WO2010133028A1 - 一种功率控制方法、装置和基站 - Google Patents

一种功率控制方法、装置和基站 Download PDF

Info

Publication number
WO2010133028A1
WO2010133028A1 PCT/CN2009/071889 CN2009071889W WO2010133028A1 WO 2010133028 A1 WO2010133028 A1 WO 2010133028A1 CN 2009071889 W CN2009071889 W CN 2009071889W WO 2010133028 A1 WO2010133028 A1 WO 2010133028A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise ratio
signal
sirest
error rate
target signal
Prior art date
Application number
PCT/CN2009/071889
Other languages
English (en)
French (fr)
Inventor
马雪利
李靖
王宗杰
杨波
周欢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2009/071889 priority Critical patent/WO2010133028A1/zh
Priority to CN200980123766.6A priority patent/CN102077657B/zh
Publication of WO2010133028A1 publication Critical patent/WO2010133028A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • H04W36/385Reselection control by fixed network equipment of the core network

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a power control method, apparatus, and base station.
  • the uplink of the WCDMA (Wideband Code Division Multiple Access) system is interference-limited.
  • the transmission power of all other UEs (User Equipments) is interference to the mobile station. Because the mobile stations are randomly distributed in the cell, some mobile stations are far away from the base station, some mobile stations are relatively close to the base station, and if the same transmission power is used for all mobile stations, the base station receives the near The high-power signal will cover the received long-distance low-power signal, so that the long-distance user's error is very large, thus forming a near-far effect; on the other hand, the mobile communication wireless channel has a wide-band dynamic frequency band. These characteristics are related to the nature of the mobile user and are often affected by various fast fading effects of the Doppler fading effect of the wireless link. In such cases, a fast and accurate power control is required to ensure the quality of service for the user.
  • An object of the present invention is to provide a power control method, apparatus, and base station, which are used to control the transmission power of a control channel when the transmitting end transmits pilot information through multiple control channels.
  • an embodiment of the present invention provides a power control method, including: Receiving pilot information sent by the transmitting end through multiple control channels, and one or more data streams sent by the sending end through the traffic channel;
  • the embodiment of the invention further provides a power control device, including:
  • a receiving module configured to receive pilot information sent by the sending end by using multiple control channels, and one or more data streams that are sent by the sending end by using a traffic channel;
  • a signal to noise ratio estimation module configured to obtain multiple estimated signal to noise ratios or multiple reference signal to noise ratios according to the pilot information
  • a target signal to noise ratio module configured to obtain one or more target signal to noise ratios for the block error rate of the data stream
  • a comparison processing module configured to compare the estimated signal to noise ratio obtained by the signal to noise ratio estimation module or the reference signal to noise ratio with a target signal to noise ratio obtained by the target signal to noise ratio module; The result of the comparison process for obtaining according to the comparison process instructs the transmitting end to adjust the transmit power of the control channel.
  • the embodiment of the invention further provides a base station, comprising the above power control device.
  • the technical solution provided by the embodiment of the present invention is provided for the case where the transmitting end sends the pilot information through multiple control channels, and the technical solution provided by the embodiment of the present invention can be used at the transmitting end.
  • the receiving end compares the estimated signal to noise ratio or the reference signal to noise ratio with the target signal to noise ratio, and instructs the transmitting end to adjust the transmit power of the control channel to implement the control. Control of the transmit power of the channel.
  • FIG. 1 is a flowchart of power control according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an uplink transmit diversity CLTD mode in which a UE adopts two antennas in the prior art
  • FIG. 3 is a schematic diagram of encoding of the STTD mode in the prior art
  • FIG. 4 is a schematic diagram of uplink MIMO in which a UE adopts two antennas in the prior art
  • Figure 5 is a flow chart of power control in an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of air transmission corresponding to two transmit antennas and two receive antennas;
  • FIG. 7 is a flow chart of power control in another embodiment of the present invention.
  • Figure 8 is a flow chart of power control in still another embodiment of the present invention.
  • FIG. 9 is a block diagram of a power control apparatus in one embodiment of the present invention. detailed description
  • a power control method provided by the embodiment of the present invention includes the following steps: Step 101: Receive pilot information sent by a sending end through multiple control channels, and one or more sent by a sending end by using a service channel. Data stream.
  • Step 102 Obtain a plurality of estimated signal to noise ratios or a plurality of reference signal to noise ratios according to the pilot information, and obtain one or more target signal to noise ratios according to the data streams.
  • Step 103 Compare the estimated signal to noise ratio or the reference signal to noise ratio with the target signal to noise ratio, and instruct the transmitting end to adjust the transmit power of the control channel according to the result of the comparison process.
  • the transmitting end when the technical solution of the embodiment of the present invention is used, when the transmitting end sends the pilot information through multiple control channels, the receiving end estimates the signal to noise ratio or the reference signal to noise ratio and the target signal to noise ratio.
  • the line compares processing, and instructs the transmitting end to adjust the transmit power of the control channel to implement control of the transmit power of the control channel.
  • the uplink transmission may adopt CLTD (Closed Loop transmit diversity) mode, STTD (Space time block coding based transmit antenna diversity), and uplink MIMO. (Multiple Input Multiple Output) Single data stream or dual data stream mode.
  • CLTD Cell Loop transmit diversity
  • STTD Space time block coding based transmit antenna diversity
  • uplink MIMO Multiple Input Multiple Output
  • the CLTD mode is shown in Figure 2.
  • the uplink physical channel DPDCH (Dedicated Physical Data Channel), HS-DPCCH (High-Speed Dedicated Physical Control Channel), E-DPDCH (E) -DCH Dedicated Physical Data Control Channel, E-DCH (Enhanced Dedicated Channel) dedicated physical data control channel))
  • DPCCHj and DPCCH 2 are respectively transmitted as the control channel DPCCH (Dedicated Physical Control Channel) on the antenna i and the antenna 2.
  • the pilot field and the TPC field transmitted on the DPCCH can be used for power control.
  • the coding principle of the STTD mode is shown in FIG. 3.
  • the uncoded data is transmitted on the antenna, and the encoded data is transmitted on the antenna 2.
  • the coding principle can be the same as that of the downlink STTD mode.
  • the two data streams are mapped to two E-DPDCHs, such as E-DPDCH E-DPDCH 2 , after scrambling and downlink messages.
  • the precoding weights wl, w2, w3, w4 are weighted, and after the two are merged
  • Two data streams are obtained, which are transmitted on the two transmit antenna antennas i and 2 , using DPCC and DPCCH 2 as control channels respectively.
  • This embodiment uses a TPC command word to ensure that the two DPCCs and DPCCH 2 have the same transmit power.
  • the power control method in this embodiment includes the following steps:
  • Step 201 DPCC receiving antenna and the transmitting antenna 2, DPCCH 2, and one or two data streams transmitted over the traffic channel.
  • the NodeB will use the pilot Pilot field of the DPCCH transmitted by the transmitting antenna 1 and the transmitting antenna 2 to perform SIR (Signal to Interference Ratio) measurement.
  • SIR Signal to Interference Ratio
  • DPCC and DPCCH 2 are respectively sent on antenna 1 and antenna 2, and the pilot fields are Pilotl and Pilot2 respectively, and are transmitted through the air channel, and each DPCCH is received by two receiving antennas (antenna 3 and Antenna 4 ) Received.
  • Step 202 Perform combining of receive diversity to obtain an estimated signal to noise ratio of two pilots.
  • the combining of the receive diversity is required.
  • a specific process of receiving diversity is as follows: First, the received signal is matched and filtered (i.e., multiplied by a spreading code of different delay) to obtain a plurality of multipath signals. Then use the beamformer to follow a certain adaptive algorithm, such as SMI.
  • sample Matrix Inversion sampling covariance matrix inversion
  • LMS Least Mean Square
  • a method for obtaining a pilot estimated signal-to-noise ratio is: calculating a ratio of pilot bits and noise of an uplink DPCCH by using a ratio of a received signal power on a code of a pilot to a code power of a non-orthogonal interference signal to obtain a pilot. Estimate the signal to noise ratio.
  • Step 203 Perform weighted combining of the estimated signal-to-noise ratios SIRest1 and SIRest2 to obtain a combined estimated signal-to-noise ratio SIRest of the pilot.
  • a method of weighted combining may be: obtaining a weighted value from a channel estimation obtained by a pilot signal, a weighting value of a high-level configuration, or a weighting value calculated by a base station adaptive algorithm, and the like.
  • Step 204 Obtain a target signal to noise ratio according to a block error rate or a frame error rate of the received data stream.
  • the target signal-to-noise ratio is obtained based on the block error rate of the received data stream, but in a specific implementation, the target signal-to-noise ratio can be obtained according to the block error rate or the frame error rate of the received data stream.
  • step 204 has no certain relationship with steps 202 to 203.
  • the BLER may be obtained by adding a frame reliability indicator, such as a CRC check bit, and the value of the SIR_target is obtained by the BLER.
  • a frame reliability indicator such as a CRC check bit
  • a SIR-target can be obtained directly according to the block error rate of the data stream;
  • the MIMO dual data stream mode since there are two uplink data streams, a target signal to noise ratio is determined according to the block error rate of the two uplink data streams, and the specific operation method may be: separately obtaining the error blocks of the two data. After the rate of BLER1 and BLER2, the BLER of the two data streams is obtained by calculation, and the SIR_target is determined by the block error rate, that is, the two data streams use the same signal-to-noise ratio target value.
  • BLER2 obtains the signal-to-noise ratio target value, and the following methods are available for selection.
  • BLER min(BLEm, BLER2) D.
  • Step 205 Determine whether SIRest is greater than SIR_target, and if yes, proceed to step 206, otherwise proceed to step 207.
  • this step determines the combined estimated signal to noise ratio and the corresponding target signal to noise ratio step 206 to instruct the UE to reduce the DPCC and DPCCH 2 transmit power.
  • the TPC command word "0" can be sent to the UE through the downlink channel.
  • the UE determines that the TPC command word is 0, the DPCC and DPCCH 2 transmit power are simultaneously reduced.
  • Step 207 Instruct the UE to enhance DPCC and DPCCH 2 transmit power.
  • the TPC command word "1" can be sent to the UE through the downlink channel, and when the UE determines that the TPC command word is 1, the DPCC and DPCCH 2 transmit power is enhanced.
  • the uplink power can be controlled when two or two data streams are sent by using two transmit antennas in the uplink.
  • the processing method for transmitting two data streams in the uplink can be analogized to the case when multiple data streams are transmitted in the uplink.
  • the UE may determine the adjustment amount of the transmit power of the traffic channel according to the adjustment amount of the transmit power of the control channel, and adjust the transmit power of the traffic channel.
  • the traffic channel After obtaining ⁇ , the traffic channel can be adjusted, the transmission power of the traffic channel is changed, the near-far effect is reduced, and the service quality of the user is guaranteed.
  • the uplink transmission may adopt CLTD (closed loop transmission) of uplink transmit diversity. Set) mode, STTD (transmission antenna diversity based on space-time block coding) mode, single data stream or dual data stream mode for uplink MIMO.
  • CLTD closed loop transmission
  • STTD transmission antenna diversity based on space-time block coding
  • This embodiment uses a TPC command word to ensure that the two DPCCs and DPCCH 2 have the same transmit power.
  • the power control method in this embodiment includes the following steps:
  • Step 301 DPCC receiving antenna and the transmitting antenna 2, DPCCH 2, and one or two data streams transmitted over the traffic channel.
  • Step 302 Obtain reference SNRs SIRest_refl, SIRest_re 2 of the two pilots.
  • the estimation method of the traffic channel SIR may be used, that is, the ratio of the received signal power on one code of the traffic channel to the code power of the non-orthogonal interference signal is calculated, but the control channel DPCCH is used.
  • the power offset is used instead of the power offset of the traffic channel, and the reference signal-to-noise ratio SIRest-refl is obtained by the power offset of DPCCHi and DPCCH 2
  • the following calculation method may be selected:
  • the above control channel power offset can be obtained from the following power offset values:
  • the power offset is configured by the upper layer.
  • C according to AG (Absolute Grant, absolute authorization) / RG (Relative Grant, relative authorization) / UPH (UE transmission power headroom, UE net transmission power)
  • the NodeB calculates the pilot power offset.
  • Step 303 Perform weighted combining of reference signal to noise ratios SIRest_refl and SIRest_re2 to obtain a pilot SIRest_ref.
  • Step 304 Obtain a target signal to noise ratio according to a block error rate of the received data stream.
  • step 304 and steps 302 to 303 do not have a certain sequential relationship.
  • Step 305 Determine whether SIRest_ref is greater than SIR_target, and if yes, proceed to step 306, otherwise proceed to step 307.
  • Step 306 instructing the UE to reduce the DPCC and DPCCH 2 transmit power.
  • the TPC command word "0" can be sent to the UE through the downlink channel.
  • the UE determines that the TPC command word is 0, the DPCC and DPCCH 2 transmit power are simultaneously reduced.
  • Step 307 instructing the UE to enhance the DPCCH DPCCH 2 transmit power.
  • the DPCC and DPCCH 2 transmit power is enhanced.
  • the uplink transmission may adopt a dual data stream mode of uplink MIMO.
  • two TPC command words are used to separately adjust the transmit power of the control channel and the transmit power of the traffic channel, and determine the relationship between the reference signal-to-noise ratio SIRest_ref of each pilot and its corresponding target signal-to-noise ratio, respectively.
  • the user equipment is instructed to adjust the transmit power of the control channel and the traffic channel according to the compared two size relationships.
  • the power control method in this embodiment includes the following steps:
  • Step 401 DPCC receiving antenna and the transmitting antenna 2, DPCCH 2, and two data streams transmitted over the traffic channel.
  • Step 402 Obtain reference signal to noise ratios SIRest_ref1, SIRest_re2 of two pilots (pilot 1 and pilot 2).
  • Step 403 Obtain a target signal to noise ratio according to the block error rate of the two received data streams.
  • SIR targetl
  • SIR target2.
  • Step 404 Determine the value of the TPC1 command word according to the size relationship between SIRest_ref1 and SIR_targetl and the size relationship between SIRest_ref2 and SIR_target2.
  • TPC1 is used to indicate the transmit power adjustment of the control channel.
  • Step 405 determining the value of the data stream power control word TPC2 according to the magnitude relationship of dif ⁇ SIR_ref.
  • TPC2 is used to indicate the relative adjustment of the transmit power of the service channel.
  • the specific implementation of this step can be as follows:
  • TPC2 0;
  • TPC2 1 ;
  • TPC2 command word "0" is used to indicate the relative power of the primary and secondary substreams is adjusted, the primary substream power is increased by the set value APSRPO, and the secondary substream power is reduced.
  • the TPC2 command word "1" is used to indicate the relative power of the primary and secondary substreams.
  • the primary substream power is reduced by APSRPO, and the secondary substream power is increased by APSRPO.
  • APSRPO indicates the relative power adjustment value of the primary and secondary data streams.
  • step 403 and step 404 do not have a certain order.
  • Step 406 The TPC1 command word and the TPC2 command word are returned to the UE through the downlink channel, and the TPC fields of the two downlink F-DPCH (Fractional Dedicated Physical Channel) code channels are respectively used to deliver TPCl and TPC2.
  • F-DPCH Fractional Dedicated Physical Channel
  • the UE After receiving the TPCl command word and the TPC2 command word, the UE adjusts according to the TPC1 command word.
  • the relative power of DPDCH 2 can be:
  • TPC1 command word "0”
  • TPC1 command word "0”
  • TPC1 command word "1”
  • enhancing 0? (( and 0? ((3 ⁇ 4 of power;
  • TPC2 command word "1"
  • the relative power of the primary and secondary substreams is adjusted, the primary substream power is reduced by ⁇ PSRPO, and the secondary substream power is increased by ⁇ PSRPO.
  • the embodiment of the present invention is described by taking two transmitting and two antennas as an example.
  • the embodiment of the present invention does not limit the specific number of antennas.
  • the transmitting antenna is N and the upstream data stream is M.
  • the uplink power control can also first combine the N estimated SNRs, and then compare with a target SNR of the M data streams to obtain a TPC control word, and control channel simultaneous power for the N transmit antennas at the UE end. Adjustment.
  • the power control device in the embodiment of the present invention includes:
  • the receiving module 901 is configured to receive pilot information sent by the sending end by using multiple control channels, and one or more data streams sent by the sending end by using the traffic channel.
  • the signal to noise ratio estimation module 902 is configured to obtain a plurality of estimated signal to noise ratios or a plurality of reference signal to noise ratios according to the pilot information.
  • step 202 For the method for obtaining the estimated signal to noise ratio, refer to step 202 and its related description. See step 302 and its related description for the method of obtaining the reference signal to noise ratio.
  • the target signal to noise ratio module 903 for the block error rate of the data stream, obtains one or more target signal to noise ratios.
  • the method of obtaining the target signal to noise ratio refer to step 204 and related descriptions.
  • the comparison processing module 904 is configured to compare the estimated signal to noise ratio obtained by the signal to noise ratio estimation module 902 or the reference signal to noise ratio with a target signal to noise ratio obtained by the target signal to noise ratio module 903.
  • steps 205, 305, and 404 and their related descriptions refer to steps 205, 305, and 404 and their related descriptions.
  • the indicating module 905 is configured to instruct the sending end to adjust the transmit power of the control channel according to a result of the comparing process obtained by the comparing process.
  • the comparison processing module 904 can include:
  • a weighted combining module configured to perform weighted combining on the plurality of estimated signal to noise ratios obtained by the signal to noise ratio estimation module or the reference signal to noise ratio to obtain a combined estimated signal to noise ratio and output;
  • a comparison module configured to compare the combined estimated signal to noise ratio obtained by the weighted combining module with a target signal to noise ratio obtained by the target signal to noise ratio module.
  • the above power control device may be a physical unit or a logic module of the base station.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种功率控制方法、 装置和基站 技术领域
本发明涉及通信技术领域, 尤其涉及一种功率控制方法、 装置和基站 背景技术
WCDMA (Wideband Code Division Multiple Access, 宽带码分多址) 系 统上行链路是干扰受限的, 其它所有 UE (User Equipment, 用户设备) 的 发射功率对本移动台来说都是干扰。 因为移动台在小区中是随机分布的, 有 的移动台离基站比较远, 有的移动台离基站比较近, 而如果对所有的移动台 都采用相同的发射功率, 则在基站接收到的近距离大功率信号就会掩盖掉接 收到的远距离小功率信号, 从而使得远距离用户的误码就非常大, 这样就形 成了远近效应; 另一方面, 移动通信的无线信道有一个宽带动态频段, 这些 特性和移动用户的性质有关, 并且通常受到无线链路的多普勒 (Doppler) 衰落效应各种快衰落的影响。 在这样的情况下, 就需要一个快速而准确的功 率控制, 以保证用户的服务质量。
在现有技术中, 针对发送端通过一个控制信道发送导频信息的情况存在 对控制信道的功率控制方案, 发明人深感在发送端通过多个控制信道发送 导频信息的情况下, 需要合适的功率控制方案。 发明内容
本发明实施例的目的在于提供一种功率控制方法、 装置和基站, 用以在 发送端通过多个控制信道发送导频信息的情况下, 实现对控制信道的发射功 率的控制。
为了实现上述目的, 本发明实施例提供了一种功率控制方法, 包括: 接收发送端通过多个控制信道发送的导频信息, 以及所述发送端通过业 务信道发送的一个或多个数据流;
根据所述导频信息获得多个估计信噪比或者多个参考信噪比, 根据所述 数据流获得一个或多个目标信噪比;
对所述估计信噪比或者所述参考信噪比与所述目标信噪比进行比较处 理, 并根据所述比较处理的结果指示所述发送端对所述控制信道的发射功率 进行调整。
本发明实施例还提供了一种功率控制装置, 包括:
接收模块, 用于接收发送端通过多个控制信道发送的导频信息, 以及所 述发送端通过业务信道发送的一个或多个数据流;
信噪比估计模块, 用于根据所述导频信息获得多个估计信噪比或者多个 参考信噪比;
目标信噪比模块, 用于所述数据流的误块率获得一个或多个目标信噪 比;
比较处理模块, 用于对所述信噪比估计模块获得的所述估计信噪比或者 所述参考信噪比与所述目标信噪比模块获得的目标信噪比进行比较处理; 指示模块, 用于根据所述比较处理得到的比较处理的结果指示所述发送 端对所述控制信道的发射功率进行调整。
本发明实施例还提供了一种基站, 包括上述的功率控制装置。
本发明实施例的有益效果在于: 本发明实施例提供的技术方案, 是针对 发送端通过多个控制信道发送导频信息的情况提出的, 采用本发明实施例提 供的技术方案, 可以在发送端通过多个控制信道发送导频信息时, 由接收端 通过估计信噪比或者参考信噪比与目标信噪比进行比较处理, 并指示发送端 对控制信道的发射功率进行调整, 以实现对控制信道的发射功率的控制。 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种功率控制的流程图;
图 2为现有技术中 UE采用两天线的上行发射分集 CLTD模式的示意 图;
图 3为现有技术中 STTD模式的编码原理图;
图 4为现有技术中 UE采用两天线的上行 MIMO示意图;
图 5为本发明一个实施例中的功率控制的流程图;
图 6为两个发射天线与两个接收天线对应的空中传输示意图; 图 7为本发明的另一个实施例中的功率控制的流程图;
图 8为本发明的再一个实施例中的功率控制的流程图;
图 9为本发明一个实施例中的功率控制装置的框图。 具体实施方式
本发明实施例提供的一种功率控制方法, 如图 1所示, 包括以下步骤: 步骤 101, 接收发送端通过多个控制信道发送的导频信息, 以及发送端 通过业务信道发送的一个或多个数据流。
步骤 102, 根据导频信息获得多个估计信噪比或者多个参考信噪比, 根 据数据流获得一个或多个目标信噪比。
步骤 103, 对估计信噪比或者参考信噪比与目标信噪比进行比较处理, 并根据比较处理的结果指示发送端对控制信道的发射功率进行调整。
可见, 采用本发明实施例的技术方案, 可以在发送端通过多个控制信道 发送导频信息时, 由接收端通过估计信噪比或者参考信噪比与目标信噪比进 行比较处理, 并指示发送端对控制信道的发射功率进行调整, 以实现对控制 信道的发射功率的控制。
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 详细描述。
本发明的一个实施例中以两个发射天线, 两个接收天线为例进行说明。 本实施例中, 上行发射可以采用上行发射分集的 CLTD (Closed loop transmit diversity, 闭环发射分集) 模式、 STTD (Space time block coding based transmit antenna diversity, 基于时空块编码的发射天线分集) 模式, 上 行 MIMO (Multiple Input Multiple Output, 多输入多输出) 的单数据流或者 双数据流模式等。
其中, CLTD模式如图 2所示, 上行物理信道 DPDCH (Dedicated Physical Data Channel, 专用物理业务信道) , HS-DPCCH (High-Speed Dedicated Physical Control Channel, 高速专用物理控制信道) , E-DPDCH (E-DCH Dedicated Physical Data Control Channel, E-DCH (Enhanced Dedicated Channel, 增强专用信道) 专用物理数据控制信道) ) 加扰之后, 与下行反馈得到的权重 wl、 w2进行加权运算, 得到两路数据流, 分别以 DPCCHj , DPCCH2作为控制信道 DPCCH (Dedicated Physical Control Channel, 专用物理控制信道) 在天线 i和天线 2上发射, DPCCH上发送的导 频字段、 TPC字段可用于功率控制。
STTD模式的编码原理如图 3所示, 在天线上发射未编码的数据, 在天 线 2上发射编码后的数据, 其编码原理可以与下行 STTD模式的编码原理相 同。
上行 MIMO如图 4所示, 两个数据流经过扩频、 物理信道映射等过 程, 映射到两个 E-DPDCH上, 为 E-DPDCH E-DPDCH2, 经过加扰后, 与 下行消息得到的预编码权重 wl、 w2、 w3、 w4进行加权运算, 两两合并后 得到两路数据流, 分别以 DPCC , DPCCH2作为控制信道, 在两个发射天 线天线 i和天线 2上发送。
当上行采用两天线的发射分集 (CLTD模式、 STTD模式) 时, 只有一 个上行数据流, 两个发射天线, 两个接收天线。 当上行采用两天线的
MIMO时, 可以有一个或者两个数据流。
本实施例使用一个 TPC命令字保证这两个 DPCC , DPCCH2的发射功 率相同。 本实施例中的功率控制方法, 如图 5所示, 包括以下步骤:
步骤 201, 接收天线和天线 2发送的 DPCC 、 DPCCH2, 以及通过业务 信道发送的一个或两个数据流。
NodeB将利用发射天线 1和发射天线 2所发射的 DPCCH的导频 Pilot 字段进行 SIR (Signal to Interference Ratio, 信噪比) 测量。
如图 6所示, DPCC 、 DPCCH2分别在天线 1和天线 2上发出, , 其 导频字段分别为 Pilotl , Pilot2, 经过空中信道的传输, 每个 DPCCH都会被 2 个接收天线 (天线 3和天线 4) 所接收。
步骤 202, 进行接收分集的合并, 得到两个导频的估计信噪比
SIRest SIRest2。
由于每个控制信道传输的导频信息都会被 2个接收天线所接收, 因此, 需要进行接收分集的合并。 例如, 一种接收分集的具体处理过程为: 首先对 接收信号进行匹配滤波 (即乘以不同时延的扩频码), 得到多个多径信号。 然 后将这多径信号分别用波束形成器按照一定的自适应算法, 如 SMI
(Sample Matrix Inversion, 采样协方差矩阵求逆) 算法或 LMS (Least Mean Square, 最小均方) 算法, 进行空间滤波在保证在期望方向信号增益最大, 最后根据信道估计对多径输出信号进行合并得到最终输出。
例如, 一种导频估计信噪比的获取方法为: 通过导频的一个码上的接收 信号功率与非正交干扰信号码功率的比值计算上行 DPCCH的导频位和噪声 的比值得到导频估计信噪比。 步骤 203, 进行估计信噪比 SIRestl、 SIRest2的加权合并得到导频的一 个合并估计信噪比 SIRest。
例如, 一种加权合并的方法可为: 由导频信号获得的信道估计得到加权 值、 高层配置的加权值、 或基站自适应算法计算得到的加权值等等。
步骤 204, 根据接收到的数据流的误块率或误帧率获得一个目标信噪比
SIR— target。
下文中以根据接收到的数据流的误块率获得目标信噪比来进行说明, 但 在具体实现时, 可以根据接收到的数据流的误块率或误帧率获得目标信噪 比。
在具体实现时, 步骤 204与步骤 202至 203没有一定的先后关系。
在本步骤中, 具体可以利用增加帧可靠性指示符, 如 CRC校验位进行 统计得到 BLER, 由 BLER获得 SIR— target的取值。
在上行采用两天线的发射分集 (CLTD模式、 STTD模式) 或者 MIMO 单数据流模式时, 由于只有一个上行数据流, 因此, 可以直接根据该数据流 的误块率获得一个 SIR— target; 在上行采用 MIMO双数据流模式时, 由于有 两个上行数据流, 因此, 根据两个上行数据流的误块率确定一个目标信噪 比, 具体的操作方法可以为: 分别统计得到两数据的误块率 BLER1 , BLER2后, 通过计算处理得到两数据流的 BLER, 并由此误块率确定 SIR— target, 即两个数据流使用同一个信噪比目标值。
根据两数据的误块率 BLERl , BLER2得到信噪比目标值, 可以采用的 方法有以下几种供选择。
A、 根据式 (1 ) 获得 BLER1, BLER2的均值: 歷 =歷1 +2 ( 1 )
2
B、 获得 BLERl, BLER2中的最大值: BLER = ma BLE ,
C、 获得 BLERl , BLER2中的最小值: BLER = min(BLEm, BLER2) D、 根据式 (2) 获得前 n次 BLER1及 BLER2统计均值:
^ BLERl + ^ BLERl
BLER = 2 n- (2)
2n
步骤 205, 判断 SIRest是否大于 SIR— target, 若是, 进行步骤 206, 否 则进行步骤 207。
可以理解, 本步骤即确定合并估计信噪比与相应目标信噪比的大小关 步骤 206, 指示 UE降低 DPCC 、 DPCCH2发射功率。
具体可以令 TPC命令字 = "0" , 通过下行信道发送给 UE, 当 UE判断出 TPC命令字为 0时, 同时降低 DPCC 、 DPCCH2发射功率。
步骤 207, 指示 UE增强 DPCC 、 DPCCH2发射功率。
具体可以令 TPC命令字 = " 1 " , 通过下行信道发送给 UE, 当 UE判断出 TPC命令字为 1时, 增强 DPCC 、 DPCCH2发射功率。
可见, 采用本实施例提供的方案, 可以在上行采用两个发射天线发送一 个或者两个数据流时实现对上行功率的控制。 其中, 针对上行发射两个数据 流时的处理方式可以类推到上行发射多个数据流时的情况。
UE在调整控制信道的发射功率后, 可以根据控制信道的发射功率的调 整量确定业务信道的发射功率的调整量, 对业务信道的发射功率进行调整。
在本实施例中, E-DPDCH增益因子 d按照可以按照公式 (1 ) 计算: ed = c - d ( 1 ) 其中, ^是 DPCCH的增益因子, Aed为配置的 E-DPDCH功率偏置。
在获得 ^后, 即可对业务信道进行调整, 改变业务信道的发射功率, 降 低远近效应, 保障用户的业务质量。
本发明的另一个实施例中以两个发射天线, 两个接收天线为例进行说 明。 本实施例中, 上行发射可以采用上行发射分集的 CLTD (闭环发射分 集)模式, STTD (基于时空块编码的发射天线分集)模式) , 上行 MIMO 的单数据流或者双数据流模式等。
本实施例使用一个 TPC命令字保证这两个 DPCC , DPCCH2的发射功 率相同。 本实施例中的功率控制方法, 如图 7所示, 包括以下步骤:
步骤 301, 接收天线和天线 2发送的 DPCC 、 DPCCH2, 以及通过业务 信道发送的一个或两个数据流。
步骤 302, 获得两个导频的参考信噪比 SIRest— refl、 SIRest— re 2。
为了保证业务信道 SIR的稳定, 在本步骤中, 可使用业务信道 SIR的估 计方法, 即计算业务信道的一个码上的接收信号功率与非正交干扰信号码功 率的比值, 但使用控制信道 DPCCH的功率偏置代替业务信道的功率偏置, 由 DPCCHi, DPCCH2的功率偏置对应得到参考信噪比 SIRest— refl、
SIRest— re 2。
上述的控制信道 DPCCH的功率偏置代替业务信道的功率偏置时, 可选 择如下计算方法:
( 1 )在计算 SIRest— refl时, 仅把其中的业务信道 E-DPDCH1的功率 偏置换为控制信道 DPCCH的功率偏置; 在计算 SIRest— re 2时, 仅把其中 的业务信道 E-DPDCH2的功率偏置换为控制信道 DPCCH的功率偏置; (2)在计算 SIRest— refl时, 把所有的业务信道 E-DPDCH1及 E- DPDCH2的功率偏置均换为 DPCCH的功率偏置; 在计算 SIRest— re 2时, 把所有的业务信道 E-DPDCH1及 E-DPDCH2的功率偏置均换为 DPCCH的 功率偏置。
上述的控制信道功率偏置可以由以下功率偏置值获得:
A、 计算上一个子帧或者时隙的导频功率偏置。
B、 由高层配置功率偏置。 C、 根据 AG (Absolute Grant, 绝对授权) /RG (Relative Grant, 相对 授权) /UPH (UE transmission power headroom, UE净发射功率) , 由
NodeB计算得到导频功率偏置。
步骤 303, 进行参考信噪比 SIRest— refl、 SIRest— re 2的加权合并得到导 频的 SIRest— ref。
步骤 304, 根据接收到的数据流的误块率获得一个目标信噪比
SIR— target。
在具体实现时, 步骤 304与步骤 302至 303没有一定的先后关系。 步骤 305, 判断 SIRest— ref是否大于 SIR— target, 若是, 进行步骤 306, 否则进行步骤 307。
步骤 306, 指示 UE降低 DPCC 、 DPCCH2发射功率。
具体可以令 TPC命令字 = "0" , 通过下行信道发送给 UE, 当 UE判断出 TPC命令字为 0时, 同时降低 DPCC 、 DPCCH2发射功率。
步骤 307, 指示 UE增强 DPCCH DPCCH2发射功率。
具体可以令 TPC命令字 = " 1 " , 通过下行信道发送给 UE, 当 UE判断出
TPC命令字为 1时, 增强 DPCC 、 DPCCH2发射功率。
本发明的再一个实施例中以两个发射天线, 两个接收天线为例进行说 明。 本实施例中, 上行发射可以采用上行 MIMO的双数据流模式。
本实施例使用两个 TPC命令字分别调整控制信道的发射功率以及业务 信道的发射功率, 在实现时分别确定各个导频的参考信噪比 SIRest— ref与其 相应目标信噪比的大小关系, 并根据该比较出来的两个大小关系指示所述用 户设备对控制信道以及业务信道的发射功率进行调整。
本实施例中的功率控制方法, 如图 8所示, 包括以下步骤:
步骤 401, 接收天线和天线 2发送的 DPCC 、 DPCCH2, 以及通过业务 信道发送的两个数据流。 步骤 402, 获得两个导频 (导频 1和导频 2) 的参考信噪比 SIRest— ref 1、 SIRest— re 2。
步骤 403, 根据接收到的两个数据流的误块率获得目标信噪比
SIR— targetl、 SIR— target2。
步骤 404, 根据 SIRest— ref 1与 SIR— targetl的大小关系以及 SIRest— ref 2 与 SIR— target2的大小关系确定 TPC1命令字的值。
TPC1用于指示控制信道的发射功率调整。
在本步骤中, 确定 SIRest— ref l与 SIR— targetl的大小关系以及
SIRest— ref 2与 SIR— target2的大小关系的方法为: 分别计算
Δ SIRest— ref 1 = SIRest— ref 1 - SIRtargetl;
Δ SIRest— re 2= SIRest— re 2 - SIRtarget2;
并根据 Δ SIRest— refl以及 Δ SIRest— re 2是否大于 0来确定各个导频的估 计信噪比或者参考信噪比与其相应目标信噪比的大小关系。
本步骤中确定 TPC1命令字的值的具体实现可以如下:
计算 sum Δ SIR— ref = Δ SIRest— ref 1 + Δ SIRest— re 2;
若 Δ SIRest— ref l>0, 且 Δ SIRest— ref 2>0, TPC1 =0; 若 Δ SIRest— ref l <0, 且 Δ SIRest— ref 2<0, TPC1 = 1 ; 若 Δ SIRest— ref l >0, Δ SIRest— ref 2<0, 如果 sum A SIR— ref >0, 贝 lj TPC1 =0; 若 Δ SIRest— ref 1>0, Δ SIRest— ref 2<0, 如果 sum Δ SIR— ref <0, 贝 lj
TPC1 = 1 ; 若 Δ SIRest— ref 1<0, Δ SIRest— ref 2>0, 如果 sum A SIR— ref >0, 贝 lj TPC1 =0; 若 Δ SIRest— ref l <0, △ SIRest ref 2>0, 如果 sum A SIR ref <0, 则 TPC1 = 1 ; 其它情况, 不进行功率调整。
其中, TPC1=0表示指示同时降低 DPCC 、 DPCCH2的发射功率; TPC1 = 1表示指示同时增加 DPCC 、 DPCCH2的发射功率。
步骤 405, 根据 dif Δ SIR— ref的大小关系确定数据流功率控制字 TPC2 的值。
其中, difASIR— ref=ASIRest— refl-ASIRest— re 2, TPC2用于指示业务 信道的发射功率的相对调整, 本步骤的具体实现可以如下:
若 difASIR>N, TPC2=0;
若 difASIR<N, TPC2=1;
若 difASIR=N, 不做功率调整; 其中 N为门限值, TPC2命令字 = "0"用于指示调整主辅子流的相对 功率, 主子流功率增加设定值 APSRPO, 辅子流功率减小 APSRPO;
TPC2命令字 = "1" 用于指示调整主辅子流的相对功率, 主子流功率减 小 APSRPO, 辅子流功率增大 APSRPO。
APSRPO表示主辅数据流的相对功率调整值。
在本实施例中步骤 403和步骤 404没有一定的先后顺序。
步骤 406, 将 TPC1命令字和 TPC2命令字通过下行信道返回 UE, 可使 用两个下行 F-DPCH (Fractional Dedicated Physical Channel, 部分专用物理 信道)码道的 TPC字段分别下发 TPCl和 TPC2。
UE在接收到 TPCl命令字和 TPC2命令字后, 根据 TPC1命令字同时调整
0?( ( 及0?( ( ¾的功率, 根据 TPC2命令字来调整数据流 E-DPDCH^tlE-
DPDCH2的相对功率, 具体可以为:
如果 TPC1命令字 = "0", 同时降低 0?( ( 及0?( (¾的功率; 如果 TPC1命令字 = "1", 同时增强 0?( ( 及0?( (¾的功率; 如果 TPC2命令字 = "0" , 调整主辅子流的相对功率, 主子流功率增加 Δ PSRPO, 辅子流功率减小 Δ PSRPO;
如果 TPC2命令字 = " 1 " , 调整主辅子流的相对功率, 主子流功率减小 Δ PSRPO, 辅子流功率增大 Δ PSRPO。
在本发明的实施例中, 均以两发射两天线接收为例对本发明实施例进行 了说明, 但本发明实施例并不对天线的具体数量作限定。 例如, 针对发射天 线为 N, 上行数据流为 M。 上行功率控制同样可对 N个估计信噪比首先进 行合并处理, 接着与 M个数据流的一个目标信噪比进行比较, 得到一个 TPC控制字, 对 UE端 N个发射天线的控制信道同时功率调整。
本发明实施例中的功率控制装置, 如图 9所示, 包括:
接收模块 901, 用于接收发送端通过多个控制信道发送的导频信息, 以 及发送端通过业务信道发送的一个或多个数据流。
信噪比估计模块 902, 用于根据所述导频信息获得多个估计信噪比或者 多个参考信噪比。
其中, 获得估计信噪比的方法可以参见步骤 202及其相关描述。 获得参 考信噪比的方法可以参见步骤 302及其相关描述。
目标信噪比模块 903, 用于所述数据流的误块率获得一个或多个目标信 噪比。 其中, 获得目标信噪比的方法可以参见步骤 204及其相关描述。
比较处理模块 904, 用于对所述信噪比估计模块 902获得的所述估计信 噪比或者所述参考信噪比与所述目标信噪比模块 903获得的目标信噪比进行 比较处理。 其中, 进行比较处理的方法可以参见步骤 205、 305、 404及其相 关描述。
指示模块 905, 用于根据所述比较处理得到的比较处理的结果指示所述 发送端对所述控制信道的发射功率进行调整。 对发送端进行指示时, 可以利 用一个或者两个 TPC命令字进行指示, 具体可参见对 TPC命令字的相关描 述。 上述比较处理模块 904可以包括:
加权合并模块, 用于对所述信噪比估计模块获得的多个估计信噪比或者 对所述参考信噪比进行加权合并得到一个合并估计信噪比并输出;
比较模块, 用于对所述加权合并模块获得的所述合并估计信噪比与所述 目标信噪比模块获得的目标信噪比进行比较处理。
上述功率控制装置可以是基站的物理单元或逻辑模块。
本领域普通技术人员可以理解实现上述实施例方法携带的全部或部分步 骤是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算 机可读存储介质中, 该程序在执行时, 包括方法实施例的步骤之一或其组 合。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理模块 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个模块中。 上述集成的模块既可以采用硬件的形式实现, 也可以采用软件功 能模块的形式实现。 所述集成的模块如果以软件功能模块的形式实现并作为 独立的产品销售或使用时, 也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求书
1、 一种功率控制方法, 其特征在于, 包括:
接收发送端通过多个控制信道发送的导频信息, 以及所述发送端通过业 务信道发送的一个或多个数据流;
根据所述导频信息获得多个估计信噪比或者多个参考信噪比, 根据所述 数据流获得一个或多个目标信噪比;
对所述估计信噪比或者所述参考信噪比与所述目标信噪比进行比较处 理, 并根据所述比较处理的结果指示所述发送端对所述控制信道的发射功率 进行调整。
2、 根据权利要求 1所述的方法, 其特征在于, 当通过业务信道发送一 个数据流时, 根据所述数据流的误块率或误帧率获得一个目标信噪比; 并 且,
所述对所述估计信噪比或者所述参考信噪比与所述目标信噪比进行比较 处理的步骤包括:
对所述多个估计信噪比或者对所述参考信噪比进行加权合并得到一个合 并估计信噪比;
确定所述合并估计信噪比与所述目标信噪比的大小关系。
3、 根据权利要求 1所述的方法, 其特征在于, 当通过业务信道发送多 个数据流时, 根据所述多个数据流的误块率或误帧率获得一个目标信噪比; 并且,
所述对所述估计信噪比或者所述参考信噪比与所述目标信噪比进行比较 处理的方法包括:
对所述多个估计信噪比或者所述参考信噪比进行加权合并得到一个合并 估计信噪比;
确定所述合并估计信噪比与所述目标信噪比的大小关系。
4、 根据权利要求 3所述的方法, 其特征在于, 所述根据多个数据流的 误块率或误帧率获得一个目标信噪比的步骤包括:
分别统计所述多个数据流的误块率或误帧率, 根据所述多个上行数据流 的平均误块率或误帧率确定一个目标信噪比, 或者根据所述多个上行数据流 的误块率或误帧率中的最大值或最小值确定一个目标信噪比。
5、 根据权利要求 3所述的方法, 其特征在于, 所述根据多个数据流的 误块率或误帧率获得一个目标信噪比的步骤包括: 获得所述多个数据流在设 定次数内的误块率或误帧率统计均值, 并根据所述统计均值确定一个目标信 噪比。
6、 根据权利要求 1至 5中任一权利要求所述的方法, 其特征在于, 所 述指示所述发送端对所述控制信道的发射功率进行调整的步骤包括: 通过一 个传输功率控制字 TPC指示所述发送端对所述控制信道的发射功率进行调 整。
7、 根据权利要求 1所述的方法, 其特征在于, 当采用多输入多输出的 多数据流模式时, 所述对所述估计信噪比与所述目标信噪比进行比较处理的 步骤包括:
分别确定各个导频的参考信噪比与其相应目标信噪比的大小关系; 所述根据所述比较处理的结果指示所述发送端对所述控制信道的发射功 率进行调整的方法为: 根据所述分别确定出的大小关系指示所述发送端对所 述控制信道的发射功率进行调整。
8、 根据权利要求 7所述的方法, 其特征在于, 确定所述控制信道的目 标信噪比的步骤包括: 分别统计得到所述业务信道发送的多个数据流的误块 率, 根据预编码权重确定所述控制信道的目标信噪比。
9、 根据权利要求 7所述的方法, 其特征在于, 当采用多输入多输出的 双数据流模式时, 所述分别确定各个导频的参考信噪比与其相应目标信噪比 的大小关系的步骤包括: 分别计算
Δ SIRest— refl = SIRest— refl - SIRtargetl;
Δ SIRest— re 2= SIRest— re 2 - SIRtarget2;
并根据 Δ SIRest— refl以及 Δ SIRest— re 2是否大于 0来确定各个导频的估 计信噪比或者参考信噪比与其相应目标信噪比的大小关系, 其中,
SIRest— refl为参考信噪比 1, SIRest— re 2为参考信噪比 2, SIRtargetl为目标 信噪比 1, SIRtarget2为目标信噪比 2。
10、 根据权利要求 9所述的方法, 其特征在于, 还包括:
计算 sum Δ SIR— ref = Δ SIRest— refl + Δ SIRest— re 2; 并且通过第一传输 功率控制 TPC1命令字指示所述发送端对所述控制信道的发射功率进行调 整, 其中:
若 Δ SIRest— refl>0, 且 Δ SIRest— re 2>0; 或者 Δ SIRest— refl >0, Δ SIRest— re 2<0, sum Δ SIR— ref >0; 或者 Δ SIRest— refl <0, Δ SIRest— re 2>0, sum Δ SIR— ref >0, 则 TPC1标识降低所述控制信道的发射功率;
若 Δ SIRest— refl <0, 且 Δ SIRest— re 2<0; 或者 Δ SIRest— refl>0, Δ
SIRest— re 2<0, sum Δ SIR— ref <0; 或者 Δ SIRest— refl <0, Δ SIRest— re 2>0, sum Δ SIR— ref <0 TPC1, 则 TPC1标识增加所述控制信道的发射功率。
11、 根据权利要求 10所述的方法, 其特征在于, 还包括:
计算 dif Δ SIR— ref = Δ SIRest— refl- Δ SIRest— re 2; 并且通过第二传输功 率控制 TPC2命令字指示所述发送端对所述业务信道的发射功率进行调整, 其中:
若 dif Δ SIR— ref >N, TPC2标识主子流功率增加设定值, 辅子流功率减 小所述设定值;
若 difA SIR— ref<N, TPC2标识主子流功率减小设定值, 辅子流功率增 加所述设定值。
12、 一种功率控制装置, 其特征在于, 包括: 接收模块, 用于接收发送端通过多个控制信道发送的导频信息, 以及所 述发送端通过业务信道发送的一个或多个数据流;
信噪比估计模块, 用于根据所述导频信息获得多个估计信噪比或者多个 参考信噪比;
目标信噪比模块, 用于所述数据流的误块率获得一个或多个目标信噪 比;
比较处理模块, 用于对所述信噪比估计模块获得的所述估计信噪比或者 所述参考信噪比与所述目标信噪比模块获得的目标信噪比进行比较处理; 指示模块, 用于根据所述比较处理得到的比较处理的结果指示所述发送 端对所述控制信道的发射功率进行调整。
13、 根据权利要求 12所述的装置, 其特征在于, 所述比较处理模块包 括:
加权合并模块, 用于对所述信噪比估计模块获得的多个估计信噪比或者 对所述参考信噪比进行加权合并得到一个合并估计信噪比并输出;
比较模块, 用于对所述加权合并模块获得的所述合并估计信噪比与所述 目标信噪比模块获得的目标信噪比进行比较处理。
14、 一种基站, 其特征在于, 包括:
根据权利要求 12或 13所述的功率控制装置。
PCT/CN2009/071889 2009-05-21 2009-05-21 一种功率控制方法、装置和基站 WO2010133028A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2009/071889 WO2010133028A1 (zh) 2009-05-21 2009-05-21 一种功率控制方法、装置和基站
CN200980123766.6A CN102077657B (zh) 2009-05-21 2009-05-21 一种功率控制方法、装置和基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/071889 WO2010133028A1 (zh) 2009-05-21 2009-05-21 一种功率控制方法、装置和基站

Publications (1)

Publication Number Publication Date
WO2010133028A1 true WO2010133028A1 (zh) 2010-11-25

Family

ID=43125719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071889 WO2010133028A1 (zh) 2009-05-21 2009-05-21 一种功率控制方法、装置和基站

Country Status (2)

Country Link
CN (1) CN102077657B (zh)
WO (1) WO2010133028A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102571285A (zh) * 2012-01-30 2012-07-11 华为技术有限公司 一种调度用户终端上行数据速率的方法和装置
CN102685871A (zh) * 2012-05-10 2012-09-19 华为技术有限公司 提高信道功率的方法及装置
CN105323747A (zh) * 2014-06-23 2016-02-10 中兴通讯股份有限公司 终端能力指示参数的反馈、反馈处理方法及装置
CN113194527A (zh) * 2021-04-28 2021-07-30 潍坊歌尔电子有限公司 Wifi设备及其发射功率调节方法、计算机可读存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103813283B (zh) * 2012-11-12 2017-08-25 上海贝尔股份有限公司 一种用于对呼叫进行转换的方法、装置和设备
CN107947829B (zh) * 2017-12-27 2023-07-25 上海道生物联技术有限公司 一种结合扩频和窄带mimo的时分双工通信***及方法
CN110475330B (zh) 2018-05-11 2021-05-25 电信科学技术研究院有限公司 一种上行功率控制方法、终端及网络设备
CN115776359A (zh) * 2021-09-06 2023-03-10 维沃移动通信有限公司 导频的发送、接收方法和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1415143A (zh) * 1999-11-03 2003-04-30 高通股份有限公司 无线通信***的同步导频基准发射
CN1692579A (zh) * 2002-11-20 2005-11-02 松下电器产业株式会社 基站装置和发射分配控制方法
CN1914826A (zh) * 2004-01-28 2007-02-14 艾利森电话股份有限公司 使用多信道的外环功率控制
CN101156332A (zh) * 2005-03-14 2008-04-02 三菱电机株式会社 发送功率控制方法、移动站、固定站及通信***
CN101291162A (zh) * 2008-06-24 2008-10-22 中兴通讯股份有限公司 实现下行高速共享控制信道功率控制的方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050164646A1 (en) * 2004-01-28 2005-07-28 Telefonaktiebolaget Lm Ericsson Outer loop power control using multiple channels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1415143A (zh) * 1999-11-03 2003-04-30 高通股份有限公司 无线通信***的同步导频基准发射
CN1692579A (zh) * 2002-11-20 2005-11-02 松下电器产业株式会社 基站装置和发射分配控制方法
CN1914826A (zh) * 2004-01-28 2007-02-14 艾利森电话股份有限公司 使用多信道的外环功率控制
CN101156332A (zh) * 2005-03-14 2008-04-02 三菱电机株式会社 发送功率控制方法、移动站、固定站及通信***
CN101291162A (zh) * 2008-06-24 2008-10-22 中兴通讯股份有限公司 实现下行高速共享控制信道功率控制的方法及装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102571285A (zh) * 2012-01-30 2012-07-11 华为技术有限公司 一种调度用户终端上行数据速率的方法和装置
CN102571285B (zh) * 2012-01-30 2014-12-03 华为技术有限公司 一种调度用户终端上行数据速率的方法和装置
CN102685871A (zh) * 2012-05-10 2012-09-19 华为技术有限公司 提高信道功率的方法及装置
WO2013166990A1 (zh) * 2012-05-10 2013-11-14 华为技术有限公司 提高信道功率的方法及装置
CN102685871B (zh) * 2012-05-10 2015-04-29 华为技术有限公司 提高信道功率的方法及装置
CN105323747A (zh) * 2014-06-23 2016-02-10 中兴通讯股份有限公司 终端能力指示参数的反馈、反馈处理方法及装置
CN105323747B (zh) * 2014-06-23 2018-09-28 中兴通讯股份有限公司 终端能力指示参数的反馈、反馈处理方法及装置
CN113194527A (zh) * 2021-04-28 2021-07-30 潍坊歌尔电子有限公司 Wifi设备及其发射功率调节方法、计算机可读存储介质

Also Published As

Publication number Publication date
CN102077657B (zh) 2013-04-24
CN102077657A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
US9826490B2 (en) Power control for closed loop transmit diversity and MIMO in uplink
EP1410528B1 (en) Channel prediction in closed loop transmit diversity
KR101700471B1 (ko) 업링크에서의 복수의 안테나 전송을 위한 전송 전력 제어를 위한 방법 및 장치
JP4965584B2 (ja) 逆方向リンク送信ビーム形成の方法および装置
US8077794B2 (en) Reception device, communication control method in mobile communication system
WO2010133028A1 (zh) 一种功率控制方法、装置和基站
US8462682B2 (en) Method and arrangement for separate channel power control
US6937584B2 (en) Method and apparatus for controlling gain level of a supplemental channel in a CDMA communication system
KR20020026482A (ko) 무선 통신시스템에서 역방향 링크 송신 레이트를 결정하는방법 및 장치
JP2004532563A (ja) 通信システムにおけるパワー制御方法および装置
CN103314538A (zh) 经由hs-scch命令的cltd操作的动态使能和禁止
WO2004075597A2 (en) Systems and methods for performing outer loop power control in wireless communication systems
AU2002312547A1 (en) Method and apparatus for controlling gain level of a supplemental channel in a CDMA communication system
EP2947929B1 (en) Power control method and apparatus
WO2004034614A1 (en) A method and device for estimating a signal to interference ratio (sir) in wcdma systems
JP2006526351A5 (zh)
EP1408635B1 (en) Method and device for estimating a Signal to Interference Ratio (SIR) in WCDMA systems
AU2006200633A1 (en) Simplified quality indicator bit test procedures
KR20130125759A (ko) 다중 안테나들을 통해 파일럿을 송신하기 위한 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123766.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844780

Country of ref document: EP

Kind code of ref document: A1