WO2010139874A1 - Procede et systeme de stimulation d'un catalyseur - Google Patents

Procede et systeme de stimulation d'un catalyseur Download PDF

Info

Publication number
WO2010139874A1
WO2010139874A1 PCT/FR2010/050872 FR2010050872W WO2010139874A1 WO 2010139874 A1 WO2010139874 A1 WO 2010139874A1 FR 2010050872 W FR2010050872 W FR 2010050872W WO 2010139874 A1 WO2010139874 A1 WO 2010139874A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
oxygen
stored
richness
amount
Prior art date
Application number
PCT/FR2010/050872
Other languages
English (en)
Inventor
Gérard Tardy
Guillaume Allegre
Olivier Leblond
Damien Llory
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Priority to EP10727465.6A priority Critical patent/EP2438285B1/fr
Publication of WO2010139874A1 publication Critical patent/WO2010139874A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1445Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being related to the exhaust flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • F02D2041/1419Several control loops, either as alternatives or simultaneous the control loops being cascaded, i.e. being placed in series or nested
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • F02D2041/1437Simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0816Oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor

Definitions

  • the present invention relates to a method of stimulating a catalyst of an internal combustion engine, and a system for implementing such a method.
  • Catalysts mounted on vehicles equipped with internal combustion engines and, in particular, gasoline engines make it possible to carry out oxidation and / or reduction reactions aimed at eliminating pollutants in the exhaust gases.
  • the so-called three-way catalysts perform the following reactions: CO + 1/2 O 2 -> CO 2 C x H ⁇ + (x + y / 4) O 2 -> xCO 2 + y / 2 H 2 O, and NO + CO -> CO 2 + 1/2 N 2.
  • the oxygen must not be present in excess or lack in the air / gas mixture. Indeed, when there is an excess of air, the reduction of the oxides of nitrogen does not take place correctly. When there is a lack of oxygen, oxidation reactions of carbon monoxide CO and unburned HC hydrocarbons do not proceed correctly.
  • Another important characteristic of the catalysts is their oxygen storage capacity or OSC. If this storage capacity is good, the catalyst absorbs oxygen which is supplied to it in a suitable manner. On the other hand, if this storage capacity is low, then the catalyst no longer correctly absorbs the oxygen supplied to it in a suitable manner, rejects the oxygen it can not store, so that the pollutants are no longer treated. effectively.
  • OSC oxygen storage capacity
  • a problem to be solved by the invention is to realize a new method, as well as a system for the implementation of this new method, which notably allow an improvement of the post -treated with a quick correction of point-in-time wealth accidents.
  • the proposed solution of the invention to this problem has for its first object a method of stimulating a catalyst of an internal combustion engine, comprising the following steps, according to which: The amount of instantaneous oxygen stored in the catalyst is estimated; and
  • the frequency and / or amplitude richness setpoint is modulated according to the instantaneous amount of oxygen stored in said catalyst.
  • FIG. 1 illustrates the modulation of the frequency and / or amplitude richness setpoint according to the invention, with a view to stimulating a catalyst, as well as the corresponding evolution of the oxygen stored in said catalyst;
  • FIG. 2 is a graph showing the variations of the quantity of oxygen stored in a catalyst (OScata) as well as the corrections made on these variations according to the method of the invention.
  • FIG. 3 illustrates the various blocks involved in wealth regulation for the implementation of the method according to the invention.
  • the method according to the invention relates to the stimulation of a catalyst of an internal combustion engine.
  • the internal combustion engines referred to in the present invention are in particular petrol engines of motor vehicles operating in homogeneous, whether supercharged or not, and direct or indirect injection. These engines are equipped with one or more catalysts, for the removal of pollutants in the exhaust gas. These catalysts are, for example, three-way catalysts, which carry out oxidation and reduction reactions intended to eliminate CO carbon monoxide, HC unbricked hydrocarbons and NOx nitrogen oxides.
  • the engines are furthermore equipped with at least one wealth sensor. Such a wealth probe may be of the ON / OFF or linear proportional type.
  • the richness probe makes it possible to respect a richness guideline thanks to a suitable regulation, which acts on the flow of essence. It eliminates component drift and fuel.
  • the amplitude and the optimal frequency of the richness setpoint, or lambda setpoint is a function of the engine operating point.
  • the frequency and / or amplitude richness setpoint is modulated according to the instantaneous amount of oxygen stored in the catalyst.
  • the amplitude of the modulation depends on the exhaust flow rate and / or the temperature of the catalyst and / or the operating point of the engine and / or the aging of the catalyst.
  • the amplitude of the stimulation depends on the exhaust flow rate and, optionally, the temperature of the catalyst, and / or the engine operation, and catalyst aging.
  • the pacing rate depends on the motor operating point.
  • the base modulation takes an alternating form in which the amplitude and the optimal frequency of the richness setpoint are defined as a function of the operating point of the engine, the calculation of the stored oxygen being a consequence.
  • the motor passes from a first operating point 1 to a second operating point 2
  • the amplitude A1 and the stimulating half-period T1 are modified.
  • the modified amplitude and half period are noted as A2 and T2, respectively, in this figure.
  • a high threshold OSmax and a low threshold OSmin of amount of oxygen stored in the catalyst are defined.
  • Each threshold is advantageously defined as a function of the flow rate D of the exhaust gas in the catalyst and the temperature T ° of the exhaust gas, or the engine operating point.
