WO2010140374A1 - Variable displacement compressor - Google Patents

Variable displacement compressor Download PDF

Info

Publication number
WO2010140374A1
WO2010140374A1 PCT/JP2010/003724 JP2010003724W WO2010140374A1 WO 2010140374 A1 WO2010140374 A1 WO 2010140374A1 JP 2010003724 W JP2010003724 W JP 2010003724W WO 2010140374 A1 WO2010140374 A1 WO 2010140374A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
swash plate
intermediate pressure
suction
pressure
Prior art date
Application number
PCT/JP2010/003724
Other languages
French (fr)
Japanese (ja)
Inventor
内門巌
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to CN2010800251599A priority Critical patent/CN102459897A/en
Priority to EP10783162.0A priority patent/EP2423507A4/en
Priority to US13/376,346 priority patent/US20120073430A1/en
Publication of WO2010140374A1 publication Critical patent/WO2010140374A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/185Discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1859Suction pressure

Definitions

  • the present invention relates to a variable capacity compressor, and in particular, it can reduce pulsation, improve durability, and improve pressure resistance, and can control the inclination angle of a swash plate more smoothly and with high accuracy via an axially moving member.
  • the present invention relates to a variable capacity compressor.
  • a cylinder head having a suction chamber and a discharge chamber; a cylinder block having a cylinder bore into which a piston is reciprocally inserted; a crank chamber formed by the cylinder block and a front housing; and a crank chamber formed in the crank chamber.
  • a variable capacity compression comprising a swash plate that is rotated together with the main shaft and is supported so that its inclination angle can be changed with respect to the main shaft, and a motion conversion mechanism that converts the rotational motion of the swash plate into the reciprocating motion of the piston.
  • the machine is well known.
  • the above-mentioned motion conversion mechanism has been previously converted by the applicant of the present invention into the swing motion of the swash plate into its own swing motion.
  • the rotation prevention mechanism for the swing plate is (a) prevented from rotating in the housing.
  • An outer ring having a plurality of guide grooves for guiding the outer ring and having a swing plate coupled to the outer periphery and supported so as to be swingable together with the swing plate; and (c) facing each other formed on the inner ring and the outer ring.
  • Wobble plate type variable displacement compressor having a structure that consists mechanism having a plurality of balls for performing power transmission, has been proposed by being (Patent Document 1).
  • the inner ring constitutes an axial movement member that can move in a direction along the axis of the main shaft substantially corresponding one-to-one with respect to the inclination angle of the swash plate. Yes.
  • variable capacity compressor previously proposed by the applicant of the present invention has a structure as shown in FIGS. 11 and 12, for example.
  • FIG. 11 shows the maximum capacity (maximum cam angle [maximum swash plate angle]) state
  • FIG. 12 shows the minimum capacity (minimum cam angle [minimum swash plate angle]) state.
  • a swash plate 206 is capable of changing the inclination angle of a main shaft 204 inserted into a crank chamber 203 formed by a front housing 201 and a cylinder block 202 via a hinge mechanism 205 and is integrated with the main shaft 204. It is provided rotatably.
  • the rotational motion of the swash plate 206 is converted into the swing motion of the swing plate 207, and the swing motion is converted into the reciprocating motion of the piston 209 via the connecting rod 208.
  • the rotation prevention mechanism 210 of the rocking plate 207 is provided to be movable in the axial direction while being prevented from rotating via the spline engagement mechanism 211, and to be rotatable relative to the main shaft 204.
  • the inner ring 213 having a plurality of guide grooves for guiding a plurality of balls 212 provided for power transmission, and (ii) a swinging central member of the swinging motion of the swinging plate 207.
  • a sleeve 214 which is provided so as to be relatively rotatable and movable in the axial direction, and is engaged with the inner ring 213 so as to be movable in the axial direction together with the inner ring 213, and (iii) a ball at a position facing each guide groove of the inner ring 213
  • An outer ring 215 having a plurality of guide grooves for guiding 212, supported swingably on the sleeve 214, and fixedly supporting the swing plate 207 on the outer periphery; (iv) an inner ring 213; Held by opposing guide grooves of the wheels 215, a plurality of balls 212 that transmits power by being compressed between the guide grooves, and a mechanism having a.
  • a suction chamber 217 and a discharge chamber 218 are formed in the cylinder head 216.
  • the suction gas to the compressor is taken into the suction chamber 217 from the suction port 219 via the suction throttle valve 220 in the illustrated example, and the gas compressed by the piston 209 in the cylinder bore 221 is discharged to the discharge chamber 218. In the illustrated example, it is sent to an external circuit from there through the discharge cutoff valve 222 and the discharge port 223.
  • control valve 224 or the throttle valve 226 is connected to the communication chamber 225 for introducing the discharge gas adjusted from the pressure Pd of the discharge chamber 218 to the crank chamber 203 by the throttle and the crank chamber gas to the suction chamber 217 side (pressure Ps).
  • a return passage 227 is provided, and the gas pressure Pc in the crank chamber 203 is controlled by changing the opening of the control valve 224.
  • variable capacity compressor having such a structure, the balance of the even moment in the compressor will be described for comparison with the present invention described later.
  • the even moment generated by the reciprocating motion of the system components is generated as shown in FIG. 13 according to the cam angle as the even moment in the cam bending direction acting by the compressor operation.
  • FIG. 13 shows, for example, the even moment (in the illustrated example, the total even moment acts in the direction of increasing the capacity (cam angle) at all cam angles.
  • the gas pressure distribution is generated in each space inside the compressor due to the compression action of the compressor and the pressure regulation action of the control valve.
  • the distribution causes an even moment in the direction in which the cam angle increases or decreases, for example, as shown in Fig. 14.
  • the compressor since the compression action is generated by the rotation of the main shaft 204 of the compressor, the compressor is in operation.
  • the even moment due to the rotation and reciprocation of the above parts and the even moment due to the gas pressure distribution act simultaneously, and the cam angle can be set to any predetermined value by the total balance of these two types of even moments (total balance).
  • the compressor capacity is controlled to a desired capacity.
  • the cam angle can be controlled so as to balance the even moment caused by the rotation and reciprocation of each component shown in FIG. Further, for M1 and M2 in FIG. 14, M1 and M2 are actually calculated for all pistons.
  • a relatively high temperature and high pressure control gas with a reduced discharge pressure is introduced into the crank chamber, which is disadvantageous in terms of durability to rotating / driving components and seals. Met.
  • pulsation reduction elements such as a throttle valve and muffler may be built in the cylinder head. The degree of freedom in designing the layout with the refrigerant shutoff valve or the like is reduced.
  • the capacity (swash plate tilt angle) is basically controlled by adjusting the differential pressure between the crank chamber pressure and the discharge chamber pressure or the crank chamber pressure and the suction chamber pressure by changing the opening of the control valve.
  • control is performed by controlling the gas pressure in the crank chamber, that is, capacity (swash plate tilt angle) control only by gas pressure control, the axial position and the swash plate tilt angle of the axially moving member in the present invention to be described later Compared with control using a one-to-one mechanical relationship, there is a limit in control accuracy.
  • a refrigerant gas suction hole connected to an external circuit is provided in the crank chamber.
  • a structure of a compressor that opens and guides intake gas from a crank chamber to a suction chamber formed in a cylinder head through a communication passage formed in a cylinder block for example, Patent Document 2).
  • Patent Document 2 a structure of a compressor that opens and guides intake gas from a crank chamber to a suction chamber formed in a cylinder head through a communication passage formed in a cylinder block.
  • an axial movement member according to the present invention as described later a crank chamber pressure is applied to one end side of the axial movement member, and an intermediate pressure between the discharge pressure and the suction pressure is applied to the other end side.
  • the structure, the structure and technical idea for controlling the intermediate pressure are not disclosed or suggested, and cannot be controlled as in the present invention.
  • JP 2008-138637 A JP-A-8-189464 Japanese Patent Laid-Open No. 9-273383
  • an object of the present invention is to achieve improvement in compressor performance such as reduction in pulsation, improvement in durability and pressure resistance, and smoothness with a target inclination angle of the swash plate via an axially moving member. It is another object of the present invention to provide a variable capacity compressor that can be controlled with high accuracy and is excellent in performance and characteristics.
  • a variable capacity compressor includes a cylinder head having a suction chamber and a discharge chamber, a cylinder block having a cylinder bore into which a piston is reciprocally inserted, and the cylinder block. And a crank chamber formed by the front housing, a swash plate disposed in the crank chamber and rotated together with the main shaft and supported to change its inclination with respect to the main shaft, and rotational movement of the swash plate
  • a suction path for taking in the suction gas to the compressor is formed to open to the crank chamber, and the crank chamber is formed in the cylinder block.
  • a communication passage that communicates with the suction chamber, and the shaft center of the main shaft substantially corresponds to the inclination angle of the swash plate around the main shaft.
  • An axially movable member that is movable in the vertical direction, and the axially movable member has an intermediate pressure between the pressure in the crank chamber at one end and the pressure in the discharge chamber and the pressure in the suction chamber at the other end.
  • an intermediate pressure control mechanism capable of controlling the intermediate pressure is provided.
  • the suction passage for taking in the suction gas from the outside to the compressor is not directly opened to the suction chamber formed in the cylinder head.
  • the suction gas that is opened into the chamber and introduced into the crank chamber is introduced into the suction chamber through a communication passage provided in the cylinder block. Therefore, since the crank chamber having a large capacity becomes the suction chamber for the external circuit, noise due to suction pulsation is prevented or reduced. Further, this structure makes it possible to reduce the volume of the suction chamber formed in the cylinder head, and the volume of the discharge chamber can be increased correspondingly, so that noise caused by discharge pulsation is prevented or reduced.
  • crank chamber becomes an intake gas atmosphere and the temperature and pressure are lowered, the durability of the seal member of the main shaft and each drive component is improved, and the pressure resistance of the casing components forming the crank chamber is relatively improves.
  • the pressure resistance of the casing parts, particularly the front housing is improved, the weight can be reduced by reducing the thickness. Then, the pressure in the crank chamber and the intermediate pressure control mechanism are controlled on each end side of the axial movement member that can move in the direction along the axis of the main shaft substantially corresponding to the inclination angle of the swash plate.
  • the applied intermediate pressure is applied, whereby the axial position of the axial movement member is controlled with high accuracy, and the tilt angle of the swash plate and the capacity of the compressor are controlled with high accuracy through the position control. Therefore, compared to conventional capacity (swash plate tilt) control only by the total balance (total balance) of the even moment due to rotation / reciprocation of each part and the distribution of gas pressure, the axial direction of the axially moving member Since the displacement (swash plate tilt angle) control is performed via the position control, the stability of the control is improved and the control accuracy can be improved.
  • the axial position control of the axial movement member is performed between the gas pressure on the crank chamber side (intake gas pressure) applied to one end side of the axial movement member, the discharge gas pressure applied to the other end side, and the intake gas pressure.
  • this intermediate pressure cannot be made lower than the suction gas pressure applied to the opposite side, only the gas pressure applied to both ends of the axially moving member is used.
  • the axial movement member can be controlled only in the cam angle (swash plate inclination angle) increasing direction.
  • the cam angle swash plate tilt angle
  • the cam lofill is set so that the even moment in the direction of decreasing the cam angle is generated by the discharge gas pressure action on the piston
  • the swash plate tilt angle decreases direction, that is, the capacity decreases direction.
  • the compressor operation off mode that is, the mode in which the inclination angle of the swash plate is kept at the minimum inclination angle
  • the compressor operation off mode can be maintained without increasing the pressure in the crank chamber.
  • the amount of refrigerant circulating in the compressor at the time decreases, and the power consumption can be reduced accordingly.
  • the rotating parts such as the swash plate kept at the minimum inclination angle are rotated as they are in the compressor operation off mode, so that the compression power is reduced by reducing the power consumption at that time.
  • the total power consumption of the machine is also reduced.
  • the suction passage formed so as to open to the crank chamber may take various forms as follows.
  • the intake passage is formed in the front housing, and intake gas can be directly taken into the crank chamber from an external circuit.
  • the suction path is formed from the cylinder block to the front housing, and the intake gas from the external circuit is once taken into the cylinder block portion and then taken into the crank chamber through the front housing portion.
  • the suction path is formed from the cylinder head to the front housing via the cylinder block (with the cylinder block in between), and the suction gas from the external circuit is once formed in the cylinder head portion (in the cylinder head). It is also possible to take in into a crank chamber through a cylinder block part and a front housing part.
  • the intermediate pressure control mechanism may take various forms as follows, for example.
  • the intermediate pressure control mechanism includes a communication passage between the discharge chamber and the intermediate pressure chamber, a control valve provided in the communication passage, and capable of controlling pressure reduction from the pressure in the discharge chamber to a predetermined intermediate pressure.
  • a mechanism having a communication path between the intermediate pressure chamber and the suction chamber and a throttle provided in the communication path can be configured.
  • the intermediate pressure control mechanism is provided in the communication path between the discharge chamber and the intermediate pressure chamber, the communication path between the intermediate pressure chamber and the suction chamber, and the pressure in the discharge chamber.
  • the intermediate pressure control mechanism includes a communication path between the discharge chamber and the intermediate pressure chamber, a throttle provided in the communication path, a communication path between the intermediate pressure chamber and the suction chamber, and the communication.
  • a mechanism provided with a control valve provided in the passage and capable of controlling pressure reduction to a predetermined intermediate pressure in the intermediate pressure chamber can also be configured.
  • the seal member provided on the other end side of the axially moving member is between the intermediate pressure chamber and the suction chamber. It may be a seal member that allows leakage from the intermediate pressure chamber to the crank chamber corresponding to the flow rate of the gas passing through the throttle in this case.
  • the communication path from the intermediate pressure chamber to the suction chamber and its communication It is also possible to omit the restriction in the passage.
  • the motion conversion mechanism may take various forms as follows.
  • the motion conversion mechanism includes a swing plate that converts the rotational motion of the swash plate into its own swing motion, transmits the swing motion to the piston through a connecting rod, and reciprocates the piston, and the swing It can comprise from the mechanism provided with the rotation prevention mechanism of a board. That is, a so-called oscillating plate type variable displacement compressor is configured.
  • the rotation preventive mechanism for the swing plate is (a) provided with a plurality of balls for guiding a plurality of balls provided for power transmission, provided to be movable in the axial direction while being prevented from rotating in the housing.
  • An inner ring having a guide groove; and (b) a plurality of guide grooves for guiding the ball at positions opposed to the guide grooves of the inner ring, and the swing plate is connected to an outer periphery.
  • the rotation preventing mechanism of the swing plate further functions as a swing center member of the swing motion of the swing plate (d), and the spindle
  • the inner ring has a sleeve which is provided so as to be rotatable relative to the main shaft and movable in the axial direction.
  • the sleeve is engaged with the inner ring so as to be movable in the axial direction.
  • the outer ring is supported by the sleeve so as to be swingable. It is also possible to adopt the structure.
  • variable displacement compressor in addition to the configuration of the swing plate type variable displacement compressor as described above, for example, the motion conversion mechanism is slidably contacted on both outer peripheral sides of the swash plate. It is also possible to adopt a configuration constituted by a mechanism that converts the reciprocating motion of the piston through a pair of shoes.
  • the cam mechanism for changing the inclination angle of the swash plate in order to enable the inclination angle of the swash plate to be controlled to the target inclination angle efficiently and accurately can be changed via a cam mechanism interposed between the main shaft and the swash plate, and the compression reaction of at least one of the plurality of pistons in the compression stroke is made.
  • the cam profile of the cam mechanism is set so that the load due to the force acts on the swash plate as an even moment in the capacity decreasing direction so that the instantaneous rotation center of the swash plate is present. A specific example of this mechanism will be described in detail in an embodiment of the present invention described later.
  • the cam mechanism comprises a slide engagement mechanism of an elongated hole formed on one of an arm extending from the main shaft side and an arm extending from the swash plate side, and a pin provided on the other, and the cam profile includes the elongated hole. It is realizable by the mechanism set by forming the shape of this in S shape.
  • the total balance of the even moments generated in the tilt change plane of the swash plate by at least the rotation and reciprocation of each component is reduced in the tilt reduction direction at all swash plate tilt angles. It is preferable that each part is set so as to be. In such a configuration, the total balance of the even moment of the swash plate due to the rotation and reciprocation of each component always acts in the direction of decreasing the swash plate inclination angle, that is, always acts in one desired direction. By controlling even the intermediate pressure applied to the other end side of the axially moving member, it becomes possible to easily and accurately control the inclination angle of the swash plate to the target inclination angle.
  • the intermediate pressure applied to the other end of the axial movement member cannot be lower than the suction pressure applied to the opposite side, so that depending on only the gas pressure applied to both ends of the axial movement member,
  • the direction moving member can act only in the cam angle (swash plate inclination angle) increasing direction.
  • the cam angle (swash plate tilt angle) can be easily controlled by controlling the intermediate pressure. ) Can be controlled to any desired angle.
  • the swash plate since an even moment always acts on the swash plate in the direction of decreasing the tilt angle, for example, when it is desired to maintain the compressor operation off mode, the swash plate is naturally changed to the minimum tilt direction only by rotating the compressor. After being turned and changed to the minimum inclination, the minimum inclination is maintained.
  • a spring for urging at least the swash plate in the direction of decreasing the inclination angle, and the total of the even moment due to the rotation and reciprocation generated in the inclination change plane of the swash plate including the urging force of the spring is also possible to adopt a form in which the balance is set so as to be in the direction of decreasing the inclination angle at all inclination angles of the swash plate. As will be exemplified later, this form is effective when it is desired to always press the swash plate whose inclination angle is changed in the inclination decreasing direction regardless of the inclination angle change.
  • the center portion of the swash plate or the swash plate support member and the axial movement member are always aligned. It is possible to move both members together integrally in the axial direction by pressing each other in the direction so that the axial position of the axially moving member and the inclination angle of the swash plate can always correspond exactly one to one. It becomes possible to do.
  • the intake gas is introduced into the crank chamber through the intake passage that opens to the crank chamber, so that the noise caused by the suction pulsation with the large-capacity crank chamber as the intake chamber. Can be prevented or reduced. Further, since the suction throttle valve can be eliminated, the degree of freedom in designing the cylinder head layout is improved. In addition, the configuration in which the suction gas is introduced from the crank chamber into the suction chamber formed in the cylinder head via the communication path can reduce the suction chamber volume, and the discharge chamber volume can be increased correspondingly. The resulting noise can also be prevented or reduced.
  • the temperature and pressure in the crank chamber can be reduced, the durability of each driving component and the pressure resistance of the casing component can be improved, and the casing component can be made thinner and the entire compressor can be reduced in size and weight.
  • the axial position of the axially moving member is controlled with high accuracy. Through the control, the tilt angle of the swash plate and the capacity of the compressor can be stably controlled with high accuracy.
  • FIG. 2 is an enlarged partial cross-sectional view of the variable capacity compressor of FIG. 1. It is a longitudinal cross-sectional view at the time of the minimum swash plate inclination of the variable capacity compressor of FIG.
  • FIG. 4 is an enlarged partial cross-sectional view of the variable capacity compressor of FIG. 3.
  • FIG. 2 is a relationship diagram between a cam angle and an even moment, showing a balance of even moments due to rotation and reciprocation of each component of the variable capacity compressor of FIG. 1. It is explanatory drawing which shows the balance of the even moment by the gas pressure of the variable capacity compressor of FIG.
  • variable capacity compressor It is a partial longitudinal cross-sectional view of the variable capacity compressor which concerns on the 2nd embodiment of this invention. It is a longitudinal cross-sectional view of the variable capacity compressor which concerns on the 3rd embodiment of this invention. It is a longitudinal cross-sectional view of the variable capacity compressor which concerns on the 4th embodiment of this invention. It is a longitudinal cross-sectional view of the variable capacity compressor which concerns on 5th embodiment of this invention. It is a longitudinal cross-sectional view at the time of the maximum swash plate inclination of the conventional variable capacity compressor. It is a longitudinal cross-sectional view at the time of the minimum swash plate inclination of the variable capacity compressor of FIG. FIG.
  • FIG. 12 is a relationship diagram between a cam angle and an even moment, showing a balance of even moments due to rotation and reciprocation of each component of the variable capacity compressor of FIG. 11. It is explanatory drawing which shows the balance of the even moment by the gas pressure of the variable capacity compressor of FIG.
  • FIG. 1 shows the state of the variable capacity compressor 1 at the maximum capacity (maximum cam angle [maximum swash plate inclination angle]), and FIG. 3 shows the state at the minimum capacity (minimum cam angle [minimum swash plate angle]).
  • a main shaft 5 is inserted into a crank chamber 4 formed by a front housing 2 and a cylinder block 3, and a rotor 6 fixed to the main shaft 5 and rotated integrally with the main shaft 5 with respect to the main shaft 5.
  • a swash plate 7 is disposed so as to be capable of changing the tilt angle with respect to the main shaft 5 and to be rotatable integrally with the main shaft 5. Between the rotor 6 and the swash plate 7, there are an arm 8 extending from the rotor 6 side (main shaft 5 side) and an arm 9 extending from the swash plate 7 side.
  • a hinge mechanism 12 that forms a slide engagement mechanism provided with a pin 11 that engages with the elongated hole 10 is provided, and the inclination angle of the swash plate 7 can be changed through the hinge mechanism 12 and the spindle 5 And can be rotated integrally therewith.
  • a counterweight 13 is embedded or attached to the swash plate 7 on the side opposite to the hinge mechanism 12 in order to balance the rotation of the rotation mechanism including the swash plate 7 and the hinge mechanism 12.
  • the slide engagement mechanism between the long hole 10 and the pin 11 in the hinge mechanism 12 constitutes a cam mechanism for changing the inclination angle of the swash plate 7.
  • the long hole 10 is described later.
  • the load due to the compression reaction force of at least one piston among the plurality of pistons in the compression stroke acts on the swash plate 7 as an even moment in the capacity decreasing direction.
  • the suction port 14 is directly provided in the front housing 2, and the suction passage 15 for taking in the intake gas from the outside into the crank chamber 4 is formed only in the front housing 2.
  • a rocking plate 18 which is provided so as to be rotatable relative to the swash plate 7 via bearings 16 and 17 and which is allowed to swing only while preventing its own rotation.
  • the oscillating plate type variable displacement compressor 1 is configured.
  • the rotational motion of the swash plate 7 is converted into the swing motion of the swing plate 18, and the swing motion is converted into the reciprocating motion of the piston 21 reciprocally inserted into the cylinder bore 20 via the connecting rod 19.
  • the rotation preventing mechanism 22 of the swing plate 18 is provided so as to be movable in the axial direction, although the rotation is blocked via a spline engaging mechanism 24 formed between the central hole 23 of the cylinder block 3.
  • An inner ring 27 provided with a plurality of guide grooves 26 for guiding a plurality of balls 25 provided for power transmission, and relatively rotatable with respect to the main shaft 5 via a bearing 48, and (ii) a swing plate A sleeve 28 that functions as a swinging center member of the swinging motion 18 and is provided so as to be able to rotate relative to the main shaft 5 and move in the axial direction, and is engaged with the inner ring 27 so as to be movable in the axial direction together with the inner ring 27.
  • a plurality of guide grooves 29 for guiding the balls 25 are provided at positions facing the respective guide grooves 26 of the inner ring 27, are supported by the sleeve 28 so as to be swingable, and the swing plate 18 is fixed to the outer periphery. Outside to support 30 and (iv) a plurality of balls 25 that are held by guide grooves 26 and 29 facing each other in the inner ring 27 and the outer ring 30 and that transmit power by being compressed between the guide grooves 26 and 29.
  • a suction chamber 32 is formed on the radially outer side, and a discharge chamber 33 is formed on the radially inner side.
  • the suction gas to the compressor is first taken into the crank chamber 4 from the suction port 14 through the suction passage 15, and from the crank chamber 4 to the inside of the suction chamber 32 through the communication passage 34 formed in the cylinder block 3. And is taken into the cylinder bore 20 from there and used for the compression stroke by the piston 21.
  • the gas compressed by the piston 21 in the cylinder bore 20 is discharged into the discharge chamber 33, and in the example shown in the figure, is sent to an external circuit through the discharge cutoff valve 35 and the discharge port 36.
  • the gas pressure (Ps) on the crank chamber 4 side is applied to one end side of the inner ring 27 as the axially moving member, and the pressure (Pd) in the discharge chamber 33 and the pressure in the suction chamber 32 are applied to the other end side.
  • An intermediate pressure (Pm) with respect to (Ps) is applied.
  • an intermediate pressure chamber 38 is formed that is sealed by seal members 37 and 45 with respect to the crank chamber 4 side, and the pressure in the intermediate pressure chamber 38 is changed by the intermediate pressure control mechanism 39.
  • the predetermined intermediate pressure (Pm) is controlled as described above.
  • the intermediate pressure control mechanism 39 is configured as follows in this embodiment.
  • a communication passage 40 is provided between the discharge chamber 33 and the intermediate pressure chamber 38, and pressure reduction from the pressure (Pd) in the discharge chamber 33 to a predetermined intermediate pressure (Pm) is performed in the communication passage 40.
  • a control valve 41 that can be controlled is disposed, and a communication passage 42 is provided between the intermediate pressure chamber 38 and the suction chamber 32, and the suction passage is provided in the communication passage 42 from the intermediate pressure (Pm).
  • a throttle 43 orifice that can be depressurized to a pressure (Ps) in the cylinder 32 is formed.
  • the intermediate pressure chamber 38 is formed at the rear end portion of the main shaft 5 between the rear end portion (the other end portion) of the inner ring 27 and the valve plate 44.
  • This intermediate pressure chamber 38 is in the state shown in FIG. 2 and is interposed between the main shaft 5 and the inner ring 27, supports both members so as to be relatively rotatable, and supports the inner ring 27 so as to be movable in the axial direction with respect to the main shaft 5.
  • the above-described seal members 37 and 45 are pressure-sealed against the crank chamber 4 side.
  • the inner ring 27 as the axially moving member has an intermediate pressure Pm applied to the annular pressure receiving surface 46 surrounded by the seal members 37 and 45, and a pressure on the crank chamber 4 side on the opposite side.
  • a load in the axial direction is generated by the differential pressure.
  • the intermediate pressure chamber 38 is in the state shown in FIG. 4 corresponding to the state in FIG. 3, and the sealing members 37 and 45 are sealed so as to be slidable in the axial direction.
  • the volume of the intermediate pressure chamber 38 is reduced.
  • the rotary drive force from the power source is illustrated as a clutchless type compressor that is directly transmitted to the main shaft 5 via the pulley 47. It is also possible to constitute a clutch type compressor having a clutch (particularly an electromagnetic clutch) (not shown) capable of switching between the power transmission state and the power transmission state.
  • the intake passage 15 for taking in the intake gas from the outside to the compressor 1 is formed only in the front housing 2, and the intake gas taken in through the intake passage 15 is first cranked. It is sucked into the chamber 4 and introduced into the suction chamber 32 through the communication path 34 from there. Therefore, since the crank chamber 4 having a large capacity serves as a suction chamber for the external circuit, noise caused by suction pulsation is prevented or reduced. Further, since the suction throttle valve can be eliminated, the degree of freedom in designing the cylinder head 31 in the layout is improved. Further, the volume of the suction chamber 32 formed in the cylinder head 31 may be smaller than that in the case where the suction gas is directly sucked into the conventional suction chamber.
  • crank chamber 4 since the volume of the discharge chamber 33 can be increased, the noise resulting from discharge pulsation is also prevented or reduced. Further, since the inside of the crank chamber 4 becomes an intake gas atmosphere, the temperature and pressure are reduced as compared with the conventional structure, so the seal member of the main shaft 5 (for example, the seal member provided on the front side), the rotor 6 and its The durability of each drive component including the support bearing, the hinge mechanism 12 and the like is improved, and the pressure resistance of the housing component (particularly the front housing 2) forming the crank chamber 4 is relatively improved. In particular, when the pressure resistance of the front housing 2 is improved, the thickness of the front housing 2 can be reduced, and the size and weight can be reduced.
  • the axial movement member (inner ring 27) is controlled in such a way that the pressure in the crank chamber 4 and the pressure in the intermediate pressure chamber 32 controlled by the intermediate pressure control mechanism 39 are applied to each end side of the axial movement member.
  • the axial position of the axially moving member is controlled with high accuracy by the differential pressure between them, and the tilt angle of the swash plate 7 and the capacity of the compressor 1 are stabilized with high accuracy through the position control of the axially moving member. To be controlled.
  • FIG. 5 shows a balance of even moments due to rotation and reciprocation of each component in the compressor 1
  • FIG. 6 shows a balance of even moments due to gas pressure acting on each part in the compressor 1. The meaning of each symbol in FIG. 6 is as follows.
  • the moment of the piston 21 in the suction stroke is canceled out because the front-rear differential pressure is the same pressure (Ps). Further, in the state where the position of the instantaneous rotation center (C) is set to an appropriate position (that is, the cam profile in the cam mechanism is set appropriately) and the pressure receiving area of the inner ring 27 is set to an appropriate size, Pm
  • the swash plate cam angle can be optimally controlled. More precisely, the moment of the system including the piston 21 is determined by the differential pressure between Pd and Ps, and the moment of the system including the inner ring 27 is determined by the differential pressure between Pm and Ps, and each moment is balanced.
  • the balance of even moments due to the rotation and reciprocation of each component in the compressor 1 is preferably set to have the characteristics shown in FIG. That is, the even moment balance due to the gas pressure of the compressor 1 described above is a moment that urges toward the cam angle increasing side when the intermediate pressure Pm is increased. As shown in FIG. 5, it is preferable to set so that the cam angle is urged in all cam angles. That is, in FIG. 5, even when the cam angle is minimum, the total even moment is always set in the cam angle decreasing direction. By such setting, more desirable stable high-accuracy capacity control is realized.
  • the counterweight 13 can also contribute to this desirable setting.
  • the axially moving member cannot make Pm applied to the rear side surface smaller than Ps on the opposite pressure receiving surface side, it can act only in the cam angle increasing direction, and can be decreased once the cam angle is increased. Disappear. Therefore, when the even moment due to the gas pressure is such that the moment M2 in the cam angle decreasing direction does not act as described above, the even moment due to rotation or reciprocation (or in combination with the reduce spring 109) is changed to the characteristic shown in FIG. Therefore, it is necessary to always ensure an even moment in the cam angle decreasing direction.
  • the characteristics shown in FIG. 5 have a small effect when the rotational speed of the compressor is small. Therefore, when maintaining the off mode, it is necessary to secure an even moment in the cam angle decreasing direction by another method. For this purpose, the characteristics shown in FIG. 6 are preferable.
  • FIG. 7 shows a main part of the variable capacity compressor 51 according to the second embodiment of the present invention.
  • the intermediate pressure (Pm) is a control valve in which the discharge gas is disposed in the communication passage 40 from the discharge chamber 33 in the cylinder head 31 to the intermediate pressure chamber 38. After being controlled by 52, it is introduced into the intermediate pressure chamber 38, and returns to the suction chamber 32 through the control valve 52 again in the communication path 53 from the intermediate pressure chamber 38 to the suction chamber 32. That is, the intermediate pressure (Pm) is controlled by adjusting the introduction amount into the intermediate pressure chamber 38 and the escape amount from the intermediate pressure chamber 38 under the control of the control valve 52.
  • Other configurations are in accordance with the first embodiment shown in FIG. Even in such a configuration, the same effects as those of the first embodiment can be obtained, and the intermediate pressure control mechanism can be simplified.
  • FIG. 8 shows a variable capacity compressor 61 according to the third embodiment of the present invention.
  • the suction passage 62 is formed from the suction port 64 provided in the cylinder head 63 to the cylinder block 65 and the front housing 66.
  • a communication path 68 from the crank chamber 67 to the suction chamber 32 in the cylinder head 63 is formed by using the insertion holes of the front housing 66, the cylinder block 65, and the fastening bolt 69 of the cylinder head 63.
  • the intermediate pressure (Pm) is introduced into the intermediate pressure chamber 38 as a pressure reduced by the throttle 70 from the pressure (Pd) of the discharge chamber 33, and is disposed in the communication path 71 from the intermediate pressure chamber 38 to the suction chamber 32.
  • the control valve 72 returns to the suction chamber 32.
  • FIG. 9 shows a variable capacity compressor 81 according to the fourth embodiment of the present invention.
  • a suction chamber 83 is formed on the inner diameter side and a discharge chamber 84 is formed on the outer diameter side in the cylinder head 82 as compared with the first embodiment described above.
  • a suction passage 86 for suction gas to the crank chamber 85 is formed across the front housing 90 via a suction port 88 and a suction muffler chamber 89 provided in the cylinder block 87.
  • a communication path 91 from the crank chamber 85 to the suction chamber 83 in the cylinder head 82 is linearly arranged on the inner diameter side between the cylinder bores 20 of the cylinder block 87.
  • the intermediate pressure (Pm) is introduced into the intermediate pressure chamber 38 after being controlled by the control valve 93 disposed in the communication passage 92 from the discharge chamber 84 to the intermediate pressure chamber 38.
  • the pressure is reduced by the throttle 94 and then returned to the suction chamber 32.
  • Other configurations are in accordance with the first embodiment shown in FIG. Even in such a configuration, the same effects as those of the first embodiment can be obtained, and the formation of the communication passage 91 to the cylinder block 87 can be facilitated.
  • the suction pulsation attenuated in the suction muffler chamber 89 is further attenuated in the crank chamber 85, the suction pulsation can be attenuated more reliably.
  • the discharge gas can be discharged through the discharge muffler chamber 95 through the discharge cutoff valve 96 and the discharge port 97, the discharge pulsation can be attenuated.
  • FIG. 10 shows a variable capacity compressor 101 according to the fifth embodiment of the present invention.
  • the oscillating plate 18 as in the first to fourth embodiments described above is not provided, but is configured in a so-called swash plate type variable displacement compressor 101. That is, the mechanism for converting the rotational movement of the swash plate 102 to the reciprocating motion of the piston 103 is converted from the mechanism for converting the reciprocating motion of the piston 103 through a pair of shoes 104 slidably in contact with both outer peripheral sides of the swash plate 102. It is configured.
  • a sleeve 106 is provided so as to be movable in the axial direction on the main shaft 105.
  • a thrust bearing 107 is provided on the front side of the sleeve 106, and the central portion of the swash plate 102 is movable in the axial direction integrally with the sleeve 106 together with the thrust bearing 107 and a collar 108 that is movable in the axial direction.
  • a reduction spring 109 is provided on the front side of the collar 108 to urge the swash plate 102 in the direction of decreasing the tilt angle (that is, in the cam angle decreasing direction of the cam mechanism constituted by the hinge mechanism 12). Is biased in the direction of the minimum inclination.
  • the collar 108 and the reduce spring 109 rotate integrally with the main shaft 105 together with the swash plate 102.
  • the swash plate 102 is supported on the collar 108 so that the tilt angle can be changed in the tilt change plane.
  • An intermediate pressure chamber 38 is formed at the other end of the sleeve 106 in the same manner as in the first embodiment.
  • a swash plate 102 that has been deformed to the minimum inclination side is urged in an increasing direction of inclination.
  • a return spring 110 is provided. Since the other configuration conforms to the first embodiment, the same reference numerals as those in FIG. Even with such a swash plate type variable displacement compressor 101, the same operational effects as in the first embodiment can be obtained.
  • the present invention can be applied regardless of the variable displacement compressor of the swing plate type and the variable displacement compressor of the swash plate type.
  • variable capacity compressor is applicable to any variable capacity compressor having a predetermined axial movement member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

Disclosed is a variable displacement compressor having improved compressor performance such as reduced pulsation and improved durability and resistance to pressure and allowing smooth and high-precision control by using an axial movement member to set the swash plate tilt angle to match a target tilt angle. The variable displacement compressor is provided with a cylinder head in which are formed a suction chamber and a discharge chamber, a cylinder block having a cylinder bore such that an inserted piston is capable of reciprocating movement, a crankcase formed by said cylinder block and a front housing, a swash plate that is rotated with the main shaft and that is disposed inside said crankcase and held so that the tilt angle can be changed relative to said main shaft, and a movement conversion mechanism for converting the rotational movement of said swash plate to the reciprocating movement of a piston, wherein: the suction path for the intake of a suction gas into the compressor is constituted to open into the crankcase; a connecting path for connecting the crankcase and the suction chamber is provided in the cylinder block; around the periphery of the main shaft, an axial movement member is provided that can move along the axis of the main shaft in an essentially one-to-one correspondence with the tilt angle of the swash plate; said axial movement member is disposed such that one end is exposed to the pressure of the crankcase, and the other end is exposed to a pressure between that of the suction chamber and that of the discharge chamber; and an intermediate pressure control mechanism that can control the intermediary pressure is also provided.

Description

可変容量圧縮機Variable capacity compressor
 本発明は、可変容量圧縮機に関し、とくに、脈動の低減、耐久性、耐圧性の向上等をはかるとともに、軸方向移動部材を介して斜板の傾角をより円滑にかつ高精度に制御できるようにした可変容量圧縮機に関する。 The present invention relates to a variable capacity compressor, and in particular, it can reduce pulsation, improve durability, and improve pressure resistance, and can control the inclination angle of a swash plate more smoothly and with high accuracy via an axially moving member. The present invention relates to a variable capacity compressor.
 吸入室および吐出室が形成されたシリンダヘッドと、ピストンが往復動可能に挿入されたシリンダボアを有するシリンダブロックと、該シリンダブロックとフロントハウジングで形成されたクランク室と、該クランク室内に配置され、主軸とともに回転されるとともに該主軸に対し自身の傾角が変角可能に支持された斜板と、該斜板の回転運動を前記ピストンの往復動に変換する運動変換機構とを備えた可変容量圧縮機はよく知られている。 A cylinder head having a suction chamber and a discharge chamber; a cylinder block having a cylinder bore into which a piston is reciprocally inserted; a crank chamber formed by the cylinder block and a front housing; and a crank chamber formed in the crank chamber. A variable capacity compression comprising a swash plate that is rotated together with the main shaft and is supported so that its inclination angle can be changed with respect to the main shaft, and a motion conversion mechanism that converts the rotational motion of the swash plate into the reciprocating motion of the piston. The machine is well known.
 また、本発明に関連する可変容量圧縮機として、先に本出願人により、上記運動変換機構が、斜板の回転運動が自身の揺動運動へと変換され該揺動運動を連結ロッドを介してピストンに伝達しピストンを往復動させる揺動板と、該揺動板の回転阻止機構とを備えており、該揺動板の回転阻止機構が、(a)ハウジング内に回転は阻止されるが軸方向に移動可能に設けられ、動力伝達用に設けられた複数のボールをガイドするための複数のガイド溝を有する内輪と、(b)該内輪の各ガイド溝に対向する位置に前記ボールをガイドするための複数のガイド溝を有し、外周に揺動板が連結されて揺動板とともに揺動可能に支持された外輪と、(c)前記内輪および外輪に形成された互いに対向するガイド溝によって保持され、該ガイド溝間で圧縮されることにより動力伝達を行う複数のボールと、を有する機構から構成されている構造を有する揺動板式の可変容量圧縮機が提案されている(特許文献1)。このような構造の可変容量圧縮機においては、上記内輪は、斜板の傾角に対し実質的に一対一に対応して主軸の軸心に沿う方向に移動可能な軸方向移動部材を構成している。 Further, as a variable capacity compressor related to the present invention, the above-mentioned motion conversion mechanism has been previously converted by the applicant of the present invention into the swing motion of the swash plate into its own swing motion. A swing plate that transmits to the piston and reciprocates the piston, and a rotation prevention mechanism for the swing plate. The rotation prevention mechanism for the swing plate is (a) prevented from rotating in the housing. And an inner ring having a plurality of guide grooves for guiding a plurality of balls provided for power transmission, and (b) the ball at a position facing each guide groove of the inner ring. An outer ring having a plurality of guide grooves for guiding the outer ring and having a swing plate coupled to the outer periphery and supported so as to be swingable together with the swing plate; and (c) facing each other formed on the inner ring and the outer ring. Held by the guide grooves, and the pressure between the guide grooves Wobble plate type variable displacement compressor having a structure that consists mechanism having a plurality of balls for performing power transmission, has been proposed by being (Patent Document 1). In the variable capacity compressor having such a structure, the inner ring constitutes an axial movement member that can move in a direction along the axis of the main shaft substantially corresponding one-to-one with respect to the inclination angle of the swash plate. Yes.
 上記先に本出願人により提案された可変容量圧縮機は、具体的には、例えば図11、図12に示すような構造を有している。図11は最大容量(最大カム角〔最大斜板角〕)状態、図12は最小容量(最小カム角〔最小斜板角〕)状態をそれぞれ示している。図において、フロントハウジング201とシリンダブロック202で形成されたクランク室203内に挿通された主軸204に対し、ヒンジ機構205を介して斜板206がその傾角を変角可能にかつ主軸204と一体的に回転可能に設けられている。斜板206の回転運動が揺動板207の揺動運動に変換され、該揺動運動が連結ロッド208を介してピストン209の往復動に変換される。揺動板207の回転阻止機構210は、図示例では、(i)スプライン係合機構211を介して回転は阻止されるが軸方向に移動可能に設けられ、主軸204に対し相対回転自在に設けられ、動力伝達用に設けられた複数のボール212をガイドするための複数のガイド溝を有する内輪213と、(ii)揺動板207の揺動運動の揺動中心部材として機能し、主軸204に対し相対回転および軸方向に移動可能に設けられ、内輪213に該内輪213とともに軸方向に移動可能に係合されたスリーブ214と、(iii)内輪213の各ガイド溝に対向する位置にボール212をガイドするための複数のガイド溝を有し、スリーブ214に揺動可能に支持され、外周に揺動板207を固定支持する外輪215と、(iv)内輪213および外輪215の互いに対向するガイド溝によって保持され、該ガイド溝間で圧縮されることにより動力伝達を行う複数のボール212と、を有する機構から構成されている。シリンダヘッド216内には、吸入室217と吐出室218が形成されている。圧縮機への吸入ガスは、吸入ポート219から、図示例では吸入絞り弁220を介して吸入室217に取り込まれ、シリンダボア221内でピストン209によって圧縮されたガスが、吐出室218に吐出され、図示例では、そこから吐出遮断弁222、吐出ポート223を通して外部回路に送られるようになっている。 Specifically, the variable capacity compressor previously proposed by the applicant of the present invention has a structure as shown in FIGS. 11 and 12, for example. FIG. 11 shows the maximum capacity (maximum cam angle [maximum swash plate angle]) state, and FIG. 12 shows the minimum capacity (minimum cam angle [minimum swash plate angle]) state. In the figure, a swash plate 206 is capable of changing the inclination angle of a main shaft 204 inserted into a crank chamber 203 formed by a front housing 201 and a cylinder block 202 via a hinge mechanism 205 and is integrated with the main shaft 204. It is provided rotatably. The rotational motion of the swash plate 206 is converted into the swing motion of the swing plate 207, and the swing motion is converted into the reciprocating motion of the piston 209 via the connecting rod 208. In the illustrated example, the rotation prevention mechanism 210 of the rocking plate 207 is provided to be movable in the axial direction while being prevented from rotating via the spline engagement mechanism 211, and to be rotatable relative to the main shaft 204. The inner ring 213 having a plurality of guide grooves for guiding a plurality of balls 212 provided for power transmission, and (ii) a swinging central member of the swinging motion of the swinging plate 207. A sleeve 214 which is provided so as to be relatively rotatable and movable in the axial direction, and is engaged with the inner ring 213 so as to be movable in the axial direction together with the inner ring 213, and (iii) a ball at a position facing each guide groove of the inner ring 213 An outer ring 215 having a plurality of guide grooves for guiding 212, supported swingably on the sleeve 214, and fixedly supporting the swing plate 207 on the outer periphery; (iv) an inner ring 213; Held by opposing guide grooves of the wheels 215, a plurality of balls 212 that transmits power by being compressed between the guide grooves, and a mechanism having a. A suction chamber 217 and a discharge chamber 218 are formed in the cylinder head 216. The suction gas to the compressor is taken into the suction chamber 217 from the suction port 219 via the suction throttle valve 220 in the illustrated example, and the gas compressed by the piston 209 in the cylinder bore 221 is discharged to the discharge chamber 218. In the illustrated example, it is sent to an external circuit from there through the discharge cutoff valve 222 and the discharge port 223.
 そして、前述の従来一般の可変容量圧縮機および上記先に本出願人により提案された揺動板式の可変容量圧縮機を含む従来の可変容量圧縮機においては、図11にも例示するように、通常、制御弁224または絞りにより吐出室218の圧力Pdから調整された吐出ガスをクランク室203に導入する連通路225とクランク室ガスを吸入室217側(圧力Ps)に制御弁または絞り226を経て戻す連通路227を設け、制御弁224の開度を変えることによりクランク室203のガス圧Pcを制御するようになっている。 And in the conventional variable capacity compressor including the aforementioned conventional general variable capacity compressor and the swing plate type variable capacity compressor previously proposed by the present applicant, as illustrated in FIG. Normally, the control valve 224 or the throttle valve 226 is connected to the communication chamber 225 for introducing the discharge gas adjusted from the pressure Pd of the discharge chamber 218 to the crank chamber 203 by the throttle and the crank chamber gas to the suction chamber 217 side (pressure Ps). A return passage 227 is provided, and the gas pressure Pc in the crank chamber 203 is controlled by changing the opening of the control valve 224.
 このような構造を有する可変容量圧縮機において、後述の本発明との比較のために、圧縮機内の偶モーメントのバランスについて説明する。圧縮機内には、斜板206系部品(揺動板207を有する場合にはその揺動板207を含む構成)を含む回転系の部品の回転によって生じる偶モーメント、ピストン209系部品を含む往復動系の部品の往復運動によって生じる偶モーメントが、圧縮機稼働によって作用するカム変角方向の偶モーメントとして、カム角に応じて例えば図13に示すように生じ、それら部品の回転・往復運動によるトータルの偶モーメントは、例えば図13に示すようになる(図示例では、トータルの偶モーメントは全てのカム角で容量(カム角)増大方向に作用している。そして、これら部品の回転・往復運動による偶モーメントとは別に、圧縮機の圧縮作用や制御弁の調圧作用により、圧縮機内部の各空間にガス圧力の分布が生じるので、これらガス圧力の分布によって、例えば図14に示すように、カム角が増大または減少する方向の偶モーメントが生じる。実際には、圧縮機の主軸204が回転することにより圧縮作用が発生するので、圧縮機稼働中には、上記各部品の回転・往復運動による偶モーメントとガス圧力の分布による偶モーメントが同時に作用し、これら両種の偶モーメントの総合的な釣り合い(トータルバランス)によって、カム角が任意の所定の角度になるように調整され、圧縮機の容量が所望の容量に制御される。 In the variable capacity compressor having such a structure, the balance of the even moment in the compressor will be described for comparison with the present invention described later. In the compressor, an even moment generated by the rotation of rotating parts including a swash plate 206 system component (a configuration including the rocking plate 207 when the rocking plate 207 is provided), reciprocating motion including a piston 209 system component. The even moment generated by the reciprocating motion of the system components is generated as shown in FIG. 13 according to the cam angle as the even moment in the cam bending direction acting by the compressor operation. FIG. 13 shows, for example, the even moment (in the illustrated example, the total even moment acts in the direction of increasing the capacity (cam angle) at all cam angles. In addition to the even moment caused by the compressor, the gas pressure distribution is generated in each space inside the compressor due to the compression action of the compressor and the pressure regulation action of the control valve. The distribution causes an even moment in the direction in which the cam angle increases or decreases, for example, as shown in Fig. 14. Actually, since the compression action is generated by the rotation of the main shaft 204 of the compressor, the compressor is in operation. In addition, the even moment due to the rotation and reciprocation of the above parts and the even moment due to the gas pressure distribution act simultaneously, and the cam angle can be set to any predetermined value by the total balance of these two types of even moments (total balance). The compressor capacity is controlled to a desired capacity.
 ここで、図14における各符号の意味は次の通りである。
Pc:クランク室圧力(制御ガス圧)
Ps:吸入圧力
Pd:吐出圧力
Ap:ピストン(シリンダボア)面積
L1:カム角変化の瞬間回転中心から圧縮行程ピストンの圧力作用線までの距離
L2:カム角変化の瞬間回転中心から吸入行程ピストンの圧力作用線までの距離
M1:カム角増大方向のモーメント
M2:カム角減少方向のモーメント
M1=Pc・Ap・L1+Ps・Ap・L2
M2=-Pd・Ap・L1-Pc・Ap・L2
M1+M2=Pc・Ap・L1+Ps・Ap・L2-Pd・Ap・L1-Pc・Ap・L2
     =Pc(Ap・L1-Ap・L2)+Ps・Ap・L2-Pd・Ap・L1
     ≒(-Pc+Ps)Ap・L2(L1≒0の場合)
 上記従来構造においては、斜板カム角の制御に吐出圧力による荷重が影響しないように、L1を小さく設定している。よって、クランク室圧力と吸入圧の差圧を調節すれば、図13の各部品の回転・往復動による偶モーメントと釣り合うようにカム角が制御できる。また、図14のM1とM2については、実際にはすべてのピストンにおいてM1とM2が計算される。
Here, the meaning of each symbol in FIG. 14 is as follows.
Pc: Crank chamber pressure (control gas pressure)
Ps: suction pressure Pd: discharge pressure Ap: piston (cylinder bore) area L1: distance from the instantaneous rotation center of the cam angle change to the pressure action line of the compression stroke piston L2: pressure of the intake stroke piston from the instantaneous rotation center of the cam angle change Distance to action line M1: Moment in cam angle increasing direction M2: Moment in cam angle decreasing direction M1 = Pc · Ap · L1 + Ps · Ap · L2
M2 = −Pd · Ap · L1−Pc · Ap · L2
M1 + M2 = Pc / Ap / L1 + Ps / Ap / L2-Pd / Ap / L1-Pc / Ap / L2
= Pc (Ap.L1-Ap.L2) + Ps.Ap.L2-Pd.Ap.L1
≒ (-Pc + Ps) Ap · L2 (when L1 ≒ 0)
In the conventional structure, L1 is set small so that the load due to the discharge pressure does not affect the control of the swash plate cam angle. Therefore, if the differential pressure between the crank chamber pressure and the suction pressure is adjusted, the cam angle can be controlled so as to balance the even moment caused by the rotation and reciprocation of each component shown in FIG. Further, for M1 and M2 in FIG. 14, M1 and M2 are actually calculated for all pistons.
 このような従来構造を有する可変容量圧縮機においては、クランク室に吐出圧を減圧した比較的高温、高圧の制御ガスを導入しているので、回転・駆動部品やシール部への耐久性が不利であった。また、吸入・吐出脈動などに起因するノイズ問題を解消あるいは軽減するために、シリンダヘッドに絞り弁やマフラーなどの脈動低減要素を内蔵する場合もあるが、そうすると、制御弁やクラッチレスで必要な冷媒遮断弁などとのレイアウト上の設計自由度が低くなる。さらに、容量(斜板傾角)の制御は、基本的には、制御弁の開度を変えることにより、クランク室圧と吐出室圧、またはクランク室圧と吸入室圧との差圧を調節してクランク室のガス圧を制御することによって行われるため、つまり、ガス圧制御のみによる容量(斜板傾角)制御であるため、後述の本発明における軸方向移動部材の軸方向位置と斜板傾角との一対一の機械的な関係を利用した制御に比べ、制御精度に限界がある。 In a variable capacity compressor having such a conventional structure, a relatively high temperature and high pressure control gas with a reduced discharge pressure is introduced into the crank chamber, which is disadvantageous in terms of durability to rotating / driving components and seals. Met. In addition, in order to eliminate or reduce noise problems caused by suction / discharge pulsation, etc., pulsation reduction elements such as a throttle valve and muffler may be built in the cylinder head. The degree of freedom in designing the layout with the refrigerant shutoff valve or the like is reduced. Furthermore, the capacity (swash plate tilt angle) is basically controlled by adjusting the differential pressure between the crank chamber pressure and the discharge chamber pressure or the crank chamber pressure and the suction chamber pressure by changing the opening of the control valve. Since the control is performed by controlling the gas pressure in the crank chamber, that is, capacity (swash plate tilt angle) control only by gas pressure control, the axial position and the swash plate tilt angle of the axially moving member in the present invention to be described later Compared with control using a one-to-one mechanical relationship, there is a limit in control accuracy.
 本発明に関連する技術として、各摺動部の冷却、潤滑と吸入脈動の低減を図り、吐出温度の上昇を抑制するために、クランク室に、外部回路と接続された冷媒ガスの吸入孔を開口し、シリンダヘッド内に形成された吸入室に、クランク室からシリンダブロックに形成された連通路を介して吸入ガスを導くようにした圧縮機の構造が知られており(例えば、特許文献2、3)。しかし、これらの従来技術には、後述のような本発明における軸方向移動部材、その軸方向移動部材の一端側にクランク室の圧力、他端側に吐出圧と吸入圧との中間圧力をかける構造、該中間圧力を制御する構造や技術思想は開示、示唆されておらず、本発明におけるような制御はできない。 As a technique related to the present invention, in order to reduce the cooling, lubrication, and suction pulsation of each sliding portion and to suppress the increase in the discharge temperature, a refrigerant gas suction hole connected to an external circuit is provided in the crank chamber. There is known a structure of a compressor that opens and guides intake gas from a crank chamber to a suction chamber formed in a cylinder head through a communication passage formed in a cylinder block (for example, Patent Document 2). 3). However, in these prior arts, an axial movement member according to the present invention as described later, a crank chamber pressure is applied to one end side of the axial movement member, and an intermediate pressure between the discharge pressure and the suction pressure is applied to the other end side. The structure, the structure and technical idea for controlling the intermediate pressure are not disclosed or suggested, and cannot be controlled as in the present invention.
特開2008-138637号公報JP 2008-138637 A 特開平8-189464号公報JP-A-8-189464 特開平9-273483号公報Japanese Patent Laid-Open No. 9-273383
 そこで本発明の課題は、脈動の低減、耐久性、耐圧性の向上等の圧縮機の性能向上を達成可能で、かつ、軸方向移動部材を介して斜板の傾角を目標とする傾角により円滑にかつ高精度に制御できるようにした、性能、特性に優れた可変容量圧縮機を提供することにある。 Accordingly, an object of the present invention is to achieve improvement in compressor performance such as reduction in pulsation, improvement in durability and pressure resistance, and smoothness with a target inclination angle of the swash plate via an axially moving member. It is another object of the present invention to provide a variable capacity compressor that can be controlled with high accuracy and is excellent in performance and characteristics.
 上記課題を解決するために、本発明に係る可変容量圧縮機は、吸入室および吐出室が形成されたシリンダヘッドと、ピストンが往復動可能に挿入されたシリンダボアを有するシリンダブロックと、該シリンダブロックとフロントハウジングで形成されたクランク室と、該クランク室内に配置され、主軸とともに回転されるとともに該主軸に対し自身の傾角が変角可能に支持された斜板と、該斜板の回転運動を前記ピストンの往復動に変換する運動変換機構とを備えた可変容量圧縮機において、圧縮機への吸入ガスを取り込む吸入路を前記クランク室に開口するように形成し、前記シリンダブロックに前記クランク室と前記吸入室を連通する連通路を設け、前記主軸周りに、前記斜板の傾角に対し実質的に一対一に対応して前記主軸の軸心に沿う方向に移動可能な軸方向移動部材を設けるとともに、該軸方向移動部材を、その一端側に前記クランク室内の圧力が、他端側に前記吐出室内の圧力と前記吸入室内の圧力との中間の圧力がかかるように配設し、かつ、前記中間圧力を制御可能な中間圧力制御機構を設けたことを特徴とするものからなる。 In order to solve the above problems, a variable capacity compressor according to the present invention includes a cylinder head having a suction chamber and a discharge chamber, a cylinder block having a cylinder bore into which a piston is reciprocally inserted, and the cylinder block. And a crank chamber formed by the front housing, a swash plate disposed in the crank chamber and rotated together with the main shaft and supported to change its inclination with respect to the main shaft, and rotational movement of the swash plate In the variable capacity compressor having a motion conversion mechanism for converting the piston into reciprocating motion, a suction path for taking in the suction gas to the compressor is formed to open to the crank chamber, and the crank chamber is formed in the cylinder block. And a communication passage that communicates with the suction chamber, and the shaft center of the main shaft substantially corresponds to the inclination angle of the swash plate around the main shaft. An axially movable member that is movable in the vertical direction, and the axially movable member has an intermediate pressure between the pressure in the crank chamber at one end and the pressure in the discharge chamber and the pressure in the suction chamber at the other end. And an intermediate pressure control mechanism capable of controlling the intermediate pressure is provided.
 このような本発明に係る可変容量圧縮機においては、外部から圧縮機への吸入ガスを取り込む吸入路は、シリンダヘッド内に形成された吸入室へは直接的には開口されず、まず、クランク室へと開口され、クランク室内に導入された吸入ガスは、シリンダブロックに設けられた連通路を介して吸入室へと導入される。したがって、容量の大きなクランク室が外部回路に対して吸入チャンバーになるので、吸入脈動に起因するノイズが防止あるいは低減される。また、この構造により、シリンダヘッド内に形成される吸入室の容積を低減可能になり、その分、吐出室の容積を増やせるため、吐出脈動に起因するノイズも防止あるいは低減される。また、クランク室内が吸入ガス雰囲気になり、温度・圧力が下がるので、主軸のシール部材や各駆動部品の耐久性が向上し、また、クランク室を形成する筐体部品の耐圧性が相対的に向上する。筐体部品、とくにフロントハウジングの耐圧性が向上すると、薄肉化等による軽量化が可能となる。そして、斜板の傾角に対し実質的に一対一に対応して主軸の軸心に沿う方向に移動可能な軸方向移動部材の各端部側に、クランク室内の圧力と中間圧力制御機構により制御された中間圧力とがかけられ、それによって軸方向移動部材の軸方向位置が高精度に制御され、その位置制御を介して斜板の傾角、圧縮機の容量が高精度に制御される。したがって、従来の各部品の回転・往復運動による偶モーメントとガス圧力の分布による偶モーメントの総合的な釣り合い(トータルバランス)のみによる容量(斜板傾角)制御に比べ、軸方向移動部材の軸方向位置制御を介しての容量(斜板傾角)制御となるので、制御の安定性が向上され、制御精度の向上が可能になる。この軸方向移動部材の軸方向位置制御は、軸方向移動部材の一端側にかかるクランク室側のガス圧力(吸入ガス圧力)と、他端側にかかる吐出ガス圧力と上記吸入ガス圧力との中間の圧力との差圧に応じて行われることになるが、この中間圧力は反対側にかかる吸入ガス圧力よりも低くすることはできないので、この軸方向移動部材の両端側にかかるガス圧力のみによっては、軸方向移動部材はカム角(斜板傾角)増大方向にしか制御できない。しかし、カム角(斜板傾角)は、実際には、カム角増減方向に作用する圧縮機内部の各空間におけるガス圧により生じる偶モーメントと、圧縮機内部の各部品の回転・往復動により生じる偶モーメントの総合的な釣合いによって決まるので、例えば、ピストンへの吐出ガス圧作用により適切な大きさのカム角減少方向の偶モーメントが発生するようにカムロフィールを設定したり、圧縮機内部の各部品の回転・往復動により生じる偶モーメントのトータルバランスがすべてのカム角(斜板傾角)においてカム角減少方向(斜板の傾角減少方向、つまり、容量減少方向)となるように設定しておくことにより、あるいはこれらを併用することにより、上記中間圧力の制御のみで、軸方向移動部材の軸方向位置制御が可能になり、それを介して高精度で円滑な容量制御が可能になるとともに、特に高速時などの起動ショックが緩和され、スムーズな起動性が得られる。また、圧縮機内部の各部品の回転・往復動により生じる偶モーメントのトータルバランスがカム角変角領域のすべてにおいて、カム角減少方向に作用するように構成しておけば、例えば駆動力伝達方式がクラッチレス方式の場合、圧縮機作動オフモード(つまり、斜板の傾角を最小傾角に保つモード)の維持が、クランク室の増圧等を行うことなく可能になるので、圧縮機作動オフモード時の圧縮機内での冷媒循環量が減少し、その分の消費動力の低減が可能になる。つまり、クラッチレス方式の場合、圧縮機作動オフモード時には最小傾角に保たれている斜板等の回転部品をそのまま回転させておくことになるので、そのときの消費動力を低減することにより、圧縮機のトータルの消費動力も低減される。 In such a variable displacement compressor according to the present invention, the suction passage for taking in the suction gas from the outside to the compressor is not directly opened to the suction chamber formed in the cylinder head. The suction gas that is opened into the chamber and introduced into the crank chamber is introduced into the suction chamber through a communication passage provided in the cylinder block. Therefore, since the crank chamber having a large capacity becomes the suction chamber for the external circuit, noise due to suction pulsation is prevented or reduced. Further, this structure makes it possible to reduce the volume of the suction chamber formed in the cylinder head, and the volume of the discharge chamber can be increased correspondingly, so that noise caused by discharge pulsation is prevented or reduced. In addition, since the crank chamber becomes an intake gas atmosphere and the temperature and pressure are lowered, the durability of the seal member of the main shaft and each drive component is improved, and the pressure resistance of the casing components forming the crank chamber is relatively improves. When the pressure resistance of the casing parts, particularly the front housing, is improved, the weight can be reduced by reducing the thickness. Then, the pressure in the crank chamber and the intermediate pressure control mechanism are controlled on each end side of the axial movement member that can move in the direction along the axis of the main shaft substantially corresponding to the inclination angle of the swash plate. The applied intermediate pressure is applied, whereby the axial position of the axial movement member is controlled with high accuracy, and the tilt angle of the swash plate and the capacity of the compressor are controlled with high accuracy through the position control. Therefore, compared to conventional capacity (swash plate tilt) control only by the total balance (total balance) of the even moment due to rotation / reciprocation of each part and the distribution of gas pressure, the axial direction of the axially moving member Since the displacement (swash plate tilt angle) control is performed via the position control, the stability of the control is improved and the control accuracy can be improved. The axial position control of the axial movement member is performed between the gas pressure on the crank chamber side (intake gas pressure) applied to one end side of the axial movement member, the discharge gas pressure applied to the other end side, and the intake gas pressure. However, since this intermediate pressure cannot be made lower than the suction gas pressure applied to the opposite side, only the gas pressure applied to both ends of the axially moving member is used. The axial movement member can be controlled only in the cam angle (swash plate inclination angle) increasing direction. However, the cam angle (swash plate tilt angle) is actually generated by an even moment generated by the gas pressure in each space inside the compressor acting in the cam angle increasing / decreasing direction, and rotation / reciprocation of each component inside the compressor. Since it is determined by the overall balance of the even moment, for example, the cam lofill is set so that the even moment in the direction of decreasing the cam angle is generated by the discharge gas pressure action on the piston, Set the total balance of the even moments caused by the rotation and reciprocation of the parts so that the cam angle decreases in all cam angles (swash plate tilt angle) (the swash plate tilt angle decreases direction, that is, the capacity decreases direction). Or by using them in combination, it is possible to control the axial position of the axially moving member only by controlling the intermediate pressure. Together allowing smooth capacity control in degrees, particularly relaxed start shock such high speeds, smooth starting is obtained. In addition, if the total balance of the even moment generated by the rotation and reciprocation of each part in the compressor is applied in the cam angle decreasing direction in all the cam angle variation areas, for example, a driving force transmission system In the case of the clutchless system, the compressor operation off mode (that is, the mode in which the inclination angle of the swash plate is kept at the minimum inclination angle) can be maintained without increasing the pressure in the crank chamber. The amount of refrigerant circulating in the compressor at the time decreases, and the power consumption can be reduced accordingly. In other words, in the case of the clutchless system, the rotating parts such as the swash plate kept at the minimum inclination angle are rotated as they are in the compressor operation off mode, so that the compression power is reduced by reducing the power consumption at that time. The total power consumption of the machine is also reduced.
 上記のような本発明に係る可変容量圧縮機において、クランク室に開口するように形成される上記吸入路の経路としては、次のように各種の形態を採り得る。例えば、上記吸入路が、フロントハウジングに形成されており、外部回路から直接的に吸入ガスをクランク室内に取り込むようにすることができる。あるいは、上記吸入路が、シリンダブロックからフロントハウジングにわたって形成されており、外部回路からの吸入ガスを一旦シリンダブロック部分に取り込み、そこからフロントハウジング部分を介してクランク室内に取り込むようにすることもできる。あるいは、上記吸入路が、シリンダブロックを介して(シリンダブロックを間にして)シリンダヘッドからフロントハウジングにわたって形成されており、外部回路からの吸入ガスを一旦シリンダヘッド部分(シリンダヘッド内に形成された吸入室とは異なる部分)に取り込み、そこからシリンダブロック部分、フロントハウジング部分を介してクランク室内に取り込むようにすることもできる。 In the variable displacement compressor according to the present invention as described above, the suction passage formed so as to open to the crank chamber may take various forms as follows. For example, the intake passage is formed in the front housing, and intake gas can be directly taken into the crank chamber from an external circuit. Alternatively, the suction path is formed from the cylinder block to the front housing, and the intake gas from the external circuit is once taken into the cylinder block portion and then taken into the crank chamber through the front housing portion. . Alternatively, the suction path is formed from the cylinder head to the front housing via the cylinder block (with the cylinder block in between), and the suction gas from the external circuit is once formed in the cylinder head portion (in the cylinder head). It is also possible to take in into a crank chamber through a cylinder block part and a front housing part.
 また、本発明における上記軸方向移動部材の両端側に圧力をかける構造に関しては、基本的に、その部材両端側の圧力が互いにシールされている必要がある。このために、上記軸方向移動部材の他端側に、上記中間圧力に制御される中間圧力室が形成され、該中間圧力室がクランク室に対しシールされていることが好ましい。 In addition, regarding the structure in which pressure is applied to both ends of the axial movement member in the present invention, basically, the pressure on both ends of the member needs to be sealed from each other. Therefore, it is preferable that an intermediate pressure chamber controlled by the intermediate pressure is formed on the other end side of the axially moving member, and the intermediate pressure chamber is sealed with respect to the crank chamber.
 このような中間圧力室が設けられる構造では、上記中間圧力制御機構としては、例えば次のような各種の形態を採り得る。例えば、上記中間圧力制御機構が、吐出室と中間圧力室との間の連通路と、該連通路中に設けられ、吐出室内の圧力から所定の中間圧力への減圧を制御可能な制御弁と、中間圧力室と吸入室との間の連通路と、該連通路中に設けられた絞りとを有する機構に構成できる。あるいは、上記中間圧力制御機構が、吐出室と中間圧力室との間の連通路と、中間圧力室と吸入室との間の連通路と、該両連通路中に設けられ、吐出室内の圧力から所定の中間圧力への減圧を制御可能で、かつ、中間圧力室から吸入室へのガス流れに対する絞り度合を制御可能な制御弁とを有する機構に構成することもできる。あるいは、上記中間圧力制御機構が、吐出室と中間圧力室との間の連通路と、該連通路中に設けられた絞りと、中間圧力室と吸入室との間の連通路と、該連通路中に設けられ、中間圧力室内における所定の中間圧力への減圧を制御可能な制御弁とを有する機構に構成することもできる。中間圧力制御機構が吐出室と中間圧力室との間の連通路中に設けられている型式の場合、軸方向移動部材の他端側に設けているシール部材は、中間圧力室と吸入室間にある絞りを通過するガスの流量に相当する中間圧力室からクランク室への漏れを許容するシール部材であってもよく、この場合には、中間圧力室から吸入室への連通路とその連通路中の絞りを省略することも可能である。 In the structure in which such an intermediate pressure chamber is provided, the intermediate pressure control mechanism may take various forms as follows, for example. For example, the intermediate pressure control mechanism includes a communication passage between the discharge chamber and the intermediate pressure chamber, a control valve provided in the communication passage, and capable of controlling pressure reduction from the pressure in the discharge chamber to a predetermined intermediate pressure. In addition, a mechanism having a communication path between the intermediate pressure chamber and the suction chamber and a throttle provided in the communication path can be configured. Alternatively, the intermediate pressure control mechanism is provided in the communication path between the discharge chamber and the intermediate pressure chamber, the communication path between the intermediate pressure chamber and the suction chamber, and the pressure in the discharge chamber. It is also possible to configure a mechanism having a control valve capable of controlling the pressure reduction from the intermediate pressure chamber to a predetermined intermediate pressure and controlling the degree of throttling with respect to the gas flow from the intermediate pressure chamber to the suction chamber. Alternatively, the intermediate pressure control mechanism includes a communication path between the discharge chamber and the intermediate pressure chamber, a throttle provided in the communication path, a communication path between the intermediate pressure chamber and the suction chamber, and the communication. A mechanism provided with a control valve provided in the passage and capable of controlling pressure reduction to a predetermined intermediate pressure in the intermediate pressure chamber can also be configured. When the intermediate pressure control mechanism is provided in the communication path between the discharge chamber and the intermediate pressure chamber, the seal member provided on the other end side of the axially moving member is between the intermediate pressure chamber and the suction chamber. It may be a seal member that allows leakage from the intermediate pressure chamber to the crank chamber corresponding to the flow rate of the gas passing through the throttle in this case. In this case, the communication path from the intermediate pressure chamber to the suction chamber and its communication It is also possible to omit the restriction in the passage.
 また、本発明においては、上記運動変換機構は次のような各種の形態を採り得る。例えば、上記運動変換機構が、斜板の回転運動が自身の揺動運動へと変換され該揺動運動を連結ロッドを介してピストンに伝達しピストンを往復動させる揺動板と、該揺動板の回転阻止機構とを備えている機構から構成できる。すなわち、いわゆる揺動板式の可変容量圧縮機に構成するのである。 In the present invention, the motion conversion mechanism may take various forms as follows. For example, the motion conversion mechanism includes a swing plate that converts the rotational motion of the swash plate into its own swing motion, transmits the swing motion to the piston through a connecting rod, and reciprocates the piston, and the swing It can comprise from the mechanism provided with the rotation prevention mechanism of a board. That is, a so-called oscillating plate type variable displacement compressor is configured.
