WO2010126274A2 - Cigt 박막 및 그 제조방법 - Google Patents

Cigt 박막 및 그 제조방법 Download PDF

Info

Publication number
WO2010126274A2
WO2010126274A2 PCT/KR2010/002634 KR2010002634W WO2010126274A2 WO 2010126274 A2 WO2010126274 A2 WO 2010126274A2 KR 2010002634 W KR2010002634 W KR 2010002634W WO 2010126274 A2 WO2010126274 A2 WO 2010126274A2
Authority
WO
WIPO (PCT)
Prior art keywords
copper
precursor
gallium
thin film
indium
Prior art date
Application number
PCT/KR2010/002634
Other languages
English (en)
French (fr)
Other versions
WO2010126274A3 (ko
Inventor
장혁규
Original Assignee
주식회사 메카로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090037395A external-priority patent/KR20100118625A/ko
Priority claimed from KR1020100035729A external-priority patent/KR20110116354A/ko
Application filed by 주식회사 메카로닉스 filed Critical 주식회사 메카로닉스
Publication of WO2010126274A2 publication Critical patent/WO2010126274A2/ko
Publication of WO2010126274A3 publication Critical patent/WO2010126274A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]

Definitions

  • the present invention relates to a chalcopyrite (Cu-In-Ga-Te (CIGT) -based chalcopyrite) compound semiconductor thin film (“CIGT thin film”) of a copper-indium-gallium-tellurium-based precursor represented by Formula 1, and a vacuum chamber: Chemical Vapor Deposition or Atomic Layer Deposition Method while simultaneously or sequentially supplying a copper (Cu) precursor, an indium (In) precursor, a gallium (Ga) precursor, and a tellurium (Te) precursor onto a substrate mounted therein It relates to a CIGT thin film production method characterized by producing a thin film using (Atomic Layer Deposition).
  • Cu copper
  • In indium
  • Ga gallium
  • Te tellurium
  • compound I-III-VI group 2 (I: Ag, Cu; III: Al, Ga, In; VI: S, Se, Te) compound semiconductor has a chalcopyrite structure under atmospheric pressure. It is applied in a wide range of fields because it shows various physical properties according to different elements.
  • the I-III-VI group 2 compound semiconductor was first synthesized by Hahn et al in 1953, and since its availability has been suggested by Goodman et al., It has been applied to an infrared detector, a light emitting diode, a nonlinear optical device, and a solar cell.
  • CuInSe 2 (“CIS”) or CuIn x Ga 1-x because the energy band spacing is about 1 to 2.5 eV at room temperature and the linear light absorption coefficient is about 10 to 100 times larger than other semiconductors.
  • Se 2 (“CIGS”) compound semiconductors are used a lot.
  • thin film solar cells using CIGS thin films can be manufactured with a thickness of 10 ⁇ m or less unlike conventional solar cells using silicon crystals, and have stable characteristics even when used for a long time. As it shows energy conversion efficiency, it is known that it is highly commercialized as a low-cost, high-efficiency thin-film solar cell that can replace a silicon crystalline solar cell.
  • CIGS thin film solar cells exhibiting such excellent characteristics are hindering industrialization due to the explosiveness and toxicity of Se precursor (SeH 2 , hydrogen selenide), which is one of the components, and expensive equipment cost is required to solve this problem. Since such expensive equipment costs act as an increase in manufacturing cost and lower commerciality, development of materials that can substitute for Se precursors is urgently needed.
  • Se precursor SeH 2 , hydrogen selenide
  • An object of the present invention is a new compound semiconductor thin film that can solve the risk of selenium in a compound semiconductor thin film made of copper-indium-gallium-selenium (CIGS), and the production time is short, mass production is possible and the production cost is low It is to provide a manufacturing method that can easily form a large area thin film with high film quality.
  • CGS copper-indium-gallium-selenium
  • the present invention relates to a chalcopyrite (Cu-In-Ga-Te (CIGT) -based chalcopyrite) compound semiconductor thin film of a copper-indium-gallium-tellorium precursor represented by the following formula (1).
  • CIGT Cu-In-Ga-Te
  • the copper precursor has a structure of Formula 2-1 or 2-2
  • the indium precursor has a structure of Formula 3-1
  • the gallium precursor has a structure of Formula 4-1
  • the tellurium precursor has a structure of Formula 5 It may have, and the details thereof will be described later.
  • the present invention provides a copper (Cu) precursor, an indium (In) precursor, a gallium (Ga) precursor, and a tellurium (Te) precursor simultaneously or in combination of two or more thereof on a substrate mounted in a vacuum chamber.
  • Thin film is manufactured by chemical vapor deposition;
  • the present invention relates to a method for preparing a chelcopyrite (CIGT-based chalcopyrite) compound semiconductor thin film of a copper-indium-gallium-tellurium-based precursor, wherein the thin film is manufactured by atomic layer deposition.
  • CIGT-based chalcopyrite a chelcopyrite compound semiconductor thin film of a copper-indium-gallium-tellurium-based precursor
  • a method for preparing a thin film of chalcopyrite (CIGT-based chalcopyrite) compound semiconductor of a copper-indium-gallium-telelium-based precursor using the atomic layer deposition method includes: 1) placing a substrate in a vacuum chamber and specifying the substrate; Maintaining at reaction temperature; 2) supplying and reacting a copper precursor into the vacuum chamber; 3) a first purging step to remove unreacted material and by-products; 4) supplying and reacting the indium precursor into the vacuum chamber; 5) a second purging step to remove unreacted material and by-products; 6) supplying and reacting a gallium precursor into the vacuum chamber; 7) third purging step to remove unreacted material and by-products; And 8) feeding and reacting the tellurium precursor into the vacuum chamber; 9) a fourth purging step of removing unreacted materials and by-products, characterized in that to produce a thin film on the substrate using an atomic layer deposition method.
  • the copper, indium, gallium, and tellurium precursors may be supplied in a vaporized state into the vacuum chamber for 0.1 to 200 seconds, respectively.
  • steps 3), 5), 7), and 9 nitrogen (N 2 ) gas or argon (Ar) gas, which is an inert gas, is converted into 1 sccm (standard cubic centimeter per minute) to 1000 slm (standard liter per minute). It can be injected for 0.1 ⁇ 200 seconds at the flow rate and discharged by pump.
  • nitrogen (N 2 ) gas or argon (Ar) gas which is an inert gas, is converted into 1 sccm (standard cubic centimeter per minute) to 1000 slm (standard liter per minute). It can be injected for 0.1 ⁇ 200 seconds at the flow rate and discharged by pump.
  • Purging gas may be injected into the vacuum chamber, and the gas present in the vacuum chamber may be sucked and removed using a vacuum pump provided in the vacuum chamber.
  • At least one of argon (Ar) gas, helium (He) gas, or nitrogen (N 2 ) gas may be used as a carrier gas when the copper precursor, the indium precursor, the gallium precursor, and the tellurium precursor are supplied.
  • the process may be performed while maintaining the pressure of the vacuum chamber at 0.01 mtorr to atmospheric pressure.
  • the copper precursor, indium precursor or gallium precursor can be supplied while maintaining the canister temperature at -40 ⁇ 200 °C, supply line temperature at room temperature ⁇ 400 °C, the tellerium precursor, canister temperature -60 ⁇ 200 °C, can be supplied while maintaining the supply line temperature at room temperature ⁇ 400 °C.
  • the temperature of the substrate can be maintained at room temperature ⁇ 600 °C.
  • the present invention by replacing the selenium with tellurium in the CIGS compound semiconductor thin film, it is possible to provide a semiconductor thin film of a new configuration that solves the risk of selenium and ensures safety.
  • the production time is short, mass production is possible, and the manufacturing cost is low, the production efficiency is improved, and the large-area thin film with excellent film quality can be easily formed.
  • FIG. 1 is a cross-sectional view showing a deposition apparatus used in the CIGT thin film manufacturing method of the present invention.
  • the present invention relates to a chalcopyrite (Cu-In-Ga-Te (CIGT) -based chalcopyrite) compound semiconductor thin film of a copper-indium-gallium-tellorium precursor represented by the following formula (1).
  • CIGT Cu-In-Ga-Te
  • Kelcopyrite compound of the copper-indium-gallium-tellorium-based precursor having the structure of Formula 1 does not include selenium, it is an industrially preferable material by eliminating safety hazards such as explosion hazard and toxicity. .
  • the copper precursor it is preferable to use a compound having a structure of the following Chemical Formula 2-1 or 2-2.
  • X represents ⁇ -dichitonate or ⁇ -chitoiminate [these two groups may optionally include 1 to 6 halogen or alkyl groups], dialkylamidinate, Dialkylamino (alkyl) alkoxide, alkoxyalkoxide, and (alkyl) cyclopentadienyl is any one selected from
  • L is a neutral ligand, alkenes, alkynes, cyclo (di) alkenes having 5 to 12 carbon atoms, in which 1 to 6 hydrogen atoms may be substituted with alkyl groups, trialkylphosphines, trialkylphosphites, alkylsilyls Alkenes, and alkylsilylalkynes.
  • Bis (2,2,6,6-tetramethylheptandionato) copper Bis (hexafluoroacetylacetonato) copper, (hexafluoroacetylacetonato) copper (vinyltrimethylsilane),
  • One or a mixture of two or more selected from the group consisting of may be used, but is not necessarily limited thereto.
  • the indium precursor it is preferable to use a compound having the structure of Formula 3-1.
  • R in Chemical Formula 3-1 One , R 2 , R 3 are the same as or different from each other, and each one selected from an alkyl group having 1 to 5 carbon atoms, an alkylamino group, an alkoxyalkyl group, an aminoalkoxy group, an alkoxyamino group, an alkoxy group, and a halogen, wherein R One , R 2 , R 3
  • Each alkyl group can be in the form of a chain, a branched chain, and a cyclic compound.
  • L is a Lewis base as a neutral ligand, and is an amine-based compound capable of providing a lone pair of electrons to an indium metal center.
  • n is preferably an integer of 0 to 2.
  • L in the formula (3-1) is preferably a secondary or tertiary amine compound. More preferably, a tricyclic, square, pentagonal or hexagonal heterocyclic amine compound is used, and the general formula thereof is represented by the following Chemical Formula 3-2.
  • R a , R x , and R y are the same as or different from each other, and are selected from hydrogen, methyl group, ethyl group, propyl group (including secondary), and butyl group (secondary, tertiary, and iso), respectively. Which is either.
  • z is preferably an integer of 2 to 5.
  • Preferred structure of L in the present invention is represented by the following formulas (3-3 to 3-6).
  • gallium precursor it is preferable to use a compound having the structure of Formula 4-1.
  • R in Chemical Formula 4-1 One , R 2 , R 3 are the same as or different from each other, and each one selected from an alkyl group having 1 to 5 carbon atoms, an alkylamino group, an alkoxyalkyl group, an aminoalkoxy group, an alkoxyamino group, an alkoxy group, and a halogen, wherein R One , R 2 , R 3
  • Each alkyl group can be in the form of a chain, a branched chain, and a cyclic compound.
  • L is a neutral base, a Lewis base, and is an amine-based compound capable of providing a lone pair of electrons to a gallium metal center.
  • n is preferably an integer of 0 to 2.
  • L in the formula (4-1) is preferably a secondary or tertiary amine compound. More preferably, a tricyclic, square, pentagonal or hexagonal heterocyclic amine compound is used, and the general formula thereof is represented by the following Chemical Formula 4-2.
  • R a, R x , and R y are the same as or different from each other, and are selected from hydrogen, methyl, ethyl, propyl (including secondary), and butyl (including secondary, tertiary, and iso), respectively. Which is either.
  • z is preferably an integer of 2 to 5.
  • Preferred structure of L in the present invention is represented by the following formulas 4-3 to 4-6.
  • tellurium precursor it is preferable to use a compound having the structure of Formula 5 below.
  • R 1 and R 2 are the same as or different from each other, and each selected from a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylamino group, an alkoxyalkyl group, an aminoalkoxy group, an alkoxyamino group, an alkoxy group, and a halogen One, wherein the alkyl group of each of R 1 , R 2 can be in the form of a chain (chain), branched chain (branched chain), and cyclic compound (cyclic compound) form.
  • n is preferably 1 or 2.
  • One or more mixtures selected from the group consisting of Dimethyltelluride, Diethyltelluride, Diisopropyltelluride, Ditertiarybutyltelluride, Dimethylditelluride, Diethylditelluride, Diisopropylditelluride, Ditertiarybutylditelluride, Tertiarybutylisopropyltelluride, and Tertiarybutyltellenol may not necessarily be used.
  • the present invention provides a copper (Cu) precursor, an indium (In) precursor, a gallium (Ga) precursor, and a tellurium (Te) precursor simultaneously or in combination of two or more thereof on a substrate mounted in a vacuum chamber.
  • Thin film is manufactured by chemical vapor deposition;
  • the present invention relates to a method for preparing a semiconductor thin film of Kelcopyrite (CIGT-based chalcopyrite) compound of a copper-indium-gallium-tellorium precursor.
  • the present invention relates to a method for producing a kelcopyritic compound semiconductor thin film of a copper-indium-gallium-tellurium-based precursor, which comprises manufacturing a thin film on a substrate using an atomic layer deposition method.
  • Atomic layer deposition is a method of depositing a desired material through a chemical reaction that takes place on a substrate while supplying precursors, which are the basis of a material to be deposited, to a chamber sequentially. This is how you get it.
  • a chemical vapor deposition apparatus or an atomic layer deposition apparatus (hereinafter, referred to as a 'deposition apparatus') as shown in FIG. 1 may be used.
  • the deposition apparatus is provided with a vacuum chamber 10 capable of keeping the interior in a vacuum state, and a substrate chuck 20 on which the substrate S is mounted is provided below the chamber.
  • the substrate S is carried into the chamber 10 through a gate (not shown) provided at one side of the chamber 10, placed on the substrate chuck 20, and then fixed. After the substrate S is loaded into the chamber 10, the gate is sealed, and the inside of the chamber 10 is decompressed, and the pressure inside the chamber is preferably maintained at 0.01 mtorr to atmospheric pressure. On the other hand, the temperature of the substrate is preferably maintained at room temperature to 600 °C.
  • the upper portion of the chamber 10 is provided with a shower head 30 through which a process gas (and purging gas) can be supplied, and the shower head 30 has a myriad of minute holes having a diameter of about 0.5 to 1 mm. have. Therefore, the process gas (and purging gas) can be uniformly supplied to the substrate through the shower head 30.
  • the shower head 30 is connected to a plurality of canisters 40, 50, 60, and 70 disposed outside, and has a structure capable of receiving process gas from each canister. .
  • the process gas that is, the copper precursor, the indium precursor, the gallium precursor, and the tellurium precursor are supplied through the shower head 30 while the substrate S is mounted in the chamber 10.
  • a thin film is manufactured by chemical vapor deposition while supplying the precursors simultaneously or in a combination of two or more thereof, or a thin film is manufactured by atomic layer deposition while supplying sequentially in a pulse form.
  • the “sequential supply in the form of a pulse” means that the copper precursor is supplied into the vacuum chamber for a predetermined short time by a carrier gas to react with the substrate, and then the purging gas is supplied into the chamber to purge at least once.
  • the indium precursor like the copper precursor, is supplied into the vacuum chamber for a predetermined short time by a carrier gas to react with the substrate, and then the purging gas is supplied into the chamber for purging. The process is repeated one or more times to react the indium compound on the copper compound thin film, and to proceed in the same manner for the gallium precursor and the tellurium precursor.
  • the copper, indium, gallium and tellurium precursors are preferably supplied in a vaporized state into the vacuum chamber for 0.1 to 200 seconds, respectively.
  • steps 2) to 9) are described as supplying and purging the copper, indium, gallium and tellurium precursors in the order, respectively, but the order of supplying these precursors may be changed and one or more of these precursors may be repeated. It can also be supplied.
  • any one selected from the group consisting of helium (He), hydrogen (H 2 ), nitrogen (N 2 ), argon (Ar), and ammonia (NH 3 ) may be used.
  • a purging method a method of injecting purging gas into the vacuum chamber 10 and sucking and removing gas present in the vacuum chamber by using a vacuum pump (not shown) provided in the vacuum chamber 10 may be employed. It is desirable to be able to purge into the vacuum chamber most efficiently. More preferably, inert gas (N 2 ) gas or argon (Ar) gas is injected at a flow rate of 1 sccm to 1000 slm for about 0.1 to 200 seconds and discharged to a pump.
  • the temperature of the canister 40 In the copper precursor canister 40 that supplies the copper precursor, it is preferable to maintain the temperature of the canister at about -40 to 200 ° C in order to supply an appropriate copper precursor.
  • the temperature of the supply line 44 through which the copper precursor leaving the canister 40 passes to reach the showerhead 30 is preferably maintained at a temperature higher than room temperature to about 400 ° C.
  • the copper precursor is preferably supplied to the inside of the chamber through the carrier gas from the first carrier gas source 42, as shown in FIG. 1, rather than to be supplied alone, such a carrier gas is argon (Ar), Helium (He) or nitrogen (N 2 ) gas or the like may be used alone or in combination of two or more.
  • a carrier gas is argon (Ar), Helium (He) or nitrogen (N 2 ) gas or the like may be used alone or in combination of two or more.
  • the copper precursor may be supplied by being mixed with a gas such as hydrogen (H 2 ), ammonia (NH 3 ), nitrogen dioxide (NO 2 ), oxygen (O 2 ), and after the copper precursor is supplied, the above-described gases may be It may be supplied into the chamber together with the carrier gas or alone.
  • a gas such as hydrogen (H 2 ), ammonia (NH 3 ), nitrogen dioxide (NO 2 ), oxygen (O 2 ), and after the copper precursor is supplied, the above-described gases may be It may be supplied into the chamber together with the carrier gas or alone.
  • the canisters 50 and 60 supplying the indium precursor or the gallium precursor are also preferably maintained at a temperature of about -40 to 200 ° C. in order to supply an efficient precursor.
  • the indium precursor or the gallium precursor is preferably carried by a carrier gas such as argon (Ar), helium (He), or nitrogen (N 2 ) gas.
  • the canister 70 for supplying the tellurium precursor is also preferably maintained at -60 to 200 ° C. in order to supply the tellurium precursor efficiently.
  • the temperature of the supply line 74 is also slightly higher than the temperature of the canister and maintained at room temperature to about 400 ° C.
  • the tellerium precursor is preferably carried by a carrier gas such as argon (Ar), helium (He), or nitrogen (N 2 ) gas.
  • a compound semiconductor thin film of Cu-In-Ga-Te (CIGT) -based cahlcopyrite of a copper-indium-gallium-tellorium precursor according to the present invention may be formed by the atomic layer deposition process.
  • CIGT Cu-In-Ga-Te
  • a compound semiconductor thin film of Cu-In-Ga-Te (CIGT) -based cahlcopyrite of a copper-indium-gallium-tellorium precursor according to the present invention may be formed by the atomic layer deposition process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본 발명은 다음 화학식 1로 표시되는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트(Cu-In-Ga-Te(CIGT)-based chalcopyrite) 화합물 반도체 박막, 및 진공 챔버 내에 장착된 기판상에 구리(Cu) 전구체, 인듐(In) 전구체, 갈륨(Ga) 전구체, 및 텔러륨(Te) 전구체를 동시 공급 또는 순차 공급하면서 화학기상 증착법(Chemical Vapor Deposition) 또는 원자층 증착법(Atomic Layer Deposition)을 이용하여 박막을 제조하는 것을 특징으로 하는 CIGT 박막 제조방법에 관한 것이다. <화학식 1> CuInxGa1-xTe2 (상기 화학식 1에서 0<x<1이다.) 본 발명에 의하면 구리-인듐-갈륨-셀레늄(CIGS)으로 이루어진 화합물 반도체 박막 에서 셀레늄의 위험성을 해결할 수 있는 새로운 화합물 반도체 박막인 CIGT 박막을 제공할 수 있고, 대량생산이 가능하면서도 제조단가가 낮으며 막질이 우수한 대면적 박막을 용이하게 형성할 수 있는 제조방법을 제공할 수 있다.

Description

CIGT 박막 및 그 제조방법
본 출원은 2009년 4월 29일 한국특허청에 제출된 한국특허출원 제2009-0037395호 및 2010년 4월 19일 한국특허청에 제출된 한국특허출원 제2010-0035729호의 우선권을 청구하며, 그 모든 내용은 본 명세서에 참조로서 통합된다.
본 발명은 다음 화학식 1로 표시되는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트(Cu-In-Ga-Te(CIGT)-based chalcopyrite) 화합물 반도체 박막("CIGT 박막"), 및 진공 챔버 내에 장착된 기판상에 구리(Cu) 전구체, 인듐(In) 전구체, 갈륨(Ga) 전구체, 및 텔러륨(Te) 전구체를 동시 공급 또는 순차 공급하면서 화학기상 증착법(Chemical Vapor Deposition) 또는 원자층 증착법(Atomic Layer Deposition)을 이용하여 박막을 제조하는 것을 특징으로 하는 CIGT 박막 제조방법에 관한 것이다.
<화학식 1>
CuInxGa1-xTe2
(상기 화학식 1에서 0<x<1이다.)
일반적으로 I-III-VI2족(I: Ag, Cu ; III: Al, Ga, In ; VI: S, Se, Te) 화합물 반도체는 상온 대기압 하에서 켈코파이라이트(chalcopyrite) 구조를 가지고 있으며, 그 구성원소를 달리함에 따라 다양한 물성을 보여주기 때문에 폭넓은 분야에서 응용되고 있다.
이러한 I-III-VI2족 화합물 반도체는 1953년 Hahn 등에 의하여 처음 합성되었고, Goodman 등에 의하여 반도체로서 이용가능성이 제시된 이후, 적외선 검출기를 비롯하여 발광다이오드, 비선형광학소자 및 태양전지 등에 응용되고 있다.
이 중에서 태양전지에는, 상온에서 에너지 띠 간격이 약 1 ~ 2.5 eV 이고, 선형 광흡수계수가 다른 반도체에 비하여 10 ~ 100배 정도 크기 때문에, CuInSe2("CIS") 또는 CuInxGa1-xSe2("CIGS") 화합물 반도체가 많이 사용되고 있다.
특히, CIGS 박막을 사용하는 박막형 태양전지는 기존의 실리콘 결정을 사용하는 태양전지와는 달리 10㎛ 이하의 두께로 제작 가능하고 장시간 사용시에도 안정적인 특성이 있으며, 최근 박막형 태양전지 중 가장 높은 19.5%의 에너지 변환 효율을 보임에 따라 실리콘 결정질 태양전지를 대체할 수 있는 저가형 고효율 박막형 태양전지로서 상업화 가능성이 아주 높은 것을 알려져 있다.
그런데, 이러한 우수한 특성을 보이는 CIGS 박막의 태양전지는 구성요소 중 하나인 Se 전구체(SeH2, 셀렌화수소)의 폭발성, 유독성 때문에 산업화에 장애가 되고 있으며, 이를 해결하기 위해서는 고가의 설비비가 필요하다. 이러한 고가의 설비비는 곧 제조원가의 상승으로 작용하여 상업성을 떨어뜨리기 때문에 Se 전구체를 대체할 수 있는 물질의 개발이 절실한 시점이다.
또한, 진공 분위기에서 각각의 원소를 동시에 증발시켜 기판에 증착시키는 기존의 물리적 증착방법을 대체하는 것으로서, 대량생산이 가능하고 막질이 우수한 대면적 박막을 용이하게 형성할 수 있는 새로운 제조방법의 개발 또한 요구되는 시점이다.
본 발명의 목적은 구리-인듐-갈륨-셀레늄(CIGS)으로 이루어진 화합물 반도체 박막에서 셀레늄의 위험성을 해결할 수 있는 새로운 화합물 반도체 박막, 및 제조시간이 짧아 대량생산이 가능하고 제조단가가 낮아 생산효율이 높으며 막질이 우수한 대면적 박막을 용이하게 형성할 수 있는 제조방법을 제공하는 것이다.
본 발명은 다음 화학식 1로 표시되는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트(Cu-In-Ga-Te(CIGT)-based chalcopyrite) 화합물 반도체 박막에 관한 것이다.
<화학식 1>
CuInxGa1-xTe2
(상기 화학식 1에서 0<x<1이다.)
여기서, 상기 구리 전구체는 화학식 2-1 또는 2-2의 구조를, 상기 인듐 전구체는 화학식 3-1의 구조를, 갈륨 전구체는 화학식 4-1의 구조를, 텔러륨 전구체는 화학식 5의 구조를 가지는 것일 수 있으며, 이에 대한 구체적인 내용은 후술하기로 한다.
한편, 본 발명은 진공 챔버 내에 장착된 기판상에 구리(Cu) 전구체, 인듐(In) 전구체, 갈륨(Ga) 전구체, 및 텔러륨(Te) 전구체를 동시에 또는 이들 중 2가지 이상의 조합으로 공급하면서 화학기상 증착법을 이용하여 박막을 제조하거나,
상기 전구체들을 순차적으로 공급하면서 원자층 증착법을 이용하여 박막을 제조하는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트(CIGT-based chalcopyrite) 화합물 반도체 박막 제조방법에 관한 것이다.
구체적으로, 상기 원자층 증착법을 이용한 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트(CIGT-based chalcopyrite) 화합물 반도체 박막 제조방법은, 1) 진공 챔버 내부에 기판을 위치시키고, 상기 기판을 특정한 반응 온도로 유지하는 단계; 2) 진공 챔버 내부로 구리 전구체를 공급하고 반응시키는 단계; 3) 미반응 물질 및 부산물을 제거하는 제1 퍼징 단계; 4) 진공 챔버 내부로 인듐 전구체를 공급하고 반응시키는 단계; 5) 미반응 물질 및 부산물을 제거하는 제2 퍼징 단계; 6) 진공 챔버 내부로 갈륨 전구체를 공급하고 반응시키는 단계; 7) 미반응 물질 및 부산물을 제거하는 제3 퍼징 단계; 및 8) 진공 챔버 내부로 텔러륨 전구체를 공급하고 반응시키는 단계; 9) 미반응 물질 및 부산물을 제거하는 제4 퍼징 단계;를 포함하고, 원자층 증착법을 이용하여 기판상에 박막을 제조하는 것을 특징으로 하는 것이다.
또한, 상기 2), 4), 6), 8) 단계에서, 상기 구리, 인듐, 갈륨, 텔러륨 전구체를 공급시에 각각 0.1 ~ 200초 동안 상기 진공 챔버 내부로 기화된 상태로 공급할 수 있다.
그리고, 상기 3), 5), 7), 9) 단계에서, 불활성 가스인 질소(N2) 가스 또는 아르곤(Ar) 가스를 1sccm(standard cubic centimeter per minute) ~ 1000slm(standard liter per minute)의 유량으로 0.1 ~ 200초간 주입하고 펌프로 배출할 수 있다.
아울러, 상기 제1, 2, 3 퍼징 단계에서는, 헬륨(He), 수소(H2), 질소(N2), 아르곤(Ar), 및 암모니아(NH3)로 이루어지는 군에서 선택되는 1종 이상의 퍼징가스를 상기 진공 챔버 내부로 주입하고, 진공 챔버에 마련되는 진공 펌프를 이용하여 진공 챔버 내에 존재하는 가스를 흡입하여 제거할 수 있다.
또한, 상기 구리 전구체, 인듐 전구체, 갈륨 전구체, 및 텔러륨 전구체의 공급시에 아르곤(Ar) 가스, 헬륨(He) 가스 또는 질소(N2) 가스 중 1종 이상을 운반가스로 사용할 수 있다.
그리고, 상기 진공 챔버의 압력을 0.01mtorr ~ 대기압으로 유지하면서 공정을 진행할 수 있다.
아울러, 상기 구리 전구체, 인듐 전구체 또는 갈륨 전구체는, 캐니스터 온도를 -40 ~ 200℃, 공급라인 온도를 상온 ~ 400℃로 유지하면서 공급할 수 있고, 상기 텔러륨 전구체는, 캐니스터 온도를 -60 ~ 200℃, 공급라인 온도를 상온 ~ 400℃로 유지하면서 공급할 수 있다.
더불어, 상기 기판의 온도는 상온 ~ 600℃로 유지할 수 있다.
본 발명에 따르면 CIGS 화합물 반도체 박막에서 셀레늄을 텔러륨으로 대체함으로써, 셀레늄의 위험성을 해결하고 안전성이 담보된 새로운 구성의 반도체 박막을 제공할 수 있다.
또한, 본 발명의 CIGT 박막 제조방법에 따르면 제조시간이 짧아 대량생산이 가능하고, 제조단가가 낮아 생산효율이 향상되며, 막질이 우수한 대면적 박막을 용이하게 형성할 수 있다.
도 1은 본 발명의 CIGT 박막 제조방법에 사용되는 증착 장치를 나타내는 단면도이다.
이하, 첨부된 도면을 참조하여 본 발명에 대해 상세히 설명한다.
본 발명은 다음 화학식 1로 표시되는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트(Cu-In-Ga-Te(CIGT)-based chalcopyrite) 화합물 반도체 박막에 관한 것이다.
<화학식 1>
CuInxGa1-xTe2
상기 화학식 1에서 0<x<1이다.
상기 화학식 1의 구조를 가지는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물은 종래와 달리 셀레늄을 포함하지 않기 때문에, 폭발위험성이나 유독성 등의 안전 위해요소가 배제됨으로써 산업적으로 바람직한 재료가 된다.
상기 구리 전구체로는, 다음 화학식 2-1 또는 2-2의 구조를 가지는 화합물을 사용함이 바람직하다.
<화학식 2-1>
XCuL
<화학식 2-2>
CuX2
상기 화학식 2-1 및 화학식 2-2에서 X는 β-디키토네이트 또는 β-키토이미네이트[이 2개의 기는 임의로 1~6개의 할로겐 또는 알킬기를 포함할 수 있다], 디알킬아미디네이트, 디알킬아미노(알킬)알콕시드, 알콕시알콕시드, 및 (알킬)시클로펜타디엔닐 중에서 선택되는 어느 하나이고,
L은 중성리간드로서 탄소수 5~12 사이의 알켄, 알킨, 시클로(디)알켄[고리 중의 1~6개의 수소원자는 알킬기로 치환될 수 있다], 트리알킬포스핀, 트리알킬포스파이트, 알킬실릴알켄, 및 알킬실릴알킨 중에서 선택되는 어느 하나이다.