  • the high threshold (OSmax) and / or the low threshold (OSmin) of oxygen stored is a function of the flow rate (D) of the exhaust gas and the temperature, and the operating point of the engine.
  • They are further advantageously defined according to the OSC oxygen storage capacity of the catalyst. More preferably, they are defined as a function of both the flow rate D, the temperature T ° and the storage capacity OSC.
  • This OSC storage capacity is estimated according to the aging of the catalyst. Aging of the catalyst can be estimated by measuring its oxygen storage capacity or by taking into account the operating conditions of this catalyst such as duration, temperature, richness.
  • the amount of instant oxygen OS (or OScata in Figure 2) stored in the catalyst.
  • This estimate is deduced from the amount of gas passing through said catalyst for a given time.
  • the following formula makes it possible to deduce the mass quantity of oxygen stored in a catalyst for a time T.
  • This calculation consists in producing an integral of the mass balance of oxygen entering into the catalyst and consumed therein.
  • the mass balance is a function of air mass flow in the intake air Q, the excess air coefficient measured upstream of the upstream measurement ⁇ oata catalyst, and the excess coefficient setpoint air upstream of the catalyst ⁇ oonsigne upstream oata . So we have :
  • dOS (t) Q to Jt) xf ( ⁇ _ ure upstream cata (t), ⁇ upstream setpoint cata (t)) x dt
  • the estimated instantaneous quantity of stored oxygen OS in the catalyst reaches the high threshold OSmax and / or the low threshold OSmin, it forces the change of the setpoint of richness ⁇ ( t) so as to decrease and / or increase the amount of oxygen stored in the catalyst OS, respectively.
  • the variations of the richness setpoint are thus modulated, in frequency and / or in amplitude, according to the conditions of the operation of the engine.
  • the transitory wealth accident is immediately corrected so as to avoid an accidental emission of pollutants due to a specific oxygen defect and / or a specific increase of oxygen in the catalyst.
  • the conversion of pollutants in the presence of disturbances of richness of the exhaust gases is very close to that obtained in the absence of disturbances.
  • the OSmax and OSmin thresholds depend on the current OSC capacity of the catalyst, said catalyst will be solicited during the occurrence of wealth accidents, according to its current storage capacity.
  • the improvement of the post-processed emissions is clear.
  • the number of settings is decreased. This gives more flexibility to different engine design projects to adapt to the constraints that are imposed. Some will favor a reduction in volume or weight to reduce the costs associated with the exhaust line. Others will prefer to accept a degradation of the settings thus minimizing the costs and diversities of the calibrations of the engine control computer.
  • the invention makes it possible to reduce the costs of the post-processing system or to minimize the debugging time by reducing the number of adjustments.
  • the wealth probe or probes perform wealth measurements downstream and upstream of the catalyst by means of appropriate sensors. These measurements are transmitted to upstream and downstream regulators, for example Proportional-Integral Pl or Proportional-Integral-Derived PID, for the purpose of controlling the richness of the mixture at a setpoint.
  • upstream and downstream regulators for example Proportional-Integral Pl or Proportional-Integral-Derived PID
  • an appropriate software function allows estimation of the instantaneous amount of oxygen stored in the catalyst OS, the aging of said catalyst and the modulation of the amount of oxygen stored in the catalyst. This software function is contained in the catalyst stimulation block. This function acts, through the common exhaust and probe model, on the richness setpoint upstream of the catalyst.
  • the motor operating points and the set point of the sensor are taken into account.
  • the wealth regulation function ensures the regulation of the wealth, that is to say the ratio of fuel mass / air mass at the engine intake. This wealth regulation is generally performed by regulating the lambda parameter, which refers to the inverse of wealth.
  • the stimulation of the catalyst is integrated within the regulatory function, which is composed of the following elements: - a model of transfer of wealth in the exhaust duct and a model of the wealth sensor to the exhaust; a strategy defining the setpoint of richness at the combustion chamber of the engine; a model transposing this instruction to the level of the wealth sensor disposed downstream of the combustion chamber in the exhaust line; an acquisition of the wealth downstream of the catalyst; an acquisition of the wealth upstream of the catalyst; a regulation of the richness downstream of the catalyst; a regulation of the richness upstream of the catalyst; a strategy for calculating the fuel mass to be injected; and a strategy for stimulating the oxygen stored in the OS catalyst.
  • the upstream wealth regulator slaves the wealth measured at the catalyst upstream sensor to the wealth setpoint transposed to the upstream level of the catalyst. This regulator takes into account the corrective action coming from the downstream regulator.
  • the downstream regulator slaves the measured richness downstream of the catalyst to the desired setpoint.
  • the corrective action of the upstream regulator corrects the fuel mass to be injected. Stimulation of wealth alternatively modulates the regulator's wealth directive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un procédé de stimulation d'un catalyseur d'un moteur à combustion interne ainsi qu'un système pour la mise en œuvre d'un tel procédé. L'invention se caractérise en ce qu'elle comprend les étapes suivantes, selon lesquelles : on estime la quantité d'oxygène instantanée stockée dans le catalyseur (OS); et on module la consigne de richesse en fréquence et/ou en amplitude en fonction de ladite quantité d'oxygène instantanée stockée dans ledit catalyseur. L'invention s'applique, en particulier, aux moteurs essence.

