WO2010134179A1 - Converter overcurrent prevention/control device and converter overcurrent prevention method - Google Patents

Converter overcurrent prevention/control device and converter overcurrent prevention method Download PDF

Info

Publication number
WO2010134179A1
WO2010134179A1 PCT/JP2009/059321 JP2009059321W WO2010134179A1 WO 2010134179 A1 WO2010134179 A1 WO 2010134179A1 JP 2009059321 W JP2009059321 W JP 2009059321W WO 2010134179 A1 WO2010134179 A1 WO 2010134179A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
reactor
value
switching element
overcurrent prevention
Prior art date
Application number
PCT/JP2009/059321
Other languages
French (fr)
Japanese (ja)
Inventor
大悟 野辺
直義 高松
賢樹 岡村
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/059321 priority Critical patent/WO2010134179A1/en
Publication of WO2010134179A1 publication Critical patent/WO2010134179A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators

Definitions

  • the present invention relates to a converter overcurrent prevention control device and a converter overcurrent prevention method, and more particularly, is provided between a DC power supply and an electric load device, and boosts the input voltage of the electric load device to be higher than the output voltage of the DC power supply.
  • the present invention relates to a technique for preventing overcurrent in a converter.
  • Patent Document 1 discloses a DC-DC converter that does not fall into an overcurrent limit even if there is a delay in the overcurrent detection operation. Disclose. In this DC-DC converter, the current flowing through the inductor is detected, and it is determined whether the inductor current has dropped to a specified value (overcurrent detection). Then, the switching timing of the control signal is changed so as to extend the cutoff control state of the upper arm switch element until it is determined that the inductor current has been reduced to a predetermined magnitude (see Patent Document 1).
  • an object of the present invention is to provide an overcurrent prevention control device that can reliably prevent overcurrent in a converter.
  • Another object of the present invention is to provide an overcurrent prevention method capable of reliably preventing overcurrent in a converter.
  • the converter overcurrent prevention control device is provided between the DC power source and the electric load device, and the converter overcurrent boosts the input voltage of the electric load device to be equal to or higher than the output voltage of the DC power source.
  • Prevention control device The converter includes a reactor capable of storing current as energy, and a switching element for causing current to flow through the reactor.
  • the overcurrent prevention control device includes a current detection device, an estimation unit, and a change unit.
  • the current detection device detects a current flowing through the reactor.
  • the estimation unit estimates the peak value of the current flowing through the reactor based on the slope of the current detected by the current detection device and the remaining conduction time of the switching element at the time of current detection by the current detection device.
  • the changing unit is configured to change the duty ratio of the switching element so that the current peak value is equal to or less than the first allowable value when the current peak value indicating the magnitude of the peak value estimated by the estimation unit is equal to or greater than the first allowable value. To change.
  • the peak value of the current flowing through the reactor is calculated by the estimation unit. Presumed.
  • the duty ratio of the switching element is changed by the changing unit so that the current peak value is equal to or less than the first allowable value.
  • the current peak value is suppressed within an allowable range. Therefore, according to this overcurrent prevention control device, overcurrent can be reliably prevented. Further, the converter can be operated continuously by preventing the overcurrent. Furthermore, it is not necessary to design for the occurrence of overcurrent, and the switching element having the minimum allowable current can be used, so that the cost can be reduced.
  • the current detection device detects the current flowing through the reactor at a predetermined frequency.
  • the apparatus further includes an overcurrent prevention control device, a prediction unit, and a control unit.
  • the prediction unit predicts the current at the next detection by the current detection device based on the current detection value and the previous detection value by the current detection device.
  • the control unit controls the electric load device to reduce the load of the electric load device when the magnitude of the current predicted by the prediction unit is equal to or greater than the second allowable value.
  • the switching element of the converter is on / off controlled according to a pulse width modulation method. Then, the current detection device detects the current flowing through the reactor at the timing when the carrier signal for generating the control signal output to the switching element reaches a peak.
  • one end of the reactor is connected to the positive electrode of the DC power supply.
  • the switching element is composed of first and second switching elements.
  • the first switching element is connected between the other end of the reactor and the negative electrode of the DC power supply.
  • the second switching element is connected between the positive electrode line of the electric load device and the other end of the reactor.
  • the converter further includes first and second diodes connected in antiparallel to the first and second switching elements, respectively.
  • the estimation unit is configured based on the slope of the current detected by the current detection device and the remaining conduction time of the second switching element at the time of current detection by the current detection device when current is flowing from the DC power supply to the reactor. Estimate the peak value of the current flowing through the reactor.
  • one end of the reactor is connected to the positive electrode of the DC power supply.
  • the switching element is composed of first and second switching elements.
  • the first switching element is connected between the other end of the reactor and the negative electrode of the DC power supply.
  • the second switching element is connected between the positive electrode line of the electric load device and the other end of the reactor.
  • the converter further includes first and second diodes connected in antiparallel to the first and second switching elements, respectively. Then, the estimation unit, based on the current gradient detected by the current detection device and the remaining conduction time of the first switching element at the time of current detection by the current detection device when current flows from the reactor to the DC power supply Estimate the peak value of the current flowing through the reactor.
  • a converter overcurrent prevention control device is provided between a DC power source and an electric load device, and is a converter for boosting an input voltage of the electric load device to an output voltage of the DC power source or higher.
  • the converter includes a reactor capable of storing current as energy, and a switching element for causing current to flow through the reactor.
  • the overcurrent prevention control device includes a current detection device, a prediction unit, and a control unit.
  • the current detection device detects the current flowing through the reactor at a predetermined frequency.
  • the prediction unit predicts the current at the next detection by the current detection device based on the current detection value and the previous detection value by the current detection device.
  • the control unit controls the electric load device so as to reduce the load of the electric load device when the magnitude of the current predicted by the prediction unit is equal to or greater than the first allowable value.
  • the current at the next detection by the current detection device is predicted by the prediction unit based on the current detection value and the previous detection value by the current detection device. And when the magnitude
  • the overcurrent prevention control device further includes an estimation unit and a change unit.
  • the estimation unit estimates the peak value of the current flowing through the reactor based on the slope of the current detected by the current detection device and the remaining conduction time of the switching element at the time of current detection by the current detection device.
  • the changing unit is configured to change the duty ratio of the switching element so that the current peak value is equal to or less than the second allowable value when the current peak value indicating the magnitude of the peak value estimated by the estimation unit is equal to or greater than the second allowable value. To change.
  • the switching element of the converter is on / off controlled according to a pulse width modulation method. Then, the current detection device detects the current flowing through the reactor at the timing when the carrier signal for generating the control signal output to the switching element reaches a peak.
  • the electric load device includes an inverter connected to the converter and an electric motor driven by the inverter.
  • the control unit controls the inverter so as to reduce the torque of the electric motor when the magnitude of the current predicted by the prediction unit is equal to or greater than the first allowable value.
  • the converter overcurrent prevention method is provided between the DC power supply and the electric load device, and the converter overcurrent prevention is provided for boosting the input voltage of the electric load device above the output voltage of the DC power supply.
  • the converter includes a reactor capable of storing current as energy, and a switching element for causing current to flow through the reactor.
  • the overcurrent prevention method includes a step of detecting a current flowing through the reactor, a step of estimating a peak value of the current flowing through the reactor based on a slope of the detected current and a remaining conduction time of the switching element at the time of current detection, and And a step of changing the duty ratio of the switching element so that the current peak value becomes equal to or less than the allowable value when the current peak value indicating the estimated peak value becomes equal to or greater than the predetermined allowable value.
  • the converter overcurrent prevention method is provided between the DC power supply and the electric load device, and the converter overcurrent prevention is provided for boosting the input voltage of the electric load device above the output voltage of the DC power supply.
  • the converter includes a reactor capable of storing current as energy, and a switching element for causing current to flow through the reactor.
  • the overcurrent prevention method includes a step of detecting a current flowing through a reactor at a predetermined frequency, a step of predicting a current at the next detection based on a current detection value and a previous detection value of the current, And controlling the electric load device so as to reduce the load of the electric load device when the magnitude is equal to or greater than a predetermined allowable value.
  • overcurrent can be reliably prevented. Further, the converter can be operated continuously by preventing the overcurrent. Furthermore, it is not necessary to design for the occurrence of overcurrent, and the switching element having the minimum allowable current can be used, so that the cost can be reduced.
  • FIG. 1 is a circuit diagram of a motor drive device to which an overcurrent prevention control device according to Embodiment 1 of the present invention is applied.
  • FIG. It is a functional block diagram of the part regarding control of a boost converter in the control apparatus shown in FIG.
  • FIG. 6 is a first diagram for illustrating overcurrent prevention control in the first embodiment.
  • FIG. 6 is a second diagram for illustrating overcurrent prevention control in the first embodiment.
  • FIG. 3 is a diagram for explaining sampling timing by a sample / hold circuit shown in FIG. 2.
  • FIG. 3 is a detailed functional block diagram of an overcurrent prevention control unit shown in FIG. 2.
  • FIG. 3 is a first flowchart for explaining a processing procedure of overcurrent prevention control executed by the control device shown in FIG. 1.
  • FIG. 6 is a second flowchart for explaining a processing procedure of overcurrent prevention control executed by the control device shown in FIG. 1.
  • FIG. 10 is a diagram for explaining overcurrent prevention control in a second embodiment.
  • FIG. 10 is a functional block diagram of a portion related to inverter control in the control device according to the second embodiment.
  • 6 is a flowchart for illustrating a processing procedure of overcurrent prevention control executed by a control device according to Embodiment 2.
  • FIG. 1 is a circuit diagram of a motor drive apparatus to which an overcurrent prevention control apparatus according to Embodiment 1 of the present invention is applied.
  • motor drive device 100 includes DC power supply B, boost converter 10, inverter 20, positive lines PL1 and PL2, negative line NL, current sensor 52, and voltage sensors 54 and 56. And a control device 30.
  • the motor drive device 100 is mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle.
  • AC motor M1 is mechanically coupled to drive wheels (not shown) and generates torque for driving the vehicle.
  • AC motor M1 may be mechanically connected to an engine (not shown), operate as a generator that generates electric power using engine power, and be incorporated in a hybrid vehicle as an electric motor that starts the engine. .
  • Boost converter 10 includes a reactor L1, power semiconductor switching elements (hereinafter simply referred to as “switching elements”) Q1, Q2, and diodes D1, D2.
  • Reactor L1 has one end connected to a positive line PL1 connected to the positive terminal of DC power supply B, and the other end connected to an intermediate point between switching element Q1 and switching element Q2, that is, the emitter and switching element of switching element Q1.
  • Switching elements Q1, Q2 are connected in series between positive electrode line PL2 and negative electrode line NL.
  • the collector of switching element Q1 is connected to positive line PL2, and the emitter of switching element Q2 is connected to negative line NL.
  • diodes D1 and D2 for flowing current from the emitter side to the collector side are connected between the collector and emitter of switching elements Q1 and Q2, respectively.
  • switching elements Q3 to Q8 described later included in the switching elements Q1 and Q2 and the inverter 20 for example, an IGBT (Insulated Gate Bipolar Transistor), a power MOS (Metal Oxide Semiconductor) transistor, or the like can be used.
  • IGBT Insulated Gate Bipolar Transistor
  • MOS Metal Oxide Semiconductor
  • the inverter 20 includes a U-phase arm 22, a V-phase arm 24, and a W-phase arm 26.
  • U-phase arm 22, V-phase arm 24, and W-phase arm 26 are connected in parallel between positive electrode line PL2 and negative electrode line NL.
  • U-phase arm 22 includes switching elements Q3 and Q4 connected in series.
  • V-phase arm 24 includes switching elements Q5 and Q6 connected in series.
  • W-phase arm 26 includes switching elements Q7 and Q8 connected in series.
  • diodes D3 to D8 for passing a current from the emitter side to the collector side are connected between the collector and emitter of switching elements Q3 to Q8, respectively.
  • the intermediate point of each phase arm is connected to each phase coil of AC motor M1, respectively.
  • DC power supply B is a rechargeable power storage device, for example, a secondary battery such as nickel metal hydride or lithium ion. Note that a large capacity capacitor may be used as the DC power source B instead of the secondary battery.
  • Boost converter 10 boosts the voltage between positive line PL2 and negative line NL (hereinafter also referred to as “system voltage”) to a voltage equal to or higher than the output voltage of DC power supply B based on signal PWC from control device 30.
  • system voltage positive line PL2 and negative line NL
  • the system voltage is lower than the target voltage, by increasing the on-duty of switching element Q2, a current can flow from positive line PL1 to positive line PL2, and the system voltage can be increased.
  • the system voltage is higher than the target voltage, by increasing the on-duty of switching element Q1, a current can flow from positive line PL2 to positive line PL1, and the system voltage can be lowered.
  • the inverter 20 converts the DC power supplied from the positive electrode line PL2 and the negative electrode line NL into three-phase AC based on the signal PWI from the control device 30 and outputs it to the AC motor M1 to drive the AC motor M1.
  • AC motor M1 is driven so as to generate torque specified by torque command value Tin.
  • Inverter 20 also converts the three-phase AC power generated by AC motor M1 into DC based on signal PWI when braking a hybrid vehicle or electric vehicle on which motor drive device 100 is mounted, and generates positive line PL2 and negative line Output to line NL.
  • Current sensor 52 detects current IL flowing through reactor L1 of boost converter 10 and outputs the detected value to control device 30.
  • Current sensor 52 detects a current flowing from DC power supply B to reactor L1 as a positive value, and detects a current flowing from reactor L1 to DC power supply B as a negative value.
  • Voltage sensor 54 detects voltage VL between positive electrode line PL1 and negative electrode line NL, and outputs the detected value to control device 30.
  • Voltage sensor 56 detects voltage VH between positive electrode line PL2 and negative electrode line NL, and outputs the detected value to control device 30.
  • the rotation angle sensor 58 detects the rotation angle ⁇ of the rotor of the AC motor M ⁇ b> 1 and outputs the detected value to the control device 30.
  • Control device 30 generates a PWM signal for driving boost converter 10 using a pulse width modulation (hereinafter referred to as “PWM (Pulse Width Modulation)”) method, and uses the generated PWM signal as signal PWC. Output to boost converter 10.
  • PWM Pulse Width Modulation
  • control device 30 performs overcurrent prevention control for preventing overcurrent from flowing through boost converter 10 by a method described later.
  • Control device 30 generates a PWM signal for driving AC motor M1 based on a torque command value Tin received from an ECU (Electronic Control Unit) (not shown), and inverter 20 uses the generated PWM signal as signal PWI. Output to.
  • ECU Electronic Control Unit
  • FIG. 2 is a functional block diagram of a part related to control of the boost converter 10 in the control device 30 shown in FIG.
  • control device 30 includes subtraction unit 102, voltage control unit 104, overcurrent prevention control unit 106, PWM signal generation unit 108, and sample / hold (hereinafter referred to as “S / H”).
  • the subtraction unit 102 subtracts the detected value of the voltage VH from the voltage command value VR indicating the target of the voltage VH, and outputs the calculation result to the voltage control unit 104.
  • the voltage control unit 104 executes a control calculation (for example, proportional integration control) so that the voltage VH matches the voltage command value VR, and outputs a PWM request value din for generating a PWM signal as a control output.
  • the carrier signal generation unit 112 generates a carrier signal composed of a triangular wave for generating a PWM signal in the PWM signal generation unit 108 described later, and the generated carrier signal is used as the PWM signal generation unit 108 and the S / H circuit. To 110.
  • the S / H circuit 110 samples the current IL and the voltages VL and VH at the timing of the peak of the carrier signal received from the carrier signal generation unit 112, and outputs the sampled values to the overcurrent prevention control unit 106. Further, the S / H circuit 110 samples the current IL and the voltages VL and VH also at the timing of the valley of the carrier signal, and outputs the sampled values to the overcurrent prevention control unit 106.
  • the overcurrent prevention control unit 106 estimates the peak value of the current IL by a method described later based on the current IL received from the S / H circuit 110 and the sampling values of the voltages VL and VH, and the magnitude of the estimated peak value.
  • the current peak value indicating the value (absolute value) is equal to or greater than a predetermined allowable value
  • the PWM request value din is changed by a method described later so that the current peak value is equal to or smaller than the allowable value.
  • the overcurrent prevention control unit 106 sets the value after the change as the PWM command value dout, and when the PWM request value din is not changed, the PWM request value The din is output to the PWM signal generation unit 108 as the PWM command value dout.
