WO2010144145A2 - Functionally graded coatings and claddings for corrosion and high temperature protection - Google Patents

Functionally graded coatings and claddings for corrosion and high temperature protection Download PDF

Info

Publication number
WO2010144145A2
WO2010144145A2 PCT/US2010/001677 US2010001677W WO2010144145A2 WO 2010144145 A2 WO2010144145 A2 WO 2010144145A2 US 2010001677 W US2010001677 W US 2010001677W WO 2010144145 A2 WO2010144145 A2 WO 2010144145A2
Authority
WO
WIPO (PCT)
Prior art keywords
functionally
coating
ceramic
graded coating
graded
Prior art date
Application number
PCT/US2010/001677
Other languages
French (fr)
Other versions
WO2010144145A9 (en
WO2010144145A3 (en
Inventor
Christina Lomasney
John D. Whitaker
Brian Flinn
Rajendra Kumar Bordia
Jesse A. Unger
Original Assignee
Modumetal Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modumetal Llc filed Critical Modumetal Llc
Priority to ES10737391.2T priority Critical patent/ES2636742T3/en
Priority to CA2764968A priority patent/CA2764968C/en
Priority to EP10737391.2A priority patent/EP2440692B1/en
Publication of WO2010144145A2 publication Critical patent/WO2010144145A2/en
Priority to US13/323,431 priority patent/US20120234681A1/en
Publication of WO2010144145A3 publication Critical patent/WO2010144145A3/en
Publication of WO2010144145A9 publication Critical patent/WO2010144145A9/en
Priority to US14/712,626 priority patent/US20150322588A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31529Next to metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31605Next to free metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers

Definitions

  • Electrolytic deposition describes the deposition of metal coatings onto metal or other conductive substrates and can be used to deposit metal and ceramic materials via electrolytic and electrophoretic methods. Electrodeposition which is a low-cost method for forming a dense coating on any conductive substrate and which can be used to deposit organic primer (i.e. "E-coat” technology) and ceramic coatings.
  • organic primer i.e. "E-coat” technology
  • the embodiments described herein include methods and materials utilized in manufacturing functionally graded coatings or claddings for at least one of corrosion, tribological and high temperature protection of an underlying substrate.
  • the technology described herein also is directed to articles which include a wear resistant, corrosion resistant and/or high temperature resistant coating including a functionally-graded matrix.
  • One embodiment provides a method which will allow for the controlled growth of a functionally-graded matrix of metal and polymer or metal and ceramic on the surface of a substrate, which can corrode, or otherwise degrade, such as a metal.
  • Another embodiment provides a method which includes the electrophoretic deposition of controlled ratios of ceramic pre-polymer and atomic-scale expansion agents to form a ceramic (following pyrolysis). This form of electrophoretic deposition may then be coupled with electrolytic deposition to form a hybrid structure that is functionally graded and changes in concentration from metal (electrolytically deposited) to ceramic, polymer or glass (electrophoretically deposited).
  • Embodiments of the methods described here provide a high-density, corrosion and/or heat resistant material (e.g., ceramic, glass, polymer) that is deposited onto the surface of a substrate to form a functionally-graded polyme ⁇ metal, ceramic:metal, or glassrmetal coating.
  • a coating of controlled density, composition, hardness, thermal conductivity, wear resistance and/or corrosion resistance, that has been grown directly onto a surface.
  • the functionally-graded coating made according to the methods disclosed herein may be resistant to spallation due to mismatch in any of : coefficient of thermal expansion, hardness, ductility, toughness, elasticity or other property (together “Interface Property”), between the substrate and the ceramic, polymer, pre-ceramic polymer (with or without fillers) or glass (together “Inert Phase”) as the coating incorporates a material at the substrate interface, which more closely matches the Interface Property of the substrate.
  • Interface Property coefficient of thermal expansion, hardness, ductility, toughness, elasticity or other property
  • Inert Phase the coating incorporates a material at the substrate interface, which more closely matches the Interface Property of the substrate.
  • coatings made according to methods described herein are resistant to wear, corrosion and/or heat due to the hard, abrasion-resistant, non-reactive and/or heat-stable nature of the Inert Phase.
  • Polymer-derived ceramics that incorporate active fillers e.g., TiN, Ti disilicide, and others
  • active fillers e.g., TiN, Ti disilicide, and others
  • Polymer-derived ceramic composites have been demonstrated for applications, including-oxidation resistance and thermal barriers, due to their high density and low open-pore volume (e.g., the ceramic has less than 1, 5, 10, 20, 30, 40, or 50 percent voids based on volume). See, JD Torrey and RX Bordia, Journal of European Ceramic Society 28 (2008) 253-257.
  • These polymer-derived ceramics can be electrophoretically deposited. Electrophoretic deposition is a two-step process.
  • a first step particles suspended in a liquid are forced to move towards one of the electrodes by applying an electric field to the suspension (electrophoresis).
  • a second step the particles collect at one of the electrodes and form a coherent deposit on it. Since the local composition of the deposit is directly related to the concentration and composition of the suspension at the moment of deposition, the electrophoretic process allows continuous processing of functionally graded materials. Polymer-derived ceramics is the method used in commercial production of Nicalon® and Tyranno fibers. [00011]
  • the technology of this disclosure includes the use of electrochemical deposition processes to produce composition-controlled functionally-graded coating through chemical and electrochemical control of the initial suspension.
  • LEAF Layered Electrophoretic and Faradaic Depostion
  • the composition and current evolution during the deposition process affords the means to engineer step-graded and continuously graded compositions; see Figs, and reference graphs that show dependence of Ni and Si as a function of solution chemistry and current density.
  • Control of current evolution and direction of the electric field also offers the possibility to orient anisotropic powders allowing intimate control of both the density AND the morphology of the Inert Phase (e.g., the content and organization of added ceramic, polymer or glass materials incorporated into an electrodeposited functionally- graded coating).
  • the resulting density of ceramic can be varied through the coatings to produce a varying morphology of ceramic/metal composition.
  • FIG. 1. is an illustration of a functionally graded material.
  • FIG. 2. is an illustration of a pipe based on functionally graded material shown in FIG. 1.
  • FIG. 3. is graph illustrating mass loss of a substrate per area over time for several materials exposed to concentrated sulfuric acid at 200 degrees C.
  • FIG. 4 illustrates Active Filler Controlled Pyrolysis.
  • FIG. 5 illustrates LEAF electrophoretic deposition process on a fiber mat.
  • FIG. 6 illustrates the concentration of Si and nickel in deposits found by changing the current density.
  • Si is the left most member of each bar graph pair and nickel the right most member of each bar graph pair measured at a specific current density
  • FIG. 7 illustrates the concentration of Ni in the emulsion increases from left to right.
  • Si is the left most member of each bar graph pair and nickel the right most member of each bar graph pair prepared with the noted solution concentration of nickel.
  • Polymer-derived ceramics have shown promise as a novel way to process low- dimensional ceramics, including matrices, fibers and coatings. Polymer-derived ceramic composites have been demonstrated for applications including oxidation barriers, due to their high density and low open-pore volume. See, Torrey and RK Bordia, Journal of European Ceramic Society 28 (2008) 253-257.
  • AACP Active Filler Controlled Pyrolysis
  • polymer-derived ceramics offer many benefits over tradition ceramic processing methods including:
  • the active-filler additive can be occluded into the liquid polymer prior to casting and sintering. During sintering, this additive acts as an expansion agent, resulting in a fully dense part with near zero volume loss (e.g., there are no voids present).
  • Active fillers include Si, Al, Ti and other metals, which on pyrolysis form SiC, AI2O 3 or TiSi 2 , for example.
  • One of the limitations of this process, as it is practiced currently, is the limited reactivity of the fillers. In many cases, due to kinetic limitations, even for the finest available powders, the filler conversion is incomplete.
  • the AFCoP concept and the LEAF deposition process are combined to enable a manufacturing capability which can produce tailorable, low-cost, ultra-high-performance SiC f /SiC composites and parts.
  • the Layered Electrophoretic And Faradaic (LEAF) production process employed herein enables the low-cost production of tailored ceramic matrices.
  • Scheme A Scheme A Machine or Weave Preform ⁇ Place in Plating Tank
  • a first portion of the LEAF process consists in depositing either direct SiC powders, pre-ceramic polymer emulsions (including active fillers) or a combination of these onto the SiC fiber.
  • Electrophoretic deposition is a two-step process. In a first step, particles suspended in a liquid are forced to move towards one of the electrodes by applying an electric field to the suspension (electrophoresis). In a second step (deposition), the particles collect at one of the electrodes and form a coherent deposit on it. Since the local composition of the deposit is directly related to the concentration and composition of the suspension at the moment of deposition, the electrophoretic process allows continuous continuous processing of functionally graded materials.
  • compositions described herein are prepared by the LEAF electrophoretic deposition process outlined above on fiber mat as illustrated in Figure 5.
  • the LEAF process offers the ability to reliably produce composition- controlled "green” (not yet sintered) ceramic through chemical and electrochemical control of the initial suspension. By shaping the starting fiber, which serves as a mandrel, LEAF provides a means to manufacture free standing parts of complex geometry, and hybrid, strength-tailored materials.
  • LEAF By controlling the composition and current evolution during deposition process, LEAF affords the means to engineer step-graded and continuously graded compositions. Control of current evolution and direction of the electric field also offers the possibility to orient anisotropic powders allowing intimate control of both the density AND the morphology of the ceramic deposit.
  • Layer thickness can be controlled by, among other things, the application of current in the electrodeposition process.
  • current density may be varied within the range between 0.5 and 2000 mA/cm 2 .
  • Other ranges for current densities are also possible, for example, a current density may be varied within the range between: about 1 and 20 mA/cm 2 ; about 5 and 50 mA/cm 2 ; about 30 and 70 mA/cm 2 ; 0.5 and 500 mA/cm 2 ; 100 and 2000 mA/cm 2 ; greater than about 500 mA/cm 2 ; and about 15 and 40 mA/cm 2 base on the surface area of the substrate or mandrel to be coated.
  • the frequency of the wave forms may be from about 0.01 Hz to about 50 Hz. In other embodiments the frequency can be from: about 0.5 to aboutlO Hz; 0.02 to about IHz or from about 2 to 20Hz; or from about 1 to about 5 Hz.
  • the electrical potential employed to prepare the coatings is in the range of 5V and 5000 V. In other embodiments the electrical potential is within a range selected from 5 and 200 V; about 50 and 500 V; about 100 and 1000 V; 250 and 2500 V; 500 and 3000 V; 1,000 and 4,000 V; and 2000 and 5000 V.
  • Density gradation allows for the design and development of a highly optimized SiC-fiber:SiC-matrix interface. Density gradation provides a means for balancing the optimization of the interface strength, while still maintaining a high density, and in some embodiments gas impermeable and hermetically sealed matrix. Gas impermeability is especially important in corrosion protection where a high level of gas diffusion through the coating may result in substrate attack.
  • the LEAF process enables control and gradation of density such that a high density region near the substrate may protect the substrate from attack while a low density region near the surface may reduce the thermal conductivity of the coating.
  • a sample composition can be controlled by controlling the voltage. Specifically, by slowly transitioning from a low voltage electrolytic deposition regime to a high voltage electrophoretic deposition regime it may be possible to create a functionally-graded material that gradually changes from metal to ceramic or polymer.
  • metalxeramic functionally graded SiC composite material would significantly increase the corrosion-resistance, wear-resistance, toughness, durability and temperature stability of a ceramic-coated structure.
  • the coating composition can be functionally-graded by modifying the metal concentration in the electrolyte solution during electrochemical deposition.
  • This approach affords an additional means to control the composition of the functionally-graded coating, and allows for deposition to occur at relatively lower current densities and voltages, which produced a better quality in the deposited composites.
  • the standard cathodic emulsion system where the emulsion particles comprise polymer, pre- ceramic polymer, ceramic or a combination thereof, can be adjusted by adding increasing amounts of nickel to the solution. This embodiment is described in Example #3.
  • this disclosure provides a corrosion resistant coating, which changes in composition throughout its depth, from a high metal concentration at the interface with the substrate to which it is applied to an Inert Phase at the surface.
  • the present disclosure provides a heat resistant coating, which changes in composition throughout its depth, from a high metal concentration at the interface with the substrate to which it is applied to an Inert Phase at the surface.
  • Inert Phase means any polymer, ceramic, pre-ceramic polymer (with or without fillers) or glass, which can be electrophoretically deposited.
  • This Inert Phase may include Al 2 O 3 , SiO 2 , TiN, BN, Fe 2 O 3 , MgO, and TiO 2 , SiC, TiO, TiN, silane polymers, polyhydriromethylsilazane and others.
  • M is selected from Li, Sr, La, W, Ta, Hf, Cr, Ca, Na, Al, Ti, Zr, Cs, Ru, and Pb.
  • metal means any metal, metal alloy or other composite containing a metal. These metals may comprise one or more of Ni, Zn, Fe, Cu, Au, Ag, Pd, Sn, Mn, Co, Pb, Al, Ti, Mg and Cr. In embodiments where metals are deposited, the percentage of each metal may independently be selected. Individual metals may be present at about 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 15, 20, 25, 30, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 98, 99, 99.9, 99.99, 99.999 or 100 percent of the electrodeposited species/composition.
  • the coating can have a coating thickness that varies according to properties of the material that is to be protected by the coating, or according to the environment that the coating is subjected to.
  • the coating can range from 0.2 and 250 millimeters, and in other embodiments the range can vary from 0.2 to 25 millimeters, 25 to 250 millimeters, or be greater than about 25 millimeter and less than about 250 millimeters.
  • the coating thickness can range from 0.5 to 5 millimeters, 1 to 10 millimeters, 5 to 15 millimeters, 10 to 20 millimeters, and 15 to 25 millimeters.
  • the overall thickness of the functionally-graded coating can vary greatly as, for example, between 2 micron and 6.5 millimeters or more. In some embodiments the overall thickness of the functionally-graded coating can also be between 2 nanometers and 10,000 nanometers, 4 nanometers and 400 nanometers, 50 nanometers and 500 nanometers, 100 nanometers and 1,000 nanometers, 1 micron to 10 microns, 5 microns to 50 microns, 20 microns to 200 microns, 200 microns to 2 millimeters (mm), 400 microns to 4 mm, 200 microns to 5 mm, 1 mm to 6.5 mm, 5 mm to 12.5 mm, 10 mm to 20 mm, 15 mm to 30 mm.
  • the functionally graded coatings described herein are suitable for coating a variety of substrates that are susceptible to wear and corrosion.
  • the substrates are particularly suited for coating substrates made of materials that can corrode and wear such as iron, steel, aluminum, nickel, cobalt, iron, manganese, copper, titanium, alloys thereof, reinforced composites and the like.
  • the functionally graded coatings described herein may be employed to protect against numerous types of corrosion, including, but not limited to corrosion caused by oxidation, reduction, stress (stress corrosion), dissolution, dezincification, acid, base, sulfidation and the like.
  • the functionally graded coatings described herein may be employed to protect against thermal degradation.
  • the coatings will have a lower thermal conductivity than the substrates (e.g., metal surfaces) to which they are applied.
  • the coatings described herein may be employed to protect against numerous types of corrosion, including, but not limited to corrosion caused by oxidation, reduction, stress (stress corrosion), dissolution, dezincification, acid, base, sulfidation and the like.
  • the coatings are resistant to the action of strong mineral acid, such as sulfuric, nitric, and hydrochloric acids.
  • Example 1 Preparation of a functionally graded coating comprising a Inert
  • Phase and a metal formed utilizing a combination of electrolytic (faradaic) and electrophoretic deposition includes the following steps:
  • a low-content of a metal binder e.g., nickel in this Example
  • a metal binder e.g., nickel in this Example
  • the concentration of nickel in deposits can be controlled by changing the current density employed.
  • Example 4 Nickel, a siloxane-based pre-ceramic polymer particles and ceramic SiC particles are added to an organic electrolyte Note that in this case, the polymer is not deposited as an emulsion, but rather directly as a lacquer. A cathode and an anode were connected to a power supply.
  • the substrate was connected to the cathode and inert anodes were connected to the anode.
  • a potential was applied across the anodes and cathode, which potential ramped from a low voltage (around 5-100V) to a high voltage (about 100- 1000 V).
  • the high voltage was held for a period of time.
  • gray masses are the SiC fibers
  • SiOC is present due to the heat treatment in an environment in which oxygen was present.
  • the white areas are where the nickel was able to infiltrate into the cracks and reinforce the structure of the material.
  • Fiber break analysis was performed on a selection of samples that contained the functionally graded metal:SiC structure to determine the toughness and fracture characteristics of various SiC bundles.
  • the toughness of the fiber matrix can be determined through the visual inspection of fiber pull-out during fracture. This is observed in SEM images of the fracture surface of a dipped coated ceramic bundle cross-linked at 500 0 F for 2 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

The present disclosure describes functionally graded coatings and claddings for corrosion and high temperature protection.

Description

Functionally Graded Coatings and Claddings for Corrosion and
High Temperature Protection
[0001] This application claims the benefit of U.S. Provisional Application No. 61/186,057, filed June 11 , 2009, tilted Functionally Graded Coatings and Claddings for Corrosion and High Temperature Protection, incorporates herein by reference in its entirety. [0002] A process for depositing functionally graded materials and structures is described for manufacturing materials that possess the high temperature and corrosion resistant performance of ceramics and glasses, while at the same time eliminating the common mismatches encountered when these are applied to structural metal or composite substrates. An example of the structure of a functionally graded coating is shown in FIG. 1. An example of the functionally graded coating structure applied to a pipe is shown in FIG. 2. [0003] Electrolytic deposition describes the deposition of metal coatings onto metal or other conductive substrates and can be used to deposit metal and ceramic materials via electrolytic and electrophoretic methods. Electrodeposition which is a low-cost method for forming a dense coating on any conductive substrate and which can be used to deposit organic primer (i.e. "E-coat" technology) and ceramic coatings.
[0004] The embodiments described herein include methods and materials utilized in manufacturing functionally graded coatings or claddings for at least one of corrosion, tribological and high temperature protection of an underlying substrate. The technology described herein also is directed to articles which include a wear resistant, corrosion resistant and/or high temperature resistant coating including a functionally-graded matrix.
[0005] One embodiment provides a method which will allow for the controlled growth of a functionally-graded matrix of metal and polymer or metal and ceramic on the surface of a substrate, which can corrode, or otherwise degrade, such as a metal.
[0006] Another embodiment provides a method which includes the electrophoretic deposition of controlled ratios of ceramic pre-polymer and atomic-scale expansion agents to form a ceramic (following pyrolysis). This form of electrophoretic deposition may then be coupled with electrolytic deposition to form a hybrid structure that is functionally graded and changes in concentration from metal (electrolytically deposited) to ceramic, polymer or glass (electrophoretically deposited).
[0007] Embodiments of the methods described here provide a high-density, corrosion and/or heat resistant material (e.g., ceramic, glass, polymer) that is deposited onto the surface of a substrate to form a functionally-graded polymeπmetal, ceramic:metal, or glassrmetal coating. The result is a coating, of controlled density, composition, hardness, thermal conductivity, wear resistance and/or corrosion resistance, that has been grown directly onto a surface. [0008] The functionally-graded coating made according to the methods disclosed hereinmay be resistant to spallation due to mismatch in any of : coefficient of thermal expansion, hardness, ductility, toughness, elasticity or other property (together "Interface Property"), between the substrate and the ceramic, polymer, pre-ceramic polymer (with or without fillers) or glass (together "Inert Phase") as the coating incorporates a material at the substrate interface, which more closely matches the Interface Property of the substrate. [0009] In general, coatings made according to methods described herein are resistant to wear, corrosion and/or heat due to the hard, abrasion-resistant, non-reactive and/or heat-stable nature of the Inert Phase.
[00010] Polymer-derived ceramics that incorporate active fillers (e.g., TiN, Ti disilicide, and others) to improve density, have shown promise as a way to process a variety of Inert Phases, which are more dense than polymer-derived ceramics which do not incorporate these fillers. Polymer-derived ceramic composites have been demonstrated for applications, including-oxidation resistance and thermal barriers, due to their high density and low open-pore volume (e.g., the ceramic has less than 1, 5, 10, 20, 30, 40, or 50 percent voids based on volume). See, JD Torrey and RX Bordia, Journal of European Ceramic Society 28 (2008) 253-257. These polymer-derived ceramics can be electrophoretically deposited. Electrophoretic deposition is a two-step process. In a first step, particles suspended in a liquid are forced to move towards one of the electrodes by applying an electric field to the suspension (electrophoresis). In a second step (deposition), the particles collect at one of the electrodes and form a coherent deposit on it. Since the local composition of the deposit is directly related to the concentration and composition of the suspension at the moment of deposition, the electrophoretic process allows continuous processing of functionally graded materials. Polymer-derived ceramics is the method used in commercial production of Nicalon® and Tyranno fibers. [00011] In embodiments, the technology of this disclosure includes the use of electrochemical deposition processes to produce composition-controlled functionally-graded coating through chemical and electrochemical control of the initial suspension. This deposition process is referred to as Layered Electrophoretic and Faradaic Depostion (LEAF). By controlling the composition and current evolution during the deposition process, LEAF affords the means to engineer step-graded and continuously graded compositions; see Figs, and reference graphs that show dependence of Ni and Si as a function of solution chemistry and current density. Control of current evolution and direction of the electric field also offers the possibility to orient anisotropic powders allowing intimate control of both the density AND the morphology of the Inert Phase (e.g., the content and organization of added ceramic, polymer or glass materials incorporated into an electrodeposited functionally- graded coating). For example, in one embodiment by controlling current evolution and the direction of the electric field in a solution including pre-ceramic polymer, the resulting density of ceramic can be varied through the coatings to produce a varying morphology of ceramic/metal composition.
BRIEF DESCRIPTION OF THE DRAWINGS
[00012] FIG. 1. is an illustration of a functionally graded material.
[00013] FIG. 2. is an illustration of a pipe based on functionally graded material shown in FIG. 1.
[00014] FIG. 3. is graph illustrating mass loss of a substrate per area over time for several materials exposed to concentrated sulfuric acid at 200 degrees C.
[00015] FIG. 4 illustrates Active Filler Controlled Pyrolysis.
[00016] FIG. 5. illustrates LEAF electrophoretic deposition process on a fiber mat.
[00017] FIG. 6 illustrates the concentration of Si and nickel in deposits found by changing the current density. Si is the left most member of each bar graph pair and nickel the right most member of each bar graph pair measured at a specific current density
[00018] FIG. 7 illustrates the concentration of Ni in the emulsion increases from left to right. . Si is the left most member of each bar graph pair and nickel the right most member of each bar graph pair prepared with the noted solution concentration of nickel.
DETAILED DESCRIPTION
[00019] Polymer-derived ceramics have shown promise as a novel way to process low- dimensional ceramics, including matrices, fibers and coatings. Polymer-derived ceramic composites have been demonstrated for applications including oxidation barriers, due to their high density and low open-pore volume. See, Torrey and RK Bordia, Journal of European Ceramic Society 28 (2008) 253-257.
[00020] The Active Filler Controlled Pyrolysis (AFCoP), polymer-derived ceramics offer many benefits over tradition ceramic processing methods including:
• Liquid form with low crosslinking temperature
• High purity reactants
• Tailorable composition, microstructure, nanostructures and properties
• Ability to produce crystalline and beta-SiC phases
[00021] Pure polymer-derived ceramics suffer from certain performance limitations.
One such limitation is the occurrence of volume shrinkage - up to 50%, upon sintering. To prevent this, and in order to increase the density of PDC matrices, the AFCoP process is employed, as shown in Figure 4.
[00022] To produce fully-dense ceramic matrices, the active-filler additive can be occluded into the liquid polymer prior to casting and sintering. During sintering, this additive acts as an expansion agent, resulting in a fully dense part with near zero volume loss (e.g., there are no voids present). Active fillers include Si, Al, Ti and other metals, which on pyrolysis form SiC, AI2O3 or TiSi2, for example. One of the limitations of this process, as it is practiced currently, is the limited reactivity of the fillers. In many cases, due to kinetic limitations, even for the finest available powders, the filler conversion is incomplete. As will be shown in the processes described herein, the reactive "filler" and the polymer will mixed at molecular scale leading to highly efficient conversion of the filler to the product phase. [00023] Polymer-derived ceramics and in particular, AFCoP ceramics, have shown promise as a novel way to process a variety of ceramics forms, including matrices, fibers and coatings. Polymer-derived ceramic composites have been demonstrated for applications, including-oxidation resistance and thermal barriers, due to their high density and low open- pore volume. See, JD Torrey and RK Bordia, Journal of European Ceramic Society 28 (2008) 253-257. In the some embodiments of this disclosure the AFCoP concept and the LEAF deposition process are combined to enable a manufacturing capability which can produce tailorable, low-cost, ultra-high-performance SiCf/SiC composites and parts. [00024] The Layered Electrophoretic And Faradaic (LEAF) production process employed herein enables the low-cost production of tailored ceramic matrices. A schematic of one embodiment of that process described in Scheme A. Scheme A Machine or Weave Preform <→ Place in Plating Tank
Figure imgf000006_0001
Nondestructive
Remove part Assemble inspection
[00025] Starting from SiC powders and fiber, a first portion of the LEAF process consists in depositing either direct SiC powders, pre-ceramic polymer emulsions (including active fillers) or a combination of these onto the SiC fiber. Electrophoretic deposition is a two-step process. In a first step, particles suspended in a liquid are forced to move towards one of the electrodes by applying an electric field to the suspension (electrophoresis). In a second step (deposition), the particles collect at one of the electrodes and form a coherent deposit on it. Since the local composition of the deposit is directly related to the concentration and composition of the suspension at the moment of deposition, the electrophoretic process allows continuous continuous processing of functionally graded materials. [00026] A variety of substrates may be employed to prepare the compositions described herein. In one embodiment, the compositions are prepared by the LEAF electrophoretic deposition process outlined above on fiber mat as illustrated in Figure 5. [00027] The LEAF process offers the ability to reliably produce composition- controlled "green" (not yet sintered) ceramic through chemical and electrochemical control of the initial suspension. By shaping the starting fiber, which serves as a mandrel, LEAF provides a means to manufacture free standing parts of complex geometry, and hybrid, strength-tailored materials.
[00028] By controlling the composition and current evolution during deposition process, LEAF affords the means to engineer step-graded and continuously graded compositions. Control of current evolution and direction of the electric field also offers the possibility to orient anisotropic powders allowing intimate control of both the density AND the morphology of the ceramic deposit.
[00029] Layer thickness can be controlled by, among other things, the application of current in the electrodeposition process. In some embodiments current density may be varied within the range between 0.5 and 2000 mA/cm2. Other ranges for current densities are also possible, for example, a current density may be varied within the range between: about 1 and 20 mA/cm2; about 5 and 50 mA/cm2; about 30 and 70 mA/cm2; 0.5 and 500 mA/cm2; 100 and 2000 mA/cm2; greater than about 500 mA/cm2; and about 15 and 40 mA/cm2 base on the surface area of the substrate or mandrel to be coated. In some embodiments the frequency of the wave forms may be from about 0.01 Hz to about 50 Hz. In other embodiments the frequency can be from: about 0.5 to aboutlO Hz; 0.02 to about IHz or from about 2 to 20Hz; or from about 1 to about 5 Hz.
[00030] In some embodiments the electrical potential employed to prepare the coatings is in the range of 5V and 5000 V. In other embodiments the electrical potential is within a range selected from 5 and 200 V; about 50 and 500 V; about 100 and 1000 V; 250 and 2500 V; 500 and 3000 V; 1,000 and 4,000 V; and 2000 and 5000 V.
[00031] In addition to direct electrophoretic deposition of SiC pre-polymers onto SiC fibers, studies have also demonstrated the co-deposition of densification additives. This is similar to the AFCoP process described above. These active-filler additives allow low- temperature densification without any detrimental effects on the fibers, as many densification additives can be sintered well below the re-crystallization temperature of the SiCf. See^A.R. Boccaccini et al., Journal of European Ceramic Society 17 (1997) 1545-1550. By combining these additives into the LEAF process, it is possible to produce high density and density graded ceramic matrices.
[00032] Density gradation allows for the design and development of a highly optimized SiC-fiber:SiC-matrix interface. Density gradation provides a means for balancing the optimization of the interface strength, while still maintaining a high density, and in some embodiments gas impermeable and hermetically sealed matrix. Gas impermeability is especially important in corrosion protection where a high level of gas diffusion through the coating may result in substrate attack. The LEAF process enables control and gradation of density such that a high density region near the substrate may protect the substrate from attack while a low density region near the surface may reduce the thermal conductivity of the coating.
[00033] It is believed to be possible to join non oxide ceramics using preceramic polymers with active fillers based on the work of Borida. See, JD Torrey and RK Bordia, Journal of European Ceramic Society 28 (2008) 253-257. In regard t the embodiments described herein, refinement of the microstructure of ceramics joined by the LEAF processes leads to higher bond strengths In one embodiment of the technology, a sample composition can be controlled by controlling the voltage. Specifically, by slowly transitioning from a low voltage electrolytic deposition regime to a high voltage electrophoretic deposition regime it may be possible to create a functionally-graded material that gradually changes from metal to ceramic or polymer. The same could be achieved by controlling the current to selectively deposit ionic (metal) species and/or charged particle (Inert Phase) species. To create a metalxeramic functionally graded SiC composite material would significantly increase the corrosion-resistance, wear-resistance, toughness, durability and temperature stability of a ceramic-coated structure.
[00034] In another embodiment, the coating composition can be functionally-graded by modifying the metal concentration in the electrolyte solution during electrochemical deposition. This approach affords an additional means to control the composition of the functionally-graded coating, and allows for deposition to occur at relatively lower current densities and voltages, which produced a better quality in the deposited composites. The standard cathodic emulsion system, where the emulsion particles comprise polymer, pre- ceramic polymer, ceramic or a combination thereof, can be adjusted by adding increasing amounts of nickel to the solution. This embodiment is described in Example #3. [00035] In other embodiments, this disclosure provides a corrosion resistant coating, which changes in composition throughout its depth, from a high metal concentration at the interface with the substrate to which it is applied to an Inert Phase at the surface. [00036] In another embodiment, the present disclosure provides a heat resistant coating, which changes in composition throughout its depth, from a high metal concentration at the interface with the substrate to which it is applied to an Inert Phase at the surface. [00037] As used herein "Inert Phase" means any polymer, ceramic, pre-ceramic polymer (with or without fillers) or glass, which can be electrophoretically deposited. This Inert Phase may include Al2O3, SiO2, TiN, BN, Fe2O3, MgO, and TiO2, SiC, TiO, TiN, silane polymers, polyhydriromethylsilazane and others.
[00038] In some embodiments, ceramic particles may include of one or more metal oxides that can be selected from ZrxOx, YtOx, AlxOx, SiOx, FexOx, TiOx, MgO where x=l-4, and include mixed metal oxides with the structure MxY, where M is a metal and Y is ZrxOx, YtOx, AlxOx, SiOx, FexOx, TiOx, MgO. In another embodiment, M is selected from Li, Sr, La, W, Ta, Hf, Cr, Ca, Na, Al, Ti, Zr, Cs, Ru, and Pb.
[00039] As used herein, "metal" means any metal, metal alloy or other composite containing a metal. These metals may comprise one or more of Ni, Zn, Fe, Cu, Au, Ag, Pd, Sn, Mn, Co, Pb, Al, Ti, Mg and Cr. In embodiments where metals are deposited, the percentage of each metal may independently be selected. Individual metals may be present at about 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 15, 20, 25, 30, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 98, 99, 99.9, 99.99, 99.999 or 100 percent of the electrodeposited species/composition.
[00040] In other embodiments, the coating can have a coating thickness that varies according to properties of the material that is to be protected by the coating, or according to the environment that the coating is subjected to. In some embodiments, the coating can range from 0.2 and 250 millimeters, and in other embodiments the range can vary from 0.2 to 25 millimeters, 25 to 250 millimeters, or be greater than about 25 millimeter and less than about 250 millimeters. In still other embodiments, the coating thickness can range from 0.5 to 5 millimeters, 1 to 10 millimeters, 5 to 15 millimeters, 10 to 20 millimeters, and 15 to 25 millimeters. In still other embodiments, the overall thickness of the functionally-graded coating can vary greatly as, for example, between 2 micron and 6.5 millimeters or more. In some embodiments the overall thickness of the functionally-graded coating can also be between 2 nanometers and 10,000 nanometers, 4 nanometers and 400 nanometers, 50 nanometers and 500 nanometers, 100 nanometers and 1,000 nanometers, 1 micron to 10 microns, 5 microns to 50 microns, 20 microns to 200 microns, 200 microns to 2 millimeters (mm), 400 microns to 4 mm, 200 microns to 5 mm, 1 mm to 6.5 mm, 5 mm to 12.5 mm, 10 mm to 20 mm, 15 mm to 30 mm.
[00041] The functionally graded coatings described herein are suitable for coating a variety of substrates that are susceptible to wear and corrosion. In one embodiment the substrates are particularly suited for coating substrates made of materials that can corrode and wear such as iron, steel, aluminum, nickel, cobalt, iron, manganese, copper, titanium, alloys thereof, reinforced composites and the like.
[00042] The functionally graded coatings described herein may be employed to protect against numerous types of corrosion, including, but not limited to corrosion caused by oxidation, reduction, stress (stress corrosion), dissolution, dezincification, acid, base, sulfidation and the like.
[00043] The functionally graded coatings described herein may be employed to protect against thermal degradation. In one embodiment, the coatings will have a lower thermal conductivity than the substrates (e.g., metal surfaces) to which they are applied. [00044] The coatings described herein may be employed to protect against numerous types of corrosion, including, but not limited to corrosion caused by oxidation, reduction, stress (stress corrosion), dissolution, dezincification, acid, base, sulfidation and the like. In one embodiment, the coatings are resistant to the action of strong mineral acid, such as sulfuric, nitric, and hydrochloric acids.
EXAMPLES
[00045] Example 1. Preparation of a functionally graded coating comprising a Inert
Phase and a metal formed utilizing a combination of electrolytic (faradaic) and electrophoretic deposition includes the following steps:
1. Acquire the desired substrate material and cut it to its appropriate size
2. Sand the substrate on a circular sander using three steps to achieve a 600 Grit finish b. 420 Grit
3. Attrition Mill TiSi2 powder for 10 or more hours. a. Add isopropanol to the TiSi2 powder to aid in grinding b. The longer the time period the smaller the particle size c. Rinse with isopropanol d. Dry at 100 C for 8 hours
4. Mix the Pre-ceramic Polymer with the solvent a. Pre-ceramic Polymer, Polyhydridomethysilazane (PHMS): 5.25g b. Add to Solvent, n-Octane: 6.25 mL c. Add an electrodepositable metal species (e.g. Ni) to the slurry d. The total Volume ratio of slurry : n-Octane is 3:5
5. Mix TiSi2 powder at 30% volume with PHMS from step 4 to create slurry
6. Ball mill slurry for 4 hours with 200, 5/32" diameter glass beads
7. Dissolve the Ru3(CO)^ catalyst in n-Octane a. Ru3(CO)I2: 2.63 mg b. n-Octane: 6.25 mL c. Combine the mixture with the slurry
8. Ball mill for the entire slurry from step 7 for 30 minutes
9. Dip-coat the slurry onto the prepared substrate a. Dip substrate into slurry b. Apply a current to affect electrolytic deposition of the metal content of the coating c. Increase the current to affect electrophoretic deposition of the ceramic content of the coating d. Attach the substrate to the Instron head e. Optionally dip into the substrate into the slurry and remove it at a rate of 50 crn/min
10. Cross-link the samples in humid air a. Hang the dipped substrates in ajar filled 1/5 with water b. Temperature: 150 C c. Time: 2 hours
11. Pyrolyze the dipped samples with flowing air a. Hang the samples from a ceramic stand and place them in the oven b. Ramp rate: 2C/min c. Hold temperature: 800C d. Hold Time: 2 hours e. Ramp down: 2C/min
12. Remove the completed sample from the oven.
[00046] The resistance of a TiSi2 filled and an unfilled coating to degradation by 200 degree C concentrated sulfuric acid is shown in Figure 3. A standard of Alloy 20 and 316 stainless steel are provide for reference. The filled coating showed the least loss of weight.
[00047] Example 2. Toughness Improvements Employing LEAF Processes To
Incorporate a Low-Content of Metal Binder Into Composites
[00048] In order to improve toughness, the LEAF processes a low-content of a metal binder (e.g., nickel in this Example) may be incorporated into composites. As shown in figure 6, the concentration of nickel in deposits can be controlled by changing the current density employed.
[00049] Example 3. A Functionally Graded Coating
[00050] In order to create a functionally-graded coating, a standard nickel plating bath was added to the polymer emulsion in 1% increments by volume up to 10%.
[00051] Samples were subsequently exposed to a DC current for a fixed period. The bath was stirred and agitated at the conclusion of each test in order to ensure proper solution mixing and suspension.
[00052] The observations attained from the optical image of the samples were confirmed by the EDX compositional analysis. The Ni composition of the coating was increasing as the Ni concentration in solution increased. These results once again demonstrate the feasibility of creating a functionally graded ceramic:metal composite material by controlling the concentration of metal and Inert Phases in the electrolyte during the deposition process.
[00053] In addition, the data demonstrated that the silicon content in the deposit remain constant over time. This result is to be expected as a result of the voltage driven nature of electrophoretic deposition, and a constant current density and similar voltages were used for the samples. The nickel emulsion system can be optimized through concentration alteration and current and voltage modulation to create a structural material suitable for corrosion resistant, wear resistant, heat resistant and other applications. [00054] Example 4. Nickel, a siloxane-based pre-ceramic polymer particles and ceramic SiC particles are added to an organic electrolyte Note that in this case, the polymer is not deposited as an emulsion, but rather directly as a lacquer. A cathode and an anode were connected to a power supply. The substrate was connected to the cathode and inert anodes were connected to the anode. A potential was applied across the anodes and cathode, which potential ramped from a low voltage (around 5-100V) to a high voltage (about 100- 1000 V). The high voltage was held for a period of time. In an SEM of the resulting structure, where gray masses are the SiC fibers the darker gray areas are a mixed matrix of SiOC and SiC. SiOC is present due to the heat treatment in an environment in which oxygen was present. The white areas are where the nickel was able to infiltrate into the cracks and reinforce the structure of the material.
[00055] The addition of the SiC filler particles into the pre-ceramic polymer led to the densification and, strengthening of the specimen by reducing shrinkage on formation. The sub-micron size of the filler particles facilitated the flow and migration of the matrix around the SiC fibers. The upper-right corner of the image contains a zoomed in view of the interface around a fiber. Any gaps present were filled and strengthened by the nickel metal deposition.
[00056] Fiber break analysis was performed on a selection of samples that contained the functionally graded metal:SiC structure to determine the toughness and fracture characteristics of various SiC bundles. The toughness of the fiber matrix can be determined through the visual inspection of fiber pull-out during fracture. This is observed in SEM images of the fracture surface of a dipped coated ceramic bundle cross-linked at 5000F for 2 hours.
[00057] The above descriptions of embodiments of methods and compositions are illustrative of the present technology. Because of variations which will be apparent to those skilled in the art, however, the technology is not intended to be limited to the particular embodiments described above.
Figure imgf000013_0001
Nickel /Siloxane Based Pre-Ceramic Polymer — SEM of the pre-ceramic polymer slurry with SiC filler on SiC fibers SEM
(FIRST SEM IMAGE)
at
Figure imgf000014_0001
(FIRSTSEMIMAGE)

Claims

What is claimed is:
1. A method for producing a functionally-graded coating, comprising:
(a) exposing a mandrel or a substrate to be coated to an electrolyte containing one or more metal ions, and containing one or more ceramic particles, polymer particles, pre- ceramic polymer particles, active fillers, or a combination thereof;
(b) applying an electric current and changing in time one or more of: an amplitude of the electrical current, an amplitude of an electrical potential, an electrolyte temperature, a relative concentration of metal ions or particles in the electrolyte, or an electrolyte agitation, to change a ratio of an electrodeposited species; and
(c) promoting growth of the functionally-graded coating until a desired thickness of the coating is achieved, the electrodeposited species being varied throughout the desired thickness of the coating.
2. The method of claim 1, further comprising rinsing said mandrel or substrate.
3. The method of claims 1 or 2, further comprising heat treating the coating to cause partial or complete sintering of a pre-ceramic polymer applied to said mandrel or substrate by said applying of said electric current.
4. The method of claim 3, where the heat treating has a heat treatment temperature between 200 degrees C to 1300 degrees C.
5. The method of any of claims 1 to 4, wherein said heat treatment temperature is in a range selected from 200 to 400, 200 to 600, 300 to 700, 600 to 1200, 500 to 800, and 700 to 1300 degrees C.
6. The method of any of claims 1 to 5, wherein the electrolyte agitation is achieved by ultrasonic agitation of the electrolyte.
7. The method of any of claims 1 to 6, wherein said one or more metal ions are selected from the group consisting of: Ni, Zn, Fe, Cu, Au, Ag, Pd, Sn, Mn, Co, Pb, Al, Ti, Mg, and Cr.
8. The method of any of claims 1 to 7, wherein the ceramic particles are chosen from metal oxides, carbides, nitrides, or combinations thereof.
9. The method of any of claims 1 to 7, wherein the metal oxides are chosen from ZrxOx, YtOx, AIxOx, SiOx, FexOx, TiOx, and MgO, where x=l-4, including mixed metal oxides of said oxides with the structure MxY, where M is a metal and Y is one of the ZrxOx, YtOx, AIxOx, SiOx, FexOx, TiOx, and MgO.
10. The method of claim 8, wherein the nitrides are chosen from TiN, BN, SiN, and LiN.
11. The method of claim 8, wherein the carbides comprise one or more of: CrC, ZrC, SiC, B4C, V4C3, WC, and CaC.
12. The method of claim 8, wherein the ceramic particles comprise one or more of: A12O3, SiO2, ZrO, TiN, BN, Fe2O3, MgO, and TiO2.
13. The method of any of claims 1 to 12, wherein the polymer particles comprise one or more of: epoxy, polyurethane, polyaniline, polyethylene, poly ether ether ketone, polypropylene, and siloxane.
14. The method of any of claims 1 to 13, wherein the pre-ceramic polymers comprise one or more of: siloxides, silences, silanes, organosilanes, siloxanes, polyhedral oligomeric silsesquioxanes, polydimethylsiloxanes, and polydiphenylsiloxanes.
15. The method of any of claims 1 to 14, wherein the active fillers comprise one or more of: titanium disilicide, yittrium disilicide, nickel disilicide, niobium disilicide, tantalum disilicide, vanadium disilicide, chromium disilicide, and molybdenum disilicide.
16. The method of any of claims 1 to 15, wherein the electrolyte comprises a solvent chosen from water, organic solvent, ionic liquid, molten salt, or a combination thereof.
17. The method of any of claims 1 to 16, wherein the substrate is disposed proximate to a second substrate comprising iron, copper, zinc, aluminum, titanium, nickel, chromium, graphite, carbon, cobalt, lead, epoxy, or composites or alloys thereof.
18. The method of any of claims 1 to 17, wherein an electric current density ranges between 0.5 mA/cm2 and 2000 A/cm2 based upon the surface area of the substrate or mandrel to be coated.
19. The method of claim 18, wherein the current density is within a range selected from 1 and 20 mA/cm2; about 5 and 50 mA/cm2; about 30 and 70 mA/cm2; 0.5 and 500 mA/cm2; 100 and 2000 mA/cm2; 1,000 and 2,000 mA/cm2; 300 and 1,200 mA/cm2, and about 15 and 40 mA/cm2 based on the surface area of the substrate or mandrel to be coated.
20. The method of any of claims 1 to 17, wherein the electrical potential ranges between 5 V and 5000 V.
21. The method of claim 20, wherein the electrical potential is within a range selected from 5 and 200 V; about 50 and 500 V; about 100 and 1000 V; 250 and 2500 V; 500 and 3000 V; 1,000 and 4,000 V; and 2000 and 5000 V.
22. The method of any of claims 1 to 21, wherein the functionally-graded coating has a coating thickness of between 0.2 and 25 millimeters.
23. The method of claim 22, wherein the coating thickness is within a range selected from 0.5 and 5 millimeters; 1 and 10 millimeters; 5 and 15 millimeters; 10 and 20 millimeters; and 15 and 25 millimeters.
24. The method of any of claims 1 to 21, wherein the functionally-graded coating has a coating thickness greater than about 25 millimeter and less than about 250 millimeters.
25. A coating prepared by the method of any of claims 1-24.
26. An electrodeposited corrosion-resistant functionally-graded coating, comprising: an interior first region of metal; and an exterior second region of polymer, pre-ceramic polymer, or ceramic, wherein a non-discrete region is disposed between the first region and the second region, the non-discrete region being a combination of the first region and the second region.
27. The functionally-graded coating of claim 26, wherein said non-discrete region has a monotonically increasing metal concentration gradient.
28. The functionally-graded coating of claim 26, wherein said non-discrete region has a monotonically decreasing metal concentration gradient.
29. The functionally-graded coating of any of claims 26 to 28, wherein said functionally- graded coating is corrosion-resistant or substantially corrosion resistant.
30. The functionally-graded coating of any of claims 26 to 28, wherein said functionally- graded coating is heat resistant or substantially heat resistant.
31. The functionally-graded coating of any of claims 26 to 28, wherein said functionally- graded coating is wear resistant or substantially wear resistant.
32. The functionally-graded coating of any of claims 26 to 31, wherein said metal comprises one or more metal ions selected from the group consisting of: Ni, Zn, Fe, Cu, Au, Ag, Pd, Sn, Mn, Co, Pb, Al, Ti, Mg, and Cr.
33. The functionally-graded coating of any of claims 26 to 32, wherein said ceramic comprises one or more metal oxides, carbides, nitrides, or combinations thereof.
34. The functionally-graded coating of claim 33, wherein the ceramic comprises one or more of ZrxOx, YtOx, AIxOx, SiOx, FexOx, TiOx, or MgO, where x=l-4, including mixed metal oxides of said oxides with the structure MxY, where M is a metal and Y is one of the ZrxOx, YtOx, AIxOx, SiOx, FexOx, TiOx, or MgO.
35. The functionally-graded coating of claim 33 or 34, wherein the nitrides are chosen from, TiN, BN, SiN, and LiN.
36. The functionally-graded coating of any of claims 33 to 35, wherein the carbides comprise one or more of: CrC, ZrC, SiC, B4C, V4C3, WC, and CaC.
37. The functionally-graded coating of any of claims 26 to 36, wherein the ceramic comprises one or more of: A12O3, SiO2, ZrO, TiN, BN, Fe2O3, MgO, and TiO2.
38. The functionally-graded coating of any of claims 26 to 37, wherein the polymer comprises one or more of: epoxy, polyurethane, polyaniline, polyethylene, poly ether ether ketone, polypropylene, and siloxane.
39. The functionally-graded coating of any of claims 26 to 38, wherein the pre-ceramic comprises one or more of: siloxides, silences, silanes, organosilanes, siloxanes, polyhedral oligomeric silsesquioxanes, polydimethylsiloxanes, and polydiphenylsiloxanes.
40. The functionally-graded coating of any of claims 26 to 39, further comprising a first substrate disposed proximate to a second substrate comprising iron, copper, zinc, aluminum, titanium, nickel, chromium, graphite, carbon, cobalt, lead, epoxy, or composites or alloys thereof.
PCT/US2010/001677 2009-06-11 2010-06-11 Functionally graded coatings and claddings for corrosion and high temperature protection WO2010144145A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES10737391.2T ES2636742T3 (en) 2009-06-11 2010-06-11 Functionally graduated coatings and coatings for protection against corrosion and high temperatures
CA2764968A CA2764968C (en) 2009-06-11 2010-06-11 Functionally graded coatings and claddings for corrosion and high temperature protection
EP10737391.2A EP2440692B1 (en) 2009-06-11 2010-06-11 Functionally graded coatings and claddings for corrosion and high temperature protection
US13/323,431 US20120234681A1 (en) 2009-06-11 2011-12-12 Functionally graded coatings and claddings for corrosion and high temperature protection
US14/712,626 US20150322588A1 (en) 2009-06-11 2015-05-14 Functionally Graded Coatings and Claddings for Corrosion and High Temperature Protection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18605709P 2009-06-11 2009-06-11
US61/186,057 2009-06-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/323,431 Continuation US20120234681A1 (en) 2009-06-11 2011-12-12 Functionally graded coatings and claddings for corrosion and high temperature protection

Publications (3)

Publication Number Publication Date
WO2010144145A2 true WO2010144145A2 (en) 2010-12-16
WO2010144145A3 WO2010144145A3 (en) 2013-01-17
WO2010144145A9 WO2010144145A9 (en) 2013-03-07

Family

ID=43063528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/001677 WO2010144145A2 (en) 2009-06-11 2010-06-11 Functionally graded coatings and claddings for corrosion and high temperature protection

Country Status (5)

Country Link
US (2) US20120234681A1 (en)
EP (1) EP2440692B1 (en)
CA (2) CA2764968C (en)
ES (1) ES2636742T3 (en)
WO (1) WO2010144145A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181127A2 (en) * 2013-05-10 2014-11-13 The Royal Mint Limited Plating of articles
WO2015074679A1 (en) 2013-11-19 2015-05-28 Basf Coatings Gmbh Aqueous coating composition for dipcoating electrically conductive substrates containing aluminium oxide
WO2015074680A1 (en) 2013-11-19 2015-05-28 Basf Coatings Gmbh Aqueous coating composition for the dip-paint coating of electrically conductive substrates containing magnesium oxide
CN114656275A (en) * 2022-03-11 2022-06-24 西北工业大学 Preparation of SiC by vacuum impregnation combined with reaction melt impregnationfMethod for preparing/Si-Y-B-C composite material

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301993B2 (en) 2005-08-12 2013-09-25 モジュメタル エルエルシー Composition-modulated composite material and method for forming the same
CA2730252C (en) 2008-07-07 2018-06-12 Modumetal Llc Low stress property modulated materials and methods of their preparation
EP3009532A1 (en) 2009-06-08 2016-04-20 Modumetal, Inc. Electrodeposited nanolaminate coatings and claddings for corrosion protection
JP5006993B2 (en) * 2010-02-04 2012-08-22 日本精機宝石工業株式会社 Heat dissipation material
US9944021B2 (en) 2012-03-02 2018-04-17 Dynamic Material Systems, LLC Additive manufacturing 3D printing of advanced ceramics
US10399907B2 (en) 2012-03-02 2019-09-03 Dynamic Material Systems, LLC Ceramic composite structures and processing technologies
US8961840B1 (en) * 2012-03-02 2015-02-24 Dynamic Material Systems, LLC Method for producing bulk ceramic components from agglomerations of partially cured gelatinous polymer ceramic precursor resin droplets
US9764987B2 (en) 2012-03-02 2017-09-19 Dynamic Material Systems, LLC Composite ceramics and ceramic particles and method for producing ceramic particles and bulk ceramic particles
BR112015022078B1 (en) 2013-03-15 2022-05-17 Modumetal, Inc Apparatus and method for electrodepositing a nanolaminate coating
CN105283587B (en) 2013-03-15 2019-05-10 莫杜美拓有限公司 Nano-stack coating
EP2971261A4 (en) 2013-03-15 2017-05-31 Modumetal, Inc. Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes
CN105189828B (en) 2013-03-15 2018-05-15 莫杜美拓有限公司 Nickel chromium triangle nanometer laminate coat with high rigidity
CA2961508C (en) 2014-09-18 2024-04-09 Modumetal, Inc. A method and apparatus for continuously applying nanolaminate metal coatings
CN106794673B (en) 2014-09-18 2021-01-22 莫杜美拓有限公司 Method of making an article by electrodeposition and additive manufacturing processes
US9744694B2 (en) 2015-04-02 2017-08-29 The Boeing Company Low-cost tooling and method for manufacturing the same
CN104975326B (en) * 2015-07-06 2017-10-24 常州大学 A kind of preparation method of surface electro-deposition nano rare earth modified cobalt base composite cladding
CN105332010B (en) * 2015-11-18 2017-05-10 常州大学 Preparation method of pulse electrodeposition Co/Y2O3 nanometer composite plating layer
US10060042B2 (en) 2016-04-04 2018-08-28 The Boeing Company Tooling having a durable metallic surface over an additively formed polymer base and method of forming such tooling
WO2018049062A1 (en) 2016-09-08 2018-03-15 Modumetal, Inc. Processes for providing laminated coatings on workpieces, and articles made therefrom
CA3057836A1 (en) 2017-03-24 2018-09-27 Modumetal, Inc. Lift plungers with electrodeposited coatings, and systems and methods for producing the same
WO2018195516A1 (en) 2017-04-21 2018-10-25 Modumetal, Inc. Tubular articles with electrodeposited coatings, and systems and methods for producing the same
CN108385143A (en) * 2018-04-11 2018-08-10 珠海市跳跃自动化科技有限公司 A kind of diamond wire production line and production method
EP3784823A1 (en) 2018-04-27 2021-03-03 Modumetal, Inc. Apparatuses, systems, and methods for producing a plurality of articles with nanolaminated coatings using rotation
CN110129864B (en) * 2019-05-30 2020-04-28 中国石油大学(华东) Reduced graphene oxide-nickel-based gradient coating and preparation method thereof
US11969796B2 (en) * 2020-01-03 2024-04-30 The Boeing Company Tuned multilayered material systems and methods for manufacturing
CN111825479B (en) * 2020-07-24 2022-08-05 江西宁新新材料股份有限公司 Method for preparing graphite high-temperature-resistant composite coating through electrochemistry-impregnation cooperation
CN114759419B (en) * 2022-03-17 2024-01-09 江苏海洋大学 Preparation method of copper-aluminum gradient alloy transition joint for submarine cable welding
CN114657615B (en) * 2022-03-25 2023-11-14 重庆理工大学 Wear-resistant nickel coating with gradient nano structure and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660704A (en) * 1994-02-21 1997-08-26 Yamaha Hatsudoki Kabushiki Kaisha Plating method and plating system for non-homogenous composite plating coating
US5865976A (en) * 1994-10-07 1999-02-02 Toyoda Gosei Co., Inc. Plating method
JPH08311696A (en) * 1995-05-18 1996-11-26 Brother Ind Ltd Formation of composite plated film having gradient composition
US6607844B1 (en) * 1999-03-15 2003-08-19 Kobe Steel, Ltd. Zn-Mg electroplated metal sheet and fabrication process therefor
DE10301135B4 (en) * 2003-01-14 2006-08-31 AHC-Oberflächentechnik GmbH & Co. OHG Object with a wear protection layer
US20050112399A1 (en) * 2003-11-21 2005-05-26 Gray Dennis M. Erosion resistant coatings and methods thereof
US9005420B2 (en) * 2007-12-20 2015-04-14 Integran Technologies Inc. Variable property electrodepositing of metallic structures

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOCCACCINI ET AL., JOURNAL OF EUROPEAN CERAMIC SOCIETY, vol. 17, 1997, pages 1545 - 1550
JD TORREY; RK BORDIA, JOURNAL OF EUROPEAN CERAMIC SOCIETY, vol. 28, 2008, pages 253 - 257
TORREY; RK BORDIA, JOURNAL OF EUROPEAN CERAMIC SOCIETY, vol. 28, 2008, pages 253 - 257

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181127A2 (en) * 2013-05-10 2014-11-13 The Royal Mint Limited Plating of articles
WO2014181127A3 (en) * 2013-05-10 2015-01-22 The Royal Mint Limited Plating of articles
GB2518776A (en) * 2013-05-10 2015-04-01 Royal Mint Ltd Plating of articles
GB2518776B (en) * 2013-05-10 2016-09-14 The Royal Mint Ltd Electroplating of articles
US10526718B2 (en) 2013-05-10 2020-01-07 The Royal Mint Limited Plating of articles
WO2015074679A1 (en) 2013-11-19 2015-05-28 Basf Coatings Gmbh Aqueous coating composition for dipcoating electrically conductive substrates containing aluminium oxide
WO2015074680A1 (en) 2013-11-19 2015-05-28 Basf Coatings Gmbh Aqueous coating composition for the dip-paint coating of electrically conductive substrates containing magnesium oxide
CN114656275A (en) * 2022-03-11 2022-06-24 西北工业大学 Preparation of SiC by vacuum impregnation combined with reaction melt impregnationfMethod for preparing/Si-Y-B-C composite material
CN114656275B (en) * 2022-03-11 2023-08-04 西北工业大学 SiC preparation by vacuum impregnation combined with reaction melt infiltration f Method for preparing/Si-Y-B-C composite material

Also Published As

Publication number Publication date
WO2010144145A9 (en) 2013-03-07
CA2764968C (en) 2018-03-06
US20150322588A1 (en) 2015-11-12
CA2991617A1 (en) 2010-12-16
EP2440692B1 (en) 2017-05-10
US20120234681A1 (en) 2012-09-20
EP2440692A2 (en) 2012-04-18
WO2010144145A3 (en) 2013-01-17
ES2636742T3 (en) 2017-10-09
CA2991617C (en) 2019-05-14
CA2764968A1 (en) 2010-12-16

Similar Documents

Publication Publication Date Title
EP2440692B1 (en) Functionally graded coatings and claddings for corrosion and high temperature protection
Li et al. Preparation of Ni-W/SiC nanocomposite coatings by electrochemical deposition
Susan et al. Electrodeposited NiAl particle composite coatings
Sabzi et al. The effect of pulse-reverse electroplating bath temperature on the wear/corrosion response of Ni-Co/tungsten carbide nanocomposite coating during layer deposition
Qu et al. Fabrication of Ni–CeO2 nanocomposite by electrodeposition
CN102575367B (en) Plating or coating method for producing metal-ceramic coating on a substrate
Stroumbouli et al. Codeposition of ultrafine WC particles in Ni matrix composite electrocoatings
Xue et al. Fabrication of NiCo coating by electrochemical deposition with high super-hydrophobic properties for corrosion protection
Li et al. Influence of alumina nanoparticles on microstructure and properties of Ni-B composite coating
Zhou et al. Electrodeposition and corrosion resistance of Ni–P–TiN composite coating on AZ91D magnesium alloy
US6410086B1 (en) Method for forming high performance surface coatings and compositions of same
Safavi et al. Incorporation of Y2O3 nanoparticles and glycerol as an appropriate approach for corrosion resistance improvement of Ni-Fe alloy coatings
WO2012145750A2 (en) Electroplated lubricant-hard-ductile nanocomposite coatings and their applications
CZ2002572A3 (en) Protective polyfunctional mixed coating based on light alloys and process for producing thereof
Chaudhari et al. Structure and properties of electro Co-Deposited Ni-Fe/ZrO2 nanocomposites from ethylene glycol bath
Fayomi et al. Anti-corrosion properties and structural characteristics of fabricated ternary coatings
Li et al. Preparation of Ni-W nanocrystalline composite films reinforced by embedded zirconia ceramic nanoparticles
JPH03173798A (en) Formation of high temperature gas corrosion layer deposited electrically
US20040023035A1 (en) Wear and thermal resistant material produced from super hard particles bound in a matrix of glassceramic electrophoretic deposition
Zuo et al. Effect of activators on the properties of nickel coated diamond composite powders
JP3973039B2 (en) Composite plated product and method for producing the same
ThippaReddy et al. Electrodeposited nickel composite coating containing in-situ nickel impregnated alumina particles
Liang et al. Electrodeposition and characterization of Ni/Ti3Si (Al) C2 composite coatings
Li et al. Effect of bath ZrO2 concentration on the properties of Ni-Co/ZrO2 coatings obtained by electrodeposition
CN114277421A (en) Ti-Mo-B ternary boride coating and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10737391

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2764968

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010737391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010737391

Country of ref document: EP