WO2010137596A1 - Mobile body control device and mobile body in which mobile body control device is mounted - Google Patents

Mobile body control device and mobile body in which mobile body control device is mounted Download PDF

Info

Publication number
WO2010137596A1
WO2010137596A1 PCT/JP2010/058844 JP2010058844W WO2010137596A1 WO 2010137596 A1 WO2010137596 A1 WO 2010137596A1 JP 2010058844 W JP2010058844 W JP 2010058844W WO 2010137596 A1 WO2010137596 A1 WO 2010137596A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
mobile body
information
control device
distance
Prior art date
Application number
PCT/JP2010/058844
Other languages
French (fr)
Japanese (ja)
Inventor
健蔵 野波
マーク ヘイリー
岩倉 大輔
Original Assignee
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学 filed Critical 国立大学法人 千葉大学
Priority to JP2011516027A priority Critical patent/JP5688700B2/en
Publication of WO2010137596A1 publication Critical patent/WO2010137596A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/40Landing characterised by flight manoeuvres, e.g. deep stall
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/933Lidar systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/80UAVs characterised by their small size, e.g. micro air vehicles [MAV]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Definitions

  • the present invention relates to a control device that is used by being attached to a moving body, and relates to a control device that contributes to autonomous movement or the like by combining an ultrasonic sensor and an infrared sensor.
  • unmanned mobile objects are expected to play an active role.
  • the unmanned moving body include an unmanned aircraft, an unmanned land vehicle, and an unmanned submersible. These unmanned mobile bodies can be used in various situations because they can enter dangerous places where people cannot enter.
  • unmanned aerial vehicles have a three-dimensional movement capability and can be used for collecting information on disaster situations.
  • large unmanned aircraft are well known for military unmanned aerial vehicles, which allow flight altitudes of over 5000 m and flight durations of several tens of hours.
  • An unmanned mobile body is required to have an autonomous movement capability, but the balance between various control devices for realizing this capability and the payload (effective load capacity) of the mobile body is an important design issue.
  • a 200 kg payload is provided, various sensors, an imaging camera, a distance measuring device, a GPS (Global Positioning System) device, various information processing devices, a battery for driving these, and the like can be fully installed. In this way, when the payload is relatively loose, various equipment for enabling autonomous flight can be mounted.
  • MARP micro air vehicle
  • DARPA Defense Defense Research Projects Agency
  • MARP defined by DARPA is an unmanned aerial vehicle having a size of 15 to 30 cm or less, a weight of about 10 to 100 g, and a flight speed of about 20 m / s.
  • Such ultra-compact unmanned aerial vehicles are expected to play an active role in collecting information in spaces that cannot be approached by conventional unmanned aerial vehicles. For example, there are high expectations for activities in dangerous and confined spaces, such as inside collapsed buildings and ducts installed in nuclear power plants.
  • the prior art described above has a problem that it is difficult to realize such an ultra-small unmanned aircraft. That is, firstly, since the payload is very limited, it is difficult to mount even a GPS device lightened by technological progress. Furthermore, more importantly, the GPS device cannot perform high-precision autonomous flight in the narrow space described above. This is due to the principle of GPS. In other words, GPS knows the receiver's position (latitude, longitude, altitude) using radio waves from the satellite, but cannot receive radio waves from the satellite inside a collapsed building. Can't get. In addition, an error of several tens of centimeters occurs in the position information. Although it is possible to increase the accuracy by performing correction, it is difficult to further mount a device for that purpose due to the balance with the payload. In addition, GPS cannot detect an object that exists in the vicinity, and cannot detect the shape of the object. Therefore, it cannot be used for control for performing an autonomous flight such as avoiding an obstacle or landing on a flat place.
  • a mobile body control device that is used by being attached to a mobile body, using ultrasonic waves with low directivity, measuring a distance to a nearby peripheral object, and the measurement result
  • the ultrasonic sensor unit for outputting the proximity information, and the infrared rays are repeatedly emitted from the infrared sensor into the predetermined scope as seen from the moving body by vibrating, and the distance between the contour of the object in the predetermined scope and the contour
  • an infrared sensor unit for outputting contour information as the measurement result.
  • a moving body control device according to the first invention, further comprising a movement control information calculation unit for calculating movement control information of the moving body using proximity information and contour information.
  • a moving body equipped with the moving body control device according to the first or second invention, and having a contour information storage unit for storing contour information.
  • the moving body according to the third invention wherein the moving body control device according to the second invention is mounted, the infrared sensor unit is a scope switching means for switching a predetermined scope for repeatedly emitting infrared rays.
  • the infrared sensor unit is a scope switching means for switching a predetermined scope for repeatedly emitting infrared rays.
  • the moving body according to the third or fourth invention which is a small and light unmanned flying robot provided with a rotor using a battery-powered motor as a moving means.
  • a moving body control device capable of detecting an object or the like existing around a moving body and obtaining information for measuring the distance to the object and the contour of the object.
  • the first embodiment will mainly describe claims 1 and 5.
  • the second embodiment will mainly describe claims 2 and 5.
  • the third embodiment will mainly describe claims 3 and 5.
  • the fourth embodiment will mainly describe claims 4 and 5.
  • the moving body control device of the present embodiment uses a combination of an ultrasonic sensor and an infrared sensor.
  • the ultrasonic sensor measures the distance from an object that is close to the periphery of the moving body, and extracts the contour of the object by vibrating and scanning the infrared sensor.
  • the moving body control device of this embodiment is used by being attached to a moving body.
  • a “moving body” is a moving object. That is, it is an object that can be propelled by some power and change the course and speed.
  • the course varies depending on the moving ability of the moving body. For example, in the case of a vehicle, the course is mainly on land. If it is a ship or a submersible, its course is on the water or underwater. If it is an aircraft, its route is in the air.
  • “Used for a moving object” means being used so as to be beneficial to a moving object. What is useful depends on the moving object. If the moving body is a vehicle such as an automobile, it can be beneficial to be used for collision prevention, automatic driving, garage entry, and the like. In the case of an aircraft, it may be beneficial to be used for collision avoidance, automatic navigation, hovering at a predetermined position, landing at a predetermined position, mapping (map creation), and the like.
  • the moving body control device has an “ultrasonic sensor unit” and an “infrared sensor unit”.
  • the “ultrasonic sensor unit” has a function for measuring a distance to a nearby peripheral object using ultrasonic waves with weak directivity and outputting proximity information as a measurement result.
  • Ultrasonic sensor measures the distance from an object based on the time it takes to emit an ultrasonic pulse to the object and reflect it back to the ultrasonic sensor. Since the ultrasonic sensor obtains the distance from the first received reflected wave, the distance to the object closest to the ultrasonic sensor is measured. This measurement result is proximity information.
  • the moving object is moving, if the value of proximity information gradually decreases, it can be seen that the relative distance between the moving object and the object is reduced, that is, the possibility of collision is high. . In such a case, the collision can be avoided by changing the course so that the value of the proximity information does not become any smaller. That is, the proximity information contributes to the mobile body continuing to move safely.
  • the direction in which the ultrasonic sensor unit is installed can be determined according to the moving ability of the moving object, its use, and the like, but it is generally useful to point in the traveling direction.
  • it is necessary to quickly detect an object existing in the traveling direction and to measure the distance between the object and the moving body in order to perform movement control for obstacle avoidance and the like. Because it is important.
  • it is beneficial to increase the accuracy of measurement by installing a plurality of ultrasonic sensor units, but this leads to an increase in weight. Since the distance to the object can also be measured by an infrared sensor unit to be described later, it is preferable that the two are balanced and installed according to the payload of the moving body.
  • the “infrared sensor unit” vibrates and repeatedly emits infrared rays from the infrared sensor into the predetermined scope as seen from the moving body, measures the contour of the object in the predetermined scope, and the distance to the contour. It has a function for outputting certain contour information.
  • “Outline” generally refers to a line that forms the outer shape of an object, but in this specification, it refers to a series of reflection points on an object irradiated with infrared rays.
  • the infrared sensor unit repeatedly emits infrared rays while vibrating.
  • the reflection point on the object that is irradiated with the infrared rays changes its position as the infrared sensor moves.
  • a trajectory followed by a reflection point that receives infrared irradiation is called an outline.
  • Infrared sensor measures the distance from the reflection point of an object by emitting infrared rays to the object and receiving the reflected light.
  • infrared sensors there are those that detect infrared rays emitted from an object and detect the source without emitting infrared rays by themselves like human sensors, but in this embodiment Because it is for measuring the distance, it means something that emits infrared light by itself.
  • “Vibrating” means shaking or shaking. Therefore, it means that the infrared sensor is shaken by some power. This is because the reflected light from an area having a certain spread is received by continuously changing the direction of emission from the infrared sensor. For example, when the infrared sensor is fixed toward the ground, infrared light is emitted only at one point on the ground, and therefore only the distance between that point and the infrared sensor can be measured. Therefore, if the infrared sensor is moved like a pendulum, infrared rays will be emitted sequentially so as to draw a straight line on the ground, and the distance from the area that expands as a line with a length corresponding to the swing width of the pendulum is continuously measured.
  • the infrared sensor can do. Furthermore, if the infrared sensor is moved so as to draw a spiral or a figure of eight, the distance from the area expanding as a surface can be continuously measured. Examples of power for vibrating the infrared sensor include a servo motor.
  • “Within a predetermined scope” means a predetermined area to be measured by an infrared sensor. For example, in the case of measuring mainly for obstacle avoidance, it is a predetermined area in the moving direction of the moving body. Since infrared rays have high directivity, it is possible to measure the distance to an object existing in the space where the infrared sensor is facing.
  • the predetermined scope is determined by the position where the infrared sensor is installed, the installation direction, the swing width for moving the infrared sensor, and the like. How to determine the predetermined scope depends on the moving object and its application.
  • Contour information is a measurement result obtained by measuring the contour of an object within a predetermined scope and the distance to the contour.
  • the contour information can be obtained by measuring the distance to the object with a vibrating infrared sensor, or calculating the measured distance as necessary.
  • the proximity information measured by the ultrasonic sensor unit may be further used for the above-described calculation.
  • the infrared sensor unit outputs the contour information of the object by continuously measuring the distance from the reflection point of the object existing in the predetermined scope. That is, accumulation of relative distance information between the moving body and the object within the predetermined scope can be obtained. On the other hand, an object existing outside the predetermined scope cannot be detected. Although it is possible to widen the detectable range by installing a large number of infrared sensors, this increases the weight. Therefore, by measuring proximity information using an ultrasonic sensor, the distance can be maintained so as not to collide with an object outside the predetermined scope. In this way, the ultrasonic sensor and the infrared sensor are used in combination so as to complement each other, thereby reducing the size and weight of the moving body control device.
  • a four-rotor helicopter as shown in FIG. 1 is used as a moving body on which the moving body control device is mounted.
  • This helicopter has four propellers on one plane and is based on a radio control helicopter developed by Ascending Technologies, Inc., called X-3DBL.
  • Aircraft attitude can be controlled only by adjusting the rotor speed.
  • the roll direction is controlled by adjusting the rotational speeds of the left and right rotors as shown in FIG.
  • the lift generated in the rotor is proportional to the square of its rotational speed, if there is a difference between the rotational speeds of the left and right rotors, a difference will occur in the left and right lifts, a moment will be generated in the roll direction of the aircraft, and the aircraft will move in the roll direction. Tilt.
  • the pitch direction as shown in FIG. 1B, the pitch can be tilted by a moment generated from a difference in the rotational speeds of the front and rear rotors.
  • the yaw direction (azimuth angle) is controlled by the counter-torque that each rotor gives to the machine.
  • the counter-torque is the reaction force of the moment that rotates the rotor, and the fuselage receives a moment in the direction opposite to the rotational direction of the rotor.
  • the azimuth angle is maintained by canceling the counter torque generated by the main rotor with the moment generated by the tail rotor.
  • counter torque is canceled by using a rotor that rotates in different directions in the front-rear and left-right directions as shown in FIG.
  • FIG. 3 shows an ultrasonic sensor and an infrared sensor attached to the airframe, and detection ranges of these sensors.
  • the ultrasonic sensor can measure the distance within a range of about ⁇ 25 degrees up to about 6 m, and is attached to the lower side of the aircraft.
  • the infrared sensor can be freely changed in the measurement direction within a range of about 120 degrees by a servo motor, and can be measured within a range of about 5.5 m in four directions, front, rear, left and right of the aircraft. .
  • accurate measurement cannot be performed within a range of about 1 m from the infrared emitting portion.
  • Table 1 shows the details of the airframe equipped with these sensors, communication devices, microcomputers for various arithmetic processing, and the like.
  • the aircraft fixed coordinate system has the longitudinal direction of the aircraft as the X axis, the lateral direction of the aircraft as the Y axis, the vertical direction of the aircraft as the Z axis, and the origin as the center of gravity of the aircraft. Also, a fixed ground coordinate system is defined on the table to be landed, and the x, y, and z axis directions are determined as shown in FIG.
  • the attitude angle is defined as the Euler angle of the airframe fixed coordinate system with respect to the ground fixed coordinate system, and the rotation around the X axis is defined as the roll angle ⁇ , the rotation around the Y axis as the pitch angle ⁇ , and the rotation around the Z axis as the yaw angle ⁇ . .
  • the measured value of the distance meter changes abruptly when the infrared beam exceeds the angle (edge) of the landing object.
  • Edge detection is performed using such properties.
  • the infrared sensor can only measure a distance up to one point, it is necessary to keep the sensor constantly moving. Therefore, in order to determine the edge direction ⁇ ′, the angle ⁇ of the servo motor is increased or decreased by a simple rule so that the movement of the servo motor is constrained at the point where the measurement distance changes suddenly. For example, as shown in FIG.
  • the target angle ⁇ ref to be given to the servo motor is determined as follows.
  • k represents the number of calculation steps.
  • the V s is arbitrary constant for determining the rotational speed
  • T s the control period (20ms)
  • sgn is the signum function
  • d t is a threshold for determining the rotational direction of the motor
  • the cos 2 ⁇ ′′ (k) / h (k) in the second term on the right side of the equation is the infrared ray on the landing point due to the influence of the angle of the servo motor and the altitude of the aircraft. This is to prevent the moving speed of the spot from changing from V s . Since the servo motor used here cannot output the current angle, the estimated value ⁇ "is obtained and used in the calculation instead of the true value.
  • the estimated value is the transfer function of the servo motor assumed to be the first-order lag.
  • the output is obtained by discretizing and inputting ⁇ ref This calculation is performed asynchronously with a period different from the control period of 20 ms, and is performed at 18.5 ms intervals of the servo motor pulse generation period. Therefore, the estimated value at the start time of each step is read and set as ⁇ ′′.
  • Difference d t between the measured value d is a threshold value to decide the direction of rotation of the servo motor. As shown in FIG. 7, assuming a plane parallel to the ground at a distance h + a below the fuselage, and assuming that the distance to the point where the beam ray of the infrared distance sensor intersects the plane is dt , the distance is obtained as follows.
  • the angle of the servo motor when pointing in the direction of the edge is ⁇ ′, and this is used for position calculation. This value is updated with the estimated angle ⁇ ′′ at that time when the magnitude relationship between dt and d is inverted, and holds the past value when it is not switched.
  • the position of the aircraft can be further measured.
  • the helicopter used in this experiment performs edge detection with each of the infrared sensors attached to the front, right, rear, and left directions in total, so the distance from the edge can be measured in four directions. it can. Therefore, the measurement values that differ depending on the direction are distinguished by attaching subscripts 1 to 4 clockwise from the front of the aircraft as shown in FIG.
  • the aircraft center is at a distance x from the center (origin) of the landing point.
  • Equation 1 Equations 6 and 7 are obtained from the positional relationship as shown in FIG.
  • the expressions 8 and 9 ignore the attitude of the aircraft, and the influence cannot be ignored as h increases. In fact, the position control tends to become unstable when the aircraft attitude is ignored. Therefore, the position is obtained in consideration of the body posture. However, since the exact formula is too complex, it is simplified assuming that the attitude angle of the aircraft is small. The yaw angle ⁇ is always 0. When the ultrasonic sensor is in the measurement range, it is assumed that h does not affect the posture because the measurement value hardly changes even if it is tilted. From the above, the coordinates of the aircraft center when the aircraft attitude is taken into account are as follows.
  • Embodiment 2> ⁇ Overview of Embodiment 2>
  • the present embodiment is based on the first embodiment, and calculates the movement control information of the moving body using the proximity information and the contour information, thereby contributing the calculation result to the autonomous movement of the moving body. is there. ⁇ Configuration of Embodiment 2>
  • the mobile control apparatus includes a mobile control information calculation unit that calculates the mobile control information using proximity information and contour information in addition to the configuration of the mobile control apparatus according to the first embodiment. It is.
  • “Movement control information” is information for controlling the movement of a moving object. This information is important for autonomous movement such as obstacle avoidance and landing at a predetermined location. For example, position information indicating the posture, position, altitude, direction, etc. of the moving object Etc.
  • the helicopter to be controlled is originally a multi-input multi-output system, but the influence of coupling is assumed to be small.
  • one control system is designed for each input.
  • This helicopter has four control systems, the attitude angles ⁇ , ⁇ , and the ⁇ -x and ⁇ -y control systems for x and y whose motion is determined by ⁇ and ⁇ , and the azimuth control system for the attitude angle ⁇
  • the ⁇ -x and ⁇ -y control systems have the same structure due to the symmetry of the four-rotor helicopter.
  • a posture control loop that feeds back posture angle / posture angular velocity as shown in FIG. Create a position control loop.
  • the altitude z and the direction ⁇ are controlled by a single feedback loop as shown in FIG.
  • the attitude angle of the airframe is obtained by an attitude and reference system (Atitud and Heading Reference Systems: AHRS) shown in FIG. 10 and FIG.
  • AHRS attitude and reference system
  • the transfer function from the control input input to the airframe to the posture angular velocity measured by the gyro sensor is a secondary delay.
  • the transfer function from the control input to the posture angle is as follows.
  • the attitude of the aircraft is stabilized by the attitude control of FIG. 10, and the output attitude angle follows the input of the attitude angle target value with a delay.
  • a transfer function from the posture angle target value to the posture angle is constructed using the representative root.
  • the representative root is a complex complex root of ⁇ Re ⁇ jIm, and the following expression is a transfer function of posture response.
  • the transfer function from the attitude angle to the position the following linearized model in which the horizontal component of the lift mg generated above the aircraft is a horizontal thrust is used.
  • g is a gravitational acceleration.
  • the state quantities can be measured as x, y, ⁇ , ⁇ , d ⁇ / dt, and d ⁇ / dt.
  • the transfer function from the control input input to the aircraft to the acceleration is assumed to be a first order lag. From the acceleration to the position, it is regarded as two integrators, and the following expression is a high transfer function.
  • the state quantity z and d 2 z / dt 2 can be measured.
  • the transfer function from the control input input to the airframe to the angular acceleration d ⁇ / dt measured by the gyro sensor is a secondary delay having a real root. Since one integrator is used from the angular velocity to the angle, the following formula is used as the azimuth transfer function. As the state quantity, ⁇ and d ⁇ / dt can be measured.
  • the control constitutes an optimum state feedback control system for all axes.
  • determine the feedback gain F such that the steady-state deviation of y n to 0. Since the control is based on state feedback, it is necessary to feed back all state quantities.However, since this system cannot measure all state quantities, the state quantities that cannot be measured are determined by the Kalman filter from the plant model and measurable state quantities. presume.
  • the experimental results shown in FIG. 13 are the horizontal coordinates of the aircraft measured by the positioning unit. Since the measurement device performs measurement by swinging the infrared sensor, the measurement value includes noise in the 5 to 6 Hz band. In the control, components in this band are filtered by the Kalman filter, so that the influence of the noise on the control performance is small. Hovering flight is generally achieved with an accuracy of approximately ⁇ 20 cm.
  • FIG. 14 is a two-dimensional plot obtained by applying the Kalman filter to the data shown in FIG.
  • the circle in the figure is drawn so that 95% of the total data fits inside, and its radius is 17.9 cm.
  • the relative flight altitude with the table in the hovering flight experiment was an average of 85 cm according to the ultrasonic sensor data.
  • the moving body control device of the present embodiment is a small and lightweight unmanned flying robot equipped with a rotor using a battery-driven motor as a moving means, such as the helicopter mentioned in the specific example, among various moving bodies. It works particularly useful when installed. ⁇ Embodiment 2 Effect>
  • Movement control information for performing autonomous movement or the like can be obtained by the moving body control device of the present embodiment.
  • the present embodiment is a mobile body equipped with the mobile body control device according to Embodiment 1 or 2, and can accumulate contour information and the like.
  • an imaging device such as a camera, a battery for driving the imaging device, and the like must be mounted on the moving body.
  • the contour information obtained by the infrared sensor unit is accumulated for use in information collection or the like.
  • the mobile body of the present embodiment is a mobile body equipped with the mobile body control device according to Embodiment 1 or 2, and includes a contour information storage unit that stores contour information.
  • the “contour information storage unit” has a function of storing contour information. Since the moving body and the contour information have been described in the first embodiment and the like, description thereof is omitted here. Contour information may be accumulated by providing a recording device such as a DRAM or a flash memory in the mobile body, or received by transmitting from the mobile body to a base of the mobile body using a transmission device or the like. You may accumulate on the side. Both the recording device and the transmission device are preferably light and small.
  • the accumulated contour information can be used for mapping (map creation), for example.
  • the contour information is a measured value of the distance based on the moving body control device. That is, it is the result of measuring the relative distance between the moving body and the surrounding objects, and cannot be reproduced as a map as it is. Therefore, if the contour information can be replaced with a distance from a fixed reference point, it can be reproduced. For example, the reproducibility is enhanced if the contour information is obtained in a state where the moving body is stopped.
  • the mobile body control device can measure the positional information of the mobile body as already described.
  • the contour information as a relative distance to the moving body can be handled as information based on the reference point, and based on this Can be reproduced as a map.
  • the reference point can be, for example, a mobile base, a movement start point, a measurement start point, or the like.
  • the mobile object of this embodiment can be used for collecting information by accumulating contour information.
  • a predetermined scope that emits infrared rays can be switched. If the predetermined scope is set widely, the measurable area is enlarged, but on the other hand, the measurement accuracy may be lowered. If the number of infrared sensors is increased, the measurable area can be expanded without causing a decrease in accuracy. However, this method causes an increase in weight and a complicated apparatus configuration. Therefore, a predetermined scope can be switched so that measurement according to the situation can be performed.
  • This embodiment is a mobile body equipped with the mobile body control device of Embodiment 2, and the infrared sensor unit has scope switching means for switching a predetermined scope that repeatedly emits infrared light.
  • “Scope switching means” has a function of switching a predetermined scope that repeatedly emits infrared rays. “Switching the predetermined scope” means switching a range to be measured by the infrared sensor. As an example of the previous helicopter, when ascending, the upper part from the horizontal direction of the aircraft is set as the predetermined scope, and when landing, the predetermined scope is switched to the lower side of the aircraft to control the aircraft in any case. Necessary measurement results can be obtained.
  • the predetermined scope can be switched, for example, by changing the swing width for moving the infrared sensor, or changing the position and orientation of the infrared sensor.
  • the predetermined scope may be switched in units of individual infrared sensors or may be switched as a whole. Further, it may be arbitrarily switched or may be switched within a set switching mode.
  • This embodiment makes it possible to switch the measurable range while suppressing an increase in the weight of the moving body control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Disclosed is a mobile body control device for detecting an object or the like present around the mobile body and detecting the distance to the object and the outline of the object in order that the mobile body can avoid an obstacle and can land on a flat location without using any GPS device. The mobile body control device is mounted to a mobile body and used. The mobile body control device comprises an ultrasonic sensor unit for measuring the distance to a peripheral object in the vicinity thereof using an ultrasonic wave having a weak directivity and outputting vicinity information which is the result of the measurement and an infrared sensor unit for repetitively transmitting infrared radiation from the infrared sensor by vibration into a prescribed scope viewed from the mobile body, determining the outline of an object within the prescribed scope, measuring the distance to the outline, and outputting outline information which is the result of the measurement.

Description

移動体制御装置及び移動体制御装置を搭載した移動体MOBILE BODY CONTROL DEVICE AND MOBILE BODY HAVING MOBILE BODY CONTROL DEVICE
 本発明は、移動体に取り付けられて利用される制御装置であって、超音波センサと赤外線センサとを組み合わせることで自律移動などに寄与する制御装置に関する。 The present invention relates to a control device that is used by being attached to a moving body, and relates to a control device that contributes to autonomous movement or the like by combining an ultrasonic sensor and an infrared sensor.
 近年、無人移動体の活躍が期待されている。無人移動体とは、例えば、無人航空機、無人陸上車両、無人潜水艇などが挙げられる。これらの無人移動体は、人が立ち入れない危険な場所等にも進入することができるため様々な場面で活用されている。特に無人航空機は、三次元的移動能力を有することから、災害状況の情報収集などに用いることができる。無人航空機は多様に存在し、例えば、大型のものでは軍事用の無人航空機がよく知られており、5000mを超える飛行高度と数十時間に及ぶ飛行持続時間を可能とするものがある。その一方で、比較的小型のものでは、農薬散布などに用いられる産業用無人ヘリコプタなどがある。このように、無人航空機は、用途等に応じて機体の大きさをはじめとして種々の設計が施される。 In recent years, unmanned mobile objects are expected to play an active role. Examples of the unmanned moving body include an unmanned aircraft, an unmanned land vehicle, and an unmanned submersible. These unmanned mobile bodies can be used in various situations because they can enter dangerous places where people cannot enter. In particular, unmanned aerial vehicles have a three-dimensional movement capability and can be used for collecting information on disaster situations. There are a variety of unmanned aerial vehicles. For example, large unmanned aircraft are well known for military unmanned aerial vehicles, which allow flight altitudes of over 5000 m and flight durations of several tens of hours. On the other hand, as relatively small ones, there are industrial unmanned helicopters used for agricultural chemical spraying and the like. In this way, unmanned aerial vehicles are designed in various ways including the size of the fuselage depending on the application.
 無人移動体には自律的な移動能力が求められるが、この能力を実現するための各種制御装置と、移動体が備えるペイロード(有効積載量)との兼ね合いが設計上重要な問題となる。上述した大型の無人航空機の例では、200kgのペイロードを備え、各種センサ類、撮像カメラ、測距装置、GPS(Global Positioning System)装置、各種情報処理装置などと、これらを駆動するためのバッテリ等を十分に搭載することが可能である。このようにペイロードの制約が比較的緩い場合においては、自律飛行を可能とするための各種の装備を搭載することができる。 An unmanned mobile body is required to have an autonomous movement capability, but the balance between various control devices for realizing this capability and the payload (effective load capacity) of the mobile body is an important design issue. In the example of the large unmanned aerial vehicle described above, a 200 kg payload is provided, various sensors, an imaging camera, a distance measuring device, a GPS (Global Positioning System) device, various information processing devices, a battery for driving these, and the like Can be fully installed. In this way, when the payload is relatively loose, various equipment for enabling autonomous flight can be mounted.
 しかし、機体の小型化を図る場合には、ペイロードの制約がより厳しくなってくる。そのような制約の下、自律制御によるプログラムフライト行う無人ヘリコプタに関して、GPS情報を受信するアンテナと、受信したGPS情報を演算処理してデジタルデータ信号を送出するGPS受信機とを一体化することにより自律制御装置の小型軽量化を図る技術が開示されている。 However, when the size of the aircraft is reduced, payload restrictions become more severe. Under such restrictions, for an unmanned helicopter that performs program flight by autonomous control, by integrating an antenna that receives GPS information and a GPS receiver that computes the received GPS information and sends out a digital data signal Technologies for reducing the size and weight of autonomous control devices are disclosed.
特開2007-106269号公報JP 2007-106269 A
 ところで、近年、従来にはないより小型の無人航空機の研究が盛んになっている。例えば、米国においては、国防総省防衛研究計画局(DARPA)が提唱した超小型飛翔体(MAV:Micro Air Vehicle)の研究が行われている。DARPAが定義したMAVは大きさが15~30cm以下、重量が10~100g程度で20m/s前後の飛行速度を有する無人航空機とされている。このような、超小型の無人航空機は、従来の無人航空機では進入できないような空間での情報収集などの活躍が期待されている。例えば、倒壊した建造物の内部や原子力プラントに配設されているダクトの内部などのように、危険で狭小な空間での活動に期待が寄せられているのである。 By the way, in recent years, research on smaller unmanned aerial vehicles than ever has been active. For example, in the United States, research on a micro air vehicle (MAV) proposed by the Defense Defense Research Projects Agency (DARPA) is underway. MARP defined by DARPA is an unmanned aerial vehicle having a size of 15 to 30 cm or less, a weight of about 10 to 100 g, and a flight speed of about 20 m / s. Such ultra-compact unmanned aerial vehicles are expected to play an active role in collecting information in spaces that cannot be approached by conventional unmanned aerial vehicles. For example, there are high expectations for activities in dangerous and confined spaces, such as inside collapsed buildings and ducts installed in nuclear power plants.
 上述した先行技術では、このような超小型の無人航空機を実現することが難しいという問題がある。すなわち、まず、ペイロードの制約が大変厳しいため、技術進歩により軽量化されたGPS装置ですら搭載することが困難である。さらに、より重要なことは、GPS装置では、上述した狭小な空間で高精度の自律飛行ができないということである。これは、GPSの原理に起因するものである。すなわち、GPSは衛星からの電波を用いて受信者の位置(緯度、経度、高度)を知るものであるが、倒壊した建造物の内部などでは衛星からの電波を受信することができないため位置情報を得ることができない。また、その位置情報には数十センチに及ぶ誤差が生じてしまう。補正を行うことで精度を高めることは可能であるが、そのための装置をさらに搭載することはペイロードとの兼ね合いにより困難である。また、GPSでは周囲に存在する物体を検知することができず、また、その物体がどのような形なのかを検知することもできない。したがって、障害物の回避や平坦な場所への着陸などのような自律飛行を行うための制御に用いることができない。 The prior art described above has a problem that it is difficult to realize such an ultra-small unmanned aircraft. That is, firstly, since the payload is very limited, it is difficult to mount even a GPS device lightened by technological progress. Furthermore, more importantly, the GPS device cannot perform high-precision autonomous flight in the narrow space described above. This is due to the principle of GPS. In other words, GPS knows the receiver's position (latitude, longitude, altitude) using radio waves from the satellite, but cannot receive radio waves from the satellite inside a collapsed building. Can't get. In addition, an error of several tens of centimeters occurs in the position information. Although it is possible to increase the accuracy by performing correction, it is difficult to further mount a device for that purpose due to the balance with the payload. In addition, GPS cannot detect an object that exists in the vicinity, and cannot detect the shape of the object. Therefore, it cannot be used for control for performing an autonomous flight such as avoiding an obstacle or landing on a flat place.
 そこで、GPS装置を用いずに、障害物の回避や平坦な場所への着陸などを行えるように、移動体の周辺に存在する物体などを検知し、その物体との距離や、その物体の輪郭を検知するための技術が必要となる。 In order to avoid obstacles and land on a flat place without using a GPS device, it detects an object around the moving object, and detects the distance to the object and the contour of the object. A technology to detect this is required.
 上記課題を解決するための手段として、以下の発明などを提供する。すなわち、第一の発明として、移動体に取り付けられて利用される移動体制御装置であって、指向性の弱い超音波を利用して、近接する周辺物体までの距離を計測し、その計測結果である近接情報を出力するための超音波センサ部と、振動することで移動体からみて所定のスコープ内に赤外線センサから赤外線を繰り返し射出し、前記所定スコープ内の物体の輪郭と輪郭までの距離を計測し、その計測結果である輪郭情報を出力するための赤外線センサ部と、を有する移動体制御装置を提供する。 The following inventions are provided as means for solving the above problems. That is, as a first invention, a mobile body control device that is used by being attached to a mobile body, using ultrasonic waves with low directivity, measuring a distance to a nearby peripheral object, and the measurement result The ultrasonic sensor unit for outputting the proximity information, and the infrared rays are repeatedly emitted from the infrared sensor into the predetermined scope as seen from the moving body by vibrating, and the distance between the contour of the object in the predetermined scope and the contour And an infrared sensor unit for outputting contour information as the measurement result.
 第二の発明として、近接情報と、輪郭情報とを用いて移動体の移動制御情報を計算する移動制御情報計算部をさらに有する第一の発明に記載の移動体制御装置を提供する。 As a second invention, there is provided a moving body control device according to the first invention, further comprising a movement control information calculation unit for calculating movement control information of the moving body using proximity information and contour information.
 第三の発明として、第一または第二の発明に記載の移動体制御装置を搭載した移動体であって、輪郭情報を蓄積する輪郭情報蓄積部を有する移動体を提供する。 As a third invention, there is provided a moving body equipped with the moving body control device according to the first or second invention, and having a contour information storage unit for storing contour information.
 第四の発明として、第二の発明に記載の移動体制御装置を搭載した第三の発明に記載の移動体であって、赤外線センサ部は、赤外線を繰り返し射出する所定スコープを切り替えるスコープ切換手段を有する移動体を提供する。 As a fourth invention, the moving body according to the third invention, wherein the moving body control device according to the second invention is mounted, the infrared sensor unit is a scope switching means for switching a predetermined scope for repeatedly emitting infrared rays. A moving body having
 第五の発明として、移動体は移動手段として電池駆動モータを利用したロータを備えた小型軽量無人飛行ロボットである第三または第四の発明に記載の移動体を提供する。 As a fifth invention, there is provided the moving body according to the third or fourth invention, which is a small and light unmanned flying robot provided with a rotor using a battery-powered motor as a moving means.
 本発明により、移動体の周辺に存在する物体などを検知し、その物体との距離や、その物体の輪郭を計測するための情報を得られる移動体制御装置を提供することができる。 According to the present invention, it is possible to provide a moving body control device capable of detecting an object or the like existing around a moving body and obtaining information for measuring the distance to the object and the contour of the object.
4発ロータ型ヘリコプタの動作を説明するための概念図Conceptual diagram for explaining the operation of a four-rotor helicopter 4発ロータ型ヘリコプタの動作を説明するための概念図Conceptual diagram for explaining the operation of a four-rotor helicopter 超音波センサと赤外線センサの検出範囲を示す概念図Conceptual diagram showing the detection range of the ultrasonic sensor and infrared sensor 着陸目標と機体座標とを示す概念図Conceptual diagram showing landing targets and aircraft coordinates 角の検出を説明するための図Diagram for explaining corner detection 角の検出を説明するための図Diagram for explaining corner detection 角の検出を説明するための図Diagram for explaining corner detection 機体の位置の計測を説明するための図Diagram for explaining the measurement of the position of the aircraft 機体の位置の計測を説明するための図Diagram for explaining the measurement of the position of the aircraft 機体の移動制御の演算処理を行うためのブロック図Block diagram for performing calculation processing for aircraft movement control 機体の移動制御の演算処理を行うためのブロック図Block diagram for performing calculation processing for aircraft movement control 機体と着陸目標との位置関係を示す概念図Conceptual diagram showing the positional relationship between the aircraft and landing target ホバリング時の機体の水平座標の実験結果Experimental results of the horizontal coordinates of the aircraft during hovering ホバリング時の水平座標の実験結果を2次元プロットした図A two-dimensional plot of horizontal coordinate experimental results during hovering 着陸までの機体の水平座標の実験結果Experimental results of the horizontal coordinate of the aircraft until landing
 以下、本発明の実施の形態について説明する。なお、本発明は、これらの実施形態に何ら限定されるべきものではなく、その要旨を逸脱しない範囲において、種々なる態様で実施し得る。 Hereinafter, embodiments of the present invention will be described. In addition, this invention should not be limited to these embodiments at all, and can be implemented in various modes without departing from the gist thereof.
 実施形態1は、主に請求項1、5について説明する。実施形態2は、主に請求項2、5について説明する。実施形態3は主に請求項3、5について説明する。実施形態4は、主に請求項4、5について説明する。
<実施形態1>
<実施形態1 概要>
The first embodiment will mainly describe claims 1 and 5. The second embodiment will mainly describe claims 2 and 5. The third embodiment will mainly describe claims 3 and 5. The fourth embodiment will mainly describe claims 4 and 5.
<Embodiment 1>
<Overview of Embodiment 1>
 本実施形態の移動体制御装置は、超音波センサと赤外線センサとを組み合わせて用いるものである。超音波センサで移動体の周辺に近接して存在する物体との距離を計測するとともに、赤外線センサを振動させて走査することで物体の輪郭を抽出するものである。このような構成を採用することにより少ない部品点数で外界の情報を得ることができ、制御装置の軽量化を図ることが可能となる。
<実施形態1 構成>
The moving body control device of the present embodiment uses a combination of an ultrasonic sensor and an infrared sensor. The ultrasonic sensor measures the distance from an object that is close to the periphery of the moving body, and extracts the contour of the object by vibrating and scanning the infrared sensor. By adopting such a configuration, information on the outside world can be obtained with a small number of parts, and the weight of the control device can be reduced.
<Configuration of Embodiment 1>
 本実施形態の移動体制御装置は移動体に取り付けられて利用されるものである。「移動体」とは、移動する物体である。すなわち、何らかの動力により推進するとともに、進路および速度を変更することができる物体である。進路は移動体の移動能力によって異なる。例えば、車両であれば、その進路は主に陸上となる。船舶または潜水艇であれば、その進路は水上または水中となる。航空機であれば、その進路は空中となる。 The moving body control device of this embodiment is used by being attached to a moving body. A “moving body” is a moving object. That is, it is an object that can be propelled by some power and change the course and speed. The course varies depending on the moving ability of the moving body. For example, in the case of a vehicle, the course is mainly on land. If it is a ship or a submersible, its course is on the water or underwater. If it is an aircraft, its route is in the air.
 「移動体に利用される」とは、移動体にとって有益となるように用いられることをいう。何が有益となるかは、移動体に応じたものとなる。移動体が自動車などの車両であれば、衝突防止、自動運転、車庫入れなどのために用いられることにより有益となり得る。また、航空機であれば、衝突回避、自動航行、所定位置でのホバリング、所定位置への着陸、マッピング(地図作成)などのために用いられることにより有益となり得る。 “Used for a moving object” means being used so as to be beneficial to a moving object. What is useful depends on the moving object. If the moving body is a vehicle such as an automobile, it can be beneficial to be used for collision prevention, automatic driving, garage entry, and the like. In the case of an aircraft, it may be beneficial to be used for collision avoidance, automatic navigation, hovering at a predetermined position, landing at a predetermined position, mapping (map creation), and the like.
 移動体制御装置は、「超音波センサ部」と「赤外線センサ部」とを有する。「超音波センサ部」は、指向性の弱い超音波を利用して、近接する周辺物体までの距離を計測し、その計測結果である近接情報を出力するための機能を有する。 The moving body control device has an “ultrasonic sensor unit” and an “infrared sensor unit”. The “ultrasonic sensor unit” has a function for measuring a distance to a nearby peripheral object using ultrasonic waves with weak directivity and outputting proximity information as a measurement result.
 「超音波センサ」は、超音波のパルスを物体に射出し、反射して超音波センサに帰ってくるまでの所要時間から物体との距離を計測するものである。超音波センサは初めに受信した反射波から距離を求めるため、超音波センサと最も近接する物体までの距離が計測される。この計測結果が近接情報である。移動体が移動しているときに、近接情報の値が徐々に小さくなるとすれば、移動体と物体との相対距離が縮まっているということが分かり、すなわち、衝突する可能性が高いことが分かる。このような場合には、進路を変えるなどして近接情報の値がそれ以上小さくならないようにすることで、衝突を回避することができる。すなわち、近接情報は移動体が安全に移動し続けることに寄与する。また、所定の位置に着陸を行うような場合には、近接情報の値が緩やかに小さくなるように推進力や進路を制御することにより安全に着陸することができる。 "Ultrasonic sensor" measures the distance from an object based on the time it takes to emit an ultrasonic pulse to the object and reflect it back to the ultrasonic sensor. Since the ultrasonic sensor obtains the distance from the first received reflected wave, the distance to the object closest to the ultrasonic sensor is measured. This measurement result is proximity information. When the moving object is moving, if the value of proximity information gradually decreases, it can be seen that the relative distance between the moving object and the object is reduced, that is, the possibility of collision is high. . In such a case, the collision can be avoided by changing the course so that the value of the proximity information does not become any smaller. That is, the proximity information contributes to the mobile body continuing to move safely. In addition, when landing at a predetermined position, it is possible to land safely by controlling the propulsive force and the course so that the value of the proximity information gradually decreases.
 また、超音波は指向性が弱く、初めに受信した反射波から距離を求めることから、超音波センサを搭載した移動体の姿勢変化の影響が出にくく、物体との距離を安定的に計測することができるという効果が得られる。なお、超音波センサの計測範囲は機種により異なるものであるが、移動体の用途などに応じて要求される計測範囲を有する超音波センサを選択すればよい。 In addition, since ultrasonic waves are weak in directivity and the distance is obtained from the first received reflected wave, it is difficult to influence the posture change of a moving body equipped with an ultrasonic sensor, and the distance to the object is stably measured. The effect that it can be obtained. In addition, although the measurement range of an ultrasonic sensor changes with models, what is necessary is just to select the ultrasonic sensor which has the measurement range requested | required according to the use etc. of a moving body.
 超音波センサ部を設置する方向は、移動体の移動能力及び、その用途等に応じて定めることができるが、一般的には進行方向に向けておくことが有用である。すなわち、移動体の移動を制御するためには、進行方向に存在する物体をいち早く検知するとともに、その物体と移動体との距離を計測することが、障害物回避などを行う移動制御をするために重要だからである。また、超音波センサ部を複数設置することにより計測の精度を高めることは有益ではあるが、一方で重量増加を招いてしまう。後述する赤外線センサ部によっても物体との距離を計測することができるので、移動体のペイロードに応じて両者のバランスを図り設置することが好ましい。 The direction in which the ultrasonic sensor unit is installed can be determined according to the moving ability of the moving object, its use, and the like, but it is generally useful to point in the traveling direction. In other words, in order to control the movement of a moving body, it is necessary to quickly detect an object existing in the traveling direction and to measure the distance between the object and the moving body in order to perform movement control for obstacle avoidance and the like. Because it is important. In addition, it is beneficial to increase the accuracy of measurement by installing a plurality of ultrasonic sensor units, but this leads to an increase in weight. Since the distance to the object can also be measured by an infrared sensor unit to be described later, it is preferable that the two are balanced and installed according to the payload of the moving body.
 「赤外線センサ部」は、振動することで移動体からみて所定のスコープ内に赤外線センサから赤外線を繰り返し射出し、前記所定スコープ内の物体の輪郭と輪郭までの距離を計測し、その計測結果である輪郭情報を出力するための機能を有する。「輪郭」とは一般的には物体の外形を形づくる線をいうが、本明細書においては、赤外線が照射される物体上の反射点の連なりをいう。後述するように、赤外線センサ部は、振動しながら赤外線を繰り返し射出する。この赤外線の照射を受ける物体上の反射点は、赤外線センサが動くにつれて位置を変えることになる。このように赤外線の照射を受ける反射点がたどる軌跡を輪郭という。 The “infrared sensor unit” vibrates and repeatedly emits infrared rays from the infrared sensor into the predetermined scope as seen from the moving body, measures the contour of the object in the predetermined scope, and the distance to the contour. It has a function for outputting certain contour information. “Outline” generally refers to a line that forms the outer shape of an object, but in this specification, it refers to a series of reflection points on an object irradiated with infrared rays. As will be described later, the infrared sensor unit repeatedly emits infrared rays while vibrating. The reflection point on the object that is irradiated with the infrared rays changes its position as the infrared sensor moves. A trajectory followed by a reflection point that receives infrared irradiation is called an outline.
 「赤外線センサ」は、赤外線を物体に射出して、その反射光を受信することにより物体の反射点との距離を測定するものである。赤外線センサと呼ばれるものの中には、人感センサのように自身では赤外線を射出せずに、物体から発せられた赤外線を受光して発信源を検知するものも存在するが、本実施形態においては、距離を計測するためのものなので、自身で赤外線を射出するものをいう。 “Infrared sensor” measures the distance from the reflection point of an object by emitting infrared rays to the object and receiving the reflected light. Among what are called infrared sensors, there are those that detect infrared rays emitted from an object and detect the source without emitting infrared rays by themselves like human sensors, but in this embodiment Because it is for measuring the distance, it means something that emits infrared light by itself.
 「振動する」とは、揺り動かしたり振り動かしたりすることをいう。したがって、赤外線センサを何らかの動力により振り動かすことをいう。これは、赤外線センサから射出される方向を連続的に変化させることにより、一定の広がりを持つ領域からの反射光を受信するためである。例えば、赤外線センサを地面に向けて固定した場合には、赤外線は地面の一点にのみ射出されるため、その一点と赤外線センサとの距離しか測定することはできない。そこで、赤外線センサを振り子のように動かせば、地面に直線を描くように順次赤外線を射出することになり、振り子の振り幅に応じた長さの線として拡がる領域との距離を連続的に計測することができる。さらに、渦巻きや八の字などを描くように赤外線センサを動かせば、面として拡がる領域との距離を連続的に測定することができる。赤外線センサを振動させるための動力としては、例えば、サーボモータなどを挙げることができる。 “Vibrating” means shaking or shaking. Therefore, it means that the infrared sensor is shaken by some power. This is because the reflected light from an area having a certain spread is received by continuously changing the direction of emission from the infrared sensor. For example, when the infrared sensor is fixed toward the ground, infrared light is emitted only at one point on the ground, and therefore only the distance between that point and the infrared sensor can be measured. Therefore, if the infrared sensor is moved like a pendulum, infrared rays will be emitted sequentially so as to draw a straight line on the ground, and the distance from the area that expands as a line with a length corresponding to the swing width of the pendulum is continuously measured. can do. Furthermore, if the infrared sensor is moved so as to draw a spiral or a figure of eight, the distance from the area expanding as a surface can be continuously measured. Examples of power for vibrating the infrared sensor include a servo motor.
 「所定スコープ内」とは、赤外線センサにより計測しようとする所定の領域のことをいう。例えば、障害物回避を主な目的に計測する場合であれば、移動体の進行方向の所定の領域となる。赤外線は指向性が高いため、赤外線センサが向いている空間に存在する物体との距離を計測することができる。この所定スコープは、赤外線センサを設置する位置、設置する向き、赤外線センサを動かす振り幅等により定まる。所定のスコープをどのように定めるかは、移動体やその用途に応じたものとなる。 “Within a predetermined scope” means a predetermined area to be measured by an infrared sensor. For example, in the case of measuring mainly for obstacle avoidance, it is a predetermined area in the moving direction of the moving body. Since infrared rays have high directivity, it is possible to measure the distance to an object existing in the space where the infrared sensor is facing. The predetermined scope is determined by the position where the infrared sensor is installed, the installation direction, the swing width for moving the infrared sensor, and the like. How to determine the predetermined scope depends on the moving object and its application.
 「輪郭情報」は、所定スコープ内の物体の輪郭と輪郭までの距離を計測した計測結果である。輪郭情報は、振動する赤外線センサにより物体との距離を計測し、あるいは、必要に応じて計測された距離を演算することにより得ることができる。その物体が最も近接する周辺物体である場合などでは、超音波センサ部により計測される近接情報を、上述した演算にさらに用いてもよい。 “Contour information” is a measurement result obtained by measuring the contour of an object within a predetermined scope and the distance to the contour. The contour information can be obtained by measuring the distance to the object with a vibrating infrared sensor, or calculating the measured distance as necessary. In the case where the object is the nearest peripheral object, the proximity information measured by the ultrasonic sensor unit may be further used for the above-described calculation.
 赤外線センサ部は、所定スコープ内に存在する物体の反射点からの距離を連続的に計測することで、その物体の輪郭情報を出力する。つまり、移動体と所定スコープ内の物体との相対的な距離情報の集積を得ることができる。その一方で、所定スコープ外に存在する物体を検知することができない。赤外線センサを多数設置することにより検知可能範囲を広くすることもできるが、重量増を招いてしまう。そこで、超音波センサにより近接情報を計測することで、所定スコープ外の物体と衝突などしないように距離を保つことができる。このように超音波センサと赤外線センサとを相互に補完するように組み合わせて使用することで移動体制御装置の小型軽量化を図るのである。 The infrared sensor unit outputs the contour information of the object by continuously measuring the distance from the reflection point of the object existing in the predetermined scope. That is, accumulation of relative distance information between the moving body and the object within the predetermined scope can be obtained. On the other hand, an object existing outside the predetermined scope cannot be detected. Although it is possible to widen the detectable range by installing a large number of infrared sensors, this increases the weight. Therefore, by measuring proximity information using an ultrasonic sensor, the distance can be maintained so as not to collide with an object outside the predetermined scope. In this way, the ultrasonic sensor and the infrared sensor are used in combination so as to complement each other, thereby reducing the size and weight of the moving body control device.
 以下に、具体例を挙げて輪郭情報を得るための演算等を説明する。この具体例では、移動体制御装置を搭載する移動体として、図1に示すような4発ロータ型ヘリコプタを用いる。このヘリコプタは、4枚のプロペラが一平面上に存在するものであり、X-3DBLというAscendingTechnologies社により開発されたラジコンヘリをベースにしたものである。機体姿勢のコントロールはロータ回転数の調節のみで行うことが可能である。ロール方向のコントロールは、図1(a)に示すように左右のロータの回転数を調節して行う。ロータに生じる揚力はその回転数の2乗に比例するため、左右のロータの回転数に差を与えると左右の揚力に差が生まれ、機体のロール方向にモーメントが生じて、機体はロール方向に傾く。同様に、ピッチ方向には図1(b)に示すように前後のロータの回転数の差から生じるモーメントによって傾けることができる。 Hereinafter, a calculation example for obtaining contour information will be described with a specific example. In this specific example, a four-rotor helicopter as shown in FIG. 1 is used as a moving body on which the moving body control device is mounted. This helicopter has four propellers on one plane and is based on a radio control helicopter developed by Ascending Technologies, Inc., called X-3DBL. Aircraft attitude can be controlled only by adjusting the rotor speed. The roll direction is controlled by adjusting the rotational speeds of the left and right rotors as shown in FIG. Since the lift generated in the rotor is proportional to the square of its rotational speed, if there is a difference between the rotational speeds of the left and right rotors, a difference will occur in the left and right lifts, a moment will be generated in the roll direction of the aircraft, and the aircraft will move in the roll direction. Tilt. Similarly, in the pitch direction, as shown in FIG. 1B, the pitch can be tilted by a moment generated from a difference in the rotational speeds of the front and rear rotors.
 ヨー方向(方位角)は、各ロータが機体に与える反トルクによって操作する。反トルクとはロータを回転させるモーメントの反作用力で、機体はロータの回転方向と逆向きのモーメントを受けている。シングルロータヘリでは、メインロータによって発生する反トルクをテールロータが生み出すモーメントで相殺することによって方位角を保っている。これに対し、4発ロータヘリコプタでは図2(a)のように前後・左右で異なる方向に回転
するロータを用いることで反トルクの相殺を行っている。機体をヨー方向に回転させたいときは、図2(b)のように前後ロータと左右ロータの回転数に差を与える。
The yaw direction (azimuth angle) is controlled by the counter-torque that each rotor gives to the machine. The counter-torque is the reaction force of the moment that rotates the rotor, and the fuselage receives a moment in the direction opposite to the rotational direction of the rotor. In the single rotor helicopter, the azimuth angle is maintained by canceling the counter torque generated by the main rotor with the moment generated by the tail rotor. On the other hand, in the four-rotor helicopter, counter torque is canceled by using a rotor that rotates in different directions in the front-rear and left-right directions as shown in FIG. When it is desired to rotate the airframe in the yaw direction, a difference is given to the rotational speeds of the front and rear rotors and the left and right rotors as shown in FIG.
 図3は、機体に取り付けた超音波センサと赤外線センサ、および、それらのセンサの検出範囲を示したものである。超音波センサは約6mまで±25度程度の範囲内で距離を計測できるもので、機体の下側に下へ向けて取り付けている。また、赤外線センサは、サーボモータによって約120度の範囲で自由に計測方向を変えることができ、約5.5m程度の範囲内で計測できるものを、機体の前後左右の4方向に取り付けている。なお、赤外線射出部から約1mの範囲内では正確な計測はできないものである。これらのセンサおよび通信装置、各種演算処理等のためのマイコンなどを搭載した機体の詳細を表1に示す。
Figure JPOXMLDOC01-appb-T000001
FIG. 3 shows an ultrasonic sensor and an infrared sensor attached to the airframe, and detection ranges of these sensors. The ultrasonic sensor can measure the distance within a range of about ± 25 degrees up to about 6 m, and is attached to the lower side of the aircraft. In addition, the infrared sensor can be freely changed in the measurement direction within a range of about 120 degrees by a servo motor, and can be measured within a range of about 5.5 m in four directions, front, rear, left and right of the aircraft. . In addition, accurate measurement cannot be performed within a range of about 1 m from the infrared emitting portion. Table 1 shows the details of the airframe equipped with these sensors, communication devices, microcomputers for various arithmetic processing, and the like.
Figure JPOXMLDOC01-appb-T000001
 上述したヘリコプタを用いて平坦面を有するテーブルの上に着陸させる実験を行った。この実験を例として、輪郭情報の計測などを説明する。まず、各種演算等を行うための座標系を設定しておく。機体固定座標系は機体前後方向をX軸、機体左右方向をY軸、機体上下方向をZ軸とし、原点は機体の重心とする。また、地面固定の座標系は着陸対象であるテーブルの上に定義し、図4のようにx、y、z軸の方向を定める。姿勢角は、地面固定座標系に対する機体固定座標系のオイラー角とし、X軸周りの回転をロール角φ、Y軸周りの回転をピッチ角θ、Z軸周りの回転をヨー角ψと定義する。 An experiment was conducted in which the above-mentioned helicopter was used to land on a table having a flat surface. Taking this experiment as an example, measurement of contour information and the like will be described. First, a coordinate system for performing various calculations is set. The aircraft fixed coordinate system has the longitudinal direction of the aircraft as the X axis, the lateral direction of the aircraft as the Y axis, the vertical direction of the aircraft as the Z axis, and the origin as the center of gravity of the aircraft. Also, a fixed ground coordinate system is defined on the table to be landed, and the x, y, and z axis directions are determined as shown in FIG. The attitude angle is defined as the Euler angle of the airframe fixed coordinate system with respect to the ground fixed coordinate system, and the rotation around the X axis is defined as the roll angle φ, the rotation around the Y axis as the pitch angle θ, and the rotation around the Z axis as the yaw angle ψ. .
 この実験は、防災車両の屋根あるいは、GPSの届かない屋内などに設置された箱型の人工物への着陸を想定しており、位置計測のために適度な大きさの凸形状の地形を必要とする。そこで、前提としてある程度形の整った四角形の物体が着陸対象として着陸地点にあるものとする。仮定した環境には、直接水平位置を計測できる壁などの物体は存在しない。そこで、着陸対象の角を検出することによって位置を求めることを考える。着陸対象の角が検出できれば着陸対象の角の方向α'求めることができるので、地面との相対高度hを計測することにより、図5に示すような着陸対象と機体の位置関係から次のような機体の位置Lを求めることができる。
Figure JPOXMLDOC01-appb-M000002
ここで、ωはスキッドの幅である。また、hは超音波センサによって計測する。
This experiment assumes landing on a roof of a disaster prevention vehicle or a box-type artifact installed indoors where GPS cannot reach, and requires a convex terrain of moderate size for position measurement And Therefore, as a premise, it is assumed that a rectangular object having a certain shape is located at the landing point as a landing target. In the assumed environment, there is no object such as a wall that can directly measure the horizontal position. Therefore, consider obtaining the position by detecting the corner of the landing object. If the angle of the landing target can be detected, the angle α ′ of the landing target can be obtained. Therefore, by measuring the relative altitude h with respect to the ground, the positional relationship between the landing target and the aircraft as shown in FIG. It is possible to obtain the position L of the aircraft.
Figure JPOXMLDOC01-appb-M000002
Here, ω is the width of the skid. H is measured by an ultrasonic sensor.
 機体が図6のような位置にあるとき、赤外線センサの方向を少しずつ変えていくと赤
外線のビームが着陸対象の角(エッジ)を越えた時点で距離計の計測値が急激に変化する。このような性質を利用してエッジの検出を行う。ただし赤外線センサは一点までの距離しか測ることができないので、センサを常に動かし続ける必要がある。そこで、エッジの方向α'を定めるために簡単なルールによってサーボモータの角度αを増減させ、計測距離が急変化する点でサーボモータの運動が拘束されるようにする。例えば、図7のように、赤外線センサのビームのスポットが着陸対象上にあるときはモータの角度を増加させ、スポットが着陸対象の外にあるときはモータの角度を減少させるようにすればエッジ近傍でモータの運動を拘束することができる。そこで、次のようにサーボモータへ与える目標角度αrefを決定する。
Figure JPOXMLDOC01-appb-M000003
ここで、kは計算ステップの数を表す。またVは回転速度を決めるための任意定数、Tは制御周期(20ms)、α"はサーボモータの推定角度、sgnは符号関数、dはモータの回転方向を決めるための閾値、dは赤外線センサによって計測された距離である。式の右辺第二項におけるcosα"(k)/h(k)は、サーボモータの角度や機体の高度の影響によって着陸地点上にある赤外線のスポットの移動速度がVから変化しないようにするためのものである。ここで用いているサーボモータは現在の角度を出力することができないため推定値α"を求め、真値の代わりとして計算に使用する。推定値は1次遅れと仮定したサーボモータの伝達関数を離散化し、αrefを入力して得られた出力とする。この計算は20msの制御周期とは異なる周期で非同期に行っており、サーボモータのパルス生成周期の18.5ms間隔で行っている。そのため、ステップ毎の開始時点における推定値を読み込んでα"としている。
When the aircraft is in a position as shown in FIG. 6, if the direction of the infrared sensor is changed little by little, the measured value of the distance meter changes abruptly when the infrared beam exceeds the angle (edge) of the landing object. Edge detection is performed using such properties. However, since the infrared sensor can only measure a distance up to one point, it is necessary to keep the sensor constantly moving. Therefore, in order to determine the edge direction α ′, the angle α of the servo motor is increased or decreased by a simple rule so that the movement of the servo motor is constrained at the point where the measurement distance changes suddenly. For example, as shown in FIG. 7, when the beam spot of the infrared sensor is on the landing object, the motor angle is increased, and when the spot is outside the landing object, the motor angle is decreased. The movement of the motor can be restrained in the vicinity. Therefore, the target angle α ref to be given to the servo motor is determined as follows.
Figure JPOXMLDOC01-appb-M000003
Here, k represents the number of calculation steps. The V s is arbitrary constant for determining the rotational speed, T s the control period (20ms), α "is estimated angle of the servomotor, sgn is the signum function, d t is a threshold for determining the rotational direction of the motor, d Is the distance measured by the infrared sensor. The cos 2 α ″ (k) / h (k) in the second term on the right side of the equation is the infrared ray on the landing point due to the influence of the angle of the servo motor and the altitude of the aircraft. This is to prevent the moving speed of the spot from changing from V s . Since the servo motor used here cannot output the current angle, the estimated value α "is obtained and used in the calculation instead of the true value. The estimated value is the transfer function of the servo motor assumed to be the first-order lag. The output is obtained by discretizing and inputting α ref This calculation is performed asynchronously with a period different from the control period of 20 ms, and is performed at 18.5 ms intervals of the servo motor pulse generation period. Therefore, the estimated value at the start time of each step is read and set as α ″.
 閾値であるdと計測値dの差がサーボモータの回転方向を決める。図7のように機体の下方h+aの距離に地面と平行な平面を仮定し、赤外線距離センサのビームの射線と平面が交わる点までの距離をdとすると、次のように求められる。
Figure JPOXMLDOC01-appb-M000004
Difference d t between the measured value d is a threshold value to decide the direction of rotation of the servo motor. As shown in FIG. 7, assuming a plane parallel to the ground at a distance h + a below the fuselage, and assuming that the distance to the point where the beam ray of the infrared distance sensor intersects the plane is dt , the distance is obtained as follows.
Figure JPOXMLDOC01-appb-M000004
 エッジの方向を指しているときのサーボモータの角度をα'とし、これを位置の計算に用いる。この値は、dとdの大小関係が反転したときにはその時点での推定角度α"で更新し、切り替わらなかったときは過去の値を保持する。式で表すと、以下のようになる。
Figure JPOXMLDOC01-appb-M000005
The angle of the servo motor when pointing in the direction of the edge is α ′, and this is used for position calculation. This value is updated with the estimated angle α ″ at that time when the magnitude relationship between dt and d is inverted, and holds the past value when it is not switched.
Figure JPOXMLDOC01-appb-M000005
 以上のルールによってエッジの検出と追跡が可能となるが,dとdの大小関係が反転したときのみ数式2の代わりに、
Figure JPOXMLDOC01-appb-M000006
を用いて目標角度を更新すれば、より素早くエッジを追跡できるようになる。式中のcは任意の定数である。以上は、輪郭情報を得るための演算処理の一例であるが、このようにして、輪郭情報としてテーブルの角の検出などができる。
The above rules enable edge detection and tracking, but only when the magnitude relationship between dt and d is reversed,
Figure JPOXMLDOC01-appb-M000006
If the target angle is updated using, the edge can be tracked more quickly. C in the formula is an arbitrary constant. The above is an example of the calculation process for obtaining the contour information. In this way, the corner of the table can be detected as the contour information.
 以上のようにエッジを検出することで、さらに機体の位置を測定することができる。この実験で用いられているヘリコプタは、前方、右方、後方、左方の計4方向に取り付けられた赤外線センサそれぞれでエッジの検出を行うので、4方向でエッジからの距離を計測することができる。そこで、方向によって異なる計測値には図4のように機体の前方から時計回りに1~4の添え字をつけて区別する。いま、着陸地点の中心(原点)からxの距離に機体中心があると考える。このとき、数式1によりエッジから機体中心までの距離L、Lを求めると図8のような位置関係から数式6および数式7が得られる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
そして、Wを消去することによって機体の座標を求める式が得られる。yに関しても同様であり、地面固定座標系における機体中心の座標を求める式は以下のようになる。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
着陸対象の幅Wが含まれないので、着陸対象の大きさによらず機体の位置を求めることができる。
By detecting the edge as described above, the position of the aircraft can be further measured. The helicopter used in this experiment performs edge detection with each of the infrared sensors attached to the front, right, rear, and left directions in total, so the distance from the edge can be measured in four directions. it can. Therefore, the measurement values that differ depending on the direction are distinguished by attaching subscripts 1 to 4 clockwise from the front of the aircraft as shown in FIG. Now, consider that the aircraft center is at a distance x from the center (origin) of the landing point. At this time, when the distances L 1 and L 3 from the edge to the center of the aircraft are obtained by Equation 1 , Equations 6 and 7 are obtained from the positional relationship as shown in FIG.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Then, by erasing W, an equation for obtaining the coordinates of the aircraft is obtained. The same applies to y, and the equation for obtaining the coordinates of the center of the aircraft in the fixed ground coordinate system is as follows.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Since the landing target width W is not included, the position of the aircraft can be obtained regardless of the size of the landing target.
 しかしながら式8や式9は、機体の姿勢を無視しておりhが大きくなるにつれて影響が無視できなくなる。実際、機体姿勢を無視した場合は位置制御が不安定になる傾向があった。そこで、機体姿勢を考慮して位置を求める。ただ、厳密な式は複雑すぎるため、機体の姿勢角が小さいと仮定して簡単化する。また、ヨー角ψは常に0とする。なお、超音波センサは計測範囲にあるときは傾けても計測値がほとんど変化しないのでhは姿勢に影響されないと仮定する。以上より、機体姿勢を考慮したときの機体中心の座標は、以下のようになる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
However, the expressions 8 and 9 ignore the attitude of the aircraft, and the influence cannot be ignored as h increases. In fact, the position control tends to become unstable when the aircraft attitude is ignored. Therefore, the position is obtained in consideration of the body posture. However, since the exact formula is too complex, it is simplified assuming that the attitude angle of the aircraft is small. The yaw angle ψ is always 0. When the ultrasonic sensor is in the measurement range, it is assumed that h does not affect the posture because the measurement value hardly changes even if it is tilted. From the above, the coordinates of the aircraft center when the aircraft attitude is taken into account are as follows.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 この演算処理に使用した定数の値は表2に示すとおりである。
Figure JPOXMLDOC01-appb-T000013
<実施形態1 効果>
Table 2 shows the constant values used in this calculation process.
Figure JPOXMLDOC01-appb-T000013
<Embodiment 1 effect>
 本発明により、移動体の周辺に存在する物体などを検知し、その物体との距離や、その物体の輪郭を計測することが可能となる。
<実施形態2>
<実施形態2 概要>
According to the present invention, it is possible to detect an object or the like existing around a moving body and measure the distance to the object and the contour of the object.
<Embodiment 2>
<Overview of Embodiment 2>
 本実施形態は、実施形態1を基本とし、近接情報と輪郭情報とを用いて移動体の移動制御情報を計算することにより、その計算結果を移動体の自律的な移動などに寄与させるものである。
<実施形態2 構成>
The present embodiment is based on the first embodiment, and calculates the movement control information of the moving body using the proximity information and the contour information, thereby contributing the calculation result to the autonomous movement of the moving body. is there.
<Configuration of Embodiment 2>
 本実施形態の移動体制御装置は、実施形態1の移動体制御装置の構成に、さらに、近接情報と輪郭情報とを用いて移動体の移動制御情報を計算する移動制御情報計算部を有するものである。 The mobile control apparatus according to the present embodiment includes a mobile control information calculation unit that calculates the mobile control information using proximity information and contour information in addition to the configuration of the mobile control apparatus according to the first embodiment. It is.
 「移動制御情報」とは、移動体の移動を制御するための情報である。この情報は、障害物の回避や、所定場所への着陸などのような自律的な移動を行うために重要な情報であり、例えば、移動体の姿勢、位置、高度、方位などを示す位置情報などである。 “Movement control information” is information for controlling the movement of a moving object. This information is important for autonomous movement such as obstacle avoidance and landing at a predetermined location. For example, position information indicating the posture, position, altitude, direction, etc. of the moving object Etc.
 以下に、実施形態1において説明した実験を例に挙げて移動体制御情報計算部における演算処理などについて説明する。制御対象のヘリコプタは本来多入力多出力系であるが、連成の影響は小さいものとし、本実験では一つの入力ごとに一つの制御系を設計する。本ヘリコプタには制御系が4つ存在し、姿勢角θ、φ、および、θ、φによって運動が決定されるx、yに関するθ-x、φ-y制御系、姿勢角ψに関する方位制御系、高度zに関する高度制御系がある。θ-xとφ-yの制御系は、4発ロータ型ヘリコプタの対称性により同一の構造となる。 Hereinafter, the calculation processing in the mobile control information calculation unit will be described by taking the experiment described in the first embodiment as an example. The helicopter to be controlled is originally a multi-input multi-output system, but the influence of coupling is assumed to be small. In this experiment, one control system is designed for each input. This helicopter has four control systems, the attitude angles θ, φ, and the θ-x and φ-y control systems for x and y whose motion is determined by θ and φ, and the azimuth control system for the attitude angle ψ There is an altitude control system for altitude z. The θ-x and φ-y control systems have the same structure due to the symmetry of the four-rotor helicopter.
 まず、x、θおよび、y、φの制御に関しては、図10のように内側に姿勢角・姿勢角速度をフィードバックする姿勢制御ループを作ったうえで、外側に位置・姿勢角・姿勢角速度をフィードバックする位置制御ループを作る。次に、高度zや方位ψは、図11のように単一のフィードバックループで制御する。なお、本システムでは機体の姿勢角を図10や図11(a)に示す姿勢方位基準システム(Attitude and Heading Reference Systems:AHRS)によって求めている。 First, with regard to the control of x, θ, y, and φ, a posture control loop that feeds back posture angle / posture angular velocity as shown in FIG. Create a position control loop. Next, the altitude z and the direction ψ are controlled by a single feedback loop as shown in FIG. In this system, the attitude angle of the airframe is obtained by an attitude and reference system (Atitud and Heading Reference Systems: AHRS) shown in FIG. 10 and FIG.
 姿勢モデル(θ、φ)については、機体へ入力した制御入力から、ジャイロセンサによって計測される姿勢角速度までの伝達関数を2次遅れと仮定する。また、姿勢角速度から姿勢角までは1つの積分器であるため、制御入力から姿勢角までの伝達関数は以下のようになる。
Figure JPOXMLDOC01-appb-M000014
For the posture model (θ, φ), it is assumed that the transfer function from the control input input to the airframe to the posture angular velocity measured by the gyro sensor is a secondary delay. Further, since the posture angular velocity to the posture angle is one integrator, the transfer function from the control input to the posture angle is as follows.
Figure JPOXMLDOC01-appb-M000014
 位置モデル(x、y)については、まず、機体の姿勢は図10の姿勢制御によって安定化され、姿勢角目標値の入力に対して出力の姿勢角が遅れて追従するような系になっていると考える。姿勢制御の閉ループ系はそのままでは次数が高いので、代表根を用いて姿勢角目標値から姿勢角までの伝達関数を構成する。代表根は、共役な複素根で-Re±jImになっているとし、以下の式を姿勢応答の伝達関数とする。
Figure JPOXMLDOC01-appb-M000015
次に、姿勢角から位置までの伝達関数は、機体上方に発生している揚力mgの水平方向成分が水平方向の推力となるモデルを線形化した以下のものを用いる。
Figure JPOXMLDOC01-appb-M000016
ただし、gは重力加速度である。状態量はx、y、θ、φ、dθ/dt、dφ/dt、が測定可能である。
For the position model (x, y), first, the attitude of the aircraft is stabilized by the attitude control of FIG. 10, and the output attitude angle follows the input of the attitude angle target value with a delay. I think. Since the degree of the closed loop system for posture control is high as it is, a transfer function from the posture angle target value to the posture angle is constructed using the representative root. Assume that the representative root is a complex complex root of −Re ± jIm, and the following expression is a transfer function of posture response.
Figure JPOXMLDOC01-appb-M000015
Next, as the transfer function from the attitude angle to the position, the following linearized model in which the horizontal component of the lift mg generated above the aircraft is a horizontal thrust is used.
Figure JPOXMLDOC01-appb-M000016
However, g is a gravitational acceleration. The state quantities can be measured as x, y, θ, φ, dθ / dt, and dφ / dt.
 高度モデル(z)については、機体へ入力した制御入力から、加速度までの伝達関数を1次遅れと仮定する。加速度から位置までは2つの積分器とみなして、以下の式を高度の伝達関数とする。状態量は、z、dz/dtが測定可能である。
Figure JPOXMLDOC01-appb-M000017
For the altitude model (z), the transfer function from the control input input to the aircraft to the acceleration is assumed to be a first order lag. From the acceleration to the position, it is regarded as two integrators, and the following expression is a high transfer function. As for the state quantity, z and d 2 z / dt 2 can be measured.
Figure JPOXMLDOC01-appb-M000017
 方位モデル(ψ)については、機体へ入力した制御入力から、ジャイロセンサによって計測される角加速度dψ/dtまでの伝達関数を、実根を持つ2次遅れと仮定する。角速度から角度までは1つの積分器であるから、以下の式を方位の伝達関数とする。状態量は、ψ、dψ/dtが測定可能である。
Figure JPOXMLDOC01-appb-M000018
For the azimuth model (ψ), it is assumed that the transfer function from the control input input to the airframe to the angular acceleration dψ / dt measured by the gyro sensor is a secondary delay having a real root. Since one integrator is used from the angular velocity to the angle, the following formula is used as the azimuth transfer function. As the state quantity, ψ and dψ / dt can be measured.
Figure JPOXMLDOC01-appb-M000018
 制御は全軸において最適状態フィードバック制御系を構成する。また、制御対象のモデルの状態空間表現dx/dt=Ax+Bu、y=Cxに対し、目標値rと定常偏差を0にしたい出力y=Cxの差の積分x=∫(r-y)dtを状態変数に加え、以下の式のような拡大系を構成する。
Figure JPOXMLDOC01-appb-M000019
これに対し最適制御理論を適用し、yの定常偏差を0にするようなフィードバックゲインFを求める。状態フィードバックによる制御であるため、全状態量をフィードバックする必要があるが、本システムではすべての状態量を測定することができないので測定できない状態量はプラントのモデルと測定可能な状態量からカルマンフィルタによって推定する。
The control constitutes an optimum state feedback control system for all axes. The state space representation dx / dt = Ax + Bu of the controlled object model, y = Cx respect, the difference between the output y n = C n x to be the target value r and steady-state error to zero integral x r = ∫ (r- y n ) dt is added to the state variable to construct an expansion system as in the following equation.
Figure JPOXMLDOC01-appb-M000019
In contrast to apply the optimal control theory, determine the feedback gain F such that the steady-state deviation of y n to 0. Since the control is based on state feedback, it is necessary to feed back all state quantities.However, since this system cannot measure all state quantities, the state quantities that cannot be measured are determined by the Kalman filter from the plant model and measurable state quantities. presume.
 上述した演算処理などを用いて、さらに、自律制御によるホバリング飛行実験および自動着陸の実験を行った。本実験では測位システムの計測対象として一辺52cmのテーブルを使用した。テーブルと飛行体の位置関係は図12のようになる。座標系の原点はテーブルの中心とした。 Using the above-described arithmetic processing, we conducted further hovering flight experiments and automatic landing experiments using autonomous control. In this experiment, a 52 cm side table was used as a measurement target of the positioning system. The positional relationship between the table and the flying object is as shown in FIG. The origin of the coordinate system was the center of the table.
 まず手動操縦によって機体をテーブルの中央付近で飛行させ、機体の方位ψを図12のようにテーブルの方位と合わせる。次に可動式外界センサが正しくエッジを捕捉しているのを確認したのち、自律制御に切り替えた。本実験では水平位置x、yは常に0を保つように制御し、高度zおよび方位ψは制御切り替え時の初期状態を保つように制御を行った。 First, fly the aircraft near the center of the table by manual control, and align the azimuth ψ of the aircraft with the orientation of the table as shown in FIG. Next, after confirming that the movable external sensor correctly captured the edge, it switched to autonomous control. In this experiment, the horizontal positions x and y were controlled so as to always maintain 0, and the altitude z and the direction ψ were controlled so as to maintain the initial state at the time of control switching.
 図13に示す実験結果は、測位ユニットによって計測された機体の水平座標である。本計測装置は赤外線センサをスイングさせて計測を行うため、計測値には5~6Hz帯域のノイズが含まれている。制御ではカルマンフィルタによってこの帯域の成分をフィルタリングするため、このノイズの制御性能への影響は少ない。ホバリング飛行はほぼ±20cmの精度で概ね実現できている。 The experimental results shown in FIG. 13 are the horizontal coordinates of the aircraft measured by the positioning unit. Since the measurement device performs measurement by swinging the infrared sensor, the measurement value includes noise in the 5 to 6 Hz band. In the control, components in this band are filtered by the Kalman filter, so that the influence of the noise on the control performance is small. Hovering flight is generally achieved with an accuracy of approximately ± 20 cm.
 図14は、図13に示したデータに対してカルマンフィルタを適用し、2次元プロットしたものである。図中の円は全データの95%がその内部に収まるように描いたもので、その半径は17.9cmである。また、*印で示される円の中心はデータの平均値をとったものでx=5mm、y=8mmの位置にある。平均値は0に近い値となっていることから原点を中心としたホバリングができたことが分かる。なお、ホバリング飛行実験におけるテーブルとの相対飛行高度は超音波センサのデータによると平均85cmであった。 FIG. 14 is a two-dimensional plot obtained by applying the Kalman filter to the data shown in FIG. The circle in the figure is drawn so that 95% of the total data fits inside, and its radius is 17.9 cm. The center of the circle indicated by * is the average value of the data and is at the position of x = 5 mm and y = 8 mm. Since the average value is close to 0, it can be seen that hovering has been performed with the origin at the center. The relative flight altitude with the table in the hovering flight experiment was an average of 85 cm according to the ultrasonic sensor data.
 自動着陸では水平位置と方位の制御はホバリングと同様に行い、高度目標値の与え方のみを変えて行った。実験の結果得られた水平位置の応答を図15に示す。半径約±10cmの範囲で飛行できており、降下中でも飛行精度を保って着陸できたことが分かる。 In automatic landing, the horizontal position and direction were controlled in the same way as hovering, and only the method of giving altitude target values was changed. The response of the horizontal position obtained as a result of the experiment is shown in FIG. It can fly within a radius of about ± 10 cm, and it can be seen that it was able to land with flying accuracy while descent.
 以上のとおり、本実施形態の移動体制御装置は、種々ある移動体の中でも、具体例に挙げたヘリコプタのような、移動手段として電池駆動モータを利用したロータを備えた小型軽量無人飛行ロボットに搭載される場合にとくに有用に機能する。
<実施形態2 効果>
As described above, the moving body control device of the present embodiment is a small and lightweight unmanned flying robot equipped with a rotor using a battery-driven motor as a moving means, such as the helicopter mentioned in the specific example, among various moving bodies. It works particularly useful when installed.
<Embodiment 2 Effect>
 本実施形態の移動体制御装置により、自律的な移動などを行うための移動制御情報を得ることができる。
<実施形態3>
<実施形態3 概要>
Movement control information for performing autonomous movement or the like can be obtained by the moving body control device of the present embodiment.
<Embodiment 3>
<Overview of Embodiment 3>
 本実施形態は、実施形態1または2に係る移動体制御装置を搭載した移動体であって、輪郭情報等を蓄積することができるものである。倒壊した建物の内部など人が立ち入ることのできない環境の情報を収集するためには、カメラ等の撮像装置やこれを駆動するためのバッテリなどを移動体に搭載しなければならない。しかし、MAVなどのペイロードの制約が厳しい移動体においては、撮像装置等をさらに搭載する余裕がない場合もある。そこで、赤外線センサ部により得られた輪郭情報を、情報収集などに利用するために蓄積しておくものである。
<実施形態3 構成>
The present embodiment is a mobile body equipped with the mobile body control device according to Embodiment 1 or 2, and can accumulate contour information and the like. In order to collect information on an environment where a person cannot enter such as inside a collapsed building, an imaging device such as a camera, a battery for driving the imaging device, and the like must be mounted on the moving body. However, there are cases where there is no room for further mounting an imaging device or the like in a mobile object such as MAV that has severe payload restrictions. Therefore, the contour information obtained by the infrared sensor unit is accumulated for use in information collection or the like.
<Configuration of Embodiment 3>
 本実施形態の移動体は、実施形態1又は2に係る移動体制御装置を搭載した移動体であって、輪郭情報を蓄積する輪郭情報蓄積部を備える。 The mobile body of the present embodiment is a mobile body equipped with the mobile body control device according to Embodiment 1 or 2, and includes a contour information storage unit that stores contour information.
 「輪郭情報蓄積部」は、輪郭情報を蓄積する機能を有する。移動体および輪郭情報については、実施形態1などにおいて説明を行っているので、ここでの説明は省略する。輪郭情報の蓄積は、移動体にDRAMやフラッシュメモリなどの記録装置を備えることにより蓄積してもよいし、あるいは、送信装置などを用いて移動体から移動体の基地等に送信することにより受信側にて蓄積してもよい。記録装置および送信装置のいずれにおいても軽量で小型のものが好ましい。 The “contour information storage unit” has a function of storing contour information. Since the moving body and the contour information have been described in the first embodiment and the like, description thereof is omitted here. Contour information may be accumulated by providing a recording device such as a DRAM or a flash memory in the mobile body, or received by transmitting from the mobile body to a base of the mobile body using a transmission device or the like. You may accumulate on the side. Both the recording device and the transmission device are preferably light and small.
 蓄積された輪郭情報は、例えば、マッピング(地図作成)などに用いることができる。輪郭情報は移動体制御装置を基準とする距離の計測値である。すなわち、移動体と周辺物体との相対的な距離を計測した結果であり、そのままでは地図として再現することはできない。そこで、輪郭情報を固定された基準地点との距離と置きかえることができれば再現し得る。例えば、移動体を停止させた状態において得られた輪郭情報であれば再現性は高まる。また、移動体制御装置は、すでに述べたように移動体の位置情報を計測することができる。そこで、移動体の位置情報を固定された基準地点に基づく情報として蓄積しておけば、移動体との相対距離としての輪郭情報を、当該基準地点に基づく情報として取り扱うことができ、これに基づき地図として再現し得る。基準地点は、例えば、移動体の基地や移動開始地点、計測開始地点などとすることができる。
<実施形態3 効果>
The accumulated contour information can be used for mapping (map creation), for example. The contour information is a measured value of the distance based on the moving body control device. That is, it is the result of measuring the relative distance between the moving body and the surrounding objects, and cannot be reproduced as a map as it is. Therefore, if the contour information can be replaced with a distance from a fixed reference point, it can be reproduced. For example, the reproducibility is enhanced if the contour information is obtained in a state where the moving body is stopped. Moreover, the mobile body control device can measure the positional information of the mobile body as already described. Therefore, if the position information of the moving body is stored as information based on a fixed reference point, the contour information as a relative distance to the moving body can be handled as information based on the reference point, and based on this Can be reproduced as a map. The reference point can be, for example, a mobile base, a movement start point, a measurement start point, or the like.
<Effect of Embodiment 3>
 本実施形態の移動体により、輪郭情報を蓄積しておくことで情報収集などに利用することができる。
<実施形態4>
<実施形態4 概要>
The mobile object of this embodiment can be used for collecting information by accumulating contour information.
<Embodiment 4>
<Outline of Embodiment 4>
 本実施形態は、赤外線を射出する所定スコープを切り替えることができる。所定スコープを広く設定すれば計測可能な領域は拡大するが、その反面、計測精度の低下を招くおそれがある。赤外線センサの数を増やせば精度低下を招くことなく計測可能な領域を拡大することができる。しかし、この方法は重量の増加や装置構成の複雑化などを生じさせてしまう。そこで、所定スコープを切り替えることができるようにして、状況に応じた計測ができるようにするものである。
<実施形態4 構成>
In the present embodiment, a predetermined scope that emits infrared rays can be switched. If the predetermined scope is set widely, the measurable area is enlarged, but on the other hand, the measurement accuracy may be lowered. If the number of infrared sensors is increased, the measurable area can be expanded without causing a decrease in accuracy. However, this method causes an increase in weight and a complicated apparatus configuration. Therefore, a predetermined scope can be switched so that measurement according to the situation can be performed.
<Configuration of Embodiment 4>
 本実施形態は、実施形態2の移動体制御装置を搭載した移動体であって、赤外線センサ部が、赤外線を繰り返し射出する所定スコープを切り替えるスコープ切換手段を有するものである。 This embodiment is a mobile body equipped with the mobile body control device of Embodiment 2, and the infrared sensor unit has scope switching means for switching a predetermined scope that repeatedly emits infrared light.
 「スコープ切替手段」は、赤外線を繰り返し射出する所定スコープを切り替える機能を有する。「所定スコープを切り替える」とは、赤外線センサにより計測しようとする範囲を切り替えることをいう。先のヘリコプタを例に挙げると、上昇する際には機体の水平方向から上方を所定スコープとし、着陸する際には所定スコープを機体の下方に切り替えることで、いずれの場合においても機体の制御に必要な計測結果を得ることができる。 “Scope switching means” has a function of switching a predetermined scope that repeatedly emits infrared rays. “Switching the predetermined scope” means switching a range to be measured by the infrared sensor. As an example of the previous helicopter, when ascending, the upper part from the horizontal direction of the aircraft is set as the predetermined scope, and when landing, the predetermined scope is switched to the lower side of the aircraft to control the aircraft in any case. Necessary measurement results can be obtained.
 所定スコープの切り替えは、例えば、赤外線センサを動かす振り幅を変えたり、赤外線センサを設置する位置や設置する向きを変えたりすることにより可能となる。また、複数の赤外線センサを備える場合には、個々の赤外線センサ単位で所定スコープの切り替えができるようになっていてもよいし、全体として切り替えられるものであってもよい。また、任意に切り替えができてもよいし、設定された切り替えモードの中で切り替えられるものであってもよい。
<実施形態4 効果>
The predetermined scope can be switched, for example, by changing the swing width for moving the infrared sensor, or changing the position and orientation of the infrared sensor. When a plurality of infrared sensors are provided, the predetermined scope may be switched in units of individual infrared sensors or may be switched as a whole. Further, it may be arbitrarily switched or may be switched within a set switching mode.
<Embodiment 4 effect>
 本実施形態により、移動体制御装置の重量増を抑えつつ、計測可能な範囲を切り替えることが可能となる。 This embodiment makes it possible to switch the measurable range while suppressing an increase in the weight of the moving body control device.

Claims (5)

  1.  移動体に取り付けられて利用される移動体制御装置であって、
     指向性の弱い超音波を利用して、近接する周辺物体までの距離を計測し、その計測結果である近接情報を出力するための超音波センサ部と、
     振動することで移動体からみて所定のスコープ内に赤外線センサから赤外線を繰り返し射出し、前記所定スコープ内の物体の輪郭と輪郭までの距離を計測し、その計測結果である輪郭情報を出力するための赤外線センサ部と、
     を有する移動体制御装置。
    A moving body control device used by being attached to a moving body,
    An ultrasonic sensor unit for measuring the distance to nearby objects using ultrasonic waves with low directivity, and outputting proximity information as a result of the measurement;
    In order to repeatedly emit infrared rays from an infrared sensor into a predetermined scope as seen from the moving body by vibrating, measure the contour of the object in the predetermined scope and the distance to the contour, and output contour information as a result of the measurement The infrared sensor part of
    A moving body control apparatus.
  2.  近接情報と、輪郭情報とを用いて移動体の移動制御情報を計算する移動制御情報計算部をさらに有する請求項1に記載の移動体制御装置。 The moving body control device according to claim 1, further comprising a movement control information calculation unit that calculates movement control information of the moving body using proximity information and contour information.
  3.  請求項1又は2に記載の移動体制御装置を搭載した移動体であって、
     輪郭情報を蓄積する輪郭情報蓄積部を有する移動体。
    A mobile body equipped with the mobile body control device according to claim 1 or 2,
    A moving body having a contour information storage unit for storing contour information.
  4.  請求項2に記載の移動体制御装置を搭載した請求項3に記載の移動体であって、
     赤外線センサ部は、赤外線を繰り返し射出する所定スコープを切り替えるスコープ切換手段を有する移動体。
    The mobile body according to claim 3, wherein the mobile body control device according to claim 2 is mounted,
    The infrared sensor unit is a moving body having scope switching means for switching a predetermined scope that repeatedly emits infrared rays.
  5.  移動体は移動手段として電池駆動モータを利用したロータを備えた小型軽量無人飛行ロボットである請求項3又は4に記載の移動体。 The moving body according to claim 3 or 4, wherein the moving body is a small and lightweight unmanned flying robot having a rotor using a battery-powered motor as a moving means.
PCT/JP2010/058844 2009-05-26 2010-05-25 Mobile body control device and mobile body in which mobile body control device is mounted WO2010137596A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011516027A JP5688700B2 (en) 2009-05-26 2010-05-25 MOBILE BODY CONTROL DEVICE AND MOBILE BODY HAVING MOBILE BODY CONTROL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21704709P 2009-05-26 2009-05-26
USUS61/217,047 2009-05-26

Publications (1)

Publication Number Publication Date
WO2010137596A1 true WO2010137596A1 (en) 2010-12-02

Family

ID=43222704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058844 WO2010137596A1 (en) 2009-05-26 2010-05-25 Mobile body control device and mobile body in which mobile body control device is mounted

Country Status (2)

Country Link
JP (1) JP5688700B2 (en)
WO (1) WO2010137596A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098809A1 (en) * 2011-01-20 2012-07-26 三菱重工業株式会社 Anti-ice device, wing, aircraft, and anti-ice method
JP2012225706A (en) * 2011-04-18 2012-11-15 Aero Asahi Corp Airborne laser survey system
CN103143509A (en) * 2013-03-21 2013-06-12 电子科技大学 Garbage classification robot and garbage identification and classification method
JP2013212832A (en) * 2012-03-30 2013-10-17 Parrot Rotary wing drone altitude estimator including plurality of rotors
WO2014064431A2 (en) * 2012-10-22 2014-05-01 Bcb International Ltd. Micro unmanned aerial vehicle and method of control therefor
EP2763896A4 (en) * 2012-11-15 2015-03-11 Sz Dji Technology Co Ltd A multi-rotor unmanned aerial vehicle
JP2016524567A (en) * 2013-06-09 2016-08-18 アイトゲネシシェ・テヒニシェ・ホーホシューレ・チューリヒ Controlled flight of multicopters subject to faults affecting effectors
WO2016148303A1 (en) * 2015-03-19 2016-09-22 株式会社プロドローン Unmanned rotorcraft, and surrounding object ranging method thereof
JP2017144986A (en) * 2015-10-14 2017-08-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Unmanned air vehicle and flight control method
WO2017166724A1 (en) * 2016-03-30 2017-10-05 乐视控股(北京)有限公司 Aircraft apron device, aircraft, and aircraft parking system
JP2017206072A (en) * 2016-05-17 2017-11-24 株式会社エンルートM’s Flight control device and flight control method
JP2018510402A (en) * 2015-03-31 2018-04-12 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Method for determining position of unmanned aircraft and communication position system
WO2020136703A1 (en) * 2018-12-25 2020-07-02 楽天株式会社 Unmanned aerial vehicle control system, unmanned aerial vehicle control method, and program
US11094202B2 (en) 2015-03-31 2021-08-17 SZ DJI Technology Co., Ltd. Systems and methods for geo-fencing device communications
US11120456B2 (en) 2015-03-31 2021-09-14 SZ DJI Technology Co., Ltd. Authentication systems and methods for generating flight regulations
WO2022223209A1 (en) * 2021-04-19 2022-10-27 Siemens Energy Global GmbH & Co. KG Drone having flight-direction-dependent sensor orientation for autonomous drone applications, and method for avoiding collisions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6329225B2 (en) * 2016-09-12 2018-05-23 ユーピーアール株式会社 Luggage monitoring system in warehouse using drone
CN108037768A (en) * 2017-12-13 2018-05-15 常州工学院 Unmanned plane obstruction-avoiding control system, avoidance obstacle method and unmanned plane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134120A (en) * 2003-10-28 2005-05-26 Matsushita Electric Works Ltd Composite-type human body sensing switch
JP2006051864A (en) * 2004-08-10 2006-02-23 Seiko Epson Corp Automatic flight controlling system, and automatic flight controlling method
JP2007034866A (en) * 2005-07-29 2007-02-08 Hitachi Appliances Inc Travel control method for moving body and self-propelled cleaner

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326499A (en) * 1998-05-20 1999-11-26 Mitsubishi Electric Corp Distance measuring device and vehicle controller using the device
JP3946487B2 (en) * 2001-10-26 2007-07-18 シャープ株式会社 Takeoff and landing assistance mechanism and takeoff and landing assistance device
JP2004317134A (en) * 2003-04-11 2004-11-11 Daihatsu Motor Co Ltd Object recognition device of vehicle and object recognition method
JP2004361315A (en) * 2003-06-06 2004-12-24 Nissan Motor Co Ltd Radar system
JP2005233873A (en) * 2004-02-23 2005-09-02 Matsushita Electric Ind Co Ltd Moving device
JP4142034B2 (en) * 2004-06-24 2008-08-27 シャープ株式会社 Mobile device
JP2007253946A (en) * 2007-06-08 2007-10-04 Sharp Corp Robot system, flapping device used for it and flapping flight controller
JP5358961B2 (en) * 2008-01-28 2013-12-04 トヨタ自動車株式会社 Method for controlling scanning speed of mobile robot and laser range sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134120A (en) * 2003-10-28 2005-05-26 Matsushita Electric Works Ltd Composite-type human body sensing switch
JP2006051864A (en) * 2004-08-10 2006-02-23 Seiko Epson Corp Automatic flight controlling system, and automatic flight controlling method
JP2007034866A (en) * 2005-07-29 2007-02-08 Hitachi Appliances Inc Travel control method for moving body and self-propelled cleaner

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148716A (en) * 2011-01-20 2012-08-09 Mitsubishi Heavy Ind Ltd Anti-icing apparatus, wing, aircraft, and anti-icing method
WO2012098809A1 (en) * 2011-01-20 2012-07-26 三菱重工業株式会社 Anti-ice device, wing, aircraft, and anti-ice method
JP2012225706A (en) * 2011-04-18 2012-11-15 Aero Asahi Corp Airborne laser survey system
JP2013212832A (en) * 2012-03-30 2013-10-17 Parrot Rotary wing drone altitude estimator including plurality of rotors
US9352834B2 (en) 2012-10-22 2016-05-31 Bcb International Ltd. Micro unmanned aerial vehicle and method of control therefor
WO2014064431A2 (en) * 2012-10-22 2014-05-01 Bcb International Ltd. Micro unmanned aerial vehicle and method of control therefor
WO2014064431A3 (en) * 2012-10-22 2014-07-10 Bcb International Ltd. Micro unmanned aerial vehicle and method of control therefor
US10196137B2 (en) 2012-11-15 2019-02-05 SZ DJI Technology Co., Ltd. Unmanned aerial vehicle and operations thereof
US10472056B2 (en) 2012-11-15 2019-11-12 SZ DJI Technology Co., Ltd. Unmanned aerial vehicle and operations thereof
US9221536B2 (en) 2012-11-15 2015-12-29 Sz Dji Technology, Co., Ltd Unmanned aerial vehicle and operations thereof
US9221537B2 (en) 2012-11-15 2015-12-29 Sz Dji Technology, Co., Ltd. Unmanned aerial vehicle and operations thereof
US9233754B1 (en) 2012-11-15 2016-01-12 SZ DJI Technology Co., Ltd Unmanned aerial vehicle and operations thereof
US9284049B1 (en) 2012-11-15 2016-03-15 SZ DJI Technology Co., Ltd Unmanned aerial vehicle and operations thereof
US9321530B2 (en) 2012-11-15 2016-04-26 SZ DJI Technology Co., Ltd Unmanned aerial vehicle and operations thereof
EP2763896A4 (en) * 2012-11-15 2015-03-11 Sz Dji Technology Co Ltd A multi-rotor unmanned aerial vehicle
US9394048B2 (en) 2012-11-15 2016-07-19 SZ DJI Technology Co., Ltd Unmanned aerial vehicle and operations thereof
US11338912B2 (en) 2012-11-15 2022-05-24 SZ DJI Technology Co., Ltd. Unmanned aerial vehicle and operations thereof
US9016617B2 (en) 2012-11-15 2015-04-28 SZ DJI Technology Co., Ltd Unmanned aerial vehicle and operations thereof
US10272994B2 (en) 2012-11-15 2019-04-30 SZ DJI Technology Co., Ltd. Unmanned aerial vehicle and operations thereof
US10189562B2 (en) 2012-11-15 2019-01-29 SZ DJI Technology Co., Ltd. Unmanned aerial vehicle and operations thereof
US10155584B2 (en) 2012-11-15 2018-12-18 SZ DJI Technology Co., Ltd. Unmanned aerial vehicle and operations thereof
CN103143509A (en) * 2013-03-21 2013-06-12 电子科技大学 Garbage classification robot and garbage identification and classification method
JP2016524567A (en) * 2013-06-09 2016-08-18 アイトゲネシシェ・テヒニシェ・ホーホシューレ・チューリヒ Controlled flight of multicopters subject to faults affecting effectors
JP2018083625A (en) * 2013-06-09 2018-05-31 アイトゲネシシェ・テヒニシェ・ホーホシューレ・チューリヒ Controlled flight of multi-copter experiencing failure affecting effector
JPWO2016148303A1 (en) * 2015-03-19 2017-06-01 株式会社プロドローン Unmanned rotary wing aircraft and surrounding object ranging method
US20180065735A1 (en) * 2015-03-19 2018-03-08 Prodrone Co., Ltd. Unmanned rotorcraft and method for measuring circumjacent object around rotorcraft
US10683086B2 (en) 2015-03-19 2020-06-16 Prodrone Co., Ltd. Unmanned rotorcraft and method for measuring circumjacent object around rotorcraft
WO2016148303A1 (en) * 2015-03-19 2016-09-22 株式会社プロドローン Unmanned rotorcraft, and surrounding object ranging method thereof
US11094202B2 (en) 2015-03-31 2021-08-17 SZ DJI Technology Co., Ltd. Systems and methods for geo-fencing device communications
US11120456B2 (en) 2015-03-31 2021-09-14 SZ DJI Technology Co., Ltd. Authentication systems and methods for generating flight regulations
JP2018510402A (en) * 2015-03-31 2018-04-12 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Method for determining position of unmanned aircraft and communication position system
US11367081B2 (en) 2015-03-31 2022-06-21 SZ DJI Technology Co., Ltd. Authentication systems and methods for generating flight regulations
US11961093B2 (en) 2015-03-31 2024-04-16 SZ DJI Technology Co., Ltd. Authentication systems and methods for generating flight regulations
JP2017144986A (en) * 2015-10-14 2017-08-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Unmanned air vehicle and flight control method
WO2017166724A1 (en) * 2016-03-30 2017-10-05 乐视控股(北京)有限公司 Aircraft apron device, aircraft, and aircraft parking system
JP2017206072A (en) * 2016-05-17 2017-11-24 株式会社エンルートM’s Flight control device and flight control method
WO2020136703A1 (en) * 2018-12-25 2020-07-02 楽天株式会社 Unmanned aerial vehicle control system, unmanned aerial vehicle control method, and program
JP6748797B1 (en) * 2018-12-25 2020-09-02 楽天株式会社 Unmanned aerial vehicle control system, unmanned aerial vehicle control method, and program
WO2022223209A1 (en) * 2021-04-19 2022-10-27 Siemens Energy Global GmbH & Co. KG Drone having flight-direction-dependent sensor orientation for autonomous drone applications, and method for avoiding collisions

Also Published As

Publication number Publication date
JPWO2010137596A1 (en) 2012-11-15
JP5688700B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5688700B2 (en) MOBILE BODY CONTROL DEVICE AND MOBILE BODY HAVING MOBILE BODY CONTROL DEVICE
US11247522B2 (en) Vehicle capable of multiple varieties of locomotion
CN110192122B (en) System and method for radar control on unmanned mobile platforms
US10534068B2 (en) Localization system, vehicle control system, and methods thereof
US9352834B2 (en) Micro unmanned aerial vehicle and method of control therefor
JP6377169B2 (en) System and method for estimating UAV position
WO2019080924A1 (en) Method for configuring navigation chart, obstacle avoidance method and device, terminal, unmanned aerial vehicle
US20170341776A1 (en) Perimeter structure for unmanned aerial vehicle
JP2020505261A (en) Collision avoidance system and method for unmanned aerial vehicles
US20180350086A1 (en) System And Method Of Dynamically Filtering Depth Estimates To Generate A Volumetric Map Of A Three-Dimensional Environment Having An Adjustable Maximum Depth
EP3531223B1 (en) Obstacle avoidance method and aircraft
US10386857B2 (en) Sensor-centric path planning and control for robotic vehicles
JP2009173263A (en) Method and system for autonomous tracking of mobile target by unmanned aerial vehicle (uav)
US11287261B2 (en) Method and apparatus for controlling unmanned aerial vehicle
Schnipke et al. Autonomous navigation of UAV through GPS-denied indoor environment with obstacles
JP2019007964A (en) System and method for estimating position of uav
Chowdhary et al. Integrated guidance navigation and control for a fully autonomous indoor uas
Rossouw et al. An open-source autopilot and source localisation for bio-inspired miniature blimps
US9975624B1 (en) Multicopter propeller guard system
US20210147068A1 (en) Drone control device using model prediction control
Iwakura et al. Movable Range-Finding Sensor System and Precise Automated Landing of Quad-Rotor MAV
Danko et al. Robotic rotorcraft and perch-and-stare: Sensing landing zones and handling obscurants
Liu et al. Sensing via collisions: a smart cage for quadrotors with applications to self-localization
Suzuki Automatic Take-Off and Landing Control for Small Unmanned Helicopter
CN114127510A (en) 3D localization and mapping system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780551

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011516027

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780551

Country of ref document: EP

Kind code of ref document: A1