WO2010147071A1 - ガスエンジンの排気浄化装置 - Google Patents

ガスエンジンの排気浄化装置 Download PDF

Info

Publication number
WO2010147071A1
WO2010147071A1 PCT/JP2010/060017 JP2010060017W WO2010147071A1 WO 2010147071 A1 WO2010147071 A1 WO 2010147071A1 JP 2010060017 W JP2010060017 W JP 2010060017W WO 2010147071 A1 WO2010147071 A1 WO 2010147071A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
oxidation catalyst
gas
gas engine
catalyst
Prior art date
Application number
PCT/JP2010/060017
Other languages
English (en)
French (fr)
Inventor
中園 徹
大坪 弘幸
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2010147071A1 publication Critical patent/WO2010147071A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • F01N13/141Double-walled exhaust pipes or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/018Natural gas engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/08Gas passages being formed between the walls of an outer shell and an inner chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/18Structure or shape of gas passages, pipes or tubes the axis of inlet or outlet tubes being other than the longitudinal axis of apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/04Gas-air mixing apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to an exhaust gas purification apparatus for a gas engine that uses a gas fuel such as city gas (natural gas) mainly composed of methane, and more particularly, to a combustion chamber in a cylinder by mixing an air-fuel mixture in advance of air and gas fuel.
  • a gas fuel such as city gas (natural gas) mainly composed of methane
  • the present invention relates to an exhaust emission control device suitable for a premixed compression self-ignition gas engine (HCCI) that is supplied to the engine and that self-ignites by compressing the mixture.
  • HCCI premixed compression self-ignition gas engine
  • the premixed compression self-ignition gas engine can be operated at a higher compression ratio than the spark ignition engine, so that high thermal efficiency is obtained, thereby suppressing the generation of CO and the combustion temperature. By lowering, generation of NOx can be suppressed.
  • unburned methane is discharged at a high concentration in the exhaust gas. Since this unburned methane has a global warming potential 21 times that of CO 2 , it becomes a powerful greenhouse gas even in a small amount.
  • Patent Document 1 In order to remove such unburned methane, conventionally, an exhaust purification device has been developed in which a hydrocarbon oxidation catalyst is arranged in the exhaust path to oxidize and remove unburned methane (Patent Document 1).
  • the activation temperature of the hydrocarbon oxidation catalyst is about 350 ° C. to 370 ° C., but the exhaust gas temperature of the premixed compression auto-ignition gas engine rises only to about 340 ° at most. It is difficult to oxidize and remove hydrocarbons efficiently.
  • the present invention has been made in view of the above problems, and in an exhaust gas purification apparatus for a gas engine using gas fuel mainly composed of methane such as city gas, unburned methane is also efficiently purified together with CO and NOx.
  • the goal is to reduce total greenhouse gas emissions.
  • the present invention provides an exhaust gas purification apparatus for a gas engine that uses gas fuel containing methane as a main component, and an oxidation catalyst capable of oxidizing CO in an exhaust path of the gas engine in order from the exhaust upstream side. And a hydrocarbon oxidation catalyst having a higher methane removal rate than the oxidation catalyst.
  • the oxidation catalyst on the exhaust upstream side is disposed in an exhaust path in a cylinder head of the gas engine or in an exhaust path near the cylinder head.
  • the hydrocarbon oxidation catalyst is disposed in the inner exhaust passage of a double-pipe catalyst case having an inner exhaust passage and an outer exhaust passage, and the outer exhaust passage includes the inner exhaust passage.
  • the exhaust gas after passing is configured to flow.
  • the gas engine is a premixed compression self-ignition type gas engine in which a gas mixture and gas mixture mixed in advance are compressed and ignited in a combustion chamber for combustion.
  • the exhaust gas discharged from the cylinder is first oxidized and removed by the oxidation catalyst on the exhaust upstream side.
  • the exhaust gas temperature rises. Some of the unburned methane is also removed by oxidation.
  • the exhaust gas whose temperature has risen is supplied to the hydrocarbon oxidation catalyst on the downstream side of the exhaust gas, so that the remaining unburned methane having a high reaction temperature is also efficiently oxidized and removed by the hydrocarbon oxidation catalyst.
  • the emission amount of the whole greenhouse gas can be significantly reduced.
  • the oxidation catalyst on the upstream side of the exhaust is disposed in the exhaust path in the cylinder head of the gas engine or in the exhaust path in the vicinity of the cylinder head, the removal efficiency of HC, CO, etc. in the oxidation catalyst is improved.
  • the exhaust gas is repeatedly discharged and stopped from the combustion chamber to the exhaust path by opening and closing the exhaust valve, and the exhaust path or cylinder in the cylinder head that is close to the exhaust valve
  • the exhaust gas discharged in the exhaust stroke temporarily stays in the exhaust path near the head until the next exhaust stroke.
  • the purification performance can be improved by disposing the oxidation catalyst at the position where it temporarily stays. Further, since the exhaust gas immediately after being discharged from the combustion chamber accumulates, the temperature is high and the activation of the catalyst is promoted.
