WO2010134472A1 - Hydrogen gas supply device - Google Patents

Hydrogen gas supply device Download PDF

Info

Publication number
WO2010134472A1
WO2010134472A1 PCT/JP2010/058187 JP2010058187W WO2010134472A1 WO 2010134472 A1 WO2010134472 A1 WO 2010134472A1 JP 2010058187 W JP2010058187 W JP 2010058187W WO 2010134472 A1 WO2010134472 A1 WO 2010134472A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
pressure
tank
hydrogen gas
sub
Prior art date
Application number
PCT/JP2010/058187
Other languages
French (fr)
Japanese (ja)
Inventor
英史 大石
渡辺 慎太郎
久保 秀人
藤 敬司
健嗣 小宮
森 大五郎
公聖 吉田
徳彦 秡川
Original Assignee
株式会社 豊田自動織機
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機, トヨタ自動車 株式会社 filed Critical 株式会社 豊田自動織機
Publication of WO2010134472A1 publication Critical patent/WO2010134472A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Definitions

  • the present invention relates to a hydrogen gas supply device that supplies hydrogen to a fuel cell or hydrogen engine using hydrogen as a fuel, for example, using a hydrogen storage tank that stores a hydrogen storage material.
  • a hydrogen vehicle a vehicle equipped with a hydrogen storage tank filled with hydrogen gas as a hydrogen supply source is generally used.
  • Patent Document 1 discloses a hydrogen gas supply device in which a hydrogen storage alloy is accommodated in a hydrogen storage tank.
  • the hydrogen gas supply device of Patent Document 1 stores hydrogen in a hydrogen storage alloy by cooling the hydrogen storage tank, and then supplies heat generated in a fuel cell, a hydrogen engine, or the like to the hydrogen storage tank to store the hydrogen. Hydrogen is released from the alloy and supplied to fuel cells and hydrogen engines.
  • the hydrogen gas supply apparatus described in Patent Document 1 is 1 MPa in a predetermined high temperature state (20 ° C. to 60 ° C.) with the upper limit temperature (60 ° C.) as the upper limit in the temperature range where hydrogen gas is normally generated in the fuel cell system.
  • the main hydrogen storage tank which accommodates the hydrogen storage alloy for normal temperature operation
  • the hydrogen gas supply apparatus described in Patent Document 1 further includes an auxiliary hydrogen storage tank that stores a hydrogen storage alloy capable of generating a plateau pressure of 0.1 MPa in a low temperature state ( ⁇ 10 ° C. to 20 ° C.). Yes.
  • the hydrogen gas supply device configured as described above first supplies hydrogen gas from the auxiliary hydrogen storage tank to the fuel cell when hydrogen gas cannot be discharged from the main hydrogen storage tank. After starting the fuel cell with hydrogen gas from the sub-hydrogen storage tank, the main hydrogen storage tank is heated with the heat generated in the fuel cell. And while supplying the hydrogen gas from a main hydrogen storage tank to a fuel cell, the hydrogen gas from a main hydrogen storage tank is sent to a subhydrogen storage tank, and hydrogen is stored in a subhydrogen storage tank.
  • An object of the present invention is to provide a hydrogen storage tank with a hydrogen filling ratio in the sub hydrogen storage tank without releasing the hydrogen in the sub hydrogen storage tank to the outside even when the hydrogen filling ratio in the main hydrogen storage tank is full.
  • An object of the present invention is to provide a hydrogen gas supply device capable of keeping the pressure within a certain range.
  • a hydrogen gas supply device including a main hydrogen storage device, a sub hydrogen storage device, a tank, a discharge conduit, and an opening / closing portion.
  • the main hydrogen reservoir contains a first hydrogen storage material that can release hydrogen while in a predetermined high temperature region.
  • the auxiliary hydrogen storage contains a second hydrogen storage material that can release hydrogen in a low temperature region lower than the predetermined high temperature region.
  • the tank can store hydrogen gas.
  • the discharge pipe connects the sub hydrogen storage unit and the tank.
  • the opening / closing part is provided in the discharge conduit and opens and closes the discharge conduit. The opening / closing part opens the discharge pipe when the pressure in the auxiliary hydrogen storage exceeds a preset pressure.
  • the hydrogen gas supply device 10 includes a main tank 11 filled with hydrogen gas and a sub tank 12 filled with hydrogen gas.
  • the main tank 11 includes a plurality of main cylinders 11a as main hydrogen reservoirs.
  • the plurality of main cylinders 11a are connected to each other by piping (not shown).
  • the number of main cylinders 11a is four for convenience, but may be ten or more, for example.
  • Each main cylinder 11a is a kind of high-temperature hydrogen storage material (first hydrogen storage material) that maintains a plateau pressure of 15 MPa or less at the operating upper limit temperature (first temperature) (for example, 100 ° C.) of the fuel cell system.
  • first temperature for example, 100 ° C.
  • Each main cylinder 11a is filled with hydrogen gas at a predetermined pressure (for example, 15 MPa) in a state where the filling ratio of hydrogen is full.
  • the main tank 11 is provided with a thermometer 13 for detecting the temperature of the hydrogen storage alloy inside the main cylinder 11a and a pressure gauge 14 for detecting the pressure of hydrogen gas in the main cylinder 11a.
  • the sub tank 12 includes a plurality of (for example, two) sub cylinders 12a as sub hydrogen storages.
  • the plurality of sub cylinders 12a are connected to each other by piping (not shown).
  • Each sub cylinder 12a has a low-temperature hydrogen storage material (second hydrogen storage material) that maintains a plateau pressure of 0.1 MPa at a temperature (second temperature) lower than a predetermined high temperature (for example, ⁇ 40 ° C.).
  • a kind of low-temperature hydrogen storage alloy is housed. That is, the low-temperature hydrogen storage alloy can release hydrogen in a state of being in a low temperature region lower than the high temperature region.
  • each sub cylinder 12a is filled with hydrogen gas at a predetermined pressure (for example, 15 MPa) in a state where the filling rate of hydrogen is full.
  • the sub tank 12 is provided with a thermometer 15 for detecting the temperature of the hydrogen storage alloy inside the sub cylinder 12a and a pressure gauge 16 for detecting the pressure of the hydrogen gas in the sub cylinder 12a.
  • the hydrogen gas supply device 10 includes a compressor 17, and the compressor 17 is connected to the drive wheels 19 through a clutch mechanism 18.
  • the clutch mechanism 18 connects and disconnects the compressor 17 and the drive wheel 19.
  • the compressor 17 and the drive wheel 19 are connected by the clutch mechanism 18 during braking of the electric vehicle, so that the compressor 17 can be driven by the rotational force of the drive wheel 19.
  • the hydrogen gas supply device 10 is further provided with a pressure accumulating tank 20 as a tank.
  • the pressure accumulating tank 20 can be filled with hydrogen gas up to a predetermined pressure (for example, 20 MPa) when the hydrogen filling ratio is full.
  • the predetermined pressure of the hydrogen gas that can be filled in the pressure accumulation tank 20 is set to be larger than the predetermined pressure of the hydrogen gas that can be filled in the sub tank 12.
  • the pressure accumulation tank 20 is provided with a pressure gauge 20a for detecting the pressure of hydrogen gas in the pressure accumulation tank 20.
  • the main tank 11 is connected to the fuel cell 30 via the first supply path 21.
  • the first supply path 21 is provided with a first valve V1.
  • a base end portion of the second supply path 22 is connected to the middle of the first supply path 21, specifically to a portion between the main tank 11 and the first valve V ⁇ b> 1.
  • the second supply path 22 extends toward the sub tank 12 from a branch point S1 that is a connecting portion between the first supply path 21 and the second supply path 22.
  • the second supply path 22 is provided with a second valve V2 and a third valve V3.
  • the sub tank 12 is connected to the first supply path 21 via the third supply path 23.
  • the third supply path 23 extends from the sub tank 12 toward the fuel cell 30.
  • the distal end portion of the third supply path 23 is connected to a portion of the first supply path 21 between the branch point S1 and the first valve V1. Accordingly, the sub tank 12 is connected to the fuel cell 30 via the third supply path 23 and a part of the first supply path 21.
  • the third supply path 23 is provided with a fourth valve V4.
  • the third supply path 23 is connected to the pressure accumulation tank 20 through the fourth supply path 24.
  • the fourth supply path 24 extends from the branch point S2 on the third supply path 23 toward the pressure accumulation tank 20.
  • the tip of the fourth supply path 24 is connected to the pressure accumulating tank 20. Therefore, the sub tank 12 is connected to the pressure accumulation tank 20 via a part of the third supply path 23 and the fourth supply path 24.
  • the fourth supply path 24 is provided with a relief valve 25.
  • the spring constant of the compression spring provided in the relief valve 25 is set in advance so that the valve body provided in the relief valve 25 is opened when the pressure in the sub tank 12 exceeds a predetermined pressure (for example, 15 MPa).
  • the tip of the second supply path 22 is connected to a portion of the third supply path 23 between the sub tank 12 and the branch point S2. Therefore, the main tank 11 is connected to the sub tank 12 through a part of the first supply path 21, the second supply path 22, and a part of the third supply path 23.
  • a fifth supply path 26 extending from the pressure accumulation tank 20 is connected between the second valve V2 and the third valve V3. Therefore, the main tank 11 is connected to the pressure accumulating tank 20 through a part of the first supply path 21, a part of the second supply path 22, and the fifth supply path 26.
  • the pressure accumulating tank 20 is connected to the sub tank 12 through a fifth supply path 26, a part of the second supply path 22, and a part of the third supply path 23.
  • the pressure accumulation tank 20 includes a fuel cell 30 via a fifth supply path 26, a part of the second supply path 22, a part of the third supply path 23, and a part of the first supply path 21. It is connected with.
  • a sixth supply path 27 extending from the compressor 17 is connected between the second valve V2 and the third valve V3.
  • the compressor 17 is connected to the pressure accumulation tank 20 via a sixth supply path 27, a part of the second supply path 22, and a fifth supply path 26.
  • the compressor 17 is connected to the main tank 11 via a sixth supply path 27, a part of the second supply path 22, and a part of the first supply path 21.
  • the pressure accumulating tank 20 is connected to the first supply path 21 via the seventh supply path 28.
  • the seventh supply path 28 extends from the pressure accumulation tank 20 toward the main tank 11.
  • the distal end portion of the seventh supply path 28 is connected to a portion of the first supply path 21 between the branch point S1 and the first valve V1. Therefore, the pressure accumulating tank 20 is connected to the main tank 11 via a part of the seventh supply path 28 and the first supply path 21.
  • the seventh supply path 28 is provided with a fifth valve V5.
  • Solenoid valves are used for the valves V1 to V5.
  • the valves V1 to V5 are driven to open and close in response to a command from the control device 31.
  • the control device 31 is provided with a CPU 31a (central processing unit) that controls the opening and closing of the valves V1 to V5 according to a predetermined procedure, and a memory (not shown) that can read and rewrite necessary data.
  • the CPU 31a controls the opening and closing of the valves V1 to V5 based on the temperature and pressure measured by the thermometers 13 and 15 and the pressure gauges 14, 16, and 20a.
  • the hydrogen gas filled in the main cylinder 11a is a fuel cell via the first supply path 21 due to the difference between the pressure in the main cylinder 11a and the pressure in the fuel cell 30. 30. Further, the hydrogen gas filled in the sub cylinder 12a is supplied to the third supply path 23 by the difference between the pressure in the sub cylinder 12a and the pressure in the fuel cell 30 when the fourth valve V4 and the first valve V1 are opened. And supplied to the fuel cell 30 through a part of the first supply path 21. Further, when the third valve V3, the fourth valve V4, and the first valve V1 are opened, the hydrogen gas filled in the pressure accumulating tank 20 is changed to the pressure in the pressure accumulating tank 20 and the pressure in the fuel cell 30. Is supplied to the fuel cell 30 via the fifth supply path 26, a part of the second supply path 22, a part of the third supply path 23, and a part of the first supply path 21. .
  • the hydrogen gas supply device 10 When the hydrogen gas supply device 10 is in a state where hydrogen gas cannot be released from the main tank 11, for example, when the main cylinder 11a is not sufficiently warmed and the pressure in the main cylinder 11a is not sufficiently high, First, the hydrogen gas filled in the sub cylinder 12 a in the sub tank 12 is supplied to the fuel cell 30. Then, after starting the fuel cell 30 with the hydrogen gas supplied from the sub tank 12, the main cylinder 11 a is heated with the heat generated in the fuel cell 30. When the main cylinder 11a is sufficiently warmed, the hydrogen gas filled in the main cylinder 11a is supplied to the fuel cell 30. At this time, the fourth valve V4 is closed, and the supply of hydrogen gas from the sub tank 12 to the fuel cell 30 is stopped. Further, when both the hydrogen gas in the main cylinder 11a and the sub cylinder 12a are empty, the hydrogen gas filled in the pressure accumulating tank 20 is supplied to the fuel cell 30.
  • the CPU 31a first determines whether or not the pressure in the sub cylinder 12a detected by the pressure gauge 16 is equal to or lower than a predetermined pressure (for example, 5 MPa) (step S11). If the determination result is affirmative, the CPU 31a determines that the filling amount of hydrogen gas in the sub cylinder 12a is insufficient, and then the pressure in the pressure accumulating tank 20 detected by the pressure gauge 20a is a predetermined pressure (for example, it is determined whether the pressure is 5 MPa or less (step S12).
  • a predetermined pressure for example, 5 MPa
  • step S11 determines that the sub cylinder 12a is still sufficiently filled with hydrogen gas, and it is not necessary to fill the sub cylinder 12a with hydrogen gas.
  • the control process for filling the hydrogen gas into 12a ends.
  • step S12 determines that the hydrogen gas filling amount in the pressure accumulating tank 20 is insufficient, and then in the main cylinder 11a detected by the pressure gauge 14. It is determined whether or not the pressure is equal to or lower than a predetermined pressure (for example, 5 MPa) (step S13).
  • a predetermined pressure for example, 5 MPa
  • step S12 determines that the pressure accumulation tank 20 is sufficiently filled with hydrogen gas that can be supplied to the sub-cylinder 12a, and the CPU 31a opens the third valve V3.
  • the third valve V3 is controlled (step S15). Then, due to the difference between the pressure in the pressure accumulation tank 20 and the pressure in the sub-cylinder 12a, the hydrogen gas in the pressure accumulation tank 20 causes the fifth supply path 26, a part of the second supply path 22, and the third The gas is supplied into the sub cylinder 12a through a part of the supply path 23. Therefore, hydrogen gas is filled in the sub cylinder 12a.
  • step S13 when the determination result of step S13 is affirmative, the CPU 31a determines that the hydrogen gas filling amount in the main cylinder 11a is insufficient, and then causes the drive wheels 19 and the compressor 17 to be connected by the clutch mechanism 18.
  • the compressor 17 is driven while being connected (step S14).
  • the pressure in the pressure accumulating tank 20 is increased by the compressor 17.
  • the CPU 31a controls the third valve V3 so as to open the third valve V3 (step S15).