구체적으로,
Bis(acetylacetonato)copper,
Bis(2,2,6,6-tetramethylheptandionato)copper, Bis(hexafluoroacetylacetonato)copper, (hexafluoroacetylacetonato)copper(vinyltrimethylsilane),
(acetylacetonato)copper(vinyltrimethylsilane),
(2,2,6,6-tetramethylheptandionato)copper(vinyltrimethylsilane),
(acetylacetonato)copper(vinyltriethylsilane),
(2,2,6,6-teramethylheptandionato)copper(vinyltriethylsilane),
(hexafluoroacetylacetonato)copper(vinyltriethylsilane),
(hexafluoroacetylacetonato)copper(1,5-cyclooctadiene),
(hexafluoroacetylacetonato)copper(1,5-dimethylcyclooctadiene),
(hexafluoroacetylacetonato)copper(3,3-dimethylbutene),
(hexafluoroacetylacetonato)copper(trimethylphosphite),
(hexafluoroacetylacetonato)copper(trimethylphosphine),
(hexafluoroacetylacetonato)copper(1,3-cyclohexadiene),
Copper bis(dimethylaminomethylbutoxide),
Copper bis(ethylmethylaminomethylbutoxide),
Copper bis(diethylaminomethylbutoxide),
Copper bis(dimethylaminomethylpropoxide),
Copper bis(ethylmethylaminomethylpropoxide), 및
Copper bis(diethylaminomethylpropoxide)
로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있지만, 반드시 이에 국한되는 것은 아니다.
상기 인듐 전구체로는, 다음 화학식 3-1의 구조를 가지는 화합물을 사용함이 바람직하다.
<화학식 3-1>
InR1R2R3 : Ln
상기 화학식 3-1에서 R1, R2, R3는 서로 같거나 다른 것으로서 각각 탄소수 1~5 사이의 알킬기, 알킬아미노기, 알콕시알킬기, 아미노알콕시기, 알콕시아미노기, 알콕시기, 및 할로겐 중에서 선택되는 어느 하나이고, 이때 상기 R1, R2, R3 각각의 알킬기는 사슬형태(chain), 가지달린 사슬형태(branched chain), 및 고리화합물(cyclic compound) 형태가 모두 가능하다. L은 중성리간드로서 루이스 염기이며, 비공유 전자쌍을 인듐 금속 중심에 제공할 수 있는 아민(amine)계열의 화합물이다. 한편 n은 0 내지 2의 정수가 바람직하다.
상기 화학식 3-1의 L은, 2차 또는 3차의 아민 화합물인 것이 바람직하다. 더욱 바람직하게는 삼각, 사각, 오각 또는 육각의 헤테로고리아민(heterocyclic amine) 화합물을 사용하며 그 일반식은 다음 화학식 3-2와 같다.
<화학식 3-2>
Ra-N(CRxRy)z
상기 화학식 3-2에서 Ra, Rx, Ry는 서로 같거나 다른 것으로서 각각 수소, 메틸기, 에틸기, 프로필기(2차 포함), 및 부틸기(2차, 3차, 이소 포함) 중에서 선택되는 어느 하나이다. 한편 z는 2 내지 5의 정수가 바람직하다.
본 발명에서 제시하는 L의 바람직한 구조는 다음 화학식 3-3 내지 3-6과 같다.
<화학식 3-3> 아지리딘(aziridine) 화합물 (z = 2)
Figure PCTKR2010002634-appb-I000001
<화학식 3-4> 아제티딘(azetidine) 화합물 (z = 3)
Figure PCTKR2010002634-appb-I000002
<화학식 3-5> 피롤리딘(pyrrolidine) 화합물 (z = 4)
Figure PCTKR2010002634-appb-I000003
<화학식 3-6> 피페리딘(piperidine) 화합물 (z = 5)
Figure PCTKR2010002634-appb-I000004
구체적으로,
Trimethylindium, Triethylindium, Triisopropylindium, Tributylindium, Tritertiarybutylindium, Trimethoxyindium, Triethoxyindium, Triisopropoxyindium, Dimethylisopropoxyindium, Diethylisopropoxyindium, Dimethylethylindium, Diethylmethylindium, Dimethylisopropylindium, Diethylisopropylindium, 및 Dimethyltertiarybutylindium으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 인듐 전구체로 사용할 수 있지만, 반드시 이에 국한되는 것은 아니다.
상기 갈륨 전구체로는, 다음 화학식 4-1의 구조를 가지는 화합물을 사용함이 바람직하다.
<화학식 4-1>
GaR1R2R3 : Ln
상기 화학식 4-1에서 R1, R2, R3는 서로 같거나 다른 것으로서 각각 탄소수 1~5 사이의 알킬기, 알킬아미노기, 알콕시알킬기, 아미노알콕시기, 알콕시아미노기, 알콕시기, 및 할로겐 중에서 선택되는 어느 하나이고, 이때 상기 R1, R2, R3 각각의 알킬기는 사슬형태(chain), 가지달린 사슬형태(branched chain), 및 고리화합물(cyclic compound) 형태가 모두 가능하다. L은 중성리간드로서 루이스 염기이며, 비공유 전자쌍을 갈륨 금속 중심에 제공할 수 있는 아민(amine)계열의 화합물이다. 한편 n은 0 내지 2의 정수가 바람직하다.
상기 화학식 4-1의 L은, 2차 또는 3차의 아민 화합물인 것이 바람직하다. 더욱 바람직하게는 삼각, 사각, 오각 또는 육각의 헤테로고리아민(heterocyclic amine) 화합물을 사용하며 그 일반식은 다음 화학식 4-2와 같다.
< 화학식 4-2 >
Ra-N(CRxRy)z
상기 화학식 4-2에서 Ra, Rx, Ry는 서로 같거나 다른 것으로서 각각 수소, 메틸기, 에틸기, 프로필기(2차 포함), 및 부틸기(2차, 3차, 이소 포함) 중에서 선택되는 어느 하나이다. 한편 z는 2 내지 5의 정수가 바람직하다.
본 발명에서 제시하는 L의 바람직한 구조는 다음 화학식 4-3 내지 4-6과 같다.
<화학식 4-3> 아지리딘(aziridine) 화합물 (z = 2)
Figure PCTKR2010002634-appb-I000005
<화학식 4-4> 아제티딘(azetidine) 화합물 (z = 3)
Figure PCTKR2010002634-appb-I000006
<화학식 4-5> 피롤리딘(pyrrolidine) 화합물 (z = 4)
Figure PCTKR2010002634-appb-I000007
<화학식 4-6> 피페리딘(piperidine) 화합물 (z = 5)
Figure PCTKR2010002634-appb-I000008
구체적으로,
Trimethylgallium, Triethylgallium, Triisopropylgallium, Tributylgallium, Tritertiarybutylgallium, Trimethoxygallium, Triethoxygallium, Triisopropoxygallium, Dimethylisopropoxygallium, Diethylisopropoxygallium, Dimethylethylgallium, Diethylmethylgallium, Dimethylisopropylgallium, Diethylisopropylgallium, 및 Dimethyltertiarybutylgallium으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 갈륨 전구체로 사용할 수 있지만, 반드시 이에 국한되는 것은 아니다.
상기 텔러륨 전구체로는, 다음 화학식 5의 구조를 가지는 화합물을 사용함이 바람직하다.
<화학식 5>
R1----(Te)n----R2
상기 화학식 5에서 R1, R2는 서로 같거나 다른 것으로서, 각각 수소 원자, 탄소수 1~5 사이의 알킬기, 알킬아미노기, 알콕시알킬기, 아미노알콕시기, 알콕시아미노기, 알콕시기, 및 할로겐 중에서 선택되는 어느 하나이고, 이때 상기 R1, R2 각각의 알킬기는 사슬형태(chain), 가지달린 사슬형태(branched chain), 및 고리화합물(cyclic compound) 형태가 모두 가능하다. 한편 n은 1 또는 2가 바람직하다.
구체적으로,
Dimethyltelluride, Diethyltelluride, Diisopropyltelluride, Ditertiarybutyltelluride, Dimethylditelluride, Diethylditelluride, Diisopropylditelluride, Ditertiarybutylditelluride, Tertiarybutylisopropyltelluride, 및 Tertiarybutyltellenol으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있지만, 반드시 이에 국한되는 것은 아니다.
한편, 본 발명은 진공 챔버 내에 장착된 기판상에 구리(Cu) 전구체, 인듐(In) 전구체, 갈륨(Ga) 전구체, 및 텔러륨(Te) 전구체를 동시에 또는 이들 중 2가지 이상의 조합으로 공급하면서 화학기상 증착법을 이용하여 박막을 제조하거나,
진공 챔버 내에 장착된 기판상에 구리(Cu) 전구체, 인듐(In) 전구체, 갈륨(Ga) 전구체, 및 텔러륨(Te) 전구체를 순차적으로 공급하면서 원자층 증착법(Atomic layer Deposition)을 이용하여 박막을 제조하는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트(CIGT-based chalcopyrite) 화합물 반도체 박막 제조방법에 관한 것이다.
구체적으로, 상기 원자층 증착법을 이용한 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트(CIGT-based chalcopyrite) 화합물 반도체 박막 제조방법은,
1) 진공 챔버 내부에 기판을 위치시키고, 상기 기판을 특정한 반응 온도로 유지하는 단계;
2) 진공 챔버 내부로 구리 전구체를 공급하고 반응시키는 단계;
3) 미반응 물질 및 부산물을 제거하는 제1 퍼징 단계;
4) 진공 챔버 내부로 인듐 전구체를 공급하고 반응시키는 단계;
5) 미반응 물질 및 부산물을 제거하는 제2 퍼징 단계;
6) 진공 챔버 내부로 갈륨 전구체를 공급하고 반응시키는 단계;
7) 미반응 물질 및 부산물을 제거하는 제3 퍼징 단계;
8) 진공 챔버 내부로 텔러륨 전구체를 공급하고 반응시키는 단계; 및
9) 미반응 물질 및 부산물을 제거하는 제4 퍼징 단계;를 포함하고,
원자층 증착법을 이용하여 기판상에 박막을 제조하는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막 제조방법에 관한 것이다.
원자층 증착법은 증착하고자 하는 물질의 기반이 되는 전구체를 순차적으로 챔버에 공급하면서, 기판 위에서 일어나는 화학반응을 통하여 원하는 물질을 증착시키는 방법으로서, 물질을 원자 수준으로 제어할 수 있어 매우 뛰어난 품질의 박막을 얻을 수 있는 방법이다.
본 발명에 따른 CIGT 박막 제조방법에는 도 1에 도시된 바와 같은 화학기상 증착 장치 또는 원자층 증착 장치(이하 '증착 장치'라 통칭함)가 사용될 수 있다. 이러한 증착 장치에는 내부를 진공 상태로 유지할 수 있는 진공 챔버(10)가 구비되고, 이 챔버 내부의 하측에는 기판(S)이 장착될 수 있는 기판척(20)이 구비된다.
기판(S)은 챔버(10) 일측에 구비되어 있는 게이트(미도시)를 통하여 챔버(10) 내부로 반입되고, 기판척(20)에 놓여진 후 고정된다. 기판(S)이 챔버(10) 내부로 반입된 후 게이트가 밀폐되고, 챔버(10) 내부는 감압되는데, 챔버 내부의 압력은 0.01mtorr ~ 대기압 정도로 유지되는 것이 바람직하다. 한편 기판의 온도는 상온 ~ 600℃로 유지하는 것이 바람직하다.
그리고, 챔버(10)의 상부에는 공정가스(및 퍼징가스)가 공급될 수 있는 샤워헤드(30)가 구비되는데, 이 샤워헤드(30)에는 직경 0.5 ~ 1mm 정도의 미세한 홀이 무수하게 형성되어 있다. 따라서 이 샤워헤드(30)를 통하여 공정가스(및 퍼징가스)가 기판에 전체적으로 균일하게 공급될 수 있다.
상기 샤워헤드(30)는 도 1에 도시된 바와 같이, 외부에 배치되어 있는 다수개의 캐니스터(40, 50, 60, 70)와 연결되어 있으며, 각 캐니스터로부터 공정가스를 공급받을 수 있는 구조를 가진다.
이러한 상태로 챔버(10) 내부에 기판(S)이 장착된 상태에서 상기 샤워헤드(30)를 통하여 공정가스 즉, 구리 전구체, 인듐 전구체, 갈륨 전구체, 및 텔러륨 전구체를 공급한다. 구체적으로는 상기 전구체들을 동시에 또는 이들 중 2이상의 조합으로 공급하면서 화학기상 증착법으로 박막을 제조하거나 펄스 형태로 순차적으로 공급하면서 원자층 증착법으로 박막을 제조한다. 이들 방법에 의할 경우 신속하고도 효율적으로 기판상에 CIGT 박막을 제조할 수 있게 된다.
상기 "펄스 형태로 순차적으로 공급"한다는 것은, 구리 전구체를 운반가스에 의하여 일정한 짧은 시간 동안 진공 챔버 내부에 공급하여 기판과 반응시킨 후, 퍼징가스를 챔버 내부로 공급하여 퍼징하는 과정을 한 번 이상 반복하여 구리 전구체 박막을 기판상에 성장시키고 나서, 인듐 전구체를 구리 전구체와 마찬가지로 운반가스에 의하여 일정한 짧은 시간 동안 진공 챔버 내부에 공급하여 기판과 반응시킨 후, 퍼징가스를 챔버 내부로 공급하여 퍼징하는 과정을 한 번 이상 반복하여 구리 화합물 박막 상에 인듐 화합물을 반응시키고, 갈륨 전구체와 텔러륨 전구체에 대해서도 같은 방법으로 진행하는 것을 말한다.
즉, 하나의 공정가스를 연속적으로 공급하는 것이 아니라, 짧은 시간 동안 공급하고 차단하는 단속적인 공급을 말하는 것이며, 공정가스가 공급되지 않고 차단되는 동안에는 미반응 가스 및 반응 부산물을 제거하여 더 이상 반응이 진행되지 않도록 퍼징하는 공정이 반복되는 것이다.
상기 구리, 인듐, 갈륨, 텔러륨 전구체는 각각 0.1 ~ 200초 동안 상기 진공 챔버 내부로 기화된 상태로 공급하는 것이 바람직하다.
한편, 상기 2) ~ 9) 단계는, 구리, 인듐, 갈륨, 텔러륨 전구체의 순서로 공급하고 각각 퍼징하는 것으로 기술하였으나, 이들 전구체의 공급순서는 변경가능하며 이들 중의 하나 또는 그 이상의 전구체가 반복되어 공급되는 것도 가능하다.
상기 퍼징가스로는 헬륨(He), 수소(H2), 질소(N2), 아르곤(Ar), 및 암모니아(NH3)로 이루어지는 군에서 선택되는 어느 하나 또는 이들의 조합을 사용함이 바람직하다. 그리고, 퍼징 방법으로는 퍼징가스를 상기 진공 챔버(10) 내부로 주입하고, 진공 챔버(10)에 마련되는 진공 펌프(미도시)를 이용하여 진공 챔버 내에 존재하는 가스를 흡입하여 제거하는 방식이 가장 효율적으로 진공 챔버 내부로 퍼징할 수 있어서 바람직하다. 더욱 바람직하게는 불활성 가스인 질소(N2) 가스 또는 아르곤(Ar) 가스를 1sccm ~ 1000slm의 유량으로 약 0.1 ~ 200초간 주입하고 펌프로 배출하도록 한다.
구리 전구체를 공급하는 구리 전구체 캐니스터(40)는, 적절한 구리 전구체의 공급을 위하여 캐니스터의 온도를 -40 ~ 200℃ 정도로 유지하는 것이 바람직하다. 또한 캐니스터(40)를 출발한 구리 전구체가 샤워헤드(30)에 도달하기 위하여 통과하는 공급라인(44)의 온도는 캐니스터의 온도보다 약간 높게, 상온 ~ 400℃ 정도로 유지하는 것이 바람직하다.
또한, 구리 전구체는 단독으로 공급하기보다는 도 1에 도시된 바와 같이, 제1 운반가스 공급원(42)에서 나오는 운반가스를 통해 챔버 내부로 공급하는 것이 바람직한데, 이러한 운반가스로는 아르곤(Ar), 헬륨(He) 또는 질소(N2) 가스 등을 단독 사용하거나 2 이상을 혼합하여 사용할 수 있다.
그리고, 상기 구리 전구체는 수소(H2), 암모니아(NH3), 이산화질소(NO2), 산소(O2) 등의 기체와 혼합되어 공급될 수도 있으며, 구리 전구체 공급 후에, 전술한 기체들이 상기 운반가스와 함께 또는 단독으로 챔버 내부로 공급될 수도 있다.
인듐 전구체 또는 갈륨 전구체를 공급하는 캐니스터(50,60)도 전술한 구리 전구체와 마찬가지로 효율적인 전구체의 공급을 위하여 캐니스터의 온도를 -40 ~ 200℃ 정도로 유지하는 것이 바람직하다. 또한 공급라인(54,64)의 온도도 캐니스터의 온도보다 약간 높게, 상온 ~ 400℃ 정도로 유지하는 것이 바람직하다. 또한 인듐 전구체 또는 갈륨 전구체도 구리 전구체와 마찬가지로, 아르곤(Ar), 헬륨(He) 또는 질소(N2) 가스 등의 운반가스에 의하여 운반되는 것이 바람직하다.
텔러륨 전구체를 공급하는 캐니스터(70)도 효율적인 텔러륨 전구체의 공급을 위하여 캐니스터의 온도를 -60 ~ 200℃ 정도로 유지하는 것이 바람직하다. 또한 공급라인(74)의 온도도 캐니스터의 온도보다 약간 높게, 상온 ~ 400℃ 정도로 유지하는 것이 바람직하다. 또한 텔러륨 전구체도 다른 전구체와 마찬가지로, 아르곤(Ar), 헬륨(He) 또는 질소(N2) 가스 등의 운반가스에 의하여 운반되는 것이 바람직하다.
본 발명에 따른 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트(Cu-In-Ga-Te(CIGT)-based cahlcopyrite) 화합물 반도체 박막은 원자층 증착 공정을 통하여 상기 화합물 반도체 박막을 구성하는 각 전구체들을 순차적으로 챔버에 공급하여 제조함으로써 우수한 품질의 박막을 얻을 수 있을 뿐만 아니라 대량생산이 가능하고, 대면적 박막 제조에 유용한 것이며, 이러한 박막은 태양전지는 물론, 기타 태양광을 이용한 전기, 전력 장치의 제조에도 활용 가능할 것이다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것으로서, 본 발명의 보호범위는 아래의 특허청구범위에 의하여 해석되어야 하며 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (28)

  1. 다음 화학식 1로 표시되는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트(Cu-In-Ga-Te(CIGT)-based chalcopyrite) 화합물 반도체 박막:
    <화학식 1>
    CuInxGa1-xTe2
    (상기 화학식 1에서 0<x<1이다.)
  2. 제1항에 있어서,
    상기 구리 전구체는,
    다음 화학식 2-1 또는 2-2의 구조를 가지는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막.
    <화학식 2-1>
    XCuL
    <화학식 2-2>
    CuX2
    (상기 화학식 2-1 및 화학식 2-2에서 X는 β-디키토네이트 또는 β-키토이미네이트[이 2개의 기는 임의로 1~6개의 할로겐 또는 알킬기를 포함할 수 있다], 디알킬아미디네이트, 디알킬아미노(알킬)알콕시드, 알콕시알콕시드, 및 (알킬)시클로펜타디엔닐 중에서 선택되는 어느 하나이고,
    L은 중성리간드로서 탄소수 5~12 사이의 알켄, 알킨, 시클로(디)알켄[고리 중의 1~6개의 수소원자는 알킬기로 치환될 수 있다], 트리알킬포스핀, 트리알킬포스파이트, 알킬실릴알켄, 및 알킬실릴알킨 중에서 선택되는 어느 하나이다.)
  3. 제1항에 있어서,
    상기 구리 전구체는,
    Bis(acetylacetonato)copper,
    Bis(2,2,6,6-tetramethylheptandionato)copper, Bis(hexafluoroacetylacetonato)copper, (hexafluoroacetylacetonato)copper(vinyltrimethylsilane),
    (acetylacetonato)copper(vinyltrimethylsilane),
    (2,2,6,6-tetramethylheptandionato)copper(vinyltrimethylsilane),
    (acetylacetonato)copper(vinyltriethylsilane),
    (2,2,6,6-teramethylheptandionato)copper(vinyltriethylsilane),
    (hexafluoroacetylacetonato)copper(vinyltriethylsilane),
    (hexafluoroacetylacetonato)copper(1,5-cyclooctadiene),
    (hexafluoroacetylacetonato)copper(1,5-dimethylcyclooctadiene),
    (hexafluoroacetylacetonato)copper(3,3-dimethylbutene),
    (hexafluoroacetylacetonato)copper(trimethylphosphite),
    (hexafluoroacetylacetonato)copper(trimethylphosphine),
    (hexafluoroacetylacetonato)copper(1,3-cyclohexadiene),
    Copper bis(dimethylaminomethylbutoxide),
    Copper bis(ethylmethylaminomethylbutoxide),
    Copper bis(diethylaminomethylbutoxide),
    Copper bis(dimethylaminomethylpropoxide),
    Copper bis(ethylmethylaminomethylpropoxide), 및
    Copper bis(diethylaminomethylpropoxide)
    로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막.
  4. 제1항에 있어서,
    상기 인듐 전구체는,
    다음 화학식 3-1의 구조를 가지는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막.
    <화학식 3-1>
    InR1R2R3 : Ln
    (상기 화학식 3-1에서 R1, R2, R3는 서로 같거나 다른 것으로서 각각 탄소수 1~5 사이의 알킬기, 알킬아미노기, 알콕시알킬기, 아미노알콕시기, 알콕시아미노기, 알콕시기, 및 할로겐 중에서 선택되는 어느 하나이고, 이때 상기 R1, R2, R3 각각의 알킬기는 사슬형태(chain), 가지달린 사슬형태(branched chain), 및 고리화합물(cyclic compound) 형태가 모두 가능하고,
    L은 중성리간드로서 루이스 염기이며, 비공유 전자쌍을 인듐 금속 중심에 제공할 수 있는 아민(amine)계열의 화합물이고,
    n은 0 내지 2의 정수이다.)
  5. 제4항에 있어서,
    상기 화학식 3-1의 L은,
    2차 또는 3차의 아민 화합물인 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막.
  6. 제5항에 있어서,
    상기 아민 화합물은,
    삼각, 사각, 오각 또는 육각의 헤테로고리아민(heterocyclic amine) 화합물인 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막.
  7. 제6항에 있어서,
    상기 헤테로고리아민 화합물은,
    다음 화학식 3-2의 구조를 가지는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막.
    <화학식 3-2>
    Ra-N(CRxRy)z
    (상기 화학식 3-2에서 Ra, Rx, Ry는 서로 같거나 다른 것으로서 각각 수소, 메틸기, 에틸기, 프로필기(2차 포함), 및 부틸기(2차, 3차, 이소 포함) 중에서 선택되는 어느 하나이고, z는 2 내지 5의 정수이다.)
  8. 제7항에 있어서,
    상기 화학식 3-2는,
    다음 화학식 3-3 내지 3-6 중 어느 하나인 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막.
    <화학식 3-3>
    Figure PCTKR2010002634-appb-I000009
    <화학식 3-4>
    Figure PCTKR2010002634-appb-I000010
    <화학식 3-5>
    Figure PCTKR2010002634-appb-I000011
    <화학식 3-6>
    Figure PCTKR2010002634-appb-I000012
  9. 제1항에 있어서,
    상기 인듐 전구체는,
    Trimethylindium, Triethylindium, Triisopropylindium, Tributylindium, Tritertiarybutylindium, Trimethoxyindium, Triethoxyindium, Triisopropoxyindium, Dimethylisopropoxyindium, Diethylisopropoxyindium, Dimethylethylindium, Diethylmethylindium, Dimethylisopropylindium, Diethylisopropylindium, 및 Dimethyltertiarybutylindium으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막.
  10. 제1항에 있어서,
    상기 갈륨 전구체는,
    다음 화학식 4-1의 구조를 가지는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막.
    <화학식 4-1>
    GaR1R2R3 : Ln
    (상기 화학식 4-1에서 R1, R2, R3는 서로 같거나 다른 것으로서 각각 탄소수 1~5 사이의 알킬기, 알킬아미노기, 알콕시알킬기, 아미노알콕시기, 알콕시아미노기, 알콕시기, 및 할로겐 중에서 선택되는 어느 하나이고, 이때 상기 R1, R2, R3 각각의 알킬기는 사슬형태(chain), 가지달린 사슬형태(branched chain), 및 고리화합물(cyclic compound) 형태가 모두 가능하고,
    L은 중성리간드로서 루이스 염기이며, 비공유 전자쌍을 갈륨 금속 중심에 제공할 수 있는 아민(amine)계열의 화합물이고,
    n은 0 내지 2의 정수이다.)
  11. 제10항에 있어서,
    상기 화학식 4-1의 L은,
    2차 또는 3차의 아민 화합물인 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막.
  12. 제11항에 있어서,
    상기 아민 화합물은,
    삼각, 사각, 오각 또는 육각의 헤테로고리아민(heterocyclic amine) 화합물인 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막.
  13. 제12항에 있어서,
    상기 헤테로고리아민 화합물은,
    다음 화학식 4-2의 구조를 가지는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막.
    < 화학식 4-2 >
    Ra-N(CRxRy)z
    (상기 화학식 4-2에서 Ra, Rx, Ry는 서로 같거나 다른 것으로서 각각 수소, 메틸기, 에틸기, 프로필기(2차 포함), 및 부틸기(2차, 3차, 이소 포함) 중에서 선택되는 어느 하나이고, z는 2 내지 5의 정수이다.)
  14. 제13항에 있어서,
    상기 화학식 4-2는,
    다음 화학식 4-3 내지 4-6 중 어느 하나인 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막.
    <화학식 4-3>
    Figure PCTKR2010002634-appb-I000013
    <화학식 4-4>
    Figure PCTKR2010002634-appb-I000014
    <화학식 4-5>
    Figure PCTKR2010002634-appb-I000015
    <화학식 4-6>
    Figure PCTKR2010002634-appb-I000016
  15. 제1항에 있어서,
    상기 갈륨 전구체는,
    Trimethylgallium, Triethylgallium, Triisopropylgallium, Tributylgallium, Tritertiarybutylgallium, Trimethoxygallium, Triethoxygallium, Triisopropoxygallium, Dimethylisopropoxygallium, Diethylisopropoxygallium, Dimethylethylgallium, Diethylmethylgallium, Dimethylisopropylgallium, Diethylisopropylgallium, 및 Dimethyltertiarybutylgallium으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막.
  16. 제1항에 있어서,
    상기 텔러륨 전구체는,
    다음 화학식 5의 구조를 가지는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막:
    <화학식 5>
    R1----(Te)n----R2
    (상기 화학식 5에서 R1, R2는 서로 같거나 다른 것으로서, 각각 수소 원자, 탄소수 1~5 사이의 알킬기, 알킬아미노기, 알콕시알킬기, 아미노알콕시기, 알콕시아미노기, 알콕시기, 및 할로겐 중에서 선택되는 어느 하나이고, 이때 상기 R1, R2 각각의 알킬기는 사슬형태(chain), 가지달린 사슬형태(branched chain), 및 고리화합물(cyclic compound) 형태가 모두 가능하고,
    n은 1 또는 2이다.)
  17. 제1항에 있어서,
    상기 텔러륨 전구체는,
    Dimethyltelluride, Diethyltelluride, Diisopropyltelluride,
    Ditertiarybutyltelluride, Dimethylditelluride, Diethylditelluride,
    Diisopropylditelluride, Ditertiarybutylditelluride,
    Tertiarybutylisopropyltelluride, 및 Tertiarybutyltellenol으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막.
  18. 진공 챔버 내에 장착된 기판상에 구리(Cu) 전구체, 인듐(In) 전구체, 갈륨(Ga) 전구체, 및 텔러륨(Te) 전구체를 동시에 또는 이들 중 2가지 이상의 조합으로 공급하면서 화학기상 증착법을 이용하여 박막을 제조하는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트(CIGT-based chalcopyrite) 화합물 반도체 박막 제조방법.
  19. 진공 챔버 내에 장착된 기판상에 구리(Cu) 전구체, 인듐(In) 전구체, 갈륨(Ga) 전구체, 및 텔러륨(Te) 전구체를 순차적으로 공급하면서 원자층 증착법을 이용하여 박막을 제조하는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트(CIGT-based chalcopyrite) 화합물 반도체 박막 제조방법.
  20. 제19항에 있어서,
    1) 진공 챔버 내부에 기판을 위치시키고, 상기 기판을 특정한 반응 온도로 유지하는 단계;
    2) 진공 챔버 내부로 구리 전구체를 공급하고 반응시키는 단계;
    3) 미반응 물질 및 부산물을 제거하는 제1 퍼징 단계;
    4) 진공 챔버 내부로 인듐 전구체를 공급하고 반응시키는 단계;
    5) 미반응 물질 및 부산물을 제거하는 제2 퍼징 단계;
    6) 진공 챔버 내부로 갈륨 전구체를 공급하고 반응시키는 단계;
    7) 미반응 물질 및 부산물을 제거하는 제3 퍼징 단계;
    8) 진공 챔버 내부로 텔러륨 전구체를 공급하고 반응시키는 단계; 및
    9) 미반응 물질 및 부산물을 제거하는 제4 퍼징 단계;를 포함하고,
    원자층 증착법을 이용하여 기판상에 박막을 제조하는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막 제조방법.
  21. 제20항에 있어서,
    상기 2), 4), 6), 8) 단계에서,
    상기 구리, 인듐, 갈륨, 및 텔러륨 전구체를 공급시에 각각 0.1 ~ 200초 동안 상기 진공 챔버 내부로 기화된 상태로 공급하는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막 제조방법.
  22. 제20항에 있어서,
    상기 3), 5), 7), 9) 단계에서,
    불활성 가스인 질소(N2) 가스 또는 아르곤(Ar) 가스를 1sccm ~ 1000slm의 유량으로 0.1 ~ 200초간 주입하고 펌프로 배출하는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막 제조방법.
  23. 제20항에 있어서,
    상기 제1, 2, 3 퍼징 단계에서는,
    헬륨(He), 수소(H2), 질소(N2), 아르곤(Ar), 및 암모니아(NH3)로 이루어지는 군에서 선택되는 1종 이상의 퍼징가스를 상기 진공 챔버 내부로 주입하고, 진공 챔버에 마련되는 진공 펌프를 이용하여 진공 챔버 내에 존재하는 가스를 흡입하여 제거하는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막 제조방법.
  24. 제18항 또는 제19항에 있어서,
    상기 구리 전구체, 인듐 전구체, 갈륨 전구체, 및 텔러륨 전구체의 공급시에 아르곤(Ar) 가스, 헬륨(He) 가스 또는 질소(N2) 가스 중 1종 이상을 운반가스로 사용하는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막 제조방법.
  25. 제18항 또는 제19항에 있어서,
    상기 진공 챔버의 압력을 0.01mtorr ~ 대기압으로 유지하면서 공정을 진행하는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막 제조방법.
  26. 제18항 또는 제19항에 있어서,
    상기 구리 전구체, 인듐 전구체 또는 갈륨 전구체는,
    캐니스터 온도를 -40 ~ 200℃, 공급라인 온도를 상온 ~ 400℃로 유지하면서 공급하는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막 제조방법.
  27. 제18항 또는 제19항에 있어서,
    상기 텔러륨 전구체는,
    캐니스터 온도를 -60 ~ 200℃, 공급라인 온도를 상온 ~ 400℃로 유지하면서 공급하는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막 제조방법.
  28. 제18항 또는 제19항에 있어서,
    상기 기판의 온도를 상온 ~ 600℃로 유지하는 것을 특징으로 하는 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막 제조방법.
PCT/KR2010/002634 2009-04-29 2010-04-27 Cigt 박막 및 그 제조방법 WO2010126274A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020090037395A KR20100118625A (ko) 2009-04-29 2009-04-29 구리-인듐-갈륨-텔러륨계 전구체의 켈코파이라이트 화합물 반도체 박막 및 이의 제조방법
KR10-2009-0037395 2009-04-29
KR1020100035729A KR20110116354A (ko) 2010-04-19 2010-04-19 Cigt 박막 및 그 제조방법
KR10-2010-0035729 2010-04-19

Publications (2)

Publication Number Publication Date
WO2010126274A2 true WO2010126274A2 (ko) 2010-11-04
WO2010126274A3 WO2010126274A3 (ko) 2011-03-03

Family

ID=43032674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002634 WO2010126274A2 (ko) 2009-04-29 2010-04-27 Cigt 박막 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2010126274A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540732A1 (en) * 2011-06-30 2013-01-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Deposition of gallium containing thin films using new gallium precursors.
EP2540733A1 (en) * 2011-06-30 2013-01-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Deposition of indium containing thin films using new indium precursors
WO2014027747A1 (ko) * 2012-08-14 2014-02-20 지에스칼텍스(주) Cis계 또는 cigs계 태양전지용 광흡수층의 제조방법 및 cis계 또는 cigs계 태양전지용 광흡수 잉크

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010017369A1 (en) * 2000-01-13 2001-08-30 Shingo Iwasaki Electron-emitting device and method of manufacturing the same and display apparatus using the same
US20080000518A1 (en) * 2006-03-28 2008-01-03 Basol Bulent M Technique for Manufacturing Photovoltaic Modules

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010017369A1 (en) * 2000-01-13 2001-08-30 Shingo Iwasaki Electron-emitting device and method of manufacturing the same and display apparatus using the same
US20080000518A1 (en) * 2006-03-28 2008-01-03 Basol Bulent M Technique for Manufacturing Photovoltaic Modules

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BENABDESLEM M. ET AL: 'Growth and characterization of CuInxGa1-xTe2 used for photovoltaic conversion' SOLAR ENERGY vol. 80, no. 2, 09 September 2005, pages 196 - 200 *
GOMBIA E. ET AL: 'CVD growth, thermodynamical study and electrical characterization of CuBTe2 (B=A1, Ga, In) single crystals' PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION vol. 10, 15 August 1984, pages 225 - 233 *
GREMENOK V. F. ET AL: 'Characterization of polycrystalline Cu (In, Ga) Te2 thin films prepared by pulsed laser deposition' THIN SOLID FILMS vol. 394, no. 1-2, 15 August 2001, pages 24 - 29 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540732A1 (en) * 2011-06-30 2013-01-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Deposition of gallium containing thin films using new gallium precursors.
EP2540733A1 (en) * 2011-06-30 2013-01-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Deposition of indium containing thin films using new indium precursors
WO2014027747A1 (ko) * 2012-08-14 2014-02-20 지에스칼텍스(주) Cis계 또는 cigs계 태양전지용 광흡수층의 제조방법 및 cis계 또는 cigs계 태양전지용 광흡수 잉크

Also Published As

Publication number Publication date
WO2010126274A3 (ko) 2011-03-03

Similar Documents

Publication Publication Date Title
WO2013103194A1 (ko) 처리유닛을 포함하는 기판 처리 장치
WO2019088722A1 (ko) 루테늄함유 박막의 제조방법 및 이로부터 제조된 루테늄함유 박막
WO2010126274A2 (ko) Cigt 박막 및 그 제조방법
WO2019203407A1 (ko) 원자층 증착용(ald), 화학 기상 증착용(cvd) 전구체 화합물 및 이를 이용한 ald/cvd 증착법
WO2022149854A1 (ko) 핵성장 지연을 이용한 영역 선택적 박막 형성 방법
WO2011019215A2 (ko) 레이어 형성장치
WO2020116770A1 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2011111889A1 (ko) Cigs 박막 제조방법
KR101071544B1 (ko) 원자층 증착법에 의한 cigs 박막 제조방법
WO2018182309A1 (en) Composition for depositing silicon-containing thin film containing bis(aminosilyl)alkylamine compound and method for manufacturing silicon-containing thin film using the same
WO2021153986A1 (ko) 실리콘 전구체 화합물, 이를 포함하는 실리콘-함유 막 형성용 조성물 및 실리콘-함유 막 형성 방법
WO2017122842A1 (ko) Cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법
WO2023171911A1 (ko) 신규한 유기주석 화합물, 이의 제조방법, 이를 포함하는 용액공정용 조성물 및 이를 이용한 박막의 제조방법
WO2024049150A1 (ko) 금속 화합물을 포함하는 박막증착용 조성물, 이를 이용한 금속 함유 박막의 제조방법 및 이를 이용하여 제조된 금속 함유 박막
KR101623923B1 (ko) 박막 태양전지의 버퍼층 제조방법
WO2024075981A1 (ko) 페로브스카이트 화합물의 박막 형성 방법 및 그를 이용한 태양전지의 제조 방법
WO2020027552A1 (en) Aluminum compounds and methods of forming aluminum-containing film using the same
WO2024090836A1 (ko) 갈륨 화합물, 이를 포함하는 박막 증착용 조성물 및 이를 이용한 박막의 제조 방법
WO2018182305A1 (en) Silylamine compound, composition for depositing silicon-containing thin film containing the same, and method for manufacturing silicon-containing thin film using the composition
WO2023113308A1 (ko) 몰리브데넘 화합물, 이의 제조방법 및 이를 포함하는 박막 증착용 조성물
KR101071545B1 (ko) Cigs 박막 제조방법
WO2021145661A2 (ko) 원자층 증착용(ald), 화학 기상 증착용(cvd) 전구체 화합물 및 이를 이용한 ald/cvd 증착법
WO2021107338A1 (ko) 대기압 플라즈마를 이용한 oled 소자 박막 봉지 및 그 제조방법
WO2022169232A1 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2021034014A1 (en) Novel silylcyclodisilazane compound and method for manufacturing silicon-containing thin film using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769919

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769919

Country of ref document: EP

Kind code of ref document: A2