  • the hydrocarbon oxidation catalyst When the hydrocarbon oxidation catalyst is disposed in the inner exhaust passage of the double-pipe catalyst case having the inner exhaust passage and the outer exhaust passage, the temperature rises through the hydrocarbon oxidation catalyst. As the exhaust gas flows along the outer peripheral surface of the hydrocarbon oxidation catalyst, the hydrocarbon oxidation catalyst is thermally insulated from the outside, and the temperature of the hydrocarbon oxidation catalyst can be kept high, thereby maintaining high purification performance. it can. In particular, the hydrocarbon oxidation catalyst through which the exhaust gas passes has a higher temperature at the center than at the outer periphery, but when the double-pipe catalyst case is employed, the temperature of the hydrocarbon oxidation catalyst as a whole becomes substantially uniform. Can be high.
  • a premixed compression self-ignition type gas engine in which a gas mixture in which gas fuel and air are premixed is compressed and ignited in a combustion chamber and burned, NOx is reduced due to the low combustion temperature.
  • the exhaust gas whose temperature has been raised by the oxidation catalyst is supplied to the hydrocarbon oxidation catalyst while effectively reducing the generation of NO, and the activation can be promoted to remove unburned methane efficiently.
  • FIG. 1 is a schematic plan view of a premixed compression self-ignition gas engine equipped with an exhaust purification device according to a first embodiment of the present invention. It is a simplified perspective view of the exhaust manifold of the gas engine of FIG. It is the III-III cross-sectional enlarged view of FIG. It is the IV-IV cross-sectional enlarged view of FIG. It is a figure which shows the relationship between the catalyst temperature of a hydrocarbon oxidation catalyst, and a hydrocarbon removal rate. It is a figure which shows the relationship between NOx density
  • 3 is a schematic plan view of a premixed compression self-ignition gas engine according to a second embodiment of the present invention.
  • FIG. 1 to 4 show a premixed compression self-ignition type gas engine equipped with an exhaust emission control device according to a first embodiment of the present invention.
  • FIG. 1 is a schematic plan view of the gas engine
  • FIG. 1 is a perspective view of an exhaust device of a gas engine
  • FIG. 3 is an enlarged view of a cross section taken along the line III-III of FIG. 1, and FIG.
  • the first embodiment will be described with reference to these drawings.
  • the cylinder head 2 is fastened to the upper end surface of the engine body such as the cylinder block 1 of the gas engine, and the one end surface of the cylinder head 2 is fastened.
  • An intake manifold 3 is attached, and an exhaust manifold 4 is attached to the other end surface of the cylinder head 2.
  • the gas engine is an in-line four-cylinder engine.
  • the cylinder block 1 four cylinders C are arranged on the same crankshaft, and the cylinder head 2 has an opening in the combustion chamber of each cylinder C.
  • An intake port 10 (only part of which is indicated by a symbol) and an exhaust port 11, an intake passage 12 communicating with each intake port 10, and an exhaust passage 13 communicating with each exhaust port 11 are formed.
  • the intake manifold 3 includes four intake branch pipes 15 communicating with the intake passages 12 of the cylinder head 2 and an intake main pipe 16 that collects the intake branch pipes 15. It is connected to a supply source of city gas mainly composed of methane and an air supply source via a mixer 17 that mixes air and gas fuel.
  • the exhaust manifold 4 includes four exhaust branch pipes 20 respectively communicating with the respective exhaust passages 13 in the cylinder head 2 and exhaust main pipes 21 for collecting exhaust gases from the respective exhaust branch pipes 20.
  • the exhaust branch pipe 20 is integrally connected to each other by a pair of flanges 23 and 24, and the flanges 23 and 24 are fixed to the exhaust main pipe 21 and the cylinder head 2, respectively.
  • An oxidation catalyst 30 is inserted into each exhaust branch pipe 20 and fixed by appropriate fixing means.
  • the oxidation catalyst 30 is a general oxidation catalyst. For example, platinum or palladium is supported on an alumina carrier having a honeycomb structure.
  • a double-pipe catalyst case 25 is connected to the exhaust downstream end of the exhaust main pipe 21.
  • the catalyst case 25 includes an inner cylindrical wall 27 and an outer cylindrical wall 26 disposed on the radially outer side of the inner cylindrical wall 27 via an annular space.
  • An inner exhaust passage 27 a is formed in the inner cylindrical wall 27, and an annular outer exhaust passage 26 a is formed between the inner cylindrical wall 27 and the outer cylindrical wall 26.
  • the exhaust upstream end of the inner exhaust passage 27a communicates with the exhaust main pipe 21, and the exhaust downstream end communicates with the outer exhaust passage 26a.
  • a hydrocarbon oxidation catalyst 31 having a higher methane removal rate than the oxidation catalyst 30 is disposed in the inner exhaust passage 27a.
  • An exhaust pipe 35 is connected to a portion of the outer cylindrical wall 26 on the exhaust main pipe 21 side, and an exhaust muffler 36 is connected to the exhaust downstream end of the exhaust pipe 35 as shown in FIG.
  • the hydrocarbon oxidation catalyst 31 has a higher methane removal rate than the oxidation catalyst 30.
  • the basic structure is a structure in which platinum and palladium are supported on a silica support, but the amount of the platinum and palladium supported is large, so that the dispersibility of noble metals is high and a large amount of methane is purified. it can.
  • the horizontal axis indicates the catalyst temperature (° C.), and the vertical axis indicates the hydrocarbon removal rate.
  • the hydrocarbon removal rate increases as the catalyst temperature increases, and is 350 ° C. to 380 ° C.
  • the removal rate is about 100%. That is, the activation temperature is 350 ° C. to 380 ° C.