Description

PROCEDE ET SYSTEME DE STIMULATION D'UN CATALYSEUR
[0001] La présente invention revendique la priorité de la demande française 0953645 déposée le 3 juin 2009 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
[0002] La présente invention concerne un procédé de stimulation d'un catalyseur d'un moteur à combustion interne, ainsi qu'un système pour la mise en œuvre d'un tel procédé.
[0003] Les catalyseurs montés sur des véhicules munis de moteurs à combustion interne et, en particulier, les moteurs essence, permettent de réaliser des réactions d'oxydation et/ou de réduction visant à éliminer les polluants dans les gaz d'échappement. Par exemple, les catalyseurs dits trois voies réalisent les réactions suivantes : CO + 1/2 O2 -> CO2 CxHγ + (x + y/4)O2 -> xCO2 + y/2 H2O, et CO + NO -> CO2 + 1/2 N2. Pour que l'équilibre de ces réactions soit respecté, l'oxygène ne doit pas être présent en excès ni en manque dans le mélange air/essence. En effet, lorsqu'il y a un excès d'air, la réduction des oxydes d'azote ne s'effectue pas correctement. Lorsqu'il y a un manque d'oxygène, les réactions d'oxydations du monoxyde de carbone CO et des hydrocarbures non brûlés HC ne s'effectuent pas correctement.
[0004] II résulte de ce qui précède que, pour que la conversion des polluants soit optimale, la richesse des gaz d'échappement à l'entrée du catalyseur doit être comprise dans une fenêtre étroite de valeurs au voisinage de la valeur 1. Cette fenêtre étroite est la fenêtre catalyseur.
[ooo5] Pour réguler la richesse du mélange de manière adaptée, en agissant sur le débit d'essence, et en s'affranchissant des imprécisions de réglage, des dispersions composants et des variations des caractéristiques du carburant, on utilise des sondes de richesse ou sondes lambda. Les sondes de richesse peuvent être du type tout ou rien (ON/OFF, en langue anglaise) ou proportionnelles. A la différence des sondes tout ou rien, qui ne détectent que le seuil de richesse optimal dans le mélange air/essence, les sondes proportionnelles mesurent en continu la richesse de ce mélange.
[0006] Une autre caractéristique importante des catalyseurs est leur capacité de stockage en oxygène ou OSC. Si cette capacité de stockage est bonne, le catalyseur absorbe l'oxygène qui lui est fourni de manière adaptée. Par contre, si cette capacité de stockage est faible, alors le catalyseur n'absorbe plus correctement l'oxygène qui lui est fourni de manière adaptée, rejette l'oxygène qu'il ne peut stocker, de sorte que les polluants ne sont plus traités efficacement.
[0007] Le document brevet publié sous le numéro US-5,678,402 (Honda Giken Kogyo Kabushi Kaisha) divulgue un procédé autorisant une modulation de la quantité moyenne d'oxygène stockée dans un catalyseur entre deux bornes en fonction, non seulement, du débit d'échappement, de la température d'échappement, mais aussi, de la capacité de stockage en oxygène OSC du catalyseur. Toutefois, ce procédé ne permet pas de corriger les accidents de richesse ponctuels, qui conduisent à des défauts de traitement des polluants. Le document WO2007/073997A1 (Robert Bosch GmbH) divulgue un procédé permettant de prendre en compte les accidents de richesse. Dans la solution proposée dans ce document WO2007/073997A1 , la quantité d'oxygène stockée dans le catalyseur est cependant évaluée à partir d'un capteur de richesse à l'échappement.
[oooδ] Compte tenu de ce qui précède, un problème que se propose de résoudre l'invention est de réaliser un nouveau procédé, ainsi qu'un système pour la mise en œuvre de ce nouveau procédé, qui permettent notamment une amélioration des émissions post-traitées avec une correction rapide des accidents de richesse ponctuels.
[0009] La solution proposée de l'invention à ce problème a pour premier objet un procédé de stimulation d'un catalyseur d'un moteur à combustion interne, comprenant les étapes suivantes, selon lesquelles : [0010] on estime la quantité d'oxygène instantanée stockée dans le catalyseur ; et
[0011] on module la consigne de richesse en fréquence et/ou en amplitude en fonction de ladite quantité d'oxygène instantanée stockée dans ledit catalyseur.
[0012] Elle a pour second objet un système de stimulation d'un catalyseur d'un moteur à combustion interne, comprenant :
des moyens pour estimer la quantité d'oxygène instantanée stockée dans le catalyseur; et
• des moyens pour moduler la consigne de richesse en fréquence et/ou en amplitude en fonction de ladite quantité d'oxygène instantanée stockée dans ledit catalyseur.
[0013] L'invention sera mieux comprise à la lecture de la description non limitative qui suit, rédigée au regard des dessins annexés, dans lesquels :
• la figure 1 illustre la modulation de la consigne de richesse en fréquence et/ou en amplitude en selon l'invention, en vue de la stimulation d'un catalyseur, ainsi que l'évolution correspondante de l'oxygène stocké dans ledit catalyseur ;
• la figure 2 est une courbe montrant les variations de la quantité d'oxygène stockée dans un catalyseur (OScata) ainsi que les corrections réalisées sur ces variations selon le procédé de l'invention ; et
• la figure 3 illustre les différents blocs qui interviennent dans la régulation de richesse pour la mise en œuvre du procédé selon l'invention.
[0014] Le procédé selon l'invention concerne la stimulation d'un catalyseur d'un moteur à combustion interne. [0015] Les moteurs à combustion interne visés dans la présente invention sont notamment des moteurs essence de véhicules automobiles fonctionnant en homogène, qu'ils soient suralimenté ou non, et à injection directe ou indirecte. Ces moteurs sont équipés d'un ou plusieurs catalyseurs, pour l'élimination de polluants dans les gaz d'échappement. Ces catalyseurs sont par exemple des catalyseurs trois voies, qui réalisent des réactions d'oxydation et de réduction destinées à éliminer l'oxyde de carbone CO, les hydrocarbures imbrulés HC et les oxydes d'azote NOx. Les moteurs sont en outre équipés d'au moins une sonde de richesse. Une telle sonde de richesse peut être du type ON/OFF ou proportionnelle linéaire. La sonde de richesse permet de respecter une consigne de richesse grâce à une régulation adaptée, qui agit sur le débit d'essence. Elle permet de s'affranchir des dérives de réglage des composants et du carburant. L'amplitude et la fréquence optimale de la consigne de richesse, ou consigne lambda, est fonction du point de fonctionnement moteur.
[0016] Si l'on se réfère à la figure 1 , il apparaît que la modulation de base de la consigne de richesse peut être traduite par une courbe λ(t) périodique de type tout ou rien, dans laquelle la consigne bascule d'une valeur à une autre à des intervalles constants dans le temps t. Ainsi que cela est montré dans cette même figure, les variations de la quantité théorique d'oxygène stockée OS dans le catalyseur dépendent directement de la modulation de la consigne de richesse. Ces variations théoriques se présentent sous la forme d'une courbe périodique OS(t) croissante linéaire puis décroissante linéaire.
[0017] Selon l'invention, on module la consigne de richesse en fréquence et/ou en amplitude en fonction de ladite la quantité d'oxygène instantanée stockée dans le catalyseur. L'amplitude de la modulation dépend du débit d'échappement et/ou de la température du catalyseur et/ou du point de fonctionnement moteur et/ou du vieillissement du catalyseur. En particulier, l'amplitude de la stimulation dépend du débit d'échappement et, de manière facultative, de la température du catalyseur, et/ou du point de fonctionnement moteur, et du vieillissement du catalyseur. La fréquence de stimulation dépend du point de fonctionnement moteur. Ainsi, dans l'exemple de la figure 1 , la modulation de base prend une forme alternée dans laquelle on définit l'amplitude et la fréquence optimale de consigne de richesse en fonction du point de fonctionnement moteur, le calcul de l'oxygène stocké étant une conséquence. Dans cette figure, lorsque le moteur passe d'un premier point de fonctionnement 1 à une second point de fonctionnement 2, l'amplitude A1 et la demi-période T1 de stimulation sont modifiées. L'amplitude et la demi-période modifiées sont notées A2 et T2, respectivement, dans cette figure.
[0018] Ainsi que cela est illustré à la figure 2, les variations de la quantité d'oxygène stocké dans le catalyseur divergent, dans les faits, de ces variations théoriques. En particulier, ces variations présentent des accidents de richesse ponctuels, qui se traduisent par des pics E1 et creux de richesse Z2.
[0019] Selon l'invention, on définit un seuil haut OSmax et un seuil bas OSmin de quantité d'oxygène stockée dans le catalyseur. Chaque seuil est avantageusement défini en fonction du débit D des gaz d'échappement dans le catalyseur et de la température T° des gaz d'échappement, ou du point de fonctionnement moteur. Une combinaison des deux solutions précédentes est également possible. Dans un tel cas par exemple le seuil haut (OSmax) et/ou le seuil bas (OSmin) d'oxygène stocké est fonction du débit (D) des gaz d'échappement et de la température, et du point de fonctionnement moteur. Ils sont en outre avantageusement définis en fonction de la capacité de stockage en oxygène OSC du catalyseur. Plus préférentiellement, il sont définis en fonction, à la fois, du débit D, de la température T° et de la capacité de stockage OSC. Cette capacité de stockage OSC est estimée en fonction du vieillissement du catalyseur. Le vieillissement du catalyseur peut être estimé par mesure de sa capacité de stockage en oxygène ou en prenant en compte les conditions de fonctionnement de ce catalyseur telles que la durée, la température, la richesse.