  • the hydrogen gas in the pressure accumulation tank 20 causes the fifth supply path 26, a part of the second supply path 22, and the third The gas is supplied into the sub cylinder 12 a through a part of the supply path 23. Therefore, hydrogen gas is filled in the sub cylinder 12a.
  • step S13 determines that the main cylinder 11a is sufficiently filled with hydrogen gas that can be supplied to the sub cylinder 12a, and the CPU 31a first opens the second valve V2.
  • the second valve V2 is controlled so as to valve (step S16). Furthermore, it transfers to step S15 and CPU31a controls the 3rd valve V3 so that the 3rd valve V3 may be opened.
  • the hydrogen gas in the main cylinder 11a becomes part of the first supply path 21, the second supply path 22, and the third supply path.
  • the gas is supplied into the sub cylinder 12a through a part of the gas cylinder 23. Therefore, hydrogen gas is filled in the sub cylinder 12a.
  • the filling of hydrogen gas into each of the cylinders 11a, 12a and the pressure accumulating tank 20 is performed by equipment called a hydrogen station corresponding to a gas station or an LP gas station.
  • the hydrogen gas supplied from the hydrogen station is in a state where the first valve, the second valve V2, and the third valve V3 are opened, and the first valve V1 and fuel in the first supply passage 21 are opened.
  • a constant filling pressure (for example, 15 MPa) is supplied to the main cylinder 11a, the pressure accumulating tank 20, and the sub cylinder 12a from a portion between the battery 30 and the battery 30.
  • the main cylinder 11a contains the high-temperature hydrogen storage alloy, it can be quickly filled in the hydrogen station. However, since the sub-cylinder 12a contains the low-temperature hydrogen storage alloy, the sub-cylinder 12a can be charged quickly unless the filling pressure at the hydrogen station is increased or the temperature of the hydrogen storage alloy in the sub-cylinder 12a is lowered to an extremely low temperature. Can not. Therefore, in the present embodiment, the filling of the hydrogen gas into each of the cylinders 11a, 12a and the pressure accumulating tank 20 in the hydrogen station is completed when the pressure in the main cylinder 11a and the pressure accumulating tank 20 reaches 15 MPa. To do. Then, when filling the sub-cylinder 12a with hydrogen gas, for example, when the electric vehicle is running, the hydrogen gas is supplied from the main cylinder 11a or the pressure accumulating tank 20 to the sub-cylinder 12a, Fill with hydrogen gas.
  • the pressure in the sub-cylinder 12a can rise to a high value.
  • the relief valve 25 when the pressure in the sub cylinder 12a exceeds a preset pressure (for example, 15 MPa), the relief valve 25 is opened and the hydrogen gas in the sub cylinder 12a is supplied to the third supply. It is discharged into the pressure accumulating tank 20 through a part of the passage 23 and the fourth supply passage 24.
  • a part of the third supply path 23 and the fourth supply path 24 constitute a discharge pipe for discharging the hydrogen gas in the sub-bomb 12a into the pressure accumulation tank 20.
  • the relief valve 25 provides a part of the discharge pipe for discharging the hydrogen gas in the sub cylinder 12a into the pressure accumulating tank 20 when the pressure in the sub cylinder 12a exceeds a preset pressure. It functions as an opening / closing part that opens the fourth supply path 24 that is configured.
  • the hydrogen gas released from the sub tank 12 into the pressure accumulating tank 20 is filled in the pressure accumulating tank 20.
  • the hydrogen gas filled in the pressure accumulating tank 20 is supplied to the sub cylinder 12a, so that the sub cylinder 12a is filled with the hydrogen gas. Fill with hydrogen gas.
  • the hydrogen gas filled in the pressure accumulating tank 20 can be supplied to the fuel cell 30.
  • the fifth valve V5 is opened, and the hydrogen gas filled in the pressure accumulating tank 20 is supplied to the seventh tank.
  • the main cylinder 11a is filled with hydrogen gas.
  • the above embodiment has the following advantages.
  • (1) The pressure accumulation tank 20 is provided in the hydrogen gas supply device 10, and the sub tank 12 is connected to the pressure accumulation tank 20 via a part of the third supply path 23 and the fourth supply path 24. Furthermore, a relief valve 25 is provided in the fourth supply path 24. Therefore, when the pressure in the sub cylinder 12a exceeds a preset pressure, the relief valve 25 is opened, and the hydrogen gas in the sub cylinder 12a is part of the third supply path 23 and the fourth supply path 24. Through the pressure storage tank 20. Therefore, when the pressure in the sub cylinder 12a exceeds a preset pressure, even if the filling rate of hydrogen in the main cylinder 11a is full, the hydrogen in the sub cylinder 12a is released to the outside. Without this, the pressure in the sub cylinder 12a can be kept within a certain range.
  • the fourth supply path 24 is provided with a relief valve 25 that opens when the pressure in the sub-cylinder 12a exceeds a preset pressure. Therefore, the hydrogen in the sub cylinder 12a is released into the pressure accumulating tank 20 through a part of the third supply path 23 and the fourth supply path 24 without monitoring the pressure in the sub cylinder 12a and controlling the valve. can do. Therefore, the system can be simplified as compared with a system that controls the valve by monitoring the pressure in the sub cylinder 12a.
  • the hydrogen gas supply device 10 is further provided with a compressor 17.
  • the pressure in the pressure accumulating tank 20 is increased by the compressor 17. Therefore, the hydrogen gas in the pressure accumulation tank 20 can be smoothly supplied to the sub cylinder 12a due to the difference between the pressure in the pressure accumulation tank 20 and the pressure in the sub cylinder 12a.
  • the compressor 17 is driven by the rotational force of the drive wheels 19 when the compressor 17 and the drive wheels 19 are connected by the clutch mechanism 18 during braking of the electric vehicle. Therefore, the compressor 17 can be driven only by using the rotational force of the drive wheel 19 provided in the electric vehicle without requiring another drive source for driving the compressor 17. Therefore, it is possible to save energy without requiring extra energy for driving the compressor 17.
  • the hydrogen gas filled in the pressure accumulating tank 20 is used as a fuel cell. 30. Since the hydrogen filled in the pressure accumulating tank 20 is already filled in a gas state, it is compared with a case where hydrogen gas is released by a chemical reaction using a hydrogen storage alloy such as the main cylinder 11a and the sub cylinder 12a. Thus, the hydrogen gas can be smoothly supplied to the fuel cell 30.
  • the pressure accumulating tank 20 is connected to the main tank 11 through a part of the seventh supply path 28 and the first supply path 21. Accordingly, when the hydrogen filling amount in the main cylinder 11a is insufficient, the fifth valve V5 is opened and the hydrogen gas filled in the pressure accumulating tank 20 is supplied to the seventh supply. By supplying the main cylinder 11a through the passage 28 and a part of the first supply path 21, the main cylinder 11a can be filled with hydrogen gas.
  • a spring mechanism 41 is provided in the pressure accumulating tank 20 as a capacity adjusting unit that adjusts the capacity in the pressure accumulating tank 20 in accordance with the pressure in the pressure accumulating tank 20.
  • the spring mechanism 41 includes a compression spring 42 and a slide plate 43.
  • the base end portion 42 a of the compression spring 42 is supported on the bottom surface in the pressure accumulating tank 20, and the slide plate 43 is supported on the tip end portion 42 b of the compression spring 42.
  • the slide plate 43 is movable in the vertical direction (in the direction of arrow Y shown in FIG. 3) in the pressure accumulating tank 20 by a compression spring 42.
  • the spring constant of the compression spring 42 is set in advance so that the slide plate 43 moves downward when the pressure in the pressure accumulating tank 20 exceeds a predetermined pressure (for example, 15 MPa). Therefore, when the pressure in the pressure accumulating tank 20 exceeds a predetermined pressure (for example, 15 MPa), the slide plate 43 moves downward to increase the capacity in the pressure accumulating tank 20.
  • the pressure in the sub-cylinder 12 a exceeds a preset pressure (for example, 15 MPa), and the pressure accumulating tank 20 passes through the relief valve 25.
  • a preset pressure for example, 15 MPa
  • the slide plate 43 moves downward, and the capacity in the pressure accumulating tank 20 can be increased.
  • the slide plate 43 is moved downward by being supplied to the pressure accumulation tank 20 at a constant filling pressure (for example, 15 MPa) from the hydrogen station.
  • a constant filling pressure for example, 15 MPa
  • a spring mechanism 41 is provided in the pressure accumulation tank 20, and the spring mechanism 41 includes a compression spring 42 and a slide plate 43.
  • the spring constant of the compression spring 42 is set in advance so that the slide plate 43 moves downward when the pressure in the pressure accumulating tank 20 exceeds a predetermined pressure. Therefore, for example, when the pressure in the sub cylinder 12a exceeds a preset pressure (for example, 15 MPa) and the hydrogen gas in the sub cylinder 12a is released into the pressure accumulating tank 20 through the relief valve 25, the slide plate 43 moves downward and the capacity in the pressure accumulating tank 20 can be increased. Therefore, it is possible to secure a capacity capable of filling the pressure accumulation tank 20 with the hydrogen gas released from the sub tank 12, and to ensure safety in the pressure accumulation tank 20.
  • the hydrogen gas is supplied from the hydrogen station to the pressure accumulation tank 20 at a constant filling pressure (for example, 15 MPa), so that the slide plate 43 moves downward.
  • a constant filling pressure for example, 15 MPa
  • the pressure accumulation tank 20 is partitioned into an upper chamber R1 and a lower chamber R2 by a partition plate 53, and the lower chamber R2 has a pressure corresponding to the pressure in the pressure accumulation tank 20.
  • a relief valve 51 is provided as a capacity adjusting unit that adjusts the capacity in the pressure accumulating tank 20.
  • the spring constant of the compression spring constituting the relief valve 51 is set in advance so that the valve body constituting the relief valve 51 is opened when the pressure in the pressure accumulating tank 20 exceeds a predetermined pressure (for example, 15 MPa). Yes.
  • a base end portion of a discharge path 52 for releasing the pressure in the lower chamber R2 is connected to the lower chamber R2 in the pressure accumulating tank 20.
  • the discharge path 52 extends toward the fifth supply path 26, and the leading end of the discharge path 52 is connected to the fifth supply path 26.
  • the pressure in the sub-cylinder 12a exceeds a preset pressure (for example, 15 MPa), and the relief valve When releasing hydrogen into the pressure accumulating tank 20 through 25, the relief valve 51 is opened, and the capacity in the pressure accumulating tank 20 can be increased.
  • a preset pressure for example, 15 MPa
  • the hydrogen gas when hydrogen is charged in the hydrogen station, the hydrogen gas is supplied from the hydrogen station to the pressure accumulation tank 20 at a constant filling pressure (for example, 15 MPa), so that the relief valve 51 is opened and the pressure accumulation tank is opened.
  • the capacity in 20 can be increased.
  • the hydrogen gas filled in the lower chamber R ⁇ b> 2 in the pressure accumulating tank 20 via the relief valve 51 is supplied to the fifth supply path 26 via the discharge path 52.
  • the lower chamber R2 in the pressure accumulating tank 20 is provided with a discharge path 52 for releasing the pressure in the lower chamber R2, and the discharge path 52 communicates with the fifth supply path 26. Therefore, the hydrogen gas filled in the lower chamber R2 in the pressure accumulating tank 20 via the relief valve 51 is supplied to the fifth supply path 26 via the discharge path 52. Therefore, the hydrogen gas supplied from the lower chamber R2 to the fifth supply path 26 via the discharge path 52 can be supplied to the sub cylinder 12a. Further, the hydrogen gas supplied from the lower chamber R2 to the fifth supply passage 26 via the discharge passage 52 can be returned to the upper chamber R1 of the pressure accumulation tank 20 again.
  • the pressure in the pressure accumulation tank 20 is adjusted by the compressor 17 so that the pressure in the pressure accumulation tank 20 is maintained at a pressure higher than a preset pressure in the sub-cylinder 12a. Good. According to this, when the pressure in the sub cylinder 12a falls below a preset pressure, the hydrogen gas filled in the pressure accumulating tank 20 can be smoothly transferred to the sub cylinder 12a simply by opening the third valve V3. Can be supplied to.
  • the fourth supply path 24 is provided with a relief valve 25 that opens when the pressure in the sub-cylinder 12a exceeds a preset pressure as an opening / closing portion.
  • a relief valve 25 that opens when the pressure in the sub-cylinder 12a exceeds a preset pressure as an opening / closing portion.
  • an electromagnetic valve is provided as an opening / closing part in the middle of the fourth supply path, and is controlled by the control device 31 so that the electromagnetic valve is opened when the pressure in the sub-cylinder 12a exceeds a preset pressure. You may make it do.
  • the compressor 17 is driven by the rotational force of the drive wheels 19 by connecting the compressor 17 and the drive wheels 19 by the clutch mechanism 18 during braking of the electric vehicle.
  • a drive source for the compressor 17 may be provided separately.
  • the pressure in the pressure accumulating tank 20 is increased by the compressor 17 and the hydrogen in the pressure accumulating tank 20 is increased.
  • the gas is supplied into the sub cylinder 12a, the present invention is not limited to this.
  • the compressor 17 increases the pressure in the main cylinder 11a and the hydrogen gas in the main cylinder 11a into the sub cylinder 12a. You may make it supply.
  • the second valve V2 and the third valve V3 are opened, and the main cylinder 11a is opened.
  • the second valve V2 is opened, and the hydrogen gas in the main cylinder 11a is once stored in the pressure accumulation tank.
  • the third valve V3 may be opened and the hydrogen gas in the pressure accumulating tank 20 may be supplied into the sub cylinder 12a.
  • the hydrogen gas in the main cylinder 11a when filling the sub-cylinder 12a with hydrogen gas, the hydrogen gas in the main cylinder 11a is once filled into the accumulator tank 20, and then the third valve V3 is opened.
  • the hydrogen gas in the accumulator tank 20 may be supplied into the sub cylinder 12a.
  • the capacity adjusting portion spring mechanism 41 or the relief valve 51
  • the filling time to the pressure accumulating tank 20 is shortened, and the main cylinder 11a to the sub cylinder 12a.
  • the hydrogen gas may be supplied more efficiently.
  • the hydrogen gas supply device 10 is not limited to supplying hydrogen gas to a fuel cell of an electric vehicle, but for example, for supplying hydrogen gas to a hydrogen tank mounted and used as a hydrogen source for a hydrogen engine vehicle or the like. You may apply.
  • the hydrogen gas supply device 10 is not limited to a vehicle, and may be applied to, for example, a moving body other than a vehicle, or may be applied to a home cogeneration system.
  • the hydrogen storage material is not limited to a hydrogen storage alloy, and may be, for example, a material made of a nonmetal and capable of storing hydrogen.
  • SYMBOLS 10 Hydrogen gas supply apparatus, 11a ... Main cylinder as main hydrogen storage, 12a ... Sub cylinder as auxiliary hydrogen storage, 17 ... Compressor, 19 ... Drive wheel, 20 ... Accumulation tank as tank, 23 ... For discharge 3rd supply path which comprises a pipeline, 24 ... 4th supply path which comprises the discharge pipeline, 25 ... Relief valve which functions as an opening-closing part, 41 ... Spring mechanism as a capacity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Fuel Cell (AREA)