  • FIG. 6 is a graph in which the horizontal axis represents the amount of NOx generated, the upper stage of the vertical axis represents the CO emissions, the middle stage represents the greenhouse gas emissions, and the lower stage represents the exhaust gas temperature.
  • the horizontal axis represents the amount of NOx generated
  • the upper stage of the vertical axis represents the CO emissions
  • the middle stage represents the greenhouse gas emissions
  • the lower stage represents the exhaust gas temperature.
  • FIG. 7 is a graph showing changes in CO 2 emissions and greenhouse gas emissions due to differences in ignition methods and the presence or absence of catalyst placement.
  • the leftmost graph E 0 is a spark ignition gas when no catalyst is placed.
  • center graph E1 is a premixed compression auto-ignition type gas engine when only the hydrocarbon oxidation catalyst 31 is arranged in the exhaust path
  • right end graph E2 is the exhaust upstream side of the exhaust path as shown in FIG. That is, when the oxidation catalyst 30 in the exhaust branch pipe 20 is disposed and the hydrocarbon oxidation catalyst 31 is disposed in the catalyst case 25 at the exhaust downstream side of the exhaust path, that is, at the downstream end of the exhaust main pipe 21, It is an ignition gas engine.
  • the exhaust gas discharged from the combustion chamber of each cylinder C to each exhaust passage 13 of the cylinder head 2 passes through the oxidation catalyst 30 in each exhaust branch pipe 20, thereby oxygenated carbon (CO). And some hydrocarbons (HC) are removed by oxidation, and the exhaust gas temperature rises due to the heat of oxidation reaction.
  • the lower white triangle ⁇ is the inlet temperature of each oxidation catalyst 30, and the white square ⁇ is the outlet temperature of each oxidation catalyst 30.
  • the exhaust temperature rises by about 40 ° C. from around 330 ° C. to 340 ° C. to around 380 ° C. of the white square ⁇ .
  • the exhaust gas that has risen to about 380 ° C. gathers from each exhaust branch pipe 20 into the exhaust main pipe 21 and enters the inner exhaust passage 27a of the catalyst case 25.
  • unburned methane (CH 4 ) is oxidized and removed to approximately zero.
  • the exhaust gas temperature rises by about 50 ° C. from around 380 ° C. indicated by the white square ⁇ in the lower part of FIG. 6 to around 430 ° C.
  • the exhaust gas that has risen to around 430 ° C. flows in the outer exhaust passage 26a of the catalyst case 25, thereby insulating the hydrocarbon catalyst 31 in the inner exhaust passage 27a from the outside air, and the hydrocarbon oxidation catalyst The temperature drop due to the heat radiation of 31 is prevented.
  • the exhaust gas flowing through the outer exhaust passage 26a passes through the exhaust pipe 35 and the exhaust muffler 36 and is discharged to the outside air.
  • the spark ignition type gas engine is not lean combustion and the combustion temperature is high, so the amount of unburned methane is relatively small, while the CO 2 emission is The amount is large.
  • the center graph E1 As shown in the center graph E1, when only the hydrocarbon oxidation catalyst disposed in the catalyst case 25 having a double-pipe structure is provided, it burns with high thermal efficiency, so the CO 2 emission amount is a spark ignition type gas. Although it is reduced compared to the engine, the low exhaust temperature results in a low removal rate of unburned methane. Therefore, the total greenhouse gas emission is almost the same as that of a spark ignition type gas engine.
  • the oxidation catalyst 30 in each upstream exhaust branch pipe 21 oxidizes and removes CO and some HC and the like, and the downstream carbonization is performed in a state where the exhaust gas temperature has risen.
  • the hydrogen oxidation catalyst 31 By passing through the hydrogen oxidation catalyst 31, activation of the hydrocarbon oxidation catalyst 31 is promoted, and unburned methane can be removed until almost O, as shown in the rightmost graph E2 of FIG.
  • unburned methane whose global warming potential is 21 times that of CO 2 , can be removed to nearly zero.
  • the effect gas emission amount can be greatly reduced as compared with the central graph E1.
  • FIG. 8 shows a premixed compression self-ignition type gas engine according to the second embodiment of the present invention.
  • the length of each exhaust branch pipe 20 and the arrangement state of the exhaust upstream side oxidation catalyst 30 in each exhaust branch pipe 20 are shown.
  • the structure is different from the structure shown in FIGS. 1 to 4, and the other structure is the same as the structure shown in FIGS. 1 to 4, and the same components are denoted by the same reference numerals.
  • each exhaust branch pipe 20 is made shorter than that in the case of FIG. 1, and the end portion of each oxidation catalyst 30 on the exhaust downstream side projects into the exhaust main pipe 21. I am letting.
  • each oxidation catalyst 30 can be activated more efficiently.
  • the exhaust upstream side oxidation catalyst 30 is disposed in the exhaust branch pipe 20.
  • the exhaust in the cylinder head 2 in FIG. If the passage 13 has many straight portions and can be inserted with a certain length of the oxidation catalyst 30, the exhaust upstream-side oxidation catalyst 30 is disposed in the exhaust passage 13 in the cylinder head 2 closest to the combustion chamber. May be.
  • the present invention is optimal for a premixed compression self-ignition gas engine, but can also be applied to a spark ignition type gas engine, particularly a gas engine in which the exhaust temperature does not become so high. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 未燃メタンを主成分とするガス燃料を用いるガスエンジンの排気浄化装置に関する。特に、ガス燃料と空気とを予め混合した混合気を、燃焼室内で圧縮自着火させて燃焼する予混合圧縮自着火式ガスエンジンに適した排気浄化装置に関する。前記ガスエンジンの排気経路に、排気上流側から順に、酸化触媒(30)と、該酸化触媒(30)よりもメタン等の除去率が高い炭化水素酸化触媒(31)を配置した。前記酸化触媒(30)は、たとえば複数気筒エンジンにおいて、各気筒の燃焼室に連通する排気枝管(20)を有する排気マニホールド4の前記各排気枝管(20)内に配置する。また、前記炭化水素酸化触媒(31)は、排気マニホールド(4)の排気主管(21)の排気下流側の接続された二重管構造の触媒ケース(25)の内側排気通路(27)内に配置する。