 このような揺動板式の可変容量圧縮機に構成する場合、本出願人による先の出願である前述の特許文献1に記載されている構造を適用することができる。すなわち、上記揺動板の回転阻止機構が、(a)ハウジング内に回転は阻止されるが軸方向に移動可能に設けられ、動力伝達用に設けられた複数のボールをガイドするための複数のガイド溝を有する内輪と、(b)前記内輪の各ガイド溝に対向する位置に前記ボールをガイドするための複数のガイド溝を有し、外周に前記揺動板が連結されて前記揺動板とともに揺動可能に支持された外輪と、(c)前記内輪および外輪に形成された互いに対向するガイド溝によって保持され、該ガイド溝間で圧縮されることにより動力伝達を行う複数のボールと、を有する機構から構成されている構造を適用でき、この場合、内輪が本発明における上記軸方向移動部材に構成されればよい。 In the case of configuring such a swing plate type variable displacement compressor, the structure described in the above-mentioned Patent Document 1, which is an earlier application by the present applicant, can be applied. That is, the rotation preventive mechanism for the swing plate is (a) provided with a plurality of balls for guiding a plurality of balls provided for power transmission, provided to be movable in the axial direction while being prevented from rotating in the housing. An inner ring having a guide groove; and (b) a plurality of guide grooves for guiding the ball at positions opposed to the guide grooves of the inner ring, and the swing plate is connected to an outer periphery. And (c) a plurality of balls that are held by guide grooves facing each other and formed between the inner ring and the outer ring, and that transmit power by being compressed between the guide grooves, The structure comprised from the mechanism which has can be applied, and an inner ring | wheel should just be comprised in the said axial direction movement member in this invention in this case.
 またこの場合、前述の特許文献1に記載されているように、上記揺動板の回転阻止機構が、さらに(d)前記揺動板の揺動運動の揺動中心部材として機能し、前記主軸上に該主軸に対し相対回転および軸方向に移動可能に設けられ、前記内輪に該内輪とともに軸方向に移動可能に係合されたスリーブを有し、外輪が該スリーブに揺動可能に支持されている構造を採用することもできる。 In this case, as described in Patent Document 1, the rotation preventing mechanism of the swing plate further functions as a swing center member of the swing motion of the swing plate (d), and the spindle The inner ring has a sleeve which is provided so as to be rotatable relative to the main shaft and movable in the axial direction. The sleeve is engaged with the inner ring so as to be movable in the axial direction. The outer ring is supported by the sleeve so as to be swingable. It is also possible to adopt the structure.
 あるいは、本発明に係る可変容量圧縮機においては、上記のような揺動板式の可変容量圧縮機に構成する以外にも、例えば、上記運動変換機構が、斜板の外周側両面に摺接される一対のシューを介してピストンの往復動に変換する機構から構成された形態を採用することも可能である。 Alternatively, in the variable displacement compressor according to the present invention, in addition to the configuration of the swing plate type variable displacement compressor as described above, for example, the motion conversion mechanism is slidably contacted on both outer peripheral sides of the swash plate. It is also possible to adopt a configuration constituted by a mechanism that converts the reciprocating motion of the piston through a pair of shoes.
 さらに、本発明に係る可変容量圧縮機においては、効率よく、かつ、精度良く迅速に斜板の傾角を目標とする傾角に制御できるようにするために、斜板の傾角を変角させるカム機構に工夫を加えておくことが好ましい。例えば、上記主軸と上記斜板との間に介在されたカム機構を介して斜板の傾角が変角可能に構成されており、圧縮行程にある複数のピストンのうち少なくとも一つのピストンの圧縮反力による荷重が斜板に対して容量減少方向の偶モーメントとして作用するような位置に斜板の瞬間回転中心を持つように、上記カム機構のカムプロフィールが設定されていることが好ましい。この機構の具体例については、後述の本発明の実施態様において詳述する。 Further, in the variable capacity compressor according to the present invention, the cam mechanism for changing the inclination angle of the swash plate in order to enable the inclination angle of the swash plate to be controlled to the target inclination angle efficiently and accurately. It is preferable to add some ideas to the above. For example, the inclination angle of the swash plate can be changed via a cam mechanism interposed between the main shaft and the swash plate, and the compression reaction of at least one of the plurality of pistons in the compression stroke is made. It is preferable that the cam profile of the cam mechanism is set so that the load due to the force acts on the swash plate as an even moment in the capacity decreasing direction so that the instantaneous rotation center of the swash plate is present. A specific example of this mechanism will be described in detail in an embodiment of the present invention described later.
 また、このような機構は、次のように実現することが可能である。例えば、上記カム機構が、主軸側から延びる腕と斜板側から延びる腕の一方に形成された長穴と他方に設けられたピンとのスライド係合機構からなり、上記カムプロフィールが、上記長穴の形状をS字形に形成することにより設定されている機構によって実現することができる。 Also, such a mechanism can be realized as follows. For example, the cam mechanism comprises a slide engagement mechanism of an elongated hole formed on one of an arm extending from the main shaft side and an arm extending from the swash plate side, and a pin provided on the other, and the cam profile includes the elongated hole. It is realizable by the mechanism set by forming the shape of this in S shape.
 また、本発明に係る可変容量圧縮機においては、少なくとも各部品の回転、往復運動により上記斜板の傾角変化面内に生じる偶モーメントのトータルバランスが、すべての斜板傾角において、傾角減少方向になるように各部品が設定されていることが好ましい。このような構成においては、各部品の回転、往復運動による斜板の偶モーメントのトータルバランスが、常に斜板傾角減少方向に作用するので、つまり、常に所望の一方向に作用するので、前述の軸方向移動部材の他端側にかかる中間圧力さえ制御すれば、斜板の傾角を目標とする傾角に容易に精度良く制御することが可能になる。換言すれば、前述の如く、軸方向移動部材の他端側にかかる中間圧力は、反対側にかかる吸入圧力よりは低くできないので、軸方向移動部材の両端側にかかるガス圧力のみによっては、軸方向移動部材にはカム角(斜板傾角)増大方向にしか作用させられない。しかし、各部品の回転、往復運動による斜板の偶モーメントのトータルバランスが常に斜板傾角減少方向に作用するように設定しておけば、中間圧力の制御により、容易にカム角(斜板傾角)を任意の所望の角度に制御できるようになる。また、斜板には常に傾角減少方向に偶モーメントが作用するので、例えば圧縮機作動オフモードを維持したい場合等には、圧縮機を回転駆動するだけで斜板は自然に最小傾角方向に変角され、最小傾角へと変角された後その最小傾角に維持されることになる。 Further, in the variable capacity compressor according to the present invention, the total balance of the even moments generated in the tilt change plane of the swash plate by at least the rotation and reciprocation of each component is reduced in the tilt reduction direction at all swash plate tilt angles. It is preferable that each part is set so as to be. In such a configuration, the total balance of the even moment of the swash plate due to the rotation and reciprocation of each component always acts in the direction of decreasing the swash plate inclination angle, that is, always acts in one desired direction. By controlling even the intermediate pressure applied to the other end side of the axially moving member, it becomes possible to easily and accurately control the inclination angle of the swash plate to the target inclination angle. In other words, as described above, the intermediate pressure applied to the other end of the axial movement member cannot be lower than the suction pressure applied to the opposite side, so that depending on only the gas pressure applied to both ends of the axial movement member, The direction moving member can act only in the cam angle (swash plate inclination angle) increasing direction. However, if the total balance of the even moment of the swash plate due to the rotation and reciprocation of each part is set to always act in the direction of decreasing the swash plate tilt angle, the cam angle (swash plate tilt angle) can be easily controlled by controlling the intermediate pressure. ) Can be controlled to any desired angle. Also, since an even moment always acts on the swash plate in the direction of decreasing the tilt angle, for example, when it is desired to maintain the compressor operation off mode, the swash plate is naturally changed to the minimum tilt direction only by rotating the compressor. After being turned and changed to the minimum inclination, the minimum inclination is maintained.
 この場合、さらに、少なくとも斜板を傾角減少方向に付勢するスプリングが設けられており、該スプリングの付勢力を含めて上記斜板の傾角変化面内に生じる回転、往復運動による偶モーメントのトータルバランスが、すべての斜板傾角において、傾角減少方向になるように設定されている形態とすることも可能である。この形態は、後に例示するように、傾角が変化される斜板を、傾角の変化にかかわらず常に傾角減少方向に押し付けておきたい場合等に有効である。例えば、上記軸方向移動部材と斜板または斜板支持部材とが機械的に連結されていない場合等にあっても、斜板の中央部または斜板支持部材と軸方向移動部材とを常に軸方向に互いに押し付けあい、両部材を軸方向に常に一体的に移動させることが可能になり、それによって軸方向移動部材の軸方向位置と斜板傾角とを正確に一対一に常に対応できるようにすることが可能になる。 In this case, there is further provided a spring for urging at least the swash plate in the direction of decreasing the inclination angle, and the total of the even moment due to the rotation and reciprocation generated in the inclination change plane of the swash plate including the urging force of the spring. It is also possible to adopt a form in which the balance is set so as to be in the direction of decreasing the inclination angle at all inclination angles of the swash plate. As will be exemplified later, this form is effective when it is desired to always press the swash plate whose inclination angle is changed in the inclination decreasing direction regardless of the inclination angle change. For example, even when the axial movement member and the swash plate or the swash plate support member are not mechanically connected, the center portion of the swash plate or the swash plate support member and the axial movement member are always aligned. It is possible to move both members together integrally in the axial direction by pressing each other in the direction so that the axial position of the axially moving member and the inclination angle of the swash plate can always correspond exactly one to one. It becomes possible to do.
 このように本発明に係る可変容量圧縮機によれば、クランク室に開口する吸入路を介して吸入ガスをクランク室に取り込む構成により、容量の大きなクランク室を吸入チャンバーとして吸入脈動に起因するノイズを防止あるいは低減できる。また、吸入絞り弁を削除できるので、シリンダヘッドのレイアウト上の設計自由度が向上する。また、吸入ガスをクランク室から連通路を介してシリンダヘッド内に形成された吸入室に導入する構成により、吸入室容積を低減可能となり、その分、吐出室容積を増加できるため、吐出脈動に起因するノイズも防止あるいは低減可能となる。また、クランク室内の温度・圧力を低下できるので、各駆動部品の耐久性や筐体部品の耐圧性を向上でき、筐体部品の薄肉化、圧縮機全体の小型、軽量化が可能となる。また、軸方向移動部材の各端部側にクランク室内の圧力と中間圧力制御機構により制御された中間圧力とをかけ、軸方向移動部材の軸方向位置を高精度に制御する構成により、その位置制御を介して斜板の傾角、圧縮機の容量を安定して高精度に制御することが可能になる。とくに、圧縮機内部の各部品の回転・往復動により生じる偶モーメントのトータルバランスが常にカム角減少方向(斜板の傾角減少方向、つまり、容量減少方向)となるように設定しておけば、中間圧力の制御のみで軸方向移動部材の軸方向位置制御を介して、容易により円滑な容量制御を行うことが可能になるとともに、特に高速時などの起動ショックを緩和でき、スムーズな起動性を得ることができる。さらに、このような偶モーメントのトータルバランスの設定により、クラッチレス方式の圧縮機の場合の消費動力の低減が可能になる。 As described above, according to the variable displacement compressor of the present invention, the intake gas is introduced into the crank chamber through the intake passage that opens to the crank chamber, so that the noise caused by the suction pulsation with the large-capacity crank chamber as the intake chamber. Can be prevented or reduced. Further, since the suction throttle valve can be eliminated, the degree of freedom in designing the cylinder head layout is improved. In addition, the configuration in which the suction gas is introduced from the crank chamber into the suction chamber formed in the cylinder head via the communication path can reduce the suction chamber volume, and the discharge chamber volume can be increased correspondingly. The resulting noise can also be prevented or reduced. Further, since the temperature and pressure in the crank chamber can be reduced, the durability of each driving component and the pressure resistance of the casing component can be improved, and the casing component can be made thinner and the entire compressor can be reduced in size and weight. In addition, by applying a pressure in the crank chamber and an intermediate pressure controlled by an intermediate pressure control mechanism to each end side of the axially moving member, the axial position of the axially moving member is controlled with high accuracy. Through the control, the tilt angle of the swash plate and the capacity of the compressor can be stably controlled with high accuracy. In particular, if the total balance of the even moment generated by the rotation and reciprocation of each component inside the compressor is always set in the cam angle decreasing direction (the swash plate tilt angle decreasing direction, that is, the capacity decreasing direction), Through the axial position control of the axially moving member only by controlling the intermediate pressure, it becomes possible to easily and smoothly control the capacity, and it is possible to alleviate the starting shock especially at high speeds, and smooth startability. Obtainable. Furthermore, the power consumption in the case of the clutchless type compressor can be reduced by setting the total balance of the even moments.
本発明の第1実施態様に係る可変容量圧縮機の最大斜板傾角時の縦断面図である。It is a longitudinal cross-sectional view at the time of the maximum swash plate inclination of the variable capacity compressor which concerns on 1st embodiment of this invention. 図1の可変容量圧縮機の拡大部分断面図である。FIG. 2 is an enlarged partial cross-sectional view of the variable capacity compressor of FIG. 1. 図1の可変容量圧縮機の最小斜板傾角時の縦断面図である。It is a longitudinal cross-sectional view at the time of the minimum swash plate inclination of the variable capacity compressor of FIG. 図3の可変容量圧縮機の拡大部分断面図である。FIG. 4 is an enlarged partial cross-sectional view of the variable capacity compressor of FIG. 3. 図1の可変容量圧縮機の各部品の回転・往復動による偶モーメントのバランスを示す、カム角と偶モーメントとの関係図である。FIG. 2 is a relationship diagram between a cam angle and an even moment, showing a balance of even moments due to rotation and reciprocation of each component of the variable capacity compressor of FIG. 1. 図1の可変容量圧縮機のガス圧力による偶モーメントのバランスを示す説明図である。It is explanatory drawing which shows the balance of the even moment by the gas pressure of the variable capacity compressor of FIG. 本発明の第2実施態様に係る可変容量圧縮機の部分縦断面図である。It is a partial longitudinal cross-sectional view of the variable capacity compressor which concerns on the 2nd embodiment of this invention. 本発明の第3実施態様に係る可変容量圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the variable capacity compressor which concerns on the 3rd embodiment of this invention. 本発明の第4実施態様に係る可変容量圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the variable capacity compressor which concerns on the 4th embodiment of this invention. 本発明の第5実施態様に係る可変容量圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the variable capacity compressor which concerns on 5th embodiment of this invention. 従来の可変容量圧縮機の最大斜板傾角時の縦断面図である。It is a longitudinal cross-sectional view at the time of the maximum swash plate inclination of the conventional variable capacity compressor. 図11の可変容量圧縮機の最小斜板傾角時の縦断面図である。It is a longitudinal cross-sectional view at the time of the minimum swash plate inclination of the variable capacity compressor of FIG. 図11の可変容量圧縮機の各部品の回転・往復動による偶モーメントのバランスを示す、カム角と偶モーメントとの関係図である。FIG. 12 is a relationship diagram between a cam angle and an even moment, showing a balance of even moments due to rotation and reciprocation of each component of the variable capacity compressor of FIG. 11. 図11の可変容量圧縮機のガス圧力による偶モーメントのバランスを示す説明図である。It is explanatory drawing which shows the balance of the even moment by the gas pressure of the variable capacity compressor of FIG.
 以下に、本発明の具体的な実施の形態について、図面を参照しながら説明する。
 図1~図6は、本発明の第1実施態様に係る可変容量圧縮機を示している。図1は、可変容量圧縮機1の最大容量(最大カム角〔最大斜板傾角〕)時の状態を示しており、図3は最小容量(最小カム角〔最小斜板角〕)時の状態をそ示している。図1において、フロントハウジング2とシリンダブロック3で形成されたクランク室4内には主軸5が挿通されており、主軸5に対し、主軸5に固定され主軸5と一体に回転されるロータ6が設けられているとともに、主軸5に対し傾角を変角可能にかつ主軸5と一体的に回転可能に斜板7が配置されている。ロータ6と斜板7の間には、ロータ6側(主軸5側)から延びる腕8と斜板7側から延びる腕9を有し、腕9側には長穴10、腕8側には長穴10に係合するピン11が設けられたスライド係合機構を形成するヒンジ機構12が設けられており、該ヒンジ機構12を介して斜板7がその傾角を変角可能にかつ主軸5と一体的に回転可能に設けられている。この斜板7の反ヒンジ機構12側には、斜板7とヒンジ機構12を含む回転機構の回転バランスをとるために、カウンターウエイト13が埋設あるいは付設されている。このヒンジ機構12における長穴10とピン11とのスライド係合機構は、斜板7の傾角を変角するためのカム機構を構成しており、本実施態様では、長穴10は、後述の図5を用いて詳述するように、圧縮行程にある複数のピストンのうち少なくとも一つのピストンの圧縮反力による荷重が斜板7に対して容量減少方向の偶モーメントとして作用するような位置に斜板7の瞬間回転中心を持つように、ヒンジ機構12によるカム機構のカムプロフィールを設定するために、S字形の形状に形成されている。さらに、本実施態様では、フロントハウジング2に吸入ポート14が直接設けられており、クランク室4内に外部からの吸入ガスを取り込む吸入路15が、フロントハウジング2のみに形成されている。
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
1 to 6 show a variable capacity compressor according to a first embodiment of the present invention. FIG. 1 shows the state of the variable capacity compressor 1 at the maximum capacity (maximum cam angle [maximum swash plate inclination angle]), and FIG. 3 shows the state at the minimum capacity (minimum cam angle [minimum swash plate angle]). Is shown. In FIG. 1, a main shaft 5 is inserted into a crank chamber 4 formed by a front housing 2 and a cylinder block 3, and a rotor 6 fixed to the main shaft 5 and rotated integrally with the main shaft 5 with respect to the main shaft 5. A swash plate 7 is disposed so as to be capable of changing the tilt angle with respect to the main shaft 5 and to be rotatable integrally with the main shaft 5. Between the rotor 6 and the swash plate 7, there are an arm 8 extending from the rotor 6 side (main shaft 5 side) and an arm 9 extending from the swash plate 7 side. A hinge mechanism 12 that forms a slide engagement mechanism provided with a pin 11 that engages with the elongated hole 10 is provided, and the inclination angle of the swash plate 7 can be changed through the hinge mechanism 12 and the spindle 5 And can be rotated integrally therewith. A counterweight 13 is embedded or attached to the swash plate 7 on the side opposite to the hinge mechanism 12 in order to balance the rotation of the rotation mechanism including the swash plate 7 and the hinge mechanism 12. The slide engagement mechanism between the long hole 10 and the pin 11 in the hinge mechanism 12 constitutes a cam mechanism for changing the inclination angle of the swash plate 7. In this embodiment, the long hole 10 is described later. As will be described in detail with reference to FIG. 5, the load due to the compression reaction force of at least one piston among the plurality of pistons in the compression stroke acts on the swash plate 7 as an even moment in the capacity decreasing direction. In order to set the cam profile of the cam mechanism by the hinge mechanism 12 so as to have the instantaneous rotation center of the swash plate 7, it is formed in an S-shape. Furthermore, in the present embodiment, the suction port 14 is directly provided in the front housing 2, and the suction passage 15 for taking in the intake gas from the outside into the crank chamber 4 is formed only in the front housing 2.
 本実施態様では、斜板7に対してベアリング16、17を介して相対回転自在に設けられ、自身の回転は阻止された状態で揺動運動のみが許容された揺動板18が設けられた、揺動板式の可変容量圧縮機1に構成されている。斜板7の回転運動が揺動板18の揺動運動に変換され、該揺動運動が連結ロッド19を介して、シリンダボア20内に往復動自在に挿入されたピストン21の往復動に変換される。揺動板18の回転阻止機構22は、(i)シリンダブロック3の中央穴23との間に構成されたスプライン係合機構24を介して回転は阻止されるが軸方向に移動可能に設けられ、主軸5に対しベアリング48を介して相対回転自在に設けられ、動力伝達用に設けられた複数のボール25をガイドするための複数のガイド溝26を有する内輪27と、(ii)揺動板18の揺動運動の揺動中心部材として機能し、主軸5に対し相対回転および軸方向に移動可能に設けられ、内輪27に該内輪27とともに軸方向に移動可能に係合されたスリーブ28と、(iii)内輪27の各ガイド溝26に対向する位置にボール25をガイドするための複数のガイド溝29を有し、スリーブ28に揺動可能に支持され、外周に揺動板18を固定支持する外輪30と、(iv)内輪27および外輪30の互いに対向するガイド溝26、29によって保持され、該ガイド溝26、29間で圧縮されることにより動力伝達を行う複数のボール25と、を有する機構から構成されている。この揺動板18の回転阻止機構22における内輪27が、本発明における、斜板7の傾角に対し実質的に一対一に対応して主軸5の軸心に沿う方向に移動可能な軸方向移動部材を構成している。 In this embodiment, there is provided a rocking plate 18 which is provided so as to be rotatable relative to the swash plate 7 via bearings 16 and 17 and which is allowed to swing only while preventing its own rotation. The oscillating plate type variable displacement compressor 1 is configured. The rotational motion of the swash plate 7 is converted into the swing motion of the swing plate 18, and the swing motion is converted into the reciprocating motion of the piston 21 reciprocally inserted into the cylinder bore 20 via the connecting rod 19. The The rotation preventing mechanism 22 of the swing plate 18 is provided so as to be movable in the axial direction, although the rotation is blocked via a spline engaging mechanism 24 formed between the central hole 23 of the cylinder block 3. An inner ring 27 provided with a plurality of guide grooves 26 for guiding a plurality of balls 25 provided for power transmission, and relatively rotatable with respect to the main shaft 5 via a bearing 48, and (ii) a swing plate A sleeve 28 that functions as a swinging center member of the swinging motion 18 and is provided so as to be able to rotate relative to the main shaft 5 and move in the axial direction, and is engaged with the inner ring 27 so as to be movable in the axial direction together with the inner ring 27. , (Iii) A plurality of guide grooves 29 for guiding the balls 25 are provided at positions facing the respective guide grooves 26 of the inner ring 27, are supported by the sleeve 28 so as to be swingable, and the swing plate 18 is fixed to the outer periphery. Outside to support 30 and (iv) a plurality of balls 25 that are held by guide grooves 26 and 29 facing each other in the inner ring 27 and the outer ring 30 and that transmit power by being compressed between the guide grooves 26 and 29. It is composed of An axial movement in which the inner ring 27 in the rotation blocking mechanism 22 of the swing plate 18 can move in the direction along the axis of the main shaft 5 in a one-to-one correspondence with the inclination angle of the swash plate 7 in the present invention. It constitutes a member.
 シリンダヘッド31内には、径方向外側に吸入室32が、径方向内側に吐出室33が形成されている。この配置は逆も可能である。圧縮機への吸入ガスは、まず、吸入ポート14から吸入路15を介してクランク室4内に取り込まれ、クランク室4から、シリンダブロック3に形成された連通路34を介して吸入室32内に導入され、そこからシリンダボア20内に取り込まれてピストン21による圧縮行程に供される。シリンダボア20内でピストン21によって圧縮されたガスは、吐出室33内に吐出され、図示例では、そこから吐出遮断弁35、吐出ポート36を通して外部回路に送られるようになっている。 In the cylinder head 31, a suction chamber 32 is formed on the radially outer side, and a discharge chamber 33 is formed on the radially inner side. This arrangement can be reversed. The suction gas to the compressor is first taken into the crank chamber 4 from the suction port 14 through the suction passage 15, and from the crank chamber 4 to the inside of the suction chamber 32 through the communication passage 34 formed in the cylinder block 3. And is taken into the cylinder bore 20 from there and used for the compression stroke by the piston 21. The gas compressed by the piston 21 in the cylinder bore 20 is discharged into the discharge chamber 33, and in the example shown in the figure, is sent to an external circuit through the discharge cutoff valve 35 and the discharge port 36.
 上記軸方向移動部材としての内輪27の一端側には、クランク室4側のガス圧(Ps)がかかり、他端側には、吐出室33内の圧力(Pd)と吸入室32内の圧力(Ps)との中間の圧力(Pm)がかかるようになっている。この内輪27の他端側には、クランク室4側に対しシール部材37および45によってシールされた中間圧力室38が形成されており、中間圧力室38内の圧力が、中間圧力制御機構39によって上記のような所定の中間圧力(Pm)に制御される。 The gas pressure (Ps) on the crank chamber 4 side is applied to one end side of the inner ring 27 as the axially moving member, and the pressure (Pd) in the discharge chamber 33 and the pressure in the suction chamber 32 are applied to the other end side. An intermediate pressure (Pm) with respect to (Ps) is applied. On the other end side of the inner ring 27, an intermediate pressure chamber 38 is formed that is sealed by seal members 37 and 45 with respect to the crank chamber 4 side, and the pressure in the intermediate pressure chamber 38 is changed by the intermediate pressure control mechanism 39. The predetermined intermediate pressure (Pm) is controlled as described above.
 この中間圧力制御機構39は、本実施態様では次のように構成されている。
 吐出室33と中間圧力室38との間には連通路40が設けられており、その連通路40中に、吐出室33内の圧力(Pd)から所定の中間圧力(Pm)への減圧を制御可能な制御弁41が配設されており、中間圧力室38と吸入室32との間には連通路42が設けられており、その連通路42中に、中間圧力(Pm)から吸入室32内の圧力(Ps)へ減圧可能な絞り43(オリフィス)が形成されている。
The intermediate pressure control mechanism 39 is configured as follows in this embodiment.
A communication passage 40 is provided between the discharge chamber 33 and the intermediate pressure chamber 38, and pressure reduction from the pressure (Pd) in the discharge chamber 33 to a predetermined intermediate pressure (Pm) is performed in the communication passage 40. A control valve 41 that can be controlled is disposed, and a communication passage 42 is provided between the intermediate pressure chamber 38 and the suction chamber 32, and the suction passage is provided in the communication passage 42 from the intermediate pressure (Pm). A throttle 43 (orifice) that can be depressurized to a pressure (Ps) in the cylinder 32 is formed.
 上記中間圧力室38は、主軸5の後端部において、内輪27の後端部(他端部)と弁板44との間に形成されるが、この中間圧力室38は、図1の状態に対応して、図2に示す状態となり、主軸5と内輪27との間に介装され、両部材を相対回転自在に支持するとともに内輪27を主軸5に対し軸方向に移動自在に支持している、前述のシール部材37、45によって、クランク室4側に対して圧力上シールされている。軸方向移動部材としての内輪27には、図2に示すように、シール部材37、45で囲まれた円環状の受圧面46にかかる中間圧力Pmと、反対側にかかるクランク室4側の圧力との差圧によって、軸方向への荷重が発生する。中間圧力室38は、図3の状態に対応しては図4に示す状態となり、シール部材37、45は軸方向にスライド可能なようにシールされており、カム角最小時(斜板傾角最小時)には、内輪27のスライド移動に伴って、中間圧力室38の容積が縮小される。 The intermediate pressure chamber 38 is formed at the rear end portion of the main shaft 5 between the rear end portion (the other end portion) of the inner ring 27 and the valve plate 44. This intermediate pressure chamber 38 is in the state shown in FIG. 2 and is interposed between the main shaft 5 and the inner ring 27, supports both members so as to be relatively rotatable, and supports the inner ring 27 so as to be movable in the axial direction with respect to the main shaft 5. The above-described seal members 37 and 45 are pressure-sealed against the crank chamber 4 side. As shown in FIG. 2, the inner ring 27 as the axially moving member has an intermediate pressure Pm applied to the annular pressure receiving surface 46 surrounded by the seal members 37 and 45, and a pressure on the crank chamber 4 side on the opposite side. A load in the axial direction is generated by the differential pressure. The intermediate pressure chamber 38 is in the state shown in FIG. 4 corresponding to the state in FIG. 3, and the sealing members 37 and 45 are sealed so as to be slidable in the axial direction. When the inner ring 27 is slid, the volume of the intermediate pressure chamber 38 is reduced.
 なお、上記実施態様は、動力源(図示略)からの回転駆動力がプーリ47を介して直接主軸5に伝達されるクラッチレス方式の圧縮機として例示したが、これらの間に伝達動力の遮断と動力伝達状態との切替が可能なクラッチ(特に、電磁クラッチ)(図示略)を介在させたクラッチ方式の圧縮機に構成することも可能である。 In the above embodiment, the rotary drive force from the power source (not shown) is illustrated as a clutchless type compressor that is directly transmitted to the main shaft 5 via the pulley 47. It is also possible to constitute a clutch type compressor having a clutch (particularly an electromagnetic clutch) (not shown) capable of switching between the power transmission state and the power transmission state.
 このように構成された可変容量圧縮機1においては、外部から圧縮機1への吸入ガスを取り込む吸入路15がフロントハウジング2のみに形成されており、吸入路15を通して取り込まれる吸入ガスがまずクランク室4内に吸入され、そこから連通路34を介して吸入室32へと導入される。したがって、容量の大きなクランク室4が外部回路に対して吸入チャンバーとなるので、吸入脈動に起因するノイズが防止あるいは低減される。また、吸入絞り弁を削除できるので、シリンダヘッド31のレイアウト上の設計自由度が向上する。また、シリンダヘッド31内に形成される吸入室32の容積は、従来の吸入室へと直接的に吸入ガスが吸入される場合に比べて小さくて済み、その分、同じサイズのシリンダヘッド31であっても吐出室33の容積を増やせることになるため、吐出脈動に起因するノイズも防止あるいは低減される。また、クランク室4内が吸入ガス雰囲気となるため、温度・圧力が従来構造に比べて低下されるので、主軸5のシール部材(例えば、フロント側に設けられるシール部材)や、ローター6やその支持ベアリング、ヒンジ機構12等を含む各駆動部品の耐久性が向上し、また、クランク室4を形成する筐体部品(とくにフロントハウジング2)の耐圧性が相対的に向上する。とくにフロントハウジング2の耐圧性が向上すると、その薄肉化が可能になり、小型、軽量化が可能となる。 In the variable capacity compressor 1 configured as described above, the intake passage 15 for taking in the intake gas from the outside to the compressor 1 is formed only in the front housing 2, and the intake gas taken in through the intake passage 15 is first cranked. It is sucked into the chamber 4 and introduced into the suction chamber 32 through the communication path 34 from there. Therefore, since the crank chamber 4 having a large capacity serves as a suction chamber for the external circuit, noise caused by suction pulsation is prevented or reduced. Further, since the suction throttle valve can be eliminated, the degree of freedom in designing the cylinder head 31 in the layout is improved. Further, the volume of the suction chamber 32 formed in the cylinder head 31 may be smaller than that in the case where the suction gas is directly sucked into the conventional suction chamber. Even if it exists, since the volume of the discharge chamber 33 can be increased, the noise resulting from discharge pulsation is also prevented or reduced. Further, since the inside of the crank chamber 4 becomes an intake gas atmosphere, the temperature and pressure are reduced as compared with the conventional structure, so the seal member of the main shaft 5 (for example, the seal member provided on the front side), the rotor 6 and its The durability of each drive component including the support bearing, the hinge mechanism 12 and the like is improved, and the pressure resistance of the housing component (particularly the front housing 2) forming the crank chamber 4 is relatively improved. In particular, when the pressure resistance of the front housing 2 is improved, the thickness of the front housing 2 can be reduced, and the size and weight can be reduced.
 また、斜板7の傾角に対し実質的に一対一に対応して主軸5の軸心に沿う方向に移動可能な軸方向移動部材(内輪27)の位置制御を介して斜板7の傾角、圧縮機1の容量を制御可能であるので、斜板7の傾角の制御を機械的な精度に依存させることが可能になり、制御精度の大幅な向上が可能になる。この軸方向移動部材(内輪27)の位置制御は、軸方向移動部材の各端部側に、クランク室4内の圧力と中間圧力制御機構39により制御された中間圧力室32内の圧力とがかけられ、それらの差圧によって軸方向移動部材の軸方向位置が高精度に制御され、その軸方向移動部材の位置制御を介して斜板7の傾角、圧縮機1の容量が高精度に安定して制御されるようになる。 Further, the inclination angle of the swash plate 7 through the position control of the axial movement member (inner ring 27) that can move in the direction along the axis of the main shaft 5 substantially corresponding to the inclination angle of the swash plate 7; Since the capacity of the compressor 1 can be controlled, the control of the tilt angle of the swash plate 7 can be made dependent on the mechanical accuracy, and the control accuracy can be greatly improved. The axial movement member (inner ring 27) is controlled in such a way that the pressure in the crank chamber 4 and the pressure in the intermediate pressure chamber 32 controlled by the intermediate pressure control mechanism 39 are applied to each end side of the axial movement member. The axial position of the axially moving member is controlled with high accuracy by the differential pressure between them, and the tilt angle of the swash plate 7 and the capacity of the compressor 1 are stabilized with high accuracy through the position control of the axially moving member. To be controlled.
 また、上記斜板7の傾角制御においては、次のような偶モーメントのトータルバランスに設定することにより、より安定した望ましい制御、より具体的には、より円滑な容量制御が可能になるとともに、特に高速時などの起動ショックが緩和され、スムーズな起動性が得られる。 Further, in the tilt angle control of the swash plate 7, by setting the following even moment total balance, more stable and desirable control, more specifically, smoother capacity control is possible, In particular, start-up shocks at high speeds are alleviated and smooth start-up performance is obtained.
 上記圧縮機1内部の各部品の回転・往復動により生じる偶モーメントに関して、図5、図6を参照しながら説明する。図5は、圧縮機1における各部品の回転・往復動による偶モーメントのバランスを示しており、図6は、圧縮機1における各部に作用するガス圧による偶モーメントのバランスを示している。図6における各符号の意味は、次の通りである。
Pm:中間圧力(軸方向移動部材としての内輪27の後端部側にかかる制御圧力)
Ps:吸入圧力
Pd:吐出圧力
Ap:ピストン(シリンダボア)面積
As:軸方向移動部材としての内輪27の受圧面積
L1:カム機構(ヒンジ機構12)におけるカム角変化時の斜板7の瞬間回転中心(C)から圧縮行程ピストンの圧力作用線までの距離
L2:カム角変化時の斜板7の瞬間回転中心(C)から吸入行程ピストンの圧力作用線までの距離
L3:カム角変化時の斜板7の瞬間回転中心(C)から内輪27にかかる圧力作用線までの距離
M1:カム角(斜板傾角)増大方向のモーメント
M2:カム角(斜板傾角)減少方向のモーメント
M1=Ps・Ap・L1+Pm・As・L3+Ps・Ap・L2
M2=-Pd・Ap・L1-Ps・As・L3-Ps・Ap・L2
M1+M2=Ps・Ap・L1+Pm・As・L3+Ps・Ap・L2-Pd・Ap・L1-Ps・As・L3-Ps・Ap・L2
     =(Ps-Pd)Ap・L1+(Pm-Ps)As・L3
     ≒(Ps-Pd+Pm-Ps)As・L3(Ap≒As、L1≒L3の場合)
     =(Pm-Pd)As・L3
 図6におけるM1とM2は、実際にはすべてのピストン21においてM1とM2が計算される。また、ApとAs、L1とL3は、適切な関係になるように設定されることが好ましい。
The even moment generated by the rotation and reciprocation of each component in the compressor 1 will be described with reference to FIGS. FIG. 5 shows a balance of even moments due to rotation and reciprocation of each component in the compressor 1, and FIG. 6 shows a balance of even moments due to gas pressure acting on each part in the compressor 1. The meaning of each symbol in FIG. 6 is as follows.
Pm: Intermediate pressure (control pressure applied to the rear end side of the inner ring 27 as an axially moving member)
Ps: Suction pressure Pd: Discharge pressure Ap: Piston (cylinder bore) area As: Pressure receiving area of the inner ring 27 as an axially moving member L1: Center of instantaneous rotation of the swash plate 7 when the cam angle changes in the cam mechanism (hinge mechanism 12) The distance L2 from the pressure action line of the compression stroke piston to (C): the distance L3 from the instantaneous rotation center (C) of the swash plate 7 when the cam angle changes to the pressure action line of the suction stroke piston: the slope when the cam angle changes Distance M1 from momentary rotation center (C) of plate 7 to pressure acting line on inner ring 27 M1: Moment in cam angle (swash plate tilt angle) increasing direction M2: Moment in cam angle (swash plate tilt angle) decreasing direction M1 = Ps · Ap ・ L1 + Pm ・ As ・ L3 + Ps ・ Ap ・ L2
M2 = −Pd / Ap / L1-Ps / As / L3-Ps / Ap / L2
M1 + M2 = Ps / Ap / L1 + Pm / As / L3 + Ps / Ap / L2-Pd / Ap / L1-Ps / As / L3-Ps / Ap / L2
= (Ps-Pd) Ap.L1 + (Pm-Ps) As.L3
≒ (Ps-Pd + Pm-Ps) As · L3 (when Ap ≒ As, L1 ≒ L3)
= (Pm-Pd) As · L3
M1 and M2 in FIG. 6 are actually calculated for all pistons 21. In addition, Ap and As, and L1 and L3 are preferably set so as to have an appropriate relationship.
 ここで、吸入行程にあるピストン21のモーメントは前後差圧が同圧(Ps)であるため相殺される。また、瞬間回転中心(C)の位置を適切な位置に設定し(つまり、カム機構におけるカムプロフィールを適切に設定し)、内輪27の受圧面積を適切な大きさに設定した状態にて、PmとPsの差圧を制御することによって斜板カム角が最適に制御できる。より正確には、PdとPsの差圧によってピストン21を含む系のモーメント、PmとPsの差圧によって内輪27を含む系のモーメントが定まり、各モーメントのバランスがとられる。このとき、PdとPsの差圧によるモーメントを有効に働かせるために、上記L1を意図的に大きく設定することが好ましく、それを介して、次に述べる望ましい偶モーメントのトータルバランスの実現が可能になる。カム機構12における長穴10を、図6に示すようにS字形状に形成することによって、上記L1を意図的に大きく設定することが可能となる。 Here, the moment of the piston 21 in the suction stroke is canceled out because the front-rear differential pressure is the same pressure (Ps). Further, in the state where the position of the instantaneous rotation center (C) is set to an appropriate position (that is, the cam profile in the cam mechanism is set appropriately) and the pressure receiving area of the inner ring 27 is set to an appropriate size, Pm By controlling the pressure difference between Ps and Ps, the swash plate cam angle can be optimally controlled. More precisely, the moment of the system including the piston 21 is determined by the differential pressure between Pd and Ps, and the moment of the system including the inner ring 27 is determined by the differential pressure between Pm and Ps, and each moment is balanced. At this time, in order to make the moment due to the differential pressure between Pd and Ps work effectively, it is preferable to intentionally set the above L1 large, and through this, it is possible to realize a desirable total balance of even moments described below. Become. By forming the long hole 10 in the cam mechanism 12 in an S shape as shown in FIG. 6, it is possible to intentionally set the L1 large.
 上記圧縮機1における各部品の回転・往復動による偶モーメントのバランスは、図5に示す特性となるように設定されることが好ましい。すなわち、上述の圧縮機1のガス圧による偶モーメントバランスは、中間圧Pmを増大するとカム角増大側へ付勢するモーメントとなるので、各部品の回転・往復動による偶モーメントのバランスとしては、図5のようにすべてのカム角でカム角減少方向へ付勢されるように設定することが好ましい。つまり、図5においては、カム角最小のときにも、必ずカム角減少方向にトータルの偶モーメントが働くように設定されている。このような設定により、より望ましい安定した高精度の容量制御が実現される。また、カウンターウエイト13もこの望ましい設定に寄与できる。 The balance of even moments due to the rotation and reciprocation of each component in the compressor 1 is preferably set to have the characteristics shown in FIG. That is, the even moment balance due to the gas pressure of the compressor 1 described above is a moment that urges toward the cam angle increasing side when the intermediate pressure Pm is increased. As shown in FIG. 5, it is preferable to set so that the cam angle is urged in all cam angles. That is, in FIG. 5, even when the cam angle is minimum, the total even moment is always set in the cam angle decreasing direction. By such setting, more desirable stable high-accuracy capacity control is realized. The counterweight 13 can also contribute to this desirable setting.
 すなわち、例えば、図6において、Pdが低くくなる低負荷条件などの時は、モーメントM2が小さくなるので、例えばオフモードの維持が困難になる。このような時に図5の特性にしておけば、ガス圧の偶モーメントとは別に常時カム角減少方向の偶モーメントが作用するので、オフモード等の維持が容易となる。また、図6において、瞬間中心が従来と同じ主軸中心から(図14のように)遠い位置にある場合、図6のL1は小さいのでPdによるカム角減少方向のモーメントM2が働かない。軸方向移動部材は、リア側の面にかかるPmは反対受圧面側のPsより小さくすることはできないので、カム角増大方向にしか作用させられず、一旦カム角を増大すると減少することができなくなる。したがって、ガス圧力による偶モーメントが前記のようにカム角減少方向のモーメントM2が働かない特性の場合には、回転、往復動による(またはリデューススプリング109を併用して)偶モーメントを図5の特性にし、カム角減少方向の偶モーメントを常時確保する必要がある。しかし、図5の特性は、圧縮機の回転数が小さい時には作用が小さいので、オフモードを維持する時などは、他の方法でカム角減少方向の偶モーメントを確保する必要がある。そのためには図6の特性が好ましい。 That is, for example, in FIG. 6, in the low load condition where Pd becomes low, the moment M2 becomes small, so that it is difficult to maintain the off mode, for example. If the characteristic shown in FIG. 5 is used in such a case, an even moment in the cam angle decreasing direction always acts in addition to the even moment of the gas pressure, so that the off mode and the like can be easily maintained. In FIG. 6, when the instantaneous center is at a position far from the same main spindle center as in the prior art (as shown in FIG. 14), since L1 in FIG. 6 is small, the moment M2 in the cam angle decreasing direction due to Pd does not work. Since the axially moving member cannot make Pm applied to the rear side surface smaller than Ps on the opposite pressure receiving surface side, it can act only in the cam angle increasing direction, and can be decreased once the cam angle is increased. Disappear. Therefore, when the even moment due to the gas pressure is such that the moment M2 in the cam angle decreasing direction does not act as described above, the even moment due to rotation or reciprocation (or in combination with the reduce spring 109) is changed to the characteristic shown in FIG. Therefore, it is necessary to always ensure an even moment in the cam angle decreasing direction. However, the characteristics shown in FIG. 5 have a small effect when the rotational speed of the compressor is small. Therefore, when maintaining the off mode, it is necessary to secure an even moment in the cam angle decreasing direction by another method. For this purpose, the characteristics shown in FIG. 6 are preferable.
 図7は、本発明の第2実施態様に係る可変容量圧縮機51の要部を示している。本実施態様においては、前述の第1実施態様に比べ、中間圧力(Pm)は、吐出ガスがシリンダヘッド31内の吐出室33から中間圧力室38への連通路40に配設された制御弁52によって制御された後を中間圧力室38に導入され、中間圧力室38から吸入室32への連通路53において再び制御弁52を経て吸入室32に戻るようになっている。すなわち、中間圧力(Pm)は、制御弁52による制御によって中間圧力室38への導入量と中間圧力室38からの逃がし量とを調節することにより制御される。その他の構成は、図1に示した第1実施態様に準じる。このような構成においても、前記第1実施態様と同様の作用効果が得られ、さらに、中間圧力制御機構の簡素化が可能になる。 FIG. 7 shows a main part of the variable capacity compressor 51 according to the second embodiment of the present invention. In this embodiment, compared to the first embodiment, the intermediate pressure (Pm) is a control valve in which the discharge gas is disposed in the communication passage 40 from the discharge chamber 33 in the cylinder head 31 to the intermediate pressure chamber 38. After being controlled by 52, it is introduced into the intermediate pressure chamber 38, and returns to the suction chamber 32 through the control valve 52 again in the communication path 53 from the intermediate pressure chamber 38 to the suction chamber 32. That is, the intermediate pressure (Pm) is controlled by adjusting the introduction amount into the intermediate pressure chamber 38 and the escape amount from the intermediate pressure chamber 38 under the control of the control valve 52. Other configurations are in accordance with the first embodiment shown in FIG. Even in such a configuration, the same effects as those of the first embodiment can be obtained, and the intermediate pressure control mechanism can be simplified.
 図8は、本発明の第3実施態様に係る可変容量圧縮機61を示している。本実施態様においては、前述の第1実施態様に比べ、吸入路62が、シリンダヘッド63に設けられた吸入ポート64からシリンダブロック65、フロントハウジング66にわたって形成されている。また、クランク室67からシリンダヘッド63内の吸入室32への連通路68が、フロントハウジング66、シリンダブロック65、シリンダヘッド63の締結ボルト69の挿通穴を利用して形成されている。さらに、中間圧力(Pm)は、吐出室33の圧力(Pd)から絞り70により減圧した圧力として中間圧力室38に導入され、中間圧力室38から吸入室32への連通路71に配設された制御弁72を経て吸入室32に戻るようになっている。その他の構成は、図1に示した第1実施態様に準じる。このような構成においても、前記第1実施態様と同様の作用効果が得られる。 FIG. 8 shows a variable capacity compressor 61 according to the third embodiment of the present invention. In this embodiment, as compared with the first embodiment described above, the suction passage 62 is formed from the suction port 64 provided in the cylinder head 63 to the cylinder block 65 and the front housing 66. Further, a communication path 68 from the crank chamber 67 to the suction chamber 32 in the cylinder head 63 is formed by using the insertion holes of the front housing 66, the cylinder block 65, and the fastening bolt 69 of the cylinder head 63. Further, the intermediate pressure (Pm) is introduced into the intermediate pressure chamber 38 as a pressure reduced by the throttle 70 from the pressure (Pd) of the discharge chamber 33, and is disposed in the communication path 71 from the intermediate pressure chamber 38 to the suction chamber 32. The control valve 72 returns to the suction chamber 32. Other configurations are in accordance with the first embodiment shown in FIG. Even in such a configuration, the same effect as the first embodiment can be obtained.
 図9は、本発明の第4実施態様に係る可変容量圧縮機81を示している。本実施態様においては、前述の第1実施態様に比べ、シリンダヘッド82内において、内径側に吸入室83が、外径側に吐出室84が形成されている。クランク室85への吸入ガスの吸入路86は、シリンダブロック87に設けられた吸入ポート88、吸入マフラー室89を介してフロントハウジング90にわたって形成されている。また、クランク室85からシリンダヘッド82内の吸入室83への連通路91が、シリンダブロック87のシリンダボア20の間の内径側に直線状に配置されている。さらに、中間圧力(Pm)は、吐出室84から中間圧力室38への連通路92に配設された制御弁93によって制御された後を中間圧力室38に導入され、中間圧力室38からは、絞り94により減圧された後吸入室32に戻るようになっている。その他の構成は、図1に示した第1実施態様に準じる。このような構成においても、前記第1実施態様と同様の作用効果が得られ、さらに、シリンダブロック87への連通路91の形成が容易化される。また、吸入マフラー室89で減衰された吸入脈動は、クランク室85でさらに減衰されるので、より確実に吸入脈動を減衰できる。また、吐出ガスについても、吐出マフラー室95を介して、吐出遮断弁96、吐出ポート97を通して排出できるようにすれば、吐出脈動も減衰できるようになる。 FIG. 9 shows a variable capacity compressor 81 according to the fourth embodiment of the present invention. In the present embodiment, a suction chamber 83 is formed on the inner diameter side and a discharge chamber 84 is formed on the outer diameter side in the cylinder head 82 as compared with the first embodiment described above. A suction passage 86 for suction gas to the crank chamber 85 is formed across the front housing 90 via a suction port 88 and a suction muffler chamber 89 provided in the cylinder block 87. A communication path 91 from the crank chamber 85 to the suction chamber 83 in the cylinder head 82 is linearly arranged on the inner diameter side between the cylinder bores 20 of the cylinder block 87. Further, the intermediate pressure (Pm) is introduced into the intermediate pressure chamber 38 after being controlled by the control valve 93 disposed in the communication passage 92 from the discharge chamber 84 to the intermediate pressure chamber 38. The pressure is reduced by the throttle 94 and then returned to the suction chamber 32. Other configurations are in accordance with the first embodiment shown in FIG. Even in such a configuration, the same effects as those of the first embodiment can be obtained, and the formation of the communication passage 91 to the cylinder block 87 can be facilitated. Further, since the suction pulsation attenuated in the suction muffler chamber 89 is further attenuated in the crank chamber 85, the suction pulsation can be attenuated more reliably. Further, if the discharge gas can be discharged through the discharge muffler chamber 95 through the discharge cutoff valve 96 and the discharge port 97, the discharge pulsation can be attenuated.
 図10は、本発明の第5実施態様に係る可変容量圧縮機101を示している。上述の第1~第4実施態様のような揺動板18は設けられず、いわゆる片斜板式の可変容量圧縮機101に構成されている。すなわち、斜板102の回転運動からピストン103の往復動への運動変換機構が、斜板102の外周側両面に摺接される一対のシュー104を介してピストン103の往復動に変換する機構から構成されている。前述の第1~第4実施態様のような揺動板18の回転阻止機構は不要であるので、代わりに、本発明における軸方向移動部材として、主軸105周りに、スプライン機構24により回転が阻止された状態にて主軸105上を軸方向に移動可能にスリーブ106が設けられている。スリーブ106のフロント側には、スラストベアリング107が設けられ、該スラストベアリング107、軸方向に移動自在なカラー108とともに、斜板102の中央部分がスリーブ106と一体的に軸方向に移動可能に構成されている。カラー108のフロント側には斜板102を傾角減少方向に(つまり、ヒンジ機構12で構成されるカム機構のカム角減少方向に)付勢するリデューススプリング109が設けられており、常時斜板102を最小傾角方向に付勢している。カラー108、リデューススプリング109は、斜板102とともに主軸105と一体的に回転するが、斜板102は、カラー108上に、傾角変化面内にて傾角を変角可能に支持されている。スリーブ106の他端側には、第1実施態様と同様に中間圧力室38が形成され、中間圧力室38内には、最小傾角側に変角された斜板102を傾角増大方向に付勢するためのリターンスプリング110が設けられている。その他の構成は第1実施態様に準じるので、図1に付したのと同一の符号を付すことにより説明を省略する。このような片斜板式の可変容量圧縮機101であっても、第1実施態様におけるのと同様の作用効果が得られる。 FIG. 10 shows a variable capacity compressor 101 according to the fifth embodiment of the present invention. The oscillating plate 18 as in the first to fourth embodiments described above is not provided, but is configured in a so-called swash plate type variable displacement compressor 101. That is, the mechanism for converting the rotational movement of the swash plate 102 to the reciprocating motion of the piston 103 is converted from the mechanism for converting the reciprocating motion of the piston 103 through a pair of shoes 104 slidably in contact with both outer peripheral sides of the swash plate 102. It is configured. Since the rotation blocking mechanism for the rocking plate 18 as in the first to fourth embodiments described above is unnecessary, instead, the rotation is blocked by the spline mechanism 24 around the main shaft 105 as the axial movement member in the present invention. In this state, a sleeve 106 is provided so as to be movable in the axial direction on the main shaft 105. A thrust bearing 107 is provided on the front side of the sleeve 106, and the central portion of the swash plate 102 is movable in the axial direction integrally with the sleeve 106 together with the thrust bearing 107 and a collar 108 that is movable in the axial direction. Has been. A reduction spring 109 is provided on the front side of the collar 108 to urge the swash plate 102 in the direction of decreasing the tilt angle (that is, in the cam angle decreasing direction of the cam mechanism constituted by the hinge mechanism 12). Is biased in the direction of the minimum inclination. The collar 108 and the reduce spring 109 rotate integrally with the main shaft 105 together with the swash plate 102. The swash plate 102 is supported on the collar 108 so that the tilt angle can be changed in the tilt change plane. An intermediate pressure chamber 38 is formed at the other end of the sleeve 106 in the same manner as in the first embodiment. In the intermediate pressure chamber 38, a swash plate 102 that has been deformed to the minimum inclination side is urged in an increasing direction of inclination. A return spring 110 is provided. Since the other configuration conforms to the first embodiment, the same reference numerals as those in FIG. Even with such a swash plate type variable displacement compressor 101, the same operational effects as in the first embodiment can be obtained.
 このように、揺動板式の可変容量圧縮機、片斜板式の可変容量圧縮機にかかわらず、本発明は適用できる。 Thus, the present invention can be applied regardless of the variable displacement compressor of the swing plate type and the variable displacement compressor of the swash plate type.
 本発明に係る可変容量圧縮機は、所定の軸方向移動部材を有するあらゆる可変容量圧縮機に適用可能である。 The variable capacity compressor according to the present invention is applicable to any variable capacity compressor having a predetermined axial movement member.
1、51、61、81、101 可変容量圧縮機 2 フロントハウジング 3 シリンダブロック 4 クランク室 5 主軸 6 ロータ 7 斜板 8、9 腕 10 長穴
11 ピン 12 カム機構としてのヒンジ機構 13 カウンターウエイト 14 吸入ポート 15 吸入路 16、17 ベアリング 18 揺動板 19 連結ロッド
20 シリンダボア 21 ピストン 22 揺動板の回転阻止機構 23 中央穴 24 スプライン係合機構 25 ボール 26、29 ガイド溝 27 内輪 28 スリーブ
30 外輪 31 シリンダヘッド 32 吸入室 33 吐出室 34 連通路 35 吐出遮断弁 36 吐出ポート 37、45 シール部材 38 中間圧力室 39 中間圧力制御機構
40、42 連通路 41 制御弁 43 絞り 44 弁板 46 受圧面 47 プーリ 48 ベアリング 52 制御弁 53 連通路 62 吸入路 63 シリンダヘッド
64 吸入ポート 65 シリンダブロック 66 フロントハウジング 67 クランク室 68 連通路 69 締結ボルト 70 絞り 71 連通路 72 制御弁 82 シリンダヘッド
83 吸入室 84 吐出室 85 クランク室 86 吸入路 87 シリンダブロック 88 吸入ポート 89 吸入マフラー室 90 フロントハウジング 91、92 連通路
93 制御弁 94 絞り 95 吐出マフラー室 96 吐出遮断弁 97 吐出ポート 102 斜板 103 ピストン 104 シュー 105 主軸 106 スリーブ
107 スラストベアリング 108 カラー 109 リデューススプリング 110 リターンスプリング C 瞬間回転中心 Ps 吸入圧力 Pd 吐出圧力 Pm 中間圧力
DESCRIPTION OF SYMBOLS 1, 51, 61, 81, 101 Variable capacity compressor 2 Front housing 3 Cylinder block 4 Crank chamber 5 Main shaft 6 Rotor 7 Swash plate 8, 9 Arm 10 Long hole 11 Pin 12 Hinge mechanism as a cam mechanism 13 Counterweight 14 Suction Port 15 Suction path 16, 17 Bearing 18 Swing plate 19 Connecting rod 20 Cylinder bore 21 Piston 22 Swing plate rotation prevention mechanism 23 Central hole 24 Spline engagement mechanism 25 Ball 26, 29 Guide groove 27 Inner ring 28 Sleeve 30 Outer ring 31 Cylinder Head 32 Suction chamber 33 Discharge chamber 34 Communication passage 35 Discharge shut-off valve 36 Discharge port 37, 45 Seal member 38 Intermediate pressure chamber 39 Intermediate pressure control mechanism 40, 42 Communication passage 41 Control valve 43 Restriction 44 Valve plate 46 Pressure receiving surface 47 Pulley 48 Bearing 52 control 53 Communication path 62 Suction path 63 Cylinder head 64 Suction port 65 Cylinder block 66 Front housing 67 Crank chamber 68 Communication path 69 Fastening bolt 70 Throttle 71 Communication path 72 Control valve 82 Cylinder head 83 Suction chamber 84 Discharge chamber 85 Crank chamber 86 Suction path 87 Cylinder block 88 Suction port 89 Suction muffler chamber 90 Front housing 91, 92 Communication path 93 Control valve 94 Throttle 95 Discharge muffler chamber 96 Discharge shutoff valve 97 Discharge port 102 Swash plate 103 Piston 104 Shoe 105 Main shaft 106 Sleeve 107 Thrust bearing 108 Color 109 Reduce spring 110 Return spring C Instantaneous rotation center Ps Suction pressure Pd Discharge pressure Pm Intermediate pressure

Claims (16)

  1.  吸入室および吐出室が形成されたシリンダヘッドと、ピストンが往復動可能に挿入されたシリンダボアを有するシリンダブロックと、該シリンダブロックとフロントハウジングで形成されたクランク室と、該クランク室内に配置され、主軸とともに回転されるとともに該主軸に対し自身の傾角が変角可能に支持された斜板と、該斜板の回転運動を前記ピストンの往復動に変換する運動変換機構とを備えた可変容量圧縮機において、圧縮機への吸入ガスを取り込む吸入路を前記クランク室に開口するように形成し、前記シリンダブロックに前記クランク室と前記吸入室を連通する連通路を設け、前記主軸周りに、前記斜板の傾角に対し実質的に一対一に対応して前記主軸の軸心に沿う方向に移動可能な軸方向移動部材を設けるとともに、該軸方向移動部材を、その一端側に前記クランク室内の圧力が、他端側に前記吐出室内の圧力と前記吸入室内の圧力との中間の圧力がかかるように配設し、かつ、前記中間圧力を制御可能な中間圧力制御機構を設けたことを特徴とする可変容量圧縮機。 A cylinder head having a suction chamber and a discharge chamber; a cylinder block having a cylinder bore into which a piston is reciprocally inserted; a crank chamber formed by the cylinder block and a front housing; and a crank chamber formed in the crank chamber. A variable capacity compression comprising a swash plate that is rotated together with the main shaft and is supported so that its inclination angle can be changed with respect to the main shaft, and a motion conversion mechanism that converts the rotational motion of the swash plate into the reciprocating motion of the piston. In the machine, a suction path for taking in the suction gas to the compressor is formed so as to open to the crank chamber, a communication passage that communicates the crank chamber and the suction chamber is provided in the cylinder block, and around the main shaft, An axial movement member is provided which can move in a direction along the axis of the main shaft substantially corresponding one to one with respect to the inclination angle of the swash plate. The direction moving member is disposed so that the pressure in the crank chamber is applied to one end side thereof, and the intermediate pressure between the pressure in the discharge chamber and the pressure in the suction chamber is applied to the other end side, and the intermediate pressure is A variable capacity compressor provided with a controllable intermediate pressure control mechanism.
  2.  前記吸入路が、前記フロントハウジングに形成されている、請求項1に記載の可変容量圧縮機。 The variable capacity compressor according to claim 1, wherein the suction passage is formed in the front housing.
  3.  前記吸入路が、前記シリンダブロックから前記フロントハウジングにわたって形成されている、請求項1に記載の可変容量圧縮機。 The variable capacity compressor according to claim 1, wherein the suction passage is formed from the cylinder block to the front housing.
  4.  前記吸入路が、前記シリンダブロックを介して前記シリンダヘッドから前記フロントハウジングにわたって形成されている、請求項1に記載の可変容量圧縮機。 The variable capacity compressor according to claim 1, wherein the suction path is formed from the cylinder head to the front housing via the cylinder block.
  5.  前記軸方向移動部材の他端側に、前記中間圧力に制御される中間圧力室が形成され、該中間圧力室が前記クランク室に対しシールされている、請求項1~4のいずれかに記載の可変容量圧縮機。 The intermediate pressure chamber controlled by the intermediate pressure is formed on the other end side of the axial movement member, and the intermediate pressure chamber is sealed with respect to the crank chamber. Variable capacity compressor.
  6.  前記中間圧力制御機構が、前記吐出室と前記中間圧力室との間の連通路と、該連通路中に設けられ、吐出室内の圧力から所定の中間圧力への減圧を制御可能な制御弁と、前記中間圧力室と前記吸入室との間の連通路と、該連通路中に設けられた絞りとを有する、請求項5に記載の可変容量圧縮機。 The intermediate pressure control mechanism includes a communication path between the discharge chamber and the intermediate pressure chamber, and a control valve provided in the communication path and capable of controlling pressure reduction from the pressure in the discharge chamber to a predetermined intermediate pressure. The variable capacity compressor according to claim 5, further comprising: a communication path between the intermediate pressure chamber and the suction chamber; and a throttle provided in the communication path.
  7.  前記中間圧力制御機構が、前記吐出室と前記中間圧力室との間の連通路と、前記中間圧力室と前記吸入室との間の連通路と、該両連通路中に設けられ、吐出室内の圧力から所定の中間圧力への減圧を制御可能で、かつ、中間圧力室から吸入室へのガス流れに対する絞り度合を制御可能な制御弁とを有する、請求項5に記載の可変容量圧縮機。 The intermediate pressure control mechanism is provided in the communication passage between the discharge chamber and the intermediate pressure chamber, the communication passage between the intermediate pressure chamber and the suction chamber, and the communication passage. 6. A variable displacement compressor according to claim 5, further comprising a control valve capable of controlling a pressure reduction from a certain pressure to a predetermined intermediate pressure and capable of controlling a degree of throttling with respect to a gas flow from the intermediate pressure chamber to the suction chamber. .
  8.  前記中間圧力制御機構が、前記吐出室と前記中間圧力室との間の連通路と、該連通路中に設けられた絞りと、前記中間圧力室と前記吸入室との間の連通路と、該連通路中に設けられ、中間圧力室内における所定の中間圧力への減圧を制御可能な制御弁とを有する、請求項5に記載の可変容量圧縮機。 The intermediate pressure control mechanism includes a communication path between the discharge chamber and the intermediate pressure chamber; a throttle provided in the communication path; a communication path between the intermediate pressure chamber and the suction chamber; The variable capacity compressor according to claim 5, further comprising a control valve provided in the communication path and capable of controlling pressure reduction to a predetermined intermediate pressure in the intermediate pressure chamber.
  9.  前記運動変換機構が、前記斜板の回転運動が自身の揺動運動へと変換され該揺動運動を連結ロッドを介して前記ピストンに伝達しピストンを往復動させる揺動板と、該揺動板の回転阻止機構とを備えている、請求項1~8のいずれかに記載の可変容量圧縮機。 The motion conversion mechanism includes a swing plate that converts the rotational motion of the swash plate into its swing motion and transmits the swing motion to the piston via a connecting rod to reciprocate the piston, and the swing The variable capacity compressor according to any one of claims 1 to 8, further comprising a plate rotation prevention mechanism.
  10.  前記揺動板の回転阻止機構が、(a)ハウジング内に回転は阻止されるが軸方向に移動可能に設けられ、動力伝達用に設けられた複数のボールをガイドするための複数のガイド溝を有する内輪と、(b)前記内輪の各ガイド溝に対向する位置に前記ボールをガイドするための複数のガイド溝を有し、外周に前記揺動板が連結されて前記揺動板とともに揺動可能に支持された外輪と、(c)前記内輪および外輪に形成された互いに対向するガイド溝によって保持され、該ガイド溝間で圧縮されることにより動力伝達を行う複数のボールと、を有する機構から構成されており、前記内輪が前記軸方向移動部材に構成されている、請求項9に記載の可変容量圧縮機。 A plurality of guide grooves for guiding a plurality of balls provided for power transmission, wherein the rotation preventing mechanism of the swing plate is (a) prevented from rotating in the housing but is movable in the axial direction. And (b) a plurality of guide grooves for guiding the ball at positions opposed to the guide grooves of the inner ring, and the swing plate is connected to the outer periphery to swing together with the swing plate. An outer ring that is movably supported; and (c) a plurality of balls that are held by mutually opposing guide grooves formed in the inner ring and the outer ring and that transmit power by being compressed between the guide grooves. The variable capacity compressor according to claim 9, comprising a mechanism, wherein the inner ring is formed on the axial movement member.
  11.  前記揺動板の回転阻止機構が、さらに(d)前記揺動板の揺動運動の揺動中心部材として機能し、前記主軸上に該主軸に対し相対回転および軸方向に移動可能に設けられ、前記内輪に該内輪とともに軸方向に移動可能に係合されたスリーブを有し、前記外輪が該スリーブに揺動可能に支持されている、請求項10に記載の可変容量圧縮機。 The rocking plate rotation prevention mechanism further functions as a rocking center member for the rocking motion of the rocking plate, and is provided on the main shaft so as to be able to rotate relative to the main shaft and move in the axial direction. The variable capacity compressor according to claim 10, wherein the inner ring has a sleeve engaged with the inner ring so as to be movable in the axial direction, and the outer ring is supported by the sleeve so as to be swingable.
  12.  前記運動変換機構が、前記斜板の外周側両面に摺接される一対のシューを介してピストンの往復動に変換する機構から構成されている、請求項1~8のいずれかに記載の可変容量圧縮機。 The variable motion according to any one of claims 1 to 8, wherein the motion converting mechanism is configured by a mechanism that converts the reciprocating motion of the piston through a pair of shoes that are in sliding contact with both outer peripheral sides of the swash plate. Capacity compressor.
  13.  前記主軸と前記斜板との間に介在されたカム機構を介して前記斜板の傾角が変角可能に構成されており、圧縮行程にある複数のピストンのうち少なくとも一つのピストンの圧縮反力による荷重が前記斜板に対して容量減少方向の偶モーメントとして作用するような位置に前記斜板の瞬間回転中心を持つように、前記カム機構のカムプロフィールが設定されている、請求項1~12のいずれかに記載の可変容量圧縮機。 The inclination angle of the swash plate is configured to be variable via a cam mechanism interposed between the main shaft and the swash plate, and the compression reaction force of at least one of the plurality of pistons in the compression stroke The cam profile of the cam mechanism is set such that the swash plate has a center of instantaneous rotation at a position where a load due to the above acts as an even moment in the capacity decreasing direction with respect to the swash plate. The variable capacity compressor according to any one of 12.
  14.  前記カム機構が、主軸側から延びる腕と斜板側から延びる腕の一方に形成された長穴と他方に設けられたピンとのスライド係合機構からなり、前記カムプロフィールが、前記長穴の形状をS字形に形成することにより設定されている、請求項13に記載の可変容量圧縮機。 The cam mechanism comprises a slide engagement mechanism of an elongated hole formed in one of an arm extending from the main shaft side and an arm extending from the swash plate side, and a pin provided on the other, and the cam profile has a shape of the elongated hole. The variable capacity compressor according to claim 13, wherein the compressor is set by forming an S-shape.
  15.  少なくとも各部品の回転、往復運動により前記斜板の傾角変化面内に生じる偶モーメントのトータルバランスが、すべての斜板傾角において、傾角減少方向になるように各部品が設定されている、請求項1~14のいずれかに記載の可変容量圧縮機。 The components are set such that the total balance of the even moments generated in the tilt change plane of the swash plate by at least the rotation and reciprocation of each component is in the direction of decreasing the tilt at all swash plate tilt angles. 15. The variable capacity compressor according to any one of 1 to 14.
  16.  さらに、少なくとも斜板を傾角減少方向に付勢するスプリングが設けられており、該スプリングの付勢力を含めて前記斜板の傾角変化面内に生じる回転、往復運動による偶モーメントのトータルバランスが、すべての斜板傾角において、傾角減少方向になるように設定されている、請求項15に記載の可変容量圧縮機。 Furthermore, a spring that urges at least the swash plate in the direction of decreasing the inclination angle is provided, and the total balance of the even moment due to the rotation and reciprocation that occurs in the inclination change surface of the swash plate including the urging force of the spring, The variable capacity compressor according to claim 15, wherein the variable capacity compressor is set so as to be in a direction of decreasing the inclination angle at all inclination angles of the swash plate.
PCT/JP2010/003724 2009-06-05 2010-06-03 Variable displacement compressor WO2010140374A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800251599A CN102459897A (en) 2009-06-05 2010-06-03 Variable displacement compressor
EP10783162.0A EP2423507A4 (en) 2009-06-05 2010-06-03 Variable displacement compressor
US13/376,346 US20120073430A1 (en) 2009-06-05 2010-06-03 Variable Displacement Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-136544 2009-06-05
JP2009136544A JP5519193B2 (en) 2009-06-05 2009-06-05 Variable capacity compressor

Publications (1)

Publication Number Publication Date
WO2010140374A1 true WO2010140374A1 (en) 2010-12-09

Family

ID=43297517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003724 WO2010140374A1 (en) 2009-06-05 2010-06-03 Variable displacement compressor

Country Status (6)

Country Link
US (1) US20120073430A1 (en)
EP (1) EP2423507A4 (en)
JP (1) JP5519193B2 (en)
KR (1) KR20120024874A (en)
CN (1) CN102459897A (en)
WO (1) WO2010140374A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999622B2 (en) * 2012-02-06 2016-09-28 サンデンホールディングス株式会社 Variable capacity compressor
JP6013768B2 (en) * 2012-04-25 2016-10-25 サンデンホールディングス株式会社 Variable capacity compressor and manufacturing method thereof
DE102012015503A1 (en) * 2012-08-04 2014-02-06 Robert Bosch Gmbh Hydrostatic axial piston machine
JP6028524B2 (en) 2012-11-05 2016-11-16 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6003546B2 (en) 2012-11-05 2016-10-05 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6003547B2 (en) 2012-11-05 2016-10-05 株式会社豊田自動織機 Variable capacity swash plate compressor
KR101739212B1 (en) 2012-11-05 2017-05-23 가부시키가이샤 도요다 지도숏키 Variable displacement swash-plate compressor
JP6028525B2 (en) 2012-11-05 2016-11-16 株式会社豊田自動織機 Variable capacity swash plate compressor
JP5870902B2 (en) 2012-11-05 2016-03-01 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6083291B2 (en) 2013-03-27 2017-02-22 株式会社豊田自動織機 Variable capacity swash plate compressor
JP5949626B2 (en) 2013-03-27 2016-07-13 株式会社豊田自動織機 Variable capacity swash plate compressor
US20160069334A1 (en) * 2013-03-29 2016-03-10 Kabushiki Kaisha Toyota Jidoshokki Variable displacement swash plate type compressor
JP5949805B2 (en) * 2014-02-25 2016-07-13 株式会社豊田自動織機 Variable capacity swash plate compressor
JP5949678B2 (en) * 2013-06-20 2016-07-13 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6115258B2 (en) 2013-03-29 2017-04-19 株式会社豊田自動織機 Double-head piston type swash plate compressor
JP6032228B2 (en) * 2014-03-04 2016-11-24 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6060925B2 (en) * 2014-03-10 2017-01-18 株式会社豊田自動織機 Variable capacity swash plate compressor
CN105051368B (en) * 2013-03-29 2017-03-08 株式会社丰田自动织机 Variable displacement swash plate type compressor
WO2014157209A1 (en) * 2013-03-29 2014-10-02 株式会社豊田自動織機 Volume variable swash plate-type compressor
JP6079379B2 (en) 2013-03-29 2017-02-15 株式会社豊田自動織機 Variable capacity swash plate compressor
CN105531477B (en) * 2013-09-11 2017-06-23 株式会社丰田自动织机 Capacity variable type tilted-plate compressor
JP6094456B2 (en) 2013-10-31 2017-03-15 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6146263B2 (en) 2013-11-06 2017-06-14 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6136906B2 (en) * 2013-12-11 2017-05-31 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6229565B2 (en) 2014-03-20 2017-11-15 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6201852B2 (en) * 2014-03-25 2017-09-27 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6135573B2 (en) * 2014-03-27 2017-05-31 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6287483B2 (en) * 2014-03-28 2018-03-07 株式会社豊田自動織機 Variable capacity swash plate compressor
JP2016102417A (en) * 2014-11-27 2016-06-02 株式会社豊田自動織機 Variable displacement type swash plate compressor
JP2016102418A (en) 2014-11-27 2016-06-02 株式会社豊田自動織機 Variable displacement type swash plate compressor
JP2016102434A (en) * 2014-11-27 2016-06-02 株式会社豊田自動織機 Variable capacity type swash plate compressor
JP2016151188A (en) * 2015-02-16 2016-08-22 株式会社豊田自動織機 Variable displacement swash plate compressor
JP6470086B2 (en) * 2015-03-31 2019-02-13 サンデンホールディングス株式会社 Swing plate type variable capacity compressor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182581A (en) * 1988-01-14 1989-07-20 Honda Motor Co Ltd Control device for variable displacement compressor
JPH08189464A (en) 1994-11-11 1996-07-23 Toyota Autom Loom Works Ltd Variable displacement type compressor
JPH09273483A (en) 1996-04-04 1997-10-21 Toyota Autom Loom Works Ltd Variable displacement type compressor
JP2003507627A (en) * 1999-08-18 2003-02-25 ゼクセルヴァレオ コンプレッサ ヨーロッパ ゲーエムベーハー Axial piston drive with continuously adjustable piston stroke
JP2008138637A (en) 2006-12-05 2008-06-19 Sanden Corp Swing plate type variable displacement compressor
JP2008248857A (en) * 2007-03-30 2008-10-16 Denso Corp Piston-type compressor
WO2008146806A1 (en) * 2007-05-29 2008-12-04 Sanden Corporation Variable displacement swash plate type compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281060A (en) * 1996-12-10 1998-10-20 Toyota Autom Loom Works Ltd Variable displacement compressor
JP2000087848A (en) * 1998-09-08 2000-03-28 Toyota Autom Loom Works Ltd Variable displacement type compressor
US6352416B1 (en) * 1999-03-15 2002-03-05 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Device and method for controlling displacement of variable displacement compressor
JP2001304108A (en) * 2000-04-20 2001-10-31 Toyota Industries Corp Compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182581A (en) * 1988-01-14 1989-07-20 Honda Motor Co Ltd Control device for variable displacement compressor
JPH08189464A (en) 1994-11-11 1996-07-23 Toyota Autom Loom Works Ltd Variable displacement type compressor
JPH09273483A (en) 1996-04-04 1997-10-21 Toyota Autom Loom Works Ltd Variable displacement type compressor
JP2003507627A (en) * 1999-08-18 2003-02-25 ゼクセルヴァレオ コンプレッサ ヨーロッパ ゲーエムベーハー Axial piston drive with continuously adjustable piston stroke
JP2008138637A (en) 2006-12-05 2008-06-19 Sanden Corp Swing plate type variable displacement compressor
JP2008248857A (en) * 2007-03-30 2008-10-16 Denso Corp Piston-type compressor
WO2008146806A1 (en) * 2007-05-29 2008-12-04 Sanden Corporation Variable displacement swash plate type compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2423507A4 *

Also Published As

Publication number Publication date
US20120073430A1 (en) 2012-03-29
EP2423507A4 (en) 2013-08-14
JP5519193B2 (en) 2014-06-11
KR20120024874A (en) 2012-03-14
CN102459897A (en) 2012-05-16
EP2423507A1 (en) 2012-02-29
JP2010281289A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5519193B2 (en) Variable capacity compressor
EP1918583B1 (en) Suction throttle valve of a compressor
EP2096308B1 (en) Swash plate type variable displacement compressor
EP2067994B1 (en) Tilting plate type compressor
KR20080066928A (en) Variable displacement compressor
KR20120065143A (en) Variable displacement swash plate type compressor
US6276904B1 (en) Variable capacity refrigerant compressor having an inclination limiting means to interrupt compressive forces on a hinge mechanism
JP2008064057A (en) Variable displacement compressor
JP5051795B2 (en) Oil separation structure of variable capacity compressor
JP3681258B2 (en) Variable displacement swash plate piston pump
JP4630801B2 (en) Compressor
KR20010096580A (en) guide pin of variable capacity type compressor and variable capacity type compressor
US20060222513A1 (en) Swash plate type variable displacement compressor
WO2024018829A1 (en) Compressor
JP2007211740A (en) Variable displacement compressor
JP4663546B2 (en) Variable capacity compressor
JP2009138629A (en) Variable capacity compressor
JP4663545B2 (en) Variable capacity compressor
US6722259B2 (en) Fluid machinery
JP2010014035A (en) Variable displacement compressor
JP2006291749A (en) Variable displacement compressor
JPH0429094Y2 (en)
JP2010024892A (en) Variable displacement compressor
JPH01267374A (en) Swash type variable volume type compressor
JP4329053B2 (en) Variable capacity swash plate compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025159.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783162

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010783162

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13376346

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117031366

Country of ref document: KR

Kind code of ref document: A