Abstract

Disclosed is a hydrogen gas supply device comprised of a main hydrogen reservoir, a subsidiary hydrogen reservoir, a tank, a discharge conduit, and an opening/closing portion. The main hydrogen reservoir contains a first hydrogen storage material which can discharge hydrogen in a predetermined high-temperature range. The subsidiary hydrogen reservoir contains a second hydrogen storage material which can discharge hydrogen in a temperature range lower than the predetermined high-temperature range. The tank can store hydrogen gas. The discharge conduit connects the subsidiary hydrogen reservoir to the tank. The opening/closing portion is provided in the discharge conduit to open/close the discharge conduit. The opening/closing portion opens the discharge conduit when the pressure within the subsidiary hydrogen reservoir exceeds a predetermined pressure.

Description

水素ガス供給装置Hydrogen gas supply device
 本発明は、水素吸蔵材料を収容する水素貯蔵タンクを用いて、例えば水素を燃料とする燃料電池もしくは水素エンジンに水素を供給する水素ガス供給装置に関する。 The present invention relates to a hydrogen gas supply device that supplies hydrogen to a fuel cell or hydrogen engine using hydrogen as a fuel, for example, using a hydrogen storage tank that stores a hydrogen storage material.
 近年、地球温暖化を抑制する意識が高まり、特に車両から排出される二酸化炭素の低減を目的として、燃料電池電気自動車や水素エンジン自動車等の、水素を燃料として用いる水素自動車の開発が盛んである。水素自動車としては、水素供給源として水素ガスが充填された水素貯蔵タンクを搭載するものが一般的である。 In recent years, awareness of controlling global warming has increased, and hydrogen vehicles using hydrogen as fuel, such as fuel cell electric vehicles and hydrogen engine vehicles, have been actively developed, particularly for the purpose of reducing carbon dioxide emitted from vehicles. . As a hydrogen vehicle, a vehicle equipped with a hydrogen storage tank filled with hydrogen gas as a hydrogen supply source is generally used.
 水素の貯蔵及び輸送の方法として、所定の温度及び所定の圧力の条件のもとで水素を吸蔵して水素化物になり、必要時に別の温度及び別の圧力の条件のもとで水素を放出する水素吸蔵材料の一種である「水素吸蔵合金」といわれる金属の利用が着目されている。そして、水素吸蔵合金を収容した水素貯蔵タンクは、同じ容積で水素貯蔵量を増大させることができるため、注目されている。 As a method of storing and transporting hydrogen, it absorbs hydrogen under the conditions of a predetermined temperature and a predetermined pressure to form a hydride, and releases hydrogen under a different temperature and pressure condition when necessary. Attention has been focused on the use of a metal called a “hydrogen storage alloy” which is a kind of hydrogen storage material. And since the hydrogen storage tank which accommodated the hydrogen storage alloy can increase the hydrogen storage amount with the same volume, it attracts attention.
 特許文献1には、水素吸蔵合金を水素貯蔵タンク内に収容した水素ガス供給装置が開示されている。上記特許文献1の水素ガス供給装置は、水素貯蔵タンクを冷却することで水素を水素吸蔵合金に吸蔵させた後、燃料電池や水素エンジン等にて発生した熱を水素貯蔵タンクへ供給し水素吸蔵合金から水素を放出させ、燃料電池や水素エンジンに水素を供給する。 Patent Document 1 discloses a hydrogen gas supply device in which a hydrogen storage alloy is accommodated in a hydrogen storage tank. The hydrogen gas supply device of Patent Document 1 stores hydrogen in a hydrogen storage alloy by cooling the hydrogen storage tank, and then supplies heat generated in a fuel cell, a hydrogen engine, or the like to the hydrogen storage tank to store the hydrogen. Hydrogen is released from the alloy and supplied to fuel cells and hydrogen engines.
 上記特許文献1に記載の水素ガス供給装置は、燃料電池システムにおいて通常水素ガスを発生する温度範囲においてその上限温度(60℃)を上限とする所定の高温状態(20℃~60℃)で1MPa以下のプラトー圧を保つ常温動作用の水素吸蔵合金を収容する主水素貯蔵タンクを備えている。また、特許文献1に記載の水素供ガス給装置は、低温状態(-10℃~20℃)で0.1MPaのプラトー圧を発生し得る水素吸蔵合金を収容する副水素貯蔵タンクをさらに備えている。このように構成された該水素ガス供給装置は、主水素貯蔵タンクから水素ガスが出せないとき、先ず、副水素貯蔵タンクから水素ガスを燃料電池へ供給する。副水素貯蔵タンクからの水素ガスにより燃料電池を起動させた後に燃料電池にて発生した熱で主水素貯蔵タンクを加熱する。そして、主水素貯蔵タンクからの水素ガスを燃料電池へ供給するとともに、主水素貯蔵タンクからの水素ガスを副水素貯蔵タンクへ送り、副水素貯蔵タンク内に水素を貯蔵させる。 The hydrogen gas supply apparatus described in Patent Document 1 is 1 MPa in a predetermined high temperature state (20 ° C. to 60 ° C.) with the upper limit temperature (60 ° C.) as the upper limit in the temperature range where hydrogen gas is normally generated in the fuel cell system. The main hydrogen storage tank which accommodates the hydrogen storage alloy for normal temperature operation | movement which maintains the following plateau pressure is provided. Further, the hydrogen gas supply apparatus described in Patent Document 1 further includes an auxiliary hydrogen storage tank that stores a hydrogen storage alloy capable of generating a plateau pressure of 0.1 MPa in a low temperature state (−10 ° C. to 20 ° C.). Yes. The hydrogen gas supply device configured as described above first supplies hydrogen gas from the auxiliary hydrogen storage tank to the fuel cell when hydrogen gas cannot be discharged from the main hydrogen storage tank. After starting the fuel cell with hydrogen gas from the sub-hydrogen storage tank, the main hydrogen storage tank is heated with the heat generated in the fuel cell. And while supplying the hydrogen gas from a main hydrogen storage tank to a fuel cell, the hydrogen gas from a main hydrogen storage tank is sent to a subhydrogen storage tank, and hydrogen is stored in a subhydrogen storage tank.
 また、環境温度が非常に高い温度まで上昇し、副水素貯蔵タンク内の圧力が予め設定された圧力(1MPa)を越えると、副水素貯蔵タンク内の水素を主水素貯蔵タンクに供給して主水素貯蔵タンク内で高温用水素吸蔵合金に吸着させることで、副水素貯蔵タンク内の圧力を予め設定された圧力(1MPa)以下に保つようにしている。 When the environmental temperature rises to a very high temperature and the pressure in the sub hydrogen storage tank exceeds a preset pressure (1 MPa), hydrogen in the sub hydrogen storage tank is supplied to the main hydrogen storage tank. By adsorbing the high-temperature hydrogen storage alloy in the hydrogen storage tank, the pressure in the auxiliary hydrogen storage tank is kept at a preset pressure (1 MPa) or less.
特開2000-12062号公報JP 2000-12062 A
 しかしながら、特許文献1の水素ガス供給装置では、副水素貯蔵タンク内の水素を主水素貯蔵タンクに供給するときに、主水素貯蔵タンク内の水素の充填割合が満タンになっている場合には、副水素貯蔵タンク内の水素を主水素貯蔵タンクに供給することができず、副水素貯蔵タンク内の水素を外部へ放出せざるを得ない。しかし、燃料として用いられる水素を外部へ放出することは好ましくない。 However, in the hydrogen gas supply device of Patent Document 1, when the hydrogen in the sub hydrogen storage tank is supplied to the main hydrogen storage tank, the hydrogen filling ratio in the main hydrogen storage tank is full. The hydrogen in the secondary hydrogen storage tank cannot be supplied to the main hydrogen storage tank, and the hydrogen in the secondary hydrogen storage tank must be discharged to the outside. However, it is not preferable to release hydrogen used as fuel to the outside.
 本発明の目的は、主水素貯蔵タンク内の水素の充填割合が満タンになっている場合であっても、副水素貯蔵タンク内の水素を外部へ放出することなく、副水素貯蔵タンク内の圧力を一定以内に保つことができる水素ガス供給装置を提供することにある。 An object of the present invention is to provide a hydrogen storage tank with a hydrogen filling ratio in the sub hydrogen storage tank without releasing the hydrogen in the sub hydrogen storage tank to the outside even when the hydrogen filling ratio in the main hydrogen storage tank is full. An object of the present invention is to provide a hydrogen gas supply device capable of keeping the pressure within a certain range.
 上記目的を達成するために、本発明の態様に従い、主水素貯蔵器、副水素貯蔵器、タンク、放出用管路、及び、開閉部を備える水素ガス供給装置が開示される。主水素貯蔵器は、所定の高温領域にある状態で水素を放出し得る第1水素吸蔵材料を収容する。副水素貯蔵器は、前記所定の高温領域よりも低い低温領域にある状態で水素を放出し得る第2水素吸蔵材料を収容する。タンクは、水素ガスを貯留可能である。放出用管路は、前記副水素貯蔵器と前記タンクとを連結する。開閉部は、前記放出用管路に設けられ、前記放出用管路を開閉する。前記開閉部は、前記副水素貯蔵器内の圧力が予め設定された圧力を越えたときに前記放出用管路を開く。 To achieve the above object, according to an aspect of the present invention, a hydrogen gas supply device including a main hydrogen storage device, a sub hydrogen storage device, a tank, a discharge conduit, and an opening / closing portion is disclosed. The main hydrogen reservoir contains a first hydrogen storage material that can release hydrogen while in a predetermined high temperature region. The auxiliary hydrogen storage contains a second hydrogen storage material that can release hydrogen in a low temperature region lower than the predetermined high temperature region. The tank can store hydrogen gas. The discharge pipe connects the sub hydrogen storage unit and the tank. The opening / closing part is provided in the discharge conduit and opens and closes the discharge conduit. The opening / closing part opens the discharge pipe when the pressure in the auxiliary hydrogen storage exceeds a preset pressure.
本発明の第1の実施形態における水素ガス供給装置の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the hydrogen gas supply apparatus in the 1st Embodiment of this invention. 図1の水素ガス供給装置におけるサブボンベへ水素ガスを充填する手順を示すフローチャート。The flowchart which shows the procedure of filling hydrogen gas to the sub cylinder in the hydrogen gas supply apparatus of FIG. 本発明の第2の実施形態における蓄圧用タンクの模式図。The schematic diagram of the tank for pressure accumulation in the 2nd Embodiment of this invention. 本発明の第3の実施形態における蓄圧用タンクの模式図。The schematic diagram of the tank for pressure accumulation in the 3rd Embodiment of this invention.
 以下、本発明を、車両としての電気自動車の燃料電池30に水素ガスを供給する水素ガス供給装置10に具体化した第1の実施形態を図1及び図2にしたがって説明する。
 図1に示すように、水素ガス供給装置10は、水素ガスが充填されるメインタンク11と、水素ガスが充填されるサブタンク12とを備えている。メインタンク11は、主水素貯蔵器としての複数のメインボンベ11aを備えている。複数のメインボンベ11aは互いに図示しない配管で連結されている。図1では、便宜上メインボンベ11aの本数は4本であるが、例えば10本以上であってもよい。各メインボンベ11aには、燃料電池システムの作動上限温度(第1の温度)(例えば、100℃)で15MPa以下のプラトー圧を保つ高温用水素吸蔵材料(第1水素吸蔵材料)の一種である高温用水素吸蔵合金が収容されている。つまり、高温用水素吸蔵合金は、前記作動上限温度を上限とする高温領域にある状態で水素を放出し得る。また、各メインボンベ11aには水素の充填割合が満タンの状態において所定圧力(例えば15MPa)に水素ガスが充填されている。メインタンク11には、メインボンベ11a内部の水素吸蔵合金の温度を検出するための温度計13と、メインボンベ11a内の水素ガスの圧力を検出するための圧力計14とが配設されている。
Hereinafter, a first embodiment in which the present invention is embodied in a hydrogen gas supply device 10 that supplies hydrogen gas to a fuel cell 30 of an electric vehicle as a vehicle will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1, the hydrogen gas supply device 10 includes a main tank 11 filled with hydrogen gas and a sub tank 12 filled with hydrogen gas. The main tank 11 includes a plurality of main cylinders 11a as main hydrogen reservoirs. The plurality of main cylinders 11a are connected to each other by piping (not shown). In FIG. 1, the number of main cylinders 11a is four for convenience, but may be ten or more, for example. Each main cylinder 11a is a kind of high-temperature hydrogen storage material (first hydrogen storage material) that maintains a plateau pressure of 15 MPa or less at the operating upper limit temperature (first temperature) (for example, 100 ° C.) of the fuel cell system. Contains a high temperature hydrogen storage alloy. That is, the high-temperature hydrogen storage alloy can release hydrogen in a high-temperature region whose upper limit is the upper limit temperature of operation. Each main cylinder 11a is filled with hydrogen gas at a predetermined pressure (for example, 15 MPa) in a state where the filling ratio of hydrogen is full. The main tank 11 is provided with a thermometer 13 for detecting the temperature of the hydrogen storage alloy inside the main cylinder 11a and a pressure gauge 14 for detecting the pressure of hydrogen gas in the main cylinder 11a. .
 サブタンク12は、副水素貯蔵器としての複数(例えば2本)のサブボンベ12aを備えている。複数のサブボンベ12aは互いに図示しない配管で連結されている。各サブボンベ12aには、所定の高温の温度よりも低い温度(第2の温度)(例えば、-40℃)で0.1MPaのプラトー圧を保つ低温用水素吸蔵材料(第2水素吸蔵材料)の一種である低温用水素吸蔵合金が収容されている。つまり、低温用水素吸蔵合金は、前記高温領域よりも低い低温領域にある状態で水素を放出し得る。また、各サブボンベ12aには水素の充填割合が満タンの状態において所定圧力(例えば15MPa)に水素ガスが充填されるようになっている。サブタンク12には、サブボンベ12a内部の水素吸蔵合金の温度を検出するための温度計15と、サブボンベ12a内の水素ガスの圧力を検出するための圧力計16とが配設されている。 The sub tank 12 includes a plurality of (for example, two) sub cylinders 12a as sub hydrogen storages. The plurality of sub cylinders 12a are connected to each other by piping (not shown). Each sub cylinder 12a has a low-temperature hydrogen storage material (second hydrogen storage material) that maintains a plateau pressure of 0.1 MPa at a temperature (second temperature) lower than a predetermined high temperature (for example, −40 ° C.). A kind of low-temperature hydrogen storage alloy is housed. That is, the low-temperature hydrogen storage alloy can release hydrogen in a state of being in a low temperature region lower than the high temperature region. Further, each sub cylinder 12a is filled with hydrogen gas at a predetermined pressure (for example, 15 MPa) in a state where the filling rate of hydrogen is full. The sub tank 12 is provided with a thermometer 15 for detecting the temperature of the hydrogen storage alloy inside the sub cylinder 12a and a pressure gauge 16 for detecting the pressure of the hydrogen gas in the sub cylinder 12a.
 また、水素ガス供給装置10はコンプレッサ17を備え、コンプレッサ17はクラッチ機構18を介して駆動輪19と接続されている。クラッチ機構18によりコンプレッサ17と駆動輪19との間の接続及び切り離しが行われるようになっている。そして、電気自動車のブレーキング時にコンプレッサ17と駆動輪19とがクラッチ機構18によって接続されることにより、駆動輪19の回転力でコンプレッサ17を駆動できるようになっている。 Further, the hydrogen gas supply device 10 includes a compressor 17, and the compressor 17 is connected to the drive wheels 19 through a clutch mechanism 18. The clutch mechanism 18 connects and disconnects the compressor 17 and the drive wheel 19. The compressor 17 and the drive wheel 19 are connected by the clutch mechanism 18 during braking of the electric vehicle, so that the compressor 17 can be driven by the rotational force of the drive wheel 19.
 水素ガス供給装置10にはタンクとしての蓄圧用タンク20がさらに設けられている。蓄圧用タンク20は、水素の充填割合が満タンの状態において所定圧力(例えば20MPa)まで水素ガスが充填可能となっている。蓄圧用タンク20内に充填可能な水素ガスの所定圧力は、サブタンク12内に充填可能な水素ガスの所定圧力よりも大きく設定されている。また、蓄圧用タンク20には、蓄圧用タンク20内の水素ガスの圧力を検出するための圧力計20aが配設されている。 The hydrogen gas supply device 10 is further provided with a pressure accumulating tank 20 as a tank. The pressure accumulating tank 20 can be filled with hydrogen gas up to a predetermined pressure (for example, 20 MPa) when the hydrogen filling ratio is full. The predetermined pressure of the hydrogen gas that can be filled in the pressure accumulation tank 20 is set to be larger than the predetermined pressure of the hydrogen gas that can be filled in the sub tank 12. Further, the pressure accumulation tank 20 is provided with a pressure gauge 20a for detecting the pressure of hydrogen gas in the pressure accumulation tank 20.
 メインタンク11は第1の供給路21を介して燃料電池30に連結されている。第1の供給路21には第1バルブV1が設けられている。第1の供給路21の途中、具体的にはメインタンク11と第1バルブV1との間の部位には、第2の供給路22の基端部が連結されている。第2の供給路22は、第1の供給路21と第2の供給路22との連結部である分岐点S1からサブタンク12に向かって延びている。第2の供給路22には第2バルブV2及び第3バルブV3が設けられている。 The main tank 11 is connected to the fuel cell 30 via the first supply path 21. The first supply path 21 is provided with a first valve V1. A base end portion of the second supply path 22 is connected to the middle of the first supply path 21, specifically to a portion between the main tank 11 and the first valve V <b> 1. The second supply path 22 extends toward the sub tank 12 from a branch point S1 that is a connecting portion between the first supply path 21 and the second supply path 22. The second supply path 22 is provided with a second valve V2 and a third valve V3.
 サブタンク12は第3の供給路23を介して第1の供給路21に連結されている。第3の供給路23はサブタンク12から燃料電池30に向かって延びている。第3の供給路23の先端部は、第1の供給路21における分岐点S1と第1バルブV1との間の部位に連結されている。よって、サブタンク12は、第3の供給路23及び第1の供給路21の一部を介して燃料電池30と連結されている。また、第3の供給路23には第4バルブV4が設けられている。 The sub tank 12 is connected to the first supply path 21 via the third supply path 23. The third supply path 23 extends from the sub tank 12 toward the fuel cell 30. The distal end portion of the third supply path 23 is connected to a portion of the first supply path 21 between the branch point S1 and the first valve V1. Accordingly, the sub tank 12 is connected to the fuel cell 30 via the third supply path 23 and a part of the first supply path 21. The third supply path 23 is provided with a fourth valve V4.
 第3の供給路23は、第4の供給路24を介して蓄圧用タンク20に連結されている。第4の供給路24は、第3の供給路23上の分岐点S2から蓄圧用タンク20に向かって延びている。第4の供給路24の先端部は蓄圧用タンク20と連結されている。よって、サブタンク12は、第3の供給路23の一部及び第4の供給路24を介して蓄圧用タンク20と連結されている。また、第4の供給路24にはリリーフ弁25が設けられている。リリーフ弁25に設けられる圧縮ばねのばね定数は、サブタンク12内の圧力が所定圧力(例えば15MPa)を越えたときに、リリーフ弁25に設けられる弁体が開放するように予め設定されている。 The third supply path 23 is connected to the pressure accumulation tank 20 through the fourth supply path 24. The fourth supply path 24 extends from the branch point S2 on the third supply path 23 toward the pressure accumulation tank 20. The tip of the fourth supply path 24 is connected to the pressure accumulating tank 20. Therefore, the sub tank 12 is connected to the pressure accumulation tank 20 via a part of the third supply path 23 and the fourth supply path 24. The fourth supply path 24 is provided with a relief valve 25. The spring constant of the compression spring provided in the relief valve 25 is set in advance so that the valve body provided in the relief valve 25 is opened when the pressure in the sub tank 12 exceeds a predetermined pressure (for example, 15 MPa).
 また、第2の供給路22の先端部は、第3の供給路23におけるサブタンク12と前記分岐点S2との間の部位に連結されている。よって、メインタンク11は、第1の供給路21の一部、第2の供給路22及び第3の供給路23の一部を介してサブタンク12と連結されている。また、第2の供給路22において、第2バルブV2と第3バルブV3との間には、蓄圧用タンク20から延びる第5の供給路26が連結されている。よって、メインタンク11は、第1の供給路21の一部、第2の供給路22の一部及び第5の供給路26を介して蓄圧用タンク20と連結されている。また、蓄圧用タンク20は、第5の供給路26、第2の供給路22の一部及び第3の供給路23の一部を介してサブタンク12と連結されている。さらに、蓄圧用タンク20は、第5の供給路26、第2の供給路22の一部、第3の供給路23の一部及び第1の供給路21の一部を介して燃料電池30と連結されている。 Further, the tip of the second supply path 22 is connected to a portion of the third supply path 23 between the sub tank 12 and the branch point S2. Therefore, the main tank 11 is connected to the sub tank 12 through a part of the first supply path 21, the second supply path 22, and a part of the third supply path 23. In the second supply path 22, a fifth supply path 26 extending from the pressure accumulation tank 20 is connected between the second valve V2 and the third valve V3. Therefore, the main tank 11 is connected to the pressure accumulating tank 20 through a part of the first supply path 21, a part of the second supply path 22, and the fifth supply path 26. The pressure accumulating tank 20 is connected to the sub tank 12 through a fifth supply path 26, a part of the second supply path 22, and a part of the third supply path 23. Further, the pressure accumulation tank 20 includes a fuel cell 30 via a fifth supply path 26, a part of the second supply path 22, a part of the third supply path 23, and a part of the first supply path 21. It is connected with.
 また、第2の供給路22において、第2バルブV2と第3バルブV3との間には、コンプレッサ17から延びる第6の供給路27が連結されている。コンプレッサ17は、第6の供給路27、第2の供給路22の一部及び第5の供給路26を介して蓄圧用タンク20と連結されている。また、コンプレッサ17は、第6の供給路27、第2の供給路22の一部及び第1の供給路21の一部を介してメインタンク11と連結されている。 Further, in the second supply path 22, a sixth supply path 27 extending from the compressor 17 is connected between the second valve V2 and the third valve V3. The compressor 17 is connected to the pressure accumulation tank 20 via a sixth supply path 27, a part of the second supply path 22, and a fifth supply path 26. The compressor 17 is connected to the main tank 11 via a sixth supply path 27, a part of the second supply path 22, and a part of the first supply path 21.
 また、蓄圧用タンク20は、第7の供給路28を介して第1の供給路21に連結されている。第7の供給路28は蓄圧用タンク20からメインタンク11に向かって延びている。第7の供給路28の先端部は、第1の供給路21における分岐点S1と第1バルブV1との間の部位に連結されている。よって、蓄圧用タンク20は、第7の供給路28及び第1の供給路21の一部を介してメインタンク11と連結されている。また、第7の供給路28には第5バルブV5が設けられている。 The pressure accumulating tank 20 is connected to the first supply path 21 via the seventh supply path 28. The seventh supply path 28 extends from the pressure accumulation tank 20 toward the main tank 11. The distal end portion of the seventh supply path 28 is connected to a portion of the first supply path 21 between the branch point S1 and the first valve V1. Therefore, the pressure accumulating tank 20 is connected to the main tank 11 via a part of the seventh supply path 28 and the first supply path 21. The seventh supply path 28 is provided with a fifth valve V5.
 各バルブV1~V5には電磁弁が使用されている。各バルブV1~V5は、制御装置31からの指令で開閉駆動されるようになっている。制御装置31は、各バルブV1~V5の開閉を所定の手順で制御するCPU31a(中央処理装置)と、必要なデータの読出し及び書換えが可能なメモリ(図示せず)とが設けられている。CPU31aは、温度計13,15及び圧力計14,16,20aにより測定した温度及び圧力に基づいて各バルブV1~V5の開閉を制御している。 ) Solenoid valves are used for the valves V1 to V5. The valves V1 to V5 are driven to open and close in response to a command from the control device 31. The control device 31 is provided with a CPU 31a (central processing unit) that controls the opening and closing of the valves V1 to V5 according to a predetermined procedure, and a memory (not shown) that can read and rewrite necessary data. The CPU 31a controls the opening and closing of the valves V1 to V5 based on the temperature and pressure measured by the thermometers 13 and 15 and the pressure gauges 14, 16, and 20a.
 メインボンベ11a内に充填されている水素ガスは、第1バルブV1が開弁すると、メインボンベ11a内の圧力と燃料電池30内の圧力との差によって第1の供給路21を介して燃料電池30へ供給される。また、サブボンベ12a内に充填されている水素ガスは、第4バルブV4及び第1バルブV1が開弁すると、サブボンベ12a内の圧力と燃料電池30内の圧力との差によって第3の供給路23及び第1の供給路21の一部を介して燃料電池30へ供給される。さらに、蓄圧用タンク20内に充填されている水素ガスは、第3バルブV3、第4バルブV4及び第1バルブV1が開弁すると、蓄圧用タンク20内の圧力と燃料電池30内の圧力との差によって、第5の供給路26、第2の供給路22の一部、第3の供給路23の一部及び第1の供給路21の一部を介して燃料電池30へ供給される。 When the first valve V1 is opened, the hydrogen gas filled in the main cylinder 11a is a fuel cell via the first supply path 21 due to the difference between the pressure in the main cylinder 11a and the pressure in the fuel cell 30. 30. Further, the hydrogen gas filled in the sub cylinder 12a is supplied to the third supply path 23 by the difference between the pressure in the sub cylinder 12a and the pressure in the fuel cell 30 when the fourth valve V4 and the first valve V1 are opened. And supplied to the fuel cell 30 through a part of the first supply path 21. Further, when the third valve V3, the fourth valve V4, and the first valve V1 are opened, the hydrogen gas filled in the pressure accumulating tank 20 is changed to the pressure in the pressure accumulating tank 20 and the pressure in the fuel cell 30. Is supplied to the fuel cell 30 via the fifth supply path 26, a part of the second supply path 22, a part of the third supply path 23, and a part of the first supply path 21. .
 上記の水素ガス供給装置10は、メインタンク11から水素ガスが放出できない状態のとき、例えば、メインボンベ11aが十分に暖まっておらず、メインボンベ11a内の圧力が十分に高くなっていないときには、先ずサブタンク12内のサブボンベ12a内に充填されている水素ガスを燃料電池30へ供給する。そして、サブタンク12から供給された水素ガスにより燃料電池30を起動させた後に燃料電池30にて発生した熱でメインボンベ11aを加熱する。メインボンベ11aが十分に暖まった状態になると、メインボンベ11a内に充填されている水素ガスを燃料電池30へ供給するようになっている。このとき、第4バルブV4は閉弁状態となり、サブタンク12から燃料電池30への水素ガスの供給が停止される。また、メインボンベ11a及びサブボンベ12a内の水素ガスが双方とも空の状態である場合、蓄圧用タンク20内に充填されている水素ガスが燃料電池30へ供給されるようになっている。 When the hydrogen gas supply device 10 is in a state where hydrogen gas cannot be released from the main tank 11, for example, when the main cylinder 11a is not sufficiently warmed and the pressure in the main cylinder 11a is not sufficiently high, First, the hydrogen gas filled in the sub cylinder 12 a in the sub tank 12 is supplied to the fuel cell 30. Then, after starting the fuel cell 30 with the hydrogen gas supplied from the sub tank 12, the main cylinder 11 a is heated with the heat generated in the fuel cell 30. When the main cylinder 11a is sufficiently warmed, the hydrogen gas filled in the main cylinder 11a is supplied to the fuel cell 30. At this time, the fourth valve V4 is closed, and the supply of hydrogen gas from the sub tank 12 to the fuel cell 30 is stopped. Further, when both the hydrogen gas in the main cylinder 11a and the sub cylinder 12a are empty, the hydrogen gas filled in the pressure accumulating tank 20 is supplied to the fuel cell 30.
 次に、上記の水素ガス供給装置10において、サブボンベ12aへ水素ガスを充填する手順を、図2に示すフローチャートにしたがって説明する。
 図2に示すように、CPU31aは、まず、圧力計16により検出されたサブボンベ12a内の圧力が所定圧力(例えば5MPa)以下であるか否かを判定する(ステップS11)。この判定結果が肯定の場合、CPU31aは、サブボンベ12a内における水素ガスの充填量が不足していると判断し、次に、圧力計20aにより検出された蓄圧用タンク20内の圧力が所定圧力(例えば5MPa)以下であるか否かを判定する(ステップS12)。
Next, a procedure for filling the sub cylinder 12a with hydrogen gas in the hydrogen gas supply apparatus 10 will be described with reference to the flowchart shown in FIG.
As shown in FIG. 2, the CPU 31a first determines whether or not the pressure in the sub cylinder 12a detected by the pressure gauge 16 is equal to or lower than a predetermined pressure (for example, 5 MPa) (step S11). If the determination result is affirmative, the CPU 31a determines that the filling amount of hydrogen gas in the sub cylinder 12a is insufficient, and then the pressure in the pressure accumulating tank 20 detected by the pressure gauge 20a is a predetermined pressure ( For example, it is determined whether the pressure is 5 MPa or less (step S12).
 一方、ステップS11の判定結果が否定の場合、CPU31aは、サブボンベ12a内にはまだ水素ガスが十分に充填されており、サブボンベ12a内に水素ガスを充填する必要がないと判断し、CPU31aにおけるサブボンベ12aへ水素ガスを充填する制御処理は終了する。 On the other hand, if the determination result in step S11 is negative, the CPU 31a determines that the sub cylinder 12a is still sufficiently filled with hydrogen gas, and it is not necessary to fill the sub cylinder 12a with hydrogen gas. The control process for filling the hydrogen gas into 12a ends.
 次に、ステップS12の判定結果が肯定の場合、CPU31aは、蓄圧用タンク20内における水素ガスの充填量が不足していると判断し、次に、圧力計14により検出されたメインボンベ11a内の圧力が所定圧力(例えば5MPa)以下であるか否かを判定する(ステップS13)。 Next, when the determination result in step S12 is affirmative, the CPU 31a determines that the hydrogen gas filling amount in the pressure accumulating tank 20 is insufficient, and then in the main cylinder 11a detected by the pressure gauge 14. It is determined whether or not the pressure is equal to or lower than a predetermined pressure (for example, 5 MPa) (step S13).
 一方、ステップS12の判定結果が否定の場合、CPU31aは、蓄圧用タンク20内にサブボンベ12aへ供給可能な水素ガスが十分に充填されていると判断し、CPU31aは、第3バルブV3を開弁するように第3バルブV3を制御する(ステップS15)。すると、蓄圧用タンク20内の圧力とサブボンベ12a内の圧力との差によって、蓄圧用タンク20内の水素ガスが、第5の供給路26、第2の供給路22の一部及び第3の供給路23の一部を介してサブボンベ12a内へ供給される。よって、サブボンベ12a内に水素ガスが充填される。 On the other hand, if the determination result in step S12 is negative, the CPU 31a determines that the pressure accumulation tank 20 is sufficiently filled with hydrogen gas that can be supplied to the sub-cylinder 12a, and the CPU 31a opens the third valve V3. Thus, the third valve V3 is controlled (step S15). Then, due to the difference between the pressure in the pressure accumulation tank 20 and the pressure in the sub-cylinder 12a, the hydrogen gas in the pressure accumulation tank 20 causes the fifth supply path 26, a part of the second supply path 22, and the third The gas is supplied into the sub cylinder 12a through a part of the supply path 23. Therefore, hydrogen gas is filled in the sub cylinder 12a.
 次に、ステップS13の判定結果が肯定の場合、CPU31aは、メインボンベ11a内における水素ガスの充填量が不足していると判断し、次に、クラッチ機構18によって駆動輪19とコンプレッサ17とを接続させるとともにコンプレッサ17を駆動させる(ステップS14)。すると、コンプレッサ17によって蓄圧用タンク20内の圧力が昇圧される。さらに、CPU31aは、第3バルブV3を開弁するように第3バルブV3を制御する(ステップS15)。すると、蓄圧用タンク20内の圧力とサブボンベ12a内の圧力との差によって、蓄圧用タンク20内の水素ガスが、第5の供給路26、第2の供給路22の一部及び第3の供給路23の一部を介してサブボンベ12a内へ供給される。よって、サブボンベ12a内に水素ガスが充填される。 Next, when the determination result of step S13 is affirmative, the CPU 31a determines that the hydrogen gas filling amount in the main cylinder 11a is insufficient, and then causes the drive wheels 19 and the compressor 17 to be connected by the clutch mechanism 18. The compressor 17 is driven while being connected (step S14). Then, the pressure in the pressure accumulating tank 20 is increased by the compressor 17. Further, the CPU 31a controls the third valve V3 so as to open the third valve V3 (step S15). Then, due to the difference between the pressure in the pressure accumulation tank 20 and the pressure in the sub-cylinder 12a, the hydrogen gas in the pressure accumulation tank 20 causes the fifth supply path 26, a part of the second supply path 22, and the third The gas is supplied into the sub cylinder 12 a through a part of the supply path 23. Therefore, hydrogen gas is filled in the sub cylinder 12a.
 一方、ステップS13の判定結果が否定の場合、CPU31aは、メインボンベ11a内にサブボンベ12aへ供給可能な水素ガスが十分に充填されていると判断し、CPU31aは、まず、第2バルブV2を開弁するように第2バルブV2を制御する(ステップS16)。さらに、ステップS15へ移行し、CPU31aは、第3バルブV3を開弁するように第3バルブV3を制御する。すると、メインボンベ11a内の圧力とサブボンベ12a内の圧力との差によって、メインボンベ11a内の水素ガスが、第1の供給路21の一部、第2の供給路22及び第3の供給路23の一部を介してサブボンベ12a内へ供給される。よって、サブボンベ12a内に水素ガスが充填される。 On the other hand, if the determination result of step S13 is negative, the CPU 31a determines that the main cylinder 11a is sufficiently filled with hydrogen gas that can be supplied to the sub cylinder 12a, and the CPU 31a first opens the second valve V2. The second valve V2 is controlled so as to valve (step S16). Furthermore, it transfers to step S15 and CPU31a controls the 3rd valve V3 so that the 3rd valve V3 may be opened. Then, due to the difference between the pressure in the main cylinder 11a and the pressure in the sub cylinder 12a, the hydrogen gas in the main cylinder 11a becomes part of the first supply path 21, the second supply path 22, and the third supply path. The gas is supplied into the sub cylinder 12a through a part of the gas cylinder 23. Therefore, hydrogen gas is filled in the sub cylinder 12a.
 また、各ボンベ11a,12a及び蓄圧用タンク20への水素ガスの充填は、水素ステーションと呼ばれる、ガソリンスタンドやLPガススタンドに対応する設備で行われる。
 図1に示すように、水素ステーションから供給される水素ガスは、第1バルブ、第2バルブV2及び第3バルブV3を開弁した状態で、第1の供給路21における第1バルブV1と燃料電池30との間の部位からメインボンベ11a、蓄圧用タンク20、及び、サブボンベ12aへ一定の充填圧力(例えば15MPa)で供給される。
Further, the filling of hydrogen gas into each of the cylinders 11a, 12a and the pressure accumulating tank 20 is performed by equipment called a hydrogen station corresponding to a gas station or an LP gas station.
As shown in FIG. 1, the hydrogen gas supplied from the hydrogen station is in a state where the first valve, the second valve V2, and the third valve V3 are opened, and the first valve V1 and fuel in the first supply passage 21 are opened. A constant filling pressure (for example, 15 MPa) is supplied to the main cylinder 11a, the pressure accumulating tank 20, and the sub cylinder 12a from a portion between the battery 30 and the battery 30.
 メインボンベ11aには高温用水素吸蔵合金が収容されているため、水素ステーションにおいて急速充填が可能である。しかしながら、サブボンベ12aには低温用水素吸蔵合金が収容されているため、水素ステーションにおける充填圧力を高くするか、サブボンベ12a内の水素吸蔵合金の温度を極低温まで下げなければ急速に充填することができない。よって、本実施形態においては、水素ステーションにおける各ボンベ11a,12a及び蓄圧用タンク20への水素ガスの充填は、メインボンベ11a及び蓄圧用タンク20内の圧力が15MPaに達したときに充填完了とする。そして、その後、サブボンベ12aへ水素ガスを充填する際には、例えば電気自動車が走行しているときに、メインボンベ11a又は蓄圧用タンク20からサブボンベ12aへ水素ガスを供給して、サブボンベ12a内に水素ガスを充填する。 Since the main cylinder 11a contains the high-temperature hydrogen storage alloy, it can be quickly filled in the hydrogen station. However, since the sub-cylinder 12a contains the low-temperature hydrogen storage alloy, the sub-cylinder 12a can be charged quickly unless the filling pressure at the hydrogen station is increased or the temperature of the hydrogen storage alloy in the sub-cylinder 12a is lowered to an extremely low temperature. Can not. Therefore, in the present embodiment, the filling of the hydrogen gas into each of the cylinders 11a, 12a and the pressure accumulating tank 20 in the hydrogen station is completed when the pressure in the main cylinder 11a and the pressure accumulating tank 20 reaches 15 MPa. To do. Then, when filling the sub-cylinder 12a with hydrogen gas, for example, when the electric vehicle is running, the hydrogen gas is supplied from the main cylinder 11a or the pressure accumulating tank 20 to the sub-cylinder 12a, Fill with hydrogen gas.
 さて、サブボンベ12aに収容されている低温用水素吸蔵合金の環境温度が非常に高い温度(常温以上の温度)まで上昇した際に、サブボンベ12a内の圧力が高い値まで上昇し得る。 Now, when the environmental temperature of the low-temperature hydrogen storage alloy accommodated in the sub-cylinder 12a rises to a very high temperature (temperature above room temperature), the pressure in the sub-cylinder 12a can rise to a high value.
 上記の水素ガス供給装置10においては、サブボンベ12a内の圧力が予め設定された圧力(例えば15MPa)を越えたときに、リリーフ弁25が開弁するとともにサブボンベ12a内の水素ガスが第3の供給路23の一部及び第4の供給路24を介して蓄圧用タンク20内に放出される。すなわち、第3の供給路23の一部及び第4の供給路24によって、サブボンベ12a内の水素ガスを蓄圧用タンク20内に放出するための放出用管路が構成されている。また、リリーフ弁25は、サブボンベ12a内の圧力が予め設定された圧力を越えたときに、サブボンベ12a内の水素ガスを蓄圧用タンク20内へ放出するために、放出用管路の一部を構成する第4の供給路24を開く開閉部として機能する。 In the hydrogen gas supply device 10 described above, when the pressure in the sub cylinder 12a exceeds a preset pressure (for example, 15 MPa), the relief valve 25 is opened and the hydrogen gas in the sub cylinder 12a is supplied to the third supply. It is discharged into the pressure accumulating tank 20 through a part of the passage 23 and the fourth supply passage 24. In other words, a part of the third supply path 23 and the fourth supply path 24 constitute a discharge pipe for discharging the hydrogen gas in the sub-bomb 12a into the pressure accumulation tank 20. In addition, the relief valve 25 provides a part of the discharge pipe for discharging the hydrogen gas in the sub cylinder 12a into the pressure accumulating tank 20 when the pressure in the sub cylinder 12a exceeds a preset pressure. It functions as an opening / closing part that opens the fourth supply path 24 that is configured.
 サブタンク12から蓄圧用タンク20内に放出された水素ガスは、蓄圧用タンク20内に充填された状態となる。そして、例えば、サブボンベ12a内における水素ガスの充填量が不足している状態となった場合には、蓄圧用タンク20内に充填された水素ガスをサブボンベ12aに供給することで、サブボンベ12a内に水素ガスを充填する。また、例えば、メインボンベ11a及びサブボンベ12a内における水素ガスの充填量が双方とも不足の状態となったときには、蓄圧用タンク20内に充填された水素ガスを燃料電池30へ供給することができる。さらに、メインボンベ11a内における水素ガスの充填量が不足している状態となった場合には、第5バルブV5を開弁するとともに、蓄圧用タンク20内に充填された水素ガスを第7の供給路28及び第1の供給路21の一部を介してメインボンベ11a内に供給することで、メインボンベ11a内に水素ガスを充填する。 The hydrogen gas released from the sub tank 12 into the pressure accumulating tank 20 is filled in the pressure accumulating tank 20. For example, when the filling amount of the hydrogen gas in the sub cylinder 12a is insufficient, the hydrogen gas filled in the pressure accumulating tank 20 is supplied to the sub cylinder 12a, so that the sub cylinder 12a is filled with the hydrogen gas. Fill with hydrogen gas. Further, for example, when the hydrogen gas filling amount in the main cylinder 11a and the sub cylinder 12a becomes insufficient, the hydrogen gas filled in the pressure accumulating tank 20 can be supplied to the fuel cell 30. Further, when the filling amount of hydrogen gas in the main cylinder 11a is insufficient, the fifth valve V5 is opened, and the hydrogen gas filled in the pressure accumulating tank 20 is supplied to the seventh tank. By supplying the main cylinder 11a through the supply path 28 and part of the first supply path 21, the main cylinder 11a is filled with hydrogen gas.
 上記実施形態は以下の利点を有する。
 (1)水素ガス供給装置10に蓄圧用タンク20を設け、サブタンク12は、第3の供給路23の一部及び第4の供給路24を介して蓄圧用タンク20と連結されている。さらに、第4の供給路24にはリリーフ弁25が設けられている。よって、サブボンベ12a内の圧力が予め設定された圧力を越えたときに、リリーフ弁25が開弁するとともにサブボンベ12a内の水素ガスが第3の供給路23の一部及び第4の供給路24を介して蓄圧用タンク20内に放出される。したがって、サブボンベ12a内の圧力が予め設定された圧力を越えたときに、メインボンベ11a内の水素の充填割合が満タンになっている場合であっても、サブボンベ12a内の水素を外部へ放出することなく、サブボンベ12a内の圧力を一定以内に保つことができる。
The above embodiment has the following advantages.
(1) The pressure accumulation tank 20 is provided in the hydrogen gas supply device 10, and the sub tank 12 is connected to the pressure accumulation tank 20 via a part of the third supply path 23 and the fourth supply path 24. Furthermore, a relief valve 25 is provided in the fourth supply path 24. Therefore, when the pressure in the sub cylinder 12a exceeds a preset pressure, the relief valve 25 is opened, and the hydrogen gas in the sub cylinder 12a is part of the third supply path 23 and the fourth supply path 24. Through the pressure storage tank 20. Therefore, when the pressure in the sub cylinder 12a exceeds a preset pressure, even if the filling rate of hydrogen in the main cylinder 11a is full, the hydrogen in the sub cylinder 12a is released to the outside. Without this, the pressure in the sub cylinder 12a can be kept within a certain range.
 (2)第4の供給路24には、サブボンベ12a内の圧力が予め設定された圧力を越えると開弁状態となるリリーフ弁25が設けられている。よって、サブボンベ12a内の圧力を監視してバルブを制御することなく、サブボンベ12a内の水素を第3の供給路23の一部及び第4の供給路24を介して蓄圧用タンク20内に放出することができる。したがって、サブボンベ12a内の圧力を監視してバルブを制御するシステムと比較して、システムを簡素化することができる。 (2) The fourth supply path 24 is provided with a relief valve 25 that opens when the pressure in the sub-cylinder 12a exceeds a preset pressure. Therefore, the hydrogen in the sub cylinder 12a is released into the pressure accumulating tank 20 through a part of the third supply path 23 and the fourth supply path 24 without monitoring the pressure in the sub cylinder 12a and controlling the valve. can do. Therefore, the system can be simplified as compared with a system that controls the valve by monitoring the pressure in the sub cylinder 12a.
 (3)水素ガス供給装置10にコンプレッサ17がさらに設けられている。そして、メインボンベ11a内における水素の充填量が不足している状態と判断されたときには、コンプレッサ17によって蓄圧用タンク20内の圧力を昇圧する。よって、蓄圧用タンク20内の水素ガスを、蓄圧用タンク20内圧力とサブボンベ12a内の圧力との差によってサブボンベ12aへスムーズに供給することができる。 (3) The hydrogen gas supply device 10 is further provided with a compressor 17. When it is determined that the hydrogen filling amount in the main cylinder 11a is insufficient, the pressure in the pressure accumulating tank 20 is increased by the compressor 17. Therefore, the hydrogen gas in the pressure accumulation tank 20 can be smoothly supplied to the sub cylinder 12a due to the difference between the pressure in the pressure accumulation tank 20 and the pressure in the sub cylinder 12a.
 (4)コンプレッサ17は、電気自動車のブレーキング時にコンプレッサ17と駆動輪19とがクラッチ機構18によって接続されることにより、駆動輪19の回転力で駆動する。よって、コンプレッサ17を駆動するための別の駆動源を必要とせずに、電気自動車に設けられる駆動輪19の回転力を用いるだけでコンプレッサ17を駆動することができる。よって、コンプレッサ17を駆動させるための余分なエネルギーを必要とせずに省エネルギー化することができる。 (4) The compressor 17 is driven by the rotational force of the drive wheels 19 when the compressor 17 and the drive wheels 19 are connected by the clutch mechanism 18 during braking of the electric vehicle. Therefore, the compressor 17 can be driven only by using the rotational force of the drive wheel 19 provided in the electric vehicle without requiring another drive source for driving the compressor 17. Therefore, it is possible to save energy without requiring extra energy for driving the compressor 17.
 (5)上記水素ガス供給装置10によれば、メインボンベ11a及びサブボンベ12a内における水素の充填量が双方とも不足の状態となったときには、蓄圧用タンク20内に充填された水素ガスを燃料電池30へ供給することができる。蓄圧用タンク20内に充填されている水素は既にガスの状態で充填されているため、メインボンベ11a及びサブボンベ12aのような水素吸蔵合金を用いて化学反応によって水素ガスを放出する場合と比較して、スムーズに燃料電池30へ水素ガスを供給することができる。 (5) According to the hydrogen gas supply device 10 described above, when both the main cylinder 11a and the sub cylinder 12a have insufficient hydrogen filling amounts, the hydrogen gas filled in the pressure accumulating tank 20 is used as a fuel cell. 30. Since the hydrogen filled in the pressure accumulating tank 20 is already filled in a gas state, it is compared with a case where hydrogen gas is released by a chemical reaction using a hydrogen storage alloy such as the main cylinder 11a and the sub cylinder 12a. Thus, the hydrogen gas can be smoothly supplied to the fuel cell 30.
 (6)水素ガス供給装置10に蓄圧用タンク20を設けたことで、サブボンベ12a内に水素を充填する際に、メインボンベ11a内の水素の充填量が不足している状態であったとしても、蓄圧用タンク20からサブボンベ12aへ水素ガスを供給して、サブボンベ12a内に水素ガスを充填することができる。 (6) By providing the pressure accumulation tank 20 in the hydrogen gas supply device 10, even when the hydrogen amount in the main cylinder 11 a is insufficient when the sub cylinder 12 a is charged with hydrogen, The hydrogen gas can be supplied from the pressure accumulating tank 20 to the sub cylinder 12a and filled in the sub cylinder 12a.
 (7)蓄圧用タンク20は、第7の供給路28及び第1の供給路21の一部を介してメインタンク11と連結されている。よって、メインボンベ11a内における水素の充填量が不足している状態となった場合には、第5バルブV5を開弁するとともに、蓄圧用タンク20内に充填された水素ガスを第7の供給路28及び第1の供給路21の一部を介してメインボンベ11a内に供給することで、メインボンベ11a内に水素ガスを充填することができる。 (7) The pressure accumulating tank 20 is connected to the main tank 11 through a part of the seventh supply path 28 and the first supply path 21. Accordingly, when the hydrogen filling amount in the main cylinder 11a is insufficient, the fifth valve V5 is opened and the hydrogen gas filled in the pressure accumulating tank 20 is supplied to the seventh supply. By supplying the main cylinder 11a through the passage 28 and a part of the first supply path 21, the main cylinder 11a can be filled with hydrogen gas.
 以下、本発明を、車両としての電気自動車の燃料電池に水素ガスを供給する水素ガス供給装置に具体化した第2の実施形態を図3にしたがって説明する。なお、以下に説明する実施形態では、既に説明した第1の実施形態と同一構成について同一符号を付すなどして、その重複する説明を省略又は簡略化する。 Hereinafter, a second embodiment in which the present invention is embodied in a hydrogen gas supply device that supplies hydrogen gas to a fuel cell of an electric vehicle as a vehicle will be described with reference to FIG. In the embodiment described below, the same components as those in the first embodiment described above are denoted by the same reference numerals, and the redundant description thereof is omitted or simplified.
 図3に示すように、蓄圧用タンク20内には、該蓄圧用タンク20内の圧力に応じて該蓄圧用タンク20内の容量を調整する容量調整部としてのばね機構41が設けられている。ばね機構41は、圧縮ばね42とスライド板43とを備えている。圧縮ばね42の基端部42aは蓄圧用タンク20内の底面に支持されるとともに、圧縮ばね42の先端部42bにはスライド板43が支持されている。スライド板43は圧縮ばね42によって蓄圧用タンク20内を上下方向(図3に示す矢印Yの方向)に移動可能となっている。圧縮ばね42のばね定数は、蓄圧用タンク20内の圧力が所定圧力(例えば15MPa)を越えたときにスライド板43が下方へ移動するように予め設定されている。よって、蓄圧用タンク20内の圧力が所定圧力(例えば15MPa)を越えたときにスライド板43が下方へ移動することで、蓄圧用タンク20内の容量が増える。 As shown in FIG. 3, a spring mechanism 41 is provided in the pressure accumulating tank 20 as a capacity adjusting unit that adjusts the capacity in the pressure accumulating tank 20 in accordance with the pressure in the pressure accumulating tank 20. . The spring mechanism 41 includes a compression spring 42 and a slide plate 43. The base end portion 42 a of the compression spring 42 is supported on the bottom surface in the pressure accumulating tank 20, and the slide plate 43 is supported on the tip end portion 42 b of the compression spring 42. The slide plate 43 is movable in the vertical direction (in the direction of arrow Y shown in FIG. 3) in the pressure accumulating tank 20 by a compression spring 42. The spring constant of the compression spring 42 is set in advance so that the slide plate 43 moves downward when the pressure in the pressure accumulating tank 20 exceeds a predetermined pressure (for example, 15 MPa). Therefore, when the pressure in the pressure accumulating tank 20 exceeds a predetermined pressure (for example, 15 MPa), the slide plate 43 moves downward to increase the capacity in the pressure accumulating tank 20.
 上記の蓄圧用タンク20を用いた水素ガス供給装置10によれば、例えば、サブボンベ12a内の圧力が予め設定された圧力(例えば15MPa)を越えて、リリーフ弁25を介して蓄圧用タンク20内へ水素ガスを放出する際に、スライド板43が下方へ移動し、蓄圧用タンク20内の容量を増やすことができる。 According to the hydrogen gas supply device 10 using the pressure accumulating tank 20, for example, the pressure in the sub-cylinder 12 a exceeds a preset pressure (for example, 15 MPa), and the pressure accumulating tank 20 passes through the relief valve 25. When releasing hydrogen gas, the slide plate 43 moves downward, and the capacity in the pressure accumulating tank 20 can be increased.
 また、水素ステーションでの水素充填時において、水素ステーションからの一定の充填圧力(例えば15MPa)で蓄圧用タンク20に供給されることで、スライド板43が下方へ移動し、その結果、蓄圧用タンク20内の容量を増やすことができる。 In addition, when the hydrogen is filled in the hydrogen station, the slide plate 43 is moved downward by being supplied to the pressure accumulation tank 20 at a constant filling pressure (for example, 15 MPa) from the hydrogen station. As a result, the pressure accumulation tank The capacity in 20 can be increased.
 したがって、本実施形態は、第1の実施形態の利点(1)~(7)と同様の利点に加えて、以下に示す利点を有する。
 (8)蓄圧用タンク20内にばね機構41を設け、ばね機構41は圧縮ばね42及びスライド板43を備える。圧縮ばね42のばね定数は、蓄圧用タンク20内の圧力が所定圧力を越えたときにスライド板43が下方へ移動するように予め設定されている。よって、例えば、サブボンベ12a内の圧力が予め設定された圧力(例えば15MPa)を越えて、サブボンベ12a内の水素ガスがリリーフ弁25を介して蓄圧用タンク20内へ放出される際に、スライド板43が下方へ移動し、蓄圧用タンク20内の容量を増やすことができる。したがって、サブタンク12から放出される水素ガスを蓄圧用タンク20内に充填することができる容量を確保することができ、蓄圧用タンク20における安全性を確保することができる。
Accordingly, this embodiment has the following advantages in addition to the advantages (1) to (7) of the first embodiment.
(8) A spring mechanism 41 is provided in the pressure accumulation tank 20, and the spring mechanism 41 includes a compression spring 42 and a slide plate 43. The spring constant of the compression spring 42 is set in advance so that the slide plate 43 moves downward when the pressure in the pressure accumulating tank 20 exceeds a predetermined pressure. Therefore, for example, when the pressure in the sub cylinder 12a exceeds a preset pressure (for example, 15 MPa) and the hydrogen gas in the sub cylinder 12a is released into the pressure accumulating tank 20 through the relief valve 25, the slide plate 43 moves downward and the capacity in the pressure accumulating tank 20 can be increased. Therefore, it is possible to secure a capacity capable of filling the pressure accumulation tank 20 with the hydrogen gas released from the sub tank 12, and to ensure safety in the pressure accumulation tank 20.
 (9)また、例えば、水素ステーションでの水素充填時において、水素ステーションから一定の充填圧力(例えば15MPa)で蓄圧用タンク20に水素ガスが供給されることで、スライド板43が下方へ移動し、蓄圧用タンク20内の容量を増やすことができる。 (9) Also, for example, when hydrogen is filled in the hydrogen station, the hydrogen gas is supplied from the hydrogen station to the pressure accumulation tank 20 at a constant filling pressure (for example, 15 MPa), so that the slide plate 43 moves downward. The capacity in the pressure accumulating tank 20 can be increased.
 以下、本発明を、車両としての電気自動車の燃料電池に水素ガスを供給する水素ガス供給装置に具体化した第3の実施形態を図4にしたがって説明する。なお、以下に説明する実施形態では、既に説明した第1の実施形態と同一構成について同一符号を付すなどして、その重複する説明を省略又は簡略化する。 Hereinafter, a third embodiment in which the present invention is embodied in a hydrogen gas supply device that supplies hydrogen gas to a fuel cell of an electric vehicle as a vehicle will be described with reference to FIG. In the embodiment described below, the same components as those in the first embodiment described above are denoted by the same reference numerals, and the redundant description thereof is omitted or simplified.
 図4に示すように、蓄圧用タンク20内は、仕切板53にて上部室R1と下部室R2とに仕切られており、下部室R2内には該蓄圧用タンク20内の圧力に応じて該蓄圧用タンク20内の容量を調整する容量調整部としてのリリーフ弁51が設けられている。リリーフ弁51を構成する圧縮ばねのばね定数は、蓄圧用タンク20内の圧力が所定圧力(例えば15MPa)を越えたときに、リリーフ弁51を構成する弁体が開放するように予め設定されている。また、蓄圧用タンク20内の下部室R2には、下部室R2内の圧力を逃すための放出路52の基端部が連結されている。放出路52は、第5の供給路26に向かって延びており、放出路52の先端部は第5の供給路26に連結されている。 As shown in FIG. 4, the pressure accumulation tank 20 is partitioned into an upper chamber R1 and a lower chamber R2 by a partition plate 53, and the lower chamber R2 has a pressure corresponding to the pressure in the pressure accumulation tank 20. A relief valve 51 is provided as a capacity adjusting unit that adjusts the capacity in the pressure accumulating tank 20. The spring constant of the compression spring constituting the relief valve 51 is set in advance so that the valve body constituting the relief valve 51 is opened when the pressure in the pressure accumulating tank 20 exceeds a predetermined pressure (for example, 15 MPa). Yes. Further, a base end portion of a discharge path 52 for releasing the pressure in the lower chamber R2 is connected to the lower chamber R2 in the pressure accumulating tank 20. The discharge path 52 extends toward the fifth supply path 26, and the leading end of the discharge path 52 is connected to the fifth supply path 26.
 上記の蓄圧用タンク20を用いた水素ガス供給装置10によれば、第2の実施形態と同様に、例えば、サブボンベ12a内の圧力が予め設定された圧力(例えば15MPa)を越えて、リリーフ弁25を介して蓄圧用タンク20内へ水素を放出する際に、リリーフ弁51が開弁し、蓄圧用タンク20内の容量を増やすことができる。 According to the hydrogen gas supply device 10 using the above-described accumulator tank 20, as in the second embodiment, for example, the pressure in the sub-cylinder 12a exceeds a preset pressure (for example, 15 MPa), and the relief valve When releasing hydrogen into the pressure accumulating tank 20 through 25, the relief valve 51 is opened, and the capacity in the pressure accumulating tank 20 can be increased.
 また、例えば、水素ステーションでの水素充填時において、水素ステーションから一定の充填圧力(例えば15MPa)で蓄圧用タンク20に水素ガスが供給されることで、リリーフ弁51が開弁し、蓄圧用タンク20内の容量を増やすことができる。さらに、リリーフ弁51を介して蓄圧用タンク20内の下部室R2へ充填された水素ガスは、放出路52を介して、第5の供給路26へ供給される。 Further, for example, when hydrogen is charged in the hydrogen station, the hydrogen gas is supplied from the hydrogen station to the pressure accumulation tank 20 at a constant filling pressure (for example, 15 MPa), so that the relief valve 51 is opened and the pressure accumulation tank is opened. The capacity in 20 can be increased. Further, the hydrogen gas filled in the lower chamber R <b> 2 in the pressure accumulating tank 20 via the relief valve 51 is supplied to the fifth supply path 26 via the discharge path 52.
 したがって、第3の実施形態によれば、第1の実施形態の利点(1)~(7)及び第2の実施形態の利点(8),(9)と同様の利点に加えて、以下に示す利点を有する。
 (10)蓄圧用タンク20内の下部室R2には、下部室R2内の圧力を逃すための放出路52が設けられ、放出路52は第5の供給路26と連通している。よって、リリーフ弁51を介して蓄圧用タンク20内の下部室R2へ充填された水素ガスは、放出路52を介して、第5の供給路26へ供給される。したがって、下部室R2内から放出路52を介して第5の供給路26へ供給された水素ガスをサブボンベ12aへ供給することができる。また、下部室R2内から放出路52を介して第5の供給路26へ供給された水素ガスを再び蓄圧用タンク20の上部室R1へ戻すことができる。
Therefore, according to the third embodiment, in addition to the advantages (1) to (7) of the first embodiment and the advantages (8) and (9) of the second embodiment, Has the advantage of showing.
(10) The lower chamber R2 in the pressure accumulating tank 20 is provided with a discharge path 52 for releasing the pressure in the lower chamber R2, and the discharge path 52 communicates with the fifth supply path 26. Therefore, the hydrogen gas filled in the lower chamber R2 in the pressure accumulating tank 20 via the relief valve 51 is supplied to the fifth supply path 26 via the discharge path 52. Therefore, the hydrogen gas supplied from the lower chamber R2 to the fifth supply path 26 via the discharge path 52 can be supplied to the sub cylinder 12a. Further, the hydrogen gas supplied from the lower chamber R2 to the fifth supply passage 26 via the discharge passage 52 can be returned to the upper chamber R1 of the pressure accumulation tank 20 again.
 なお、上記実施形態は以下のように変更してもよい。
 第1の実施形態において、蓄圧用タンク20内の圧力がサブボンベ12aにおける予め設定された圧力より高い圧力に維持されるように、コンプレッサ17によって蓄圧用タンク20内の圧力を調整するようにしてもよい。これによれば、サブボンベ12a内の圧力が予め設定された圧力を下回ったときに、第3バルブV3を開弁するだけで、蓄圧用タンク20内に充填されている水素ガスをサブボンベ12aへスムーズに供給することができる。
In addition, you may change the said embodiment as follows.
In the first embodiment, the pressure in the pressure accumulation tank 20 is adjusted by the compressor 17 so that the pressure in the pressure accumulation tank 20 is maintained at a pressure higher than a preset pressure in the sub-cylinder 12a. Good. According to this, when the pressure in the sub cylinder 12a falls below a preset pressure, the hydrogen gas filled in the pressure accumulating tank 20 can be smoothly transferred to the sub cylinder 12a simply by opening the third valve V3. Can be supplied to.
 第1の実施形態において、第4の供給路24には、開閉部として、サブボンベ12a内の圧力が予め設定された圧力を越えると開弁状態となるリリーフ弁25を設けたが、これに限らない。例えば、第4の供給路の途中に開閉部として電磁弁を設けるとともに、サブボンベ12a内の圧力が予め設定された圧力を越えると該電磁弁が開弁状態となるように、制御装置31によって制御するようにしてもよい。 In the first embodiment, the fourth supply path 24 is provided with a relief valve 25 that opens when the pressure in the sub-cylinder 12a exceeds a preset pressure as an opening / closing portion. Absent. For example, an electromagnetic valve is provided as an opening / closing part in the middle of the fourth supply path, and is controlled by the control device 31 so that the electromagnetic valve is opened when the pressure in the sub-cylinder 12a exceeds a preset pressure. You may make it do.
 第1の実施形態において、コンプレッサ17は、電気自動車のブレーキング時にコンプレッサ17と駆動輪19とがクラッチ機構18によって接続されることにより、駆動輪19の回転力で駆動されるが、これに限らず、例えば、コンプレッサ17用の駆動源を別途設けてもよい。 In the first embodiment, the compressor 17 is driven by the rotational force of the drive wheels 19 by connecting the compressor 17 and the drive wheels 19 by the clutch mechanism 18 during braking of the electric vehicle. Instead, for example, a drive source for the compressor 17 may be provided separately.
 第1の実施形態において、メインボンベ11a内における水素ガスの充填量が不足していると判断されたときには、コンプレッサ17によって蓄圧用タンク20内の圧力を昇圧するとともに、蓄圧用タンク20内の水素ガスをサブボンベ12a内へ供給するようにしたが、これに限らない。例えば、メインボンベ11a内における水素ガスの充填量が不足している状態と判断されたときには、コンプレッサ17によってメインボンベ11a内の圧力を昇圧するとともに、メインボンベ11a内の水素ガスをサブボンベ12a内へ供給するようにしてもよい。 In the first embodiment, when it is determined that the filling amount of hydrogen gas in the main cylinder 11a is insufficient, the pressure in the pressure accumulating tank 20 is increased by the compressor 17 and the hydrogen in the pressure accumulating tank 20 is increased. Although the gas is supplied into the sub cylinder 12a, the present invention is not limited to this. For example, when it is determined that the filling amount of the hydrogen gas in the main cylinder 11a is insufficient, the compressor 17 increases the pressure in the main cylinder 11a and the hydrogen gas in the main cylinder 11a into the sub cylinder 12a. You may make it supply.
 第1の実施形態において、メインボンベ11a内にサブボンベ12aへ供給可能な水素ガスが十分に充填されていると判断されるときには、第2バルブV2及び第3バルブV3を開弁するとともに、メインボンベ11aからサブボンベ12a内へ供給されるようにしたが、これに限らない。例えば、メインボンベ11a内にサブボンベ12aへ供給可能な水素ガスが十分に充填されていると判断されるときには、第2バルブV2を開弁するとともに、メインボンベ11a内の水素ガスをいったん蓄圧用タンク20内に充填させ、その後、第3バルブV3を開弁するとともに蓄圧用タンク20内の水素ガスをサブボンベ12a内へ供給するようにしてもよい。 In the first embodiment, when it is determined that the main cylinder 11a is sufficiently filled with hydrogen gas that can be supplied to the sub cylinder 12a, the second valve V2 and the third valve V3 are opened, and the main cylinder 11a is opened. Although it was made to be supplied into the sub cylinder 12a from 11a, it is not restricted to this. For example, when it is determined that the main cylinder 11a is sufficiently filled with hydrogen gas that can be supplied to the sub cylinder 12a, the second valve V2 is opened, and the hydrogen gas in the main cylinder 11a is once stored in the pressure accumulation tank. After that, the third valve V3 may be opened and the hydrogen gas in the pressure accumulating tank 20 may be supplied into the sub cylinder 12a.
 第2及び第3実施形態において、サブボンベ12a内へ水素ガスを充填する際に、メインボンベ11a内の水素ガスをいったん蓄圧用タンク20内に充填させ、その後、第3バルブV3を開弁するとともに蓄圧用タンク20内の水素ガスをサブボンベ12a内へ供給するようにしてもよい。このときに、容量調整部(ばね機構41又はリリーフ弁51)によって、蓄圧用タンク20内の容量を小さくすることで、蓄圧用タンク20への充填時間を短縮させて、メインボンベ11aからサブボンベ12aへより効率良く水素ガスを供給させるようにしてもよい。 In the second and third embodiments, when filling the sub-cylinder 12a with hydrogen gas, the hydrogen gas in the main cylinder 11a is once filled into the accumulator tank 20, and then the third valve V3 is opened. The hydrogen gas in the accumulator tank 20 may be supplied into the sub cylinder 12a. At this time, by reducing the capacity in the pressure accumulating tank 20 by the capacity adjusting portion (spring mechanism 41 or the relief valve 51), the filling time to the pressure accumulating tank 20 is shortened, and the main cylinder 11a to the sub cylinder 12a. The hydrogen gas may be supplied more efficiently.
 水素ガス供給装置10は、電気自動車の燃料電池に水素ガスを供給するものに限らず、例えば、水素エンジン車等の水素源として搭載されて使用される水素タンクに水素ガスを供給する供給用として適用してもよい。 The hydrogen gas supply device 10 is not limited to supplying hydrogen gas to a fuel cell of an electric vehicle, but for example, for supplying hydrogen gas to a hydrogen tank mounted and used as a hydrogen source for a hydrogen engine vehicle or the like. You may apply.
 水素ガス供給装置10は車両用に限らず、例えば、車両以外の移動体用に適用したり、家庭用のコジェネレーションシステムに適用したりしてもよい。
 水素吸蔵材料は、水素吸蔵合金に限らず、例えば、非金属からなるとともに水素を吸蔵できる材料であってもよい。
The hydrogen gas supply device 10 is not limited to a vehicle, and may be applied to, for example, a moving body other than a vehicle, or may be applied to a home cogeneration system.
The hydrogen storage material is not limited to a hydrogen storage alloy, and may be, for example, a material made of a nonmetal and capable of storing hydrogen.
 10…水素ガス供給装置、11a…主水素貯蔵器としてのメインボンベ、12a…副水素貯蔵器としてのサブボンベ、17…コンプレッサ、19…駆動輪、20…タンクとしての蓄圧用タンク、23…放出用管路を構成する第3の供給路、24…放出用管路を構成する第4の供給路、25…開閉部として機能するリリーフ弁、41…容量調整部としてのばね機構、51…容量調整部としてのリリーフ弁。 DESCRIPTION OF SYMBOLS 10 ... Hydrogen gas supply apparatus, 11a ... Main cylinder as main hydrogen storage, 12a ... Sub cylinder as auxiliary hydrogen storage, 17 ... Compressor, 19 ... Drive wheel, 20 ... Accumulation tank as tank, 23 ... For discharge 3rd supply path which comprises a pipeline, 24 ... 4th supply path which comprises the discharge pipeline, 25 ... Relief valve which functions as an opening-closing part, 41 ... Spring mechanism as a capacity | capacitance adjustment part, 51 ... Capacity adjustment Relief valve as part.

Claims (6)

  1. 所定の高温領域にある状態で水素を放出し得る第1水素吸蔵材料を収容する主水素貯蔵器と、
     前記所定の高温領域よりも低い低温領域にある状態で水素を放出し得る第2水素吸蔵材料を収容する副水素貯蔵器と、
     水素ガスを貯留可能なタンクと、
     前記副水素貯蔵器と前記タンクとを連結する放出用管路と、
     前記放出用管路に設けられ、前記放出用管路を開閉する開閉部と、を備え、
     前記開閉部は、前記副水素貯蔵器内の圧力が予め設定された圧力を越えたときに前記放出用管路を開く、水素ガス供給装置。
    A main hydrogen reservoir containing a first hydrogen storage material capable of releasing hydrogen while in a predetermined high temperature region;
    A secondary hydrogen storage unit containing a second hydrogen storage material capable of releasing hydrogen in a low temperature region lower than the predetermined high temperature region;
    A tank capable of storing hydrogen gas;
    A discharge conduit connecting the sub-hydrogen storage and the tank;
    An opening / closing part that is provided in the discharge conduit and opens and closes the discharge conduit;
    The open / close section is a hydrogen gas supply device that opens the discharge pipe when the pressure in the sub-hydrogen storage exceeds a preset pressure.
  2.  前記開閉部は、前記副水素貯蔵器内の圧力が前記予め設定された圧力を越えると開弁するリリーフ弁である、請求項1に記載の水素ガス供給装置。 The hydrogen gas supply device according to claim 1, wherein the opening / closing part is a relief valve that opens when the pressure in the sub-hydrogen storage exceeds the preset pressure.
  3.  前記タンク内には、該タンク内の圧力に応じて該タンク内の容量を調整する容量調整部が設けられている、請求項1又は請求項2に記載の水素ガス供給装置。 The hydrogen gas supply device according to claim 1 or 2, wherein a capacity adjusting unit that adjusts the capacity in the tank according to the pressure in the tank is provided in the tank.
  4.  前記水素ガス供給装置は車両に搭載され、
     前記水素ガス供給装置はさらに、前記車両に設けられる駆動輪の回転によって駆動されて前記主水素貯蔵器又は前記タンク内の圧力を昇圧させるコンプレッサを備える、請求項1~請求項3のいずれか一項に記載の水素ガス供給装置。
    The hydrogen gas supply device is mounted on a vehicle,
    The hydrogen gas supply device further includes a compressor that is driven by rotation of a drive wheel provided in the vehicle to increase the pressure in the main hydrogen reservoir or the tank. The hydrogen gas supply device according to item.
  5.  前記コンプレッサは前記タンク内の圧力を一定に保つように制御される、請求項4に記載の水素ガス供給装置。 The hydrogen gas supply device according to claim 4, wherein the compressor is controlled so as to keep the pressure in the tank constant.
  6.  前記予め設定された圧力は、前記副水素貯蔵器内の水素の充填割合が満タンの状態における前記副水素貯蔵器内の圧力である、請求項1~請求項5に記載の水素ガス供給装置。 The hydrogen gas supply device according to any one of claims 1 to 5, wherein the preset pressure is a pressure in the sub hydrogen storage device in a state where a filling rate of hydrogen in the sub hydrogen storage device is full. .
PCT/JP2010/058187 2009-05-18 2010-05-14 Hydrogen gas supply device WO2010134472A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-120000 2009-05-18
JP2009120000A JP2010266046A (en) 2009-05-18 2009-05-18 Hydrogen gas supply device

Publications (1)

Publication Number Publication Date
WO2010134472A1 true WO2010134472A1 (en) 2010-11-25

Family

ID=43126153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058187 WO2010134472A1 (en) 2009-05-18 2010-05-14 Hydrogen gas supply device

Country Status (2)

Country Link
JP (1) JP2010266046A (en)
WO (1) WO2010134472A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113631254A (en) * 2019-03-27 2021-11-09 引能仕株式会社 Hydrogen gas supply device and hydrogen gas supply method
CN113707909A (en) * 2021-07-21 2021-11-26 广东电网有限责任公司广州供电局 Fuel cell emergency power generation system based on solid-state hydrogen storage technology

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6487668B2 (en) * 2014-11-04 2019-03-20 Jxtgエネルギー株式会社 Hydrogen station and hydrogen filling method
US10267456B2 (en) * 2016-09-22 2019-04-23 Uchicago Argonne, Llc Two-tier tube-trailer operation method and system to reduce hydrogen refueling cost

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454408A (en) * 1993-08-11 1995-10-03 Thermo Power Corporation Variable-volume storage and dispensing apparatus for compressed natural gas
JP2000012062A (en) * 1998-06-24 2000-01-14 Imura Japan Kk Hydrogen gas supply device and hydrogen gas supply method therefor
JP2000304194A (en) * 1999-03-31 2000-11-02 Mannesmann Ag Vehicle having high pressure gas vessel
JP2001213605A (en) * 2000-01-28 2001-08-07 Honda Motor Co Ltd Hydrogen supply system for device using hydrogen as fuel
JP2007218317A (en) * 2006-02-15 2007-08-30 Toyota Central Res & Dev Lab Inc Cryogenic liquid/gas hydrogen storage tank
JP2009054474A (en) * 2007-08-28 2009-03-12 Toyota Motor Corp Hydrogen supply device and fuel cell vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454408A (en) * 1993-08-11 1995-10-03 Thermo Power Corporation Variable-volume storage and dispensing apparatus for compressed natural gas
JP2000012062A (en) * 1998-06-24 2000-01-14 Imura Japan Kk Hydrogen gas supply device and hydrogen gas supply method therefor
JP2000304194A (en) * 1999-03-31 2000-11-02 Mannesmann Ag Vehicle having high pressure gas vessel
JP2001213605A (en) * 2000-01-28 2001-08-07 Honda Motor Co Ltd Hydrogen supply system for device using hydrogen as fuel
JP2007218317A (en) * 2006-02-15 2007-08-30 Toyota Central Res & Dev Lab Inc Cryogenic liquid/gas hydrogen storage tank
JP2009054474A (en) * 2007-08-28 2009-03-12 Toyota Motor Corp Hydrogen supply device and fuel cell vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113631254A (en) * 2019-03-27 2021-11-09 引能仕株式会社 Hydrogen gas supply device and hydrogen gas supply method
CN113631254B (en) * 2019-03-27 2023-12-19 引能仕株式会社 Hydrogen supply device and hydrogen supply method
CN113707909A (en) * 2021-07-21 2021-11-26 广东电网有限责任公司广州供电局 Fuel cell emergency power generation system based on solid-state hydrogen storage technology

Also Published As

Publication number Publication date
JP2010266046A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
US6651701B2 (en) Hydrogen storage apparatus and charging method therefor
KR100980996B1 (en) Hydrogen suppliment apparatus for fuel cell
EP1803620B1 (en) Hydrogen station, hydrogen filling method, and vehicle
WO2010134472A1 (en) Hydrogen gas supply device
Pfeifer et al. Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank
KR102274017B1 (en) Heat management system for fuel cell vehicle
US8191584B2 (en) Method and device for filling pressure containers with low-boiling permanent gases or gas mixtures
US7721770B2 (en) Method of operating a device for filling a tank with cryogenically stored fuel
JP5756356B2 (en) Hydrogen station
KR20210119911A (en) Installation and Method for Supplying a Fuel Cell with Hydrogen
CN110621928A (en) Pressure relief device with variable mass flow
US7314056B2 (en) Hydrogen supply method
JP2016532067A (en) Process for filling sorption reservoirs with gas
KR101875633B1 (en) Solid state hydrogen storage device and solid state hydrogen storage system
GB2268322A (en) A hydrocarbon fuelled fuel cell power system
Ahluwalia et al. Bounding material properties for automotive storage of hydrogen in metal hydrides for low-temperature fuel cells
US8864855B2 (en) Portable hydrogen generator
KR102073137B1 (en) Hydrogen charging system for fuel cells in hydrogen station for stable hydrogen charging
JP2008045650A (en) Hydrogen storage device
JP2005011753A (en) Method and device for supplying fuel gas to fuel cell system
US20050013770A1 (en) Method for storing hydrogen in an hybrid form
JP2011169350A (en) Hydrogen supply system
JP2023549965A (en) Method of operating a drive unit operated by gaseous fuel
JP2008240983A (en) Compressed hydrogen gas filling device and compressed hydrogen gas filling method
US20230184384A1 (en) Hydrogen compression, storage, and dispensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777705

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777705

Country of ref document: EP

Kind code of ref document: A1