Description

ガスエンジンの排気浄化装置
 本発明は、メタンを主成分とする都市ガス(天然ガス)等のガス燃料を使用するガスエンジンの排気浄化装置に関し、特に、空気とガス燃料とを予め混合した混合気をシリンダ内の燃焼室に供給し、該混合気を圧縮することによって自着火させる予混合圧縮自着火式ガスエンジン(HCCI)に適した排気浄化装置に関する。
 天然ガス等、メタンを主成分とするガス燃料を使用するガスエンジンでは、排気ガス中から、一酸化炭素(CO)及び窒素酸化物(NOx)と共に、未燃焼メタン(CH4)を除去する必要がある。
 前記予混合圧縮自着火式ガスエンジンは、火花点火式エンジンと比較して、高い圧縮比で運転が可能なため、高熱効率が得られ、それにより、COの発生を抑え、かつ、燃焼温度が低くなることにより、NOxの発生を抑制することが可能である。しかし、希薄燃焼であるため、未燃メタンが排気ガス中に高濃度で排出される。この未燃メタンは、地球温暖化係数がCO2の21倍であるため、少量であっても強力な温室効果ガスとなる。
 このような未燃メタンを除去するために、従来、炭化水素酸化触媒を排気経路に配置して、未燃メタンを酸化除去する排気浄化装置は開発されている(特許文献1)。
特開2000-254499号公報
 ところが、ガスエンジンの排気温度が低い場合、特に上記のように予混合圧縮自着火式ガスエンジンでは、燃焼温度が低く、排気ガス温度も低くなっているので、たとえ排気経路中に炭化水素酸化触媒を配置していても、十分に活性化せず、未燃メタンを十分に除去することが困難であった。
 ちなみに、炭化水素酸化触媒の活性化温度は、350°C乃至370°C程度であるが、前記予混合圧縮自着火式ガスエンジンの排気ガス温度は、精々、340°程度ぐらいまでしか上昇せず、炭化水素を効率的に酸化除去することが困難である。
 本発明は上記課題に鑑みて為されたものであり、都市ガス等、メタンを主成分とするガス燃料を使用するガスエンジンの排気浄化装置において、CO及びNOx等と共に未燃メタンも効率良く浄化し、トータルとしての温室効果ガス排出量を減少させることを目的としている。
 前記課題を解決するため、本発明は、メタンを主成分とするガス燃料を用いるガスエンジンの排気浄化装置において、前記ガスエンジンの排気経路に、排気上流側から順に、COを酸化しうる酸化触媒と、該酸化触媒よりもメタンの除去率が高い炭化水素酸化触媒を配置した。
 上記排気浄化装置において、好ましくは、排気上流側の前記酸化触媒は、前記ガスエンジンのシリンダヘッド内の排気経路又はシリンダヘッド近傍の排気経路内に配置する。
 また、好ましくは、前記炭化水素酸化触媒は、内側排気通路と外側排気通路とを有する二重管構造の触媒ケースの前記内側排気通路内に配置し、前記外側排気通路には、前記内側排気通路通過後の排気ガスが流れるように構成する。
 さらに、上記排気浄化装置において、好ましくは、前記ガスエンジンは、ガス燃料と空気とを予め混合した混合気を、燃焼室内で圧縮自着火させて燃焼する予混合圧縮自着火式ガスエンジンとする。
(1)本願発明によると、炭化水素酸化触媒の排気上流側に酸化触媒を設けていることにより、シリンダから排出される排気ガスは、まず、上記排気上流側の酸化触媒において、COが酸化除去されると同時に、排気ガス温度が上昇する。また、未燃メタンも一部は酸化除去される。この後、前記温度上昇した排気ガスが、排気下流側の炭化水素酸化触媒に供給されるので、反応温度が高い残りの未燃メタンも、炭化水素酸化触媒により効率良く酸化除去される。これにより、温室効果ガス全体の排出量を大幅に減少させることができる。
(2)排気上流側の酸化触媒を、ガスエンジンのシリンダヘッド内の排気経路又はシリンダヘッド近傍の排気経路内に配置すると、酸化触媒におけるHC及びCO等の除去効率が向上する。具体的に説明すると、排気ガスは、排気弁の開閉により、燃焼室から排気経路への排出と停止が交互に繰り返されており、排気弁に近い箇所である上記シリンダヘッド内の排気経路又はシリンダヘッド近傍の排気経路に、排気行程において排出された排気ガスが、次の排気行程まで一時的に滞留する。このように一時的に滞留する位置に酸化触媒を配置することにより、浄化性能を高くすることができる。また、燃焼室から排出された直後の排気ガスが溜まるので、温度が高く、触媒の活性化が促進される。
(3)内側排気通路と外側排気通路とを有する二重管構造の触媒ケースの前記内側排気通路内に炭化水素酸化触媒を配置していると、炭化水素酸化触媒を通過して温度が上昇した排気ガスが、炭化水素酸化触媒の外周面に沿って流れることにより、炭化水素酸化触媒は外部から断熱され、炭化水素酸化触媒の温度を高く維持することができ、これにより、浄化性能を高く維持できる。特に、排気ガスが通過する炭化水素酸化触媒は、中央部が外周部よりも温度が高くなるが、前記二重管構造の触媒ケースを採用すると、炭化水素酸化触媒の温度を全体として略均一に高くすることができる。
(4)ガスエンジンとして、ガス燃料と空気とを予め混合した混合気を、燃焼室内で圧縮自着火させて燃焼する予混合圧縮自着火式ガスエンジンを採用すると、燃焼温度が低いことにより、NOxの発生を効果的に減少させつつ、酸化触媒で温度を上げた排気ガスを、炭化水素酸化触媒に供給し、活性化を促進し、未燃メタンを効率良く除去することができるのである。
本発明の第1の実施の形態に係る排気浄化装置を備えた予混合圧縮自着火式ガスエンジンの平面略図である。 図1のガスエンジンの排気マニホールドの簡略斜視図である。 図1のIII-III断面拡大図である。 図1のIV-IV断面拡大図である。 炭化水素酸化触媒の触媒温度と炭化水素除去率との関係を示す図である。 NOx濃度(空燃比)と、排気ガス温度、温室効果ガス排出量及びCO排出量との関係を示す図である。 火花点火式ガスエンジンの場合と、触媒配置状態の異なる複数の予混合圧縮自着火式ガスエンジンの場合おけるメタン排出量、CO2排出量及び温室効果ガス排出量を示す図である。 本発明の第2の実施の形態に係る予混合圧縮自着火式ガスエンジンの平面略図である。
[第1の実施の形態]
 図1乃至図4は、本発明の第1の実施の形態に係る排気浄化装置を備えた予混合圧縮自着火式ガスエンジンを示しており、図1はガスエンジンの平面略図、図2は図1のガスエンジンの排気装置の斜視図、図3は図1のIII-III断面拡大図、図4は図1のIV-IV断面拡大図である。これらの図に基づいて第1の実施の形態を説明すると、図3において、ガスエンジンのシリンダブロック1等のエンジン本体の上端面にシリンダヘッド2が締着され、シリンダヘッド2の一側端面に吸気マニホールド3が取り付けられ、シリンダヘッド2の他側端面に排気マニホールド4が取り付けられている。
 図1において、該ガスエンジンは直列4気筒エンジンであり、シリンダブロック1には、同一クランク軸上に4つの気筒Cが配置されており、シリンダヘッド2には、各気筒Cの燃焼室に開口する吸気ポート10(一部のみ符号表示)及び排気ポート11と、各吸気ポート10に連通する吸気通路12及び各排気ポート11に連通する排気通路13とが、それぞれ形成されている。
 吸気マニホールド3は、シリンダヘッド2の各吸気通路12に連通する4本の吸気枝管15と、各吸気枝管15を集合した吸気主管16とを備え、該吸気主管16の吸気上流側は、空気とガス燃料を混合するミキサー17を介して、メタンを主成分とする都市ガスの供給源並びに空気供給源に接続している。
 排気マニホールド4は、シリンダヘッド2内の各排気通路13にそれぞれ連通する4本の排気枝管20と、各排気枝管20からの排気ガスを集合する排気主管21とを備え、前記4本の排気枝管20は一対のフランジ23,24により互いに一体的に連結され、前記各フランジ23,24は、それぞれ排気主管21とシリンダヘッド2とに固定されている。前記各排気枝管20内には、それぞれ酸化触媒30が挿入され、適宜の固定手段により固定されている。前記酸化触媒30は、一般的な酸化触媒であり、たとえばハニカム構造のアルミナの担体に、白金あるいはパラジウム等を担持したものである。
 排気主管21の排気下流側端部には、二重管構造の触媒ケース25が接続されている。図4に示すように、前記触媒ケース25は、内側筒壁27と、該内側筒壁27の径方向外方側に、環状空間を介して配置された外側筒壁26と、を有しており、内側筒壁27内で内側排気通路27aを形成し、内側筒壁27と外側筒壁26との間で、環状の外側排気通路26aを形成している。図2に示すように、内側排気通路27aの排気上流側端は前記排気主管21に連通し、排気下流側端は外側排気通路26aに連通している。そして、前記内側排気通路27aには、前記酸化触媒30よりもメタン除去率が高い炭化水素酸化触媒31が配置されている。
 外側筒壁26の排気主管21側の部分には排気管35が接続され、該排気管35の排気下流側端部には図1のように、排気マフラー36が接続されている。
 前記炭化水素酸化触媒31は、前述のように、前記酸化触媒30よりもメタン除去率が高い構造となっている。たとえば、基本的な構造は、シリカ担体に白金とパラジウムを担持させた構造となっているが、前記白金やパラジウムの担持量が多く、それにより、貴金属の分散性が高く、多くのメタンが浄化できる。
[第1の実施形態の作用効果の説明]
 図5は、横軸が触媒温度(°C)、縦軸は炭化水素除去率を示しており、炭化水素除去率は、触媒温度が高くなるに連れて高くなり、350°C乃至380°Cくらいで、略100%の除去率となっている。すなわち、350°C乃至380°Cが活性化温度となっている。
 図6は、横軸がNOxの発生量、縦軸の上段が、CO排出量、中段が温室効果ガス排出量、下段が排気ガス温度を表す図であり、前記NOx発生量は、空燃比の変化に応じて変化し、たとえば、理論空燃比よりも空燃比が大きくなると、NOx発生量は減少する。図7は、点火方式の相違及び触媒配置の有無によるCO2排出量と温室効果ガス排出量の変化を示したグラフであり、左端のグラフE0は、如何なる触媒も配置しない場合の火花点火式ガスエンジン、中央のグラフE1は、排気経路中に炭化水素酸化触媒31のみを配置した場合の予混合圧縮自着火式ガスエンジン、右端のグラフE2は、図1のように排気経路の排気上流側、すなわち排気枝管20内の酸化触媒30を配置し、排気経路の排気下流側、すなわち排気主管21の下流端部の触媒ケース25内に、炭化水素酸化触媒31を配置した場合の予混合圧縮自着火式ガスエンジンである。
 排気ガスの流れ及び浄化作用を説明する。図1において、各シリンダCの燃焼室からシリンダヘッド2の各排気通路13に排出される排気ガスは、各排気枝管20内の酸化触媒30をそれぞれ通過し、これにより、炭化酸素(CO)及び一部の炭化水素(HC)が酸化除去され、かつ、酸化反応熱により、排気ガス温度が上昇する。たとえば、図6において、下段の白三角△が各酸化触媒30の入口温度であり、白四角□が各酸化触媒30の出口温度であり、各酸化触媒30を通過することにより、白三角△の330°C乃至340°C付近から白四角□の380°C付近まで、排気温度が40°C程度上昇する。
 図2において、上記380°C程度まで上昇した排気ガスは、各排気枝管20から排気主管21に集合し、触媒ケース25の内側排気通路27aに入り、炭化水素酸化触媒31により、適正な活性化温度で、未燃メタン(CH4)が略0まで酸化除去される。この場合、排気ガス温度は、図6の下段の白四角□で示す380°C付近から、430°C付近まで略50°C程度上昇する。このように、430°C付近まで上昇した排気ガスは、触媒ケース25の外側排気通路26a内を流れ、これにより、内側排気通路27a内の炭化水素触媒31を外気から断熱し、炭化水素酸化触媒31の放熱による温度低下を防ぐ。
 そして、前記外側排気通路26aを流れた排気ガスは、排気管35及び排気マフラー36を通り、外気に排出される。
 図7において、左端のグラフE0に示すように、火花点火式ガスエンジンでは、希薄燃焼ではなく、かつ、燃焼温度が高いので、未燃メタンの排出量は比較的少なく、一方、CO2の排出量は多い。
 中央のグラフE1に示すように、二重管構造の触媒ケース25内に配置された炭化水素酸化触媒のみを備えている場合、高熱効率で燃焼するので、CO2の排出量は火花点火式ガスエンジンに比べて減少するが、排気温度が低いことにより、未燃メタンの除去率が小さく、したがって、トータルとしての温室効果ガス排出量は、火花点火式ガスエンジンと殆ど変わることがない。
 ところが、本実施の形態のように、上流側の各排気枝管21内の酸化触媒30により、CO及び一部のHC等を酸化除去し、排気ガス温度が上昇した状態で、下流側の炭化水素酸化触媒31中を、通過させることにより、炭化水素酸化触媒31の活性化を促進し、図7の右端グラフE2に示すように、未燃メタンを殆どOになるまで除去することができる。これにより、たとえ、CO2の排出量が、中央のグラフE1の場合よりも高くとも、地球温暖化係数がCO2の21倍もある未燃メタンを略0近くまで除去できるので、全体の温室効果ガス排量としては、中央のグラフE1よりも、大幅に減少することができるのである。
 さらに、480°C近くの高温となって炭化水素酸化触媒31から搬出される排気ガスを、炭化水素酸化触媒31の外周を囲む外側排気通路26aに流し、断熱効果を発揮させることにより、一層、炭化水素酸化触媒31の活性化を促進することができる。
[第2の実施の形態]
 図8は本発明の第2の実施の形態に係る予混合圧縮自着火式ガスエンジンであり、各排気枝管20の長さ及び各排気枝管20内の排気上流側酸化触媒30の配置状態が、前記図1乃至図4の構造と異なっており、その他の構造は図1乃至図4の構造と同様であり、同じ部品には同じ符号を附してある。
 図8に示す排気浄化装置は、各排気枝管20の長さを、前記図1の場合よりも短くし、かつ、各酸化触媒30の排気下流側の端部を、排気主管21内に突出させている。
 該実施形態によると、排気枝管20を短くすることにより、排気装置全体を小形化でき、しかも、酸化触媒30の排気下流側の端部を排気主管2内の高温の排気ガスに曝すことにより、各酸化触媒30を、より効率良く活性化することができる。
[その他の実施の形態]
(1)前記図1乃至図7並びに図8に示す各実施形態では、排気枝管20内に排気上流側の酸化触媒30を配置しているが、たとえば、図3のシリンダヘッド2内の排気通路13に直線部分が多く、一定長さの酸化触媒30が挿入可能な形状であれば、燃焼室の最も近い上記シリンダヘッド2内の排気通路13に排気上流側の酸化触媒30を配設してもよい。
(2)本発明は、上記のように、予混合圧縮自着火式ガスエンジンに最適であるが、火花点火式のガスエンジン、特に、排気温度があまり高くならないガスエンジン等にも適用可能である。
  1 シリンダブロック(エンジン本体)
  2 シリンダヘッド
  3 吸気マニホールド
  4 排気マニホールド
  10 吸気口
  11 排気口
  12 シリンダヘッド内吸気通路
  13 シリンダヘッド内排気通路
  20 排気枝管
  21 排気主管
  25 二重管構造の触媒ケース
  26 外側筒壁
  26a 外側排気通路
  27 内側筒壁
  27a 内側排気通路
  30排気上流側の酸化触媒
  31 排気下流側の炭化水素酸化触媒

Claims (4)

  1. 未燃メタンを主成分とするガス燃料を用いるガスエンジンの排気浄化装置において、
     前記ガスエンジンの排気経路に、排気上流側から順に、酸化触媒と、該酸化触媒よりもメタンの除去率が高い炭化水素酸化触媒を配置したことを特徴とするガスエンジンの排気浄化装置。
  2.  請求項1に記載のガスエンジンの排気浄化装置において、
     排気上流側の前記酸化触媒は、前記ガスエンジンのシリンダヘッド内の排気経路又はシリンダヘッド近傍の排気経路内に配置したことを特徴とするガスエンジンの排気浄化装置。
  3. 請求項1又は2に記載のガスエンジンの排気浄化装置において、
     前記炭化水素酸化触媒は、内側排気通路と外側排気通路とを有する二重管構造の触媒ケースの前記内側排気通路内に配置し、
     前記外側排気通路は、前記内側排気通路通過後の排気ガスが流れるように、前記内側排気通路に連通しているガスエンジンの排気浄化装置。
  4.  請求項1乃至3のいずれか一つに記載のガスエンジンの排気浄化装置において、
     前記ガスエンジンは、ガス燃料と空気とを予め混合した混合気を、燃焼室内で圧縮自着火させて燃焼する予混合圧縮自着火式ガスエンジンであるガスエンジンの排気浄化装置
PCT/JP2010/060017 2009-06-16 2010-06-14 ガスエンジンの排気浄化装置 WO2010147071A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009143244A JP2011001829A (ja) 2009-06-16 2009-06-16 ガスエンジンの排気浄化装置
JP2009-143244 2009-06-16

Publications (1)

Publication Number Publication Date
WO2010147071A1 true WO2010147071A1 (ja) 2010-12-23

Family

ID=43356389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060017 WO2010147071A1 (ja) 2009-06-16 2010-06-14 ガスエンジンの排気浄化装置

Country Status (2)

Country Link
JP (1) JP2011001829A (ja)
WO (1) WO2010147071A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130174A (ja) * 2011-12-22 2013-07-04 Osaka Gas Co Ltd 副室式エンジン
EP2942504A1 (de) 2014-05-09 2015-11-11 Winterthur Gas & Diesel AG Hubkolbenbrennkraftmaschine, Abgasaufbereitung, sowie Verfahren zum Betreiben einer Hubkolbenbrennkraftmaschine
EP3015699A1 (de) 2014-10-31 2016-05-04 Winterthur Gas & Diesel AG Gaszuführsystem mit einem kontrollsystem und zylinder für eine hubkolbenbrennkraftmaschine, hubkolbenbrennkraftmaschine, sowie verfahren zum betreiben einer hubkolbenbrennkraftmaschine
EP3015679A1 (de) 2014-10-31 2016-05-04 Winterthur Gas & Diesel AG Gaszuführsystem und zylinder für eine hubkolbenbrennkraftmaschine, hubkolbenbrennkraftmaschine, sowie verfahren zum betreiben einer hubkolbenbrennkraftmaschine
EP3015698A1 (de) 2014-10-31 2016-05-04 Winterthur Gas & Diesel AG Gaszuführsystem mit Schaftabdichtung und Zylinder für eine Hubkolbenbrennkraftmaschine, Hubkolbenbrennkraftmaschine, sowie Verfahren zum Betreiben einer Hubkolbenbrennkraftmaschine
WO2016124337A1 (de) * 2015-02-05 2016-08-11 Man Diesel & Turbo Se Brennkraftmaschine und verfahren zum betreiben derselben
EP3095993A1 (de) 2015-05-19 2016-11-23 Winterthur Gas & Diesel AG Verfahren zum betreiben eines grossdieselmotors, verwendung dieses verfahrens sowie grossdieselmotor
EP3109444A1 (en) 2015-06-26 2016-12-28 Winterthur Gas & Diesel AG Low-load operation method for operating a reciprocating piston internal combustion engine, and corresponding engine
EP3121428A1 (de) 2015-05-19 2017-01-25 Winterthur Gas & Diesel AG Verfahren zum betreiben eines grossdieselmotors, verwendung dieses verfahrens sowie grossdieselmotor
EP3147477A1 (de) 2015-09-23 2017-03-29 Winterthur Gas & Diesel AG Gaszuführsystem und zylinderliner für eine hubkolbenbrennkraftmaschine, hubkolbenbrennkraftmaschine, sowie verfahren zum betreiben einer hubkolbenbrennkraftmaschine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101923745B1 (ko) 2011-01-07 2018-11-29 선 페이턴트 트러스트 송신 장치, 수신 장치, 송신 방법 및 수신 방법
DE102012021778B4 (de) * 2012-11-06 2016-03-10 Mtu Friedrichshafen Gmbh Gemischaufgeladener Gasmotor und Verfahren zur Kompensation von Liefergradabweichungen in einem gemischaufgeladenen Gasmotor
GB2518360B (en) 2013-09-17 2018-01-24 Jaguar Land Rover Ltd Exhaust treatment apparatus and method
JP2022175502A (ja) * 2021-05-13 2022-11-25 日立造船株式会社 排気処理装置、エンジンシステムおよび排気処理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958716U (ja) * 1982-10-13 1984-04-17 東京瓦斯株式会社 メタンを主成分とする天然ガスを燃料とした2サイクルガスエンジンの排気ガス処理装置
JPH0725212U (ja) * 1993-09-30 1995-05-12 株式会社小松製作所 内燃機関の排気ガス浄化装置
JPH1089054A (ja) * 1996-09-19 1998-04-07 Toyota Motor Corp ディーゼル機関の排気浄化装置
JP2000213385A (ja) * 1999-01-21 2000-08-02 Osaka Gas Co Ltd 予混合圧縮自着火エンジンの自着火タイミング制御方法
JP2003120260A (ja) * 2001-10-18 2003-04-23 Hino Motors Ltd 排気浄化装置
JP2006125269A (ja) * 2004-10-28 2006-05-18 Hino Motors Ltd 排気浄化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958716U (ja) * 1982-10-13 1984-04-17 東京瓦斯株式会社 メタンを主成分とする天然ガスを燃料とした2サイクルガスエンジンの排気ガス処理装置
JPH0725212U (ja) * 1993-09-30 1995-05-12 株式会社小松製作所 内燃機関の排気ガス浄化装置
JPH1089054A (ja) * 1996-09-19 1998-04-07 Toyota Motor Corp ディーゼル機関の排気浄化装置
JP2000213385A (ja) * 1999-01-21 2000-08-02 Osaka Gas Co Ltd 予混合圧縮自着火エンジンの自着火タイミング制御方法
JP2003120260A (ja) * 2001-10-18 2003-04-23 Hino Motors Ltd 排気浄化装置
JP2006125269A (ja) * 2004-10-28 2006-05-18 Hino Motors Ltd 排気浄化装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130174A (ja) * 2011-12-22 2013-07-04 Osaka Gas Co Ltd 副室式エンジン
EP2942504A1 (de) 2014-05-09 2015-11-11 Winterthur Gas & Diesel AG Hubkolbenbrennkraftmaschine, Abgasaufbereitung, sowie Verfahren zum Betreiben einer Hubkolbenbrennkraftmaschine
EP3015699A1 (de) 2014-10-31 2016-05-04 Winterthur Gas & Diesel AG Gaszuführsystem mit einem kontrollsystem und zylinder für eine hubkolbenbrennkraftmaschine, hubkolbenbrennkraftmaschine, sowie verfahren zum betreiben einer hubkolbenbrennkraftmaschine
EP3015679A1 (de) 2014-10-31 2016-05-04 Winterthur Gas & Diesel AG Gaszuführsystem und zylinder für eine hubkolbenbrennkraftmaschine, hubkolbenbrennkraftmaschine, sowie verfahren zum betreiben einer hubkolbenbrennkraftmaschine
EP3015698A1 (de) 2014-10-31 2016-05-04 Winterthur Gas & Diesel AG Gaszuführsystem mit Schaftabdichtung und Zylinder für eine Hubkolbenbrennkraftmaschine, Hubkolbenbrennkraftmaschine, sowie Verfahren zum Betreiben einer Hubkolbenbrennkraftmaschine
WO2016124337A1 (de) * 2015-02-05 2016-08-11 Man Diesel & Turbo Se Brennkraftmaschine und verfahren zum betreiben derselben
US10876449B2 (en) 2015-02-05 2020-12-29 Man Energy Solutions Se Internal combustion engine and method for operating same
EP3095993A1 (de) 2015-05-19 2016-11-23 Winterthur Gas & Diesel AG Verfahren zum betreiben eines grossdieselmotors, verwendung dieses verfahrens sowie grossdieselmotor
EP3121428A1 (de) 2015-05-19 2017-01-25 Winterthur Gas & Diesel AG Verfahren zum betreiben eines grossdieselmotors, verwendung dieses verfahrens sowie grossdieselmotor
EP3109444A1 (en) 2015-06-26 2016-12-28 Winterthur Gas & Diesel AG Low-load operation method for operating a reciprocating piston internal combustion engine, and corresponding engine
EP3147477A1 (de) 2015-09-23 2017-03-29 Winterthur Gas & Diesel AG Gaszuführsystem und zylinderliner für eine hubkolbenbrennkraftmaschine, hubkolbenbrennkraftmaschine, sowie verfahren zum betreiben einer hubkolbenbrennkraftmaschine

