WO2010137355A1 - 有機エレクトロルミネセンス表示装置、その製造方法、カラーフィルタ基板及びその製造方法 - Google Patents

有機エレクトロルミネセンス表示装置、その製造方法、カラーフィルタ基板及びその製造方法 Download PDF

Info

Publication number
WO2010137355A1
WO2010137355A1 PCT/JP2010/051049 JP2010051049W WO2010137355A1 WO 2010137355 A1 WO2010137355 A1 WO 2010137355A1 JP 2010051049 W JP2010051049 W JP 2010051049W WO 2010137355 A1 WO2010137355 A1 WO 2010137355A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
color
region
partition
partition wall
Prior art date
Application number
PCT/JP2010/051049
Other languages
English (en)
French (fr)
Inventor
園田通
山本恵美
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/259,420 priority Critical patent/US9093399B2/en
Publication of WO2010137355A1 publication Critical patent/WO2010137355A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating

Definitions

  • the present invention relates to an organic electroluminescence display device, a manufacturing method thereof, a color filter substrate, and a manufacturing method thereof. More specifically, the present invention relates to an organic electroluminescence display device suitable for a color display device, a manufacturing method thereof, a color filter substrate, and a manufacturing method thereof.
  • An organic electroluminescence display device (hereinafter, also referred to as an organic EL display device or OLED) has advantages that it can be easily thinned, has a fast response speed, and does not require a backlight, so that it consumes less power. It is expected as a display device that replaces a liquid crystal display device or CRT (Cathode Ray Tube).
  • red (R), green (G), and blue (B) picture elements are separately applied by a mask vapor deposition method or an inkjet (IJ) method. That is, as shown in FIG. 11, the functional material layer (organic functional layer) material is provided for each pixel 300 of each color through a slot mask so as to cover each pixel 300 (picture element light emitting unit 310). That is, functional materials are vapor-deposited individually. Thereby, the vapor deposition area
  • IJ inkjet
  • the ink jet method when used, a bank surrounding each picture element 300 is formed, and a functional material is applied therein.
  • the application region in the bank corresponds to the pixel light emitting unit 310 in FIG.
  • a coating type R, G, and B pixel forming method using a solution such as an ink jet method is currently attracting attention because of its high material utilization efficiency.
  • the ink jet method is used not only for the organic layer of an organic EL element but also for the production of functional thin films such as a color filter layer (colored layer) of a color filter substrate and a pattern wiring of a metal wiring substrate.
  • Patent Document 1 discloses a method of filling a pixel with an organic EL solution by a capillary phenomenon. This method can also be applied to a high-resolution display device. More specifically, the grooves for the R, G, and B picture elements are formed so that the positions of the tips of the grooves are shifted, and a stopper (photoresist) that inhibits the entry of the organic EL solution is provided for the R and G. By providing in the picture element groove, R, G and B are separately applied.
  • this method fills the groove for B picture element having the highest tip with the organic EL solution of B, then peels off the stopper provided in the groove for G picture element, Fill the G pixel groove with the G organic EL solution while preventing the tip of the B pixel groove from adhering to the G organic EL solution.
  • the provided stopper is peeled off, and finally, the organic EL solution of R is filled in the groove for the R pixel.
  • Patent Documents 2 and 3 disclose a method for manufacturing an organic EL display device using a capillary phenomenon.
  • Patent Document 2 discloses a method for manufacturing an organic EL display device in which a trench (groove) formed in a photoresist is filled with a dopant material using a capillary phenomenon.
  • Patent Document 3 an injection groove communicating with an opening in which a pixel is arranged is formed in a dielectric layer, and a liquid such as a light emitting layer material is injected into the injection groove, so that the liquid is injected from the injection groove to the pixel by a capillary phenomenon.
  • a method for forming a film by flowing it in is disclosed. According to the methods of Patent Documents 2 and 3, it is possible to paint the picture elements of two colors at maximum using the capillary phenomenon.
  • Patent Documents 2 and 3 only a maximum of two color picture elements can be separately applied using the capillary phenomenon.
  • a pixel of a display device that performs color display is composed of picture elements of three colors (for example, RGB). Therefore, even if the method of Patent Document 2 or 3 is used, there is room for improvement in that at least one color picture element needs to be formed using mask vapor deposition or the like.
  • the present invention has been made in view of the above-described present situation, and can be manufactured inexpensively and easily, and an organic EL display device capable of downsizing the pixel region, a manufacturing method thereof, a color filter substrate, and the same
  • the object is to provide a manufacturing method.
  • the inventors of the present invention have made various studies on an organic EL display device that can be easily and inexpensively manufactured and can reduce the size of the picture element region.
  • the frame structure is formed outside the display area.
  • the method of pouring the injected coating liquid into the pixel area in the display area by using the flow of the coating liquid caused by capillary action or the like.
  • it is possible to separate the pixel areas of three or more colors, and the pixel areas of all colors constituting the pixel The inventors have found that it can be formed inexpensively and easily, and have conceived that the above-mentioned problems can be solved brilliantly, and have reached the present invention.
  • the present invention includes a substrate in which a plurality of pixel regions including a first color pixel region, a second color pixel region, and a third color pixel region are arranged in a display area.
  • the organic EL display device in which a functional material layer including an organic light emitting layer is disposed in each of the plurality of picture element regions, the first partition wall portion, Two partition walls and a third partition wall are disposed, and on the substrate outside the display area, a first frame structure, a second frame structure, and a third frame structure are disposed,
  • the color pixel area is arranged in a first partition area partitioned by the first partition wall, and the second color pixel area is a second partition area partitioned by the second partition wall.
  • the third color picture element region is disposed in a third partition region partitioned by the third partition wall, and the first partition region is The organic material is connected in the first frame structure, the second partition region is connected in the second frame structure, and the third partition region is connected in the third frame structure.
  • This is an EL display device.
  • the configuration of the organic EL display device of the present invention is not particularly limited by other components as long as such components are formed as essential. A preferred embodiment of the organic EL display device of the present invention will be described in detail below.
  • the first frame-like structure and the second frame-like structure are arranged to face each other with the display area interposed therebetween, and the third frame-like structure is the first frame-like structure. It is preferable to arrange in a region sandwiched between the frame-like structure and the second frame-like structure.
  • the first, second and third frame-like structures in a U-shape so as to surround the display area from three directions, each of the first, second and third partition regions, Different coating liquids can be poured easily. As a result, it is possible to easily paint the three color picture element regions.
  • the two third frame-like structures are preferably arranged to face each other so as to sandwich the display area. Thereby, a coating liquid can be filled in a 3rd division area in a short time.
  • the third partition region preferably includes a U-shaped shape along the outline of either the first partition region or the second partition region.
  • a plurality of picture element regions of different colors are arranged in the matrix direction in the display area.
  • a pixel is composed of RGB
  • it is composed of a column composed of a plurality of R pixel regions, a column composed of a plurality of G pixel regions, and a plurality of B pixel regions. Rows are arranged side by side.
  • the third partition region includes the U-shaped shape, the coating liquid injected into the third partition region can be spread around the region partitioned by other partition walls. . As a result, it is possible to easily paint the three color picture element regions.
  • the pixel areas that can be separately painted by the organic EL display device of the present invention are not limited to three colors, and by adding a frame-like structure and a partition wall, pixel areas of four colors or more are separately painted. It is also possible. In that case, for example, the region partitioned by the partition wall to be added only needs to include a U-shaped shape along the third partition region. Moreover, the position where the frame-like structure to be added is arranged is not particularly limited, and can be set as appropriate according to the member arranged outside the display area.
  • the third partition region as described above includes a U-shaped shape
  • the third partition region when the substrate is viewed in plan, includes the first partition region and the first partition region.
  • regions may be mentioned is mentioned.
  • the third partition region as described above includes a U-shaped shape
  • the third partition region when the substrate is viewed in plan, includes the first partition region and the first partition region.
  • the picture element regions are arranged so as not to sandwich the two-compartment region.
  • the third partition region is an outline of the first partition region. And it is preferable that it is the shape meandered along the outline of the said 2nd division area
  • a pair of electrodes that sandwich the functional material layer and an edge cover that covers one end of the pair of electrodes are disposed on the substrate, and the first partition portion, the second partition portion, and the At least one of the third partition walls is preferably disposed on the edge cover.
  • the substrate is preferably a TFT substrate.
  • a plurality of pixels including the first color pixel region, the second color pixel region, and the third color pixel region are juxtaposed in a matrix direction.
  • the first color pixel region, the second color pixel region, and the third color pixel region at least one color pixel region is included in one pixel. Preferably they are arranged.
  • a plurality of pixels including the first color pixel region, the second color pixel region, and the third color pixel region are juxtaposed in a matrix direction.
  • the first color pixel region, the second color pixel region, and the third color pixel region are preferably arranged symmetrically with respect to the pixels adjacent in the row direction.
  • the material of the functional material layer arranged in the pixel region of the first color is arranged, and in the second frame-like structure, the second frame-like structure has the second The material of the functional material layer disposed in the color pixel region is disposed, and the functional material layer disposed in the third color pixel region is disposed in the third frame-like structure.
  • the material is arranged.
  • the material of the organic light emitting layer disposed in the pixel area of the first color is disposed, and in the second frame-shaped structure, the second color is formed.
  • the material of the organic light emitting layer disposed in the picture element region is disposed, and the material of the organic light emitting layer disposed in the third color pixel region is disposed in the third frame structure. It is preferred that
  • the present invention is also a method for manufacturing the organic EL display device of the present invention, wherein the manufacturing method is arranged in the first frame-like structure, and the functionality arranged in the pixel area of the first color.
  • the manufacturing method of the first organic EL display device of the present invention is not particularly limited by other steps as long as it has the above steps.
  • a preferred embodiment in the first organic EL display device of the present invention will be described in detail below.
  • the third coating liquid preferably has a lower viscosity than the first coating liquid and the second coating liquid. Thereby, the coating liquid can be filled in the region partitioned by the third partition wall in a short time.
  • the third partitioned area has a shape including a U-shape or a meandering shape
  • the third-color picture element area disposed in the third partitioned area It may take a long time to fill the coating liquid.
  • the manufacturing method of the organic EL display device includes the first partition part, the second partition part, the third partition part, the first frame-like structure, the second frame-like structure, and the third frame-like structure. It is preferable to include the process of forming an object simultaneously. Thereby, the manufacturing process of the organic EL display device can be further simplified.
  • the present invention also includes a substrate in which a plurality of picture element areas including a first color picture element area, a second color picture element area, and a third color picture element area are arranged in a display area, In each of the plurality of picture element regions, a manufacturing method of an organic EL display device in which a functional material layer including an organic light emitting layer is disposed, the manufacturing method is performed on the substrate in the display area, A first partition that partitions the first color pixel region, a second partition that partitions the second color pixel region, and a third partition that separates the third color pixel region.
  • a step of injecting a liquid, a step of injecting a second coating liquid containing the material of the functional material layer disposed in the pixel region of the second color into the second frame-shaped structure, and Injecting a third coating liquid containing the material of the functional material layer disposed in the pixel region of the third color into the third frame-shaped structure (
  • the method for producing the second organic EL display device of the present invention is not particularly limited by the other steps as long as it has the above steps.
  • the preferable aspect of the manufacturing method of the 1st organic EL display apparatus of this invention mentioned above can be utilized also as a preferable aspect of the manufacturing method of the 2nd organic EL display apparatus of this invention.
  • the present invention is also a color filter substrate including a substrate in which a plurality of colored layers including a colored layer of a first color, a colored layer of a second color, and a colored layer of a third color are arranged in a display area.
  • the first partition wall, the second partition wall, and the third partition wall are disposed on the substrate in the display area, and the first frame-shaped structure, the second partition wall, and the third partition wall are disposed on the substrate outside the display area.
  • a two-frame structure and a third frame-shaped structure are disposed, and the colored layer of the first color is disposed in a first partition region partitioned by the first partition wall, and the second color structure
  • the colored layer is disposed in a second partitioned region partitioned by the second partition wall portion
  • the third colored layer is disposed in a third partitioned region partitioned by the third partition wall portion
  • the first partitioned area is connected in the first frame-shaped structure
  • the second partitioned area is connected in the second frame-shaped structure
  • the first Dividing area is also a color filter substrate is connected to the third frame like structure inside.
  • the configuration of the color filter substrate of the present invention is not particularly limited by other components as long as such components are formed as essential.
  • the preferred form of the organic EL display device of the present invention described above can also be used as a preferred form of the color filter substrate of the present invention by replacing the “picture element region” with a “colored layer”.
  • the present invention also provides a color filter substrate comprising a substrate in which a plurality of colored layers including a colored layer of a first color, a colored layer of a second color, and a colored layer of a third color are arranged in a display area.
  • the manufacturing method includes: a first partition wall partitioning the colored layer of the first color on the substrate in the display area; and a second partition wall partitioning the colored layer of the second color. And a step of forming a third partition wall section that partitions the colored layer of the third color, and the first partition region partitioned by the first partition wall portion on the substrate outside the display area.
  • the first frame-like structure connected to the second partition-like structure, the second frame-like structure connected to the second partition region partitioned by the second partition wall, and the third partition defined by the third partition wall A step of forming a third frame-like structure whose interior is connected to the partition region; and Injecting a first coating liquid containing a color layer material; injecting a second coating liquid containing a color layer material of the second color into the second frame structure; And a step of injecting a third coating liquid containing the material of the colored layer of the third color into the three-frame structure.
  • the manufacturing method of the color filter substrate of the present invention is not particularly limited by other steps as long as it has the above steps.
  • the preferable aspect of the manufacturing method of the first organic EL display device of the present invention described above is a preferable aspect of the manufacturing method of the color filter substrate of the present invention by replacing the “pixel region” with a “colored layer”. Can also be used.
  • an organic EL display device which can be manufactured inexpensively and easily, and which can downsize the pixel region, A manufacturing method, a color filter substrate, and a manufacturing method thereof can be provided.
  • FIG. 1 is a schematic plan view illustrating an overall configuration of an organic EL display device according to Example 1.
  • FIG. 1 is a schematic cross-sectional view illustrating an overall configuration of an organic EL display device of Example 1.
  • FIG. 3 is a schematic plan view showing the periphery of the display area of the organic EL display device of Example 1. Moreover, it is also a schematic plan view showing the periphery of the display area of the color filter substrate of Example 6.
  • FIG. 4 is a schematic cross-sectional view taken along line A1-A2 in FIG. Moreover, it is also a cross-sectional schematic diagram showing the organic EL display device of Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view illustrating an overall configuration of an organic EL display device according to Example 1.
  • FIG. 1 is a schematic cross-sectional view illustrating an overall configuration of an organic EL display device of Example 1.
  • FIG. 3 is a schematic plan view showing the periphery of the display area of the organic EL display device of
  • FIG. 6 is a schematic plan view illustrating a periphery of a display area of an organic EL display device according to Example 2.
  • FIG. 10 is a schematic plan view illustrating the periphery of a display area of an organic EL display device according to Example 3.
  • FIG. 7 is a schematic cross-sectional view taken along line B1-B2 in FIG.
  • FIG. 10 is a schematic plan view illustrating the periphery of a display area of an organic EL display device according to Example 4.
  • FIG. 10 is a schematic plan view illustrating the periphery of a display area of an organic EL display device according to Example 5.
  • 6 is a schematic cross-sectional view showing a color filter substrate of Example 6.
  • the taper angle refers to an angle with respect to the surface of the substrate.
  • a shape having a taper angle of 90 ° or less is referred to as a forward taper shape, and a shape exceeding 90 ° is referred to as a reverse taper shape.
  • red is preferably a color having a dominant wavelength of 620 nm or more and 680 nm or less, and more preferably a color having a dominant wavelength of 630 nm or more and 670 nm or less.
  • Green is preferably a color having a dominant wavelength of 520 nm or more and less than 580 nm, and more preferably a color having a dominant wavelength of 530 nm or more and 570 nm or less.
  • Blue is preferably a color having a dominant wavelength of 420 nm or more and less than 480 nm, and more preferably a color having a dominant wavelength of 430 nm or more and 470 nm or less.
  • FIG. 4 is a schematic cross-sectional view illustrating the organic EL display device according to the first embodiment.
  • the organic EL display device (organic EL display) of this embodiment includes a first electrode 250, an edge cover 240, a partition wall 120, a functional material layer,
  • the second electrode 260 is stacked in this order from the substrate 200 side.
  • the first electrode 250 is provided for each pixel region 140R (R pixel region), pixel region 140G (G pixel region), and pixel region 140B (B pixel region).
  • the edge cover 240 is a member for covering the end portion of the first electrode 250.
  • the partition wall 120 is a member that separates the pixel regions 140R, 140G, and 140B and holds a coating liquid (solution).
  • the partition wall 120 has an insulating property.
  • the functional material layer includes a light emitting layer containing an organic compound (also referred to as an organic light emitting layer).
  • the organic light emitting layers 230R, 230G, and 230B and the hole injection layer / hole transport layer 220 correspond to a functional material layer.
  • One of the first electrode 250 and the second electrode 260 functions as an anode, and the other functions as a cathode.
  • the substrate 200 may be an active matrix substrate or a passive matrix substrate.
  • FIG. 4 shows a case where the substrate 200 is an active matrix substrate.
  • a plurality of thin film transistors (TFTs) 270 and a plurality of signal lines are formed on the substrate 200, and an interlayer insulating film 210 functioning as a planarization layer and a first layer are further provided above them.
  • the electrodes 250 are formed in this order.
  • a passive matrix substrate a plurality of signal lines and a first electrode 250 are formed on the substrate.
  • the active element portion such as TFT 270 on the active matrix substrate and the organic EL element portion are separated by an interlayer insulating film 210.
  • the lower layer active element portion and the upper layer first electrode 250 are electrically connected via a connecting conductor passing through a contact hole formed in the interlayer insulating film 210.
  • an active element part and an organic EL element part are electrically connected.
  • the first electrode 250 may be used as the connection conductor.
  • the functional material layer may be formed from a low molecular material or a polymer material.
  • the carrier transport layer refers to a hole transport layer or an electron transport layer.
  • the electron blocking layer is a kind of carrier blocking layer.
  • all layers sandwiched between a pair of electrodes are collectively referred to as functional material layers.
  • (1) Hole transport layer / organic light emitting layer (2) Organic light emitting layer / electron transport layer (3) Hole transport layer / organic light emitting layer / electron transport layer (4) Hole injection layer / hole transport layer / organic Light emitting layer / electron transport layer (5) hole transport layer / electron blocking layer / organic light emitting layer / electron transport layer
  • the organic light emitting layers 230R, 230G, and 230B may be a single layer or a structure in which a plurality of layers are stacked. Further, a layer obtained by doping a base material with a dopant may be used.
  • the coating liquid used in the step of filling the pixel regions 140R, 140G, and 140B with the organic light emitting material (hereinafter also simply referred to as the light emitting material) using the flow of the coating liquid caused by the capillary phenomenon or the like will be described.
  • the case where a polymer organic light emitting material is used as the coating liquid will be described.
  • the present invention is not limited to this, and of course, a soluble low molecular weight organic light emitting material is used. It doesn't matter.
  • At least one functional material layer formed by a method of filling a region partitioned by the partition wall 120 with a coating solution containing an organic light emitting material by using a flow of the coating solution generated by a capillary phenomenon or the like may be included, and may further include another functional material layer formed by other methods.
  • an inorganic substance is used as the material for the hole transport layer, and the hole transport layer is formed on the substrate 200 using a sputtering method or a vacuum deposition method, and then is generated by a capillary phenomenon or the like.
  • the organic light emitting layers 230R, 230G, and 230B are formed on the hole transport layer using the flow of the coating liquid, and the electron transport layer is formed on the organic light emitting layers 230R, 230G, and 230B using a spray method. May be.
  • the organic light emitting layers 230R, 230G, and 230B are formed by filling (coating) a coating liquid containing a light emitting material in a region partitioned by the partition wall 120 by using a flow of the coating liquid generated by a capillary phenomenon or the like.
  • the coating liquid used here is a solution containing at least a light emitting material and a solvent.
  • the light emitting material may be one type or a plurality of types.
  • the coating liquid may contain a film holding material (binder), a leveling material, a light emission assist material, an additive material (donor, acceptor, etc.), a carrier transport material, a light emitting dopant, and the like.
  • a general light emitting material for an organic EL element can be used.
  • a light emitting material is classified into a polymer light emitting material, a precursor of the polymer light emitting material, and the like. Although these specific compounds are illustrated below, this invention is not limited to these.
  • polymer light emitting material examples include poly (2-decyloxy-1,4-phenylene) (DO-PPP), poly [2,5-bis- [2- (N, N, N-triethylammonium) ethoxy]. ] -1,4-phenyl-alt-1,4-phenylene] dibromide (PPP-NEt3 +), poly [2- (2'-ethylhexyloxy) -5-methoxy-1,4-phenylenevinylene] (MEH- PPV) and the like.
  • Examples of the precursor of the polymer light emitting material include poly (p-phenylene vinylene) precursor (Pre-PPV), poly (p-naphthalene vinylene) precursor (Pre-PNV), and the like.
  • the solvent may be any solvent that can dissolve or disperse the light emitting material, and examples thereof include pure water, methanol, ethanol, THF (tetrahydrofuran), chloroform, toluene, xylene, and trimethylbenzene.
  • a high boiling point solvent is preferably used.
  • a low molecular light emitting material may be used as the light emitting material.
  • the low molecular light emitting material include anthracene, naphthalene, indene, phenanthrene, pyrene, naphthacene, triphenylene, anthracene, perylene, picene, fluoranthene, acephenanthrylene, pentaphen, pentacene, coronene, butadiene, coumarin, acridine, stilbene, Alternatively, derivatives thereof, tris (8-quinolinolato) aluminum complex, bis (benzoquinolinolato) beryllium complex, tri (dibenzoylmethyl) phenanthroline europium complex ditoluylvinylbiphenyl and the like can be mentioned.
  • Each of the hole transport layer and the electron transport layer may have a single layer structure or a multilayer structure, and may also function as an injection layer.
  • the carrier transport layer can be formed by the same method as the organic light emitting layers 230R, 230G, and 230B, but can be formed by other general methods.
  • a general material can be used as the material of the carrier transport layer (carrier transport material). Although these specific compounds are shown below, this invention is not limited to this.
  • Examples of the material for the hole transport layer include porphyrin compounds, N, N′-bis- (3-methylphenyl) -N, N′-bis- (phenyl) -benzidine (TPD) Low molecular weight materials such as aromatic tertiary amine compounds such as N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD), hydrazone compounds, quinacridone compounds, stillamine compounds, Polymer materials such as polyaniline, 3,4-polyethylenedioxythiophene / polystyrene sulfonate (PEDOT / PSS), poly (triphenylamine derivative), polyvinylcarbazole (PVCz), poly (p-phenylene vinylene) precursor, Examples thereof include polymer material precursors such as poly (p-naphthalene vinylene) precursors.
  • Examples of the material for the electron transport layer include low molecular materials such as oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, and fluorene derivatives, and polymer materials such as poly (oxadiazole). Can be mentioned.
  • the carrier blocking layer may have a single layer structure or a multilayer structure.
  • the carrier blocking layer can be formed by the same method as the organic light emitting layers 230R, 230G, and 230B, but can be formed by other general methods.
  • a general material can be used as the material of the carrier blocking layer (carrier blocking material). Although these specific compounds are shown below, this invention is not limited to this.
  • the material of the electron blocking layer for example, a low molecular material such as N, N′-bis- (3-methylphenyl) -N, N′-bis- (phenyl) -benzidine (TPD) And polymer materials such as polyvinyl carbazole (PVCz), and examples of the material of the hole blocking layer (hole blocking material) include polymer materials such as oxadiazole derivatives.
  • the solvent for forming functional material layers other than the organic light emitting layers 230R, 230G, and 230B can be the same as that used for forming the organic light emitting layers 230R, 230G, and 230B.
  • a material that is soluble in a solvent for the light emitting material is used as the hole transport material.
  • the hole transport layer is dissolved in the solvent for the light emitting material, and the uniformity of the film of the hole transport layer may be deteriorated. Therefore, when laminating a plurality of functional material layers, a solvent that does not dissolve the lower layer (first layer) is used when forming the upper layer (later layer). It is preferable to do.
  • a general electrode material can be used for the first electrode 250 and the second electrode 260 (hereinafter, collectively referred to as an electrode layer). Further, a film such as a carrier injection layer can be inserted at the interface between the electrode layer and the functional material layer as necessary.
  • anode electrode for supplying holes to the functional material layer
  • a metal material Au, Ni, Pt, etc.
  • a conductive metal oxide ITO, IZO, ZnO, SnO 2 etc.
  • a single layer film or a stacked film in which a plurality of materials are stacked can be used.