  • the PWM signal generation unit 108 compares the PWM command value dout received from the overcurrent prevention control unit 106 with the carrier signal received from the carrier signal generation unit 112, and generates a signal PWC whose logic state changes according to the magnitude relationship. . PWM signal generation unit 108 then outputs the generated signal PWC to switching elements Q1 and Q2 of boost converter 10.
  • changing the PWM request value din in the overcurrent prevention control unit 106 is changing the duty ratio of the signal PWC that is a PWM signal, that is, the switching element Q1 of the boost converter 10.
  • Q2 is equivalent to changing the duty ratio.
  • FIG. 3 and 4 are diagrams for explaining the overcurrent prevention control in the first embodiment.
  • 3 shows the control when the current IL flowing through the reactor L1 is a positive value
  • FIG. 4 shows the control when the current IL is a negative value.
  • carrier signal CR is larger than PWM command value dout
  • switching elements Q1 and Q2 are turned off and on, respectively.
  • the current IL flowing through the reactor L1 increases.
  • the PWM command value dout is larger than the carrier signal CR
  • the switching elements Q1 and Q2 are turned on and off, respectively. At this time, the current IL decreases.
  • the current IL flowing through the reactor L1 is a positive value
  • the current IL and the voltages VL and VH are sampled by the S / H circuit 110 (FIG. 2) at the timing of the peak of the carrier signal CR (such as time t1) (point P1). .
  • the peak value ILpeak (point P2 at time t3) of the current IL is estimated from the remaining on-period (t3-t1) of the switching element Q2 at time t1 and the slope of the current IL.
  • the remaining ON period of the switching element Q2 can be calculated based on the carrier cycle Tc and the PWM request value din, and the slope of the current IL is calculated based on the voltage VL and the inductance L of the reactor L1. it can.
  • the peak value ILpeak is compared with a predetermined allowable value ILmax, and when the peak value ILpeak is equal to or greater than the allowable value ILmax, a time T until the current IL reaches the allowable value ILmax is calculated, and the current IL is determined to be the allowable value ILmax.
  • the PWM command value dout is calculated based on the calculated time T as follows (for example, the case where the peak value ILpeak matches the allowable value ILmax is shown here).
  • the duty ratio of the switching elements Q1 and Q2 is changed, and at time t2, the switching element Q1 is turned on from off and the switching element Q2 is turned on from off.
  • the magnitude (absolute value) of the peak value ILpeak is compared with a predetermined allowable value ILmax, and when the magnitude of the peak value ILpeak exceeds the allowable value ILmax, the time T until the current IL reaches the allowable value ILmax Is calculated, and the PWM command value dout is calculated based on the calculated time T so that the magnitude of the current IL is equal to or less than the allowable value ILmax.
  • the peak value ILpeak also matches the allowable value ILmax. The case to do is shown.
  • the duty ratio of the switching elements Q1 and Q2 is changed, and at time t12, the switching element Q1 is turned off and the switching element Q2 is turned on.
  • FIG. 5 is a diagram for explaining the sampling timing by the S / H circuit 110 shown in FIG. Referring to FIG. 5, by sampling current IL at the peaks and valleys of carrier signal CR, the average value of current IL can be obtained in principle. Thereby, it is not necessary to obtain an average value by averaging a plurality of sampling values or performing a filtering process, and the average value of the current IL can be obtained using the sampled instantaneous values.
  • FIG. 6 is a detailed functional block diagram of the overcurrent prevention control unit 106 shown in FIG. Referring to FIG. 6, overcurrent prevention control unit 106 includes a current peak estimation unit 120 and a duty change unit 122.
  • the current peak estimation unit 120 receives the PWM request value din and the sampling values of the current IL and the voltages VL and VH. Then, the current peak estimation unit 120 estimates the peak value ILpeak of the current IL based on the following equation when the current IL is a positive value.
  • ILpeak IL + (VL / L) ⁇ ⁇ Tc ⁇ (1-din) / 2 ⁇ (1)
  • (VL / L) represents the slope of the current IL
  • ⁇ Tc ⁇ (1-din) / 2 ⁇ represents the remaining on-time (remaining conduction time) of the switching element Q2.
  • the inductance L of the reactor L1 is a constant value.
  • the current peak estimation unit 120 estimates the peak value ILpeak of the current IL based on the following equation when the current IL is a negative value.
  • ILpeak IL + ⁇ (VL ⁇ VH) / L ⁇ ⁇ (Tc ⁇ din / 2) (2)
  • ⁇ (VL ⁇ VH) / L ⁇ represents the slope of the current IL
  • (Tc ⁇ din / 2) represents the remaining ON time (remaining conduction time) of the switching element Q1.
  • the duty changing unit 122 compares the peak value ILpeak of the current IL estimated by the current peak estimating unit 120 with a predetermined allowable value ILmax set in advance, and the estimated peak value ILpeak is When the value is equal to or greater than the allowable value ILmax, a time T until the current IL reaches the allowable value ILmax is calculated based on the following equation.
  • duty changing unit 122 calculates PWM command value dout by the following equation using time T calculated by equation (3) such that current IL is equal to or less than allowable value ILmax.
  • the PWM command value dout 1 ⁇ (T / Tc) ⁇ 2 (4)
  • the PWM command value dout is changed so that the peak value ILpeak of the current IL becomes the allowable value ILmax, but the PWM is set so that the peak value ILpeak is smaller than the allowable value ILmax.
  • the command value dout may be changed.
  • duty changing unit 122 compares the magnitude (absolute value) of peak value ILpeak of current IL estimated by current peak estimating unit 120 with allowable value ILmax, and determines peak value ILpeak. Is equal to or greater than the allowable value ILmax, the time T until the current IL reaches the allowable value ILmax is calculated based on the following equation.
  • duty changing unit 122 calculates PWM command value dout by the following equation using time T calculated by equation (5) so that the magnitude of current IL is equal to or less than allowable value ILmax.
  • the PWM command value dout (T / Tc) ⁇ 2 (6)
  • the PWM command value dout is changed so that the peak value ILpeak of the current IL becomes the allowable value ILmax, but the magnitude of the peak value ILpeak is smaller than the allowable value ILmax.
  • the PWM command value dout may be changed.
  • the duty changing unit 122 performs PWM without performing the above calculation.
  • the requested value din is output as the PWM command value dout.
  • FIG. 7 and 8 are flowcharts for explaining the processing procedure of the overcurrent prevention control executed by the control device 30 shown in FIG.
  • FIG. 7 is a flowchart for explaining a processing procedure when the current IL flowing through the reactor L1 is a positive value
  • FIG. 8 is a flowchart for explaining a processing procedure when the current IL is a negative value.
  • the processes shown in these flowcharts are called from the main routine and executed every certain time or every time a predetermined condition is satisfied.
  • control device 30 determines whether or not current IL detected by current sensor 52 (FIG. 1) is a positive value (step S10).
  • current IL is not a positive value (NO in step S10), the subsequent series of processes is not executed, and the process proceeds to step S100.
  • control device 30 detects the current detected by current sensor 52 at the timing of the peak of the carrier signal for generating signal PWC.
  • the voltage VL detected by the IL and the voltage sensor 54 is sampled (step S20).
  • control device 30 calculates the slope of the current IL using the sampled voltage VL (step S30). Specifically, the term (VL / L) in the above equation (1) is calculated. Subsequently, control device 30 calculates remaining on-time of switching element Q2 of boost converter 10 using PWM request value din (step S40). Specifically, the term ⁇ Tc ⁇ (1-din) / 2 ⁇ in the above equation (1) is calculated. Then, control device 30 estimates peak value ILpeak of current IL by the above equation (1) using the slope of current IL calculated in step S30 and the remaining on-time of switching element Q2 calculated in step S40. (Calculate) (step S50).
  • control device 30 determines whether or not peak value ILpeak of current IL estimated in step S50 is greater than or equal to allowable value ILmax (step S60). When it is determined that peak value ILpeak is greater than or equal to allowable value ILmax (YES in step S60), control device 30 uses current IL and voltage VL sampled in step S20 to allow current IL to reach allowable value ILmax. Time T is calculated by the above equation (3) (step S70).
  • control device 30 calculates PWM command value dout by the above equation (4) using time T calculated in step S70 so that current IL is equal to or less than allowable value ILmax (step S80). Thereby, the duty ratio of switching elements Q1, Q2 of boost converter 10 is changed.
  • step S60 If it is determined in step S60 that the peak value ILpeak is smaller than the allowable value ILmax (NO in step S60), the control device 30 sets the PWM request value din as the PWM command value dout (step S90).
  • control device 30 determines whether or not current IL detected by current sensor 52 is a negative value (step S110). When current IL is not a negative value (NO in step S110), a series of subsequent processes are not executed, and the process proceeds to step S200.
  • control device 30 detects current IL detected by current sensor 52 and voltage sensors 54 and 56 at the timing of the valley of the carrier signal. The voltages VL and VH detected by the above are sampled (step S120).
  • control device 30 calculates the slope of the current IL using the sampled voltages VL and VH (step S130). Specifically, the term ⁇ (VL ⁇ VH) / L ⁇ in the above equation (2) is calculated. Subsequently, control device 30 calculates remaining on-time of switching element Q1 of boost converter 10 using PWM request value din (step S140). Specifically, the term (Tc ⁇ din / 2) in the above equation (2) is calculated. Then, control device 30 estimates peak value ILpeak of current IL by the above equation (2) using the slope of current IL calculated in step S130 and the remaining on-time of switching element Q1 calculated in step S140. (Calculate) (step S150).
  • control device 30 determines whether or not the magnitude (absolute value) of peak value ILpeak of current IL estimated in step S150 is greater than or equal to allowable value ILmax (step S160). If it is determined that the magnitude of peak value ILpeak is greater than or equal to allowable value ILmax (YES in step S160), control device 30 uses current IL and voltages VL and VH sampled in step S120 to determine current IL as The time T until the allowable value ILmax is reached is calculated by the above equation (5) (step S170).
  • control device 30 calculates PWM command value dout by equation (6) above using time T calculated in step S170 so that the magnitude of current IL is equal to or less than allowable value ILmax (step S180). ). Thereby, the duty ratio of switching elements Q1, Q2 of boost converter 10 is changed.
  • control device 30 sets PWM request value din as PWM command value dout (step S190). ).
  • peak value ILpeak of current IL is estimated based on the slope of current IL flowing through boost converter 10 and the remaining on-time of switching element Q1 or Q2 at the time of current detection.
  • the duty ratio of the switching element is changed so that the magnitude of the peak value ILpeak is less than or equal to the allowable value, so that the current peak value is suppressed within the allowable range. It is done. Therefore, according to the first embodiment, overcurrent can be reliably prevented. Further, boost converter 10 can be operated continuously by preventing overcurrent. Furthermore, it is not necessary to design for the occurrence of overcurrent, and the switching element having the minimum allowable current can be used, so that the cost can be reduced.
  • the average value of the current IL can be obtained in principle. Thereby, it is not necessary to obtain an average value by averaging a plurality of sampling values or performing a filtering process, and the average value of the current IL can be obtained using the sampled instantaneous values.
  • FIG. 9 is a diagram for explaining the overcurrent prevention control in the second embodiment.
  • the average value of current IL is sampled at a predetermined interval.
  • the average value of the current IL is sampled at times t0, t1,. Note that, as described above, the average value of the current IL can be obtained by sampling the current IL at the peaks and valleys of the carrier signal.
  • the current IL at the next time t2 is based on the current sampling value IL1 at the time t1 and the previous sampling value IL0 at the time t0.
  • the predicted value ILp is calculated.
  • predicted value ILp is compared with allowable value ILmax and predicted value ILp is equal to or greater than allowable value ILmax (this allowable value may be the same as or different from the allowable value in the first embodiment), alternating current.
  • the output P of the AC motor M1 is controlled to be constant.
  • the current IL is suppressed within the allowable value ILmax, and an increase in the voltage VH is suppressed.
  • the motor drive device in the second embodiment includes a control device 30A in place of control device 30 in the configuration of motor drive device 100 in the first embodiment.
  • FIG. 10 is a functional block diagram of a portion related to the control of the inverter 20 in the control device 30A according to the second embodiment.
  • control device 30 ⁇ / b> A includes differential calculation unit 202, torque control unit 204, motor control unit 206, PWM signal generation unit 208, current prediction unit 210, S / H circuit 212, A carrier signal generator 214.
  • the differential operation unit 202 calculates the rotational speed ⁇ of the rotor by performing a differential operation on the rotational angle ⁇ of the rotor of the AC motor M1 obtained from the rotational angle sensor 58.
  • the carrier signal generation unit 214 generates a carrier signal composed of a triangular wave for generating a PWM signal in the PWM signal generation unit 208 described later, and the generated carrier signal is sent to the PWM signal generation unit 208 and the S / H circuit 212. Output.
  • the S / H circuit 212 samples the current IL at a predetermined interval at the peak or valley timing of the carrier signal received from the carrier signal generation unit 214, and outputs the sampling value to the current prediction unit 210.
  • the current prediction unit 210 When the current prediction unit 210 receives the sampling value of the current IL from the S / H circuit 212, the current prediction unit 210 predicts the current IL at the next sampling timing from the received sampling value (IL1) and the previous sampling value (IL0).
  • ILp is calculated by the following equation.
  • ILp IL1 + (IL1-IL0) / (t1-t0) ⁇ (t2-t1) (7)
  • t0 represents the previous sampling time
  • t1 represents the current sampling time
  • t2 represents the next scheduled sampling time.
  • the torque control unit 204 compares the magnitude (absolute value) of the predicted value ILp of the current IL received from the current prediction unit 210 with the allowable value ILmax of the current IL. When the predicted value ILp is greater than or equal to the allowable value ILmax, the torque control unit 204 reduces the torque of the AC motor M1 so that the current IL is less than or equal to the allowable value ILmax. For example, torque control unit 204 calculates torque command value TR of AC motor M1 by the following equation so that current IL is limited to allowable value ILmax, and outputs the calculated torque command value TR to motor control unit 206. To do.
  • Motor control unit 206 drives AC motor M1 based on torque command value TR received from torque control unit 204, rotor rotational speed ⁇ received from differential operation unit 202, and other motor current and voltage VH (not shown). A voltage command value is generated, and the generated voltage command value is output to the PWM signal generation unit 208.
  • the PWM signal generation unit 208 compares the voltage command value received from the motor control unit 206 with the carrier signal received from the carrier signal generation unit 214, and generates a signal PWI whose logic state changes according to the magnitude relationship. Then, PWM signal generation unit 208 outputs the generated signal PWI to switching elements Q3 to Q8 of inverter 20.
  • FIG. 11 is a flowchart for explaining the processing procedure of the overcurrent prevention control executed by the control device 30A in the second embodiment.
  • the process shown in this flowchart is also called from the main routine and executed every certain time or every time a predetermined condition is satisfied.
  • control device 30A samples current IL detected by current sensor 52 at the timing of the peak or valley of the carrier signal for generating signal PWI (step S210).
  • the control device 30A calculates the predicted value ILp of the current IL at the next sampling timing from the current sampling value IL1 and the previous sampling value IL0 sampled in step S210 by the above equation (7) (step S220). .
  • control device 30A determines whether or not the magnitude (absolute value) of predicted value ILp of current IL calculated in step S220 is greater than or equal to allowable value ILmax (step S230). If it is determined that predicted value ILp is greater than or equal to allowable value ILmax (YES in step S230), control device 30A reduces torque of AC motor M1 such that current IL is equal to or smaller than allowable value ILmax (Ste S240). For example, control device 30A calculates torque command value TR of AC motor M1 by the above equation (8) so that current IL is limited to allowable value ILmax.
  • step S230 when it is determined in step S230 that the predicted value ILp is smaller than the allowable value ILmax (NO in step S230), control device 30A proceeds to step S250 without executing step S240. . That is, in this case, the torque command value Tin becomes the torque command value TR as it is.
  • the predicted value ILp of the current IL at the next sampling timing is calculated based on the current sampling value IL1 and the previous sampling value IL0 of the current IL.
  • the inverter 20 is controlled so as to reduce the torque of the AC motor M1, so that the current IL flowing through the reactor L1 is suppressed within the allowable range, and the voltage is increased
  • An increase in voltage VH which is the output voltage of converter 10 (corresponding to the input voltage of the electric load device), can be suppressed. Therefore, according to the second embodiment, it is possible to reliably prevent overcurrent and prevent the voltage VH from rising. Further, boost converter 10 can be operated continuously by preventing overcurrent. Furthermore, it is not necessary to design for the occurrence of overcurrent, and the switching element having the minimum allowable current can be used, so that the cost can be reduced.
  • overcurrent prevention control in the first and second embodiments, it is possible to prevent the instantaneous peak value of the current IL from exceeding the allowable value, and also prevent the occurrence of overcurrent from a long-term viewpoint. Is possible.
  • the boost converter 10 and the inverter 20 are controlled by the control device 30 (30A).
  • the control device for controlling the boost converter 10 and the inverter 20 are controlled. You may comprise separately from a control apparatus.
  • inverter 20 and AC motor M1 form an “electric load device” in the present invention
  • boost converter 10 corresponds to “converter” in the present invention
  • Current sensor 52 corresponds to “current detection device” in the present invention
  • current peak estimation unit 120 corresponds to “estimation unit” in the present invention
  • duty changing unit 122 corresponds to “changing unit” in the present invention
  • current predicting unit 210 corresponds to “predicting unit” in the present invention
  • torque control unit 204 and motor control unit 206 form a “control unit” in the present invention
  • switching elements Q2 and Q1 are “first switching element” and “second switching unit” in the present invention, respectively. Corresponds to "element”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A peak value (ILpeak) of current (IL) flowing into a boost converter is estimated (P2) according to the inclination of the current (IL) flowing into the boost converter and the remaining ON time of a switching element (Q2) at the moment (T1) when the current (IL) is detected. If the estimated peak value (ILpeak) exceeds a permitted value (ILmax), the duty ratio of the switching elements (Q1, Q2) is modified so that the peak value (ILpeak) is lowered to the permitted value (ILmax) or below.

Description

コンバータの過電流防止制御装置およびコンバータの過電流防止方法Overcurrent prevention control device for converter and overcurrent prevention method for converter
 この発明は、コンバータの過電流防止制御装置およびコンバータの過電流防止方法に関し、特に、直流電源と電気負荷装置との間に設けられ、電気負荷装置の入力電圧を直流電源の出力電圧以上に昇圧するコンバータにおいて過電流を防止するための技術に関する。 The present invention relates to a converter overcurrent prevention control device and a converter overcurrent prevention method, and more particularly, is provided between a DC power supply and an electric load device, and boosts the input voltage of the electric load device to be higher than the output voltage of the DC power supply. The present invention relates to a technique for preventing overcurrent in a converter.
 過電流保護機能を有するコンバータとして、たとえば、特開2008-236859号公報(特許文献1)は、過電流検出動作に遅延があっても、過電流制限不能に陥るおそれのないDC-DCコンバータを開示する。このDC-DCコンバータにおいては、インダクタに流れる電流が検出され、インダクタ電流が規定値まで低下したか否かが判定される(過電流検出)。そして、インダクタ電流が所定の大きさに低減したと判定されるまで上アームのスイッチ素子の遮断制御状態を延長するように、制御信号のスイッチングタイミングが変更される(特許文献1参照)。 As a converter having an overcurrent protection function, for example, Japanese Patent Laying-Open No. 2008-236859 (Patent Document 1) discloses a DC-DC converter that does not fall into an overcurrent limit even if there is a delay in the overcurrent detection operation. Disclose. In this DC-DC converter, the current flowing through the inductor is detected, and it is determined whether the inductor current has dropped to a specified value (overcurrent detection). Then, the switching timing of the control signal is changed so as to extend the cutoff control state of the upper arm switch element until it is determined that the inductor current has been reduced to a predetermined magnitude (see Patent Document 1).
特開2008-236859号公報JP 2008-236859 A 特開2003-116280号公報JP 2003-116280 A 特開平8-196077号公報JP-A-8-196077 特開2003-37972号公報JP 2003-37972 A
 しかしながら、上記の特開2008-236859号公報に開示されるDC-DCコンバータでは、過電流が検出された後に上アームのスイッチ素子を遮断状態にするので、制御の遅れ等により、過電流によってスイッチ素子が破損するおそれもある。 However, in the DC-DC converter disclosed in the above Japanese Patent Laid-Open No. 2008-236859, the switch element of the upper arm is turned off after the overcurrent is detected. There is also a risk of damage to the element.
 それゆえに、この発明の目的は、コンバータにおいて過電流を確実に防止することができる過電流防止制御装置を提供することである。 Therefore, an object of the present invention is to provide an overcurrent prevention control device that can reliably prevent overcurrent in a converter.
 また、この発明の別の目的は、コンバータにおいて過電流を確実に防止することができる過電流防止方法を提供することである。 Another object of the present invention is to provide an overcurrent prevention method capable of reliably preventing overcurrent in a converter.
 この発明によれば、コンバータの過電流防止制御装置は、直流電源と電気負荷装置との間に設けられ、かつ、電気負荷装置の入力電圧を直流電源の出力電圧以上に昇圧するコンバータの過電流防止制御装置である。コンバータは、電流をエネルギーとして蓄積可能なリアクトルと、リアクトルに電流を流すためのスイッチング素子とを含む。過電流防止制御装置は、電流検出装置と、推定部と、変更部とを備える。電流検出装置は、リアクトルに流れる電流を検出する。推定部は、電流検出装置により検出される電流の傾きと電流検出装置による電流検出時におけるスイッチング素子の残り導通時間とに基づいて、リアクトルに流れる電流のピーク値を推定する。変更部は、推定部により推定されるピーク値の大きさを示す電流ピーク値が第1の許容値以上になるとき、電流ピーク値が第1の許容値以下となるようにスイッチング素子のデューティー比を変更する。 According to the present invention, the converter overcurrent prevention control device is provided between the DC power source and the electric load device, and the converter overcurrent boosts the input voltage of the electric load device to be equal to or higher than the output voltage of the DC power source. Prevention control device. The converter includes a reactor capable of storing current as energy, and a switching element for causing current to flow through the reactor. The overcurrent prevention control device includes a current detection device, an estimation unit, and a change unit. The current detection device detects a current flowing through the reactor. The estimation unit estimates the peak value of the current flowing through the reactor based on the slope of the current detected by the current detection device and the remaining conduction time of the switching element at the time of current detection by the current detection device. The changing unit is configured to change the duty ratio of the switching element so that the current peak value is equal to or less than the first allowable value when the current peak value indicating the magnitude of the peak value estimated by the estimation unit is equal to or greater than the first allowable value. To change.
 この過電流防止制御装置においては、電流検出装置により検出される電流の傾きと電流検出装置による電流検出時におけるスイッチング素子の残り導通時間とに基づいて、リアクトルに流れる電流のピーク値が推定部により推定される。そして、推定された電流ピーク値が第1の許容値以上になるとき、電流ピーク値が第1の許容値以下となるようにスイッチング素子のデューティー比が変更部により変更されるので、リアクトルに流れる電流ピーク値が許容範囲内に抑えられる。したがって、この過電流防止制御装置によれば、過電流を確実に防止することができる。また、過電流が防止されることによりコンバータを継続して動作可能である。さらに、過電流の発生を見越した設計をする必要がなく、必要最低限の電流許容量を有するスイッチング素子を用いることができるので、コストを下げることができる。 In this overcurrent prevention control device, based on the slope of the current detected by the current detection device and the remaining conduction time of the switching element at the time of current detection by the current detection device, the peak value of the current flowing through the reactor is calculated by the estimation unit. Presumed. When the estimated current peak value is equal to or greater than the first allowable value, the duty ratio of the switching element is changed by the changing unit so that the current peak value is equal to or less than the first allowable value. The current peak value is suppressed within an allowable range. Therefore, according to this overcurrent prevention control device, overcurrent can be reliably prevented. Further, the converter can be operated continuously by preventing the overcurrent. Furthermore, it is not necessary to design for the occurrence of overcurrent, and the switching element having the minimum allowable current can be used, so that the cost can be reduced.
 好ましくは、電流検出装置は、リアクトルに流れる電流を所定の頻度で検出する。過電流防止制御装置、予測部と、制御部とをさらに備える。予測部は、電流検出装置による今回検出値と前回検出値とに基づいて、電流検出装置による次回検出時の電流を予測する。制御部は、予測部により予測される電流の大きさが第2の許容値以上になるとき、電気負荷装置の負荷を低減するように電気負荷装置を制御する。 Preferably, the current detection device detects the current flowing through the reactor at a predetermined frequency. The apparatus further includes an overcurrent prevention control device, a prediction unit, and a control unit. The prediction unit predicts the current at the next detection by the current detection device based on the current detection value and the previous detection value by the current detection device. The control unit controls the electric load device to reduce the load of the electric load device when the magnitude of the current predicted by the prediction unit is equal to or greater than the second allowable value.
 好ましくは、コンバータのスイッチング素子は、パルス幅変調方式に従ってオンオフ制御される。そして、電流検出装置は、スイッチング素子へ出力される制御信号を生成するためのキャリア信号がピークとなるタイミングでリアクトルに流れる電流を検出する。 Preferably, the switching element of the converter is on / off controlled according to a pulse width modulation method. Then, the current detection device detects the current flowing through the reactor at the timing when the carrier signal for generating the control signal output to the switching element reaches a peak.
 好ましくは、リアクトルの一端は、直流電源の正極に接続される。スイッチング素子は、第1および第2のスイッチング素子から成る。第1のスイッチング素子は、リアクトルの他端と直流電源の負極との間に接続される。第2のスイッチング素子は、電気負荷装置の正極線とリアクトルの他端との間に接続される。コンバータは、第1および第2のスイッチング素子にそれぞれ逆並列に接続される第1および第2のダイオードをさらに含む。そして、推定部は、直流電源からリアクトルへ電流が流れているとき、電流検出装置により検出される電流の傾きと電流検出装置による電流検出時における第2のスイッチング素子の残り導通時間とに基づいて、リアクトルに流れる電流のピーク値を推定する。 Preferably, one end of the reactor is connected to the positive electrode of the DC power supply. The switching element is composed of first and second switching elements. The first switching element is connected between the other end of the reactor and the negative electrode of the DC power supply. The second switching element is connected between the positive electrode line of the electric load device and the other end of the reactor. The converter further includes first and second diodes connected in antiparallel to the first and second switching elements, respectively. Then, the estimation unit is configured based on the slope of the current detected by the current detection device and the remaining conduction time of the second switching element at the time of current detection by the current detection device when current is flowing from the DC power supply to the reactor. Estimate the peak value of the current flowing through the reactor.
 また、好ましくは、リアクトルの一端は、直流電源の正極に接続される。スイッチング素子は、第1および第2のスイッチング素子から成る。第1のスイッチング素子は、リアクトルの他端と直流電源の負極との間に接続される。第2のスイッチング素子は、電気負荷装置の正極線とリアクトルの他端との間に接続される。コンバータは、第1および第2のスイッチング素子にそれぞれ逆並列に接続される第1および第2のダイオードをさらに含む。そして、推定部は、リアクトルから直流電源へ電流が流れているとき、電流検出装置により検出される電流の傾きと電流検出装置による電流検出時における第1のスイッチング素子の残り導通時間とに基づいて、リアクトルに流れる電流のピーク値を推定する。 Also preferably, one end of the reactor is connected to the positive electrode of the DC power supply. The switching element is composed of first and second switching elements. The first switching element is connected between the other end of the reactor and the negative electrode of the DC power supply. The second switching element is connected between the positive electrode line of the electric load device and the other end of the reactor. The converter further includes first and second diodes connected in antiparallel to the first and second switching elements, respectively. Then, the estimation unit, based on the current gradient detected by the current detection device and the remaining conduction time of the first switching element at the time of current detection by the current detection device when current flows from the reactor to the DC power supply Estimate the peak value of the current flowing through the reactor.
 また、この発明によれば、コンバータの過電流防止制御装置は、直流電源と電気負荷装置との間に設けられ、かつ、電気負荷装置の入力電圧を直流電源の出力電圧以上に昇圧するコンバータの過電流防止制御装置である。コンバータは、電流をエネルギーとして蓄積可能なリアクトルと、リアクトルに電流を流すためのスイッチング素子とを含む。過電流防止制御装置は、電流検出装置と、予測部と、制御部とを備える。電流検出装置は、リアクトルに流れる電流を所定の頻度で検出する。予測部は、電流検出装置による今回検出値と前回検出値とに基づいて、電流検出装置による次回検出時の電流を予測する。制御部は、予測部により予測される電流の大きさが第1の許容値以上になるとき、電気負荷装置の負荷を低減するように電気負荷装置を制御する。 Further, according to the present invention, a converter overcurrent prevention control device is provided between a DC power source and an electric load device, and is a converter for boosting an input voltage of the electric load device to an output voltage of the DC power source or higher. This is an overcurrent prevention control device. The converter includes a reactor capable of storing current as energy, and a switching element for causing current to flow through the reactor. The overcurrent prevention control device includes a current detection device, a prediction unit, and a control unit. The current detection device detects the current flowing through the reactor at a predetermined frequency. The prediction unit predicts the current at the next detection by the current detection device based on the current detection value and the previous detection value by the current detection device. The control unit controls the electric load device so as to reduce the load of the electric load device when the magnitude of the current predicted by the prediction unit is equal to or greater than the first allowable value.
 この過電流防止制御装置においては、電流検出装置による今回検出値と前回検出値とに基づいて、電流検出装置による次回検出時の電流が予測部により予測される。そして、予測部により予測される電流の大きさが第1の許容値以上になるとき、電気負荷装置の負荷を低減するように電気負荷装置が制御されるので、リアクトルに流れる電流が許容範囲内に抑えられるとともに、コンバータの出力電圧(電気負荷装置の入力電圧に相当)が上昇するのを抑えられる。したがって、この過電流防止制御装置によれば、過電流を確実に防止し、かつ、コンバータの出力電圧の上昇を防止することができる。また、過電流が防止されることによりコンバータを継続して動作可能である。さらに、過電流の発生を見越した設計をする必要がなく、必要最低限の電流許容量を有するスイッチング素子を用いることができるので、コストを下げることができる。 In this overcurrent prevention control device, the current at the next detection by the current detection device is predicted by the prediction unit based on the current detection value and the previous detection value by the current detection device. And when the magnitude | size of the electric current estimated by the estimation part becomes more than a 1st allowable value, since an electric load apparatus is controlled so that the load of an electric load apparatus may be reduced, the electric current which flows into a reactor is in an allowable range. And an increase in the output voltage of the converter (corresponding to the input voltage of the electric load device) can be suppressed. Therefore, according to this overcurrent prevention control device, it is possible to reliably prevent overcurrent and to prevent an increase in the output voltage of the converter. Further, the converter can be operated continuously by preventing the overcurrent. Furthermore, it is not necessary to design for the occurrence of overcurrent, and the switching element having the minimum allowable current can be used, so that the cost can be reduced.
 好ましくは、過電流防止制御装置は、推定部と、変更部とをさらに備える。推定部は、電流検出装置により検出される電流の傾きと電流検出装置による電流検出時におけるスイッチング素子の残り導通時間とに基づいて、リアクトルに流れる電流のピーク値を推定する。変更部は、推定部により推定されるピーク値の大きさを示す電流ピーク値が第2の許容値以上になるとき、電流ピーク値が第2の許容値以下となるようにスイッチング素子のデューティー比を変更する。 Preferably, the overcurrent prevention control device further includes an estimation unit and a change unit. The estimation unit estimates the peak value of the current flowing through the reactor based on the slope of the current detected by the current detection device and the remaining conduction time of the switching element at the time of current detection by the current detection device. The changing unit is configured to change the duty ratio of the switching element so that the current peak value is equal to or less than the second allowable value when the current peak value indicating the magnitude of the peak value estimated by the estimation unit is equal to or greater than the second allowable value. To change.
 好ましくは、コンバータのスイッチング素子は、パルス幅変調方式に従ってオンオフ制御される。そして、電流検出装置は、スイッチング素子へ出力される制御信号を生成するためのキャリア信号がピークとなるタイミングでリアクトルに流れる電流を検出する。 Preferably, the switching element of the converter is on / off controlled according to a pulse width modulation method. Then, the current detection device detects the current flowing through the reactor at the timing when the carrier signal for generating the control signal output to the switching element reaches a peak.
 好ましくは、電気負荷装置は、コンバータに接続されるインバータと、インバータにより駆動される電動機とを含む。制御部は、予測部により予測される電流の大きさが第1の許容値以上になるとき、電動機のトルクを低減するようにインバータを制御する。 Preferably, the electric load device includes an inverter connected to the converter and an electric motor driven by the inverter. The control unit controls the inverter so as to reduce the torque of the electric motor when the magnitude of the current predicted by the prediction unit is equal to or greater than the first allowable value.
 また、この発明によれば、コンバータの過電流防止方法は、直流電源と電気負荷装置との間に設けられ、電気負荷装置の入力電圧を直流電源の出力電圧以上に昇圧するコンバータの過電流防止方法である。コンバータは、電流をエネルギーとして蓄積可能なリアクトルと、リアクトルに電流を流すためのスイッチング素子とを含む。過電流防止方法は、リアクトルに流れる電流を検出するステップと、検出される電流の傾きと電流検出時におけるスイッチング素子の残り導通時間とに基づいて、リアクトルに流れる電流のピーク値を推定するステップと、推定されるピーク値の大きさを示す電流ピーク値が所定の許容値以上になるとき、電流ピーク値が許容値以下となるようにスイッチング素子のデューティー比を変更するステップとを備える。 Further, according to the present invention, the converter overcurrent prevention method is provided between the DC power supply and the electric load device, and the converter overcurrent prevention is provided for boosting the input voltage of the electric load device above the output voltage of the DC power supply. Is the method. The converter includes a reactor capable of storing current as energy, and a switching element for causing current to flow through the reactor. The overcurrent prevention method includes a step of detecting a current flowing through the reactor, a step of estimating a peak value of the current flowing through the reactor based on a slope of the detected current and a remaining conduction time of the switching element at the time of current detection, and And a step of changing the duty ratio of the switching element so that the current peak value becomes equal to or less than the allowable value when the current peak value indicating the estimated peak value becomes equal to or greater than the predetermined allowable value.
 また、この発明によれば、コンバータの過電流防止方法は、直流電源と電気負荷装置との間に設けられ、電気負荷装置の入力電圧を直流電源の出力電圧以上に昇圧するコンバータの過電流防止方法である。コンバータは、電流をエネルギーとして蓄積可能なリアクトルと、リアクトルに電流を流すためのスイッチング素子とを含む。過電流防止方法は、リアクトルに流れる電流を所定の頻度で検出するステップと、電流の今回検出値と前回検出値とに基づいて、次回検出時の電流を予測するステップと、予測される電流の大きさが所定の許容値以上になるとき、電気負荷装置の負荷を低減するように電気負荷装置を制御するステップとを備える。 Further, according to the present invention, the converter overcurrent prevention method is provided between the DC power supply and the electric load device, and the converter overcurrent prevention is provided for boosting the input voltage of the electric load device above the output voltage of the DC power supply. Is the method. The converter includes a reactor capable of storing current as energy, and a switching element for causing current to flow through the reactor. The overcurrent prevention method includes a step of detecting a current flowing through a reactor at a predetermined frequency, a step of predicting a current at the next detection based on a current detection value and a previous detection value of the current, And controlling the electric load device so as to reduce the load of the electric load device when the magnitude is equal to or greater than a predetermined allowable value.
 この発明によれば、過電流を確実に防止することができる。また、過電流が防止されることによりコンバータを継続して動作可能である。さらに、過電流の発生を見越した設計をする必要がなく、必要最低限の電流許容量を有するスイッチング素子を用いることができるので、コストを下げることができる。 According to the present invention, overcurrent can be reliably prevented. Further, the converter can be operated continuously by preventing the overcurrent. Furthermore, it is not necessary to design for the occurrence of overcurrent, and the switching element having the minimum allowable current can be used, so that the cost can be reduced.
この発明の実施の形態1による過電流防止制御装置が適用されるモータ駆動装置の回路図である。1 is a circuit diagram of a motor drive device to which an overcurrent prevention control device according to Embodiment 1 of the present invention is applied. FIG. 図1に示す制御装置における、昇圧コンバータの制御に関する部分の機能ブロック図である。It is a functional block diagram of the part regarding control of a boost converter in the control apparatus shown in FIG. 実施の形態1における過電流防止制御を説明するための第1の図である。FIG. 6 is a first diagram for illustrating overcurrent prevention control in the first embodiment. 実施の形態1における過電流防止制御を説明するための第2の図である。FIG. 6 is a second diagram for illustrating overcurrent prevention control in the first embodiment. 図2に示すサンプル/ホールド回路によるサンプリングタイミングを説明するための図である。FIG. 3 is a diagram for explaining sampling timing by a sample / hold circuit shown in FIG. 2. 図2に示す過電流防止制御部の詳細な機能ブロック図である。FIG. 3 is a detailed functional block diagram of an overcurrent prevention control unit shown in FIG. 2. 図1に示す制御装置により実行される過電流防止制御の処理手順を説明するための第1のフローチャートである。FIG. 3 is a first flowchart for explaining a processing procedure of overcurrent prevention control executed by the control device shown in FIG. 1. FIG. 図1に示す制御装置により実行される過電流防止制御の処理手順を説明するための第2のフローチャートである。FIG. 6 is a second flowchart for explaining a processing procedure of overcurrent prevention control executed by the control device shown in FIG. 1. 実施の形態2における過電流防止制御を説明するための図である。FIG. 10 is a diagram for explaining overcurrent prevention control in a second embodiment. 実施の形態2における制御装置における、インバータの制御に関する部分の機能ブロック図である。FIG. 10 is a functional block diagram of a portion related to inverter control in the control device according to the second embodiment. 実施の形態2における制御装置により実行される過電流防止制御の処理手順を説明するためのフローチャートである。6 is a flowchart for illustrating a processing procedure of overcurrent prevention control executed by a control device according to Embodiment 2.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 [実施の形態1]
 図1は、この発明の実施の形態1による過電流防止制御装置が適用されるモータ駆動装置の回路図である。図1を参照して、モータ駆動装置100は、直流電源Bと、昇圧コンバータ10と、インバータ20と、正極線PL1,PL2と、負極線NLと、電流センサ52と、電圧センサ54,56と、制御装置30とを備える。
[Embodiment 1]
1 is a circuit diagram of a motor drive apparatus to which an overcurrent prevention control apparatus according to Embodiment 1 of the present invention is applied. Referring to FIG. 1, motor drive device 100 includes DC power supply B, boost converter 10, inverter 20, positive lines PL1 and PL2, negative line NL, current sensor 52, and voltage sensors 54 and 56. And a control device 30.
 このモータ駆動装置100は、ハイブリッド自動車や電気自動車などの電動車両に搭載される。そして、交流モータM1は、図示されない駆動輪に機械的に連結され、車両を駆動するためのトルクを発生する。あるいは、交流モータM1は、図示されないエンジンに機械的に連結され、エンジンの動力を用いて発電する発電機として動作し、かつ、エンジンの始動を行なう電動機としてハイブリッド自動車に組み込まれるようにしてもよい。 The motor drive device 100 is mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle. AC motor M1 is mechanically coupled to drive wheels (not shown) and generates torque for driving the vehicle. Alternatively, AC motor M1 may be mechanically connected to an engine (not shown), operate as a generator that generates electric power using engine power, and be incorporated in a hybrid vehicle as an electric motor that starts the engine. .
 昇圧コンバータ10は、リアクトルL1と、電力用半導体スイッチング素子(以下、単に「スイッチング素子」と称する。)Q1,Q2と、ダイオードD1,D2とを含む。リアクトルL1の一方端は、直流電源Bの正極端子に接続される正極線PL1に接続され、他方端は、スイッチング素子Q1とスイッチング素子Q2との中間点、すなわち、スイッチング素子Q1のエミッタとスイッチング素子Q2のコレクタとの接続点に接続される。スイッチング素子Q1,Q2は、正極線PL2と負極線NLとの間に直列に接続される。そして、スイッチング素子Q1のコレクタは正極線PL2に接続され、スイッチング素子Q2のエミッタは負極線NLに接続される。また、スイッチング素子Q1,Q2のコレクタ-エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD1,D2がそれぞれ接続される。 Boost converter 10 includes a reactor L1, power semiconductor switching elements (hereinafter simply referred to as “switching elements”) Q1, Q2, and diodes D1, D2. Reactor L1 has one end connected to a positive line PL1 connected to the positive terminal of DC power supply B, and the other end connected to an intermediate point between switching element Q1 and switching element Q2, that is, the emitter and switching element of switching element Q1. Connected to the connection point with the collector of Q2. Switching elements Q1, Q2 are connected in series between positive electrode line PL2 and negative electrode line NL. The collector of switching element Q1 is connected to positive line PL2, and the emitter of switching element Q2 is connected to negative line NL. Further, diodes D1 and D2 for flowing current from the emitter side to the collector side are connected between the collector and emitter of switching elements Q1 and Q2, respectively.
 なお、上記のスイッチング素子Q1,Q2およびインバータ20に含まれる後述のスイッチング素子Q3~Q8として、たとえば、IGBT(Insulated Gate Bipolar Transistor)や電力用MOS(Metal Oxide Semiconductor)トランジスタ等を用いることができる。 As the switching elements Q3 to Q8 described later included in the switching elements Q1 and Q2 and the inverter 20, for example, an IGBT (Insulated Gate Bipolar Transistor), a power MOS (Metal Oxide Semiconductor) transistor, or the like can be used.
 インバータ20は、U相アーム22と、V相アーム24と、W相アーム26とを含む。U相アーム22、V相アーム24およびW相アーム26は、正極線PL2と負極線NLとの間に並列に接続される。U相アーム22は、直列接続されたスイッチング素子Q3,Q4を含む。V相アーム24は、直列接続されたスイッチング素子Q5,Q6を含む。W相アーム26は、直列接続されたスイッチング素子Q7,Q8を含む。また、スイッチング素子Q3~Q8のコレクタ-エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD3~D8がそれぞれ接続される。そして、各相アームの中間点は、交流モータM1の各相コイルにそれぞれ接続されている。 The inverter 20 includes a U-phase arm 22, a V-phase arm 24, and a W-phase arm 26. U-phase arm 22, V-phase arm 24, and W-phase arm 26 are connected in parallel between positive electrode line PL2 and negative electrode line NL. U-phase arm 22 includes switching elements Q3 and Q4 connected in series. V-phase arm 24 includes switching elements Q5 and Q6 connected in series. W-phase arm 26 includes switching elements Q7 and Q8 connected in series. Further, diodes D3 to D8 for passing a current from the emitter side to the collector side are connected between the collector and emitter of switching elements Q3 to Q8, respectively. And the intermediate point of each phase arm is connected to each phase coil of AC motor M1, respectively.
 直流電源Bは、再充電可能な蓄電装置であり、たとえばニッケル水素やリチウムイオン等の二次電池である。なお、直流電源Bとして、二次電池に代えて大容量のキャパシタを用いてもよい。 DC power supply B is a rechargeable power storage device, for example, a secondary battery such as nickel metal hydride or lithium ion. Note that a large capacity capacitor may be used as the DC power source B instead of the secondary battery.
 昇圧コンバータ10は、制御装置30からの信号PWCに基づいて、正極線PL2および負極線NL間の電圧(以下「システム電圧」とも称する。)を直流電源Bの出力電圧以上の電圧に昇圧する。なお、システム電圧が目標電圧よりも低い場合、スイッチング素子Q2のオンデューティーを大きくすることにより正極線PL1から正極線PL2へ電流を流すことができ、システム電圧を上昇させることができる。一方、システム電圧が目標電圧よりも高い場合、スイッチング素子Q1のオンデューティーを大きくすることにより正極線PL2から正極線PL1へ電流を流すことができ、システム電圧を低下させることができる。 Boost converter 10 boosts the voltage between positive line PL2 and negative line NL (hereinafter also referred to as “system voltage”) to a voltage equal to or higher than the output voltage of DC power supply B based on signal PWC from control device 30. When the system voltage is lower than the target voltage, by increasing the on-duty of switching element Q2, a current can flow from positive line PL1 to positive line PL2, and the system voltage can be increased. On the other hand, when the system voltage is higher than the target voltage, by increasing the on-duty of switching element Q1, a current can flow from positive line PL2 to positive line PL1, and the system voltage can be lowered.
 インバータ20は、制御装置30からの信号PWIに基づいて、正極線PL2および負極線NLから供給される直流電力を三相交流に変換して交流モータM1へ出力し、交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値Tinによって指定されたトルクを発生するように駆動される。また、インバータ20は、モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車の制動時、交流モータM1により発電された三相交流電力を信号PWIに基づいて直流に変換し、正極線PL2および負極線NLへ出力する。 The inverter 20 converts the DC power supplied from the positive electrode line PL2 and the negative electrode line NL into three-phase AC based on the signal PWI from the control device 30 and outputs it to the AC motor M1 to drive the AC motor M1. Thus, AC motor M1 is driven so as to generate torque specified by torque command value Tin. Inverter 20 also converts the three-phase AC power generated by AC motor M1 into DC based on signal PWI when braking a hybrid vehicle or electric vehicle on which motor drive device 100 is mounted, and generates positive line PL2 and negative line Output to line NL.
 電流センサ52は、昇圧コンバータ10のリアクトルL1に流れる電流ILを検出し、その検出値を制御装置30へ出力する。なお、電流センサ52は、直流電源BからリアクトルL1へ流れる電流を正値として検出し、リアクトルL1から直流電源Bへ流れる電流を負値として検出する。電圧センサ54は、正極線PL1と負極線NLとの間の電圧VLを検出し、その検出値を制御装置30へ出力する。電圧センサ56は、正極線PL2と負極線NLとの間の電圧VHを検出し、その検出値を制御装置30へ出力する。回転角センサ58は、交流モータM1のロータの回転角θを検出し、その検出値を制御装置30へ出力する。 Current sensor 52 detects current IL flowing through reactor L1 of boost converter 10 and outputs the detected value to control device 30. Current sensor 52 detects a current flowing from DC power supply B to reactor L1 as a positive value, and detects a current flowing from reactor L1 to DC power supply B as a negative value. Voltage sensor 54 detects voltage VL between positive electrode line PL1 and negative electrode line NL, and outputs the detected value to control device 30. Voltage sensor 56 detects voltage VH between positive electrode line PL2 and negative electrode line NL, and outputs the detected value to control device 30. The rotation angle sensor 58 detects the rotation angle θ of the rotor of the AC motor M <b> 1 and outputs the detected value to the control device 30.
 制御装置30は、パルス幅変調(以下「PWM(Pulse Width Modulation)」と称する。)法を用いて、昇圧コンバータ10を駆動するためのPWM信号を生成し、その生成したPWM信号を信号PWCとして昇圧コンバータ10へ出力する。ここで、制御装置30は、後述する方法により、昇圧コンバータ10に過電流が流れるのを防止する過電流防止制御を実行する。 Control device 30 generates a PWM signal for driving boost converter 10 using a pulse width modulation (hereinafter referred to as “PWM (Pulse Width Modulation)”) method, and uses the generated PWM signal as signal PWC. Output to boost converter 10. Here, control device 30 performs overcurrent prevention control for preventing overcurrent from flowing through boost converter 10 by a method described later.
 また、制御装置30は、図示されないECU(Electronic Control Unit)から受けるトルク指令値Tinに基づいて、交流モータM1を駆動するためのPWM信号を生成し、その生成したPWM信号を信号PWIとしてインバータ20へ出力する。 Control device 30 generates a PWM signal for driving AC motor M1 based on a torque command value Tin received from an ECU (Electronic Control Unit) (not shown), and inverter 20 uses the generated PWM signal as signal PWI. Output to.
 以下、この実施の形態1における昇圧コンバータ10の過電流防止制御について詳しく説明する。 Hereinafter, the overcurrent prevention control of the boost converter 10 in the first embodiment will be described in detail.
 図2は、図1に示した制御装置30における、昇圧コンバータ10の制御に関する部分の機能ブロック図である。図2を参照して、制御装置30は、減算部102と、電圧制御部104と、過電流防止制御部106と、PWM信号生成部108と、サンプル/ホールド(以下「S/H」と称する。)回路110と、キャリア信号生成部112とを含む。 FIG. 2 is a functional block diagram of a part related to control of the boost converter 10 in the control device 30 shown in FIG. Referring to FIG. 2, control device 30 includes subtraction unit 102, voltage control unit 104, overcurrent prevention control unit 106, PWM signal generation unit 108, and sample / hold (hereinafter referred to as “S / H”). .) Circuit 110 and carrier signal generator 112.
 減算部102は、電圧VHの目標を示す電圧指令値VRから電圧VHの検出値を減算し、その演算結果を電圧制御部104へ出力する。電圧制御部104は、電圧VHが電圧指令値VRに一致するように制御演算(たとえば比例積分制御)を実行し、PWM信号を生成するためのPWM要求値dinを制御出力として出力する。 The subtraction unit 102 subtracts the detected value of the voltage VH from the voltage command value VR indicating the target of the voltage VH, and outputs the calculation result to the voltage control unit 104. The voltage control unit 104 executes a control calculation (for example, proportional integration control) so that the voltage VH matches the voltage command value VR, and outputs a PWM request value din for generating a PWM signal as a control output.
 一方、キャリア信号生成部112は、後述のPWM信号生成部108においてPWM信号を生成するための、三角波から成るキャリア信号を生成し、その生成したキャリア信号をPWM信号生成部108およびS/H回路110へ出力する。 On the other hand, the carrier signal generation unit 112 generates a carrier signal composed of a triangular wave for generating a PWM signal in the PWM signal generation unit 108 described later, and the generated carrier signal is used as the PWM signal generation unit 108 and the S / H circuit. To 110.
 S/H回路110は、キャリア信号生成部112から受けるキャリア信号の山のタイミングで電流ILおよび電圧VL,VHをサンプリングし、そのサンプリング値を過電流防止制御部106へ出力する。また、S/H回路110は、キャリア信号の谷のタイミングにおいても電流ILおよび電圧VL,VHをサンプリングし、そのサンプリング値を過電流防止制御部106へ出力する。 The S / H circuit 110 samples the current IL and the voltages VL and VH at the timing of the peak of the carrier signal received from the carrier signal generation unit 112, and outputs the sampled values to the overcurrent prevention control unit 106. Further, the S / H circuit 110 samples the current IL and the voltages VL and VH also at the timing of the valley of the carrier signal, and outputs the sampled values to the overcurrent prevention control unit 106.
 過電流防止制御部106は、S/H回路110から受ける電流ILおよび電圧VL,VHのサンプリング値に基づいて、後述の方法により電流ILのピーク値を推定し、その推定されたピーク値の大きさ(絶対値)を示す電流ピーク値が予め定められた許容値以上になるとき、電流ピーク値が許容値以下となるように、後述の方法によりPWM要求値dinを変更する。そして、過電流防止制御部106は、PWM要求値dinが変更された場合には、その変更後の値をPWM指令値doutとして、PWM要求値dinの変更がなかった場合には、PWM要求値dinをPWM指令値doutとして、PWM信号生成部108へ出力する。 The overcurrent prevention control unit 106 estimates the peak value of the current IL by a method described later based on the current IL received from the S / H circuit 110 and the sampling values of the voltages VL and VH, and the magnitude of the estimated peak value. When the current peak value indicating the value (absolute value) is equal to or greater than a predetermined allowable value, the PWM request value din is changed by a method described later so that the current peak value is equal to or smaller than the allowable value. Then, when the PWM request value din is changed, the overcurrent prevention control unit 106 sets the value after the change as the PWM command value dout, and when the PWM request value din is not changed, the PWM request value The din is output to the PWM signal generation unit 108 as the PWM command value dout.
 PWM信号生成部108は、過電流防止制御部106から受けるPWM指令値doutを、キャリア信号生成部112から受けるキャリア信号と比較し、その大小関係に応じて論理状態が変化する信号PWCを生成する。そして、PWM信号生成部108は、その生成された信号PWCを昇圧コンバータ10のスイッチング素子Q1,Q2へ出力する。 The PWM signal generation unit 108 compares the PWM command value dout received from the overcurrent prevention control unit 106 with the carrier signal received from the carrier signal generation unit 112, and generates a signal PWC whose logic state changes according to the magnitude relationship. . PWM signal generation unit 108 then outputs the generated signal PWC to switching elements Q1 and Q2 of boost converter 10.
 なお、上記から分かるように、過電流防止制御部106においてPWM要求値dinを変更することは、PWM信号である信号PWCのデューティー比を変更することであり、すなわち、昇圧コンバータ10のスイッチング素子Q1,Q2のデューティー比を変更することに相当する。 As can be seen from the above, changing the PWM request value din in the overcurrent prevention control unit 106 is changing the duty ratio of the signal PWC that is a PWM signal, that is, the switching element Q1 of the boost converter 10. , Q2 is equivalent to changing the duty ratio.
 図3,図4は、実施の形態1における過電流防止制御を説明するための図である。なお、図3では、リアクトルL1に流れる電流ILが正値のときの制御について示され、図4では、電流ILが負値のときの制御について示される。図3を参照して、キャリア信号CRの方がPWM指令値doutよりも大きいとき、スイッチング素子Q1,Q2はそれぞれオフ,オンとなる。このとき、リアクトルL1に流れる電流ILは増加する。一方、PWM指令値doutの方がキャリア信号CRよりも大きいとき、スイッチング素子Q1,Q2はそれぞれオン,オフとなる。このとき、電流ILは減少する。 3 and 4 are diagrams for explaining the overcurrent prevention control in the first embodiment. 3 shows the control when the current IL flowing through the reactor L1 is a positive value, and FIG. 4 shows the control when the current IL is a negative value. Referring to FIG. 3, when carrier signal CR is larger than PWM command value dout, switching elements Q1 and Q2 are turned off and on, respectively. At this time, the current IL flowing through the reactor L1 increases. On the other hand, when the PWM command value dout is larger than the carrier signal CR, the switching elements Q1 and Q2 are turned on and off, respectively. At this time, the current IL decreases.
 リアクトルL1に流れる電流ILが正値のとき、キャリア信号CRの山のタイミング(時刻t1など)でS/H回路110(図2)により電流ILおよび電圧VL,VHがサンプリングされる(点P1)。そして、時刻t1におけるスイッチング素子Q2の残りオン期間(t3-t1)と、電流ILの傾きとから、電流ILのピーク値ILpeak(時刻t3における点P2)が推定される。なお、後述のように、スイッチング素子Q2の残りオン期間は、キャリア周期TcとPWM要求値dinとに基づいて算出でき、電流ILの傾きは、電圧VLとリアクトルL1のインダクタンスLとに基づいて算出できる。 When the current IL flowing through the reactor L1 is a positive value, the current IL and the voltages VL and VH are sampled by the S / H circuit 110 (FIG. 2) at the timing of the peak of the carrier signal CR (such as time t1) (point P1). . Then, the peak value ILpeak (point P2 at time t3) of the current IL is estimated from the remaining on-period (t3-t1) of the switching element Q2 at time t1 and the slope of the current IL. As will be described later, the remaining ON period of the switching element Q2 can be calculated based on the carrier cycle Tc and the PWM request value din, and the slope of the current IL is calculated based on the voltage VL and the inductance L of the reactor L1. it can.
 そして、このピーク値ILpeakが所定の許容値ILmaxと比較され、ピーク値ILpeakが許容値ILmax以上になるとき、電流ILが許容値ILmaxに達するまでの時間Tが算出され、電流ILが許容値ILmax以下となるように、算出された時間Tに基づいてPWM指令値doutが算出される(一例として、ここではピーク値ILpeakが許容値ILmaxに一致する場合が示される。)。 Then, the peak value ILpeak is compared with a predetermined allowable value ILmax, and when the peak value ILpeak is equal to or greater than the allowable value ILmax, a time T until the current IL reaches the allowable value ILmax is calculated, and the current IL is determined to be the allowable value ILmax. The PWM command value dout is calculated based on the calculated time T as follows (for example, the case where the peak value ILpeak matches the allowable value ILmax is shown here).
 これにより、スイッチング素子Q1,Q2のデューティー比が変更され、時刻t2において、スイッチング素子Q1がオフからオンとなり、スイッチング素子Q2がオンからオフとなる。 Thereby, the duty ratio of the switching elements Q1 and Q2 is changed, and at time t2, the switching element Q1 is turned on from off and the switching element Q2 is turned on from off.
 次に、図4を参照して、リアクトルL1に流れる電流ILが負値のときは、キャリア信号CRの谷のタイミング(たとえば時刻t11)でS/H回路110(図2)により電流ILおよび電圧VL,VHがサンプリングされる(点P3)。そして、時刻t11におけるスイッチング素子Q1の残りオン期間(t13-t11)と、電流ILの傾きとから、電流ILのピーク値ILpeak(時刻t13における点P4)が推定される。なお、後述のように、スイッチング素子Q1の残りオン期間は、キャリア周期TcとPWM要求値dinとに基づいて算出できる。 Next, referring to FIG. 4, when current IL flowing through reactor L1 is a negative value, current IL and voltage are applied by S / H circuit 110 (FIG. 2) at the timing of the valley of carrier signal CR (for example, time t11). VL and VH are sampled (point P3). Then, the peak value ILpeak of the current IL (point P4 at time t13) is estimated from the remaining ON period (t13-t11) of the switching element Q1 at time t11 and the slope of the current IL. As will be described later, the remaining ON period of the switching element Q1 can be calculated based on the carrier cycle Tc and the PWM request value din.
 そして、このピーク値ILpeakの大きさ(絶対値)が所定の許容値ILmaxと比較され、ピーク値ILpeakの大きさが許容値ILmax以上になるとき、電流ILが許容値ILmaxに達するまでの時間Tが算出され、電流ILの大きさが許容値ILmax以下となるように、算出された時間Tに基づいてPWM指令値doutが算出される(一例として、ここでもピーク値ILpeakが許容値ILmaxに一致する場合が示される。)。 Then, the magnitude (absolute value) of the peak value ILpeak is compared with a predetermined allowable value ILmax, and when the magnitude of the peak value ILpeak exceeds the allowable value ILmax, the time T until the current IL reaches the allowable value ILmax Is calculated, and the PWM command value dout is calculated based on the calculated time T so that the magnitude of the current IL is equal to or less than the allowable value ILmax. (As an example, the peak value ILpeak also matches the allowable value ILmax. The case to do is shown.)
 これにより、スイッチング素子Q1,Q2のデューティー比が変更され、時刻t12において、スイッチング素子Q1がオンからオフとなり、スイッチング素子Q2がオフからオンとなる。 Thereby, the duty ratio of the switching elements Q1 and Q2 is changed, and at time t12, the switching element Q1 is turned off and the switching element Q2 is turned on.
 図5は、図2に示したS/H回路110によるサンプリングタイミングを説明するための図である。図5を参照して、キャリア信号CRの山谷で電流ILをサンプリングすることにより、原理的に電流ILの平均値を取得することができる。これにより、複数のサンプリング値を平均化したりフィルタ処理を施す等して平均値を求める必要はなくなり、サンプリングされた瞬時値を用いて電流ILの平均値を得ることができる。 FIG. 5 is a diagram for explaining the sampling timing by the S / H circuit 110 shown in FIG. Referring to FIG. 5, by sampling current IL at the peaks and valleys of carrier signal CR, the average value of current IL can be obtained in principle. Thereby, it is not necessary to obtain an average value by averaging a plurality of sampling values or performing a filtering process, and the average value of the current IL can be obtained using the sampled instantaneous values.
 図6は、図2に示した過電流防止制御部106の詳細な機能ブロック図である。図6を参照して、過電流防止制御部106は、電流ピーク推定部120と、デューティー変更部122とを含む。 FIG. 6 is a detailed functional block diagram of the overcurrent prevention control unit 106 shown in FIG. Referring to FIG. 6, overcurrent prevention control unit 106 includes a current peak estimation unit 120 and a duty change unit 122.
 電流ピーク推定部120は、PWM要求値dinと、電流ILおよび電圧VL,VHの各サンプリング値とを受ける。そして、電流ピーク推定部120は、電流ILが正値のとき、電流ILのピーク値ILpeakを次式に基づいて推定する。 The current peak estimation unit 120 receives the PWM request value din and the sampling values of the current IL and the voltages VL and VH. Then, the current peak estimation unit 120 estimates the peak value ILpeak of the current IL based on the following equation when the current IL is a positive value.
 ILpeak=IL+(VL/L)×{Tc×(1-din)/2} …(1)
 ここで、(VL/L)は電流ILの傾きを表し、{Tc×(1-din)/2}はスイッチング素子Q2の残りオン時間(残り導通時間)を表す。なお、リアクトルL1のインダクタンスLは一定値とする。
ILpeak = IL + (VL / L) × {Tc × (1-din) / 2} (1)
Here, (VL / L) represents the slope of the current IL, and {Tc × (1-din) / 2} represents the remaining on-time (remaining conduction time) of the switching element Q2. The inductance L of the reactor L1 is a constant value.
 また、電流ピーク推定部120は、電流ILが負値のときは、電流ILのピーク値ILpeakを次式に基づいて推定する。 The current peak estimation unit 120 estimates the peak value ILpeak of the current IL based on the following equation when the current IL is a negative value.
 ILpeak=IL+{(VL-VH)/L}×(Tc×din/2) …(2)
 ここで、{(VL-VH)/L}は電流ILの傾きを表し、(Tc×din/2)はスイッチング素子Q1の残りオン時間(残り導通時間)を表す。
ILpeak = IL + {(VL−VH) / L} × (Tc × din / 2) (2)
Here, {(VL−VH) / L} represents the slope of the current IL, and (Tc × din / 2) represents the remaining ON time (remaining conduction time) of the switching element Q1.
 デューティー変更部122は、電流ILが正値のとき、電流ピーク推定部120により推定された電流ILのピーク値ILpeakを予め設定された所定の許容値ILmaxと比較し、推定されたピーク値ILpeakが許容値ILmax以上となるとき、電流ILが許容値ILmaxに達するまでの時間Tを次式に基づいて算出する。 When the current IL is a positive value, the duty changing unit 122 compares the peak value ILpeak of the current IL estimated by the current peak estimating unit 120 with a predetermined allowable value ILmax set in advance, and the estimated peak value ILpeak is When the value is equal to or greater than the allowable value ILmax, a time T until the current IL reaches the allowable value ILmax is calculated based on the following equation.
 T=(ILmax-IL)×(L/VL) …(3)
 そして、デューティー変更部122は、電流ILが許容値ILmax以下となるように、(3)式により算出された時間Tを用いてPWM指令値doutを次式により算出する。
T = (ILmax−IL) × (L / VL) (3)
Then, duty changing unit 122 calculates PWM command value dout by the following equation using time T calculated by equation (3) such that current IL is equal to or less than allowable value ILmax.
 dout=1-(T/Tc)×2 …(4)
 なお、上記の(4)式は、電流ILのピーク値ILpeakが許容値ILmaxとなるようにPWM指令値doutを変更するものであるが、ピーク値ILpeakが許容値ILmaxよりも小さくなるようにPWM指令値doutを変更してもよい。
dout = 1− (T / Tc) × 2 (4)
In the above formula (4), the PWM command value dout is changed so that the peak value ILpeak of the current IL becomes the allowable value ILmax, but the PWM is set so that the peak value ILpeak is smaller than the allowable value ILmax. The command value dout may be changed.
 一方、デューティー変更部122は、電流ILが負値のときは、電流ピーク推定部120により推定された電流ILのピーク値ILpeakの大きさ(絶対値)を許容値ILmaxと比較し、ピーク値ILpeakの大きさが許容値ILmax以上となるとき、電流ILが許容値ILmaxに達するまでの時間Tを次式に基づいて算出する。 On the other hand, when current IL is a negative value, duty changing unit 122 compares the magnitude (absolute value) of peak value ILpeak of current IL estimated by current peak estimating unit 120 with allowable value ILmax, and determines peak value ILpeak. Is equal to or greater than the allowable value ILmax, the time T until the current IL reaches the allowable value ILmax is calculated based on the following equation.
 T=(ILmax-IL)×{L/(VL-VH)} …(5)
 そして、デューティー変更部122は、電流ILの大きさが許容値ILmax以下となるように、(5)式により算出された時間Tを用いてPWM指令値doutを次式により算出する。
T = (ILmax−IL) × {L / (VL−VH)} (5)
Then, duty changing unit 122 calculates PWM command value dout by the following equation using time T calculated by equation (5) so that the magnitude of current IL is equal to or less than allowable value ILmax.
 dout=(T/Tc)×2 …(6)
 なお、上記の(6)式も、電流ILのピーク値ILpeakが許容値ILmaxとなるようにPWM指令値doutを変更するものであるが、ピーク値ILpeakの大きさが許容値ILmaxよりも小さくなるようにPWM指令値doutを変更してもよい。
dout = (T / Tc) × 2 (6)
In the above formula (6), the PWM command value dout is changed so that the peak value ILpeak of the current IL becomes the allowable value ILmax, but the magnitude of the peak value ILpeak is smaller than the allowable value ILmax. As described above, the PWM command value dout may be changed.
 なお、電流ILが正値の場合も負値の場合も、電流ILのピーク値ILpeakの大きさが許容値ILmaxよりも小さいときは、デューティー変更部122は、上記の演算を行なうことなく、PWM要求値dinをPWM指令値doutとして出力する。 In both cases where the current IL is a positive value and a negative value, when the magnitude of the peak value ILpeak of the current IL is smaller than the allowable value ILmax, the duty changing unit 122 performs PWM without performing the above calculation. The requested value din is output as the PWM command value dout.
 図7,8は、図1に示した制御装置30により実行される過電流防止制御の処理手順を説明するためのフローチャートである。図7は、リアクトルL1に流れる電流ILが正値のときの処理手順を説明するためのフローチャートであり、図8は、電流ILが負値のときの処理手順を説明するためのフローチャートである。なお、これらのフローチャートに示される処理は、一定時間毎または所定の条件が成立する毎にメインルーチンから呼び出されて実行される。 7 and 8 are flowcharts for explaining the processing procedure of the overcurrent prevention control executed by the control device 30 shown in FIG. FIG. 7 is a flowchart for explaining a processing procedure when the current IL flowing through the reactor L1 is a positive value, and FIG. 8 is a flowchart for explaining a processing procedure when the current IL is a negative value. The processes shown in these flowcharts are called from the main routine and executed every certain time or every time a predetermined condition is satisfied.
 図7を参照して、制御装置30は、電流センサ52(図1)により検出される電流ILが正値であるか否かを判定する(ステップS10)。電流ILが正値でないときは(ステップS10においてNO)、以降の一連の処理は実行されず、ステップS100へ処理が移行される。 Referring to FIG. 7, control device 30 determines whether or not current IL detected by current sensor 52 (FIG. 1) is a positive value (step S10). When current IL is not a positive value (NO in step S10), the subsequent series of processes is not executed, and the process proceeds to step S100.
 ステップS10において電流ILが正値であると判定されると(ステップS10においてYES)、制御装置30は、信号PWCを生成するためのキャリア信号の山のタイミングにおいて、電流センサ52により検出される電流ILおよび電圧センサ54により検出される電圧VLをサンプリングする(ステップS20)。 If it is determined in step S10 that current IL is a positive value (YES in step S10), control device 30 detects the current detected by current sensor 52 at the timing of the peak of the carrier signal for generating signal PWC. The voltage VL detected by the IL and the voltage sensor 54 is sampled (step S20).
 次いで、制御装置30は、サンプリングされた電圧VLを用いて電流ILの傾きを算出する(ステップS30)。具体的には、上記(1)式における(VL/L)の項が算出される。続いて、制御装置30は、PWM要求値dinを用いて、昇圧コンバータ10のスイッチング素子Q2の残りオン時間を算出する(ステップS40)。具体的には、上記(1)式における{Tc×(1-din)/2}の項が算出される。そして、制御装置30は、ステップS30において算出された電流ILの傾き、およびステップS40において算出されたスイッチング素子Q2の残りオン時間を用いて、上記(1)式により電流ILのピーク値ILpeakを推定(算出)する(ステップS50)。 Next, the control device 30 calculates the slope of the current IL using the sampled voltage VL (step S30). Specifically, the term (VL / L) in the above equation (1) is calculated. Subsequently, control device 30 calculates remaining on-time of switching element Q2 of boost converter 10 using PWM request value din (step S40). Specifically, the term {Tc × (1-din) / 2} in the above equation (1) is calculated. Then, control device 30 estimates peak value ILpeak of current IL by the above equation (1) using the slope of current IL calculated in step S30 and the remaining on-time of switching element Q2 calculated in step S40. (Calculate) (step S50).
 次いで、制御装置30は、ステップS50において推定された電流ILのピーク値ILpeakが許容値ILmax以上であるか否かを判定する(ステップS60)。ピーク値ILpeakが許容値ILmax以上であると判定されると(ステップS60においてYES)、制御装置30は、ステップS20においてサンプリングされた電流ILおよび電圧VLを用いて、電流ILが許容値ILmaxに達するまでの時間Tを上記(3)式により算出する(ステップS70)。 Next, control device 30 determines whether or not peak value ILpeak of current IL estimated in step S50 is greater than or equal to allowable value ILmax (step S60). When it is determined that peak value ILpeak is greater than or equal to allowable value ILmax (YES in step S60), control device 30 uses current IL and voltage VL sampled in step S20 to allow current IL to reach allowable value ILmax. Time T is calculated by the above equation (3) (step S70).
 そして、制御装置30は、電流ILが許容値ILmax以下となるように、ステップS70において算出された時間Tを用いて、上記(4)式によりPWM指令値doutを算出する(ステップS80)。これにより、昇圧コンバータ10のスイッチング素子Q1,Q2のデューティー比が変更される。 Then, control device 30 calculates PWM command value dout by the above equation (4) using time T calculated in step S70 so that current IL is equal to or less than allowable value ILmax (step S80). Thereby, the duty ratio of switching elements Q1, Q2 of boost converter 10 is changed.
 なお、ステップS60において、ピーク値ILpeakが許容値ILmaxよりも小さいと判定されると(ステップS60においてNO)、制御装置30は、PWM要求値dinをPWM指令値doutとする(ステップS90)。 If it is determined in step S60 that the peak value ILpeak is smaller than the allowable value ILmax (NO in step S60), the control device 30 sets the PWM request value din as the PWM command value dout (step S90).
 また、図8を参照して、制御装置30は、電流センサ52により検出される電流ILが負値であるか否かを判定する(ステップS110)。電流ILが負値でないときは(ステップS110においてNO)、以降の一連の処理は実行されず、ステップS200へ処理が移行される。 Referring to FIG. 8, control device 30 determines whether or not current IL detected by current sensor 52 is a negative value (step S110). When current IL is not a negative value (NO in step S110), a series of subsequent processes are not executed, and the process proceeds to step S200.
 ステップS110において電流ILが負値であると判定されると(ステップS110においてYES)、制御装置30は、キャリア信号の谷のタイミングにおいて、電流センサ52により検出される電流ILおよび電圧センサ54,56によりそれぞれ検出される電圧VL,VHをサンプリングする(ステップS120)。 If it is determined in step S110 that current IL is a negative value (YES in step S110), control device 30 detects current IL detected by current sensor 52 and voltage sensors 54 and 56 at the timing of the valley of the carrier signal. The voltages VL and VH detected by the above are sampled (step S120).
 次いで、制御装置30は、サンプリングされた電圧VL,VHを用いて電流ILの傾きを算出する(ステップS130)。具体的には、上記(2)式における{(VL-VH)/L}の項が算出される。続いて、制御装置30は、PWM要求値dinを用いて、昇圧コンバータ10のスイッチング素子Q1の残りオン時間を算出する(ステップS140)。具体的には、上記(2)式における(Tc×din/2)の項が算出される。そして、制御装置30は、ステップS130において算出された電流ILの傾き、およびステップS140において算出されたスイッチング素子Q1の残りオン時間を用いて、上記(2)式により電流ILのピーク値ILpeakを推定(算出)する(ステップS150)。 Next, the control device 30 calculates the slope of the current IL using the sampled voltages VL and VH (step S130). Specifically, the term {(VL−VH) / L} in the above equation (2) is calculated. Subsequently, control device 30 calculates remaining on-time of switching element Q1 of boost converter 10 using PWM request value din (step S140). Specifically, the term (Tc × din / 2) in the above equation (2) is calculated. Then, control device 30 estimates peak value ILpeak of current IL by the above equation (2) using the slope of current IL calculated in step S130 and the remaining on-time of switching element Q1 calculated in step S140. (Calculate) (step S150).
 次いで、制御装置30は、ステップS150において推定された電流ILのピーク値ILpeakの大きさ(絶対値)が許容値ILmax以上であるか否かを判定する(ステップS160)。ピーク値ILpeakの大きさが許容値ILmax以上であると判定されると(ステップS160においてYES)、制御装置30は、ステップS120においてサンプリングされた電流ILおよび電圧VL,VHを用いて、電流ILが許容値ILmaxに達するまでの時間Tを上記(5)式により算出する(ステップS170)。 Next, control device 30 determines whether or not the magnitude (absolute value) of peak value ILpeak of current IL estimated in step S150 is greater than or equal to allowable value ILmax (step S160). If it is determined that the magnitude of peak value ILpeak is greater than or equal to allowable value ILmax (YES in step S160), control device 30 uses current IL and voltages VL and VH sampled in step S120 to determine current IL as The time T until the allowable value ILmax is reached is calculated by the above equation (5) (step S170).
 そして、制御装置30は、電流ILの大きさが許容値ILmax以下となるように、ステップS170において算出された時間Tを用いて、上記(6)式によりPWM指令値doutを算出する(ステップS180)。これにより、昇圧コンバータ10のスイッチング素子Q1,Q2のデューティー比が変更される。 Then, control device 30 calculates PWM command value dout by equation (6) above using time T calculated in step S170 so that the magnitude of current IL is equal to or less than allowable value ILmax (step S180). ). Thereby, the duty ratio of switching elements Q1, Q2 of boost converter 10 is changed.
 なお、ステップS160において、ピーク値ILpeakの大きさが許容値ILmaxよりも小さいと判定されると(ステップS160においてNO)、制御装置30は、PWM要求値dinをPWM指令値doutとする(ステップS190)。 When it is determined in step S160 that the magnitude of peak value ILpeak is smaller than allowable value ILmax (NO in step S160), control device 30 sets PWM request value din as PWM command value dout (step S190). ).
 以上のように、この実施の形態1においては、昇圧コンバータ10に流れる電流ILの傾きと電流検出時におけるスイッチング素子Q1またはQ2の残りオン時間とに基づいて、電流ILのピーク値ILpeakが推定される。そして、ピーク値ILpeakの大きさが許容値以上になるとき、ピーク値ILpeakの大きさが許容値以下となるようにスイッチング素子のデューティー比が変更されるので、電流ピーク値が許容範囲内に抑えられる。したがって、この実施の形態1によれば、過電流を確実に防止することができる。また、過電流が防止されることにより昇圧コンバータ10を継続して動作可能である。さらに、過電流の発生を見越した設計をする必要がなく、必要最低限の電流許容量を有するスイッチング素子を用いることができるので、コストを下げることができる。 As described above, in the first embodiment, peak value ILpeak of current IL is estimated based on the slope of current IL flowing through boost converter 10 and the remaining on-time of switching element Q1 or Q2 at the time of current detection. The When the magnitude of the peak value ILpeak is greater than or equal to the allowable value, the duty ratio of the switching element is changed so that the magnitude of the peak value ILpeak is less than or equal to the allowable value, so that the current peak value is suppressed within the allowable range. It is done. Therefore, according to the first embodiment, overcurrent can be reliably prevented. Further, boost converter 10 can be operated continuously by preventing overcurrent. Furthermore, it is not necessary to design for the occurrence of overcurrent, and the switching element having the minimum allowable current can be used, so that the cost can be reduced.
 また、この実施の形態1によれば、キャリア信号CRの山谷で電流ILをサンプリングするようにしたので、原理的に電流ILの平均値を取得することができる。これにより、複数のサンプリング値を平均化したりフィルタ処理を施す等して平均値を求める必要はなくなり、サンプリングされた瞬時値を用いて電流ILの平均値を得ることができる。 Further, according to the first embodiment, since the current IL is sampled at the peaks and valleys of the carrier signal CR, the average value of the current IL can be obtained in principle. Thereby, it is not necessary to obtain an average value by averaging a plurality of sampling values or performing a filtering process, and the average value of the current IL can be obtained using the sampled instantaneous values.
 [実施の形態2]
 実施の形態1では、電流ILの瞬時ピーク値が許容値を超えないように昇圧コンバータ10のスイッチング素子Q1,Q2のデューティー比を変更するものとしたが、この実施の形態2では、より長期的な視点で過電流防止制御を実施する。
[Embodiment 2]
In the first embodiment, the duty ratio of switching elements Q1 and Q2 of boost converter 10 is changed so that the instantaneous peak value of current IL does not exceed the allowable value. However, in this second embodiment, a longer term is used. Implement overcurrent prevention control from a simple perspective.
 図9は、実施の形態2における過電流防止制御を説明するための図である。図9を参照して、所定の間隔で電流ILの平均値がサンプリングされる。一例として、図9に示されるように、時刻t0,t1,…において電流ILの平均値がサンプリングされる。なお、上述のように、キャリア信号の山や谷で電流ILをサンプリングすることにより、電流ILの平均値を取得することが可能である。 FIG. 9 is a diagram for explaining the overcurrent prevention control in the second embodiment. Referring to FIG. 9, the average value of current IL is sampled at a predetermined interval. As an example, as shown in FIG. 9, the average value of the current IL is sampled at times t0, t1,. Note that, as described above, the average value of the current IL can be obtained by sampling the current IL at the peaks and valleys of the carrier signal.
 この実施の形態2では、ある時刻t1で電流ILがサンプリングされると、その時刻t1での今回サンプリング値IL1と、時刻t0での前回サンプリング値IL0とに基づいて、次回の時刻t2における電流ILの予測値ILpが算出される。そして、予測値ILpが許容値ILmaxと比較され、予測値ILpが許容値ILmax以上になるとき(この許容値は、実施の形態1における許容値と同じでもよいし異なってもよい。)、交流モータM1(図1)のトルクを低減することによって交流モータM1の出力Pが一定に制御される。これにより、電流ILが許容値ILmax内に抑えられるとともに電圧VHの上昇が抑えられる。 In the second embodiment, when the current IL is sampled at a certain time t1, the current IL at the next time t2 is based on the current sampling value IL1 at the time t1 and the previous sampling value IL0 at the time t0. The predicted value ILp is calculated. Then, when predicted value ILp is compared with allowable value ILmax and predicted value ILp is equal to or greater than allowable value ILmax (this allowable value may be the same as or different from the allowable value in the first embodiment), alternating current. By reducing the torque of the motor M1 (FIG. 1), the output P of the AC motor M1 is controlled to be constant. As a result, the current IL is suppressed within the allowable value ILmax, and an increase in the voltage VH is suppressed.
 再び図1を参照して、実施の形態2におけるモータ駆動装置は、実施の形態1におけるモータ駆動装置100の構成において、制御装置30に代えて制御装置30Aを備える。 Referring to FIG. 1 again, the motor drive device in the second embodiment includes a control device 30A in place of control device 30 in the configuration of motor drive device 100 in the first embodiment.
 図10は、実施の形態2における制御装置30Aにおける、インバータ20の制御に関する部分の機能ブロック図である。図10を参照して、制御装置30Aは、微分演算部202と、トルク制御部204と、モータ制御部206と、PWM信号生成部208と、電流予測部210と、S/H回路212と、キャリア信号生成部214とを含む。 FIG. 10 is a functional block diagram of a portion related to the control of the inverter 20 in the control device 30A according to the second embodiment. Referring to FIG. 10, control device 30 </ b> A includes differential calculation unit 202, torque control unit 204, motor control unit 206, PWM signal generation unit 208, current prediction unit 210, S / H circuit 212, A carrier signal generator 214.
 微分演算部202は、回転角センサ58から得られる交流モータM1のロータの回転角θに微分演算を施すことによってロータの回転数ωを算出する。キャリア信号生成部214は、後述のPWM信号生成部208においてPWM信号を生成するための、三角波から成るキャリア信号を生成し、その生成したキャリア信号をPWM信号生成部208およびS/H回路212へ出力する。 The differential operation unit 202 calculates the rotational speed ω of the rotor by performing a differential operation on the rotational angle θ of the rotor of the AC motor M1 obtained from the rotational angle sensor 58. The carrier signal generation unit 214 generates a carrier signal composed of a triangular wave for generating a PWM signal in the PWM signal generation unit 208 described later, and the generated carrier signal is sent to the PWM signal generation unit 208 and the S / H circuit 212. Output.
 S/H回路212は、キャリア信号生成部214から受けるキャリア信号の山または谷のタイミングで、所定の間隔で電流ILをサンプリングし、そのサンプリング値を電流予測部210へ出力する。 The S / H circuit 212 samples the current IL at a predetermined interval at the peak or valley timing of the carrier signal received from the carrier signal generation unit 214, and outputs the sampling value to the current prediction unit 210.
 電流予測部210は、S/H回路212から電流ILのサンプリング値を受けると、その受けたサンプリング値(IL1)と前回のサンプリング値(IL0)とから、次回のサンプリングタイミングにおける電流ILの予測値ILpを次式により算出する。 When the current prediction unit 210 receives the sampling value of the current IL from the S / H circuit 212, the current prediction unit 210 predicts the current IL at the next sampling timing from the received sampling value (IL1) and the previous sampling value (IL0). ILp is calculated by the following equation.
 ILp=IL1+(IL1-IL0)/(t1-t0)×(t2-t1) …(7)
 ここで、t0は、前回のサンプリング時刻を表し、t1は、今回のサンプリング時刻を表し、t2は、次回のサンプリング予定時刻を表す。
ILp = IL1 + (IL1-IL0) / (t1-t0) × (t2-t1) (7)
Here, t0 represents the previous sampling time, t1 represents the current sampling time, and t2 represents the next scheduled sampling time.
 トルク制御部204は、電流予測部210から受ける電流ILの予測値ILpの大きさ(絶対値)を電流ILの許容値ILmaxと比較する。そして、予測値ILpの大きさが許容値ILmax以上となるとき、トルク制御部204は、電流ILが許容値ILmax以下となるように交流モータM1のトルクを低減する。たとえば、トルク制御部204は、電流ILが許容値ILmaxに制限されるように交流モータM1のトルク指令値TRを次式により算出し、その算出されたトルク指令値TRをモータ制御部206へ出力する。 The torque control unit 204 compares the magnitude (absolute value) of the predicted value ILp of the current IL received from the current prediction unit 210 with the allowable value ILmax of the current IL. When the predicted value ILp is greater than or equal to the allowable value ILmax, the torque control unit 204 reduces the torque of the AC motor M1 so that the current IL is less than or equal to the allowable value ILmax. For example, torque control unit 204 calculates torque command value TR of AC motor M1 by the following equation so that current IL is limited to allowable value ILmax, and outputs the calculated torque command value TR to motor control unit 206. To do.
 TR=(VL×ILmax)/ω …(8)
 一方、予測値ILpの大きさが許容値ILmaxよりも小さいときは、トルク制御部204は、トルク指令値Tinをトルク指令値TRとしてモータ制御部206へ出力する。
TR = (VL × ILmax) / ω (8)
On the other hand, when the predicted value ILp is smaller than the allowable value ILmax, the torque control unit 204 outputs the torque command value Tin as the torque command value TR to the motor control unit 206.
 モータ制御部206は、トルク制御部204から受けるトルク指令値TR、微分演算部202から受けるロータ回転数ω、およびその他図示しないモータ電流や電圧VH等に基づいて、交流モータM1を駆動するための電圧指令値を生成し、その生成した電圧指令値をPWM信号生成部208へ出力する。 Motor control unit 206 drives AC motor M1 based on torque command value TR received from torque control unit 204, rotor rotational speed ω received from differential operation unit 202, and other motor current and voltage VH (not shown). A voltage command value is generated, and the generated voltage command value is output to the PWM signal generation unit 208.
 PWM信号生成部208は、モータ制御部206から受ける電圧指令値を、キャリア信号生成部214から受けるキャリア信号と比較し、その大小関係に応じて論理状態が変化する信号PWIを生成する。そして、PWM信号生成部208は、その生成された信号PWIをインバータ20のスイッチング素子Q3~Q8へ出力する。 The PWM signal generation unit 208 compares the voltage command value received from the motor control unit 206 with the carrier signal received from the carrier signal generation unit 214, and generates a signal PWI whose logic state changes according to the magnitude relationship. Then, PWM signal generation unit 208 outputs the generated signal PWI to switching elements Q3 to Q8 of inverter 20.
 図11は、実施の形態2における制御装置30Aにより実行される過電流防止制御の処理手順を説明するためのフローチャートである。なお、このフローチャートに示される処理も、一定時間毎または所定の条件が成立する毎にメインルーチンから呼び出されて実行される。 FIG. 11 is a flowchart for explaining the processing procedure of the overcurrent prevention control executed by the control device 30A in the second embodiment. The process shown in this flowchart is also called from the main routine and executed every certain time or every time a predetermined condition is satisfied.
 図11を参照して、制御装置30Aは、信号PWIを生成するためのキャリア信号の山または谷のタイミングにおいて、電流センサ52により検出される電流ILをサンプリングする(ステップS210)。そして、制御装置30Aは、ステップS210においてサンプリングされた今回のサンプリング値IL1と前回サンプリング値IL0とから、次回のサンプリングタイミングにおける電流ILの予測値ILpを上記(7)式により算出する(ステップS220)。 Referring to FIG. 11, control device 30A samples current IL detected by current sensor 52 at the timing of the peak or valley of the carrier signal for generating signal PWI (step S210). The control device 30A calculates the predicted value ILp of the current IL at the next sampling timing from the current sampling value IL1 and the previous sampling value IL0 sampled in step S210 by the above equation (7) (step S220). .
 次いで、制御装置30Aは、ステップS220において算出された電流ILの予測値ILpの大きさ(絶対値)が許容値ILmax以上であるか否かを判定する(ステップS230)。予測値ILpの大きさが許容値ILmax以上であると判定されると(ステップS230においてYES)、制御装置30Aは、電流ILが許容値ILmax以下となるように交流モータM1のトルクを低減する(ステップS240)。たとえば、制御装置30Aは、電流ILが許容値ILmaxに制限されるように交流モータM1のトルク指令値TRを上記(8)式により算出する。 Next, control device 30A determines whether or not the magnitude (absolute value) of predicted value ILp of current IL calculated in step S220 is greater than or equal to allowable value ILmax (step S230). If it is determined that predicted value ILp is greater than or equal to allowable value ILmax (YES in step S230), control device 30A reduces torque of AC motor M1 such that current IL is equal to or smaller than allowable value ILmax ( Step S240). For example, control device 30A calculates torque command value TR of AC motor M1 by the above equation (8) so that current IL is limited to allowable value ILmax.
 一方、ステップS230において、予測値ILpの大きさが許容値ILmaxよりも小さいと判定されると(ステップS230においてNO)、制御装置30Aは、ステップS240を実行することなくステップS250へ処理を移行する。すなわち、この場合は、トルク指令値Tinがそのままトルク指令値TRとなる。 On the other hand, when it is determined in step S230 that the predicted value ILp is smaller than the allowable value ILmax (NO in step S230), control device 30A proceeds to step S250 without executing step S240. . That is, in this case, the torque command value Tin becomes the torque command value TR as it is.
 以上のように、この実施の形態2においては、電流ILの今回サンプリング値IL1と前回サンプリング値IL0とに基づいて、次回サンプリングタイミングにおける電流ILの予測値ILpが算出される。そして、予測値ILpの大きさが許容値以上になるとき、交流モータM1のトルクを低減するようにインバータ20が制御されるので、リアクトルL1に流れる電流ILが許容範囲内に抑えられるとともに、昇圧コンバータ10の出力電圧(電気負荷装置の入力電圧に相当)である電圧VHが上昇するのを抑えられる。したがって、この実施の形態2によれば、過電流を確実に防止し、かつ、電圧VHの上昇を防止することができる。また、過電流が防止されることにより昇圧コンバータ10を継続して動作可能である。さらに、過電流の発生を見越した設計をする必要がなく、必要最低限の電流許容量を有するスイッチング素子を用いることができるので、コストを下げることができる。 As described above, in the second embodiment, the predicted value ILp of the current IL at the next sampling timing is calculated based on the current sampling value IL1 and the previous sampling value IL0 of the current IL. When the predicted value ILp exceeds the allowable value, the inverter 20 is controlled so as to reduce the torque of the AC motor M1, so that the current IL flowing through the reactor L1 is suppressed within the allowable range, and the voltage is increased An increase in voltage VH, which is the output voltage of converter 10 (corresponding to the input voltage of the electric load device), can be suppressed. Therefore, according to the second embodiment, it is possible to reliably prevent overcurrent and prevent the voltage VH from rising. Further, boost converter 10 can be operated continuously by preventing overcurrent. Furthermore, it is not necessary to design for the occurrence of overcurrent, and the switching element having the minimum allowable current can be used, so that the cost can be reduced.
 なお、実施の形態1,2における過電流防止制御を組合わせることで、電流ILの瞬時ピーク値が許容値を超えるのを防止しつつ、さらに長期的な視点でも過電流の発生を防止することが可能となる。 In addition, by combining the overcurrent prevention control in the first and second embodiments, it is possible to prevent the instantaneous peak value of the current IL from exceeding the allowable value, and also prevent the occurrence of overcurrent from a long-term viewpoint. Is possible.
 なお、上記の各実施の形態においては、制御装置30(30A)により昇圧コンバータ10およびインバータ20を制御するものとしたが、昇圧コンバータ10を制御するための制御装置とインバータ20を制御するための制御装置とを分離して構成してもよい。 In each of the above-described embodiments, the boost converter 10 and the inverter 20 are controlled by the control device 30 (30A). However, the control device for controlling the boost converter 10 and the inverter 20 are controlled. You may comprise separately from a control apparatus.
 なお、上記において、インバータ20および交流モータM1は、この発明における「電気負荷装置」を形成し、昇圧コンバータ10は、この発明における「コンバータ」に対応する。また、電流センサ52は、この発明における「電流検出装置」に対応し、電流ピーク推定部120は、この発明における「推定部」に対応する。さらに、デューティー変更部122は、この発明における「変更部」に対応し、電流予測部210は、この発明における「予測部」に対応する。また、さらに、トルク制御部204およびモータ制御部206は、この発明における「制御部」を形成し、スイッチング素子Q2,Q1は、それぞれこの発明における「第1のスイッチング素子」および「第2のスイッチング素子」に対応する。 In the above, inverter 20 and AC motor M1 form an “electric load device” in the present invention, and boost converter 10 corresponds to “converter” in the present invention. Current sensor 52 corresponds to “current detection device” in the present invention, and current peak estimation unit 120 corresponds to “estimation unit” in the present invention. Furthermore, duty changing unit 122 corresponds to “changing unit” in the present invention, and current predicting unit 210 corresponds to “predicting unit” in the present invention. Furthermore, torque control unit 204 and motor control unit 206 form a “control unit” in the present invention, and switching elements Q2 and Q1 are “first switching element” and “second switching unit” in the present invention, respectively. Corresponds to "element".
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 10 昇圧コンバータ、20 インバータ、22 U相アーム、24 V相アーム、26 W相アーム、30,30A 制御装置、52 電流センサ、54,56 電圧センサ、58 回転角センサ、100 モータ駆動装置、102 減算部、104 電圧制御部、106 過電流防止制御部、108,208 PWM信号生成部、110,212 S/H回路、112,214 キャリア信号生成部、120 電流ピーク推定部、122 デューティー変更部、202 微分演算部、204 トルク制御部、206 モータ制御部、210 電流予測部、B 直流電源、PL1,PL2 正極線、NL 負極線、L1 リアクトル、Q1~Q8 スイッチング素子、D1~D8 ダイオード、M1 交流モータ。 10 boost converter, 20 inverter, 22 U-phase arm, 24 V-phase arm, 26 W-phase arm, 30, 30A control device, 52 current sensor, 54, 56 voltage sensor, 58 rotation angle sensor, 100 motor drive device, 102 subtraction Unit, 104 voltage control unit, 106 overcurrent prevention control unit, 108, 208 PWM signal generation unit, 110, 212 S / H circuit, 112, 214 carrier signal generation unit, 120 current peak estimation unit, 122 duty change unit, 202 Differential operation unit, 204 Torque control unit, 206 Motor control unit, 210 Current prediction unit, B DC power supply, PL1, PL2 Positive line, NL Negative line, L1, Reactor, Q1-Q8 switching element, D1-D8 diode, M1 AC motor .

Claims (11)

  1.  直流電源(B)と電気負荷装置(20,M1)との間に設けられ、前記電気負荷装置の入力電圧を前記直流電源の出力電圧以上に昇圧するコンバータ(10)の過電流防止制御装置であって、前記コンバータは、電流をエネルギーとして蓄積可能なリアクトル(L1)と、前記リアクトルに電流を流すためのスイッチング素子(Q1,Q2)とを含み、
     前記リアクトルに流れる電流を検出するための電流検出装置(52)と、
     前記電流検出装置により検出される電流の傾きと前記電流検出装置による電流検出時における前記スイッチング素子の残り導通時間とに基づいて、前記リアクトルに流れる電流のピーク値を推定する推定部(120)と、
     前記推定部により推定されるピーク値の大きさを示す電流ピーク値が第1の許容値以上になるとき、前記電流ピーク値が前記第1の許容値以下となるように前記スイッチング素子のデューティー比を変更する変更部(122)とを備える、過電流防止制御装置。
    An overcurrent prevention control device for a converter (10) provided between a DC power supply (B) and an electric load device (20, M1) and boosting an input voltage of the electric load device to an output voltage of the DC power supply or higher. The converter includes a reactor (L1) capable of storing current as energy, and switching elements (Q1, Q2) for flowing current through the reactor,
    A current detector (52) for detecting the current flowing through the reactor;
    An estimation unit (120) for estimating a peak value of a current flowing through the reactor based on a slope of a current detected by the current detection device and a remaining conduction time of the switching element at the time of current detection by the current detection device; ,
    When the current peak value indicating the magnitude of the peak value estimated by the estimation unit is equal to or greater than a first allowable value, the duty ratio of the switching element is set so that the current peak value is equal to or less than the first allowable value. An overcurrent prevention control device comprising: a change unit (122) for changing
  2.  前記電流検出装置は、前記リアクトルに流れる電流を所定の頻度で検出し、
     前記過電流防止制御装置は、さらに
     前記電流検出装置による今回検出値と前回検出値とに基づいて、前記電流検出装置による次回検出時の前記電流を予測する予測部(210)と、
     前記予測部により予測される電流の大きさが第2の許容値以上になるとき、前記電気負荷装置の負荷を低減するように前記電気負荷装置を制御する制御部(204,206)とを備える、請求の範囲1に記載の過電流防止制御装置。
    The current detection device detects a current flowing through the reactor at a predetermined frequency,
    The overcurrent prevention control device further includes a prediction unit (210) for predicting the current at the next detection by the current detection device based on the current detection value and the previous detection value by the current detection device,
    A control unit (204, 206) for controlling the electric load device so as to reduce a load of the electric load device when a current magnitude predicted by the prediction unit is equal to or greater than a second allowable value; The overcurrent prevention control device according to claim 1.
  3.  前記コンバータの前記スイッチング素子は、パルス幅変調方式に従ってオンオフ制御され、
     前記電流検出装置は、前記スイッチング素子へ出力される制御信号を生成するためのキャリア信号がピークとなるタイミングで前記リアクトルに流れる電流を検出する、請求の範囲1または2に記載の過電流防止制御装置。
    The switching element of the converter is ON / OFF controlled according to a pulse width modulation method,
    The overcurrent prevention control according to claim 1, wherein the current detection device detects a current flowing through the reactor at a timing when a carrier signal for generating a control signal output to the switching element reaches a peak. apparatus.
  4.  前記リアクトルの一端は、前記直流電源の正極に接続され、
     前記スイッチング素子は、
     前記リアクトルの他端と前記直流電源の負極との間に接続される第1のスイッチング素子(Q2)と、
     前記電気負荷装置の正極線と前記リアクトルの他端との間に接続される第2のスイッチング素子(Q1)とから成り、
     前記コンバータは、前記第1および第2のスイッチング素子にそれぞれ逆並列に接続される第1および第2のダイオード(D2,D1)をさらに含み、
     前記推定部は、前記直流電源から前記リアクトルへ電流が流れているとき、前記電流検出装置により検出される電流の傾きと前記電流検出装置による電流検出時における前記第2のスイッチング素子の残り導通時間とに基づいて、前記リアクトルに流れる電流のピーク値を推定する、請求の範囲1または2に記載の過電流防止制御装置。
    One end of the reactor is connected to the positive electrode of the DC power source,
    The switching element is
    A first switching element (Q2) connected between the other end of the reactor and the negative electrode of the DC power source;
    A second switching element (Q1) connected between the positive electrode line of the electric load device and the other end of the reactor;
    The converter further includes first and second diodes (D2, D1) connected in antiparallel to the first and second switching elements, respectively.
    When the current flows from the DC power source to the reactor, the estimation unit detects a slope of a current detected by the current detection device and a remaining conduction time of the second switching element at the time of current detection by the current detection device. The overcurrent prevention control device according to claim 1 or 2, wherein a peak value of a current flowing through the reactor is estimated based on
  5.  前記リアクトルの一端は、前記直流電源の正極に接続され、
     前記スイッチング素子は、
     前記リアクトルの他端と前記直流電源の負極との間に接続される第1のスイッチング素子(Q2)と、
     前記電気負荷装置の正極線と前記リアクトルの他端との間に接続される第2のスイッチング素子(Q1)とから成り、
     前記コンバータは、前記第1および第2のスイッチング素子にそれぞれ逆並列に接続される第1および第2のダイオード(D2,D1)をさらに含み、
     前記推定部は、前記リアクトルから前記直流電源へ電流が流れているとき、前記電流検出装置により検出される電流の傾きと前記電流検出装置による電流検出時における前記第1のスイッチング素子の残り導通時間とに基づいて、前記リアクトルに流れる電流のピーク値を推定する、請求の範囲1または2に記載の過電流防止制御装置。
    One end of the reactor is connected to the positive electrode of the DC power source,
    The switching element is
    A first switching element (Q2) connected between the other end of the reactor and the negative electrode of the DC power source;
    A second switching element (Q1) connected between the positive electrode line of the electric load device and the other end of the reactor;
    The converter further includes first and second diodes (D2, D1) connected in antiparallel to the first and second switching elements, respectively.
    When the current flows from the reactor to the DC power source, the estimation unit includes a slope of a current detected by the current detection device and a remaining conduction time of the first switching element at the time of current detection by the current detection device. The overcurrent prevention control device according to claim 1 or 2, wherein a peak value of a current flowing through the reactor is estimated based on
  6.  直流電源(B)と電気負荷装置(20,M1)との間に設けられ、前記電気負荷装置の入力電圧を前記直流電源の出力電圧以上に昇圧するコンバータ(10)の過電流防止制御装置であって、前記コンバータは、電流をエネルギーとして蓄積可能なリアクトル(L1)と、前記リアクトルに電流を流すためのスイッチング素子(Q1,Q2)とを含み、
     前記リアクトルに流れる電流を所定の頻度で検出するための電流検出装置(52)と、
     前記電流検出装置による今回検出値と前回検出値とに基づいて、前記電流検出装置による次回検出時の前記電流を予測する予測部(210)と、
     前記予測部により予測される電流の大きさが第1の許容値以上になるとき、前記電気負荷装置の負荷を低減するように前記電気負荷装置を制御する制御部(204,206)とを備える、過電流防止制御装置。
    An overcurrent prevention control device for a converter (10) provided between a DC power supply (B) and an electric load device (20, M1) and boosting an input voltage of the electric load device to an output voltage of the DC power supply or higher. The converter includes a reactor (L1) capable of storing current as energy, and switching elements (Q1, Q2) for flowing current through the reactor,
    A current detection device (52) for detecting the current flowing through the reactor at a predetermined frequency;
    A prediction unit (210) for predicting the current at the next detection by the current detection device based on the current detection value and the previous detection value by the current detection device;
    And a control unit (204, 206) for controlling the electric load device so as to reduce the load of the electric load device when the magnitude of the current predicted by the prediction unit exceeds a first allowable value. , Overcurrent prevention control device.
  7.  前記電流検出装置により検出される電流の傾きと前記電流検出装置による電流検出時における前記スイッチング素子の残り導通時間とに基づいて、前記リアクトルに流れる電流のピーク値を推定する推定部(120)と、
     前記推定部により推定されるピーク値の大きさを示す電流ピーク値が第2の許容値以上になるとき、前記電流ピーク値が前記第2の許容値以下となるように前記スイッチング素子のデューティー比を変更する変更部(122)とをさらに備える、請求の範囲6に記載の過電流防止制御装置。
    An estimation unit (120) for estimating a peak value of a current flowing through the reactor based on a slope of a current detected by the current detection device and a remaining conduction time of the switching element at the time of current detection by the current detection device; ,
    When the current peak value indicating the magnitude of the peak value estimated by the estimation unit is equal to or greater than a second allowable value, the duty ratio of the switching element is set so that the current peak value is equal to or less than the second allowable value. The overcurrent prevention control device according to claim 6, further comprising a changing unit (122) for changing
  8.  前記コンバータの前記スイッチング素子は、パルス幅変調方式に従ってオンオフ制御され、
     前記電流検出装置は、前記スイッチング素子へ出力される制御信号を生成するためのキャリア信号がピークとなるタイミングで前記リアクトルに流れる電流を検出する、請求の範囲6または7に記載の過電流防止制御装置。
    The switching element of the converter is ON / OFF controlled according to a pulse width modulation method,
    The overcurrent prevention control according to claim 6 or 7, wherein the current detection device detects a current flowing through the reactor at a timing when a carrier signal for generating a control signal output to the switching element reaches a peak. apparatus.
  9.  前記電気負荷装置は、
     前記コンバータに接続されるインバータ(20)と、
     前記インバータにより駆動される電動機(M1)とを含み、
     前記制御部は、前記予測部により予測される電流の大きさが前記第1の許容値以上になるとき、前記電動機のトルクを低減するように前記インバータを制御する、請求の範囲6または7に記載の過電流防止制御装置。
    The electrical load device is:
    An inverter (20) connected to the converter;
    An electric motor (M1) driven by the inverter,
    The range according to claim 6 or 7, wherein the control unit controls the inverter so as to reduce the torque of the electric motor when the magnitude of the current predicted by the prediction unit is equal to or greater than the first allowable value. The overcurrent prevention control apparatus of description.
  10.  直流電源(B)と電気負荷装置(20,M1)との間に設けられ、前記電気負荷装置の入力電圧を前記直流電源の出力電圧以上に昇圧するコンバータ(10)の過電流防止方法であって、前記コンバータは、電流をエネルギーとして蓄積可能なリアクトル(L1)と、前記リアクトルに電流を流すためのスイッチング素子(Q1,Q2)とを含み、
     前記リアクトルに流れる電流を検出するステップと、
     検出される電流の傾きと電流検出時における前記スイッチング素子の残り導通時間とに基づいて、前記リアクトルに流れる電流のピーク値を推定するステップと、
     推定される前記ピーク値の大きさを示す電流ピーク値が所定の許容値以上になるとき、前記電流ピーク値が前記許容値以下となるように前記スイッチング素子のデューティー比を変更するステップとを備える、過電流防止方法。
    An overcurrent prevention method for a converter (10) provided between a DC power supply (B) and an electric load device (20, M1) and boosting an input voltage of the electric load device to an output voltage of the DC power supply or higher. The converter includes a reactor (L1) capable of storing current as energy, and switching elements (Q1, Q2) for flowing current through the reactor,
    Detecting the current flowing through the reactor;
    Estimating the peak value of the current flowing through the reactor based on the detected current gradient and the remaining conduction time of the switching element at the time of current detection;
    Changing a duty ratio of the switching element so that the current peak value is equal to or less than the allowable value when the current peak value indicating the estimated magnitude of the peak value is equal to or greater than a predetermined allowable value. , Overcurrent prevention method.
  11.  直流電源(B)と電気負荷装置(20,M1)との間に設けられ、前記電気負荷装置の入力電圧を前記直流電源の出力電圧以上に昇圧するコンバータ(10)の過電流防止方法であって、前記コンバータは、電流をエネルギーとして蓄積可能なリアクトル(L1)と、前記リアクトルに電流を流すためのスイッチング素子(Q1,Q2)とを含み、
     前記リアクトルに流れる電流を所定の頻度で検出するステップと、
     前記電流の今回検出値と前回検出値とに基づいて、次回検出時の前記電流を予測するステップと、
     予測される電流の大きさが所定の許容値以上になるとき、前記電気負荷装置の負荷を低減するように前記電気負荷装置を制御するステップとを備える、過電流防止方法。
    An overcurrent prevention method for a converter (10) provided between a DC power supply (B) and an electric load device (20, M1) and boosting an input voltage of the electric load device to an output voltage of the DC power supply or higher. The converter includes a reactor (L1) capable of storing current as energy, and switching elements (Q1, Q2) for flowing current through the reactor,
    Detecting the current flowing through the reactor at a predetermined frequency;
    Predicting the current at the next detection based on the current detection value and the previous detection value of the current;
    And controlling the electric load device so as to reduce the load of the electric load device when the predicted magnitude of the electric current exceeds a predetermined allowable value.
PCT/JP2009/059321 2009-05-21 2009-05-21 Converter overcurrent prevention/control device and converter overcurrent prevention method WO2010134179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059321 WO2010134179A1 (en) 2009-05-21 2009-05-21 Converter overcurrent prevention/control device and converter overcurrent prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059321 WO2010134179A1 (en) 2009-05-21 2009-05-21 Converter overcurrent prevention/control device and converter overcurrent prevention method

Publications (1)

Publication Number Publication Date
WO2010134179A1 true WO2010134179A1 (en) 2010-11-25

Family

ID=43125877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059321 WO2010134179A1 (en) 2009-05-21 2009-05-21 Converter overcurrent prevention/control device and converter overcurrent prevention method

Country Status (1)

Country Link
WO (1) WO2010134179A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294053A (en) * 2017-07-31 2017-10-24 武汉华星光电技术有限公司 Current foldback circuit and exposure bench
JP2019054631A (en) * 2017-09-14 2019-04-04 富士電機株式会社 Electric power conversion system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175393A (en) * 1983-03-25 1984-10-04 Toshiba Corp Protecting device of motor
JPH11275869A (en) * 1998-03-19 1999-10-08 Mitsubishi Electric Corp Motor driving device and compressor using the same
JP2004096824A (en) * 2002-08-29 2004-03-25 Toyota Motor Corp Control method for electric vehicle and motor mounted thereon
JP2006074965A (en) * 2004-09-06 2006-03-16 Honda Motor Co Ltd Power supply device
JP2008104244A (en) * 2006-10-17 2008-05-01 Meidensha Corp Dc chopper
JP2008187773A (en) * 2007-01-26 2008-08-14 Fujitsu Ltd Power supply device and communication apparatus
JP2009077523A (en) * 2007-09-20 2009-04-09 Diamond Electric Mfg Co Ltd Digital converter and method for controlling the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175393A (en) * 1983-03-25 1984-10-04 Toshiba Corp Protecting device of motor
JPH11275869A (en) * 1998-03-19 1999-10-08 Mitsubishi Electric Corp Motor driving device and compressor using the same
JP2004096824A (en) * 2002-08-29 2004-03-25 Toyota Motor Corp Control method for electric vehicle and motor mounted thereon
JP2006074965A (en) * 2004-09-06 2006-03-16 Honda Motor Co Ltd Power supply device
JP2008104244A (en) * 2006-10-17 2008-05-01 Meidensha Corp Dc chopper
JP2008187773A (en) * 2007-01-26 2008-08-14 Fujitsu Ltd Power supply device and communication apparatus
JP2009077523A (en) * 2007-09-20 2009-04-09 Diamond Electric Mfg Co Ltd Digital converter and method for controlling the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294053A (en) * 2017-07-31 2017-10-24 武汉华星光电技术有限公司 Current foldback circuit and exposure bench
CN107294053B (en) * 2017-07-31 2019-02-12 武汉华星光电技术有限公司 Current foldback circuit and exposure bench
JP2019054631A (en) * 2017-09-14 2019-04-04 富士電機株式会社 Electric power conversion system

Similar Documents

Publication Publication Date Title
EP2590837B1 (en) Charging device for electromotive vehicle
EP2437384B1 (en) Converter control device and electric vehicle using the same
JP4462243B2 (en) Load driving device and vehicle equipped with the same
EP3104508B1 (en) In-vehicle charger and surge-suppression method for in-vehicle charger
US20130258734A1 (en) Apparatus for controlling voltage converting apparatus
JP6269647B2 (en) Power system
EP3057215B1 (en) Blend-over between ccm and dcm in forward boost reverse buck converter
EP3057214B1 (en) Blend-over between ccm and dcm in forward boost reverse buck converter
US20190123656A1 (en) Power supply system
JP2011091962A (en) Abnormality determination device of current sensor and abnormality determination method
JP2011223701A (en) Voltage estimation device and voltage estimation method of converter
JP5807524B2 (en) Control device for voltage converter
US10003264B2 (en) DC/DC converter
EP2808989B1 (en) Control apparatus for voltage conversion apparatus
JP2011109884A (en) Device and method for acquiring current value of converter
WO2010134179A1 (en) Converter overcurrent prevention/control device and converter overcurrent prevention method
JP2011101554A (en) Controller converter
JP5062245B2 (en) Load driving device and vehicle equipped with the same
JP2013207915A (en) Controller of voltage converter
JP2011182515A (en) Motor drive system and electric vehicle with the same
JP6880866B2 (en) Inverter control device and inverter control method
JP2010220306A (en) Motor control equipment
Reiter et al. Observer based PWM dead time optimization in automotive DC/DC-converters with synchronous rectifiers
JP2011067042A (en) Switching control device
JP2009033858A (en) Voltage converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP