターン
 202 ゲート絶縁膜の膜部欠損部
 203 ソース配線パターン位置
 204 パターン交差箇所
 205 パターン交差欠陥部
 206 補助容量線
 210 ドレインパターン配線
 301 ガラス基板
 302 ゲート配線パターンである下配線
 303 ゲート絶縁膜
 304 半導体層
 305 下配線302の幅方向の中心位置からの法線
 310 欠陥部へ塗布した塗布液滴 
DESCRIPTION OF SYMBOLS 1 Substrate 2 Adsorption positioning part 3 X axis 4 Inkjet unit 5 Y axis 6 Gantry frame 7 Inkjet maintenance part 8 Device surface plate part 9 Microscope camera 10 Inkjet head 11 Ink supply part 12 Unit base plate 13 Imaging field of view 14 Droplet 15 TFT substrate 16 Gate bus line pattern 17 Source bus line pattern 18 Head-to-head distance 20 Nozzle 50 Main control device 51 Main storage device 52 Inkjet control device 53 Image processing unit (application area measurement means, application area recognition means, application state determination means)
54 Orthogonal Axis Control Unit 55 Adsorption Positioning Control Unit 56 Inkjet Maintenance Control Unit 201 Gate Wiring Pattern 202 Gate Insulating Film Defects 203 Source Wiring Pattern Position 204 Pattern Crossing Location 205 Pattern Crossing Defect 206 206 Auxiliary Capacitance Line 210 Drain Pattern Wiring DESCRIPTION OF SYMBOLS 301 Glass substrate 302 Lower wiring which is a gate wiring pattern 303 Gate insulating film 304 Semiconductor layer 305 Normal line from the center position of the lower wiring 302 in the width direction 310 Application droplet applied to a defective portion

Claims (7)

  1.  被塗布面の同一の塗布領域内の位置の異なる場所に時間差を設けて複数の液滴を吐出する塗布装置における液滴の塗布状態の判定装置であって、
     塗布後の塗布領域を計測する塗布領域計測手段と、
     所望の塗布領域と前記塗布領域計測手段により計測した塗布領域との差異を認識する塗布領域認識手段と、
     前記塗布領域計測手段及び塗布領域認識手段により、各々の液滴の吐出状態を判断する塗布状態判定手段を有することを特徴とする液滴塗布状態判定装置。
    A device for determining a droplet application state in a coating device that discharges a plurality of droplets by providing a time difference at different positions in the same coating region of a surface to be coated,
    Application area measuring means for measuring the application area after application;
    An application area recognition means for recognizing a difference between a desired application area and the application area measured by the application area measurement means;
    A droplet application state determination apparatus comprising: an application state determination unit that determines the discharge state of each droplet by the application region measurement unit and the application region recognition unit.
  2.  塗布状態判定手段は塗布領域内の基準位置からの塗布領域の方向と塗布領域の大きさの相関関係により判断されることを特徴とする請求項1記載の液滴塗布状態判定装置。 2. The droplet application state determination device according to claim 1, wherein the application state determination means is determined based on a correlation between the direction of the application region from the reference position in the application region and the size of the application region.
  3.  上記塗布状態判定手段は、塗布領域内の複数の液滴のうち、初滴を用いて判断されることを特徴とする請求項2記載の液滴塗布状態判定装置。 The droplet application state determination device according to claim 2, wherein the application state determination means is determined using an initial droplet among a plurality of droplets in the application region.
  4.  請求項1記載の液滴塗布状態判定装置と、インクジェットヘッドのメンテナンスを行なう保全部を有し、塗布状態判定手段の判定結果を元に、インクジェットヘッドのメンテナンスの種類を選択して保全動作を行なうことを特徴とする液滴塗布装置。 A droplet application state determination device according to claim 1 and a maintenance unit for maintaining the inkjet head, and performing a maintenance operation by selecting a maintenance type of the inkjet head based on the determination result of the application state determination means. A droplet applying apparatus.
  5.  被塗布面が凸形状の配線パターン上に液滴を塗布する塗布処理であることを特徴とする請求項4記載の液滴塗布装置。 5. The droplet coating apparatus according to claim 4, wherein the coating surface is a coating process in which droplets are coated on a convex wiring pattern.
  6.  被塗布面がTFT基板のゲート絶縁膜の欠損部に絶縁性を有する液滴を塗布する塗布処理であることを特徴とする請求項4記載の液滴塗布装置。 5. The droplet coating apparatus according to claim 4, wherein the coated surface is a coating treatment in which a droplet having an insulating property is coated on a defective portion of the gate insulating film of the TFT substrate.
  7.  被塗布面の同一の塗布領域内の位置の異なる場所に時間差を設けて複数の液滴を吐出する塗布装置における液滴の塗布状態の判定方法であって、
     塗布後の塗布領域を計測する塗布領域計測工程と、
     所望の塗布領域と前記塗布領域計測工程により計測した塗布領域との差異を認識する塗布領域認識工程と、
     前記塗布領域計測工程及び塗布領域認識工程により得られた結果によって、各々の液滴の吐出状態を判断する塗布状態判定工程を有することを特徴とする液滴塗布状態判定方法。
    A method for determining a droplet application state in a coating apparatus that discharges a plurality of droplets by providing a time difference at different positions within the same coating region of a surface to be coated,
    An application area measurement process for measuring the application area after application;
    An application area recognition process for recognizing a difference between a desired application area and the application area measured by the application area measurement process;
    A droplet application state determination method comprising: an application state determination step for determining the discharge state of each droplet based on the results obtained by the application region measurement step and the application region recognition step.
PCT/JP2010/060228 2009-06-19 2010-06-16 Device for determining the state of droplet application, method for determining the state of droplet application, and droplet application device employing the same WO2010147159A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-146080 2009-06-19
JP2009146080A JP2011000545A (en) 2009-06-19 2009-06-19 Device for determining the state of droplet application, method for determining the state of droplet application, and droplet application device employing the same

Publications (1)

Publication Number Publication Date
WO2010147159A1 true WO2010147159A1 (en) 2010-12-23

Family

ID=43356475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060228 WO2010147159A1 (en) 2009-06-19 2010-06-16 Device for determining the state of droplet application, method for determining the state of droplet application, and droplet application device employing the same

Country Status (2)

Country Link
JP (1) JP2011000545A (en)
WO (1) WO2010147159A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6089178B2 (en) * 2012-01-20 2017-03-08 国立大学法人 奈良先端科学技術大学院大学 Method for producing complex polymer
WO2020096616A1 (en) * 2018-11-09 2020-05-14 Hewlett-Packard Development Company, L.P. Alterations of print drive assemblies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200122A (en) * 1997-01-13 1998-07-31 Mitsubishi Electric Corp Manufacture of thin-film transistor
JPH10224100A (en) * 1997-02-06 1998-08-21 Matsushita Electric Ind Co Ltd Equipment for inspecting coating of bond
JP2003282247A (en) * 2002-03-20 2003-10-03 Seiko Epson Corp Manufacturing method and manufacturing apparatus of device, device and electronic apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3526623B2 (en) * 1994-07-18 2004-05-17 松下電器産業株式会社 Adhesive recognition method and device
JP2004209409A (en) * 2003-01-06 2004-07-29 Seiko Epson Corp Method for producing substrate, droplet discharging device, organic electroluminescence display, and electronic equipment
JP4631364B2 (en) * 2004-09-07 2011-02-16 セイコーエプソン株式会社 Droplet discharge head driving method, droplet discharge apparatus, device manufacturing method, and device
JP4741897B2 (en) * 2005-01-12 2011-08-10 芝浦メカトロニクス株式会社 Photocurable resin coating apparatus and coating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200122A (en) * 1997-01-13 1998-07-31 Mitsubishi Electric Corp Manufacture of thin-film transistor
JPH10224100A (en) * 1997-02-06 1998-08-21 Matsushita Electric Ind Co Ltd Equipment for inspecting coating of bond
JP2003282247A (en) * 2002-03-20 2003-10-03 Seiko Epson Corp Manufacturing method and manufacturing apparatus of device, device and electronic apparatus

Also Published As

Publication number Publication date
JP2011000545A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5152058B2 (en) Droplet ejection head inspection method, droplet ejection head inspection apparatus, and droplet ejection apparatus
JP4093167B2 (en) Droplet ejection device, electro-optical device manufacturing method, electro-optical device, and electronic apparatus
JP4058453B2 (en) Droplet applicator
WO2010090080A1 (en) Method for inspecting jetting state of inkjet head and apparatus for inspecting jetting state of inkjet head
JP2007256449A (en) Droplet jetting inspecting device, droplet jetting device, and manufacturing method for coating body
JP6185410B2 (en) Droplet discharge device inspection method, droplet discharge device inspection method, and device manufacturing method
JP4691975B2 (en) Work gap adjustment method, work gap adjustment device, droplet discharge device, and electro-optical device manufacturing method
WO2010147159A1 (en) Device for determining the state of droplet application, method for determining the state of droplet application, and droplet application device employing the same
JP2005118672A (en) Action evaluation method for drawing device and drawing device, method for manufacturing electro-optical device, electro-optical device and electronic instrument
JP4539316B2 (en) Head position correction method, head position correction apparatus, droplet discharge apparatus, and electro-optical device manufacturing method
JP2006026584A (en) Droplet injection device and display device manufacturing method
JP5761896B2 (en) Droplet application method and apparatus
JP2015160153A (en) Mass production method of coating product
JP5317109B2 (en) Ink ejection device
JP4529755B2 (en) Dot diameter correction coefficient acquisition method, dot diameter measurement method, dot diameter abnormality detection method, dot diameter measurement device, dot diameter abnormality detection device, and droplet discharge device
US20200276819A1 (en) Inkjet recording apparatus and maintenance method
JP2021151736A (en) Nozzle observation device, nozzle observation method, nozzle inspection device and nozzle inspection method
CN117698293A (en) Liquid ejecting apparatus, control method thereof, substrate processing apparatus, and article manufacturing method
JP2004146604A (en) Method for correcting wiring board
JP2006247500A (en) Pattern forming apparatus and pattern forming method
KR20220022493A (en) Apparatus for jetting ink and method for inspecting jetting stated of inkjet head
JP2010284594A (en) Apparatus for discriminating cause of fault of coating region, droplet applying device, method of controlling the apparatus for discriminating cause of fault of coating region, control program, and computer readable recording medium with the program recorded therein
KR20220080529A (en) Apparatus for treating substrate
KR20230039525A (en) Applying apparatus and droplet ejection inspection method
JP2013240788A (en) Method and device for applying liquid drop

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789533

Country of ref document: EP

Kind code of ref document: A1