  • an oxide having a thickness for example, about 1 nm that does not greatly hinder the conductivity may be disposed between the anode and the functional material layer.
  • a metal material having a work function of 4.0 eV or less such as Ca, Ce, Cs, Rb, Sr, Ba, Mg, Li (hereinafter, low work Functional material).
  • Ca and Ba are preferably used for the polymer organic light emitting layer.
  • the cathode material is chemically relatively stable such as Ni, Os, Pt, Pd, Al, Au, Rh, Ag.
  • An alloy of such a metal with the low work function material is also suitable.
  • a conductive metal oxide such as ITO, IZO, ZnO, SnO 2 is used as a transparent electrode layer. It is preferable to form it on a metal layer (cathode) having optical properties.
  • the transparent electrode layer may be a single layer or a laminated film of a plurality of materials.
  • the structure of the organic EL element part in this embodiment should just have the 1st electrode 250, the organic layer (functional material layer) containing a light emitting layer, and the 2nd electrode 260 at least, for example, Another layer such as the above-described oxide layer may be further included.
  • Example 1 Next, Example 1 of the present invention will be described in detail with reference to the drawings. First, the overall configuration of the organic EL display device 100 according to the first embodiment of the present invention and the outline of the manufacturing method will be described with reference to FIGS.
  • An interlayer film (interlayer insulating film), an anode (first electrode), and an edge cover are patterned in this order on a glass or resin substrate (TFT substrate 200) on which TFTs are formed.
  • TFT substrate 200 glass or resin substrate
  • a plurality of pixels are arranged in a matrix in the display area 150 for displaying an image.
  • a coating liquid (solution) containing functional materials for three colors is stored outside the display area 150, that is, in the frame area, with a permanent film resist (resist film remaining after the panel is completed).
  • the frame-like structures 110a, 110b, and 110c are formed.
  • a partition that separates pixel regions of different colors is formed in the display area 150.
  • a plurality of stripe-shaped grooves regions partitioned by the partition are formed in the display area 150.
  • a functional material layer (a hole injection layer, a hole transport layer, an interlayer, or the like) disposed below the light emitting layer is formed on the entire surface of the display area 150.
  • a method such as a vacuum deposition method or a spray method is used. Or you may use the same method as the preparation method of the light emitting layer mentioned later.
  • coating liquids (filling liquids 130a, 130b, and 130c) containing light emitting materials of different colors are injected into the frame-shaped structures 110a, 110b, and 110c, respectively.
  • the coating liquid flows into the grooves formed in the display area 150 from the inside of the frame-like structures 110a, 110b, 110c by capillary action, and a different coating liquid is filled for each color of the pixel region. .
  • the three color picture element regions can be painted separately.
  • an inkjet method, a spray method, a nozzle coating method, a dispenser, or the like can be applied.
  • a functional material layer (an electron transport layer, an electron injection layer, or the like) disposed above the light emitting layer is formed in the same manner as the functional material layer disposed below the light emitting layer.
  • a cathode (second electrode) is formed by a vacuum deposition method. Then, as shown in FIG. 2, the sealing glass 170 to which the desiccant 160 is attached is bonded to the TFT substrate 200 and sealed with a sealing resin (sealant) 180.
  • the organic EL display device 100 of this embodiment is completed.
  • a pixel is a minimum display unit of an image.
  • the picture element region is a monochrome region that constitutes a pixel.
  • a region marked with P represents one pixel.
  • Each pixel is composed of three colors of red (R), green (G), and blue (B), and one pixel has one picture element area 140R (R picture element area).
  • One area 140G (G picture element area) and two picture element areas 140B (B picture element areas) are arranged.
  • the pixel of this embodiment is configured by R / B / G / B.
  • a picture element area 140R, a picture element area 140G, and a picture element area 140B are provided in a matrix. Further, outside the display area 150 (frame region), a frame-shaped structure 110a (first frame-shaped structure), a frame-shaped structure 110b (second frame-shaped structure), and a frame-shaped structure 110c (third frame). Shaped structure) is arranged.
  • the TFT 270, the first electrode 250, and the edge cover 240 are formed on the TFT substrate 200 for each of the pixel regions 140R, 140G, and 140B.
  • the edge cover 240 is a member that covers the end portion of the first electrode 250 and prevents the end portion of the first electrode 250 from being short-circuited with the second electrode 260.
  • an insulating partition 120 that partitions (separates) the pixel regions 140R, 140G, and 140B for each color is formed.
  • the partition wall 120 is disposed so as to collectively surround the same color pixel regions adjacent in the vertical direction.
  • the shape of the region surrounded by the partition wall 120 is a band shape (line shape). That is, in the display area 150, a band-shaped groove is formed by the partition wall 120, and the same color pixel regions adjacent in the vertical direction are arranged in the groove.
  • a functional material layer is formed on the first electrode 250. More specifically, in the pixel region 140R, a hole injection layer / hole transport layer 220 and an organic light emitting layer 230R (R organic light emitting layer) are formed in this order. In the pixel region 140R, the hole injection layer / hole transport layer 220 and the organic light emitting layer 230G (G organic light emitting layer) are formed in this order. In the pixel region 140B, the hole injection layer / hole transport layer 220 and the organic light emitting layer 230B (B organic light emitting layer) are formed in this order. Further, the second electrode 260 is formed so as to cover the entire display area 150.
  • the partition wall 120 that partitions the pixel regions 140R, 140G, and 140B is a wall-like structure, and is formed in a slit shape along the arrangement of the pixel regions 140R, 140G, and 140B arranged in a stripe shape.
  • the partition 120 includes a first partition that partitions the pixel region 140R from other color pixel regions, a second partition that partitions the pixel region 140G from other color pixel regions,
  • the region 140B has a third partition wall that partitions the pixel region of another color.
  • each partition part functions also as a part of partition part which divides the pixel area
  • the region partitioned by the third partition wall portion can also be referred to as a region partitioned by the first partition wall portion and the second partition wall portion.
  • the frame-like structure 110 a is arranged along the upper contour line of the display area 150, that is, along the upper end of the TFT substrate 200, while the frame-like structure 110 b is arranged below the display area 150.
  • the frame-shaped structures 110a and 110b are arranged to face each other with the display area 150 interposed therebetween.
  • the frame-like structure 110 c is arranged along the left outline of the display area 150, that is, along the left end of the TFT substrate 200. As described above, the frame-like structure 110c is arranged in a region sandwiched between the frame-like structures 110a and 110b when the substrate is viewed in plan view, and the frame-like structures 110a, 110b, and 110c provide a display area. 150 three sides are surrounded.
  • the frame-shaped structures 110a, 110b, and 110c are provided in a frame shape so as to surround a rectangular region extending in the left-right direction. However, a plurality of openings are provided on the display area 150 side of the frame-like structures 110a and 110b, and one opening is provided on the display area 150 side of the frame-like structure 110c.
  • the first partition wall portion is connected to the frame-shaped structure 110a. That is, the first partition wall portion and the frame-like structure 110a are integrally formed, and are divided by the first partition wall portion (the groove in which the pixel region 140R adjacent in the vertical direction is arranged, the first partition region). ) Is connected to the inside of the frame-shaped structure 110a.
  • the second partition wall portion is connected to the frame-like structure 110b. That is, the second partition wall portion and the frame-like structure 110b are integrally formed, and are partitioned by the second partition wall portion (grooves in which the pixel region 140G adjacent in the vertical direction is disposed, the second partitioned region). ) Is connected to the inside of the frame-shaped structure 110b.
  • the third partition wall portion is connected to a frame-shaped structure 110 c formed outside the display area 150. That is, the third partition wall portion and the frame-like structure 110c are integrally formed, and are divided by the third partition wall portion (the groove in which the pixel region 140B adjacent in the vertical direction is arranged, the third partition region). ) Is connected to the inside of the frame-like structure 110c.
  • the coating liquid containing the R light emitting material (first coating liquid)
  • the coating liquid spreads in the frame-shaped structure 110a, and at the same time, the capillarity of the frame-shaped structure 110a. It spreads wet from the opening to the first compartment area.
  • the coating liquid containing the R light emitting material is applied to the pixel region 140R.
  • the coating liquid containing the G light emitting material (second coating liquid)
  • the coating liquid spreads in the frame-shaped structure 110b and is formed into a frame shape by capillary action. It spreads wet from the opening of the structure 110b to the second partition region.
  • the coating liquid containing G light emitting material is applied to the pixel region 140G.
  • a coating liquid containing the light emitting material B (third coating liquid) is applied to the frame-shaped structure 110c
  • the coating liquid spreads in the frame-shaped structure 110c and also has a frame-like structure due to capillary action. It spreads wet from the opening of the object 110c to the third partition region.
  • the coating liquid containing the light emitting material of B is applied to the pixel region 140B.
  • it is possible to paint the picture element regions of all the colors constituting the pixel by utilizing the capillary phenomenon.
  • the coating liquid injected into each frame-like structure is spread in the area partitioned by each partition wall by capillary action, so that the coating amount is uniform between the pixel areas of the same color. Therefore, it is possible to suppress variations in the film thickness of the film formed by the coating liquid between the pixel regions of the same color.
  • the frame-like structures 110a and 110b are formed along the two opposing sides of the display area 150, respectively, and then the grooves are alternately extended to the display area 150 so that two-color pictures are displayed. Paint raw areas separately.
  • the frame-shaped structure 110c is formed along a side perpendicular to the side facing either one of the frame-shaped structures 110a and 110b of the display area 150, and the groove has a shape meandering toward the display area 150 from there. The remaining one color pixel region is applied.
  • a photosensitive resin such as an acrylic resin is applied in a thickness of about 2 ⁇ m on a TFT substrate 200 in which TFTs 270 made of an amorphous silicon film or a polycrystalline silicon film are formed in a matrix, and then exposed, developed and baked. Then, an interlayer insulating film 210 was formed. Next, an ITO film having a thickness of 100 nm was formed on the interlayer insulating film 210 by sputtering.
  • the ITO film was patterned using a ferric chloride aqueous solution as an etching solution, and the first electrode 250 partitioned for each of the pixel regions 140R, 140G, and 140B was formed.
  • the first electrode 250 functions as an anode and is separated from the thin film transistor (TFT 270) by the interlayer insulating film 210 having the function of a planarizing layer.
  • the first electrode 250 passes through a contact hole drilled in the interlayer insulating film 210 and below the thin film transistor. Each is connected to a thin film transistor 270 formed in a matrix.
  • a photosensitive acrylic resin is applied by spin coating so that the thickness is approximately 1 ⁇ m, and then exposure, development, and baking are performed.
  • An edge cover 240 was formed. At this time, the edge cover 240 was formed so as to cover the end of the first electrode 250.
  • the material of the edge cover 240 is not particularly limited as long as it is an insulating material.
  • a photosensitive polyimide resin, a photosensitive novolac resin, or the like can also be used.
  • an optomer series manufactured by JSR Corporation and the like, and as one of the photosensitive polyimide resins a photo nice series manufactured by Toray Industries, Inc. and the like can be given.
  • the manufacturing process can be simplified by forming the partition wall 120 and the frame-shaped structures 110a, 110b, and 110c in the same process (simultaneously).
  • the partition wall 120 and the frame-shaped structures 110a, 110b, and 110c had a thickness (height) of 20 ⁇ m.
  • SU-8 series of Kayaku Microchem Co., Ltd. can be cited as one of the dry films of the photosensitive resin.
  • the partition wall 120 is formed so as to surround the pixel regions 140R, 140G, and 140B for each color, and a portion (first partition wall portion) surrounding the pixel region 140R of the partition wall 120 is connected to the frame-shaped structure 110a.
  • the part surrounding the picture element region 140G of the partition wall 120 (second partition part) is connected to the frame-like structure 110b, and the part surrounding the picture element region 140B of the partition wall 120 (third partition part) is the frame-like structure.
  • object 110c Connected to object 110c. That is, a plurality of picture element regions 140R in the vertical direction are connected to the inside of the frame-like structure 110a, and a plurality of pixel regions 140G are provided in the vertical direction.
  • the strip-shaped groove (region partitioned by the second partition wall portion) is connected to the inside of the frame-shaped structure 110b, and a plurality of pixel regions 140B are arranged in the vertical direction (by the third partition wall portion).
  • the partitioned area was connected to the inside of the frame-like structure 110c.
  • the taper angle of the partition 120 and the frame-shaped structures 110a, 110b, and 110c was 85 °. That is, the partition wall 120 and the frame-shaped structures 110a, 110b, and 110c have a forward tapered shape.
  • the contact angle of each member with water can be appropriately set in consideration of the viscosity and surface tension of the coating solution, but is usually 60 ° or less (more preferably 30 ° or less). Good. On the other hand, if the angle exceeds 60 °, the picture element region may not be sufficiently filled with the coating liquid, resulting in poor coating.
  • each pixel region 140R, 140G, 140B size of a region including a non-light emitting region such as a partition wall
  • the pitch of each pixel region 140R, 140G, 140B is 240 ⁇ m (direction along the partition wall 120, that is, vertical direction) ⁇ 60 ⁇ m (direction perpendicular to the partition wall 120, that is, left and right)
  • the size of the exposed portion (that is, the light emitting region) of the first electrode 250 was 190 ⁇ m (the direction along the partition 120, that is, the vertical direction) ⁇ 30 ⁇ m (the direction perpendicular to the partition 120, that is, the left and right direction).
  • the width (length in the left-right direction) of the partition wall 120 was 20 ⁇ m, and the width of the wall portions of the frame-shaped structures 110a, 110b, and 110c was also 20 ⁇ m.
  • the size of the area surrounded by the frame-shaped structures 110a and 110b is 3 mm in the vertical direction ⁇ 38 mm in the horizontal direction
  • the size of the area surrounded by the frame-shaped structure 110c is 38 mm in the vertical direction ⁇ 3 mm in the horizontal direction.
  • the vertical length of the partition wall 120 was 37.7 mm.
  • the screen size of the organic EL display device 100 of the present embodiment is 36 mm in the vertical direction ⁇ 28.8 mm in the horizontal direction, and the resolution is 106 ppi.
  • the width and height of the partition wall 120 are appropriately set in consideration of the size of the picture element regions 140R, 140G, and 140B, the coating amount of the coating liquid, the aspect ratio (height / width ratio) of the partition wall 120, and the like.
  • the width is usually about 5 to 100 ⁇ m (more preferably 20 to 50 ⁇ m)
  • the height is usually about 5 to 100 ⁇ m (more preferably 20 to 50 ⁇ m).
  • the coating liquid may exceed the partition wall 120 and invade into other regions, which may cause color mixing, while if it exceeds 100 ⁇ m, There is a possibility that the room for forming the light emitting regions of the pixel regions 140R, 140G, and 140B may be reduced. If the height is less than 5 ⁇ m, the coating liquid may cross the partition wall 120 and enter other areas, which may cause color mixing, and a sufficient coating amount is maintained in each of the pixel areas 140R, 140G, and 140B.
  • the organic light emitting layers 230R, 230G, and 230B having a desired film thickness may not be obtained.
  • the thickness exceeds 100 ⁇ m, the functional material layer that adheres to the partition wall 120 after the coating liquid is dried increases. There is a possibility that the organic light emitting layers 230R, 230G, and 230B having a desired film thickness cannot be obtained.
  • the aspect ratio of the partition 120 may be about 20 or less (more preferably 2 or less) as a value obtained by dividing the height by the width. If the aspect ratio exceeds 20, peeling of the film tends to occur and pattern formation failure tends to occur.
  • the width of the region surrounded by the partition wall 120 (the direction perpendicular to the partition wall 120, that is, the length in the left-right direction) can be set as appropriate in consideration of the pixel size and the like. The following is preferable. More specifically, the width of the region surrounded by the partition wall 120 may normally be about 20 to 200 ⁇ m (more preferably 40 to 100 ⁇ m). If the thickness is less than 20 ⁇ m, the thickness of the functional material layer formed from the coating liquid may be nonuniform in the picture element. On the other hand, if the thickness exceeds 200 ⁇ m, the capillary phenomenon becomes weak, and There is a possibility that the tact time required for filling the coating liquid may become longer.
  • the width and height of the frame-shaped structures 110a, 110b, and 110c are appropriately determined in consideration of the panel size, the amount of coating liquid applied, the aspect ratio (ratio of height to width) of the frame-shaped structures 110a and 110b, and the like.
  • the width can be set, the width is usually about 5 to 500 ⁇ m (more preferably 20 to 50 ⁇ m), and the height is usually about 5 to 100 ⁇ m. If the width is less than 5 ⁇ m, not only pattern formation defects are likely to occur, but also the coating liquid may overflow the frame-shaped structures 110a, 110b, 110c beyond the frame-shaped structures 110a, 110b, 110c.
  • the frame area becomes large, which may hinder the panel external shape design. If the height is less than 5 ⁇ m, the coating liquid may overflow the frame-shaped structures 110 a, 110 b, 110 c beyond the frame-shaped structures 110 a, 110 b, 110 c. There is a possibility that the functional material layer adhering to the frame-shaped structures 110a, 110b, and 110c after the liquid is dried increases and a desired film thickness cannot be obtained.
  • the aspect ratio (the value obtained by dividing the height by the width) of the frame-like structures 110a, 110b, and 110c may be normally about 20 or less (more preferably 2 or less). If the aspect ratio exceeds 20, peeling of the film tends to occur and pattern formation failure tends to occur.
  • the width of the region surrounded by the frame-shaped structures 110a, 110b, 110c (the direction along the partition wall 120, that is, the length in the vertical direction; the vertical width) is the panel size, the size of the display area 150, the coating liquid Although it can be set as appropriate in consideration of the coating amount and the like, it is preferably not less than a width that does not require high-precision alignment in the coating device, and from the viewpoint of effectively expressing the capillary phenomenon, a frame-like structure
  • the width of the region surrounded by the objects 110a, 110b, and 110c is preferably larger than the width of the region surrounded by the partition wall 120.
  • the width of the region surrounded by the frame-like structures 110a, 110b, and 110c is usually about 0.5 to 20 mm (more preferably 2 to 10 mm). If the thickness is less than 0.5 mm, the coating liquid may not be applied accurately in the area surrounded by the frame-like structures 110a and 110b. May cause trouble.
  • N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD) is used as a hole transport material, and vacuum deposition is performed on the edge cover 240 and the first electrode 250.
  • a hole injection layer / hole transport layer (hole injection layer and hole transport layer) 220 was laminated by the method. The film thickness of the hole injection layer / hole transport layer 220 was 50 nm.
  • a polyfluorene red light emitting material is used as the light emitting material of the organic light emitting layer 230R (R organic light emitting layer), an aromatic mixed solvent is used as the solvent, and an R light emitting layer solution (organic light emitting layer 230R) is used.
  • R organic light emitting layer organic light emitting layer
  • an aromatic mixed solvent is used as the solvent
  • an R light emitting layer solution organic light emitting layer 230R
  • a composition containing the above materials, an R coating solution, and a first coating solution) were prepared.
  • the R light emitting layer solution had a viscosity of about 20 mPa ⁇ s and a surface tension of about 40 mN / m.
  • the light emitting layer solution of R was applied to the frame-shaped structure 110a using an ink jet method.
  • the R light emitting layer solution (filling solution 130a) stored in the frame structure 110a is easily filled (applied) into the pixel region 140R by capillary action because the partition wall 120 has lyophilicity. It was. At this time, since the picture element areas 140G and 140B are separated from the picture element area 140R by the partition wall 120, the filling liquid 130a did not enter. On the other hand, in the region surrounded by the frame-shaped structure 110a, the filling liquid 130a remains, and the same material as that of the organic light emitting layer 230R remains after the drying process described later.
  • a polyfluorene green light emitting material is used as the light emitting material of the organic light emitting layer 230G (G organic light emitting layer), an aromatic mixed solvent is used as the solvent, and the G light emitting layer solution (of the organic light emitting layer 230G) is used.
  • a composition containing materials, a coating solution for G, and a second coating solution) were prepared. Similar to the R light emitting layer solution, the G light emitting layer solution had a viscosity of about 20 mPa ⁇ s and a surface tension of about 40 mN / m. This G light emitting layer solution was applied to the frame-like structure 110b by an ink jet method.
  • the G light emitting layer solution (filling solution 130b) stored in the frame-shaped structure 110b was filled (applied) into the pixel region 140G by capillary action, as with the R light emitting layer solution. At this time, since the pixel regions 140R and 140B are separated from the pixel region 140G by the partition wall 120, the filling liquid 130b did not enter. On the other hand, in the region surrounded by the frame-shaped structure 110b, the filling liquid 130b remains, and the same material as that of the organic light emitting layer 230G remains after the drying step described later.
  • a polyfluorene-based blue light-emitting material is used as the light-emitting material of the organic light-emitting layer 230B (B organic light-emitting layer), a solvent is used as an aromatic mixed solvent, and a B light-emitting layer solution (of the organic light-emitting layer 230B) is used.
  • a composition containing materials, a coating solution for B, and a third coating solution) were prepared.
  • the viscosity of the light emitting layer solution of B was about 10 mPa ⁇ s, and the surface tension was adjusted to about 40 mN / m.
  • This light emitting layer solution of B was applied in the frame-shaped structure 110c using an ink jet method.
  • the B light emitting layer solution (filling solution 130 c) stored in the frame-shaped structure 110 c was filled (applied) into the pixel region 140 B by capillary action, like the R and G light emitting layer solutions. Since the inside of the frame-shaped structure 110c and the region partitioned by the third partition wall are connected by one opening, the filling liquid 130c is sequentially filled (applied) from the side close to the frame-shaped structure 110c. . At this time, since the pixel regions 140R and 140G are isolated from the pixel region 140B by the partition wall 120, the filling liquid 130c did not enter. On the other hand, in the region surrounded by the frame-shaped structure 110c, the filling liquid 130c remains, and the same material as the organic light emitting layer 230B remains after the drying process described later.
  • the frame-shaped structures 110a, 110b, and 110c and the partition 120 function as a blocking member (partition member) that blocks the coating liquid from spreading beyond a predetermined position.
  • the frame-like structures 110a, 110b, and 110c store the coating liquid containing the functional material in the region surrounded by the frame-shaped structures 110a, 110b, and 110c, and are partitioned by the partition wall 120 through the opening due to the flow of the coating liquid caused by a capillary phenomenon or the like. It functions as an enclosure for filling (flowing out) the coating liquid into the region.
  • the TFT substrate 200 in which the light emitting layer solution is applied to the pixel regions 140R, 140G, and 140B is dried for 30 minutes under a vacuum of 1 Pa or less, and then baked at 200 ° C. for 60 minutes in a normal pressure nitrogen atmosphere.
  • the organic light emitting layers 230R, 230G, and 230B were formed by drying and removing the solvent component in the light emitting layer solution.
  • the film thicknesses of the organic light emitting layers 230R, 230G, and 230B were all 50 nm.
  • the second electrode 260 was formed.
  • the pixel regions 140R, 140G, and 140B are generated by capillary action by discharging (injecting) the coating liquid into the frame-shaped structures 110a, 110b, and 110c.
  • the coating liquid is filled (applied) to form organic light emitting layers 230R, 230G, and 230B.
  • an organic EL display device without color mixture could be easily produced.
  • the pixel regions 140R, 140G, and 140B of the respective colors are formed by the vacuum evaporation method using the evaporation mask as in the conventional organic EL display device, there are various problems in terms of production applicability.
  • each of the pixel regions 140R, 140G, and 140B is individually filled with the light emitting layer solution of each color by the ink jet method to form the organic light emitting layers 230R, 230G, and 230B.
  • the film thickness variation of the organic light emitting layers 230R, 230G, and 230B may occur in each pixel region.
  • leakage of a solution into adjacent pixel regions and color mixing between adjacent pixel regions occur. There was a thing.
  • the light emitting layer solution is filled (applied) into the three color pixel regions (the pixel regions 140R, 140G, and 140B) by capillary action, and the first to third sections Since the amount of coating liquid filled in the region is averaged by capillary action, the film thickness of the organic light emitting layers 230R, 230G, and 230B does not vary between the pixel regions of the same color.
  • the coating liquid is ejected only to the frame-shaped structures 110a, 110b, and 110c that are sufficiently wide and formed outside the display area 150 by the ink jet method, high-precision control of the ejection position is not necessary, and color mixing is not necessary. There is no fear.
  • two pixel regions 140B formed using the frame-shaped structure 110c are arranged for one pixel (two pixel elements). Since B generally has low characteristics in terms of luminance efficiency and lifetime compared to other colors, the luminance per pixel can be reduced and consequently the lifetime can be improved. Thus, it is preferable that the color of the picture element region formed using the third frame-like structure is B when one pixel is composed of RGB.
  • the viscosity of the solution (filling liquid 130c) containing the material of the organic light emitting layer 230B includes the viscosity of the solution (filling liquid 130a) containing the material of the organic light emitting layer 230R and the material of the organic light emitting layer 230G.
  • the viscosity was lower than that of the solution (filling liquid 130b).
  • the frame-shaped structure 110a has an opening for each of the plurality of rows configured by the pixel region 140R, and the frame-shaped structure 110b has a plurality of frames configured by the pixel region 140G. There is an opening for each of the rows. Therefore, in the step of filling the pixel regions 140R and 140G with the coating liquid, the distance that the coating liquid moves is short.
  • the frame-shaped structure 110c has only one opening for a plurality of rows formed of the pixel regions 140B. Therefore, in the process of filling the pixel region 140B with the coating liquid, the distance that the coating liquid moves is long. Therefore, the tact time (filling time) is longer than that in the process of filling the pixel areas 140R and 140G with the coating liquid. become longer.
  • the coating liquid with which the region having the meandering shape is filled has a lower viscosity than the coating liquid with which the linear region is filled.
  • the viscosity of all the coating liquids is the same, or the coating liquid filling the linear region (for example, the material of the organic light emitting layer 230R is used) The viscosity of the solution containing it can also be minimized.
  • the ink jet method is used as a method for storing the coating liquid in the frame-shaped structures 110a, 110b, and 110c.
  • the method is not particularly limited as long as it is a method for storing the coating liquid.
  • a nozzle coating method, a method using a dispenser, a spray coating method on a local region, or the like can be applied.
  • the organic light emitting layers 230R, 230G, and 230B are formed by capillary action, but the present invention is not limited to this, and can be applied to other functional material layers.
  • the hole transport layer is formed by filling (coating) all the pixel regions 140R, 140G, and 140B with a hole transport layer solution in the same procedure as the organic light emitting layers 230R, 230G, and 230B,
  • the organic light emitting layers 230R, 230G, and 230B can be stacked on the hole transport layer.