[0020] Dans une autre étape du procédé selon l'invention, on estime la quantité d'oxygène instantanée OS (ou OScata à la figure 2) stockée dans le catalyseur. Cette estimation est déduite de la quantité de gaz traversant ledit catalyseur pendant un temps donné. En effet, la formule suivante permet de déduire la quantité massique d'oxygène stockée dans un catalyseur pendant un temps T. Ce calcul consiste a réaliser une intégrale du bilan massique d'oxygène entrant dans le catalyseur et consommé dans celui-ci. A l'instant t, le bilan massique est fonction du débit massique d'air à l'admission Qair, du coefficient d'excès d'air mesuré en amont du catalyseur λmesure amont oata, et du coefficient d'excès d'air de consigne en amont du catalyseur λoonsigne amont oata. On a donc :
dOS(t) = QaJt) x f(λ_ure amont cata (t) , λconsigne amont cata (t) ) x dt
T et OS (T) = ^ dOS (t) .
0
[0021] Ainsi que cela est montré à la figure 2, lorsque la quantité instantanée d'oxygène stockée estimée OS dans le catalyseur atteint le seuil haut OSmax et/ou le seuil bas OSmin, on force le basculement de la consigne de richesse λ(t) de manière à diminuer et/ou augmenter la quantité d'oxygène stockée OS dans le catalyseur, respectivement. Les variations de la consigne de richesse sont ainsi modulées, en fréquence et/ou en amplitude, suivant les conditions du fonctionnement du moteur. Ainsi, l'accident de richesse transitoire est immédiatement corrigé de manière à éviter une émission accidentelle de polluants due à un défaut ponctuel d'oxygène et/ou un surcroit ponctuel d'oxygène dans le catalyseur. La conversion des polluants en présence de perturbations de richesse des gaz d'échappement est très proche de celle obtenue en l'absence de perturbations. [0022] Comme les seuils OSmax et OSmin dépendent de la capacité en cours OSC du catalyseur, ledit catalyseur sera sollicité, lors de la survenance d'accidents de richesse, selon ses capacités de stockage en cours.
[0023] En définitive, selon l'invention, l'amélioration des émissions posttraitées est nette. Le nombre de réglages est diminué. Cela donne plus de latitude aux différents projets de conception de moteurs pour s'adapter aux contraintes qui sont imposées. Certains privilégieront une diminution de volume ou de grammage pour réduire les coûts associés à la ligne d'échappement. D'autres préféreront accepter une dégradation des réglages minimisant ainsi les coûts et diversités des calibrations du calculateur de contrôle moteur. Autrement dit, l'invention permet de réduire les coûts du système de post-traitement ou de minimiser le temps de mise au point en diminuant le nombre de réglages.
[0024] La description globale de la fonction de régulation de richesse est illustrée à la figure 3. Ainsi que cela est illustré dans cette figure, la ou les sondes de richesse effectuent des mesures de richesse en aval et en amont du catalyseur au moyen de capteurs appropriés. Ces mesures sont transmises à des régulateurs amont et aval par exemple du type Proportionnel-Intégral Pl ou Proportionnel-Intégral-Dérivée PID, en vue d'une régulation de la richesse du mélange à une consigne. Par ailleurs, une fonction logicielle appropriée permet l'estimation de la quantité instantanée d'oxygène stockée OS dans le catalyseur, l'estimation du vieillissement dudit catalyseur et la modulation de la quantité d'oxygène stockée dans le catalyseur. Cette fonction logicielle est contenue dans le bloc de stimulation du catalyseur. Cette fonction agit, au travers du modèle commun échappement et sonde, sur la consigne de richesse en amont du catalyseur. Par ailleurs, il est tenu compte des points de fonctionnement moteur et du point de consigne de la sonde. [0025] Aussi, la fonction régulation de richesse assure la régulation de la richesse, c'est-à-dire du rapport masse de carburant / masse d'air à l'admission du moteur. Cette régulation de richesse est généralement réalisée en régulant le paramètre lambda, qui désigne l'inverse de la richesse.
[0026] En définitive, la stimulation du catalyseur s'intègre au sein de la fonction de régulation, qui est composée des éléments suivants : - un modèle de transfert de la richesse dans le conduit d'échappement et un modèle du capteur de richesse à l'échappement ; - une stratégie définissant la consigne de richesse au niveau de la chambre de combustion du moteur ; un modèle transposant cette consigne au niveau du capteur de richesse disposé en aval de la chambre de combustion dans la ligne d'échappement ; - une acquisition de la richesse en aval du catalyseur ; - une acquisition de la richesse en amont du catalyseur ; - une régulation de la richesse en aval du catalyseur ; - une régulation de la richesse en amont du catalyseur ; - une stratégie de calcul de la masse carburant à injecter ; et - une stratégie de stimulation de l'oxygène stocké dans le catalyseur OS.
[0027] Le régulateur de richesse amont asservit la richesse mesurée au niveau du capteur amont catalyseur à la consigne de richesse transposée au niveau amont du catalyseur. Ce régulateur prend en compte l'action corrective issue du régulateur aval. Le régulateur aval asservit la richesse mesurée en aval du catalyseur à la consigne désirée. L'action corrective du régulateur amont corrige la masse de carburant à injecter. La stimulation de richesse vient moduler de façon alternative la consigne de richesse du régulateur.

Claims

REVENDICATIONS
1. Procédé de stimulation d'un catalyseur d'un moteur à combustion interne, comprenant les étapes suivantes, selon lesquelles :
• on estime la quantité d'oxygène instantanée stockée dans le catalyseur (OS) ; et
• on module la consigne de richesse en fréquence et/ou en amplitude en fonction de ladite quantité d'oxygène instantanée stockée dans ledit catalyseur.
2. Procédé selon la revendication 1 , caractérisé en ce que la consigne de richesse est modulée en amplitude, et en ce que l'amplitude de la modulation dépend du débit d'échappement et/ou de la température du catalyseur et/ou du point de fonctionnement moteur et/ou du vieillissement du catalyseur.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la consigne de richesse est modulée en fréquence, et en ce que la fréquence de modulation dépend du point de fonctionnement moteur.
4. Procédé selon l'une des revendications 1 , 2 ou 3, caractérisé en ce qu'on définit un seuil haut (OSmax) et un seuil bas (OSmin) de quantité d'oxygène stockée dans le catalyseur, et en ce que, lorsque la quantité instantanée d'oxygène stockée estimée dans le catalyseur (OS) atteint ledit seuil haut et/ou ledit seuil bas, on force le basculement de la consigne de richesse de manière à diminuer et/ou augmenter la quantité d'oxygène stockée dans le catalyseur, respectivement.
5. Procédé selon la revendication 4, caractérisé en ce que le seuil haut (OSmax) et/ou le seuil bas (OSmin) de quantité d'oxygène stockée est défini en fonction de la capacité de stockage en oxygène (OSC) du catalyseur.
6. Procédé selon l'une des revendications 4 ou 5, caractérisé en ce que la capacité de stockage en oxygène (OSC) du catalyseur est estimée en fonction du vieillissement dudit catalyseur.
7. Procédé selon l'une des revendications 4 à 6, caractérisé en ce que le seuil haut (OSmax) et/ou le seuil bas (OSmin) d'oxygène stocké est fonction du débit (D) des gaz d'échappement et de la température d'échappement (T °), ou du point de fonctionnement moteur.
8. Procédé selon la revendication 7, caractérisé en ce que le seuil haut (OSmax) et/ou le seuil bas (OSmin) d'oxygène stocké est fonction du débit des gaz d'échappement et de la température, et du point de fonctionnement moteur.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'estimation de la quantité d'oxygène instantanée stockée dans le catalyseur est déduite de la quantité de gaz traversant ledit catalyseur pendant un temps donné.
10. Système de stimulation d'un catalyseur d'un moteur à combustion interne, comprenant :
• des moyens pour estimer la quantité d'oxygène instantanée stockée dans le catalyseur (OS) ; et
• des moyens pour moduler la consigne de richesse en fréquence et/ou en amplitude en fonction de ladite quantité d'oxygène instantanée stockée dans ledit catalyseur.
PCT/FR2010/050872 2009-06-03 2010-05-06 Procede et systeme de stimulation d'un catalyseur WO2010139874A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10727465.6A EP2438285B1 (fr) 2009-06-03 2010-05-06 Procédé et système de stimulation d'un catalyseur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0953645A FR2946394B1 (fr) 2009-06-03 2009-06-03 Procede et systeme de stimulation d'un cataliseur
FR0953645 2009-06-03

Publications (1)

Publication Number Publication Date
WO2010139874A1 true WO2010139874A1 (fr) 2010-12-09

Family

ID=41435337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/050872 WO2010139874A1 (fr) 2009-06-03 2010-05-06 Procede et systeme de stimulation d'un catalyseur

Country Status (3)

Country Link
EP (1) EP2438285B1 (fr)
FR (1) FR2946394B1 (fr)
WO (1) WO2010139874A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2970741A3 (fr) * 2011-01-24 2012-07-27 Renault Sa Procede d'injection de carburant dans un moteur a combustion interne
WO2015105012A1 (fr) * 2014-01-10 2015-07-16 Toyota Jidosha Kabushiki Kaisha Système de commande de moteur à combustion interne
WO2015194190A1 (fr) * 2014-06-19 2015-12-23 Toyota Jidosha Kabushiki Kaisha Système de commande de moteur à combustion interne
EP2711519A4 (fr) * 2011-05-16 2017-09-27 Toyota Jidosha Kabushiki Kaisha Dispositif de commande de rapport air/carburant pour moteur à combustion interne
FR3085751A1 (fr) * 2018-09-07 2020-03-13 Renault S.A.S Systeme et procede de degradation d'un organe de traitement d'effluents gazeux d'une ligne d'echappement d'un moteur a combustion interne a allumage commande
WO2021052808A1 (fr) * 2019-09-19 2021-03-25 Renault S.A.S Procede de reglage de la richesse d'un moteur a combustion interne a allumage commande
FR3101673A1 (fr) * 2019-10-07 2021-04-09 Renault S.A.S. Procédé de réglage de la richesse d’un moteur à combustion interne à allumage commandé

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19606652A1 (de) * 1996-02-23 1997-08-28 Bosch Gmbh Robert Verfahren der Einstellung des Kraftstoff-Luftverhältnisses für eine Brennkraftmaschine mit nachgeschaltetem Katalysator
US5678402A (en) 1994-03-23 1997-10-21 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for internal combustion engines and exhaust system temperature-estimating device applicable thereto
EP1227231A2 (fr) * 2001-01-27 2002-07-31 OMG AG & Co. KG Procédé de mise en oeuvre d'un catalyseur à trois voies dont un élément peut emmagasiner l'oxygène
US20040000135A1 (en) * 2002-06-27 2004-01-01 Toyota Jidosha Kabushiki Kaisha Catalyst degradation determining apparatus and method
DE102004038481B3 (de) * 2004-08-07 2005-07-07 Audi Ag Verfahren zur Regelung des einer Brennkraftmaschine zugeführten Luft/Kraftstoffverhältnisses
DE102005061875A1 (de) * 2005-12-23 2007-07-05 Robert Bosch Gmbh Lambdaregelungsverfahren für einen Verbrennungsmotor
FR2899277A1 (fr) * 2006-03-28 2007-10-05 Bosch Gmbh Robert Procede de commande pilote d'un coefficient lambda.
DE102006025050A1 (de) * 2006-05-27 2007-11-29 Fev Motorentechnik Gmbh Verfahren und Vorrichtung zum Betrieb einer Abgasnachbehandlungsanlage

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5678402A (en) 1994-03-23 1997-10-21 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for internal combustion engines and exhaust system temperature-estimating device applicable thereto
DE19606652A1 (de) * 1996-02-23 1997-08-28 Bosch Gmbh Robert Verfahren der Einstellung des Kraftstoff-Luftverhältnisses für eine Brennkraftmaschine mit nachgeschaltetem Katalysator
EP1227231A2 (fr) * 2001-01-27 2002-07-31 OMG AG & Co. KG Procédé de mise en oeuvre d'un catalyseur à trois voies dont un élément peut emmagasiner l'oxygène
US20040000135A1 (en) * 2002-06-27 2004-01-01 Toyota Jidosha Kabushiki Kaisha Catalyst degradation determining apparatus and method
DE102004038481B3 (de) * 2004-08-07 2005-07-07 Audi Ag Verfahren zur Regelung des einer Brennkraftmaschine zugeführten Luft/Kraftstoffverhältnisses
DE102005061875A1 (de) * 2005-12-23 2007-07-05 Robert Bosch Gmbh Lambdaregelungsverfahren für einen Verbrennungsmotor
WO2007073997A1 (fr) 2005-12-23 2007-07-05 Robert Bosch Gmbh Procede de regulation lambda pour moteur a combustion
FR2899277A1 (fr) * 2006-03-28 2007-10-05 Bosch Gmbh Robert Procede de commande pilote d'un coefficient lambda.
DE102006025050A1 (de) * 2006-05-27 2007-11-29 Fev Motorentechnik Gmbh Verfahren und Vorrichtung zum Betrieb einer Abgasnachbehandlungsanlage

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2970741A3 (fr) * 2011-01-24 2012-07-27 Renault Sa Procede d'injection de carburant dans un moteur a combustion interne
EP2711519A4 (fr) * 2011-05-16 2017-09-27 Toyota Jidosha Kabushiki Kaisha Dispositif de commande de rapport air/carburant pour moteur à combustion interne
WO2015105012A1 (fr) * 2014-01-10 2015-07-16 Toyota Jidosha Kabushiki Kaisha Système de commande de moteur à combustion interne
CN105899789A (zh) * 2014-01-10 2016-08-24 丰田自动车株式会社 内燃发动机的控制***
CN105899789B (zh) * 2014-01-10 2018-12-07 丰田自动车株式会社 内燃发动机的控制***
WO2015194190A1 (fr) * 2014-06-19 2015-12-23 Toyota Jidosha Kabushiki Kaisha Système de commande de moteur à combustion interne
CN106662024A (zh) * 2014-06-19 2017-05-10 丰田自动车株式会社 内燃机的控制***
US10697387B2 (en) 2014-06-19 2020-06-30 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
FR3085751A1 (fr) * 2018-09-07 2020-03-13 Renault S.A.S Systeme et procede de degradation d'un organe de traitement d'effluents gazeux d'une ligne d'echappement d'un moteur a combustion interne a allumage commande
WO2021052808A1 (fr) * 2019-09-19 2021-03-25 Renault S.A.S Procede de reglage de la richesse d'un moteur a combustion interne a allumage commande
FR3101110A1 (fr) * 2019-09-19 2021-03-26 Renault Sas Procede de reglage de la richesse d’un moteur a combustion interne a allumage commande
FR3101673A1 (fr) * 2019-10-07 2021-04-09 Renault S.A.S. Procédé de réglage de la richesse d’un moteur à combustion interne à allumage commandé

Also Published As

Publication number Publication date
EP2438285A1 (fr) 2012-04-11
EP2438285B1 (fr) 2020-11-25
FR2946394A1 (fr) 2010-12-10
FR2946394B1 (fr) 2015-12-11

Similar Documents

Publication Publication Date Title
EP2438285A1 (fr) Procede et systeme de stimulation d'un catalyseur
US8764607B2 (en) Fuel type based start-stop catalyst heating systems
JP2004100700A (ja) 排気エミッション制御及びその診断
JP5110205B2 (ja) 内燃機関の制御装置
EP2092168B1 (fr) Procede de determination de la quantite de carburant a injecter dans une ligne d'echappement en vue de regenerer un filtre a particules
US10309285B2 (en) Exhaust gas control system for internal combustion engine
US8955309B2 (en) Method for adapting an exothermic reaction in the exhaust system of a motor vehicle
US20210207549A1 (en) System for controlling air-fuel ratio for flex fuel vehicle using oxygen storage amount of catalyst and method thereof
JP3988518B2 (ja) 内燃機関の排ガス浄化装置
US20040040282A1 (en) Oxygen storage management and control with three-way catalyst
US11225896B1 (en) Degradation diagnosis device for exhaust gas control catalyst
JP2009279987A (ja) 内燃機関の燃料噴射制御装置
CN117072334A (zh) 用于监测和调节废气后处理机构的方法、设备及存储介质
JP3787913B2 (ja) 内燃機関の排ガス浄化装置
EP2545261B1 (fr) Procede de regulation de la temperature de regeneration d'un filtre a particules
FR3008943A1 (fr) Systeme et procede de commande d'un groupe motopropulseur hybride.
WO2018193174A1 (fr) Procede de determination du vieillissement d'un catalyseur de ligne d'echappement de vehicule automobile
EP2722513B1 (fr) Dispositif de commande de moteur à combustion de vehicule automobile à stratégie de balayage ameliorée
EP2992193B1 (fr) Dispositif et procédé de contrôle de l'état de fonctionnement d'un organe de traitement d'effluents gazeux d'une ligne d'échappement d'un moteur à combustion interne
US8424372B2 (en) System and method for establishing a mass flow rate of air entering an engine
JP2009091921A (ja) 内燃機関の触媒劣化診断装置
JP7444081B2 (ja) 内燃機関の制御装置
US11492943B2 (en) Engine fuel reforming system
US11028750B2 (en) Control device for internal combustion engine
CN112412596B (zh) 汽油颗粒过滤器的烟尘含量模型值建立方法和***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10727465

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010727465

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE