WO2010134418A1 - Inkjet head and method for producing same - Google Patents

Inkjet head and method for producing same Download PDF

Info

Publication number
WO2010134418A1
WO2010134418A1 PCT/JP2010/057346 JP2010057346W WO2010134418A1 WO 2010134418 A1 WO2010134418 A1 WO 2010134418A1 JP 2010057346 W JP2010057346 W JP 2010057346W WO 2010134418 A1 WO2010134418 A1 WO 2010134418A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
pressure chamber
silicon substrate
glass substrate
bonded
Prior art date
Application number
PCT/JP2010/057346
Other languages
French (fr)
Japanese (ja)
Inventor
奈帆美 久保
泰男 西
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011514370A priority Critical patent/JPWO2010134418A1/en
Publication of WO2010134418A1 publication Critical patent/WO2010134418A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/11Embodiments of or processes related to ink-jet heads characterised by specific geometrical characteristics

Definitions

  • the present invention relates to an inkjet head and a manufacturing method thereof.
  • the on-demand type ink jet recording apparatus selectively applies ejection energy to a plurality of inks in a pressure chamber formed on an ink jet head, thereby ejecting ink droplets from minute ink ejection ports to land on an object.
  • Inkjet recording devices can perform extremely fine recording, and thus are being applied not only to the field of image printing but also to the technical field of manufacturing industrial equipment such as liquid crystal display devices.
  • the demand for miniaturization is increasing.
  • an ink jet head described in Patent Document 1 processes and forms a plurality of fine pressure chambers and ink discharge ports on a silicon substrate. Processing of pressure chambers and ink discharge ports on the silicon substrate can be performed using semiconductor integrated circuit manufacturing technology, and pressure chambers and ink discharge ports with extremely fine pitch can be patterned. As a result, the demand for miniaturization can be satisfied.
  • the present invention has been made in view of such circumstances, and the pressure chambers and ink discharge ports can be easily and densely patterned on a silicon substrate using semiconductor integrated circuit manufacturing technology, and can be driven at a low voltage.
  • Another object of the present invention is to provide an inkjet head excellent in ejection efficiency and a method for manufacturing the inkjet head.
  • a first silicon substrate having an ink discharge port formed therethrough;
  • a glass substrate bonded to one surface of the first silicon substrate and having an ink channel hole corresponding to the ink ejection port formed therethrough;
  • a pressure chamber corresponding to the ink flow path hole is grooved on one surface, and a piezoelectric element for changing the volume of the pressure chamber is provided on the other surface.
  • a method of manufacturing an ink jet head comprising: forming a protrusion protruding into the pressure chamber at a position facing the pressure chamber on a surface of the glass substrate that is bonded to the second silicon substrate.
  • the pressure chamber and the ink discharge port can be easily formed in a high density pattern on the silicon substrate using the manufacturing technology of the semiconductor integrated circuit, and can be driven at a low voltage, and can be driven at a low voltage. And a manufacturing method thereof.
  • FIG. 1 is a diagram schematically illustrating an example of an ink jet head according to an embodiment of the present invention, disassembled for each component. It is a top view of the inkjet head shown in FIG.
  • FIG. 3 is an enlarged sectional view taken along line X-X ′ in FIG. 2.
  • It is a figure which shows the joining process of a 1st silicon substrate, a glass substrate, and a 2nd silicon substrate.
  • It is a graph which shows the relationship between a pressure chamber height and a drive voltage.
  • It shows the relationship between the opening diameter of an ink discharge outlet, and the refill speed.
  • FIG. 1 schematically shows an example of an ink jet head according to an embodiment of the present invention, disassembled for each component, and the ink jet head HD includes a first silicon substrate 1, a glass substrate 6, a second silicon substrate 2, and A piezoelectric element 3 is provided.
  • a plurality of ink discharge ports 101 are formed through the first silicon substrate 1.
  • one row in which nine ink ejection ports 101 are arranged at a predetermined interval is formed, but the number of ink ejection ports 101 in one row and the number of rows are not limited.
  • the glass substrate 6 is bonded to the lower surface of the first silicon substrate 1, and the ink flow path hole 601 having a diameter larger than that of the ink discharge port 101 at a position corresponding to each ink discharge port 101 of the first silicon substrate 1. Is formed through.
  • the ink channel hole 601 serves as a channel for smoothly flowing ink in a pressure chamber, which will be described later, toward the ink discharge port 101 of the first silicon substrate 1.
  • the glass substrate 6 is provided with a protrusion 26 protruding into the pressure chamber groove 204 at a position facing a pressure chamber groove 204 described later on the surface of the glass substrate 6 on the side bonded to the second silicon substrate 2. ing.
  • a protrusion 26 protruding into the pressure chamber groove 204 at a position facing a pressure chamber groove 204 described later on the surface of the glass substrate 6 on the side bonded to the second silicon substrate 2.
  • one rectangular parallelepiped protrusion 26 is formed for each pressure chamber groove 204, but the shape of the protrusion 26 and the number of protrusions 26 for one pressure chamber groove 204 are not limited.
  • the second silicon substrate 2 is covered with a glass substrate 6 and bonded thereto, whereby a pressure chamber groove 204 serving as a pressure chamber, an ink supply path groove 203 serving as an ink supply path, and a common ink chamber serving as a common ink chamber.
  • a groove 202 and an ink supply port 201 are formed.
  • the ink discharge ports 101 of the first silicon substrate 1, the ink flow path holes 21 and the protrusions 26 of the glass substrate 6, and the pressure chamber grooves 204 of the second silicon substrate 2 correspond one-to-one.
  • the first silicon substrate 1, the glass substrate 6, and the second silicon substrate 2 are bonded.
  • the piezoelectric element 3 is bonded to a position corresponding to each pressure chamber 204 on the surface opposite to the surface to be bonded to the glass substrate 6 of the second silicon substrate 2.
  • the piezoelectric element 3 is an actuator that is made of PZT (lead zirconate titanate) and ejects ink from the ink ejection port 101.
  • a room formed by the pressure chamber groove 204 and the glass substrate 6 is referred to as a pressure chamber 204, and a room formed by the ink supply path groove 203 and the glass substrate 6 is referred to as an ink supply path 203.
  • a chamber formed by the common ink chamber groove 202 and the glass substrate 6 is referred to as a common ink chamber 202.
  • FIG. 2 is a plan view of the inkjet head shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view along the line X-X ′ in FIG. 2.
  • the second silicon substrate 2, the glass substrate 6, and the first silicon substrate 1 are arranged in this order from the bottom, and the ink ejection surface 1a (upper surface) of the first silicon substrate 1 on which ink droplets are ejected. ) Is formed in a plane.
  • Each pressure chamber 204 has an opening area larger than the ink flow path hole 601 formed in the glass substrate 6, and a bonding surface (pressure chamber forming surface) of the second silicon substrate 2 with the glass substrate 6. ) To a predetermined depth. Further, the protrusion 26 formed on the glass substrate 6 protrudes into the pressure chamber 204 without contacting the inner wall surface of the pressure chamber 204.
  • the piezoelectric elements 3 are individually bonded to the back side of each pressure chamber 204, that is, the side opposite to the bonding surface of the second silicon substrate 2 with the glass substrate 6, and the electro-mechanical conversion of the piezoelectric elements 3
  • oscillating the bottom surface 25 of each pressure chamber 204 by the action and changing the volume in the pressure chamber 204 ejection energy is applied to the ink in the pressure chamber 204.
  • the ink in the pressure chamber 204 to which ejection energy is applied by driving the piezoelectric element 3 is ejected from the ink ejection port 101 through the ink flow path hole 601.
  • each pressure chamber 204 functions as a diaphragm. For this reason, the depth of the recess when the pressure chamber 204 is dry-etched on the second silicon substrate 2 is adjusted so that the thickness of the bottom surface 25 of each pressure chamber 204 is preferably 1 to 20 ⁇ m. .
  • the first silicon substrate 1 is manufactured by using a silicon substrate having a thickness of about 150 ⁇ m to 500 ⁇ m as a base material, for example, using a known photolithography technique (resist coating, exposure, development), an etching technique, and the like. This is performed by a procedure of penetrating the ink discharge port 101.
  • the opening diameter of the ink discharge port 101 is the diameter of the opening on the ink droplet outlet side, and is preferably 5 ⁇ m or less.
  • the shape of the opening of the ink discharge port 101 is not limited to the circular shape shown in FIGS. 1 and 2, and may be, for example, a polygonal cross-section or a cross-sectional star instead of a circular cross-section.
  • the cross-sectional shape is not a circle, the diameter when the cross-sectional area is replaced with a circle having the same area is defined as the opening diameter.
  • the glass substrate 6 uses a glass substrate having a thickness of about 100 ⁇ m to 300 ⁇ m as a base material, and, for example, a known photolithography technique (resist coating, exposure, development) and a sand blast technique or an etching technique that performs processing with fine spray particles. Etc., the ink flow passage hole 601 having a diameter larger than that of the ink discharge port 101 is formed and the projection 26 is formed.
  • the formation of the ink flow path hole 601 and the protrusion 26 is difficult to form a deep hole because there is no mask material having a required etching rate ratio, and the processing time is very long because the etching rate of the glass is slow. Since it is necessary, it is not possible to cope with only the above-described dry etching method, which is good at precise processing. Therefore, it is preferable to use the sandblast method.
  • the protrusion 26 is formed on the surface of the glass substrate 6 on the side to be bonded to the second silicon substrate 2 by a known photolithography technique (exposure, development) using a dry film resist having a thickness of about 50 ⁇ m.
  • a photoresist pattern is provided to provide
  • the protrusions 26 are formed to have a predetermined size and shape using a sand blast method.
  • the ink flow path hole 601 is formed on the surface of the glass substrate 6 on the side bonded to the first silicon substrate 1 by a known photolithography technique (exposure and development) using a dry film resist having a thickness of about 50 ⁇ m.
  • a photoresist pattern to be provided is formed.
  • the ink flow path hole 601 is formed to have a predetermined size and shape by using a sandblast method with the photoresist pattern as a mask.
  • the photoresist pattern is removed to complete the glass substrate 6.
  • the ink channel hole 601 may be processed by forming a photoresist pattern on the surface of the glass substrate 6 on the side to be bonded to the second silicon substrate 2.
  • the second silicon substrate 2 uses a silicon substrate having a thickness of about 150 ⁇ m to 500 ⁇ m as a base material.
  • a known photolithography technique resist coating, exposure, Development
  • etching technique thereby supplying pressure chamber grooves 204 serving as a plurality of pressure chambers communicating with the ink passage holes 601 of the glass substrate 6 and ink supply serving as a plurality of ink supply passages respectively communicating with the pressure chambers.
  • a path groove 203, a common ink chamber groove 202 serving as a common ink chamber communicating with the ink supply path, and an ink supply port 201 are formed.
  • the pressure chamber groove 204 has a width of about 150 ⁇ m to 350 ⁇ m, a depth of about 50 ⁇ m to 200 ⁇ m, and an ink supply.
  • the channel groove 203 is about 50 ⁇ m to 150 ⁇ m wide, the depth is about 30 ⁇ m to 150 ⁇ m, the common ink chamber groove is about 400 ⁇ m to 1000 ⁇ m wide, the depth is about 50 ⁇ m to 200 ⁇ m, and the ink supply port 201 is a through-hole with a diameter of about 400 ⁇ m to 1500 ⁇ m. is there.
  • the etching method for the silicon substrate is preferably a silicon (Si) anisotropic dry etching method capable of performing etching processing perpendicularly to the surface of the second silicon substrate.
  • silicon (Si) anisotropic dry etching method Sangyo Tosho Co., Ltd. “Semiconductor dry etching technology” and the like can be referred to.
  • the first silicon substrate 1, the glass substrate 6 and the second silicon substrate 2 which have been processed by the method described so far are bonded using an anodic bonding technique. This will be described below.
  • FIG. 4 is a diagram showing a bonding process of the first silicon substrate 1, the glass substrate 6, and the second silicon substrate 2.
  • FIG. 4A shows an ink discharge port (FIG. 4) using the silicon substrate as a base material.
  • the first silicon substrate 1 processed (not shown), the glass substrate 6 processed with ink flow path holes and protrusions (not shown), and the grooves such as the pressure chamber groove 204 are processed as described above.
  • the 2nd silicon substrate 2 formed by these is shown.
  • the first silicon substrate 1, the glass substrate 6 and the second silicon substrate 2 are bonded by anodic bonding.
  • silicon is used as a material constituting one of the substrates, and the other is silicon with a mobile ion, for example, a glass material containing sodium ions (Na + ).
  • a material having a linear expansion coefficient relatively similar to (Si) (the linear expansion coefficient of silicon is about 4.2 ⁇ 10 ⁇ 6 / ° C.), for example, borosilicate glass is used. .
  • borosilicate glass containing mobile ions hereinafter referred to as borosilicate glass
  • Pyrex registered trademark
  • Corning USA
  • Tempax Float registered trademark
  • Shot Japan Co., Ltd. have these linear expansion coefficients ⁇
  • the linear expansion coefficients of Pyrex (registered trademark) and Tempax Float (registered trademark) are both about 3.2 ⁇ 10 ⁇ 6 / ° C. ⁇ Is more preferable from the viewpoint of.
  • the base materials of the first silicon substrate 1 and the second silicon substrate 2 are both silicon substrates for ease of fine processing. Therefore, the material of the glass substrate 6 bonded to the second silicon substrate 2 and the first silicon substrate 1 by anodic bonding is preferably borosilicate glass.
  • the first silicon substrate 1, the glass substrate 6 of borosilicate glass, and the second silicon substrate 2 described above are overlaid in an appropriate positional relationship as shown in FIG. It fixes, the temperature of a junction part is made into a high temperature state, a voltage is applied using the DC high voltage power supply 4, and anodic bonding is carried out.
  • the anodic bonding of the first silicon substrate 1, the borosilicate glass substrate 6 and the second silicon substrate 2 will be described in detail.
  • the polarity of the voltage applied when anodic bonding is performed is positive (+) on the silicon substrate side and negative (-) on the borosilicate glass substrate side. If it does in this way, an electric current will flow at the same time that a joining interface closely_contact
  • the first silicon substrate 1 and the second silicon substrate 2 may be applied with a positive (+) voltage
  • the glass substrate 6 may be applied with a negative ( ⁇ ) voltage
  • the high temperature state at the time of joining is in the range of 300 ° C. to 550 ° C.
  • a constant temperature bath capable of maintaining such an atmospheric temperature or a simple method using a hot plate having good insulation with a built-in ceramic heater or the like. What is necessary is just to heat the junction part of the 1st silicon substrate 1, the glass substrate 6, and the 2nd silicon substrate 2.
  • the electric field strength of the DC voltage applied between the first silicon substrate 1, the glass substrate 6 and the second silicon substrate 2 by the DC high voltage power source 4 is preferably in the range of 30 kV / mm to 200 kV / mm.
  • the piezoelectric element 3 is bonded to the combined body A of the first silicon substrate 1, the glass substrate 6 and the second silicon substrate 2 bonded by anodic bonding as described above, and an ink jet head is completed.
  • the first silicon substrate 1 through which the ink discharge port 101 is formed is bonded to one surface of the first silicon substrate 1, and the ink discharge port 101
  • the glass substrate 6 in which the ink flow path hole 601 corresponding to the outlet 101 is formed penetratingly, and the pressure chamber 204 corresponding to the ink flow path hole 601 is grooved on one surface, and the pressure chamber is formed on the other surface.
  • the piezoelectric element 3 for changing the volume in 204 is provided, and the pressure chamber 204 is bonded to the glass substrate 6 so as to face the surface opposite to the first silicon substrate 1.
  • the second silicon substrate 2, and the ink in the pressure chamber 204 is ejected from the ink ejection port 101 by driving the piezoelectric element 3.
  • the ink discharge ports 101 and the pressure chambers 204 that require a high degree of miniaturization can both be processed and formed on the silicon substrates 1 and 2, a fine and high-density pattern can be formed using a semiconductor integrated circuit manufacturing technique. Is possible.
  • the glass substrate 6 is simply formed with a simple through-hole, and the processing work during sandblasting and dry etching is extremely simple.
  • the protrusion 26 protruding into the pressure chamber 204 is formed at a position facing the pressure chamber 204 on the surface of the glass substrate 6 on the side bonded to the second silicon substrate 2. ing.
  • the ejection efficiency affects the ejection speed of ink droplets when the piezoelectric element 3 is driven with a predetermined drive voltage. Therefore, it can be evaluated that the larger the ink droplet ejection speed at the same driving voltage, the higher the ink droplet ejection efficiency, and the lower the ink droplet ejection speed, the lower the ink droplet ejection efficiency.
  • the drive voltage can be lowered by adjusting the drive voltage so as to achieve the same discharge speed.
  • the ejection speed may be measured by, for example, strobe measurement using a CCD camera and the ink drop speed at the time when the ink droplet flies about 1 mm from the opening of the ink ejection port.
  • the ink compliance Cbulk [m 5 / N] which is a term related to the compression inside the fluid, is the pressure chamber volume V [m 3 ], the ink density ⁇ [kg / m 3 ], and the ink sound velocity. Is c [m / s], it is given by equation (1).
  • the volume of the pressure chamber 204 may be decreased as is apparent from the equation (1). Therefore, in the inkjet head HD, the volume of the pressure chamber is reduced by the protrusion, so that the compliance of the ink in the pressure chamber can be reduced, the discharge efficiency is improved, and low voltage driving is possible.
  • the volume in the pressure chamber 204 can be easily reduced without reducing the thickness of the second silicon substrate 2.
  • the bonding surface between the first silicon substrate 1 and the glass substrate 6 and the bonding surface between the glass substrate 6 and the second silicon substrate 2 are both anodic bonded. Therefore, no adhesive is present at all the joining portions, and it is possible to prevent the positional accuracy of the protrusions 26 and the pressure chambers 204 from being lowered due to variations in the thickness of the adhesive layer, and stable ejection characteristics can be obtained.
  • the protrusion 26 is formed so as not to contact the inner wall of the pressure chamber 204. Therefore, since the flow path resistance of the ink flowing into the ink discharge port 101 is reduced, the ink is sufficiently supplied to the ink discharge port 101, and there is no possibility that the ink refill to the ink discharge port 101 is hindered.
  • the time until the meniscus first returns to the initial position after ink droplet ejection is called the refill time.
  • the refill time is an important characteristic parameter that governs the maximum ejection frequency of the ink jet recording head.
  • the maximum discharge frequency here means the maximum discharge frequency at which characters and the like can be recorded while ensuring the stability of the droplet diameter and the droplet speed.
  • the refill operation will be in time for the discharge cycle of 100 kHz, and discharge will be possible.
  • Reducing the refill time ( ⁇ s) means increasing the refill speed (kHz).
  • the opening diameter of the ink discharge port 101 is set to 5 ⁇ m or less. As shown in the examples described later, even if the pressure chamber height H (see FIG. 3) is reduced as much as possible, the refill speed of 100 kHz or more can always be secured as long as the opening diameter of the ink discharge port is 5 ⁇ m or less. .
  • an ink jet head similar to the ink jet head HD shown in the above embodiment is manufactured according to the above manufacturing method, and the ink refill speed (kHz) when ink droplets are discharged from the ink discharge port of the ink jet head. ) And the discharge efficiency were measured.
  • the refill speed (kHz) is the reciprocal of the refill time.
  • the ink ejection efficiency was determined by measuring the speed of the ink droplets ejected while increasing the driving voltage applied to the piezoelectric element 3, and examining the driving voltage when the speed reached 6 m / s.
  • the ejection speed was measured by the strobe measurement using a CCD camera when the ink droplet flew about 1 mm from the opening of the ink ejection opening.
  • the pressure chamber height H in FIG. 3 (the distance between the tip surface of the protrusion 26 and the bottom surface of the pressure chamber, and the larger the protrusion amount, the smaller H).
  • a plurality of inkjet heads with various changes were produced. Specifically, the pressure chamber height H when there is no protrusion 26 was 130 ⁇ m, and the pressure chamber height H was changed as shown in FIG.
  • the nozzle was cylindrical, the nozzle length was 10 ⁇ m, and the opening diameter of the ink discharge port was changed as shown in FIG.
  • the shape of the pressure chamber and the nozzle between each channel in one ink jet head was the same.
  • FIG. 5 shows the relationship between the pressure chamber height and the drive voltage when each of the three types of ink having different ink viscosities is ejected with an ink ejection opening having a diameter of 10 ⁇ m.
  • FIG. 5 shows that in the case of ink of any viscosity, the driving voltage is lowered and the driving efficiency is improved as the pressure chamber height decreases.
  • FIG. 6 shows the relationship between the opening diameter of the ink discharge port and the refill speed when ink having a viscosity of 10 (cP) is discharged by a head having a pressure chamber height of 30 ⁇ m.
  • FIG. 6 shows that the refill speed increases as the opening diameter of the ink discharge port decreases.
  • FIG. 7 shows the relationship between the pressure chamber height and the refill speed when ink having a viscosity of 10 (cP) is ejected by a head having ink ejection opening diameters of 5 ⁇ m and 10 ⁇ m.
  • FIG. 7 shows that the refill speed decreases as the pressure chamber height decreases for any opening diameter.
  • the refill speed of 100 kHz or more can always be ensured if the opening diameter of the ink discharge port is 5 ⁇ m or less.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

Provided are an inkjet head and a method for producing the same capable of being driven by a low voltage, and having a superior discharge efficiency, wherein a pressure chamber and an ink discharge port can be formed by patterning easily and with high density on a silicon substrate using the technology of producing a semiconductor integrated circuit. A projection projecting into the pressure chamber is formed on a surface of a glass substrate which is joined to a second silicon substrate and at a position opposed to the pressure chamber.

Description

インクジェットヘッド及びその製造方法Ink jet head and manufacturing method thereof
 本発明は、インクジェットヘッド及びその製造方法に関する。 The present invention relates to an inkjet head and a manufacturing method thereof.
 オンデマンド型のインクジェット記録装置は、インクジェットヘッドに複数形成された圧力室内のインクに選択的に吐出エネルギーを付与することにより、微小なインク吐出口からインク滴を吐出させて対象物に着弾させる。インクジェット記録装置は極めて微細な記録を行うことができることから、画像印刷分野のみならず、液晶表示装置等の産業機器の製造技術分野にも応用されるようになってきており、それに伴って更なる微細化の要求が高まっている。 The on-demand type ink jet recording apparatus selectively applies ejection energy to a plurality of inks in a pressure chamber formed on an ink jet head, thereby ejecting ink droplets from minute ink ejection ports to land on an object. Inkjet recording devices can perform extremely fine recording, and thus are being applied not only to the field of image printing but also to the technical field of manufacturing industrial equipment such as liquid crystal display devices. The demand for miniaturization is increasing.
 従来、インクジェットヘッドとして、特許文献1に記載のものが知られている。このインクジェットヘッドは、シリコン基板に複数の微細な圧力室やインク吐出口等を加工形成するものである。シリコン基板に対する圧力室やインク吐出口等の加工は、半導体集積回路の製造技術を利用して行うことができ、極めて微細なピッチの圧力室やインク吐出口等をパターン形成することが可能であり、これによって微細化の要求を満足させることができる。 Conventionally, an ink jet head described in Patent Document 1 is known. This ink jet head processes and forms a plurality of fine pressure chambers and ink discharge ports on a silicon substrate. Processing of pressure chambers and ink discharge ports on the silicon substrate can be performed using semiconductor integrated circuit manufacturing technology, and pressure chambers and ink discharge ports with extremely fine pitch can be patterned. As a result, the demand for miniaturization can be satisfied.
特開平5-229128号公報JP-A-5-229128
 ところで、上記インクジェットヘッドにおいて、微細化の要求を満足させるためにインク吐出口の開口径を小さくしすぎると、流路インピーダンスのバランスの変化により吐出効率が低下し、駆動電圧が上昇してしまうという問題がある。 By the way, in the ink jet head, if the opening diameter of the ink discharge port is made too small in order to satisfy the demand for miniaturization, the discharge efficiency is lowered due to the change in the balance of the flow path impedance, and the drive voltage is increased. There's a problem.
 本発明はこのような事情に鑑みてなされたもので、圧力室やインク吐出口を半導体集積回路の製造技術を利用してシリコン基板に簡単に高密度にパターン形成できると共に、低電圧で駆動可能な、吐出効率に優れたインクジェットヘッド及びその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and the pressure chambers and ink discharge ports can be easily and densely patterned on a silicon substrate using semiconductor integrated circuit manufacturing technology, and can be driven at a low voltage. Another object of the present invention is to provide an inkjet head excellent in ejection efficiency and a method for manufacturing the inkjet head.
 前記目的は、下記の発明により達成される。 The above object is achieved by the following invention.
 1.インク吐出口が貫通形成された第1のシリコン基板と、
前記第1のシリコン基板の一方の面に接合され、前記インク吐出口に対応するインク流路孔が貫通形成されたガラス基板と、
一方の面に前記インク流路孔に対応する圧力室が溝加工されると共に、他方の面に該圧力室内の容積を変化させるための圧電素子が設けられ、該圧力室の形成面が前記ガラス基板に対して前記第1のシリコン基板とは反対面に面するように接合された第2のシリコン基板とを有し、前記圧電素子の駆動によって前記圧力室内のインクを前記インク吐出口から吐出させるインクジェットヘッドであって、
前記ガラス基板の前記第2のシリコン基板に接合される側の面において前記圧力室に対向する位置に前記圧力室内に突出した突起が形成されていることを特徴とするインクジェットヘッド。
1. A first silicon substrate having an ink discharge port formed therethrough;
A glass substrate bonded to one surface of the first silicon substrate and having an ink channel hole corresponding to the ink ejection port formed therethrough;
A pressure chamber corresponding to the ink flow path hole is grooved on one surface, and a piezoelectric element for changing the volume of the pressure chamber is provided on the other surface. A second silicon substrate bonded to the substrate so as to face the surface opposite to the first silicon substrate, and ejecting ink in the pressure chamber from the ink ejection port by driving the piezoelectric element An inkjet head,
An ink jet head, wherein a protrusion protruding into the pressure chamber is formed at a position facing the pressure chamber on a surface of the glass substrate on the side bonded to the second silicon substrate.
 2.前記突起が前記圧力室の内壁と接触しないように形成されていることを特徴とする前記1に記載のインクジェットヘッド。 2. 2. The ink jet head according to 1, wherein the protrusion is formed so as not to contact an inner wall of the pressure chamber.
 3.前記インク吐出口の開口径が5μm以下であることを特徴とする前記1または2に記載のインクジェットヘッド。 3. 3. The ink jet head according to item 1 or 2, wherein an opening diameter of the ink discharge port is 5 μm or less.
 4.前記第1のシリコン基板と前記ガラス基板の接合面、及び前記ガラス基板と前記第2のシリコン基板の接合面が何れも陽極接合されていることを特徴とする前記1~3の何れか1項に記載のインクジェットヘッド。 4. 4. The method according to any one of 1 to 3, wherein the bonding surface between the first silicon substrate and the glass substrate and the bonding surface between the glass substrate and the second silicon substrate are all anodic bonded. The inkjet head described in 1.
 5.前記1~4の何れか1項に記載のインクジェットヘッドの製造方法であって、
前記ガラス基板の前記第2のシリコン基板に接合される側の面において前記圧力室に対向する位置に前記圧力室内に突出した突起を形成する工程を有することを特徴とするインクジェットヘッドの製造方法。
5). 5. The method of manufacturing an ink jet head according to any one of 1 to 4,
A method of manufacturing an ink-jet head, comprising: forming a protrusion protruding into the pressure chamber at a position facing the pressure chamber on a surface of the glass substrate that is bonded to the second silicon substrate.
 6.前記突起をサンドブラスト法により形成することを特徴とする前記5に記載のインクジェットヘッドの製造方法。 6. 6. The method of manufacturing an ink-jet head as described in 5 above, wherein the protrusion is formed by a sandblast method.
 本発明によれば、圧力室やインク吐出口を半導体集積回路の製造技術を利用してシリコン基板に簡単に高密度にパターン形成できると共に、低電圧で駆動可能な、吐出効率に優れたインクジェットヘッド及びその製造方法を提供することができる。 According to the present invention, the pressure chamber and the ink discharge port can be easily formed in a high density pattern on the silicon substrate using the manufacturing technology of the semiconductor integrated circuit, and can be driven at a low voltage, and can be driven at a low voltage. And a manufacturing method thereof.
本発明の実施の形態に係るインクジェットヘッドの一例を構成要素毎に分解して模式的に示す図である。1 is a diagram schematically illustrating an example of an ink jet head according to an embodiment of the present invention, disassembled for each component. 図1に示すインクジェットヘッドの平面図である。It is a top view of the inkjet head shown in FIG. 図2におけるX-X’線に沿った拡大断面図である。FIG. 3 is an enlarged sectional view taken along line X-X ′ in FIG. 2. 第1のシリコン基板とガラス基板と第2のシリコン基板との接合工程を示す図である。It is a figure which shows the joining process of a 1st silicon substrate, a glass substrate, and a 2nd silicon substrate. 圧力室高さと駆動電圧の関係を示すグラフである。It is a graph which shows the relationship between a pressure chamber height and a drive voltage. インク吐出口の開口径とリフィル速度の関係を示すグラフである。It is a graph which shows the relationship between the opening diameter of an ink discharge outlet, and the refill speed. 圧力室高さとリフィル速度の関係を示すグラフである。It is a graph which shows the relationship between a pressure chamber height and a refill speed.
 以下、図示の実施の形態により本発明を説明するが、本発明は該実施の形態に限られない。 Hereinafter, the present invention will be described with reference to the illustrated embodiment, but the present invention is not limited to the embodiment.
 図1は本発明の実施の形態に係るインクジェットヘッドの一例を構成要素毎に分解して模式的に示し、インクジェットヘッドHDは第1のシリコン基板1、ガラス基板6,第2のシリコン基板2及び圧電素子3を有する。 FIG. 1 schematically shows an example of an ink jet head according to an embodiment of the present invention, disassembled for each component, and the ink jet head HD includes a first silicon substrate 1, a glass substrate 6, a second silicon substrate 2, and A piezoelectric element 3 is provided.
 第1のシリコン基板1には、複数のインク吐出口101が貫通形成されている。ここでは9個のインク吐出口101が所定間隔をおいて配置された列が1列形成されているが、1列中のインク吐出口101の数及び列数は何ら問わない。 A plurality of ink discharge ports 101 are formed through the first silicon substrate 1. Here, one row in which nine ink ejection ports 101 are arranged at a predetermined interval is formed, but the number of ink ejection ports 101 in one row and the number of rows are not limited.
 ガラス基板6は第1のシリコン基板1の下面に接合されており、第1のシリコン基板1の各インク吐出口101に対応する位置に、インク吐出口101よりも大径のインク流路孔601が貫通形成されている。 The glass substrate 6 is bonded to the lower surface of the first silicon substrate 1, and the ink flow path hole 601 having a diameter larger than that of the ink discharge port 101 at a position corresponding to each ink discharge port 101 of the first silicon substrate 1. Is formed through.
 このインク流路孔601は、後述する圧力室内のインクを第1のシリコン基板1のインク吐出口101に向けて円滑に流出させるための流路となる。 The ink channel hole 601 serves as a channel for smoothly flowing ink in a pressure chamber, which will be described later, toward the ink discharge port 101 of the first silicon substrate 1.
 また、ガラス基板6には、ガラス基板6の第2のシリコン基板2に接合される側の面において後述する圧力室溝204に対向する位置に圧力室溝204内に突出する突起26が形成されている。ここでは直方体状の突起26が1つの圧力室溝204に対して1つずつ形成されているが、突起26の形状及び1つの圧力室溝204に対する突起26の数は何ら問わない。 Further, the glass substrate 6 is provided with a protrusion 26 protruding into the pressure chamber groove 204 at a position facing a pressure chamber groove 204 described later on the surface of the glass substrate 6 on the side bonded to the second silicon substrate 2. ing. Here, one rectangular parallelepiped protrusion 26 is formed for each pressure chamber groove 204, but the shape of the protrusion 26 and the number of protrusions 26 for one pressure chamber groove 204 are not limited.
 第2のシリコン基板2には、これにガラス基板6を被せて接合することで、圧力室となる圧力室溝204、インク供給路となるインク供給路溝203、共通インク室となる共通インク室溝202、及びインク供給口201が形成されている。 The second silicon substrate 2 is covered with a glass substrate 6 and bonded thereto, whereby a pressure chamber groove 204 serving as a pressure chamber, an ink supply path groove 203 serving as an ink supply path, and a common ink chamber serving as a common ink chamber. A groove 202 and an ink supply port 201 are formed.
 そして、第1のシリコン基板1のインク吐出口101と、ガラス基板6のインク流路孔21及び突起26と、第2のシリコン基板2の圧力室溝204と、が一対一で対応するように第1のシリコン基板1とガラス基板6と第2のシリコン基板2とが接合される。 Then, the ink discharge ports 101 of the first silicon substrate 1, the ink flow path holes 21 and the protrusions 26 of the glass substrate 6, and the pressure chamber grooves 204 of the second silicon substrate 2 correspond one-to-one. The first silicon substrate 1, the glass substrate 6, and the second silicon substrate 2 are bonded.
 更に、第2のシリコン基板2のガラス基板6と接合する面と反対側の面の各圧力室204に対応した位置に圧電素子3が接着される。圧電素子3はPZT(チタン酸ジルコン酸鉛)からなり、インクをインク吐出口101から吐出させるアクチュエータである。 Furthermore, the piezoelectric element 3 is bonded to a position corresponding to each pressure chamber 204 on the surface opposite to the surface to be bonded to the glass substrate 6 of the second silicon substrate 2. The piezoelectric element 3 is an actuator that is made of PZT (lead zirconate titanate) and ejects ink from the ink ejection port 101.
 尚、以下の説明において、圧力室溝204とガラス基板6とにより形成された部屋を圧力室204と言い、インク供給路溝203とガラス基板6とにより形成された部屋をインク供給路203と言い、共通インク室溝202とガラス基板6とにより形成された部屋を共通インク室202と言う。 In the following description, a room formed by the pressure chamber groove 204 and the glass substrate 6 is referred to as a pressure chamber 204, and a room formed by the ink supply path groove 203 and the glass substrate 6 is referred to as an ink supply path 203. A chamber formed by the common ink chamber groove 202 and the glass substrate 6 is referred to as a common ink chamber 202.
 図2は図1に示すインクジェットヘッドの平面図である。図3は図2におけるX-X’線に沿った拡大断面図である。 FIG. 2 is a plan view of the inkjet head shown in FIG. FIG. 3 is an enlarged cross-sectional view along the line X-X ′ in FIG. 2.
 図3に示すように、下から第2のシリコン基板2、ガラス基板6、第1のシリコン基板1の順に配置され、インク滴が吐出される第1のシリコン基板1のインク吐出面1a(上面)は平面に形成される。 As shown in FIG. 3, the second silicon substrate 2, the glass substrate 6, and the first silicon substrate 1 are arranged in this order from the bottom, and the ink ejection surface 1a (upper surface) of the first silicon substrate 1 on which ink droplets are ejected. ) Is formed in a plane.
 各圧力室204は、ガラス基板6に形成されているインク流路孔601よりも大きな開口面積を有しており、第2のシリコン基板2のガラス基板6との接合面(圧力室の形成面)から所定の深さで凹設されている。また、ガラス基板6に形成されている突起26が圧力室204の内壁面に接触しない状態で圧力室204内に突出している。各圧力室204の背面側、すなわち第2のシリコン基板2におけるガラス基板6との接合面の反対面側には、圧電素子3が個別に接着されており、この圧電素子3の電気-機械変換作用によって各圧力室204の底面25を振動させ、圧力室204内の容積を変化させることにより、圧力室204内のインクに吐出エネルギーを付与するようになっている。圧電素子3の駆動により吐出エネルギーが付与された圧力室204内のインクは、インク流路孔601を介してインク吐出口101から吐出される。 Each pressure chamber 204 has an opening area larger than the ink flow path hole 601 formed in the glass substrate 6, and a bonding surface (pressure chamber forming surface) of the second silicon substrate 2 with the glass substrate 6. ) To a predetermined depth. Further, the protrusion 26 formed on the glass substrate 6 protrudes into the pressure chamber 204 without contacting the inner wall surface of the pressure chamber 204. The piezoelectric elements 3 are individually bonded to the back side of each pressure chamber 204, that is, the side opposite to the bonding surface of the second silicon substrate 2 with the glass substrate 6, and the electro-mechanical conversion of the piezoelectric elements 3 By oscillating the bottom surface 25 of each pressure chamber 204 by the action and changing the volume in the pressure chamber 204, ejection energy is applied to the ink in the pressure chamber 204. The ink in the pressure chamber 204 to which ejection energy is applied by driving the piezoelectric element 3 is ejected from the ink ejection port 101 through the ink flow path hole 601.
 このように、各圧力室204の底面25は振動板として機能する。このため、各圧力室204の底面25の厚みは、好ましくは1~20μmとなるように、第2のシリコン基板2に各圧力室204をドライエッチングする際の凹設深さが調節されている。 Thus, the bottom surface 25 of each pressure chamber 204 functions as a diaphragm. For this reason, the depth of the recess when the pressure chamber 204 is dry-etched on the second silicon substrate 2 is adjusted so that the thickness of the bottom surface 25 of each pressure chamber 204 is preferably 1 to 20 μm. .
 次に、インクジェットヘッドHDの作成について説明する。 Next, creation of the inkjet head HD will be described.
 第1のシリコン基板1の作製方法は、基材として厚みが150μm~500μm程度のシリコン基板を用いて、例えば、公知のフォトリソグラフィー技術(レジスト塗布、露光、現像)とエッチング技術等を用いることでインク吐出口101を貫通形成するという手順により行われる。このインク吐出口101の開口径は、インク滴出口側の開口の直径であり、5μm以下が好ましい。 The first silicon substrate 1 is manufactured by using a silicon substrate having a thickness of about 150 μm to 500 μm as a base material, for example, using a known photolithography technique (resist coating, exposure, development), an etching technique, and the like. This is performed by a procedure of penetrating the ink discharge port 101. The opening diameter of the ink discharge port 101 is the diameter of the opening on the ink droplet outlet side, and is preferably 5 μm or less.
 尚、インク吐出口101の開口の形状は図1及び図2で示す円形形状に限定されず、例えば、断面円形状に形成する代わりに、断面多角形状や断面星形状等としてもよい。尚、断面形状が円でない場合、その断面積を同じ面積の円形に置き換えた場合の直径を開口径とする。 Note that the shape of the opening of the ink discharge port 101 is not limited to the circular shape shown in FIGS. 1 and 2, and may be, for example, a polygonal cross-section or a cross-sectional star instead of a circular cross-section. When the cross-sectional shape is not a circle, the diameter when the cross-sectional area is replaced with a circle having the same area is defined as the opening diameter.
 ガラス基板6は、基材として厚みが100μm~300μm程度のガラス基板を用いて、例えば、公知のフォトリソグラフィー技術(レジスト塗布、露光、現像)と微小な噴射粒により加工を行うサンドブラスト技術あるいはエッチング技術等を用いることでインク吐出口101よりも大径のインク流路孔601を貫通形成すると共に、突起26を形成するという手順により行われる。 The glass substrate 6 uses a glass substrate having a thickness of about 100 μm to 300 μm as a base material, and, for example, a known photolithography technique (resist coating, exposure, development) and a sand blast technique or an etching technique that performs processing with fine spray particles. Etc., the ink flow passage hole 601 having a diameter larger than that of the ink discharge port 101 is formed and the projection 26 is formed.
 尚、インク流路孔601及び突起26の形成は、必要なエッチングレート比をもつマスク材料がないことから深い穴の形成が困難であり、またガラスのエッチングレートが遅いため加工時間が非常に長く必要となることから精密な加工を得意とする上記のドライエッチング法のみでは対応できないので、サンドブラスト法を用いることが好ましい。 The formation of the ink flow path hole 601 and the protrusion 26 is difficult to form a deep hole because there is no mask material having a required etching rate ratio, and the processing time is very long because the etching rate of the glass is slow. Since it is necessary, it is not possible to cope with only the above-described dry etching method, which is good at precise processing. Therefore, it is preferable to use the sandblast method.
 具体的には、例えば、ガラス基板6の第2のシリコン基板2に接合される側の面上に、厚み50μm程度のドライフィルムレジストを用いて公知のフォトリソグラフィー技術(露光、現像)により突起26を設けるためのフォトレジストパターンを形成する。次に、フォトレジストパターンをマスクとして、サンドブラスト法を用いて所定の大きさと形状になるように突起26を形成する。この後、ガラス基板6の第1のシリコン基板1に接合される側の面上に、厚み50μm程度のドライフィルムレジストを用いて公知のフォトリソグラフィー技術(露光、現像)によりインク流路孔601を設けるためのフォトレジストパターンを形成する。次に、フォトレジストパターンをマスクとして、サンドブラスト法を用いて所定の大きさと形状になるようにインク流路孔601を形成する。最後に、フォトレジストパターンを除去しガラス基板6を完成させる。 Specifically, for example, the protrusion 26 is formed on the surface of the glass substrate 6 on the side to be bonded to the second silicon substrate 2 by a known photolithography technique (exposure, development) using a dry film resist having a thickness of about 50 μm. A photoresist pattern is provided to provide Next, using the photoresist pattern as a mask, the protrusions 26 are formed to have a predetermined size and shape using a sand blast method. Thereafter, the ink flow path hole 601 is formed on the surface of the glass substrate 6 on the side bonded to the first silicon substrate 1 by a known photolithography technique (exposure and development) using a dry film resist having a thickness of about 50 μm. A photoresist pattern to be provided is formed. Next, the ink flow path hole 601 is formed to have a predetermined size and shape by using a sandblast method with the photoresist pattern as a mask. Finally, the photoresist pattern is removed to complete the glass substrate 6.
 ここで、インク流路孔601は、ガラス基板6の第2のシリコン基板2に接合される側の面にフォトレジストパターンを形成して加工するようにしてもよい。 Here, the ink channel hole 601 may be processed by forming a photoresist pattern on the surface of the glass substrate 6 on the side to be bonded to the second silicon substrate 2.
 第1のシリコン基板1及びガラス基板6を加工するに際し、高精度が要求され、加工による損傷を避けたいインク吐出口周辺と高精度が要求されず加工による損傷が懸念されないインク流路孔601及び突起26部分との2つに分け、インク吐出口101にはドライエッチング法を、インク流路孔601及び突起26はサンドブラスト法とするそれぞれに適切な加工方法を選択することができる。従って、必要な機能や精度を十分に確保しながら生産性の良い加工方法を提供することができる。 When the first silicon substrate 1 and the glass substrate 6 are processed, high accuracy is required, and the vicinity of the ink discharge port where damage due to processing is desired and the ink flow path hole 601 where high accuracy is not required and damage due to processing is not a concern. It is possible to select an appropriate processing method for each of the two parts, ie, the protrusion 26 portion, and dry etching method for the ink ejection port 101, and sand blasting method for the ink flow path hole 601 and the protrusion 26. Therefore, it is possible to provide a processing method with high productivity while sufficiently securing necessary functions and accuracy.
 第2のシリコン基板2は、第1のシリコン基板1の作製方法と同様に、基材として厚みが150μm~500μm程度のシリコン基板を用いて、例えば、公知のフォトリソグラフィー技術(レジスト塗布、露光、現像)とエッチング技術等を用いることで、ガラス基板6のインク流路孔601にそれぞれ連通する複数の圧力室となる圧力室溝204、圧力室にそれぞれ連通する複数のインク供給路となるインク供給路溝203、及びインク供給路に連通する共通インク室となる共通インク室溝202、並びにインク供給口201とを形成する。 Similar to the manufacturing method of the first silicon substrate 1, the second silicon substrate 2 uses a silicon substrate having a thickness of about 150 μm to 500 μm as a base material. For example, a known photolithography technique (resist coating, exposure, Development), etching technique, and the like, thereby supplying pressure chamber grooves 204 serving as a plurality of pressure chambers communicating with the ink passage holes 601 of the glass substrate 6 and ink supply serving as a plurality of ink supply passages respectively communicating with the pressure chambers. A path groove 203, a common ink chamber groove 202 serving as a common ink chamber communicating with the ink supply path, and an ink supply port 201 are formed.
 ここで形成する溝の大きさは、適宜に決められるが、本実施の形態の一例であるインクジェットヘッドでは、例えば、圧力室溝204は幅150μm~350μm程度、深さ50μm~200μm程度、インク供給路溝203は幅50μm~150μm程度、深さ30μm~150μm程度、共通インク室溝は幅400μm~1000μm程度、深さ50μm~200μm程度、インク供給口201は直径φ400μm~1500μm程度の貫通した穴である。 The size of the groove formed here is determined as appropriate, but in the ink jet head as an example of the present embodiment, for example, the pressure chamber groove 204 has a width of about 150 μm to 350 μm, a depth of about 50 μm to 200 μm, and an ink supply. The channel groove 203 is about 50 μm to 150 μm wide, the depth is about 30 μm to 150 μm, the common ink chamber groove is about 400 μm to 1000 μm wide, the depth is about 50 μm to 200 μm, and the ink supply port 201 is a through-hole with a diameter of about 400 μm to 1500 μm. is there.
 シリコン基板に対するエッチング加工方法は、第2のシリコン基板の面に対して垂直にエッチング加工ができるシリコン(Si)異方性ドライエッチング法が好ましい。シリコン(Si)異方性ドライエッチング法に関しては、産業図書株式会社「半導体ドライエッチング技術」等を参照することができる。 The etching method for the silicon substrate is preferably a silicon (Si) anisotropic dry etching method capable of performing etching processing perpendicularly to the surface of the second silicon substrate. Regarding the silicon (Si) anisotropic dry etching method, Sangyo Tosho Co., Ltd. “Semiconductor dry etching technology” and the like can be referred to.
 次に、これまで説明した方法で加工されている第1のシリコン基板1とガラス基板6と第2のシリコン基板2とを陽極接合技術を用いて接合する。以下に、これに関して説明する。 Next, the first silicon substrate 1, the glass substrate 6 and the second silicon substrate 2 which have been processed by the method described so far are bonded using an anodic bonding technique. This will be described below.
 図4は、第1のシリコン基板1とガラス基板6と第2のシリコン基板2との接合工程を示す図であり、図4(a)は、シリコン基板を基材として、インク吐出口(図示してない。)が加工された第1のシリコン基板1、インク流路孔及び突起(図示してない。)が加工されたガラス基板6と圧力室溝204等の溝が前記に説明した加工により形成された第2のシリコン基板2を示している。 FIG. 4 is a diagram showing a bonding process of the first silicon substrate 1, the glass substrate 6, and the second silicon substrate 2. FIG. 4A shows an ink discharge port (FIG. 4) using the silicon substrate as a base material. The first silicon substrate 1 processed (not shown), the glass substrate 6 processed with ink flow path holes and protrusions (not shown), and the grooves such as the pressure chamber groove 204 are processed as described above. The 2nd silicon substrate 2 formed by these is shown.
 第1のシリコン基板1とガラス基板6と第2のシリコン基板2とは陽極接合により結合される。陽極接合技術を用いて2つの基材を接合する場合、基材の一方を構成する材料としてシリコンを用い、他方を可動イオン、例えば代表的にはナトリウムイオン(Na)を含むガラス材でシリコン(Si)と比較的類似した線膨張係数(シリコンの線膨張係数は、4.2×10-6/℃程度である。)を有するものを用いることが好ましく、例えば、硼珪酸ガラスが用いられる。 The first silicon substrate 1, the glass substrate 6 and the second silicon substrate 2 are bonded by anodic bonding. When two substrates are bonded using an anodic bonding technique, silicon is used as a material constituting one of the substrates, and the other is silicon with a mobile ion, for example, a glass material containing sodium ions (Na + ). It is preferable to use a material having a linear expansion coefficient relatively similar to (Si) (the linear expansion coefficient of silicon is about 4.2 × 10 −6 / ° C.), for example, borosilicate glass is used. .
 ここで、可動イオンを含む硼珪酸ガラス(以下、硼珪酸ガラスと称する。)としては、パイレックス(登録商標)、コーニング社(米国)またはテンパックス フロート(登録商標)、日本以外はBOROFLOAT(登録商標)、ショット日本(株)がこれらの線膨張係数{パイレックス(登録商標)及びテンパックス フロート(登録商標)の線膨張係数は共に3.2×10-6/℃程度である。}の観点からより好ましい。 Here, as borosilicate glass containing mobile ions (hereinafter referred to as borosilicate glass), Pyrex (registered trademark), Corning (USA) or Tempax Float (registered trademark), except for Japan, BOROFLOAT (registered trademark) ), Shot Japan Co., Ltd. have these linear expansion coefficients {The linear expansion coefficients of Pyrex (registered trademark) and Tempax Float (registered trademark) are both about 3.2 × 10 −6 / ° C. } Is more preferable from the viewpoint of.
 本実施の形態の一例であるインクジェットヘッドでは、微細な加工の容易さから第1のシリコン基板1と第2のシリコン基板2の基材は何れもシリコン基板としている。よって、第2のシリコン基板2及び第1のシリコン基板1に陽極接合により結合されるガラス基板6の材料としては硼珪酸ガラスが好ましい。 In the ink jet head which is an example of the present embodiment, the base materials of the first silicon substrate 1 and the second silicon substrate 2 are both silicon substrates for ease of fine processing. Therefore, the material of the glass substrate 6 bonded to the second silicon substrate 2 and the first silicon substrate 1 by anodic bonding is preferably borosilicate glass.
 次に、上記で説明した第1のシリコン基板1と硼珪酸ガラスのガラス基板6と第2のシリコン基板2とを、図4(b)で示す通りに、適切な位置関係にして重ね合わせて固定し、接合部の温度を高温状態にして、直流高圧電源4を用いて電圧を印加して陽極接合する。以下に、第1のシリコン基板1と硼珪酸ガラスのガラス基板6と第2のシリコン基板2とを陽極接合することに関して具体的に説明する。 Next, the first silicon substrate 1, the glass substrate 6 of borosilicate glass, and the second silicon substrate 2 described above are overlaid in an appropriate positional relationship as shown in FIG. It fixes, the temperature of a junction part is made into a high temperature state, a voltage is applied using the DC high voltage power supply 4, and anodic bonding is carried out. Hereinafter, the anodic bonding of the first silicon substrate 1, the borosilicate glass substrate 6 and the second silicon substrate 2 will be described in detail.
 陽極接合を行う場合に印加する電圧の極性は、シリコンの基材側をプラス(+)、硼珪酸ガラスの基材側をマイナス(-)とする。このようにすると、静電引力によって接合界面が密着すると同時に電流が流れ、両基板が強固に陽極接合される。 The polarity of the voltage applied when anodic bonding is performed is positive (+) on the silicon substrate side and negative (-) on the borosilicate glass substrate side. If it does in this way, an electric current will flow at the same time that a joining interface closely_contact | adheres by electrostatic attraction, and both board | substrates will be strongly anodically bonded.
 本実施の形態の一例であるインクジェットヘッドにおいては、第1のシリコン基板1及び第2のシリコン基板2はプラス(+)、ガラス基板6はマイナス(-)とする電圧を印加すれば良い。 In the ink jet head as an example of the present embodiment, the first silicon substrate 1 and the second silicon substrate 2 may be applied with a positive (+) voltage, and the glass substrate 6 may be applied with a negative (−) voltage.
 接合時の高温状態とは、300℃~550℃の範囲であって、このような雰囲気温度を維持できる恒温漕や簡便な方法ではセラミックヒーター等を内蔵する絶縁性の良いホットプレート等を用いて第1のシリコン基板1とガラス基板6と第2のシリコン基板2との接合部を加熱すれば良い。 The high temperature state at the time of joining is in the range of 300 ° C. to 550 ° C. Using a constant temperature bath capable of maintaining such an atmospheric temperature or a simple method using a hot plate having good insulation with a built-in ceramic heater or the like. What is necessary is just to heat the junction part of the 1st silicon substrate 1, the glass substrate 6, and the 2nd silicon substrate 2. FIG.
 上記の温度範囲を超えて接合を行う場合、接合ができないまたは接合が十分でないといった不都合が生じやすくなる。例えば、550℃以上では、印加電圧にもよるが、可動イオンが一気に流れ出して、硼珪酸ガラスのガラス基板6が白濁したりといった劣化が生じ、結果的に強固な接合ができない場合がある。また、300℃以下では、可動イオンが移動しにくい状態であり、これを移動しやすくするためには、印加電圧を大きくすることが必要である。印加電圧を大きくする結果、第1のシリコン基板1とガラス基板6と第2のシリコン基板2との間での短絡が発生し、結果として陽極接合が十分できない場合がある。 ¡When joining is performed beyond the above temperature range, problems such as inability to join or insufficient joining are likely to occur. For example, at 550 ° C. or more, although depending on the applied voltage, the mobile ions may flow out at a stretch, causing the borosilicate glass substrate 6 to become clouded, resulting in a failure to achieve strong bonding. At 300 ° C. or lower, the movable ions are difficult to move, and in order to make it easier to move, it is necessary to increase the applied voltage. As a result of increasing the applied voltage, a short circuit occurs between the first silicon substrate 1, the glass substrate 6, and the second silicon substrate 2, and as a result, anodic bonding may not be sufficient.
 また、直流高圧電源4にて第1のシリコン基板1とガラス基板6と第2のシリコン基板2との間に印加する直流電圧の電界強度は、30kV/mm~200kV/mmの範囲が好ましい。 Further, the electric field strength of the DC voltage applied between the first silicon substrate 1, the glass substrate 6 and the second silicon substrate 2 by the DC high voltage power source 4 is preferably in the range of 30 kV / mm to 200 kV / mm.
 通常、1kVを超える電圧を使用する場合、電圧を発生する直流高圧電源4の容量や電圧印加に関連する附帯装置の絶縁耐圧を確保することが必要となるなどから、直流高圧電源4を含めた装置が高価かつ煩雑になる。従って、適当なガラス基板6の厚みを設定することで陽極接合時に印加する電圧を扱いやすい1kV未満とするのが好ましい。 Normally, when a voltage exceeding 1 kV is used, it is necessary to ensure the capacity of the DC high-voltage power supply 4 that generates the voltage and the insulation withstand voltage of the auxiliary device related to voltage application. The device becomes expensive and cumbersome. Therefore, it is preferable to set the appropriate thickness of the glass substrate 6 so that the voltage applied during anodic bonding is less than 1 kV, which is easy to handle.
 このように陽極接合により接合された第1のシリコン基板1、ガラス基板6及び第2のシリコン基板2の結合体Aに圧電素子3が接着され、インクジェットヘッドができあがる。 The piezoelectric element 3 is bonded to the combined body A of the first silicon substrate 1, the glass substrate 6 and the second silicon substrate 2 bonded by anodic bonding as described above, and an ink jet head is completed.
 以上のように、本実施形態の上記インクジェットヘッドHDでは、インク吐出口101が貫通形成された第1のシリコン基板1と、前記第1のシリコン基板1の一方の面に接合され、前記インク吐出口101に対応するインク流路孔601が貫通形成されたガラス基板6と、一方の面に前記インク流路孔601に対応する圧力室204が溝加工されると共に、他方の面に該圧力室204内の容積を変化させるための圧電素子3が設けられ、該圧力室204の形成面が前記ガラス基板6に対して前記第1のシリコン基板1とは反対面に面するように接合された第2のシリコン基板2とを有し、前記圧電素子3の駆動によって前記圧力室204内のインクを前記インク吐出口101から吐出させるように構成されている。 As described above, in the inkjet head HD of the present embodiment, the first silicon substrate 1 through which the ink discharge port 101 is formed is bonded to one surface of the first silicon substrate 1, and the ink discharge port 101 The glass substrate 6 in which the ink flow path hole 601 corresponding to the outlet 101 is formed penetratingly, and the pressure chamber 204 corresponding to the ink flow path hole 601 is grooved on one surface, and the pressure chamber is formed on the other surface. The piezoelectric element 3 for changing the volume in 204 is provided, and the pressure chamber 204 is bonded to the glass substrate 6 so as to face the surface opposite to the first silicon substrate 1. And the second silicon substrate 2, and the ink in the pressure chamber 204 is ejected from the ink ejection port 101 by driving the piezoelectric element 3.
 従って、高度な微細化が要求されるインク吐出口101や圧力室204は、何れもシリコン基板1及び2に加工形成できるので、半導体集積回路の製造技術を利用した微細で高密度なパターン形成が可能である。加えて、ガラス基板6には、単純な貫通孔を形成するだけであり、サンドブラストやドライエッチング時の加工作業も極めて簡単で済む。 Accordingly, since the ink discharge ports 101 and the pressure chambers 204 that require a high degree of miniaturization can both be processed and formed on the silicon substrates 1 and 2, a fine and high-density pattern can be formed using a semiconductor integrated circuit manufacturing technique. Is possible. In addition, the glass substrate 6 is simply formed with a simple through-hole, and the processing work during sandblasting and dry etching is extremely simple.
 また、本実施形態の上記インクジェットヘッドHDでは、ガラス基板6の第2のシリコン基板2に接合される側の面において圧力室204に対向する位置に圧力室204内に突出した突起26が形成されている。 In the inkjet head HD of the present embodiment, the protrusion 26 protruding into the pressure chamber 204 is formed at a position facing the pressure chamber 204 on the surface of the glass substrate 6 on the side bonded to the second silicon substrate 2. ing.
 従って、この突起により、圧力室の容積減少を図っているので、圧力室内のインクのコンプライアンスを減少させることができ、吐出効率が向上し低電圧駆動が可能になる。吐出効率は、圧電素子3を所定の駆動電圧で駆動した際のインク滴の吐出速度に影響する。従って、同一の駆動電圧でのインク滴の吐出速度が大きいほど、インク滴の吐出効率が高く、インク滴の吐出速度が小さいほど、インク滴の吐出効率が低いと評価することができる。また、逆に同一の吐出速度になるように、駆動電圧を調整することにより、駆動電圧の低電圧化が可能となる。吐出速度は、例えば、CCDカメラを用いたストロボ測定により、インク滴がインク吐出口の開口から約1mm飛翔した時点でのインク滴速度を測定すればよい。 Therefore, since the volume of the pressure chamber is reduced by this protrusion, the compliance of the ink in the pressure chamber can be reduced, the discharge efficiency is improved, and low voltage driving is possible. The ejection efficiency affects the ejection speed of ink droplets when the piezoelectric element 3 is driven with a predetermined drive voltage. Therefore, it can be evaluated that the larger the ink droplet ejection speed at the same driving voltage, the higher the ink droplet ejection efficiency, and the lower the ink droplet ejection speed, the lower the ink droplet ejection efficiency. Conversely, the drive voltage can be lowered by adjusting the drive voltage so as to achieve the same discharge speed. The ejection speed may be measured by, for example, strobe measurement using a CCD camera and the ink drop speed at the time when the ink droplet flies about 1 mm from the opening of the ink ejection port.
 ここで、圧力室内のインクのコンプライアンスについて説明する。 Here, the compliance of the ink in the pressure chamber will be described.
 流体内部の圧縮に関わる項である圧力室内のインクのコンプライアンスCbulk〔m/N〕は、圧力室の容積をV[m]、インク密度をρ[kg/m]、インクの音速度をc[m/s]とすると、式(1)で与えられる。 The ink compliance Cbulk [m 5 / N], which is a term related to the compression inside the fluid, is the pressure chamber volume V [m 3 ], the ink density ρ [kg / m 3 ], and the ink sound velocity. Is c [m / s], it is given by equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 流体内部の圧縮に関わる項である圧力室内のインクのコンプライアンスが小さいほど、圧力がインクに有効に作用するので吐出効率が向上し低電圧駆動が可能になる。 The smaller the compliance of the ink in the pressure chamber, which is a term related to the compression inside the fluid, the more effective the pressure acts on the ink, so the ejection efficiency improves and low voltage driving becomes possible.
 圧力室204内のインクのコンプライアンスを減少させるには、式(1)から明らかなように、圧力室204の容積を減少すればよい。従って、上記インクジェットヘッドHDでは、突起により、圧力室の容積減少を図っているので、圧力室内のインクのコンプライアンスを減少させることができ、吐出効率が向上し低電圧駆動が可能になる。 In order to reduce the compliance of the ink in the pressure chamber 204, the volume of the pressure chamber 204 may be decreased as is apparent from the equation (1). Therefore, in the inkjet head HD, the volume of the pressure chamber is reduced by the protrusion, so that the compliance of the ink in the pressure chamber can be reduced, the discharge efficiency is improved, and low voltage driving is possible.
 圧力室204内の容積を減少させるには、圧力室204の深さを浅くすることも考えられる。しかしながら、圧力室の深さを浅くする場合は、第2のシリコン基板2の薄板化によるシリコンウエハーの歩留り低下を招くという問題がある。 In order to reduce the volume in the pressure chamber 204, it is conceivable to reduce the depth of the pressure chamber 204. However, when the depth of the pressure chamber is reduced, there is a problem that the yield of the silicon wafer is reduced due to the thinning of the second silicon substrate 2.
 本実施形態の構成では、突起26を設けることにより、第2のシリコン基板2を薄板化することなく圧力室204内の容積を容易に減少させることが可能になる。 In the configuration of the present embodiment, by providing the protrusion 26, the volume in the pressure chamber 204 can be easily reduced without reducing the thickness of the second silicon substrate 2.
 また、本実施形態の上記インクジェットヘッドHDでは、第1のシリコン基板1とガラス基板6の接合面、及びガラス基板6と第2のシリコン基板2の接合面が何れも陽極接合されている。従って、全ての接合部位に接着剤が介在せず、接着剤層の厚みばらつき等による突起26と圧力室204の位置精度の低下を防ぐことができ、安定した吐出特性が得られる。 In the inkjet head HD of the present embodiment, the bonding surface between the first silicon substrate 1 and the glass substrate 6 and the bonding surface between the glass substrate 6 and the second silicon substrate 2 are both anodic bonded. Therefore, no adhesive is present at all the joining portions, and it is possible to prevent the positional accuracy of the protrusions 26 and the pressure chambers 204 from being lowered due to variations in the thickness of the adhesive layer, and stable ejection characteristics can be obtained.
 また、本実施形態の上記インクジェットヘッドHDでは、突起26が圧力室204の内壁と接触しないように形成されている。従って、インク吐出口101へ流入するインクの流路抵抗が低減されるので、インク吐出口101へインクが十分に供給され、インク吐出口101へのインクリフィルが阻害されるおそれがない。 Further, in the inkjet head HD of the present embodiment, the protrusion 26 is formed so as not to contact the inner wall of the pressure chamber 204. Therefore, since the flow path resistance of the ink flowing into the ink discharge port 101 is reduced, the ink is sufficiently supplied to the ink discharge port 101, and there is no possibility that the ink refill to the ink discharge port 101 is hindered.
 インク滴の吐出が行われると、吐出直後に大きく後退したメニスカスは、振動しながら初期位置に復帰する。なお、こうしたインク滴吐出後におけるメニスカス復帰動作のことを、本明細書の中ではリフィルと呼ぶ。 When the ink droplets are ejected, the meniscus that has largely receded immediately after ejection returns to the initial position while vibrating. The meniscus return operation after ink droplet ejection is referred to as refill in this specification.
 そして、インク滴吐出後に最初にメニスカスが初期位置に復帰するまでの時間をリフィル時間と呼ぶことにする。インクジェットヘッドでインク滴を連続吐出する場合、リフィルが完了した後に、次の吐出を実行しなければ安定した連続吐出を実行することはできない(インク滴の滴径や滴速が不安定化してしまう)。そのため、リフィル時間はインクジェット記録ヘッドの最大吐出周波数を支配する重要な特性パラメータとなる。ここでの最大吐出周波数とは、滴径や滴速の安定性を担保しつつ文字等の記録を行うことが可能な最大の吐出周波数という意味である。 The time until the meniscus first returns to the initial position after ink droplet ejection is called the refill time. When ink droplets are continuously ejected with an inkjet head, stable repetitive ejection cannot be performed unless the next ejection is performed after completion of refilling (the droplet diameter and droplet speed of the ink droplets become unstable). ). Therefore, the refill time is an important characteristic parameter that governs the maximum ejection frequency of the ink jet recording head. The maximum discharge frequency here means the maximum discharge frequency at which characters and the like can be recorded while ensuring the stability of the droplet diameter and the droplet speed.
 例えばリフィル時間が10μsであると100kHzの吐出周期にリフィル動作が間に合うことになり吐出が可能になるということになる。 For example, if the refill time is 10 μs, the refill operation will be in time for the discharge cycle of 100 kHz, and discharge will be possible.
 リフィル時間(μs)が短くなると言うことはリフィル速度(kHz)が速くなるということである。 Reducing the refill time (μs) means increasing the refill speed (kHz).
 更に、本実施形態の上記インクジェットヘッドHDでは、インク吐出口101の開口径が5μm以下に設定されている。後述する実施例で示すように、加工が可能な限り圧力室高さH(図3参照)を減少させてもインク吐出口の開口径が5μm以下であれば、常にリフィル速度100kHz以上を確保できる。 Furthermore, in the inkjet head HD of the present embodiment, the opening diameter of the ink discharge port 101 is set to 5 μm or less. As shown in the examples described later, even if the pressure chamber height H (see FIG. 3) is reduced as much as possible, the refill speed of 100 kHz or more can always be secured as long as the opening diameter of the ink discharge port is 5 μm or less. .
 本実施例では、上記実施形態中で示したインクジェットヘッドHDと同様のインクジェットヘッドを上記製造方法に従いながら製造し、当該インクジェットヘッドのインク吐出口からインク滴を吐出した際のインクのリフィル速度(kHz)と吐出効率を測定した。 In this example, an ink jet head similar to the ink jet head HD shown in the above embodiment is manufactured according to the above manufacturing method, and the ink refill speed (kHz) when ink droplets are discharged from the ink discharge port of the ink jet head. ) And the discharge efficiency were measured.
 リフィル速度(kHz)は、リフィル時間の逆数である。 The refill speed (kHz) is the reciprocal of the refill time.
 インク吐出効率は、圧電素子3に印加する駆動電圧を増加させながら吐出されるインク滴の速度を測定し、速度が6m/sになるときの駆動電圧を調べた。吐出速度は、CCDカメラを用いたストロボ測定により、インク滴がインク吐出口の開口から約1mm飛翔した時点でのインク滴速度を測定した。 The ink ejection efficiency was determined by measuring the speed of the ink droplets ejected while increasing the driving voltage applied to the piezoelectric element 3, and examining the driving voltage when the speed reached 6 m / s. The ejection speed was measured by the strobe measurement using a CCD camera when the ink droplet flew about 1 mm from the opening of the ink ejection opening.
 まず、突起26の高さを変更することにより図3における圧力室高さH(突起26の先端面と圧力室の底面との間隔であり、突起の突出量が大きくなるほどHが小さくなる)を種々変更した複数のインクジェットヘッドを作製した。具体的には、突起26がない場合の圧力室高さHを130μmとし、図5に示すように圧力室高さHを変更した。ノズルは、円筒状とし、ノズルの長さを10μmとし、図6に示すようにインク吐出口の開口径を変更した。なお、1つのインクジェットヘッドにおける各チャネル間の圧力室、ノズルの形状は同一とした。 First, by changing the height of the protrusion 26, the pressure chamber height H in FIG. 3 (the distance between the tip surface of the protrusion 26 and the bottom surface of the pressure chamber, and the larger the protrusion amount, the smaller H). A plurality of inkjet heads with various changes were produced. Specifically, the pressure chamber height H when there is no protrusion 26 was 130 μm, and the pressure chamber height H was changed as shown in FIG. The nozzle was cylindrical, the nozzle length was 10 μm, and the opening diameter of the ink discharge port was changed as shown in FIG. The shape of the pressure chamber and the nozzle between each channel in one ink jet head was the same.
 その後、圧電素子に駆動電圧を印加してインク粘度が異なる3種類のインクをそれぞれ吐出した。なお、各インクの表面張力σは50[dyne/cm]であった。 Thereafter, a driving voltage was applied to the piezoelectric element to discharge three types of inks having different ink viscosities. The surface tension σ of each ink was 50 [dyne / cm].
 図5は、インク吐出口の開口径が10μmとし、インク粘度が異なる3種類のインクをそれぞれ吐出した場合における圧力室高さと駆動電圧の関係を示す。 FIG. 5 shows the relationship between the pressure chamber height and the drive voltage when each of the three types of ink having different ink viscosities is ejected with an ink ejection opening having a diameter of 10 μm.
 図5よりいずれの粘度のインクの場合も、圧力室高さが減少するにしたがって駆動電圧が低下し駆動効率が向上していることがわかる。 FIG. 5 shows that in the case of ink of any viscosity, the driving voltage is lowered and the driving efficiency is improved as the pressure chamber height decreases.
 図6は、圧力室高さ30μmのヘッドで粘度が10(cP)のインクを吐出させたときの、インク吐出口の開口径とリフィル速度の関係を示す。 FIG. 6 shows the relationship between the opening diameter of the ink discharge port and the refill speed when ink having a viscosity of 10 (cP) is discharged by a head having a pressure chamber height of 30 μm.
 図6より、インク吐出口の開口径が小さくなるほどリフィル速度が速くなることがわかる。 FIG. 6 shows that the refill speed increases as the opening diameter of the ink discharge port decreases.
 図7は、インク吐出口の開口径が5μmと10μmのヘッドで粘度が10(cP)のインクを吐出させたときの、圧力室高さとリフィル速度の関係を示す。 FIG. 7 shows the relationship between the pressure chamber height and the refill speed when ink having a viscosity of 10 (cP) is ejected by a head having ink ejection opening diameters of 5 μm and 10 μm.
 図7よりいずれの開口径の場合も、圧力室高さが減少するにしたがってリフィル速度が低下していることがわかる。 FIG. 7 shows that the refill speed decreases as the pressure chamber height decreases for any opening diameter.
 加工が可能な限り圧力室高さを減少させてもインク吐出口の開口径が5μm以下であれば、常にリフィル速度100kHz以上を確保できることがわかる。 It can be seen that even if the pressure chamber height is reduced as much as possible, the refill speed of 100 kHz or more can always be ensured if the opening diameter of the ink discharge port is 5 μm or less.
 1 第1のシリコン基板
 101 インク吐出口
 2 第2のシリコン基板
 3 圧電素子
 4 直流高圧電源
 6 ガラス基板
 201 インク供給口
 202 共通インク室溝、共通インク室
 203 インク供給路溝、インク供給路
 204 圧力室溝、圧力室
DESCRIPTION OF SYMBOLS 1 1st silicon substrate 101 Ink discharge port 2 2nd silicon substrate 3 Piezoelectric element 4 DC high voltage power supply 6 Glass substrate 201 Ink supply port 202 Common ink chamber groove, common ink chamber 203 Ink supply channel groove, ink supply channel 204 Pressure Chamber groove, pressure chamber

Claims (6)

  1. インク吐出口が貫通形成された第1のシリコン基板と、
    前記第1のシリコン基板の一方の面に接合され、前記インク吐出口に対応するインク流路孔が貫通形成されたガラス基板と、
    一方の面に前記インク流路孔に対応する圧力室が溝加工されると共に、他方の面に該圧力室内の容積を変化させるための圧電素子が設けられ、該圧力室の形成面が前記ガラス基板に対して前記第1のシリコン基板とは反対面に面するように接合された第2のシリコン基板とを有し、前記圧電素子の駆動によって前記圧力室内のインクを前記インク吐出口から吐出させるインクジェットヘッドであって、
    前記ガラス基板の前記第2のシリコン基板に接合される側の面において前記圧力室に対向する位置に前記圧力室内に突出した突起が形成されていることを特徴とするインクジェットヘッド。
    A first silicon substrate having an ink discharge port formed therethrough;
    A glass substrate bonded to one surface of the first silicon substrate and having an ink channel hole corresponding to the ink ejection port formed therethrough;
    A pressure chamber corresponding to the ink flow path hole is grooved on one surface, and a piezoelectric element for changing the volume of the pressure chamber is provided on the other surface. A second silicon substrate bonded to the substrate so as to face the surface opposite to the first silicon substrate, and ejecting ink in the pressure chamber from the ink ejection port by driving the piezoelectric element An inkjet head,
    An ink jet head, wherein a protrusion protruding into the pressure chamber is formed at a position facing the pressure chamber on a surface of the glass substrate on the side bonded to the second silicon substrate.
  2. 前記突起が前記圧力室の内壁と接触しないように形成されていることを特徴とする請求項1に記載のインクジェットヘッド。 The inkjet head according to claim 1, wherein the protrusion is formed so as not to contact an inner wall of the pressure chamber.
  3. 前記インク吐出口の開口径が5μm以下であることを特徴とする請求項1または2に記載のインクジェットヘッド。 The inkjet head according to claim 1, wherein an opening diameter of the ink discharge port is 5 μm or less.
  4. 前記第1のシリコン基板と前記ガラス基板の接合面、及び前記ガラス基板と前記第2のシリコン基板の接合面が何れも陽極接合されていることを特徴とする請求項1~3の何れか1項に記載のインクジェットヘッド。 The bonded surface between the first silicon substrate and the glass substrate, and the bonded surface between the glass substrate and the second silicon substrate are all anodic bonded. The inkjet head according to item.
  5. 請求項1~4の何れか1項に記載のインクジェットヘッドの製造方法であって、
    前記ガラス基板の前記第2のシリコン基板に接合される側の面において前記圧力室に対向する位置に前記圧力室内に突出した突起を形成する工程を有することを特徴とするインクジェットヘッドの製造方法。
    A method for manufacturing an ink jet head according to any one of claims 1 to 4,
    A method of manufacturing an ink-jet head, comprising: forming a protrusion protruding into the pressure chamber at a position facing the pressure chamber on a surface of the glass substrate that is bonded to the second silicon substrate.
  6. 前記突起をサンドブラスト法により形成することを特徴とする請求項5に記載のインクジェットヘッドの製造方法。 6. The method of manufacturing an ink jet head according to claim 5, wherein the protrusion is formed by a sandblast method.
PCT/JP2010/057346 2009-05-18 2010-04-26 Inkjet head and method for producing same WO2010134418A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011514370A JPWO2010134418A1 (en) 2009-05-18 2010-04-26 Ink jet head and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-119667 2009-05-18
JP2009119667 2009-05-18

Publications (1)

Publication Number Publication Date
WO2010134418A1 true WO2010134418A1 (en) 2010-11-25

Family

ID=43126103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057346 WO2010134418A1 (en) 2009-05-18 2010-04-26 Inkjet head and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2010134418A1 (en)
WO (1) WO2010134418A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020044667A (en) * 2018-09-14 2020-03-26 エスアイアイ・プリンテック株式会社 Liquid jet head, liquid jet recording device and driving signal generating system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392746U (en) * 1986-12-09 1988-06-15
JP2003063004A (en) * 2001-08-29 2003-03-05 Matsushita Electric Ind Co Ltd Liquid ejection device and its manufacturing method
JP2007160837A (en) * 2005-12-16 2007-06-28 Konica Minolta Holdings Inc Process for manufacturing liquid ejection head, and liquid ejection head
JP2008207519A (en) * 2007-02-28 2008-09-11 Konica Minolta Holdings Inc Manufacturing method for liquid ejection head, and liquid ejection head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392746U (en) * 1986-12-09 1988-06-15
JP2003063004A (en) * 2001-08-29 2003-03-05 Matsushita Electric Ind Co Ltd Liquid ejection device and its manufacturing method
JP2007160837A (en) * 2005-12-16 2007-06-28 Konica Minolta Holdings Inc Process for manufacturing liquid ejection head, and liquid ejection head
JP2008207519A (en) * 2007-02-28 2008-09-11 Konica Minolta Holdings Inc Manufacturing method for liquid ejection head, and liquid ejection head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020044667A (en) * 2018-09-14 2020-03-26 エスアイアイ・プリンテック株式会社 Liquid jet head, liquid jet recording device and driving signal generating system
JP7145017B2 (en) 2018-09-14 2022-09-30 エスアイアイ・プリンテック株式会社 LIQUID JET HEAD, LIQUID JET RECORDING APPARATUS AND DRIVING SIGNAL GENERATING SYSTEM

Also Published As

Publication number Publication date
JPWO2010134418A1 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
CN108025551B (en) Ink gun and ink-jet recording apparatus
US7789493B2 (en) Method for manufacturing piezoelectric ink-jet printhead
JP4731270B2 (en) Piezoelectric inkjet printhead and method of manufacturing the same
JP6048794B2 (en) Nozzle plate, nozzle plate manufacturing method, inkjet head, and inkjet printing apparatus
WO2004028815A1 (en) Method for manufacturing electrostatic attraction type liquid discharge head, method for manufacturing nozzle plate, method for driving electrostatic attraction type liquid discharge head, electrostatic attraction type liquid discharging apparatus, and liquid discharging apparatus
JP2005238846A (en) Piezoelectric inkjet printhead and method of manufacturing nozzle plate thereof
JP2014113822A (en) Inkjet printing apparatuses, and methods of forming nozzles
JP2023065675A (en) Reducing size variations in funnel nozzles
US9895887B2 (en) Liquid ejection head and process for producing the same
JP2016049726A (en) Flow passage component, liquid discharge head and liquid discharge device
JP2007175992A (en) Manufacturing method of nozzle plate, nozzle plate, manufacturing method of droplet discharge head, droplet discharge head, manufacturing method of droplet discharge apparatus and droplet discharge apparatus
JP2008273001A (en) Manufacturing method for channel substrate, manufacturing method for liquid droplet ejection head and manufacturing method for liquid droplet ejector
US20070236537A1 (en) Fluid jet print module
WO2010134418A1 (en) Inkjet head and method for producing same
JP2008103428A (en) Plasma etching machining method and method of manufacturing liquid injection head
WO2016158917A1 (en) Method for manufacturing liquid ejection head nozzle plate, liquid ejection head nozzle plate, and liquid ejection head
JP2007253373A (en) Liquid droplet discharge head, liquid droplet discharge apparatus, method for manufacturing liquid droplet discharge head, and method for manufacturing liquid droplet discharge apparatus
US20110232089A1 (en) Method of manufacturing inkjet print head
JP2006001215A (en) Manufacturing method of nozzle plate, liquid-droplet discharging head and liquid-droplet discharging device
KR20040073120A (en) Manufacturing method of piezoelectric ink-jet printhead
JP6609977B2 (en) NOZZLE PLATE, INKJET HEAD, INKJET DEVICE, AND NOZZLE PLATE MANUFACTURING METHOD
JPH09300630A (en) Production of ink jet head
JPH11992A (en) Ink jet head
JP2006103167A (en) Liquid drop ejection head, its manufacturing process and liquid drop ejector
KR100561865B1 (en) Piezo-electric type inkjet printhead and manufacturing method threrof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777653

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011514370

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777653

Country of ref document: EP

Kind code of ref document: A1