  • the solvent component of the coating liquid injected into the frame-shaped structures 110a, 110b, and 110c is removed by performing baking or the like, another coating liquid is added to the frame-shaped structures 110a, 110b, and 110c. Can be injected into.
  • the solvent used for the solution to be filled later is selected so that the previously formed film (for example, hole transport layer) is not redissolved in the solution to be filled later (for example, a solution containing a light emitting material). It is preferable to insolubilize the previously formed film by a crosslinking reaction or the like.
  • the total film thickness of the functional material layers arranged in the pixel regions 140R, 140G, and 140B needs to be different for each color.
  • the microcavity effect is an effect in which a microresonator structure is formed between an anode and a cathode of an organic EL element, thereby improving color purity and front luminance efficiency.
  • the total film thickness that can be obtained varies from color to color.
  • a functional material layer such as a hole transport layer is provided in the pixel region.
  • the formation of the hole transport layer or the like has the same problem as when the organic light emitting layers 230R, 230G, and 230B are separately formed for each color. There is a problem that the number of times of film formation increases from 1 to 2 to 3 times because it is necessary to change or form the mask for each color.
  • the concentration and amount of the solution discharged to the frame-like structures 110a, 110b, 110c can be adjusted.
  • the film thickness of the functional material layer disposed in the picture element regions 140R, 140G, and 140B can be easily varied for each color. Further, since the process of discharging to each frame-like structure 110a, 110b, 110c is not changed, the number of film formations does not increase.
  • the hole injection layer and the hole transport layer (hole injection layer / hole transport layer) 220 and the organic light emitting layers 230R, 230G, and 230B were used as the functional material layer. Additional layers such as an electron transport layer and a carrier blocking layer can be laminated. Furthermore, only the organic light emitting layers 230R, 230G, and 230B may be formed as the functional material layer. At that time, if all the functional material layers are filled (applied) by capillary action, all of the functional material layers can be laminated by capillary action.
  • the partition wall 120 has a forward tapered shape. Thereby, it was possible to prevent the second electrode 260 and the wiring from being disconnected by the partition wall 120.
  • the partition wall 120 may have an inversely tapered shape. In the case where the partition wall 120 has an inversely tapered shape, not only the risk of the filling liquid getting over the partition wall 120 is reduced, but also an effect that the capillary phenomenon is more strongly exhibited can be expected.
  • the second electrode 260 since the second electrode 260 may be disconnected from the wiring by the reverse-tapered partition 120, the second electrode 260 (the second electrode 260 of the second electrode 260) disposed in the pixel regions 140R, 140G, and 140B. It is necessary to separately provide a method for electrical connection between the portion in the partition wall 120 and the wiring.
  • the contact angle of the first electrode 250, the edge cover 240, and the partition wall 120 with water is 30 ° or less.
  • the present invention is not limited to this, and filling (application) of the coating liquid by capillary action is possible. Any contact angle may be used.
  • a polyfluorene-based light emitting material is used as the light emitting material of the organic light emitting layers 230R, 230G, and 230B.
  • the present invention is not limited to this, and other functional materials (light emitting materials) can be used. is there.
  • the partition wall 120 is formed of a photosensitive resin dry film.
  • the present invention is not limited to this.
  • an inorganic film such as silicon nitride is formed using a method such as CVD, and then the film is formed. It can also be formed by patterning.
  • a conductive material can be used as the partition wall material.
  • the active matrix organic EL display device 100 is shown.
  • the present invention can be similarly applied to the passive matrix organic EL display device 100 in which TFTs are not formed.
  • a space is provided between the frame-like structure 110c and the first partition wall portion, but this space is not necessarily provided. That is, a part of the frame-shaped structure 110c may function as the first partition wall.
  • the coating liquid is retained in the space even if the discharge position is deviated from the frame-shaped structure 110c to the first partition wall side when the coating liquid is discharged to the frame-shaped structure 110c.
  • the filling liquid 130c does not enter the picture element region 140R defined by the first partition wall. That is, this space can prevent color mixture due to defective discharge positions.
  • the above preferable effects can be obtained.
  • FIG. 5 is a schematic plan view showing the periphery of the display area of the organic EL display device according to the second embodiment.
  • a frame-like structure 110 c 1 is arranged on the left side of the display area 150, and a frame-like structure 110 c 2 is arranged on the right side of the display area 150.
  • Both the frame-like structures 110c1 and 110c2 correspond to a third frame-like structure.
  • two third frame-like structures that were disposed in the first embodiment are disposed.
  • Other configurations are the same as those in the first embodiment.
  • the third partition region has a shape meandering along the contour lines of the first partition region and the second partition region.
  • Each of the frame-shaped structures 110c1 and 110c2 has one opening on the display area 150 side. Thereby, the third partition region is connected to the inside of the frame-shaped structures 110c1 and 110c2.
  • the width and length of the frame-shaped structures 110c1 and 110c2 are the same as the frame-shaped structure 110c of the first embodiment.
  • Example 2 In the same manner as in Example 1, R and G light emitting layer materials were filled (applied) into the pixel regions 140R and 140G, respectively.
  • a coating liquid (filling liquid 130c) containing the same light emitting layer material B as in Example 1 was prepared, and the coating liquid was applied to the inside of the frame-shaped structures 110c1 and 110c2 using an inkjet method. At this time, the amount applied to the frame-like structures 110c1 and 110c2 was set to half the amount in the case of Example 1.
  • the filling liquid 130c stored in the frame-shaped structures 110c1 and 110c2 was filled (applied) into the pixel region 140B by capillary action.
  • the coating liquid flows from the inside of the frame-shaped structures 110 c 1 and 110 c 2 into the area partitioned by the third partition wall, the coating liquid was sequentially filled (applied) from the left and right directions of the display area 150. At this time, since the pixel regions 140R and 140G are isolated from the pixel region 140B by the partition wall 120, the filling liquid 130c did not enter.
  • the coating liquid is injected from the third frame-shaped structures 110c1 and 110c2 into the third partition region (the region where the pixel region 140B is disposed). Therefore, the time required for filling (applying) the coating liquid into the pixel region 140B is approximately halved compared to Example 1. As a result, the tact time can be further shortened, and variations in the film thickness of the organic light emitting layers 230R, 230G, and 230B due to the drying of the solvent in the step of filling (coating) the light emitting layer solution can be further suppressed. did it. In addition, overall manufacturing time can be shortened.
  • the third frame-like structures 110c1 and 110c2 are formed with the same size.
  • the present invention is not limited to this, and the size can be changed as long as it is allowed in the design of the organic EL display device. it can.
  • FIG. 6 is a schematic plan view showing the periphery of the display area of the organic EL display device according to the third embodiment.
  • FIG. 7 is a schematic sectional view taken along line B1-B2 in FIG.
  • one pixel (a region marked with P in FIG. 6) is composed of R / G / B. Between the pixels adjacent in the row direction, a portion (connection line) where the pixel region 140B of the third partition region is not disposed is disposed.
  • Other configurations are the same as those in the first embodiment.
  • the first electrode 250 was formed using ITO on the substrate 200 formed up to the interlayer insulating film 210 by the same method as in Example 1. However, at this time, the first electrode 250 was not formed in the region where the connection line was arranged.
  • the edge cover 240 was formed by the same method as in Example 1, but at this time, the edge cover 240 was formed so as to cover the region where the connection lines were arranged.
  • the partition wall 120 was formed by the same method as in Example 1. However, at this time, partition walls for partitioning the connection lines were also formed.
  • the columns composed of the pixel regions 140B adjacent in the vertical direction are arranged side by side, and the connection lines are arranged between the columns. That is, the areas in which the columns composed of the picture element areas 140B are arranged are connected by the connection line.
  • the length of the connection line (the direction along the partition 120, that is, the vertical direction) is the same as the partition (third partition) that partitions the plurality of picture element regions 140B, and the width (distance between partitions that partitions the connection line) is The thickness was 10 ⁇ m. Further, the width of the partition wall that divides the connection line was 20 ⁇ m.
  • the pitch of each of the pixel regions 140R, 140G, and 140B (the size of the region including a non-light emitting region such as a partition wall) is 240 ⁇ m (the direction along the partition wall 120, that is, the vertical direction) ⁇ 70 ⁇ m (the direction perpendicular to the partition wall 120, That is, the size of the exposed portion (that is, the light emitting region) of the first electrode 250 is 190 ⁇ m (the direction along the partition 120, that is, the vertical direction) ⁇ 40 ⁇ m (the direction perpendicular to the partition 120, that is, the left and right direction). did.
  • the widths and lengths of the other components are the same as those in the first embodiment, and the resolution is also 106 ppi.
  • An organic EL display device was manufactured using the same method as in Example 1 for the substrate 200 on which the partition wall 120 was formed as described above. However, when the same light emitting layer solution as in Example 1 was prepared as the light emitting layer material for B and the light emitting layer solution was applied to the frame-like structure 110c, the filling liquid 130c was applied to all the pixel regions 140B through the connection lines. Filled (applied).
  • the organic EL display device manufactured by the above procedure has the advantages as shown in the first embodiment because the light emitting layer is individually formed in each pixel region by capillary action. At the same time, one pixel area 140R, 140G, 140B is arranged in one pixel, and this has the same configuration as the pixel of the conventional organic EL display device. A control method can be applied.
  • connection line since the width of the connection line is narrow, the light emitting area of each picture element can be widened. In addition, since the capillary phenomenon is more strongly expressed as the width is narrower, the tact time of the step of filling (applying) the coating liquid into the pixel region 140B can be shortened by providing the connection line.
  • the third frame-like structure 110c is formed on one side of the display area 150, but it is of course possible to form it on both sides as in the second embodiment.
  • the edge cover 240 is formed in the region where the connection line is disposed, but the edge cover 240 may not be formed in the region where the connection line is disposed.
  • FIG. 8 is a schematic plan view illustrating the periphery of the display area of the organic EL display device according to the fourth embodiment.
  • a region marked with P in FIG. 8 shows one pixel.
  • the frame-shaped structure 110d1 is arranged between the display area 150 and the frame-shaped structure 110c1, and the display area 150 and the frame-shaped structure 110c2 are disposed.
  • the frame-shaped structure 110d2 is disposed between the two.
  • picture element regions 140R, 140G, 140B, and 140Y are arranged in a matrix.
  • the picture element area 140Y is a yellow (Y) picture element area.
  • one pixel is composed of four color picture elements, and each picture element is arranged in the order of R / Y / B / G / B / Y.
  • Other configurations are the same as those in the second embodiment.
  • the region (fourth partition region) partitioned by the fourth partition wall (the portion partitioning the pixel region 140Y of the partition wall 120) is along the outline of the region partitioned by the third partition wall (third partition region). And has a meandering shape.
  • Each of the frame-shaped structures 110d1 and 110d2 has one opening on the display area 150 side. Thereby, the fourth partition region is connected to the inside of the frame-shaped structures 110d1 and 110d2.
  • the partition wall 120 and the frame-shaped structures 110a, 110b, 110c1, and 110c2 can be formed by the same method as in the second embodiment.
  • the width and length of the frame-shaped structures 110d1 and 110d2 were the same as the frame-shaped structures 110c1 and 110c2, respectively.
  • the lengths of the frame-shaped structures 110a and 110b may be the same as those of the first and second embodiments.
  • the frame-shaped structures 110d1 and 110d2 are formed on both sides of the display area 150 (that is, The frame-shaped structures 110a and 110b were produced by extending by 2 times the width of the region surrounded by the frame-shaped structures and the width of the wall portions of the frame-shaped structures 110a and 110b being 20 ⁇ m.
  • the pitch of each of the pixel regions 140R, 140G, 140B, and 140Y (the size of the region including the non-light emitting region such as the partition 120) is 360 ⁇ m (the direction along the partition 120, that is, the vertical direction) ⁇ 60 ⁇ m (the direction perpendicular to the partition 120)
  • the size of the exposed portion (that is, the light emitting region) of the first electrode 250 is 310 ⁇ m (the direction along the partition 120, that is, the vertical direction) ⁇ 30 ⁇ m (the direction perpendicular to the partition 120, that is, the left and right direction). It was.
  • the width of the partition wall 120 (the length in the left-right direction) was 20 ⁇ m, and the width of the wall portions of the frame-like structures 110a, 110b, 110c, and 110d was also 20 ⁇ m.
  • the size of the area surrounded by the frame-shaped structures 110a and 110b is 3 mm in the vertical direction ⁇ 44 mm in the horizontal direction, and the size of the area surrounded by the frame-shaped structures 110c and 110d is 38 mm in the vertical direction ⁇ 3 mm in the horizontal direction. It was.
  • the vertical length of the partition wall 120 was 37.7 mm.
  • the screen size of the organic EL display device 100 of the present embodiment is 36 mm in the vertical direction ⁇ 28.8 mm in the horizontal direction, and the resolution is 70 ppi.
  • Example 2 In the same manner as in Example 2, after filling (coating) the light emitting layer materials of R, G, and B, a polyfluorene yellow light emitting material is used as the light emitting layer material of Y, and the solvent is used as an aromatic mixed solvent.
  • a light emitting layer solution was prepared. The viscosity of the Y light emitting layer solution was about 10 mPa ⁇ s, and the surface tension was adjusted to about 40 mN / m.
  • the light emitting layer solution was applied to the frame-shaped structures 110d1 and 110d2 by using an inkjet method. At this time, the coating amount was the same as that of the light emitting layer solution B in Example 2.
  • the light emitting layer solution (filling solution 130d) stored in the frame-shaped structures 110d1 and 110d2 was filled (applied) into the pixel region 140Y by capillary action. Since the coating liquid flows into the fourth partition region from the inside of the frame-shaped structures 110d1 and 110d2, the coating liquid was sequentially filled (applied) from the left and right directions of the display area 150. At this time, since the pixel regions 140R, 140G, and 140B are isolated from the pixel region 140Y by the partition wall 120, the filling liquid 130d did not enter.
  • one pixel can be configured by R / Y / B / G / B / Y.
  • R, G, and B by forming a Y pixel region that emits yellow light, the color gamut that can be expressed is expanded, and a higher-quality organic EL display device can be realized.
  • the Y light emitting layer solution is applied to the frame-shaped structures 110d1 and 110d2 even in the organic EL display device to which the Y pixel region is added. There was no need to add any complicated process. Therefore, if the method of this embodiment is used, the emission color can be added easily and at low cost.
  • two fourth frame-like structures (frame-like structures 110d1 and 110d2) for forming the pixel area of the fourth color are formed.
  • the third frame-like structure of the first embodiment is used.
  • the display area 150 can be formed on either the left or right side.
  • the fourth frame structure is not necessarily formed on the left and right sides of the display area 150.
  • the fourth frame structure is connected to the partition wall (fourth partition wall portion) that partitions the pixel region 140Y, and If the light-emitting layer solution can be filled (applied) into the pixel region 140Y by applying the light-emitting layer solution to the four-frame structure, the fourth frame shape can be formed at any position such as in the vertical direction of the display area 150.
  • a structure can be formed.
  • the frame-shaped structure 110d1 is formed outside the frame-shaped structure 110a (the side away from the display area 150), and a newly partitioned region is formed between the frame-shaped structure 110c1 and the frame-shaped structure 110a. It is conceivable to form and connect the inside of the frame-shaped structure 110d and the region partitioned by the fourth partition wall (the region where the pixel region 140Y is disposed) through the region.
  • the present invention is not limited to this, and any number of other color picture elements are added. be able to. In that case, the same procedure as that for forming the picture element region 140Y and the frame-shaped structures 110d and 110d2 may be used.
  • a planar region (region partitioned by the fifth partition wall) meandering along the outline of the fourth partition region is formed, and a pixel region of a color other than R, G, B, Y is formed in the region
  • a fifth frame-like structure for applying the picture element region is formed further inside (display area 150 side) of the frame-like structure 110 and the inside of the frame-like structure 110. It is conceivable to connect to a region partitioned by a partition wall. By using the method of this embodiment, it is possible to increase the number of light emission colors of picture elements included in one pixel within a range in which design such as a pixel size is allowed.
  • one picture element region 140Y can be arranged in one pixel.
  • FIG. 9 is a schematic plan view illustrating the periphery of the display area of the organic EL display device according to the fifth embodiment.
  • subjected P1 and P2 in FIG. 9 has shown one pixel. Pixels assigned P1 are arranged in the order of R / B / G from the left, and pixels assigned P2 are arranged in the order of G / B / R.
  • picture elements are arranged point-symmetrically in pixels adjacent in the row direction.
  • the picture element regions 140R and 140G are partitioned for each column, whereas in the present embodiment, the pixel region 140R and 140G are partitioned for every two columns. Yes.
  • the pixel region 140B is partitioned in the same manner as in the first, second, and fourth embodiments. Other configurations are the same as those in the second embodiment.
  • each pixel region 140R, 140G, 140B size of a region including a non-light emitting region such as a partition wall
  • the pitch of each pixel region 140R, 140G, 140B is 240 ⁇ m (direction along the partition wall 120, that is, the vertical direction) ⁇ 80 ⁇ m (direction perpendicular to the partition wall 120, that is, left and right
  • the size of the exposed portion (ie, the light emitting region) of the first electrode 250 is 190 ⁇ m (the direction along the partition 120, ie, the vertical direction) ⁇ 60 ⁇ m (the partition 120).
  • the vertical direction, that is, the left-right direction) is set to 190 ⁇ m ⁇ 50 ⁇ m for the pixel region 140B.
  • the width (length in the left-right direction) of the partition wall 120 was 20 ⁇ m.
  • the other dimensions are the same as in the first embodiment, and the resolution is 106 ppi as in the first embodiment.
  • Example 2 As for the manufacturing method, the same method as in Example 2 can be used.
  • the organic EL display device manufactured in the above procedure as shown in FIG. 9, although the pixel arrangement is point-symmetric between pixels adjacent in the row direction, Areas 140R, 140G, and 140B are arranged one by one. Since this has the same configuration as a pixel of a conventional organic EL display device, a conventionally used driving method and control method can be applied. For this reason, it is possible to suppress a decrease in display quality and an increase in manufacturing cost due to complicated driving methods and control methods.
  • the pixel regions 140R, 140G, and 140B can be arranged one by one without using the connection line described in the third embodiment. Thereby, compared with Example 3, the area
  • FIG. 10 is a schematic cross-sectional view showing the color filter substrate of the second embodiment.
  • the color filter substrate of this embodiment includes a light shielding layer (BM layer) 410, a partition wall 120, colored layers 420R, 420G, and 420B, a planarizing layer 430, an electrode on a substrate 400. 440 is stacked in this order from the substrate 400 side.
  • the light shielding layer 410 has an opening for each pixel region where the colored layers 420R, 420G, and 420B are arranged.
  • the partition 120 is a member that separates the colored layers 420R, 420G, and 420B and holds the coating liquid (solution).
  • the partition wall 120 has an insulating property.
  • the planarization layer 430 is a member for planarizing the surface of the color filter substrate.
  • the colored layers 420R, 420G, and 420B have a function as a color filter, and light that has passed through the colored layers 420R, 420G, and 420B appropriately has a desired spectrum due to absorption in the colored layers 420R, 420G, and 420B. Converted to light.
  • the electrode 440 is a transparent electrode that can transmit light.
  • a resin containing a pigment or a dye can be used as a material for the colored layers 420R, 420G, and 420B.
  • the substrate 400 is not particularly limited as long as it has transparency, and a glass substrate, a plastic substrate, or the like can be used.
  • partition wall 120 As the partition wall 120, the same material as in Examples 1 to 5 can be used.
  • a general material can be used as a material of the light shielding layer 410 and the planarization layer 430.
  • the electrode 440 is not particularly limited as long as it is a transparent electrode, and a conductive metal oxide (ITO, IZO, ZnO, SnO 2 or the like) can be used.
  • FIG. 10 is a schematic cross-sectional view illustrating a color filter substrate of Example 6.
  • the schematic plan view of the color filter substrate of this example is the same as FIG.
  • the color filter substrate 100 of the present embodiment has pixel regions 140R, 140G, and 140B arranged in the order of R / B / G / B from the left in the same manner as in the first embodiment. In the (up and down) direction, picture element regions of the same color are arranged.
  • the color filter substrate 100 of the present embodiment is a stripe-arranged color filter substrate.
  • a light shielding layer 410 is formed on the substrate 400 so as to surround the pixel regions 140R, 140G, and 140B provided in a matrix.
  • an insulating partition 120 that separates the pixel regions 140R, 140G, and 140B of the respective colors for each color is formed.
  • a frame-shaped structure 110a is connected to a part (first partition part) surrounding the picture element region 140R of the partition wall 120, and a part (second partition part) surrounding the picture element region 140G of the partition wall 120 is connected to a frame.
  • the frame-shaped structure 110b is connected to a portion (third partition wall portion) surrounding the picture element region 140B of the partition wall 120 to which the frame-shaped structure 110b is connected.
  • the structures of the partition wall 120 and the frame-shaped structures 110a, 110b, and 110c are the same as those in the first embodiment.
  • a colored layer 420R (an R colored layer 420) is formed in the region partitioned by the first partition wall (first partitioned region) and the frame-shaped structure 110a, and the region partitioned by the second partition wall (first A colored layer 420G (G colored layer) is formed in the two-part area) and the frame-like structure 110b, and the area partitioned by the third partition wall (third-partition area) and the frame-like structure 110c. Is formed with a colored layer 420B (B colored layer).
  • the planarization layer 430 is formed so as to cover the colored layers 420R, 420G, and 420B and the partition 120, and the electrode 440 is formed so as to cover the planarization layer 430.
  • grooves are formed in stripes for each color, and the pixel regions 140R, 140G, and 140B for each color are separated by the grooves.
  • a first partitioned area in which the picture element area 140R is arranged is connected in the frame-shaped structure 110a
  • a second partitioned area in which the picture element area 140G is arranged is connected in the frame-shaped structure 110b.
  • a third partitioned area in which the picture element area 140B is arranged is connected.
  • a photosensitive resin was applied to a thickness of 2 ⁇ m on the glass substrate 400, and the light shielding layer 410 was formed by a photolithography technique.
  • the photosensitive resin for the light shielding layer 410 for example, a pigment dispersed black resist for color filter manufactured by Tokyo Ohka Kogyo Co., Ltd. can be used.
  • the planar pattern of the light shielding layer 410 is the same as that of the edge cover 240 of the first embodiment (see FIGS. 3 and 4), and an opening is provided for each column formed of the pixel regions 140R, 140G, and 140B. Note that the pitch of the pixel regions 140R, 140G, and 140B is the same as that in the first embodiment.
  • the partition wall 120 was formed on the light shielding layer 410 with a height of 20 ⁇ m and a width of 20 ⁇ m, and the frame-shaped structures 110a, 110b, and 110c were formed with a height of 20 ⁇ m and a width of 20 ⁇ m.
  • the pattern and size of the partition wall 120 and the frame-shaped structures 110a, 110b, and 110c are the same as those in the first embodiment.
  • suitable patterns and sizes of the partition wall 120 and the frame-like structures 110a, 110b, and 110c can be set in the same manner as in the first embodiment.
  • the contact angles of the pixel regions 140R, 140G, and 140B with the openings, the light shielding layer 410, and the partition wall 120 with water became 30 ° or less. Further, the contact angles of the frame-shaped structures 110a, 110b, and 110c shown in FIG. 3 with water were also 30 ° or less.
  • a coating liquid (filling liquid 130a in FIG. 3) containing the material of the colored layer 420R was filled from the frame-shaped structure 110a into the pixel region 140R.
  • a coating liquid (filling liquid 130b in FIG. 3) containing the material of the colored layer 420G was filled into the pixel region 140G from the frame-like structure 110b.
  • the coating liquid (filling liquid 130c in FIG. 3) containing the material of the colored layer 420B was filled from the frame-shaped structure 110c into the pixel region 140B. Then, the colored layers 420R, 420G, and 420B were formed through a drying process, respectively.
  • the coating solution a solution in which each color pigment was dispersed in methyl carbitol at a concentration of about 10% by weight was used.
  • the substrate 400 is dried at 200 ° C. for 60 minutes under a vacuum of 1 Pa or less to obtain a solution of R, G, and B (coating The colored components 420R, 420G, and 420B were formed by drying and removing the solvent component in the liquid).
  • the film thicknesses of the colored layers 420R, 420G, and 420B were all about 2 ⁇ m.
  • a planarization layer 430 was formed over the partition wall 120 and the colored layers 420R, 420G, and 420B.
  • a material for the planarization layer 430 for example, a transparent planarization material for LCD manufactured by Tokyo Ohka Kogyo Co., Ltd. can be used.
  • a solution containing the material of the planarization layer 430 is applied from the upper part of the partition wall 120 with a slot coater so as to have a film thickness of 1 ⁇ m, and is baked at 200 ° C. for 60 minutes in a nitrogen atmosphere. Formed.
  • a transparent conductive film made of ITO was formed only at a desired position by sputtering using a mask.
  • the film thickness of the transparent conductive film made of ITO was 100 nm.
  • a photospacer for defining the thickness of the liquid crystal cell is formed on the electrode 440, or the liquid crystal cell is changed depending on the region.
  • a structure for changing the thickness may be formed on the planarization layer 430.
  • the colored layers 420R, 420G, and 420B are formed by using a coating liquid filling (coating) method by capillary action using the frame-shaped structures 110a, 110b, and 110c. ing. Therefore, it was possible to easily produce a color filter substrate with no color mixture.
  • the inkjet method is applied to all the colors of the pixel regions 140R, 140G, 140B, the solution is accumulated on each of the pixel regions 140R, 140G, 140B.
  • the apparatus used to form the colored layers 420R, 420G, and 420B is the frame-shaped structure 110a, It is only necessary to have a function of discharging the coating liquid into the layers 110b and 110c, and in order to form the colored layers 420R, 420G, and 420B, it is not necessary to have a highly accurate discharge position performance. Similarly, it is not necessary to use a high-performance ink jet apparatus having discharge heads for all colors.
  • the coating liquid it is only necessary to fill (apply) the coating liquid only at a desired position, so that the material utilization efficiency is high, and for all the colors of the colored layers 420R, 420G, and 420B, Since filling (coating) can be performed at the same time, an increase in tact time in the process of forming the colored layers 420R, 420G, and 420B can be suppressed.
  • the color filter substrate as in this embodiment can be applied by the methods described in Embodiments 2 to 5.
  • the flow of the coating liquid generated by the capillary phenomenon is used to fill the pixel regions 140R, 140G, and 140B.
  • the flow of the coating liquid occurs, it is not always necessary. Capillary phenomena need not occur.
  • BM light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明は、安価かつ容易に作製することができ、また、絵素領域の小型化が可能な有機EL表示装置、その製造方法、カラーフィルタ基板及びその製造方法を提供する。本発明の有機EL表示装置は、第一~第三の色の絵素領域を含む複数の絵素領域が表示エリア内に配置された基板を備え、複数の絵素領域の各々に有機発光層を含む機能性材料層が配置された有機EL表示装置であって、表示エリア内の基板上には第一~第三隔壁部が配置され、表示エリア外の基板上には第一~第三枠状構造物が配置され、第一の色の絵素領域は、第一隔壁部で区画された第一区画領域内に配置され、第二の色の絵素領域は、第二隔壁部で区画された第二区画領域内に配置され、第三の色の絵素領域は、第三隔壁部で区画された第三区画領域内に配置され、第一区画領域は、第一枠状構造物内に接続され、第二区画領域は、第二枠状構造物内に接続され、第三区画領域は、第三枠状構造物内に接続される有機EL表示装置である。