Also Published As

Publication number Publication date
JP2011001829A (ja) 2011-01-06

Similar Documents

Publication Publication Date Title
WO2010147071A1 (ja) ガスエンジンの排気浄化装置
ES2754356T3 (es) Método de reducción de óxidos de nitrógeno, monóxido de carbono e hidrocarburos en los gases de gases de escape de los motores de combustión interna
US7644578B2 (en) Vehicle exhaust aftertreatment system
US7293409B2 (en) Process and system for improving combustion and exhaust aftertreatment of motor vehicle engines
US7490463B2 (en) Process and system for removing soot from particulate filters of vehicle exhaust systems
WO2012104894A1 (ja) 排気ガス昇温用バーナー装置
KR20120017018A (ko) 디젤 후처리 시스템
WO2008150370A1 (en) Stoichiometric engine system utilizing reformed exhaust gas
US10934912B2 (en) Method for the exhaust aftertreatment of an internal combustion engine and exhaust aftertreatment system
JP2013087770A (ja) 煤煙フィルター再生システム、及びその方法
US7805931B2 (en) Self-sustaining oxy-exothermal filter regeneration system
JP4538429B2 (ja) ディーゼルエンジンの排気装置
US7204082B1 (en) System for combustion of reformate in an engine exhaust stream
US9797287B2 (en) Ruthenium based catalysts for NOx reduction
RU2591749C2 (ru) Установка риформинга топлива
JP5620696B2 (ja) 排気浄化装置
JP2005127260A (ja) 内燃機関の排気浄化装置
KR101427933B1 (ko) 내연 기관의 촉매 장치 및 이를 구비한 배기 가스 정화 장치
KR100763411B1 (ko) 다중배열형 디젤 산화/환원 촉매변환장치
WO2012137247A1 (ja) バーナー装置を備える内燃機関
Doornbos et al. Comparison of Lab Versus Engine Tests In the Development of a Highly Efficient Ammonia Formation Catalyst for a Passive SCR System
KR102385201B1 (ko) 저공해 가스엔진히트펌프 시스템
JP2006037817A (ja) 内燃機関
JP3552562B2 (ja) 内燃機関の排気浄化装置
JP3087266U (ja) 触媒燃焼装置の構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789446

Country of ref document: EP

Kind code of ref document: A1