Description

有機エレクトロルミネセンス表示装置、その製造方法、カラーフィルタ基板及びその製造方法
本発明は、有機エレクトロルミネセンス表示装置、その製造方法、カラーフィルタ基板及びその製造方法に関する。より詳しくは、カラー表示の表示装置に好適な有機エレクトロルミネセンス表示装置、その製造方法、カラーフィルタ基板及びその製造方法に関するものである。
有機エレクトロルミネセンス表示装置(以下、有機EL表示装置、又は、OLEDとも言う。)は、薄型化が容易であり、応答速度が速く、バックライトが不要であるため消費電力が少ないという長所があり、液晶表示装置やCRT(Cathode Ray Tube)に替わる表示装置として期待されている。
現状、有機EL表示装置では、マスク蒸着法又はインクジェット(IJ)法による赤(R)、緑(G)及び青(B)の絵素の塗り分けが行われている。すなわち、図11に示すように、各絵素300(絵素発光部310)を覆うように、スロットマスクを介して、各色の絵素300毎に、機能性材料層(有機機能層)の材料、すなわち機能性材料を個別に蒸着していく。これにより、各色の絵素300を覆う蒸着領域320が形成される。なお、スリットマスクを用いる場合は、各色の絵素300毎に、ストライプ状に機能性材料を蒸着する。他方、インクジェット法を用いる場合、各絵素300を囲むバンクを形成し、その中に機能性材料を塗布する。なお、この場合は、バンク内の塗布領域が、図11中の、画素発光部310に相当する。インクジェット法のような溶液を用いた塗布型のR、G及びBの絵素の形成方法は、材料利用効率が高いため、現在注目されている。また、インクジェット法は、有機EL素子の有機層のみならず、カラーフィルタ基板のカラーフィルタ層(着色層)や、金属配線基板のパターン配線等の機能性薄膜の製造に用いられている。
しかしながら、マスク蒸着法を用いて異なる色(例えば、RGB)の絵素を形成する場合には、蒸着マスクを高精度に貼り合わせる技術や、蒸着ボケを極小化する技術(異なる色の絵素間の境界を明確にする技術)が必要であるという点で、技術的課題が大きかった。また、基板の大型化に伴うマスクの重量増加も問題となっていた。
一方、インクジェット法を用いて異なる色の絵素を形成する場合も、絵素毎で塗布のバラツキを抑制する技術や、高精度にインクを吐出する技術が必要であるといった点で、技術的課題が大きかった。
このように、従来の有機EL表示装置では、R、G及びBの絵素毎に、個別に層(膜)を形成するのが困難であった。したがって、液晶表示装置で実現している300ppiレベル以上の高精細な有機EL表示装置や、40インチレベルの大型の有機EL表示装置を作製するためには、装置面、歩留まり面、コスト面及び技術面の重大な課題を抱えていた。すなわち、簡便で安価な有機層の形成方法の開発が望まれていた。
このような状況の中、簡便で安価な有機層の形成方法として、特許文献1には、毛細管現象により有機EL溶液を画素に充填する方法が開示されている。この方法は、高解像度の表示装置にも適用可能である。より詳細には、各溝の先端の位置がずれるように、R、G及びBの絵素用の溝を形成するとともに、有機EL溶液の進入を阻害するストッパ(フォトレジスト)をR及びGの絵素用の溝に設けることで、R、G及びBの塗り分けを行う。すなわち、この方法は、先端が一番高いBの絵素用の溝にBの有機EL溶液を充填し、次に、Gの絵素用の溝に設けられたストッパを剥離し、次に、Bの絵素用の溝の先端がGの有機EL溶液に付かないようにしつつ、Gの有機EL溶液をGの絵素用の溝に充填し、次に、Rの絵素用の溝に設けられたストッパを剥離し、最後に、Rの有機EL溶液をRの絵素用の溝に充填する。
また、毛細管現象を利用した有機EL表示装置の製造方法は、特許文献2及び3にも開示されている。特許文献2には、フォトレジストに形成されたトレンチ(溝)に対して、毛細管現象を利用してドーパント材料を充填する有機EL表示装置の製造方法が開示されている。特許文献3には、画素が配置された開口に連通した注入溝を誘電層に形成し、この注入溝に発光層材料等の液を注入することで、毛細管現象によって注入溝から液を画素まで流入させ、膜形成を行う方法が開示されている。特許文献2及び3の方法によれば、毛細管現象を利用して、最大で2色の絵素を塗り分けることが可能である。
国際公開第2003/022010号パンフレット 国際公開第2004/028216号パンフレット 特開2004-363107号公報
特許文献1に記載の技術においては、有機EL溶液を貯めた槽に基板を浸すことにより、絵素に有機EL溶液を充填するため、多量の有機EL溶液が必要となる。また、基板を槽に浸したとき、先に形成された有機EL層の再溶解が発生した場合、後に用いられる有機EL溶液の混濁が起きてしまう。更に、基板の有機EL層を形成しない部分も有機EL溶液に浸かるため、基板が汚染されてしまう。そして、レジストを剥離する工程を有機EL層形成中に2回実施する必要があるため、製造工程の複雑化や有機EL層の特性劣化を招いてしまう。
また、特許文献2及び3の方法は、最大で2色の絵素しか毛細管現象を利用して塗り分けることができない。一般的に、カラー表示を行う表示装置の画素は、3色(例えば、RGB)の絵素で構成されている。したがって、特許文献2又は3の方法を用いたとしても、少なくとも1色の絵素はマスク蒸着等を用いて形成する必要があるという点で、改善の余地があった。
したがって、特性劣化を抑制しつつ、安価かつ容易に有機EL表示装置を作製する方法については、未だ要望されていた。
また、解像度が300ppiレベル以上の高精細な液晶表示装置用のカラーフィルタ基板について、インクジェット法を用いて全ての色(例えば、R、G及びB)の着色層を塗り分ける場合には、高精度な吐出位置性能を有するインクジェット装置又は吐出ヘッドが全ての色に対して必要であり、更に、塗布時間も長くなるため、スループット(単位時間あたりの処理能力)が低減するおそれがあった。
本発明は、上記現状に鑑みてなされたものであり、安価かつ容易に作製することができ、また、絵素領域の小型化が可能な有機EL表示装置、その製造方法、カラーフィルタ基板及びその製造方法を提供することを目的とするものである。
本発明者らは、安価かつ容易に作製することができ、また、絵素領域の小型化が可能な有機EL表示装置について種々検討したところ、表示エリア外に形成された枠状構造物内に注入した塗液を、毛細管現象等によって生じる塗液の流動を利用して、表示エリア内の絵素領域に流し込む方法に着目した。そして、表示エリア外に少なくとも3つの枠状構造物を形成し、上記方法を用いることにより、3色以上の絵素領域を塗り分けることができ、画素を構成する全ての色の絵素領域を安価かつ容易に形成することが可能となることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、第一の色の絵素領域、第二の色の絵素領域及び第三の色の絵素領域を含む複数の絵素領域が表示エリア内に配置された基板を備え、上記複数の絵素領域の各々には、有機発光層を含む機能性材料層が配置された有機EL表示装置であって、上記表示エリア内の上記基板上には、第一隔壁部、第二隔壁部及び第三隔壁部が配置され、上記表示エリア外の上記基板上には、第一枠状構造物、第二枠状構造物及び第三枠状構造物が配置され、上記第一の色の絵素領域は、上記第一隔壁部で区画された第一区画領域内に配置され、上記第二の色の絵素領域は、上記第二隔壁部で区画された第二区画領域内に配置され、上記第三の色の絵素領域は、上記第三隔壁部で区画された第三区画領域内に配置され、上記第一区画領域は、上記第一枠状構造物内に接続され、上記第二区画領域は、上記第二枠状構造物内に接続され、上記第三区画領域は、上記第三枠状構造物内に接続される有機EL表示装置である。
本発明の有機EL表示装置の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。
本発明の有機EL表示装置における好ましい形態について以下に詳しく説明する。
上記基板を平面視したとき、上記第一枠状構造物及び上記第二枠状構造物は、上記表示エリアを挟むように対向して配置され、上記第三枠状構造物は、上記第一枠状構造物及び上記第二枠状構造物に挟まれた領域に配置されることが好ましい。このように、表示エリアを3方向から囲むように第一、第二及び第三枠状構造物をコの字状に配置することにより、第一、第二及び第三区画領域のそれぞれに、異なる塗液を容易に流し込むことができる。その結果、3色の絵素領域を容易に塗り分けることができる。
上記基板を平面視したとき、2つの上記第三枠状構造物が上記表示エリアを挟むように対向して配置されることが好ましい。これにより、第三区画領域に短時間で塗液を充填させることができる。
上記基板を平面視したとき、上記第三区画領域は、上記第一区画領域及び上記第二区画領域のいずれかの輪郭線に沿ったU字型の形状を含むことが好ましい。一般的に、表示エリアには、異なる色の絵素領域が行列方向に複数配置される。例えば、画素がRGBで構成される場合、複数のRの絵素領域で構成された列と、複数のGの絵素領域で構成された列と、複数のBの絵素領域で構成された列とが横並びに配置される。このような形態において、特許文献1~3で開示されているように、直線状の溝に塗液を流し込む方法では、3色以上の絵素領域を塗り分けることが困難であった。これに対し、第三区画領域が上記U字型の形状を含むことにより、第三区画領域に注入された塗液を、他の隔壁部によって区画された領域を回り込んで塗り広げることができる。これにより、3色の絵素領域を容易に塗り分けることが可能となる。
なお、本発明の有機EL表示装置によって塗り分けが可能な絵素領域は、3色に限定されず、枠状構造物及び隔壁部を追加することにより、4色以上の絵素領域を塗り分けることも可能である。その場合、例えば、追加する隔壁部で区画された領域が、第三区画領域に沿ったU字型の形状を含んでいればよい。また、追加する枠状構造物を配置する位置は特に限定されず、表示エリア外に配置する部材に合わせて適宜設定することができる。
上述したような第三区画領域がU字型の形状を含む場合の好ましい形態の1つとして、上記基板を平面視したとき、上記第三区画領域内には、上記第一区画領域及び上記第二区画領域のいずれかを挟むように複数の上記絵素領域が対向して配置される形態が挙げられる。
上述したような第三区画領域がU字型の形状を含む場合の好ましい形態の1つとして、上記基板を平面視したとき、上記第三区画領域内には、上記第一区画領域及び上記第二区画領域を挟まないように上記絵素領域が配置される形態が挙げられる。
上記基板を平面視したとき、上記基板上には、上記第一区画領域と上記第二区画領域とが交互に複数並置されており、上記第三区画領域は、上記第一区画領域の輪郭線及び上記第二区画領域の輪郭線に沿って蛇行した形状であることが好ましい。これにより、第一区画領域と、第二区画領域との間に、第三区画領域を一体的な形状で配置することが可能となる。これにより、例えば、第一区画領域と、第二区画領域と、第三区画領域とをストライプ状に配置したとしても、3色の絵素領域を容易に塗り分けることができる。
上記基板上には、上記機能性材料層を挟持する一対の電極と、上記一対の電極の一方の端部を覆うエッジカバーとが配置され、上記第一隔壁部、上記第二隔壁部及び上記第三隔壁部の少なくとも1つは、上記エッジカバー上に配置されることが好ましい。これにより、一対の電極同士が短絡するのを防止しながら、本発明の効果を奏することができる。
上記基板は、TFT基板であることが好ましい。
上記表示エリア内には、上記第一の色の絵素領域、上記第二の色の絵素領域及び上記第三の色の絵素領域を含んで構成された画素が行列方向に複数並置され、上記第一の色の絵素領域、上記第二の色の絵素領域及び上記第三の色の絵素領域のうち、少なくとも1つの色の絵素領域は、1つの上記画素に2つ配置されることが好ましい。
上記表示エリア内には、上記第一の色の絵素領域、上記第二の色の絵素領域及び上記第三の色の絵素領域を含んで構成された画素が行列方向に複数並置され、上記第一の色の絵素領域、上記第二の色の絵素領域及び上記第三の色の絵素領域は、行方向に隣接する上記画素に点対称に配置されることが好ましい。
上記第一枠状構造物内には、上記第一の色の絵素領域に配置された上記機能性材料層の材料が配置され、上記第二枠状構造物内には、上記第二の色の絵素領域に配置された上記機能性材料層の材料が配置され、上記第三枠状構造物内には、上記第三の色の絵素領域に配置された上記機能性材料層の材料が配置されることが好ましい。
上記第一枠状構造物内には、上記第一の色の絵素領域に配置された上記有機発光層の材料が配置され、上記第二枠状構造物内には、上記第二の色の絵素領域に配置された上記有機発光層の材料が配置され、上記第三枠状構造物内には、上記第三の色の絵素領域に配置された上記有機発光層の材料が配置されることが好ましい。
本発明はまた、本発明の有機EL表示装置の製造方法であって、上記製造方法は、上記第一枠状構造物内に、上記第一の色の絵素領域に配置される上記機能性材料層の材料を含む第一塗液を注入する工程と、上記第二枠状構造物内に、上記第二の色の絵素領域に配置される上記機能性材料層の材料を含む第二塗液を注入する工程と、上記第三枠状構造物内に、上記第三の色の絵素領域に配置される上記機能性材料層の材料を含む第三塗液を注入する工程とを含む有機EL表示装置の製造方法(以下、本発明の第一の有機EL表示装置の製造方法とも言う。)でもある。第一区画領域は、第一枠状構造物内に接続されているため、第一枠状構造物内に注入された塗液は、第一区画領域に流れこみ、第一区画領域内に配置されている第一の色の絵素領域に充填される。第二及び第三枠状構造物についても同様である。したがって、本発明によれば、第一、第二及び第三区画領域に異なる塗液を注入することができ、3色の絵素領域を容易に塗り分けることができる。また、画素を構成する全ての色の絵素領域を蒸着マスクを用いずに形成することも可能となる。
本発明の第一の有機EL表示装置の製造方法は、上記工程を有するものである限り、その他の工程により特に限定されるものではない。
本発明の第一の有機EL表示装置における好ましい態様について以下に詳しく説明する。
上記第三塗液は、上記第一塗液及び上記第二塗液よりも粘度が低いことが好ましい。これにより、第三隔壁部で区画された領域に、短時間で塗液を充填させることができる。また、上述したように、第三区画領域が、U字型の形状を含む形態や、蛇行した形状を有する形態の場合、第三区画領域内に配置された第三の色の絵素領域に塗液を充填させるためには、長い時間を要する場合がある。これらの態様は、上記形態に特に有効である。
上記有機EL表示装置の製造方法は、上記第一隔壁部、上記第二隔壁部、上記第三隔壁部、上記第一枠状構造物、上記第二枠状構造物及び上記第三枠状構造物を同時に形成する工程を含むことが好ましい。これにより、有機EL表示装置の製造工程を更に簡略化することができる。
本発明はまた、第一の色の絵素領域、第二の色の絵素領域及び第三の色の絵素領域を含む複数の絵素領域が表示エリア内に配置された基板を備え、上記複数の絵素領域の各々には、有機発光層を含む機能性材料層が配置された有機EL表示装置の製造方法であって、上記製造方法は、上記表示エリア内の上記基板上に、上記第一の色の絵素領域を区画する第一隔壁部、上記第二の色の絵素領域を区画する第二隔壁部、及び、上記第三の色の絵素領域を区画する第三隔壁部を形成する工程と、上記表示エリア外の上記基板上に、上記第一隔壁部で区画された第一区画領域に内部が接続された第一枠状構造物、上記第二隔壁部で区画された第二区画領域に内部が接続された第二枠状構造物、及び、上記第三隔壁部で区画された第三区画領域に内部が接続された第三枠状構造物を形成する工程と、上記第一枠状構造物内に、上記第一の色の絵素領域に配置される上記機能性材料層の材料を含む第一塗液を注入する工程と、上記第二枠状構造物内に、上記第二の色の絵素領域に配置される上記機能性材料層の材料を含む第二塗液を注入する工程と、上記第三枠状構造物内に、上記第三の色の絵素領域に配置される上記機能性材料層の材料を含む第三塗液を注入する工程とを含む有機EL表示装置の製造方法(以下、本発明の第二の有機EL表示装置の製造方法とも言う。)でもある。これにより、本発明の第一の有機EL表示装置の製造方法と同様の効果を奏することができる。
本発明の第二の有機EL表示装置の製造方法は、上記工程を有するものである限り、その他の工程により特に限定されるものではない。
なお、上述した本発明の第一の有機EL表示装置の製造方法の好ましい態様は、本発明の第二の有機EL表示装置の製造方法の好ましい態様としても利用することができる。
本発明はまた、第一の色の着色層、第二の色の着色層及び第三の色の着色層を含む複数の着色層が表示エリア内に配置された基板を備えるカラーフィルタ基板であって、上記表示エリア内の上記基板上には、第一隔壁部、第二隔壁部及び第三隔壁部が配置され、上記表示エリア外の上記基板上には、第一枠状構造物、第二枠状構造物及び第三枠状構造物が配置され、上記第一の色の着色層は、上記第一隔壁部で区画された第一区画領域内に配置され、上記第二の色の着色層は、上記第二隔壁部で区画された第二区画領域内に配置され、上記第三の色の着色層は、上記第三隔壁部で区画された第三区画領域内に配置され、上記第一区画領域は、上記第一枠状構造物内に接続され、上記第二区画領域は、上記第二枠状構造物内に接続され、上記第三区画領域は、上記第三枠状構造物内に接続されるカラーフィルタ基板でもある。これにより、安価かつ容易に作製することができ、また、高精細化が可能なカラーフィルタ基板を実現することができる。
本発明のカラーフィルタ基板の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。
なお、上述した本発明の有機EL表示装置における好ましい形態は、「絵素領域」を「着色層」に置き換えることで、本発明のカラーフィルタ基板の好ましい形態としても利用することができる。
本発明はまた、第一の色の着色層、第二の色の着色層及び第三の色の着色層を含む複数の着色層が表示エリア内に配置された基板を備えるカラーフィルタ基板の製造方法であって、上記製造方法は、上記表示エリア内の上記基板上に、上記第一の色の着色層を区画する第一隔壁部、上記第二の色の着色層を区画する第二隔壁部、及び、上記第三の色の着色層を区画する第三隔壁部を形成する工程と、上記表示エリア外の上記基板上に、上記第一隔壁部で区画された第一区画領域に内部が接続された第一枠状構造物、上記第二隔壁部で区画された第二区画領域に内部が接続された第二枠状構造物、及び、上記第三隔壁部で区画された第三区画領域に内部が接続された第三枠状構造物を形成する工程と、上記第一枠状構造物内に、上記第一の色の着色層の材料を含む第一塗液を注入する工程と、上記第二枠状構造物内に、上記第二の色の着色層の材料を含む第二塗液を注入する工程と、上記第三枠状構造物内に、上記第三の色の着色層の材料を含む第三塗液を注入する工程とを含むカラーフィルタ基板の製造方法でもある。これにより、毛細管現象等によって生じる塗液の流動を利用して、3色の着色層を容易に塗り分けることができる。
本発明のカラーフィルタ基板の製造方法は、上記工程を有するものである限り、その他の工程により特に限定されるものではない。
なお、上述した本発明の第一の有機EL表示装置の製造方法の好ましい態様は、「絵素領域」を「着色層」に置き換えることで、本発明のカラーフィルタ基板の製造方法の好ましい態様としても利用することができる。
上述した各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
本発明の有機EL表示装置、その製造方法、カラーフィルタ基板及びその製造方法によれば、安価かつ容易に作製することができ、また、絵素領域の小型化が可能な有機EL表示装置、その製造方法、カラーフィルタ基板及びその製造方法を提供することができる。
実施例1の有機EL表示装置の全体構成を示す平面模式図である。 実施例1の有機EL表示装置の全体構成を示す断面模式図である。 実施例1の有機EL表示装置の表示エリア周辺を示す平面模式図である。また、実施例6のカラーフィルタ基板の表示エリア周辺を示す平面模式図でもある。 図3中のA1-A2線における断面模式図である。また、実施形態1の有機EL表示装置を示す断面模式図でもある。 実施例2の有機EL表示装置の表示エリア周辺を示す平面模式図である。 実施例3の有機EL表示装置の表示エリア周辺を示す平面模式図である。 図6中のB1-B2線における断面模式図である。 実施例4の有機EL表示装置の表示エリア周辺を示す平面模式図である。 実施例5の有機EL表示装置の表示エリア周辺を示す平面模式図である。 実施例6のカラーフィルタ基板を示す断面模式図である。また、実施形態2のカラーフィルタ基板を示す断面模式図でもある。 従来の有機EL表示装置の構成を示す平面模式図である。
本明細書において、テーパ角とは、基板の表面に対する角度を言う。また、テーパ角が90°以下の形状を順テーパ形状、90°を超える形状を逆テーパ形状と呼ぶ。
本明細書において、赤とは、主波長が620nm以上、680nm以下の色であることが好ましく、主波長が630nm以上、670nm以下の色であることがより好ましい。緑色とは、主波長が520nm以上、580nm未満の色であることが好ましく、主波長が530nm以上、570nm以下の色であることがより好ましい。青とは、主波長が420nm以上、480nm未満の色であることが好ましく、主波長が430nm以上、470nm以下の色であることがより好ましい。
以下に実施形態を掲げ、本発明を図面とともに更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
(実施形態1)
図4は、実施形態1の有機EL表示装置を示す断面模式図である。図4に示すように、本実施形態の有機EL表示装置(有機ELディスプレイ)は、基板200上に、第一の電極250と、エッジカバー240と、隔壁120と、機能性材料層と、第二の電極260とを、基板200側からこの順に積層した構造を有する。第一の電極250は、絵素領域140R(Rの絵素領域)、絵素領域140G(Gの絵素領域)、絵素領域140B(Bの絵素領域)毎に設けられている。エッジカバー240は第一の電極250の端部を被覆するための部材である。隔壁120は、絵素領域140R、140G、140B間を分離し、かつ、塗液(溶液)を保持するための部材である。また、隔壁120は、絶縁性を有している。機能性材料層は、有機化合物を含有する発光層(有機発光層とも言う。)を含んでいる。図4においては、有機発光層230R、230G、230Bと、正孔注入層兼正孔輸送層220とが、機能性材料層に相当する。第一の電極250及び第二の電極260の一方は、陽極として機能し、他方は、陰極として機能する。
上記基板200は、アクティブマトリクス基板であってもよいし、パッシブマトリクス基板であってもよい。図4は、基板200がアクティブマトリクス基板の場合を示している。アクティブマトリクス基板の場合、基板200上には、複数の薄膜トランジスタ(TFT)270と、複数の信号線とが形成され、更にそれらの上方には、平坦化層として機能する層間絶縁膜210及び第一の電極250がこの順に形成されている。一方、パッシブマトリクス基板の場合、基板上には、複数の信号線と、第一の電極250とが形成されている。
アクティブマトリクス基板上のTFT270等のアクティブ素子部と有機EL素子部とは、層間絶縁膜210で分離されている。また、層間絶縁膜210に穿たれたコンタクトホールを通る接続用の導電体を介して下層のアクティブ素子部と上層の第一の電極250とが電気的に接続されている。これにより、アクティブ素子部と有機EL素子部とが電気的に接続される。なお、上記接続用の導電体としては、第一の電極250を用いることも可能である。また、上記機能性材料層は、低分子材料から形成されてもよいし、高分子材料から形成されてもよい。
上記機能性材料層は、例えば、下記の構成が挙げられるが、本発明はこれらに限定されるものではない。ここで、キャリア輸送層とは、正孔輸送層又は電子輸送層を示す。また、電子ブロッキング層は、キャリアブロッキング層の一種である。本発明(本明細書)では、下記のように、一対の電極(第一の電極250及び第二の電極260)間に挟持される全ての層を、機能性材料層と総称している。
(1)正孔輸送層/有機発光層
(2)有機発光層/電子輸送層
(3)正孔輸送層/有機発光層/電子輸送層
(4)正孔注入層/正孔輸送層/有機発光層/電子輸送層
(5)正孔輸送層/電子ブロッキング層/有機発光層/電子輸送層
なお、上記有機発光層230R、230G、230Bは、一層であってもよいし、複数の層を積層した構造であってもよい。また、母体材料にドーパントをドープした層でも構わない。
以下、毛細管現象等によって生じる塗液の流動を利用して有機発光材料(以下、単に発光材料とも言う。)を絵素領域140R、140G、140Bに充填する工程で使用する塗液について説明する。なお、ここでは、塗液として、高分子の有機発光材料を用いた場合について説明するが、本発明はこれに何ら限定されるものではなく、無論、可溶性の低分子の有機発光材料を用いても構わない。また、本実施形態では、毛細管現象等によって生じる塗液の流動を用いて、有機発光材料を含む塗液を隔壁120で区画された領域に充填する方法によって形成された機能性材料層を少なくとも一層含んでいればよく、その他の方法で形成された別の機能性材料層を更に含んでいてもよい。例えば、上記(4)の構成においては、正孔輸送層の材料に無機物を使用し、スパッタリング法や真空蒸着法を用いて基板200上に正孔輸送層を形成した後、毛細管現象等によって生じる塗液の流動を利用して、有機発光層230R、230G、230Bを正孔輸送層上に形成し、そして、スプレー法を用いて、電子輸送層を有機発光層230R、230G、230B上に形成してもよい。
上記有機発光層230R、230G、230Bは、毛細管現象等によって生じる塗液の流動を利用して、発光材料を含む塗液を隔壁120で区画された領域内に充填(塗布)することによって形成される。ここで使用される塗液は、少なくとも発光材料と溶剤とを含有した溶液である。発光材料は、一種類であってもよいし、複数の種類であってもよい。また、塗液は、膜保持材(バインダー)、レベリング材、発光アシスト材、添加材(ドナー、アクセプター等)、キャリア輸送材、発光性のドーパント等が含有されていてもよい。
上記発光材料としては、有機EL素子用の一般的な発光材料を用いることができる。このような発光材料は、高分子発光材料、高分子発光材料の前駆体等に分類される。以下にこれらの具体的な化合物を例示するが、本発明はこれらに限定されるものではない。
上記高分子発光材料としては、例えば、ポリ(2-デシルオキシ-1、4-フェニレン)(DO-PPP)、ポリ[2、5-ビス-[2-(N,N,N-トリエチルアンモニウム)エトキシ]-1、4-フェニル-アルト-1、4-フェニレン]ジブロマイド(PPP-NEt3+)、ポリ[2-(2′-エチルヘキシルオキシ)-5-メトキシ-1、4-フェニレンビニレン](MEH-PPV)等が挙げられる。
上記高分子発光材料の前駆体としては、例えば、ポリ(p-フェニレンビニレン)前駆体(Pre-PPV)、ポリ(p-ナフタレンビニレン)前駆体(Pre-PNV)等が挙げられる。
上記溶剤としては、上記発光材料を溶解又は分散できる溶剤であればよく、例えば、純水、メタノール、エタノール、THF(テトラヒドロフラン)、クロロホルム、トルエン、キシレン、トリメチルベンゼン等が挙げられる。但し、塗液から形成された膜(有機発光層230R、230G、230B)の平坦性を向上させるため、高沸点の溶剤が好適に用いられる。
上記発光材料としては、低分子発光材料を用いてもよい。低分子発光材料としては、例えば、アントラセン、ナフタレン、インデン、フェナントレン、ピレン、ナフタセン、トリフェニレン、アントラセン、ペリレン、ピセン、フルオランテン、アセフェナントリレン、ペンタフェン、ペンタセン、コロネン、ブタジエン、クマリン、アクリジン、スチルベン、或いはこれらの誘導体、トリス(8-キノリノラト)アルミニウム錯体、ビス(ベンゾキノリノラト)ベリリウム錯体、トリ(ジベンゾイルメチル)フェナントロリンユーロピウム錯体ジトルイルビニルビフェニル等が挙げられる。
上記正孔輸送層及び電子輸送層(以下、これらを合わせてキャリア輸送層とも言う。)は、それぞれ単層構造でも多層構造でもよく、また、注入層としての機能を兼ねていても構わない。キャリア輸送層は、有機発光層230R、230G、230Bと同様の方法でも形成できるが、他の一般的な方法でも成膜が可能である。
上記キャリア輸送層の材料(キャリア輸送材料)としては、一般的な材料が使用可能である。以下にこれらの具体的な化合物を示すが、本発明はこれに限定されるものではない。
上記正孔輸送層の材料(正孔輸送材料)としては、例えば、ポルフィリン化合物、N,N′-ビス-(3-メチルフェニル)-N,N′-ビス-(フェニル)-ベンジジン(TPD)、N,N′-ジ(ナフタレン-1-イル)-N,N′-ジフェニル-ベンジジン(NPD)等の芳香族第3級アミン化合物、ヒドラゾン化合物、キナクリドン化合物、スチルアミン化合物等の低分子材料、ポリアニリン、3,4-ポリエチレンジオキシチオフェン/ポリスチレンサルフォネート(PEDOT/PSS)、ポリ(トリフェニルアミン誘導体)、ポリビニルカルバゾール(PVCz)等の高分子材料、ポリ(p-フェニレンビニレン)前駆体、ポリ(p-ナフタレンビニレン)前駆体等の高分子材料前駆体が挙げられる。
上記電子輸送層の材料(電子輸送材料)としては、例えば、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、フルオレン誘導体等の低分子材料、ポリ(オキサジアゾール)等の高分子材料が挙げられる。
上記キャリアブロッキング層は、単層構造でも多層構造でもよい。キャリアブロッキング層は、有機発光層230R、230G、230Bと同様の方法でも形成できるが、他の一般的な方法でも成膜が可能である。
上記キャリアブロッキング層の材料(キャリアブロッキング材料)としては、一般的な材料が使用可能である。以下にこれらの具体的な化合物を示すが、本発明はこれに限定されるものではない。
上記電子ブロッキング層の材料(電子ブロッキング材料)としては、例えば、N,N′-ビス-(3-メチルフェニル)-N,N′-ビス-(フェニル)-ベンジジン(TPD)等の低分子材料、ポリビニルカルバゾール(PVCz)等の高分子材料が挙げられ、正孔ブロッキング層の材料(正孔ブロッキング材料)としては、例えば、オキサジアゾール誘導体等の高分子材料が挙げられる。
また、有機発光層230R、230G、230B以外の機能性材料層を形成するための溶剤は、有機発光層230R、230G、230Bの形成に使用する際と同じ溶剤が使用可能である。但し、例えば正孔輸送層の上に発光材料を含む溶液を用いて有機発光層230R、230G、230Bを積層する場合、正孔輸送材料として、発光材料用の溶剤に可溶な材料を使用すると、発光層を形成する工程で、正孔輸送層が発光材料用の溶剤に溶解してしまい、正孔輸送層の膜の均一性が悪化することがある。したがって、複数の機能性材料層を積層する場合、上側に配置する層(後に形成する層)を形成する際には、下側に配置する層(先に形成する層)を溶解しない溶剤を使用することが好ましい。
第一の電極250及び第二の電極260(以下、これらを合わせて電極層とも言う。)には、一般的な電極材料を用いることが可能である。また、電極層と機能性材料層との界面には、必要に応じてキャリア注入層等の膜を挿入することもできる。
陽極(機能性材料層へ正孔を供給する電極)としては、仕事関数の大きな、金属材料(Au、Ni、Pt等)や導電性金属酸化物(ITO、IZO、ZnO、SnO等)からなる単層膜、又は、これらのうち複数の材料が積層された積層膜を用いることができる。また、このような陽極と機能性材料層との間には、導電性を大きく妨げない程度の厚み(例えば1nm程度)を有する酸化物を配置してもよい。
陰極(機能性材料層に電子を供給する電極)の材料としては、Ca、Ce、Cs、Rb、Sr、Ba、Mg、Li等の仕事関数が4.0eV以下の金属材料(以下、低仕事関数材料)用いることが可能である。なかでも、高分子有機発光層に対しては、Ca、Baが好適に用いられる。また、低仕事関数材料が酸素や水等によって変質するのを抑えるという観点から、陰極の材料としては、Ni、Os、Pt、Pd、Al、Au、Rh、Ag等の化学的に比較的安定な金属と、上記低仕事関数材料との合金も好適である。更に、トップエミッション型の有機EL表示装置では、陰極に透光性を与えるために、陰極を薄く形成する必要がある。したがって、トップエミッション型の有機EL表示装置では、陰極に電極としての充分な導電性を確保するために、透明電極層として、ITO、IZO、ZnO、SnO等の導電性金属酸化物を、透光性を有する金属層(陰極)上に形成することが好ましい。なお、透明電極層は、単層であってもよいし、複数の材料の積層膜であってもよい。
本実施形態における有機EL素子部の構造は、第一の電極250と、発光層を含む有機層(機能性材料層)と、第二の電極260とを少なくとも有するものではあればよく、例えば、前述の酸化物層のような別の層を更に含んでいてもよい。
(実施例1)
次に、本発明の実施例1について、図面を用いて詳細に説明する。
まず、図1、2を用いて、本発明の実施例1に係る有機EL表示装置100の全体構成と、製造方法の概略とについて説明する。
TFTが形成されたガラスや樹脂等の基板(TFT基板200)上には、層間膜(層間絶縁膜)、陽極(第一の電極)及びエッジカバーがこの順にパターニング形成されている。また、画像表示を行う表示エリア150内には、複数の画素がマトリクス状に配置されている。
そして、図1に示すように、表示エリア150の外側、すなわち額縁エリアに、永久膜レジスト(パネル完成後も残るレジスト膜)により、3色分の機能性材料を含む塗液(溶液)を溜めるための枠状構造物110a、110b、110cを形成する。また、これと同時に、異なる色の絵素領域を分ける隔壁を表示エリア150内に形成する。この隔壁により、表示エリア150内には、ストライプ状の溝(隔壁で区画された領域)が複数形成される。
次に、発光層より下側に配置される機能性材料層(正孔注入層、正孔輸送層、インターレイヤー等)を表示エリア150の全面に形成する。ここでは、真空蒸着法、スプレー法等の方法を使用する。あるいは後述する発光層の作製方法と同じ方法を使用してもよい。
次に、枠状構造物110a、110b、110cの内部に、それぞれ異なる色の発光材料を含む塗液(充填液130a、130b、130c)を注入する。これにより、毛細管現象によって枠状構造物110a、110b、110cの内部から表示エリア150内に形成された溝に対して塗液が流れ込み、絵素領域の色毎に別の塗液が充填される。このようにして、3色の絵素領域を塗り分けることができる。枠状構造物110a、110b、110cの内部に塗液を注入する方法としては、インクジェット法、スプレー法、ノズルコート法、ディスペンサ等を適用することができる。
次に、発光層より上側に配置される機能性材料層(電子輸送層、電子注入層等)を、発光層より下側に配置される機能性材料層と同様の方法で形成する。
次に、陰極(第二の電極)を真空蒸着法にて形成する。そして、図2に示すように、乾燥剤160を貼付した封止ガラス170をTFT基板200に貼り合わせ、封止樹脂(シール材)180を用いて封止する。
上記の手順により、本実施例の有機EL表示装置100が完成する。
次に、図3、4を用いて、本発明の実施例1に係る有機EL表示装置100の構成と、その製造方法とについて詳細に説明する。
図3に示すように、有機EL表示装置100の表示エリア150には、複数の画素がマトリクス状に配置されている。画素(ピクセル)は、画像の最小表示単位である。絵素領域は、画素を構成する単色の領域である。図3中、Pを付した領域は、1つの画素を示している。各画素は、赤(R)、緑(G)及び青(B)の3色で構成されており、1つの画素には、絵素領域140R(Rの絵素領域)が1つ、絵素領域140G(Gの絵素領域)が1つ、絵素領域140B(Bの絵素領域)が2つ配置されている。このように、本実施例の画素は、R/B/G/Bで構成されている。
表示エリア150内には絵素領域140R、絵素領域140G及び絵素領域140Bがマトリクス状に設けられている。また、表示エリア150外(額縁領域)には、枠状構造物110a(第一枠状構造物)、枠状構造物110b(第二枠状構造物)及び枠状構造物110c(第三枠状構造物)が配置されている。
図4に示すように、TFT基板200上には、絵素領域140R、140G、140B毎に、TFT270、第一の電極250及びエッジカバー240が形成されている。エッジカバー240は第一の電極250の端部を被覆し、第一の電極250の端部が第二の電極260と短絡しないようにするための部材である。
エッジカバー240上には、絵素領域140R、140G、140Bを色毎に区画(分離)する絶縁性の隔壁120が形成されている。隔壁120は、図3に示すように、上下方向で隣接する同色の絵素領域をまとめて囲むように配置されている。表示エリア150を平面視したとき、隔壁120で囲まれた領域の形状は、帯状(線状)である。すなわち、表示エリア150内には、隔壁120によって帯状の溝が形成されており、この溝の中に、上下方向に隣接する同色の絵素領域が配置されている。
第一の電極250上には、機能性材料層が形成されている。より具体的には、絵素領域140Rにおいては、正孔注入層兼正孔輸送層220及び有機発光層230R(Rの有機発光層)がこの順に形成されている。また、絵素領域140Rにおいては、正孔注入層兼正孔輸送層220及び有機発光層230G(Gの有機発光層)がこの順で形成されている。また、絵素領域140Bにおいては、正孔注入層兼正孔輸送層220及び有機発光層230B(Bの有機発光層)がこの順で形成されている。更に、第二の電極260が表示エリア150全体を覆うように形成されている。
ここで、隔壁120及び枠状構造物110a、110b、110cの構造について更に詳細に説明する。絵素領域140R、140G、140Bを区画する隔壁120は、壁状の構造物であり、ストライプ状に配置された絵素領域140R、140G、140Bの配列に沿ってスリット状に形成される。また、隔壁120は、絵素領域140Rを他の色の絵素領域と区画する第一隔壁部と、絵素領域140Gを他の色の絵素領域と区画する第二隔壁部と、絵素領域140Bを他の色の絵素領域と区画する第三隔壁部とを有する。なお、各隔壁部は、隣の色の絵素領域を区画する隔壁部の一部としても機能し、例えば、第一隔壁部及び第二隔壁部は、絵素領域140Bをも区画することから、第三隔壁部の一部としても機能する。このように、第三隔壁部で区画された領域とは、第一隔壁部及び第二隔壁部で区画された領域と呼ぶこともできる。
枠状構造物110aは、表示エリア150の上側の輪郭線に沿うように、すなわちTFT基板200の上側端部に沿うように配置され、一方、枠状構造物110bは、表示エリア150の下側の輪郭線に沿うように、すなわちTFT基板200の下側端部に沿うように配置される。このように、枠状構造物110a、110bは、表示エリア150を挟んで対向して配置される。
また、枠状構造物110cは、表示エリア150の左側の輪郭線に沿うように、すなわち、TFT基板200の左側端部に沿うように配置されている。このように、枠状構造物110cは、基板を平面視したときに、枠状構造物110a、110bに挟まれた領域に配置されており、枠状構造物110a、110b、110cにより、表示エリア150の三方が囲まれている。
枠状構造物110a、110b、110cは、左右方向に伸びる長方形状の領域を囲むように枠状に設けられている。但し、枠状構造物110a、110bの表示エリア150側には、開口が複数設けられ、枠状構造物110cの表示エリア150側には、開口が1つ設けられている。
第一隔壁部は、枠状構造物110aに接続されている。すなわち、第一隔壁部及び枠状構造物110aは一体的に形成されており、第一隔壁部で区画された領域(上下方向に隣接する絵素領域140Rが配置された溝、第一区画領域)は、枠状構造物110aの内部に接続されている。同様に、第二隔壁部は、枠状構造物110bに接続されている。すなわち、第二隔壁部及び枠状構造物110bは一体的に形成されており、第二隔壁部で区画された領域(上下方向に隣接する絵素領域140Gが配置された溝、第二区画領域)は、枠状構造物110bの内部に接続されている。また、第三隔壁部は、表示エリア150外に形成された枠状構造物110cに接続されている。すなわち、第三隔壁部及び枠状構造物110cは一体的に形成されており、第三隔壁部で区画された領域(上下方向に隣接する絵素領域140Bが配置された溝、第三区画領域)は、枠状構造物110cの内部に接続されている。
枠状構造物110a内にRの発光材料を含む塗液(第一塗液)を塗布した場合、塗液は、枠状構造物110a内を広がるとともに、毛細管現象により、枠状構造物110aの開口部から第一区画領域へと濡れ広がる。これにより、絵素領域140RにRの発光材料を含む塗液が塗布される。同様に、枠状構造物110b内にGの発光材料を含む塗液(第二塗液)を塗布した場合も、塗液は、枠状構造物110b内を広がるとともに、毛細管現象により、枠状構造物110bの開口部から第二区画領域へと濡れ広がる。これにより、絵素領域140GにGの発光材料を含む塗液が塗布される。また、枠状構造物110c内にBの発光材料を含む塗液(第三塗液)を塗布した場合も、塗液は、枠状構造物110c内を広がるとともに、毛細管現象により、枠状構造物110cの開口部から第三区画領域へと濡れ広がる。これにより、絵素領域140BにBの発光材料を含む塗液が塗布される。このように、本実施例では、毛細管現象を利用して、画素を構成する全ての色の絵素領域を塗り分けることができる。
また、各枠状構造物の内部に注入された塗液は、各隔壁部によって区画された領域内を毛細管現象によって濡れ広がることで、同色の絵素領域間で塗布量が均一化されることから、同色の絵素領域間で、塗液により形成された膜の膜厚がばらつくのを抑制することができる。
このように、本実施例では、枠状構造物110a、110bをそれぞれ表示エリア150の対向する2辺に沿って形成し、それらから互い違いに表示エリア150に溝を延ばすことによって、2色の絵素領域を塗り分ける。
他方、枠状構造物110cは、表示エリア150の枠状構造物110a、110bのいずれかに面した辺と直交する辺に沿って形成し、そこから表示エリア150に向かって蛇行した形状の溝を延ばすことにより、残り1色の絵素領域を塗布している。
次に、本発明の実施例1に係る有機EL表示装置100の製造方法について説明する。
まず、アモルファスシリコン膜や多結晶シリコン膜で作製されたTFT270がマトリクス状に形成されたTFT基板200上に、アクリル樹脂等の感光性樹脂を略2μmの厚さで塗布し、露光、現像及び焼成を行って層間絶縁膜210を形成した。次に、層間絶縁膜210上に、スパッタリング法によってITO膜を100nmの膜厚で形成した。
次いで、フォトリソグラフィ技術を使用し、塩化第二鉄水溶液をエッチング液として、ITO膜のパターニングを行い、各絵素領域140R、140G、140B毎に区切られた第一の電極250を形成した。この第一の電極250は、陽極として機能し、平坦化層の機能を有する層間絶縁膜210によって薄膜トランジスタ(TFT270)と分離されており、層間絶縁膜210に穿たれたコンタクトホールを通して、その下のマトリクス状に形成された薄膜トランジスタ270に各々接続されている。
次に、第一の電極250を形成したTFT基板200上に、感光性アクリル樹脂を、厚さが略1μmとなるように、スピンコート法で塗布した後、露光、現像及び焼成を行って、エッジカバー240を形成した。このとき、エッジカバー240は第一の電極250の端部を被覆するように形成した。なお、エッジカバー240の材料は、絶縁性の材料であれば特に限定されず、感光性アクリル樹脂の他に、感光性ポリイミド樹脂や感光性ノボラック樹脂等を使用することもできる。また、感光性アクリル樹脂の1つとしては、JSR株式会社製のオプトマーシリーズ等が挙げられ、感光性ポリイミド樹脂の1つとしては、東レ株式会社製のフォトニースシリーズ等が挙げられる。
次いで、感光性樹脂のドライフィルムをTFT基板200に熱圧着した後、露光、現像及び焼成を行って、エッジカバー240上に隔壁120を形成するとともに、隔壁120と一体的に枠状構造物110a、110b、110cを形成した。このように、隔壁120及び枠状構造物110a、110b、110cを同一工程で(同時に)に形成することにより、製造工程を簡略化することができる。この隔壁120及び枠状構造物110a、110b、110cの厚さ(高さ)は20μmとした。なお、感光性樹脂のドライフィルムの1つとしては、化薬マイクロケム株式会社のSU-8シリーズ等が挙げられる。これにより、隔壁120は、絵素領域140R、140G、140Bを色毎に囲むように形成され、隔壁120の絵素領域140Rを囲む部分(第一隔壁部)は、枠状構造物110aに接続され、隔壁120の絵素領域140Gを囲む部分(第二隔壁部)は、枠状構造物110bに接続され、隔壁120の絵素領域140Bを囲む部分(第三隔壁部)は、枠状構造物110cに接続された。すなわち、絵素領域140Rが上下方向に複数配置された帯状の溝(第一隔壁部によって区画された領域)は、枠状構造物110aの内部に接続され、画素領域140Gが上下方向に複数配置された帯状の溝(第二隔壁部によって区画された領域)は、枠状構造物110bの内部に接続され、絵素領域140Bが上下方向に複数配置された帯状の溝(第三隔壁部によって区画された領域)は、枠状構造物110cの内部に接続された。なお、隔壁120及び枠状構造物110a、110b、110cのテーパ角は85°であった。すなわち、隔壁120及び枠状構造物110a、110b、110cは、順テーパ形状であった。
この後、UVオゾンにTFT基板200表面を2分間晒すことにより、第一の電極250表面の不要な不純物を分解除去するとともに、第一の電極250、エッジカバー240及び隔壁120に親液性を付与した。この処理により、第一の電極250、エッジカバー240及び隔壁120の水との接触角は30°以下となった。また、枠状構造物110a、110b、110cの水との接触角も30°以下となった。
なお、上記各部材の水との接触角は、塗液の粘度及び表面張力を考慮して適宜設定することができるが、通常、60°以下(より好適には、30°以下)とすればよい。一方、60°を超えると、絵素領域に塗液が充分に充填されず、塗布不良となることがある。
各絵素領域140R、140G、140Bのピッチ(隔壁等の非発光領域を含む領域のサイズ)は、240μm(隔壁120に沿う方向、すなわち上下方向)×60μm(隔壁120に垂直な方向、すなわち左右方向)とし、第一の電極250の露出部(すなわち発光領域)のサイズは、190μm(隔壁120に沿う方向、すなわち上下方向)×30μm(隔壁120に垂直な方向、すなわち左右方向)とした。また、隔壁120の幅(左右方向の長さ)は20μmとし、枠状構造物110a、110b、110cの壁部分の幅も20μmとした。また、枠状構造物110a、110bで囲まれた領域のサイズは、上下方向3mm×左右方向38mmとし、枠状構造物110cで囲まれた領域のサイズは、上下方向38mm×左右方向3mmとした。また、隔壁120の上下方向の長さは37.7mmとした。本実施例の有機EL表示装置100の画面サイズは上下方向36mm×左右方向28.8mmであり、解像度は106ppiである。
なお、隔壁120の幅及び高さは、絵素領域140R、140G、140Bのサイズや塗液の塗布量、隔壁120のアスペクト比(高さと幅の比)等を考慮して適宜設定することができるが、幅は、通常、5~100μm(より好適には20~50μm)程度とすればよく、高さは、通常、5~100μm(より好適には20~50μm)程度とすればよい。幅が5μm未満であると、パターン形成不良が発生しやすいばかりでなく、塗液が隔壁120を越え、他の領域に浸入することで混色を招くおそれがあり、一方、100μmを超えると、各絵素領域140R、140G、140Bの発光領域を形成する余地が小さくなるおそれがある。高さが5μm未満であると、塗液が隔壁120を越え、他の領域に浸入することで混色を招くおそれがあるばかりか、各絵素領域140R、140G、140Bに充分な塗布量が保持できなくなり、所望の膜厚の有機発光層230R、230G、230Bを得ることができないおそれがあり、一方、100μmを超えると、塗液の乾燥後に隔壁120に付着する機能性材料層が多くなり、所望の膜厚の有機発光層230R、230G、230Bを得ることができないおそれがある。
また、隔壁120のアスペクト比は、高さを幅で割った値として、通常、20以下(より好適には2以下)程度とすればよい。アスペクト比が20を超えると、膜の剥がれが発生しやすく、パターン形成不良が発生しやすい。
また、隔壁120で囲まれた領域の幅(隔壁120に垂直な方向、すなわち左右方向の長さ)は、絵素サイズ等を考慮して適宜設定することができるが、毛細管現象が発生する幅以下であることが好ましい。より具体的には、隔壁120で囲まれた領域の幅は、通常、20~200μm(より好適には40~100μm)程度とすればよい。20μm未満であると、塗液から形成された機能性材料層の膜厚が絵素内で不均一になるおそれがあり、一方、200μmを超えると、毛細管現象が弱くなり、絵素領域への塗液の充填に要するタクトタイムが長くなるおそれがある。
また、枠状構造物110a、110b、110cの幅及び高さは、パネルサイズや塗液の塗布量、枠状構造物110a、110bのアスペクト比(高さと幅の比)等を考慮して適宜設定することができるが、幅は、通常、5~500μm(より好適には20~50μm)程度とすればよく、高さは、通常、5~100μm程度とすればよい。幅が5μm未満であると、パターン形成不良が発生しやすいばかりでなく、塗液が枠状構造物110a、110b、110cを越えて枠状構造物110a、110b、110cの外に溢れ出すおそれがあり、一方、500μmを超えると、額縁領域が大きくなり、パネル外形設計に支障をきたすおそれがある。高さが5μm未満であると、塗液が枠状構造物110a、110b、110cを越えて枠状構造物110a、110b、110cの外に溢れ出すおそれがあり、一方、100μmを超えると、塗液の乾燥後に枠状構造物110a、110b、110cに付着する機能性材料層が多くなり、所望の膜厚を得ることができないおそれがある。
また、枠状構造物110a、110b、110cのアスペクト比(高さを幅で割った値)は、通常、20以下(より好適には2以下)程度とすればよい。アスペクト比が20を超えると、膜の剥がれが発生しやすく、パターン形成不良が発生しやすい。
また、枠状構造物110a、110b、110cで囲まれた領域の幅(隔壁120に沿う方向、すなわち上下方向の長さ;縦幅)は、パネルサイズや、表示エリア150のサイズ、塗液の塗布量等を考慮して適宜設定することができるが、塗布装置に高精度な位置合わせを要しない幅以上であることが好ましく、また、毛細管現象を効果的に発現する観点からは枠状構造物110a、110b、110cで囲まれた領域の幅は、隔壁120で囲まれた領域の幅よりも大きいことが好ましい。より具体的には、枠状構造物110a、110b、110cで囲まれた領域の幅は、通常、0.5~20mm(より好適には2~10mm)程度とすればよい。0.5mm未満であると、枠状構造物110a、110bで囲まれた領域内に塗液が正確に塗布できないおそれがあり、一方、20mmを超えると、額縁領域が大きくなり、パネル外形設計に支障をきたすおそれがある。
次いで、正孔輸送材料としてN,N′-ジ(ナフタレン-1-イル)-N,N′-ジフェニル-ベンジジン(NPD)を用い、エッジカバー240及び第一の電極250の上に、真空蒸着法により正孔注入層兼正孔輸送層(正孔注入層及び正孔輸送層)220を積層した。正孔注入層兼正孔輸送層220の膜厚は50nmとした。
次に、有機発光層230R(Rの有機発光層)の発光材料としてポリフルオレン系赤色発光材料を使用し、溶媒として芳香族系の混合溶媒を使用し、Rの発光層溶液(有機発光層230Rの材料を含む組成物、Rの塗液、第一塗液)を作製した。Rの発光層溶液の粘度は略20mPa・sとし、表面張力を略40mN/mに調製した。このRの発光層溶液を枠状構造物110a内にインクジェット法を用いて塗布した。枠状構造物110a内に溜められたRの発光層溶液(充填液130a)は、隔壁120が親液性を有しているため、毛細管現象によって容易に絵素領域140Rに充填(塗布)された。このとき、絵素領域140G、140Bは、絵素領域140Rとは隔壁120で隔絶されているため、充填液130aが浸入することはなかった。一方、枠状構造物110aで囲まれた領域内には、充填液130aが残り、後述する乾燥工程後、有機発光層230Rと同一の材料が残ることになる。
一方、有機発光層230G(Gの有機発光層)の発光材料としてポリフルオレン系緑色発光材料を使用し、溶媒として芳香族系の混合溶媒を使用し、Gの発光層溶液(有機発光層230Gの材料を含む組成物、Gの塗液、第二塗液)を作製した。Rの発光層溶液と同様、Gの発光層溶液の粘度は略20mPa・sとし、表面張力を略40mN/mに調製した。このGの発光層溶液を枠状構造物110b内にインクジェット法を用いて塗布した。枠状構造物110b内に溜められたGの発光層溶液(充填液130b)は、Rの発光層溶液と同様に、毛細管現象によって、絵素領域140Gに充填(塗布)された。このとき、絵素領域140R、140Bは絵素領域140Gとは隔壁120で隔絶されているため、充填液130bが浸入することはなかった。一方、枠状構造物110bで囲まれた領域内には、充填液130bが残り、後述する乾燥工程後、有機発光層230Gと同一の材料が残ることになる。
さらに、有機発光層230B(Bの有機発光層)の発光材料としてポリフルオレン系青色発光材料を使用し、溶媒を芳香族系の混合溶媒として使用し、Bの発光層溶液(有機発光層230Bの材料を含む組成物、Bの塗液、第三塗液)を作成した。Bの発光層溶液の粘度は略10mPa・sとし、表面張力を略40mN/mに調製した。このBの発光層溶液を枠状構造物110c内にインクジェット法を用いて塗布した。枠状構造物110c内に溜められたBの発光層溶液(充填液130c)は、R及びGの発光層溶液と同様に、毛細管現象によって、絵素領域140Bに充填(塗布)された。枠状構造物110cの内部と第三隔壁部で区画された領域とは1つの開口で接続されているため、充填液130cは、枠状構造物110cに近い側から順次充填(塗布)された。このとき、絵素領域140R、140Gは絵素領域140Bとは隔壁120で隔絶されているため、充填液130cが浸入することはなかった。一方、枠状構造物110cで囲まれた領域内には、充填液130cが残り、後述する乾燥工程後、有機発光層230Bと同一の材料が残ることになる。
このように、枠状構造物110a、110b、110cと、隔壁120とは、塗液が所定位置よりも拡がるのを堰き止める堰き止め部材(仕切り部材)として機能する。また、枠状構造物110a、110b、110cは、自身が囲む領域内に機能性材料を含む塗液を溜めるとともに、毛細管現象等によって生じる塗液の流動により、開口部を通して隔壁120によって区画された領域内に該塗液を充填する(流し出す)ための囲いとして機能する。
その後、絵素領域140R、140G、140Bに発光層溶液が塗布されたTFT基板200を、1Pa以下の真空下、30分間乾燥させた後、常圧の窒素雰囲気下、200℃で60分間焼成して、発光層溶液中の溶媒成分を乾燥除去することにより、有機発光層230R、230G、230Bを形成した。有機発光層230R、230G、230Bの膜厚はいずれも50nmとした。
次いで、一般的な技術を用いて、正孔注入層と、正孔輸送層220と、有機発光層230R、230G、230Bとが形成されたTFT基板200上に、BaとAlとをこの順に積層して第二の電極260を形成した。
上記の手順によって製造した有機EL表示装置100によれば、枠状構造物110a、110b、110cの内部に塗液を吐出(注入)することで、毛細管現象によって、絵素領域140R、140G、140Bにその塗液が充填(塗布)され、有機発光層230R、230G、230Bが形成される。これにより、混色のない有機EL表示装置を簡便に作製することができた。他方、従来の有機EL表示装置のように、蒸着マスクを用いて各色の絵素領域140R、140G、140Bを真空蒸着法にて形成する場合、生産適用性の点で種々の課題があった。例えば、蒸着マスクと基板との高精度な位置合わせが必要であったり、大型の基板に対して使用される蒸着マスクは重量が著しく大きくなるため、位置合わせが困難になるだけでなく、装置の重量耐性の問題が発生したり、蒸着マスクを切り替える際の労力が増す一方、安全性が確保し難くなるといった課題があった。また、蒸着マスクと基板との位置合わせに高精度が求められるという点や、蒸着ボケを極小化する技術(異なる色の絵素間の境界を明確にする技術)が必要となるという点を考慮すると、蒸着マスクを用いて高精細な有機EL表示装置を作製することは困難であった。しかしながら、本実施例の手順に従えば、毛細管現象により、各色の絵素領域を容易に塗り分けることが可能であるので、上記のような課題は一切発生しない。したがって、なんら高度な技術を用いることなく、大型の基板及び高精細な有機EL表示装置についても作製が可能である。
一方、各絵素領域140R、140G、140Bに個々にインクジェット法にて各色の発光層溶液を充填し、各有機発光層230R、230G、230Bを形成していく方法は、塗液量のバラツキにより、絵素領域毎に有機発光層230R、230G、230Bの膜厚バラツキが発生することがあった。また、高精細な有機EL表示装置に対しては高精度な吐出位置の制御が要求されるために、隣接する絵素領域への溶液の漏出や隣接する絵素領域間での混色が発生することがあった。しかしながら、本実施例の手順に従えば、毛細管現象により、3色の絵素領域(絵素領域140R、140G、140B)に発光層溶液が充填(塗布)され、更に、第一~第三区画領域内に充填される塗液量が毛細管現象によって平均化されるため、有機発光層230R、230G、230Bの膜厚が同色の絵素領域間でばらつくことがない。また、充分に広く、かつ、表示エリア150外に形成された枠状構造物110a、110b、110cのみにインクジェット法で塗液を吐出するので、吐出位置の高精度な制御は必要なく、混色の恐れもない。
また、本実施例では、枠状構造物110c(第三枠状構造物)を利用して形成した絵素領域140Bは、1画素に対して2つ(2絵素)配置される。Bは一般的に他の色に比べて輝度効率、寿命の点で低特性であるため、1絵素あたりの輝度を低減させ、結果的に寿命を向上することができる。このように、第三枠状構造物を利用して形成する絵素領域の色は、1画素がRGBで構成される場合、Bであることが好ましい。
また、本実施例では、有機発光層230Bの材料を含む溶液(充填液130c)の粘度を、有機発光層230Rの材料を含む溶液(充填液130a)の粘度及び有機発光層230Gの材料を含む溶液(充填液130b)の粘度よりも低くした。以下、この理由について説明する。
枠状構造物110aは、絵素領域140Rで構成された複数の列のそれぞれに対して開口部を有しており、また、枠状構造物110bは、絵素領域140Gで構成された複数の列のそれぞれに対して開口部を有している。したがって、絵素領域140R、140Gに塗液を充填する工程では、塗液が移動する距離が短い。これに対し、枠状構造物110cは、絵素領域140Bで構成された複数の列に対して1つの開口部しか有していない。したがって、絵素領域140Bに塗液を充填する工程では、塗液が移動する距離が長いため、絵素領域140R、140Gに塗液を充填する工程と比較して、タクトタイム(充填時間)が長くなる。しかしながら、本実施例では、充填液130cの粘度が低いため、タクトタイムが長くなるのを抑制することができた。このように、蛇行した形状を有する領域に充填する塗液は、線状の領域に充填する塗液よりも、粘度が低いことが好ましい。但し、タクトタイムが許容されうるのであれば、これに限るものではなく、例えば全ての塗液の粘度を同一にしたり、線状の領域に充填する塗液(例えば、有機発光層230Rの材料を含む溶液)の粘度を最も低くすることもできる。
なお、本実施例では、枠状構造物110a、110b、110cの内部に塗液を溜める方法として、インクジェット法を用いたが、塗液を溜める方法であれば特に限定されない。例えば、ノズルコート法、ディスペンサを用いる方法や局所領域へのスプレー塗布法等が適用できる。
なお、本実施例では、有機発光層230R、230G、230Bのみを毛細管現象により形成したが、これに限らず、他の機能性材料層にも適用することができる。例えば、有機発光層230R、230G、230Bと同様の手順で全ての絵素領域140R、140G、140Bに正孔輸送層溶液を充填(塗布)して正孔輸送層を形成した後、上述の方法により、有機発光層230R、230G、230Bを正孔輸送層上に積層することもできる。このように、焼成等を行うことで、枠状構造物110a、110b、110c内に注入した塗液の溶媒成分を除去すれば、更に別の塗液を枠状構造物110a、110b、110c内に注入することができる。但し、この場合、先に形成した膜(例えば、正孔輸送層)が後に充填する溶液(例えば、発光材料を含む溶液)に再溶解しないよう、後に充填する溶液に使用する溶媒を選択したり、架橋反応等によって先に形成した膜の不溶化処理を行うことが好ましい。
また、トップエミッション構造において、マイクロキャビティ(微小共振器)効果を得るためには、絵素領域140R、140G、140Bに配置された機能性材料層の総膜厚を色毎に異ならせる必要が生じる場合がある。ここで、マイクロキャビティ効果とは、有機EL素子の陽極及び陰極の間に微小共振器構造を形成することで、色純度の向上や正面輝度効率の向上が生じる効果であり、最適なマイクロキャビティ効果を得ることができる総膜厚は色毎に異なっている。それを実現するためには、従来においては、例えば、絵素領域の色毎に機能性材料層の総膜厚を変化させるために、正孔輸送層等の機能性材料層を絵素領域の色毎に異なる膜厚で個別に形成する必要があった。したがって、正孔輸送層等の形成においても、有機発光層230R、230G、230Bを色毎に塗り分けて形成する時と同じ課題が生じるばかりか、真空蒸着法により形成する場合には、マスクを変更するか、マスク位置をずらして各色ごとに形成する必要があるため、膜形成回数が1回から2回ないし3回に増える問題があった。一方、本実施例の方法によれば、隔壁120によって異なる色の絵素領域間が区画されているので、枠状構造物110a、110b、110cに吐出する溶液の濃度や液量を調整することで、絵素領域140R、140G、140Bに配置された機能性材料層の膜厚を色毎に容易に異ならせることができる。また、各枠状構造物110a、110b、110cに吐出する工程は変わらないため、膜形成回数が増えることもない。
また、本実施例では、正孔注入層及び正孔輸送層(正孔注入層兼正孔輸送層)220と、有機発光層230R、230G、230Bとを機能性材料層として使用したが、その他に電子輸送層やキャリアブロッキング層等の層を追加積層することが可能である。更には、機能性材料層として有機発光層230R、230G、230Bのみを成膜してもよい。その際、全ての機能性材料層に対して、毛細管現象による充填(塗布)を行えば、機能性材料層全てを毛細管現象によって積層することもできる。
また、本実施例では、隔壁120を順テーパ形状とした。これにより、第二の電極260と配線とが隔壁120によって断線することを防止することができた。しかしながら、隔壁120は、逆テーパ形状であってもよい。隔壁120が逆テーパ形状である場合、充填液が隔壁120を乗り越えてしまう危険性が減るばかりでなく、毛細管現象もより強く発現する効果が見込める。但し、逆テーパ形状の隔壁120によって第二の電極260が配線と断絶してしまうことがあるので、絵素領域140R、140G、140Bに配置される第二の電極260(第二の電極260の隔壁120内の部分)と配線との電気的接続を行う方法を別途設ける必要がある。
また、本実施例では、第一の電極250、エッジカバー240及び隔壁120の水との接触角は30°以下としたが、これに限らず、毛細管現象による塗液の充填(塗布)ができる接触角であればよい。
また、本実施例では、有機発光層230R、230G、230Bの発光材料としてポリフルオレン系発光材料を使用したが、これに限らず、他の機能性材料(発光材料)を使用することが可能である。
また、本実施例では、隔壁120を感光性樹脂のドライフィルムにて形成したが、これに限らず、例えば窒化シリコン等の無機膜をCVD等の方法を用いて成膜した後、その膜をパターニングすることでも形成することが可能である。また、隔壁材料として導電性材料を用いることも可能である。
また、本実施例では、アクティブマトリクス型の有機EL表示装置100を示したが、TFTが形成されていないパッシブマトリクス型の有機EL表示装置100においても同様に実施が可能である。
なお、図3に示したように、本実施例では、枠状構造物110cと第一隔壁部との間に空間を設けているが、この空間は、必ずしも設ける必要はない。すなわち、枠状構造物110cの一部が、第一隔壁部として機能していてもよい。但し、この空間がある場合、もし枠状構造物110cに塗液を吐出する際に枠状構造物110cから第一隔壁部側へ吐出位置が外れてしまっても、空間内に塗液が保持されるだけで、第一隔壁部で区画された絵素領域140Rに充填液130cが浸入することはない。すなわち、この空間によって吐出位置の不良による混色を防ぐことができる。同様に、枠状構造物110cと枠状構造物110a、110bとの間に空間を設けることで上記のような好ましい効果を得ることもできる。
(実施例2)
次に、実施例2の有機EL表示装置について、図5を用いて詳細に説明する。図5は、実施例2の有機EL表示装置の表示エリア周辺を示す平面模式図である。
図5に示すように、本実施例の有機EL表示装置100は、表示エリア150の左側に、枠状構造物110c1が配置され、表示エリア150の右側に、枠状構造物110c2が配置されている。枠状構造物110c1、110c2は、いずれも、第三枠状構造物に相当する。このように、本実施例では、実施例1では1つしか配置されていなかった第三枠状構造物を、2つ配置している。その他の構成については、実施例1と同一である。
第三区画領域は、実施例1と同様に、第一区画領域及び第二区画領域の輪郭線にそって蛇行した形状を有する。また、枠状構造物110c1、110c2は、それぞれ表示エリア150側に開口部を1つ有する。これにより、第三区画領域は、枠状構造物110c1、110c2の内部に接続されている。枠状構造物110c1、110c2の幅及び長さは実施例1の枠状構造物110cと同じである。
実施例1と同様にして、R及びGの発光層材料をそれぞれ絵素領域140R、140Gに充填(塗布)した。次に、実施例1と同じBの発光層材料を含む塗液(充填液130c)を作成し、その塗液を枠状構造物110c1、110c2の内部にインクジェット法を用いて塗布した。この時、枠状構造物110c1、110c2への塗布量は各々、実施例1の場合の半分の量とした。枠状構造物110c1、110c2内に溜められた充填液130cは、毛細管現象によって、絵素領域140Bに充填(塗布)された。第三隔壁部で区画された領域には、枠状構造物110c1、110c2の内部から塗液が流れ込むため、表示エリア150の左右方向から塗液が順次充填(塗布)された。このとき、絵素領域140R、140Gは絵素領域140Bとは隔壁120で隔絶されているため、充填液130cが浸入することはなかった。
以上のような手順で作製した有機EL表示装置によれば、第三区画領域(絵素領域140Bが配置された領域)に対して、第三枠状構造物110c1、110c2から塗液を注入することができるため、絵素領域140Bに塗液を充填(塗布)するために要する時間が実施例1と比較しておよそ半減した。これにより、タクトタイムをより短くすることができ、発光層溶液を充填(塗布)する工程での溶媒の乾燥に起因する有機発光層230R、230G、230Bの膜厚のばらつきをより抑制することができた。また、総合的な製造時間の短縮も可能となった。
なお、本実施例では第三枠状構造物110c1、110c2を同一の大きさで形成したが、これに限らず、有機EL表示装置の設計上で許容されうる限り、大きさを各々変えることができる。
(実施例3)
次に、実施例3の有機EL表示装置について、図6、7を用いて詳細に説明する。
図6は、実施例3の有機EL表示装置の表示エリア周辺を示す平面模式図である。また、図7は、図6中のB1-B2断線における断面模式図である。
図6に示すように、1つの画素(図6中、Pを付した領域)は、R/G/Bで構成されている。行方向に隣接する画素の間には、第三区画領域の絵素領域140Bが配置されていない部分(接続ライン)が配置されている。その他の構成については、実施例1と同一である。
実施例1と同様に、層間絶縁膜210まで形成された基板200に対して、実施例1と同様の方法で、ITOを用いて第一の電極250を形成した。但し、この際、接続ラインが配置される領域には、第一の電極250を形成しなかった。次いで、実施例1と同様の方法でエッジカバー240を形成したが、この際、接続ラインが配置される領域を覆うようにエッジカバー240を形成した。
次いで、隔壁120を実施例1と同様の方法で形成した。但し、この際、接続ラインを区画する隔壁も同時に形成した。上下方向に隣接する絵素領域140Bで構成された列は、横並びに配置されており、接続ラインは、その列の間に配置される。すなわち、絵素領域140Bで構成された列が配置された領域同士が、接続ラインによって接続されている。接続ラインの長さ(隔壁120に沿う方向、すなわち上下方向)は、複数の絵素領域140Bを区画する隔壁(第三隔壁部)と同一とし、幅(接続ラインを区画する隔壁間距離)は10μmとした。また接続ラインを区画する隔壁の幅は20μmとした。なお、各絵素領域140R、140G、140Bのピッチ(隔壁等の非発光領域を含む領域のサイズ)は、240μm(隔壁120に沿う方向、すなわち上下方向)×70μm(隔壁120に垂直な方向、すなわち左右方向)とし、第一の電極250の露出部(すなわち発光領域)のサイズは、190μm(隔壁120に沿う方向、すなわち上下方向)×40μm(隔壁120に垂直な方向、すなわち左右方向)とした。他の各構成要素の幅、長さは実施例1と同じであり、解像度も同じく106ppiである。
以上のように隔壁120を形成した基板200に対し、実施例1と同様の方法を用いて有機EL表示装置を作製した。但し、Bの発光層材料として実施例1と同じ発光層溶液を作成し、その発光層溶液を枠状構造物110cに塗布した際、充填液130cは接続ラインを経て全ての絵素領域140Bに充填(塗布)された。
上記のような手順によって作製された有機EL表示装置は、毛細管現象により発光層を各絵素領域に個別に形成しているために、実施例1で示したような利点を有している。それと共に、1つの画素には絵素領域140R、140G、140Bが1つずつ配置されており、これは従来の有機EL表示装置の画素と同じ構成であるため、従来用いられている駆動方法や制御方法を適用することができる。
さらに、接続ラインの幅は狭く形成されているため、各絵素の発光領域を広くすることができる。また、毛細管現象は幅が狭いほどより強く発現することから、接続ラインを設けることで、絵素領域140Bに塗液を充填(塗布)する工程のタクトタイムを短縮することができる。
なお、本実施例では第三枠状構造物110cを表示エリア150の片側に形成したが、無論のこと、実施例2のように両側に形成することも可能である。
また、本実施例では、接続ラインが配置される領域にエッジカバー240を形成したが、接続ラインが配置される領域にはエッジカバー240を形成しなくてもよい。
(実施例4)
次に、実施例4の有機EL表示装置について、図8を用いて詳細に説明する。
図8は、実施例4の有機EL表示装置の表示エリア周辺を示す平面模式図である。図8中のPを付した領域は、1つの画素を示している。
図8に示すように、本実施例の有機EL表示装置100は、表示エリア150と枠状構造物110c1との間に、枠状構造物110d1が配置され、表示エリア150と枠状構造物110c2との間に枠状構造物110d2が配置されている。また、表示エリア150内には、絵素領域140R、140G、140B、140Yがマトリクス状に配置されている。絵素領域140Yは、黄色(Y)の絵素領域である。このように、本実施例では、1つの画素が4色の絵素で構成され、各絵素はR/Y/B/G/B/Yの順に配置されている。その他の構成については、実施例2と同一である。
第四隔壁部(隔壁120の絵素領域140Yを区画する部分)で区画された領域(第四区画領域)は、第三隔壁部で区画された領域(第三区画領域)の輪郭線に沿って蛇行した形状を有する。また、枠状構造物110d1、110d2は、それぞれ表示エリア150側に開口部を1つ有する。これにより、第四区画領域は、枠状構造物110d1、110d2の内部に接続されている。
隔壁120、枠状構造物110a、110b、110c1、110c2は、実施例2と同様の方法で形成することができる。枠状構造物110d1、110d2の幅及び長さは、それぞれ枠状構造物110c1、110c2と同じとした。また、枠状構造物110a、110bの長さは、実施例1や2と同じとしても良いが、本実施例では、表示エリア150の両側に枠状構造物110d1、110d2を形成した分(すなわち枠状構造物110a、110b枠状構造物で囲まれた領域の幅3mm及び枠状構造物110a、110bの壁部分の幅20μmを足したものの2倍)だけ延長して作製した。
各絵素領域140R、140G、140B、140Yのピッチ(隔壁120等の非発光領域を含む領域のサイズ)は、360μm(隔壁120に沿う方向、すなわち上下方向)×60μm(隔壁120に垂直な方向、すなわち左右方向)とし、第一の電極250の露出部(すなわち発光領域)のサイズは、310μm(隔壁120に沿う方向、すなわち上下方向)×30μm(隔壁120に垂直な方向、すなわち左右方向)とした。また、隔壁120の幅(左右方向の長さ)は20μmとし、枠状構造物110a、110b、110c、110dの壁部分の幅も20μmとした。また、枠状構造物110a、110bで囲まれた領域のサイズは、上下方向3mm×左右方向44mmとし、枠状構造物110c、110dで囲まれた領域のサイズは、上下方向38mm×左右方向3mmとした。また、隔壁120の上下方向の長さは37.7mmとした。本実施例の有機EL表示装置100の画面サイズは上下方向36mm×左右方向28.8mmであり、解像度は70ppiである。
実施例2と同様にして、R、G、Bの発光層材料を充填(塗布)した後、Yの発光層材料としてポリフルオレン系黄色発光材料を使用し、溶媒を芳香族系の混合溶媒として発光層溶液を作成した。Yの発光層溶液の粘度は略10mPa・sとし、表面張力を略40mN/mに調製した。その発光層溶液を枠状構造物110d1、110d2内にインクジェット法を用いて塗布した。この時、塗布量は実施例2のBの発光層溶液と同一の量とした。枠状構造物110d1、110d2内に溜められた発光層溶液(充填液130d)は、毛細管現象によって、絵素領域140Yに充填(塗布)された。第四区画領域には、枠状構造物110d1、110d2の内部から塗液が流れ込むため、表示エリア150の左右方向から塗液が順次充填(塗布)された。このとき、絵素領域140R、140G、140Bは、絵素領域140Yとは隔壁120で隔絶されているため、充填液130dが浸入することはなかった。
以上のような手順で作製した有機EL表示装置によれば、1画素をR/Y/B/G/B/Yで構成することができる。このように、R、G、Bに加えて、黄色発光するYの絵素領域を形成することで、表現し得る色域が拡大し、より高品位の有機EL表示装置を実現し得た。
また、全ての発光層溶液を毛細管現象により充填(塗布)したので、Yの絵素領域を加えた有機EL表示装置においても、Yの発光層溶液を枠状構造物110d1、110d2に塗布する工程が増えるのみであり、何ら複雑な工程を追加する必要はなかった。したがって、本実施例の方法を用いれば、簡便かつ低コストで発光色の追加が可能となる。
なお、本実施例では、4色目の絵素領域を形成するための第四枠状構造物を2つ(枠状構造物110d1、110d2)形成したが、無論、実施例1の第三枠状構造物110cのごとく、表示エリア150の左右いずれかの片側に形成することも可能である。また、第四枠状構造物は、必ずしも表示エリア150の左右側に形成する必要もなく、第四枠状構造物と絵素領域140Yを区画する隔壁(第四隔壁部)を接続し、第四枠状構造物に発光層溶液を塗布することで、絵素領域140Yに発光層溶液を充填(塗布)でき得るのであれば、表示エリア150の上下方向など、任意の位置に第四枠状構造物を形成することができる。例えば、枠状構造物110aの外側(表示エリア150から離れる側)に枠状構造物110d1を形成すると共に、枠状構造物110c1と枠状構造物110aとの間に新たに区画された領域を形成し、その領域を介して枠状構造物110dの内部と第四隔壁部で区画された領域(絵素領域140Yが配置された領域)を接続することなどが考えられる。
また本実施例では、絵素領域140Yを追加し、1つの画素が4色の絵素で構成された場合について説明したが、無論これに留まらず、さらに幾つでも別の色の絵素を加えることができる。その場合、絵素領域140Y及び枠状構造物110d、110d2を形成したのと同じ手順を用いればよい。例えば、第四区画領域の輪郭線に沿って蛇行した平面形状の領域(第五隔壁部で区画された領域)を形成し、その領域にR、G、B、Y以外の色の絵素領域を形成すると共に、枠状構造物110枠状構造物d1のさらに内側(表示エリア150側)に、その絵素領域を塗布するための第五枠状構造物を形成し、その内部を第五隔壁部で区画された領域に接続することなどが考えられる。本実施例の方法を用いれば、画素サイズ等の設計が許容される範囲の中で、1つの画素に含まれる絵素の発光色数を拡大することが可能となる。
なお、実施例2で説明した接続ラインを使用することにより、1つの画素に配置される絵素領域140Yを1つにすることもできる。
(実施例5)
次に、本発明の実施例5について、図9を用いて詳細に説明する。
図9は、実施例5の有機EL表示装置の表示エリア周辺を示す平面模式図である。図9中のP1、P2を付した領域は、1つの画素を示している。P1を付した画素は、左よりR/B/Gの順番に絵素が配置され、P2を付した画素は、逆にG/B/Rの順番に絵素が配置されている。このように、本実施例では、行方向に隣接する画素には、絵素が点対称に配置されている。
また、実施例1~4においては、絵素領域140R、140Gは、1列毎に区画されていたのに対し、本実施例では、絵素領域140R、140Gは、2列毎に区画されている。なお、絵素領域140Bは、実施例1、2及び4と同様に区画されている。その他の構成については実施例2と同一である。
各絵素領域140R、140G、140Bのピッチ(隔壁等の非発光領域を含む領域のサイズ)は、240μm(隔壁120に沿う方向、すなわち上下方向)×80μm(隔壁120に垂直な方向、すなわち左右方向)とし、第一の電極250の露出部(すなわち発光領域)のサイズは、絵素領域140R、140Gに対しては、190μm(隔壁120に沿う方向、すなわち上下方向)×60μm(隔壁120に垂直な方向、すなわち左右方向)とし、絵素領域140Bに対しては、190μm×50μmとした。また、隔壁120の幅(左右方向の長さ)は20μmとした。その他の寸法に関しては、実施例1と同じであり、解像度も実施例1と同じく106ppiである。
製造方法については、実施例2と同様の方法を用いることができる。
以上のような手順で作製した有機EL表示装置によれば、図9に示したように、行方向に隣接する画素間で絵素配置が点対称となるものの、1つの画素には、絵素領域140R、140G、140Bが1つずつ配置されている。これは、従来の有機EL表示装置の画素と同じ構成であるため、従来用いられている駆動方法や制御方法を適用することができる。そのため、複雑な駆動方法や制御方法による表示品位の低下や製造コストの増加を抑制することが可能となる。
また、実施例3で説明した接続ラインを使用することなく、1つの画素に、絵素領域140R、140G、140Bを1つずつ配置することができる。これにより、実施例3と比較して、表示エリア150内の表示に寄与しない領域を少なくすることができる。
(実施形態2)
図10は、実施形態2のカラーフィルタ基板を示す断面模式図である。図10に示すように、本実施形態のカラーフィルタ基板は、基板400上に、遮光層(BM層)410と、隔壁120と、着色層420R、420G、420Bと、平坦化層430と、電極440とを基板400側からこの順に積層した構造を有する。遮光層410は、着色層420R、420G、420Bが配置された絵素領域毎に開口部を有する。隔壁120は、着色層420R、420G、420B間を分離し、かつ、塗液(溶液)を保持するための部材である。また、隔壁120は、絶縁性を有している。平坦化層430は、カラーフィルタ基板の表面を平坦化するための部材である。着色層420R、420G、420Bは、カラーフィルタとしての機能を有し、着色層420R、420G、420Bを通過した光は、着色層420R、420G、420Bでの吸収によって、適宜所望のスペクトルを有した光に変換される。また、電極440は、光を透過することが可能な透明電極である。
着色層420R、420G、420Bの材料としては、顔料や染料を含む樹脂を用いることができる。
基板400としては、透明性を有しているものであれば特に限定されず、ガラス基板やプラスチック基板等を用いることができる。
隔壁120としては、実施例1~5と同様の材料を用いることができる。
遮光層410及び平坦化層430の材料としては、一般的な材料を使用できる。
電極440としては、透明性を有している電極であれば特に限定されず、導電性金属酸化物(ITO、IZO、ZnO、SnO等)を用いることができる。
(実施例6)
次に、本発明の実施例6のカラーフィルタ基板について、図10を用いて詳細に説明する。
図10は、実施例6のカラーフィルタ基板を示す断面模式図である。なお、本実施例のカラーフィルタ基板の平面模式図は、図3と同様である。
本実施例のカラーフィルタ基板100は、図3で示すように、実施例1と同様に、絵素領域140R、140G、140Bが左からR/B/G/Bの順で配列され、垂直(上下)方向には、同色の絵素領域が配列されている。このように、本実施例のカラーフィルタ基板100は、ストライプ配列のカラーフィルタ基板である。
また、図10に示すように、基板400上には、マトリクス状に設けられた各絵素領域140R、140G、140Bを囲むように遮光層410が形成されている。
遮光層410上には、実施例1と同様に、各色の絵素領域140R、140G、140Bを色毎に分離する絶縁性の隔壁120が形成されている。そして、隔壁120の絵素領域140Rを囲む部分(第一隔壁部)には、枠状構造物110aが接続され、隔壁120の絵素領域140Gを囲む部分(第二隔壁部)には、枠状構造物110bが接続され、隔壁120の絵素領域140Bを囲む部分(第三隔壁部)には、枠状構造物110bが接続されている。隔壁120及び枠状構造物110a、110b、110cの構造については実施例1と同様である。
第一隔壁部で区画された領域(第一区画領域)及び枠状構造物110a内には、着色層420R(Rの着色層420)が形成され、第二隔壁部で区画された領域(第二区画領域)及び枠状構造物110b内には、着色層420G(Gの着色層)が形成され、第三隔壁部で区画された領域(第三区画領域)及び枠状構造物110c内には、着色層420B(Bの着色層)が形成されている。
平坦化層430は、着色層420R、420G、420B及び隔壁120を覆うように形成され、電極440は、平坦化層430を覆うように形成されている。
このように、本実施例では、ストライプ状に溝が各色に対して形成されており、この溝で各色の絵素領域140R、140G、140Bが分離している。また、枠状構造物110a内には、絵素領域140Rが配置された第一区画領域が接続され、枠状構造物110b内には、絵素領域140Gが配置された第二区画領域が接続され、枠状構造物110c内には、絵素領域140Bが配置された第三区画領域が接続されている。更に、枠状構造物110a、110b、110c内に塗液を注入することで、毛細管現象を用いて表示エリア150に塗液を充填(塗布)する。
次に、本実施例のカラーフィルタ基板の製造方法について説明する。
まず、ガラス基板400の上に感光性樹脂を2μmの厚さで塗布し、遮光層410をフォトリソグラフィ技術により形成した。遮光層410用の感光性樹脂としては、例えば、東京応化工業社製のカラーフィルタ用顔料分散型ブラックレジストを用いることができる。遮光層410の平面パターンは、実施例1のエッジカバー240と同様であり(図3、4参照)絵素領域140R、140G、140Bで構成された列毎に開口部を有する。なお、各絵素領域140R、140G、140Bのピッチは実施例1と同様である。
次に、実施例1と同様に、隔壁120を遮光層410の上に高さ20μm、幅20μmで形成するとともに、高さ20μm、幅20μmで枠状構造物110a、110b、110cを形成した。
隔壁120及び枠状構造物110a、110b、110cのパターンやサイズは、実施例1と同じである。また、本実施例において、隔壁120及び枠状構造物110a、110b、110cの好適なパターンやサイズについても、実施例1と同様に設定することができる。
上記のように形成した基板について、UVオゾンに基板400表面を2分間晒すことにより、各絵素領域140R、140G、140Bの開口部、遮光層410、隔壁120及び枠状構造物110a、110b、110cの表面に親液性を付与した。
この処理により、各絵素領域140R、140G、140Bの開口部、遮光層410及び隔壁120の水との接触角は30°以下となった。また、図3の枠状構造物110a、110b、110cの水との接触角も30°以下となった。
次いで、実施例1と同様にして、着色層420Rの材料を含む塗液(図3の充填液130a)を、枠状構造物110aから絵素領域140Rに充填した。同様に、着色層420Gの材料を含む塗液(図3の充填液130b)を、枠状構造物110bから絵素領域140Gに充填した。同様に、着色層420Bの材料を含む塗液(図3の充填液130c)を、枠状構造物110cから絵素領域140Bに充填した。その後、乾燥工程を経て、着色層420R、420G、420Bをそれぞれ形成した。より具体的には、塗液として、各々の色となるカラー顔料を重量分濃度10%程度でメチルカルビトールに分散した溶液を使用した。また、各々の塗液を各絵素領域140R、140G、140Bに充填した後、基板400を1Pa以下の真空下、200℃にて、60分間乾燥させて、R、G及びBの溶液(塗液)中の溶媒成分を乾燥除去することにより、着色層420R、420G、420Bを形成した。着色層420R、420G、420Bの膜厚は全て略2μmとした。
その後、隔壁120、着色層420R、420G、420Bの上に平坦化層430を形成した。平坦化層430の材料としては、例えば、東京応化工業社製のLCD用透明平坦化材料等を用いることができる。平坦化層430の材料を含む溶液を隔壁120の上部から1μmの膜厚となるように、スロットコータにて塗布し、窒素雰囲気中にて200℃で60分間焼成することにより、平坦化層430を形成した。
最後に電極440として、マスクを用いたスパッタ法により、所望の位置のみにITOからなる透明導電膜を形成した。ITOからなる透明導電膜の膜厚は100nmとした。
なお、図示はしていないが、本実施例では、上述の構成の他、液晶セルの厚み(電極間距離)を規定するためのフォトスペーサを電極440上に形成したり、領域により液晶セルの厚みを変更するための構造物を平坦化層430上に形成したりすることもできる。
上記の手順により作製したカラーフィルタ基板100によれば、枠状構造物110a、110b、110cを利用した毛細管現象による塗液の充填(塗布)方法を用いて着色層420R、420G、420Bを形成している。したがって、混色のないカラーフィルタ基板を簡便に作製することができた。他方、図11のように、絵素領域140R、140G、140Bの全ての色に対し、インクジェット法を適用した場合、絵素領域140R、140G、140Bの各々に溶液が蓄積されるように基板に対し複雑な親撥液処理を施す必要があるのみならず、高精度な吐出位置性能を有するインクジェット装置が全ての色に対して必要であり、また、塗布時間も長くなるためスループットが低減するおそれがあった。しかしながら、本実施例では、着色層420R、420G、420Bを毛細管現象による充填(塗布)で形成するため、着色層420R、420G、420Bを形成するために使用する装置は、枠状構造物110a、110b、110c内に塗液を吐出する機能を有していればよく、着色層420R、420G、420Bを形成するために、高精度な吐出位性能を有する必要がない。また、同様に、全ての色の吐出ヘッドを有する高性能なインクジェット装置を用いる必要がない。
また、図11のように、絵素領域140R、140G、140Bの全ての色に対し、フォトリソグラフィ法を適用した場合には、着色層420R、420G、420Bのうち、1色を形成する毎に、不要な部分を露光及び現像処理によって除去する必要があるため、材料の利用効率が低くなる。さらには着色層420R、420G、420Bの色毎にフォトリソグラフィを実施する必要があり(本実施例の場合は3回)、着色層420R、420G、420Bを形成する工程のタクトタイムが長くなってしまう。しかしながら、本実施例の方法によれば、所望の位置のみに塗液を充填(塗布)すればよいため、材料利用効率は高く、また、着色層420R、420G、420Bの全ての色に対し、同時に充填(塗布)することが可能なため、着色層420R、420G、420Bを形成する工程におけるタクトタイムの上昇を抑えることができる。
なお、無論のこと、本実施例のようなカラーフィルタ基板においても、実施例2~5に記載された方法による応用が可能である。
また、実施例1~6においては、毛細管現象によって生じる塗液の流動を利用して、絵素領域140R、140G、140Bに塗液を充填したが、塗液の流動が生じるのであれば、必ずしも毛細管現象が発現する必要はない。
上述した実施形態及び実施例における各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
なお、本願は、2009年5月28日に出願された日本国特許出願2009-129516号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
100:有機EL表示装置又はカラーフィルタ基板
110a、110b、110c、110c1、110c2、110d1、110d2:枠状構造物
120:隔壁
130a、130b、130c:充填液
140R:Rの絵素領域
140G:Gの絵素領域
140B:Bの絵素領域
150:表示エリア
160:乾燥剤
170:封止ガラス
180:封止樹脂(シール材)
200:TFT基板
210:層間絶縁膜
220:正孔注入層及び正孔輸送層(正孔注入層兼正孔輸送層)
230R:Rの有機発光層
230G:Gの有機発光層
230B:Bの有機発光層
240:エッジカバー
250:第一の電極
260:第二の電極
270:TFT
300:絵素
310:絵素発光部
320:蒸着領域
400:基板
410:遮光層(BM)
420R:Rの着色層
420G:Gの着色層
420B:Bの着色層
430:平坦化層
440:電極

Claims (19)

  1. 第一の色の絵素領域、第二の色の絵素領域及び第三の色の絵素領域を含む複数の絵素領域が表示エリア内に配置された基板を備え、
    該複数の絵素領域の各々には、有機発光層を含む機能性材料層が配置された有機エレクトロルミネセンス表示装置であって、
    該表示エリア内の該基板上には、第一隔壁部、第二隔壁部及び第三隔壁部が配置され、
    該表示エリア外の該基板上には、第一枠状構造物、第二枠状構造物及び第三枠状構造物が配置され、
    該第一の色の絵素領域は、該第一隔壁部で区画された第一区画領域内に配置され、
    該第二の色の絵素領域は、該第二隔壁部で区画された第二区画領域内に配置され、
    該第三の色の絵素領域は、該第三隔壁部で区画された第三区画領域内に配置され、
    該第一区画領域は、該第一枠状構造物内に接続され、
    該第二区画領域は、該第二枠状構造物内に接続され、
    該第三区画領域は、該第三枠状構造物内に接続されることを特徴とする有機エレクトロルミネセンス表示装置。
  2. 前記基板を平面視したとき、
    前記第一枠状構造物及び前記第二枠状構造物は、前記表示エリアを挟むように対向して配置され、
    前記第三枠状構造物は、前記第一枠状構造物及び前記第二枠状構造物に挟まれた領域に配置されることを特徴とする請求項1記載の有機エレクトロルミネセンス表示装置。
  3. 前記基板を平面視したとき、
    2つの前記第三枠状構造物が前記表示エリアを挟むように対向して配置されることを特徴とする請求項1又は2記載の有機エレクトロルミネセンス表示装置。
  4. 前記基板を平面視したとき、
    前記第三区画領域は、前記第一区画領域及び前記第二区画領域のいずれかの輪郭線に沿ったU字型の形状を含むことを特徴とする請求項1~3のいずれかに記載の有機エレクトロルミネセンス表示装置。
  5. 前記基板を平面視したとき、
    前記第三区画領域内には、前記第一区画領域及び前記第二区画領域のいずれかを挟むように複数の前記第三の色の絵素領域が対向して配置されることを特徴とする請求項4記載の有機エレクトロルミネセンス表示装置。
  6. 前記基板を平面視したとき、
    前記第三区画領域内には、前記第一区画領域及び前記第二区画領域を挟まないように前記第三の色の絵素領域が配置される請求項4記載の有機エレクトロルミネセンス表示装置。
  7. 前記基板を平面視したとき、
    前記基板上には、前記第一区画領域と前記第二区画領域とが交互に複数並置されており、
    前記第三区画領域は、前記第一区画領域の輪郭線及び前記第二区画領域の輪郭線に沿って蛇行した形状であることを特徴とする請求項1~6のいずれかに記載の有機エレクトロルミネセンス表示装置。
  8. 前記基板上には、前記機能性材料層を挟持する一対の電極と、該一対の電極の一方の端部を覆うエッジカバーとが配置され、
    前記第一隔壁部、前記第二隔壁部及び前記第三隔壁部の少なくとも1つは、該エッジカバー上に配置されることを特徴とする請求項1~7のいずれかに記載の有機エレクトロルミネセンス表示装置。
  9. 前記基板は、TFT基板であることを特徴とする請求項1~8のいずれかに記載の有機エレクトロルミネセンス表示装置。
  10. 前記表示エリア内には、前記第一の色の絵素領域、前記第二の色の絵素領域及び前記第三の色の絵素領域を含んで構成された画素が行列方向に複数並置され、
    前記第一の色の絵素領域、前記第二の色の絵素領域及び前記第三の色の絵素領域のうち、少なくとも1つの色の絵素領域は、1つの該画素に2つ配置されることを特徴とする請求項1~9のいずれかに記載の有機エレクトロルミネセンス表示装置。
  11. 前記表示エリア内には、前記第一の色の絵素領域、前記第二の色の絵素領域及び前記第三の色の絵素領域を含んで構成された画素が行列方向に複数並置され、
    前記第一の色の絵素領域、前記第二の色の絵素領域及び前記第三の色の絵素領域は、行方向に隣接する該画素に点対称に配置されることを特徴とする請求項1~10のいずれかに記載の有機エレクトロルミネセンス表示装置。
  12. 前記第一枠状構造物内には、前記第一の色の絵素領域に配置された前記機能性材料層の材料が配置され、
    前記第二枠状構造物内には、前記第二の色の絵素領域に配置された前記機能性材料層の材料が配置され、
    前記第三枠状構造物内には、前記第三の色の絵素領域に配置された前記機能性材料層の材料が配置されることを特徴とする請求項1~11のいずれかに記載の有機エレクトロルミネセンス表示装置。
  13. 前記第一枠状構造物内には、前記第一の色の絵素領域に配置された前記有機発光層の材料が配置され、
    前記第二枠状構造物内には、前記第二の色の絵素領域に配置された前記有機発光層の材料が配置され、
    前記第三枠状構造物内には、前記第三の色の絵素領域に配置された前記有機発光層の材料が配置されることを特徴とする請求項1~12のいずれかに記載の有機エレクトロルミネセンス表示装置。
  14. 請求項1~13のいずれかに記載の有機エレクトロルミネセンス表示装置の製造方法であって、
    該製造方法は、
    前記第一枠状構造物内に、前記第一の色の絵素領域に配置される前記機能性材料層の材料を含む第一塗液を注入する工程と、
    前記第二枠状構造物内に、前記第二の色の絵素領域に配置される前記機能性材料層の材料を含む第二塗液を注入する工程と、
    前記第三枠状構造物内に、前記第三の色の絵素領域に配置される前記機能性材料層の材料を含む第三塗液を注入する工程とを含むことを特徴とする有機エレクトロルミネセンス表示装置の製造方法。
  15. 前記第三塗液は、前記第一塗液及び前記第二塗液よりも粘度が低いことを特徴とする請求項14記載の有機エレクトロルミネセンス表示装置の製造方法。
  16. 前記有機エレクトロルミネセンス表示装置の製造方法は、前記第一隔壁部、前記第二隔壁部、前記第三隔壁部、前記第一枠状構造物、前記第二枠状構造物及び前記第三枠状構造物を同時に形成する工程を含む請求項14又は15記載の有機エレクトロルミネセンス表示装置の製造方法。
  17. 第一の色の絵素領域、第二の色の絵素領域及び第三の色の絵素領域を含む複数の絵素領域が表示エリア内に配置された基板を備え、
    該複数の絵素領域の各々には、有機発光層を含む機能性材料層が配置された有機エレクトロルミネセンス表示装置の製造方法であって、
    該製造方法は、
    該表示エリア内の該基板上に、該第一の色の絵素領域を区画する第一隔壁部、該第二の色の絵素領域を区画する第二隔壁部、及び、該第三の色の絵素領域を区画する第三隔壁部を形成する工程と、
    該表示エリア外の該基板上に、該第一隔壁部で区画された第一区画領域に内部が接続された第一枠状構造物、該第二隔壁部で区画された第二区画領域に内部が接続された第二枠状構造物、及び、該第三隔壁部で区画された第三区画領域に内部が接続された第三枠状構造物を形成する工程と、
    該第一枠状構造物内に、該第一の色の絵素領域に配置される該機能性材料層の材料を含む第一塗液を注入する工程と、
    該第二枠状構造物内に、該第二の色の絵素領域に配置される該機能性材料層の材料を含む第二塗液を注入する工程と、
    該第三枠状構造物内に、該第三の色の絵素領域に配置される該機能性材料層の材料を含む第三塗液を注入する工程とを含むことを特徴とする有機エレクトロルミネセンス表示装置の製造方法。
  18. 第一の色の着色層、第二の色の着色層及び第三の色の着色層を含む複数の着色層が表示エリア内に配置された基板を備えるカラーフィルタ基板であって、
    該表示エリア内の該基板上には、第一隔壁部、第二隔壁部及び第三隔壁部が配置され、
    該表示エリア外の該基板上には、第一枠状構造物、第二枠状構造物及び第三枠状構造物が配置され、
    該第一の色の着色層は、該第一隔壁部で区画された第一区画領域内に配置され、
    該第二の色の着色層は、該第二隔壁部で区画された第二区画領域内に配置され、
    該第三の色の着色層は、該第三隔壁部で区画された第三区画領域内に配置され、
    該第一区画領域は、該第一枠状構造物内に接続され、
    該第二区画領域は、該第二枠状構造物内に接続され、
    該第三区画領域は、該第三枠状構造物内に接続されることを特徴とするカラーフィルタ基板。
  19. 第一の色の着色層、第二の色の着色層及び第三の色の着色層を含む複数の着色層が表示エリア内に配置された基板を備えるカラーフィルタ基板の製造方法であって、
    該製造方法は、
    該表示エリア内の該基板上に、該第一の色の着色層を区画する第一隔壁部、該第二の色の着色層を区画する第二隔壁部、及び、該第三の色の着色層を区画する第三隔壁部を形成する工程と、
    該表示エリア外の該基板上に、該第一隔壁部で区画された第一区画領域に内部が接続された第一枠状構造物、該第二隔壁部で区画された第二区画領域に内部が接続された第二枠状構造物、及び、該第三隔壁部で区画された第三区画領域に内部が接続された第三枠状構造物を形成する工程と、
    該第一枠状構造物内に、該第一の色の着色層の材料を含む第一塗液を注入する工程と、
    該第二枠状構造物内に、該第二の色の着色層の材料を含む第二塗液を注入する工程と、
    該第三枠状構造物内に、該第三の色の着色層の材料を含む第三塗液を注入する工程とを含むことを特徴とするカラーフィルタ基板の製造方法。
PCT/JP2010/051049 2009-05-28 2010-01-27 有機エレクトロルミネセンス表示装置、その製造方法、カラーフィルタ基板及びその製造方法 WO2010137355A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/259,420 US9093399B2 (en) 2009-05-28 2010-01-27 Organic electroluminescence display device, method for producing same, color filter substrate and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009129516 2009-05-28
JP2009-129516 2009-05-28

Publications (1)

Publication Number Publication Date
WO2010137355A1 true WO2010137355A1 (ja) 2010-12-02

Family

ID=43222481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051049 WO2010137355A1 (ja) 2009-05-28 2010-01-27 有機エレクトロルミネセンス表示装置、その製造方法、カラーフィルタ基板及びその製造方法

Country Status (2)

Country Link
US (1) US9093399B2 (ja)
WO (1) WO2010137355A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041040A1 (ja) * 2013-09-20 2015-03-26 ソニー株式会社 表示装置および電子機器
TWI702452B (zh) * 2017-12-07 2020-08-21 南韓商Lg顯示器股份有限公司 有機發光顯示裝置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140033671A (ko) * 2012-09-10 2014-03-19 삼성디스플레이 주식회사 유기발광 표시장치 및 그 제조 방법
JP6186697B2 (ja) * 2012-10-29 2017-08-30 セイコーエプソン株式会社 有機el装置の製造方法、有機el装置、電子機器
KR102025300B1 (ko) * 2013-03-19 2019-09-26 삼성디스플레이 주식회사 유기 발광 표시 장치
KR20140143629A (ko) * 2013-06-07 2014-12-17 삼성디스플레이 주식회사 유기발광표시장치 및 그 제조방법
JP6284346B2 (ja) * 2013-11-25 2018-02-28 株式会社ジャパンディスプレイ 有機el表示装置
TWI507742B (zh) * 2013-11-26 2015-11-11 E Ink Holdings Inc 彩色濾光基板以及顯示裝置
KR102242078B1 (ko) 2014-08-05 2021-04-21 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
CN104465708B (zh) * 2014-12-24 2017-10-17 京东方科技集团股份有限公司 一种阵列基板及其制作方法和显示装置
CN104698662A (zh) * 2015-03-26 2015-06-10 京东方科技集团股份有限公司 显示装置及其制作方法
CN104730762A (zh) * 2015-04-13 2015-06-24 合肥京东方光电科技有限公司 彩膜基板、彩膜基板的制造方法及显示面板
US11805678B2 (en) * 2019-11-21 2023-10-31 Samsung Display Co., Ltd. Display device, mask assembly, method of manufacturing the mask assembly, apparatus for manufacturing the display device, and method of manufacturing the display device
US11980046B2 (en) * 2020-05-27 2024-05-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming an isolation structure having multiple thicknesses to mitigate damage to a display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363107A (ja) * 2003-06-06 2004-12-24 Kyocera Corp 有機el素子アレイおよびその製造方法
JP2007333853A (ja) * 2006-06-13 2007-12-27 Seiko Instruments Inc カラーフィルタ基板、及びこれを用いた液晶表示装置、カラー表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69615410T2 (de) * 1996-07-10 2002-06-20 Ibm Siloxan und siloxanderivate als einkapslungsmaterial für lichtemittierende organische bauelemente
JP4522698B2 (ja) 2001-08-30 2010-08-11 シャープ株式会社 有機el装置の製造方法
TWI232695B (en) 2002-09-17 2005-05-11 Ibm Organic light emitting diode device and method for manufacturing the organic light emitting diode device
JP4069745B2 (ja) * 2002-12-26 2008-04-02 株式会社デンソー 有機elパネル
KR100528910B1 (ko) * 2003-01-22 2005-11-15 삼성에스디아이 주식회사 고분자 유기 전계 발광 소자

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363107A (ja) * 2003-06-06 2004-12-24 Kyocera Corp 有機el素子アレイおよびその製造方法
JP2007333853A (ja) * 2006-06-13 2007-12-27 Seiko Instruments Inc カラーフィルタ基板、及びこれを用いた液晶表示装置、カラー表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041040A1 (ja) * 2013-09-20 2015-03-26 ソニー株式会社 表示装置および電子機器
US10134819B2 (en) 2013-09-20 2018-11-20 Joled Inc. Display device and electronic apparatus
TWI702452B (zh) * 2017-12-07 2020-08-21 南韓商Lg顯示器股份有限公司 有機發光顯示裝置

Also Published As

Publication number Publication date
US9093399B2 (en) 2015-07-28
US20120012834A1 (en) 2012-01-19

Similar Documents

Publication Publication Date Title
WO2010137355A1 (ja) 有機エレクトロルミネセンス表示装置、その製造方法、カラーフィルタ基板及びその製造方法
CN111435676B (zh) 有机el显示面板和制造有机el显示面板的方法
TWI453791B (zh) 裝置、膜形成方法及裝置的製造方法
JP4975064B2 (ja) 発光装置及びその製造方法
JP4121514B2 (ja) 有機発光素子、及び、それを備えた表示装置
US8691603B2 (en) Organic el device manufacturing method, organic el device, and electronic apparatus having a luminescent layer disposed over another luminescent layer
US20070200488A1 (en) Display device
KR101820197B1 (ko) 박막 트랜지스터 어레이 기판 및 그 제조 방법
CN110391347B (zh) 有机el显示面板及其制造方法、有机el显示装置
JP2010192215A (ja) 有機エレクトロルミネセンス表示装置、その製造方法、カラーフィルタ基板及びその製造方法
JP7474040B2 (ja) 自発光型表示パネル
WO2012133206A1 (ja) 有機エレクトロルミネセンスディスプレイパネル及びその製造方法
US7294960B2 (en) Organic electroluminescent device with HIL/HTL specific to each RGB pixel
JP2001093666A (ja) 有機ledディスプレイおよびその製造方法
JP2009036948A (ja) 有機エレクトロルミネッセンス装置の製造方法、および有機エレクトロルミネッセンス装置
CN111192979A (zh) 显示面板的制造方法及功能层形成装置
JP2012109138A (ja) 有機el表示装置の製造方法、有機el表示装置、及び電子機器
KR20100071704A (ko) 듀얼플레이트 방식의 유기전계 발광소자 및 그 제조방법
JP2013084553A (ja) 有機el素子及びその製造方法
JP2008153237A (ja) 有機発光素子、及び、それを備えた表示装置
JP2009070859A (ja) 有機エレクトロルミネッセンス表示装置及びその製造方法
JP2007024925A (ja) ディスプレイパネル、ディスプレイパネルの製造方法及び製造装置
KR20200082018A (ko) 유기전계발광 표시장치 및 그 제조방법
JP5761392B2 (ja) 有機el装置の製造方法及び電子機器
US9799711B2 (en) Organic EL display panel and organic EL display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780315

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13259420

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP