WO2010123967A2 - Glass compositions used in conductors for photovoltaic cells - Google Patents

Glass compositions used in conductors for photovoltaic cells Download PDF

Info

Publication number
WO2010123967A2
WO2010123967A2 PCT/US2010/031851 US2010031851W WO2010123967A2 WO 2010123967 A2 WO2010123967 A2 WO 2010123967A2 US 2010031851 W US2010031851 W US 2010031851W WO 2010123967 A2 WO2010123967 A2 WO 2010123967A2
Authority
WO
WIPO (PCT)
Prior art keywords
composition
glass
semiconductor device
thick film
firing
Prior art date
Application number
PCT/US2010/031851
Other languages
French (fr)
Other versions
WO2010123967A3 (en
Inventor
Hisashi Matsuno
Brian J. Laughlin
Alan Frederick Carroll
Kenneth Warren Hang
Yueli Wang
Original Assignee
E. I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E. I. Du Pont De Nemours And Company filed Critical E. I. Du Pont De Nemours And Company
Publication of WO2010123967A2 publication Critical patent/WO2010123967A2/en
Publication of WO2010123967A3 publication Critical patent/WO2010123967A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/06Frit compositions, i.e. in a powdered or comminuted form containing halogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Embodiments of the invention relate to a silicon semiconductor device, and a conductive thick film composition containing glass frit for use in a solar cell device.
  • a conventional solar cell structure with a p-type base has a negative electrode that may be on the front-side (also termed sun-side or illuminated side) of the cell and a positive electrode that may be on the opposite side.
  • Radiation of an appropriate wavelength falling on a p-n junction of a semiconductor body serves as a source of external energy to generate hole-electron pairs in that body. Because of the potential difference which exists at a p-n junction, holes and electrons move across the junction in opposite directions and thereby give rise to flow of an electric current that is capable of delivering power to an external circuit.
  • Most solar cells are in the form of a silicon wafer that has been metalized, i.e., provided with metal contacts that are electrically conductive.
  • compositions, structures for example, semiconductor, solar cell or photodiode structures
  • semiconductor devices for example, semiconductor, solar cell or photodiode devices
  • the Bi is Bi 2 O 3
  • the Bi 2 O 3 is 64-67 wt %, based on the weight % of the glass composition.
  • the at least one glass frit comprises, based on the wt % of the glass composition, 21 wt % SiO 2, 5.2 wt % ZrO 2 , 3.7 wt % B 2 O 3, 2.3 wt % Li 2 O, 2.3 wt % Na 2 O, wherein the Bi is Bi 2 O 3 , and the Bi 2 O 3 is 65.5 wt %, based on the weight percent of the glass composition.
  • the composition in accordance with the invention may include one or more additives selected from the group consisting of: (a) a metal wherein said metal is selected from Zn, Pb, Bi, Gd, Ce, Zr, Ti, Mn, Sn, Ru, Co, Fe, Cu, and Cr; (b) a metal oxide of one or more of the metals selected from Zn, Pb, Bi, Gd, Ce, Zr, Ti, Mn, Sn, Ru, Co, Fe, Cu and Cr; (c) any compounds that can generate the metal oxides of (b) upon firing; and (d) mixtures thereof.
  • the additives may include ZnO, or a compound that forms ZnO upon firing.
  • the ZnO may be 2 to 10 wt % of the total composition.
  • the glass frit may be 1 to 6 wt % of the total composition.
  • the conductive material may include Ag.
  • the Ag may be 90 to 99 wt % of the solids in the composition.
  • a further embodiment relates to a method of manufacturing a semiconductor device including the steps of: (a) providing a semiconductor substrate, one or more insulating films, and the thick film composition described herein; (b) applying the insulating film to the semiconductor substrate; (c) applying the thick film composition to the insulating film on the semiconductor substrate, and (d) firing the semiconductor, insulating film and thick film composition.
  • the insulating film may include one or more components selected from: titanium oxide, silicon nitride, SiNx:H, silicon oxide, and silicon oxide/titanium oxide.
  • a further embodiment relates to a semiconductor device made by the methods described herein.
  • An aspect relates to a semiconductor device including an electrode, wherein the electrode, prior to firing, includes the composition described herein.
  • An embodiment relates to a solar cell including the semiconductor device.
  • An embodiment relates to a semiconductor device including a semiconductor substrate, an insulating film, and a front-side electrode, wherein the front-side electrode comprises one or more components selected from the group consisting of zinc-silicate, willemite, and bismuth silicates.
  • Figure 1 is a process flow diagram illustrating the fabrication of a semiconductor device.
  • n-type diffusion layer 30 silicon nitride film, titanium oxide film, or silicon oxide film
  • thick film composition refers to a composition which, upon firing on a substrate, has a thickness of 1 to 100 microns.
  • the thick film compositions contain a conductive material, a glass composition, and organic vehicle.
  • the thick film composition may include additional components. As used herein, the additional components are termed "additives.”
  • compositions described herein include one or more electrically functional materials and one or more glass frits dispersed in an organic medium. These compositions may be thick film compositions.
  • the compositions may also include one or more additive(s). Exemplary additives may include metals, metal oxides or any compounds that can generate these metal oxides during firing.
  • the electrically functional powders may be conductive powders.
  • the composition(s), for example conductive compositions may be used in a semiconductor device.
  • the semiconductor device may be a solar cell or a photodiode.
  • the semiconductor device may be one of a broad range of semiconductor devices.
  • the semiconductor device may be a solar cell.
  • the thick film compositions described herein may be used in a solar cell.
  • the solar cell efficiency may be greater than 70% of the reference solar cell. In a further embodiment, the solar cell efficiency may be greater than 80% of the reference solar cell. The solar cell efficiency may be greater than 90% of the reference solar cell.
  • glass frit compositions are listed in Table I below.
  • Glass compositions also termed glass frits, are described herein as including percentages of certain components (also termed the elemental constituency). Specifically, the percentages are the percentages of the components used in the starting material that was subsequently processed as described herein to form a glass composition. Such nomenclature is conventional to one of skill in the art. In other words, the composition contains certain components, and the percentages of those components are expressed as a percentage of the corresponding oxide form. As recognized by one of skill in the art in glass chemistry, a certain portion of volatile species may be released during the process of making the glass. An example of a volatile species is oxygen.
  • one of skill in the art may calculate the percentages of starting components described herein (elemental constituency) using methods known to one of skill in the art including, but not limited to: Inductively Coupled Plasma-Emission Spectroscopy (ICPES), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and the like.
  • ICPES Inductively Coupled Plasma-Emission Spectroscopy
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectroscopy
  • XRF X-Ray Fluorescence spectroscopy
  • NMR Nuclear Magnetic Resonance spectroscopy
  • EPR Electron Paramagnetic Resonance spectroscopy
  • M ⁇ ssbauer M ⁇ ssbauer spectroscopy
  • EDS Electron microprobe Energy Dispersive Spectroscopy
  • WDS Electron microprobe Wavelength Dispersive Spectroscopy
  • CL Cathodoluminescence
  • glass compositions described herein are not limiting; it is contemplated that one of ordinary skill in the art of glass chemistry could make minor substitutions of additional ingredients and not substantially change the desired properties of the glass composition.
  • substitutions of glass formers such as P 2 O 5 0-3, GeO 2 0-3, V 2 O 5 0-3 in weight % may be used either individually or in combination to achieve similar performance.
  • one or more intermediate oxides such as TiO 2 , Ta 2 O 5 , Nb 2 O 5 , ZrO 2 , CeO 2 , and SnO2 may be substituted for other intermediate oxides (i.e., AI 2 O 3 , CeO 2 , SnO 2 ) present in a glass composition.
  • An aspect relates to glass frit compositions including one or more fluorine-containing components, including but not limited to: salts of fluorine, fluorides, metal oxyfluoride compounds, and the like.
  • fluorine-containing components include, but are not limited to BiF 3 , AIF 3 , NaF, LiF, KF, CsF, ZrF 4 , TiF 4 and/or ZnF 2 .
  • An exemplary method for producing the glass frits described herein is by conventional glass making techniques. Ingredients are weighed then mixed in the desired proportions and heated in a furnace to form a melt in platinum alloy crucibles.
  • One skilled in the art of producing glass frit could employ oxides as raw materials as well as fluoride or oxyfluohde salts.
  • salts such as nitrate, nitrites, carbonate, or hydrates, which decompose into oxide, fluorides, or oxyfluohdes at temperature below the glass melting temperature can be used as raw materials.
  • heating is conducted to a peak temperature (800-1400 0 C) and for a time such that the melt becomes entirely liquid, homogeneous, and free of any residual decomposition products of the raw materials.
  • the molten glass is then quenched between counter rotating stainless steel rollers to form a 10-15 mil thick platelet of glass.
  • the resulting glass platelet was then milled to form a powder with its 50% volume distribution set between to a desired target (e.g. 0.8 - 1.5 ⁇ m).
  • a desired target e.g. 0.8 - 1.5 ⁇ m.
  • One skilled the art of producing glass frit may employ alternative synthesis techniques such as but not limited to water quenching, sol-gel, spray pyrolysis, or others appropriate for making powder forms of glass.
  • glass frits compositions described herein may include one or more of SiO 2 , ZrO 2 , B 2 O 3 , Bi 2 O 3 , Li 2 O, LiF, BiF 3 , Na 2 O, or NaF.
  • SiO 2 may be 10 to 30 wt%, 15 to 25 wt%, or 18 to 22 wt%
  • ZrO 2 may be 0 to 10 wt%, 1 to 8 wt%, or 4 to 6 wt%
  • B 2 O 3 may be 0 to 5 wt%, 2 to 5 wt%, or 3 to 4 wt%
  • Bi 2 O 3 may be 0 to 85 wt%, 0 to 65 wt%, or 50 to 65 wt%
  • Li 2 O may be 0 to 5 wt%, 0 to 3 wt%, or 2 to 3 wt%
  • LiF may be 0 to 5 wt%, 0 to 4 wt%, or 3 to 4 wt%
  • BiF 3 may be 0 to 85 wt%, 0 to 70 wt%, or 10 to 70 wt%
  • Na 2 O may be 0 to 5 wt%, 0 to 3 wt%, or 2
  • glass may be, in part:
  • the glass frit composition(s) herein may include one or more of a third set of components: CeO 2 , SnO 2 , Ga 2 O 3 , In 2 O 3 , NiO, MoO 3 , WO 3 , Y 2 O 3 , La 2 O 3 , Nd 2 O 3 , FeO, HfO 2 , Cr 2 O 3 , CdO, Nb 2 O 5 , Ag 2 O, Sb 2 O 3 , and metal halides (e.g. NaCI, KBr, NaI).
  • the choice of raw materials could unintentionally include impurities that may be incorporated into the glass during processing.
  • the impurities may be present in the range of hundreds to thousands ppm.
  • a solar cell containing the thick film composition may have the efficiency described herein, even if the thick film composition includes impurities.
  • thick film composition may include electrically functional powders and glass-ceramic frits dispersed in an organic medium.
  • these thick film conductor composition(s) may be used in a semiconductor device.
  • the semiconductor device may be a solar cell or a photodiode.
  • the amount of glass frit in the total composition is in the range of .1 to 10 wt % of the total composition.
  • the glass composition is present in the amount of 1 to 7 wt % of the total composition.
  • the glass composition is present in the range of 2 to 5 wt % of the total composition.
  • the thick film composition may include a functional phase that imparts appropriate electrically functional properties to the composition.
  • the electrically functional powder may be a conductive powder.
  • the electrically functional phase may include conductive materials (also termed conductive particles, herein).
  • the conductive particles may include conductive powders, conductive flakes, or a mixture thereof, for example.
  • the conductive particles may include Ag. In a further embodiment, the conductive particles may include silver (Ag) and aluminum (Al). In a further embodiment, the conductive particles may, for example, include one or more of the following: Cu, Au, Ag, Pd, Pt, Al, Ag- Pd, Pt-Au, etc. In an embodiment, the conductive particles may include one or more of the following: (1 ) Al, Cu, Au, Ag, Pd and Pt; (2) alloy of Al, Cu, Au, Ag, Pd and Pt; and (3) mixtures thereof.
  • the functional phase of the composition may be coated or uncoated silver particles which are electrically conductive.
  • the silver particles are coated, they are at least partially coated with a surfactant.
  • the surfactant may include one or more of the following non-limiting surfactants: stearic acid, palmitic acid, a salt of stearate, a salt of palmitate, lauric acid, palmitic acid, oleic acid, stearic acid, capric acid, myristic acid and linoleic acid, and mixtures thereof.
  • the counter ion may be, but is not limited to, hydrogen, ammonium, sodium, potassium and mixtures thereof.
  • the particle size of the silver is not subject to any particular limitation.
  • the average particle size may be less than 10 microns, and, in a further embodiment, no more than 5 microns. In an aspect, the average particle size may be 0.1 to 5 microns, for example.
  • the silver may be 60 to 90 wt % of the paste composition. In a further embodiment, the silver may be 70 to 85 wt % of the paste composition. In a further embodiment, the silver may be 75 to 85 wt % of the paste composition. In a further embodiment, the silver may be 78 to 82 wt % of the paste composition.
  • the silver may be 90 to 99 wt % of the solids in the composition (i.e., excluding the organic vehicle). In a further embodiment, the silver may be 92 to 97 wt % of the solids in the composition. In a further embodiment, the silver may be 93 to 95 wt % of the solids in the composition.
  • particle size is intended to mean “average particle size”; “average particle size” means the 50% volume distribution size. Volume distribution size may be determined by a number of methods understood by one of skill in the art, including but not limited to LASER diffraction and dispersion method using a Microtrac particle size analyzer.
  • the thick film composition may include an additive.
  • the additive may be selected from one or more of the following: (a) a metal wherein said metal is selected from Zn, Pb, Bi, Gd, Ce, Zr, Ti, Mn, Sn, Ru, Co, Fe, Cu, and Cr; (b) a metal oxide of one or more of the metals selected from Zn, Pb, Bi, Gd, Ce, Zr, Ti, Mn, Sn, Ru, Co, Fe, Cu and Cr; (c) any compounds that can generate the metal oxides of (b) upon firing; and (d) mixtures thereof.
  • the additive may include a Zn-containing additive.
  • the Zn-containing additive may include one or more of the following: (a) Zn, (b) metal oxides of Zn, (c) any compounds that can generate metal oxides of Zn upon firing, and (d) mixtures thereof.
  • the Zn-containing additive may include Zn resinate.
  • the Zn-containing additive may include ZnO.
  • the ZnO may have an average particle size in the range of 1 nanometers to 10 microns. In a further embodiment, the ZnO may have an average particle size of 40 nanometers to 5 microns. In a further embodiment, the ZnO may have an average particle size of 60 nanometers to 3 microns.
  • the ZnO may have an average particle size of less than 100 nm; less than 90 nm; less than 80 nm; 1 nm to less than 100 nm; 1 nm to 95 nm; 1 nm to 90 nm; 1 nm to 80 nm; 7 nm to 30 nm; 1 nm to 7 nm; 35 nm to 90 nm; 35 nm to 80 nm, 65nm to 90 nm, 60 nm to 80 nm, and ranges in between, for example.
  • ZnO may be present in the composition in the range of 0 to 10 wt% total composition. In an embodiment, the ZnO may be present in the range of 0 to 8 wt% total composition. In a further embodiment, the ZnO may be present in the range of 0 to 5 wt% total composition. In a further embodiment, the ZnO may be present in the range of greater than 4.5 wt %, 5 wt %, 5.5 wt %, 6 wt %, 6.5 wt %, 7 wt %, or 7.5 wt % of the total composition. In a still further embodiment, the ZnO may be present in the range of less than 3 wt%, 2.5 wt%, 2 wt%, 1.5 wt% or 0.5 wt.
  • the Zn-containing additive for example Zn,
  • Zn resinate, etc. may be present in the total thick film composition in the range of O to 16 w%.
  • the Zn-containing additive may be present in the range 0 to 12 w% total composition.
  • the Zn-containing additive may be present in the range of greater than 4.5 wt %, 5 wt %, 5.5 wt %, 6 wt %, 6.5 wt %, 7 wt %, or 7.5 wt % of the total composition.
  • the Zn- containing additive may be present in the range of less than 3 wt%, 2.5 wt%, 2 wt%, 1.5 wt% or 0.5 wt.
  • the particle size of the metal/metal oxide additive (such as Zn, for example) is in the range of 7 nanometers (nm) to 125 nm; in a further embodiment, the particle size may be less than 100 nm, 90 nm, 85 nm, 80 nm, 75 nm, 70 nm, 65 nm, or 60 nm, for example.
  • the thick film compositions described herein may include organic medium.
  • the inorganic components may be mixed with an organic medium, for example, by mechanical mixing to form pastes.
  • a wide variety of inert viscous materials can be used as organic medium.
  • the organic medium may be one in which the inorganic components are dispersible with an adequate degree of stability.
  • the rheological properties of the medium may lend certain application properties to the composition, including: stable dispersion of solids, appropriate viscosity and thixotropy for screen printing, appropriate wettability of the substrate and the paste solids, a good drying rate, and good firing properties.
  • the organic vehicle used in the thick film composition may be a nonaqueous inert liquid.
  • the organic medium may be a solution of polymer(s) in solvent(s).
  • the organic medium may also include one or more components, such as surfactants.
  • the polymer may be ethyl cellulose.
  • Other exemplary polymers include ethyl hydroxyethyl cellulose, wood rosin, mixtures of ethyl cellulose and phenolic resins, polymethacrylates of lower alcohols, and monobutyl ether of ethylene glycol monoacetate, or mixtures thereof.
  • the solvents useful in thick film compositions described herein include ester alcohols and terpenes such as alpha- or beta-terpineol or mixtures thereof with other solvents such as kerosene, dibutylphthalate, butyl carbitol, butyl carbitol acetate, hexylene glycol and high boiling alcohols and alcohol esters.
  • the organic medium may include volatile liquids for promoting rapid hardening after application on the substrate.
  • the polymer may be present in the organic medium in the range of 8 wt % to 11 wt % of the total composition, for example.
  • the thick film silver composition may be adjusted to a predetermined, screen-printable viscosity with the organic medium.
  • the ratio of organic medium in the thick film composition to the inorganic components in the dispersion may be dependent on the method of applying the paste and the kind of organic medium used, as determined by one of skill in the art.
  • the dispersion may include 70-95 wt % of inorganic components and 5-30 wt % of organic medium (vehicle) in order to obtain good wetting.
  • the organic medium may be removed during the drying and firing of the semiconductor device.
  • the glass frit, Ag, and additives may be sintered during firing to form an electrode.
  • the fired electrode may include components, compositions, and the like, resulting from the firing and sintering process.
  • the fired electrode may include zinc-silicates, including but not limited to willemite (Zn 2 SiO 4 ) and Zn 1 7 SiO 4-x (in an embodiment, x may be 0-1 ).
  • the fired electrode may include bismuth silicates, including but not limited to Bi 4 (SiO 4 )3.
  • the semiconductor device may be a solar cell or a photodiode.
  • the semiconductor device may be used in a solar cell device.
  • the semiconductor device may include a front-side electrode, wherein, prior to firing, the front-side (illuminated-side) electrode may include composition(s) described herein.
  • the method of making a semiconductor device includes the steps of: (a) providing a semiconductor substrate; (b) applying an insulating film to the semiconductor substrate; (c) applying a composition described herein to the insulating film; and (d) firing the device.
  • Exemplary semiconductor substrates useful in the methods and devices described herein are recognized by one of skill in the art, and include, but are not limited to: single-crystal silicon, multicrystalline silicon, ribbon silicon, and the like.
  • the semiconductor substrate may be junction bearing.
  • the semiconductor substrate may be doped with phosphorus and boron to form a p/n junction. Methods of doping semiconductor substrates are understood by one of skill in the art.
  • the semiconductor substrates may vary in size (length x width) and thickness, as recognized by one of skill in the art.
  • the thickness of the semiconductor substrate may be 50 to 500 microns; 100 to 300 microns; or 140 to 200 microns.
  • the length and width of the semiconductor substrate may both equally be 100 to 250 mm; 125 to 200 mm; or 125 to 156 mm.
  • Exemplary insulating films useful in the methods and devices described herein are recognized by one of skill in the art, and include, but are not limited to: silicon nitride, silicon oxide, titanium oxide, SiN x :H, hydrogenated amorphous silicon nitride, and silicon oxide/titanium oxide film.
  • the insulating film may be formed by PECVD, CVD, and/or other techniques known to one of skill in the art.
  • the silicon nitride film may be formed by a plasma enhanced chemical vapor deposition (PECVD), thermal CVD process, or physical vapor deposition (PVD).
  • PECVD plasma enhanced chemical vapor deposition
  • PVD physical vapor deposition
  • the silicon oxide film may be formed by thermal oxidation, thermal CVD , plasma CVD, or PVD.
  • the insulating film (or layer) may also be termed the anti-reflective coating (ARC).
  • compositions described herein may be applied to the ARC-coated semiconductor substrate by a variety of methods known to one of skill in the art, including, but not limited to, screen-printing, ink-jet, coextrusion, syringe dispense, direct writing, and aerosol ink jet.
  • the composition may be applied in a pattern.
  • the composition may be applied in a predetermined shape and at a predetermined position.
  • the composition may be used to form both the conductive fingers and busbars of the front-side electrode.
  • the width of the lines of the conductive fingers may be 20 to 200 microns; 40 to 150 microns; or 60 to 100 microns.
  • the thickness of the lines of the conductive fingers may be 5 to 50 microns; 10 to 35 microns; or 15 to 30 microns.
  • the composition may be used to form the conductive, Si contacting fingers.
  • the composition coated on the ARC-coated semiconductor substrate may be dried as recognized by one of skill in the art, for example, for 0.5 to 10 minutes, and then fired.
  • volatile solvents and organics may be removed during the drying process.
  • Firing conditions will be recognized by one of skill in the art.
  • firing conditions the silicon wafer substrate is heated to maximum temperature of between 600 and 900 0 C for a duration of 1 second to 2 minutes.
  • the maximum silicon wafer temperature reached during firing ranges from 650 to 800C for a duration of 1 to 10 seconds.
  • the electrode formed from the conductive thick film composition(s) may be fired in an atmosphere composed of a mixed gas of oxygen and nitrogen.
  • This firing process removes the organic medium and sinters the glass frit with the Ag powder in the conductive thick film composition.
  • the electrode formed from the conductive thick film composition(s) may be fired above the organic medium removal temperature in an inert atmosphere not containing oxygen. This firing process sinters or melts base metal conductive materials such as copper in the thick film composition.
  • the fired electrode (preferably the fingers) may react with and penetrate the insulating film, forming electrical contact with the silicon substrate.
  • conductive and device enhancing materials are applied to the opposite type region of the semiconductor device and cofired or sequentially fired with the compositions described herein.
  • the opposite type region of the device is on the opposite side of the device.
  • the materials serve as electrical contacts, passivating layers, and solderable tabbing areas.
  • the opposite type region may be on the non- illuminated (back) side of the device.
  • the back-side conductive material may contain aluminum. Exemplary backside aluminum-containing compositions and methods of applying are described, for example, in US 2006/0272700, which is hereby incorporated herein by reference.
  • solderable tabbing material may contain aluminum and silver.
  • Exemplary tabbing compositions containing aluminum and silver are described, for example in US 2006/0231803, which is hereby incorporated herein by reference.
  • the materials applied to the opposite type region of the device are adjacent to the materials described herein due to the p and n region being formed side by side.
  • Such devices place all metal contact materials on the non illuminated (back) side of the device to maximize incident lignt on the illuminated (front) side.
  • the semiconductor device may be manufactured by the following method from a structural element composed of a junction-bearing semiconductor substrate and a silicon nitride insulating film formed on a main surface thereof.
  • the method of manufacture of a semiconductor device includes the steps of applying (such as coating and printing) onto the insulating film, in a predetermined shape and at a predetermined position, the conductive thick film composition having the ability to penetrate the insulating film, then firing so that the conductive thick film composition melts and passes through the insulating film, effecting electrical contact with the silicon substrate.
  • the electrically conductive thick film composition is a thick-film paste composition, as described herein, which is made of a silver powder, Zn-containing additive, a glass or glass powder mixture having a softening point of 300 to 600 0 C, dispersed in an organic vehicle and optionally, additional metal/metal oxide additive(s).
  • An embodiment of the invention relates to a semiconductor device manufactured from the methods described herein.
  • Devices containing the compositions described herein may contain zinc-silicates, as described above.
  • An embodiment of the invention relates to a semiconductor device manufactured from the method described above.
  • the glass frit compositions outlined in Table I will be characterized to determine density, softening point, TMA shrinkage, diaphaneity, and crystal unity.
  • Paste Preparation Paste preparations in general, will be prepared using the following procedure: The appropriate amount of solvent, medium and surfactant will be weighed and mixed in a mixing can for 15 minutes, then glass frits described herein, and optionally metal additives, will be added and mixed for another 15 minutes. Since Ag is the major part of the solids, it will be added incrementally to ensure better wetting. When well mixed, the paste will be repeatedly passed through a 3-roll mill at progressively increasing pressures from 0 to 300 psi. The gap of the rolls will be set to 1 mil. The degree of dispersion will be measured by fineness of grind (FOG). A typical FOG value for a paste is less than 20 microns for the fourth longest, continuous scratch and less than 10 microns for the point at which 50% of the paste is scratched.
  • FOG fineness of grind
  • the solar cells which will be built according to the method described herein will be tested for conversion efficiency.
  • An exemplary method of testing efficiency is provided below.
  • the solar cells which will be built according to the method described herein will be placed in a commercial I-V tester for measuring efficiencies (ST-1000).
  • the Xe Arc lamp in the I-V tester will simulate the sunlight with a known intensity and irradiated the front surface of the cell.
  • the tester uses a multi-point contact method to measure current (I) and voltage (V) at approximately 400 load resistance settings to determine the cell's I-V curve. Both fill factor (FF) and efficiency (EfT) will be calculated from the I-V curve.
  • Paste efficiency and fill factor values will be normalized to corresponding values obtained with cells contacted with industry standards.

Abstract

The invention relates to glass compositions useful in conductive pastes for silicon semiconductor devices and photovoltaic cells.

Description

TITLE
GLASS COMPOSITIONS USED IN CONDUCTORS FOR PHOTOVOLTAIC CELLS
FIELD OF THE INVENTION
Embodiments of the invention relate to a silicon semiconductor device, and a conductive thick film composition containing glass frit for use in a solar cell device.
TECHNICAL BACKGROUND OF THE INVENTION
A conventional solar cell structure with a p-type base has a negative electrode that may be on the front-side (also termed sun-side or illuminated side) of the cell and a positive electrode that may be on the opposite side. Radiation of an appropriate wavelength falling on a p-n junction of a semiconductor body serves as a source of external energy to generate hole-electron pairs in that body. Because of the potential difference which exists at a p-n junction, holes and electrons move across the junction in opposite directions and thereby give rise to flow of an electric current that is capable of delivering power to an external circuit. Most solar cells are in the form of a silicon wafer that has been metalized, i.e., provided with metal contacts that are electrically conductive.
There is a need for compositions, structures (for example, semiconductor, solar cell or photodiode structures), and semiconductor devices (for example, semiconductor, solar cell or photodiode devices) which have improved electrical performance, and methods of making.
SUMMARY OF THE INVENTION
An embodiment of the invention relates to a composition comprising
(a) one or more conductive materials; (b) one or more glass frits, wherein at least one of the glass frits comprises, based on the wt % of the glass composition: 20-22 wt % SiO2, 5-5.5 wt % ZrO2, 3.5-4 wt % B2O3, 2-2.5 wt % Li2O, 2-2.5 wt % Na2O, 55-60 elemental wt % Bi; and (c) organic vehicle.
In embodiments of the invention the Bi is Bi2O3, and the Bi2O3 is 64-67 wt %, based on the weight % of the glass composition. In other embodiments the at least one glass frit comprises, based on the wt % of the glass composition, 21 wt % SiO2, 5.2 wt % ZrO2, 3.7 wt % B2O3, 2.3 wt % Li2O, 2.3 wt % Na2O, wherein the Bi is Bi2O3, and the Bi2O3 is 65.5 wt %, based on the weight percent of the glass composition.
The composition in accordance with the invention may include one or more additives selected from the group consisting of: (a) a metal wherein said metal is selected from Zn, Pb, Bi, Gd, Ce, Zr, Ti, Mn, Sn, Ru, Co, Fe, Cu, and Cr; (b) a metal oxide of one or more of the metals selected from Zn, Pb, Bi, Gd, Ce, Zr, Ti, Mn, Sn, Ru, Co, Fe, Cu and Cr; (c) any compounds that can generate the metal oxides of (b) upon firing; and (d) mixtures thereof. In an embodiment, the additives may include ZnO, or a compound that forms ZnO upon firing. The ZnO may be 2 to 10 wt % of the total composition. The glass frit may be 1 to 6 wt % of the total composition. The conductive material may include Ag. The Ag may be 90 to 99 wt % of the solids in the composition.
A further embodiment relates to a method of manufacturing a semiconductor device including the steps of: (a) providing a semiconductor substrate, one or more insulating films, and the thick film composition described herein; (b) applying the insulating film to the semiconductor substrate; (c) applying the thick film composition to the insulating film on the semiconductor substrate, and (d) firing the semiconductor, insulating film and thick film composition. In an aspect, the insulating film may include one or more components selected from: titanium oxide, silicon nitride, SiNx:H, silicon oxide, and silicon oxide/titanium oxide.
A further embodiment relates to a semiconductor device made by the methods described herein. An aspect relates to a semiconductor device including an electrode, wherein the electrode, prior to firing, includes the composition described herein. An embodiment relates to a solar cell including the semiconductor device.
An embodiment relates to a semiconductor device including a semiconductor substrate, an insulating film, and a front-side electrode, wherein the front-side electrode comprises one or more components selected from the group consisting of zinc-silicate, willemite, and bismuth silicates.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a process flow diagram illustrating the fabrication of a semiconductor device.
Reference numerals shown in Figure 1 are explained below.
10: p-type silicon substrate
20: n-type diffusion layer 30: silicon nitride film, titanium oxide film, or silicon oxide film
40: p+ layer (back surface field, BSF)
60: aluminum paste formed on backside
61 : aluminum back electrode (obtained by firing back side aluminum paste) 70: silver or silver/aluminum paste formed on backside
71 : silver or silver/aluminum back electrode (obtained by firing back side silver paste)
500: silver paste formed on front side according to the invention
501 : silver front electrode according to the invention (formed by firing front side silver paste)
DETAILED DESCRIPTION OF THE INVENTION
As used herein, "thick film composition" refers to a composition which, upon firing on a substrate, has a thickness of 1 to 100 microns. The thick film compositions contain a conductive material, a glass composition, and organic vehicle. The thick film composition may include additional components. As used herein, the additional components are termed "additives."
The compositions described herein include one or more electrically functional materials and one or more glass frits dispersed in an organic medium. These compositions may be thick film compositions. The compositions may also include one or more additive(s). Exemplary additives may include metals, metal oxides or any compounds that can generate these metal oxides during firing.
In an embodiment, the electrically functional powders may be conductive powders. In an embodiment, the composition(s), for example conductive compositions, may be used in a semiconductor device. In an aspect of this embodiment, the semiconductor device may be a solar cell or a photodiode. In a further aspect of this embodiment, the semiconductor device may be one of a broad range of semiconductor devices. In an embodiment, the semiconductor device may be a solar cell.
In an embodiment, the thick film compositions described herein may be used in a solar cell. In an aspect of this embodiment, the solar cell efficiency may be greater than 70% of the reference solar cell. In a further embodiment, the solar cell efficiency may be greater than 80% of the reference solar cell. The solar cell efficiency may be greater than 90% of the reference solar cell.
Glass frits
An aspect of the invention relates to glass frit compositions. In an embodiment, glass frit compositions (also termed glass compositions) are listed in Table I below.
Glass compositions, also termed glass frits, are described herein as including percentages of certain components (also termed the elemental constituency). Specifically, the percentages are the percentages of the components used in the starting material that was subsequently processed as described herein to form a glass composition. Such nomenclature is conventional to one of skill in the art. In other words, the composition contains certain components, and the percentages of those components are expressed as a percentage of the corresponding oxide form. As recognized by one of skill in the art in glass chemistry, a certain portion of volatile species may be released during the process of making the glass. An example of a volatile species is oxygen.
If starting with a fired glass, one of skill in the art may calculate the percentages of starting components described herein (elemental constituency) using methods known to one of skill in the art including, but not limited to: Inductively Coupled Plasma-Emission Spectroscopy (ICPES), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and the like. In addition, the following exemplary techniques may be used: X-Ray Fluorescence spectroscopy (XRF); Nuclear Magnetic Resonance spectroscopy (NMR); Electron Paramagnetic Resonance spectroscopy (EPR); Mόssbauer spectroscopy; Electron microprobe Energy Dispersive Spectroscopy (EDS); Electron microprobe Wavelength Dispersive Spectroscopy (WDS); Cathodoluminescence (CL).
The glass compositions described herein, including those listed in Table I, are not limiting; it is contemplated that one of ordinary skill in the art of glass chemistry could make minor substitutions of additional ingredients and not substantially change the desired properties of the glass composition. For example, substitutions of glass formers such as P2O5 0-3, GeO2 0-3, V2O5 0-3 in weight % may be used either individually or in combination to achieve similar performance. For example, one or more intermediate oxides, such as TiO2, Ta2O5, Nb2O5, ZrO2, CeO2, and SnO2 may be substituted for other intermediate oxides (i.e., AI2O3, CeO2, SnO2) present in a glass composition.
An aspect relates to glass frit compositions including one or more fluorine-containing components, including but not limited to: salts of fluorine, fluorides, metal oxyfluoride compounds, and the like. Such fluorine-containing components include, but are not limited to BiF3, AIF3, NaF, LiF, KF, CsF, ZrF4, TiF4 and/or ZnF2.
An exemplary method for producing the glass frits described herein is by conventional glass making techniques. Ingredients are weighed then mixed in the desired proportions and heated in a furnace to form a melt in platinum alloy crucibles. One skilled in the art of producing glass frit could employ oxides as raw materials as well as fluoride or oxyfluohde salts. Alternatively, salts, such as nitrate, nitrites, carbonate, or hydrates, which decompose into oxide, fluorides, or oxyfluohdes at temperature below the glass melting temperature can be used as raw materials. As well known in the art, heating is conducted to a peak temperature (800-14000C) and for a time such that the melt becomes entirely liquid, homogeneous, and free of any residual decomposition products of the raw materials. The molten glass is then quenched between counter rotating stainless steel rollers to form a 10-15 mil thick platelet of glass. The resulting glass platelet was then milled to form a powder with its 50% volume distribution set between to a desired target (e.g. 0.8 - 1.5 μm). One skilled the art of producing glass frit may employ alternative synthesis techniques such as but not limited to water quenching, sol-gel, spray pyrolysis, or others appropriate for making powder forms of glass.
The glass compositions used herein, in weight percent total glass composition, are shown in Table 1. Unless stated otherwise, as used herein, wt % means wt % of glass composition only. In another embodiment, glass frits compositions described herein may include one or more of SiO2, ZrO2, B2O3, Bi2O3, Li2O, LiF, BiF3, Na2O, or NaF. In aspects of this embodiment, the:
SiO2 may be 10 to 30 wt%, 15 to 25 wt%, or 18 to 22 wt%, ZrO2 may be 0 to 10 wt%, 1 to 8 wt%, or 4 to 6 wt%, B2O3 may be 0 to 5 wt%, 2 to 5 wt%, or 3 to 4 wt%, Bi2O3 may be 0 to 85 wt%, 0 to 65 wt%, or 50 to 65 wt%, Li2O may be 0 to 5 wt%, 0 to 3 wt%, or 2 to 3 wt%, LiF may be 0 to 5 wt%, 0 to 4 wt%, or 3 to 4 wt%, BiF3 may be 0 to 85 wt%, 0 to 70 wt%, or 10 to 70 wt%, Na2O may be 0 to 5 wt%, 0 to 3 wt%, or 2 to 3 wt%, NaF may be 0 to 5 wt%, 0 to 4 wt%, or 2 to 3 wt%.
One skilled the art of making glass could replace some or all of the Na2O or Li2O with K2O and some or all of the NaF or LiF with KF and create a glass with properties similar to the compositions listed above. The glass compositions can be described alternatively in wt% of the elements of the glass composition. In one embodiment the glass may be, in part:
O to 20 1 to 19 or 6 to 19 fluorine . . . .0/ , t0/ elemental wt%, elemental wt%, elemental wt%, bismuth 40 to 75 45 to 65 or 50 to 60 elemental wt%, elemental wt%, elemental wt%.
In a further embodiment, the glass frit composition(s) herein may include one or more of a third set of components: CeO2, SnO2, Ga2O3, In2O3, NiO, MoO3, WO3, Y2O3, La2O3, Nd2O3, FeO, HfO2, Cr2O3, CdO, Nb2O5, Ag2O, Sb2O3, and metal halides (e.g. NaCI, KBr, NaI).
One of skill in the art would recognize that the choice of raw materials could unintentionally include impurities that may be incorporated into the glass during processing. For example, the impurities may be present in the range of hundreds to thousands ppm.
The presence of the impurities would not alter the properties of the glass, the thick film composition, or the fired device. For example, a solar cell containing the thick film composition may have the efficiency described herein, even if the thick film composition includes impurities.
In a further aspect of this embodiment, thick film composition may include electrically functional powders and glass-ceramic frits dispersed in an organic medium. In an embodiment, these thick film conductor composition(s) may be used in a semiconductor device. In an aspect of this embodiment, the semiconductor device may be a solar cell or a photodiode. The amount of glass frit in the total composition is in the range of .1 to 10 wt % of the total composition. In one embodiment, the glass composition is present in the amount of 1 to 7 wt % of the total composition. In a further embodiment, the glass composition is present in the range of 2 to 5 wt % of the total composition.
Conductive materials
In an embodiment, the thick film composition may include a functional phase that imparts appropriate electrically functional properties to the composition. In an embodiment, the electrically functional powder may be a conductive powder. In an embodiment the electrically functional phase may include conductive materials (also termed conductive particles, herein). The conductive particles may include conductive powders, conductive flakes, or a mixture thereof, for example.
In an embodiment, the conductive particles may include Ag. In a further embodiment, the conductive particles may include silver (Ag) and aluminum (Al). In a further embodiment, the conductive particles may, for example, include one or more of the following: Cu, Au, Ag, Pd, Pt, Al, Ag- Pd, Pt-Au, etc. In an embodiment, the conductive particles may include one or more of the following: (1 ) Al, Cu, Au, Ag, Pd and Pt; (2) alloy of Al, Cu, Au, Ag, Pd and Pt; and (3) mixtures thereof.
In an embodiment, the functional phase of the composition may be coated or uncoated silver particles which are electrically conductive. In an embodiment in which the silver particles are coated, they are at least partially coated with a surfactant. In an embodiment, the surfactant may include one or more of the following non-limiting surfactants: stearic acid, palmitic acid, a salt of stearate, a salt of palmitate, lauric acid, palmitic acid, oleic acid, stearic acid, capric acid, myristic acid and linoleic acid, and mixtures thereof. The counter ion may be, but is not limited to, hydrogen, ammonium, sodium, potassium and mixtures thereof.
The particle size of the silver is not subject to any particular limitation.
In an embodiment, the average particle size may be less than 10 microns, and, in a further embodiment, no more than 5 microns. In an aspect, the average particle size may be 0.1 to 5 microns, for example.
In an embodiment, the silver may be 60 to 90 wt % of the paste composition. In a further embodiment, the silver may be 70 to 85 wt % of the paste composition. In a further embodiment, the silver may be 75 to 85 wt % of the paste composition. In a further embodiment, the silver may be 78 to 82 wt % of the paste composition.
In an embodiment, the silver may be 90 to 99 wt % of the solids in the composition (i.e., excluding the organic vehicle). In a further embodiment, the silver may be 92 to 97 wt % of the solids in the composition. In a further embodiment, the silver may be 93 to 95 wt % of the solids in the composition.
As used herein, "particle size" is intended to mean "average particle size"; "average particle size" means the 50% volume distribution size. Volume distribution size may be determined by a number of methods understood by one of skill in the art, including but not limited to LASER diffraction and dispersion method using a Microtrac particle size analyzer.
Additives
In an embodiment, the thick film composition may include an additive. In an embodiment, the additive may be selected from one or more of the following: (a) a metal wherein said metal is selected from Zn, Pb, Bi, Gd, Ce, Zr, Ti, Mn, Sn, Ru, Co, Fe, Cu, and Cr; (b) a metal oxide of one or more of the metals selected from Zn, Pb, Bi, Gd, Ce, Zr, Ti, Mn, Sn, Ru, Co, Fe, Cu and Cr; (c) any compounds that can generate the metal oxides of (b) upon firing; and (d) mixtures thereof.
In an embodiment, the additive may include a Zn-containing additive. The Zn-containing additive may include one or more of the following: (a) Zn, (b) metal oxides of Zn, (c) any compounds that can generate metal oxides of Zn upon firing, and (d) mixtures thereof. In an embodiment, the Zn-containing additive may include Zn resinate. In an embodiment, the Zn-containing additive may include ZnO. The ZnO may have an average particle size in the range of 1 nanometers to 10 microns. In a further embodiment, the ZnO may have an average particle size of 40 nanometers to 5 microns. In a further embodiment, the ZnO may have an average particle size of 60 nanometers to 3 microns. In a further embodiment the ZnO may have an average particle size of less than 100 nm; less than 90 nm; less than 80 nm; 1 nm to less than 100 nm; 1 nm to 95 nm; 1 nm to 90 nm; 1 nm to 80 nm; 7 nm to 30 nm; 1 nm to 7 nm; 35 nm to 90 nm; 35 nm to 80 nm, 65nm to 90 nm, 60 nm to 80 nm, and ranges in between, for example.
In an embodiment, ZnO may be present in the composition in the range of 0 to 10 wt% total composition. In an embodiment, the ZnO may be present in the range of 0 to 8 wt% total composition. In a further embodiment, the ZnO may be present in the range of 0 to 5 wt% total composition. In a further embodiment, the ZnO may be present in the range of greater than 4.5 wt %, 5 wt %, 5.5 wt %, 6 wt %, 6.5 wt %, 7 wt %, or 7.5 wt % of the total composition. In a still further embodiment, the ZnO may be present in the range of less than 3 wt%, 2.5 wt%, 2 wt%, 1.5 wt% or 0.5 wt.
In a further embodiment the Zn-containing additive (for example Zn,
Zn resinate, etc.) may be present in the total thick film composition in the range of O to 16 w%. In a further embodiment the Zn-containing additive may be present in the range 0 to 12 w% total composition. In a further embodiment, the Zn-containing additive may be present in the range of greater than 4.5 wt %, 5 wt %, 5.5 wt %, 6 wt %, 6.5 wt %, 7 wt %, or 7.5 wt % of the total composition. In a still further embodiment, the Zn- containing additive may be present in the range of less than 3 wt%, 2.5 wt%, 2 wt%, 1.5 wt% or 0.5 wt.
In one embodiment, the particle size of the metal/metal oxide additive (such as Zn, for example) is in the range of 7 nanometers (nm) to 125 nm; in a further embodiment, the particle size may be less than 100 nm, 90 nm, 85 nm, 80 nm, 75 nm, 70 nm, 65 nm, or 60 nm, for example. Organic Medium
In an embodiment, the thick film compositions described herein may include organic medium. The inorganic components may be mixed with an organic medium, for example, by mechanical mixing to form pastes. A wide variety of inert viscous materials can be used as organic medium. In an embodiment, the organic medium may be one in which the inorganic components are dispersible with an adequate degree of stability. In an embodiment, the rheological properties of the medium may lend certain application properties to the composition, including: stable dispersion of solids, appropriate viscosity and thixotropy for screen printing, appropriate wettability of the substrate and the paste solids, a good drying rate, and good firing properties. In an embodiment, the organic vehicle used in the thick film composition may be a nonaqueous inert liquid. The use of various organic vehicles, which may or may not contain thickeners, stabilizers and/or other common additives, is contemplated. The organic medium may be a solution of polymer(s) in solvent(s). In an embodiment, the organic medium may also include one or more components, such as surfactants. In an embodiment, the polymer may be ethyl cellulose. Other exemplary polymers include ethyl hydroxyethyl cellulose, wood rosin, mixtures of ethyl cellulose and phenolic resins, polymethacrylates of lower alcohols, and monobutyl ether of ethylene glycol monoacetate, or mixtures thereof. In an embodiment the solvents useful in thick film compositions described herein include ester alcohols and terpenes such as alpha- or beta-terpineol or mixtures thereof with other solvents such as kerosene, dibutylphthalate, butyl carbitol, butyl carbitol acetate, hexylene glycol and high boiling alcohols and alcohol esters. In a further embodiment, the organic medium may include volatile liquids for promoting rapid hardening after application on the substrate.
In an embodiment, the polymer may be present in the organic medium in the range of 8 wt % to 11 wt % of the total composition, for example. The thick film silver composition may be adjusted to a predetermined, screen-printable viscosity with the organic medium. In an embodiment, the ratio of organic medium in the thick film composition to the inorganic components in the dispersion may be dependent on the method of applying the paste and the kind of organic medium used, as determined by one of skill in the art. In an embodiment, the dispersion may include 70-95 wt % of inorganic components and 5-30 wt % of organic medium (vehicle) in order to obtain good wetting.
Fired thick film compositions
In an embodiment, the organic medium may be removed during the drying and firing of the semiconductor device. In an aspect, the glass frit, Ag, and additives may be sintered during firing to form an electrode. The fired electrode may include components, compositions, and the like, resulting from the firing and sintering process. For example, in an embodiment, the fired electrode may include zinc-silicates, including but not limited to willemite (Zn2SiO4) and Zn1 7SiO4-x (in an embodiment, x may be 0-1 ). In a further embodiment the fired electrode may include bismuth silicates, including but not limited to Bi4(SiO4)3.
In an aspect of this embodiment, the semiconductor device may be a solar cell or a photodiode.
Method of Making a Semiconductor Device An embodiment relates to methods of making a semiconductor device. In an embodiment, the semiconductor device may be used in a solar cell device. The semiconductor device may include a front-side electrode, wherein, prior to firing, the front-side (illuminated-side) electrode may include composition(s) described herein.
In an embodiment, the method of making a semiconductor device includes the steps of: (a) providing a semiconductor substrate; (b) applying an insulating film to the semiconductor substrate; (c) applying a composition described herein to the insulating film; and (d) firing the device. Exemplary semiconductor substrates useful in the methods and devices described herein are recognized by one of skill in the art, and include, but are not limited to: single-crystal silicon, multicrystalline silicon, ribbon silicon, and the like. The semiconductor substrate may be junction bearing. The semiconductor substrate may be doped with phosphorus and boron to form a p/n junction. Methods of doping semiconductor substrates are understood by one of skill in the art.
The semiconductor substrates may vary in size (length x width) and thickness, as recognized by one of skill in the art. In a non- limiting example, the thickness of the semiconductor substrate may be 50 to 500 microns; 100 to 300 microns; or 140 to 200 microns. In a non- limiting example, the length and width of the semiconductor substrate may both equally be 100 to 250 mm; 125 to 200 mm; or 125 to 156 mm.
Exemplary insulating films useful in the methods and devices described herein are recognized by one of skill in the art, and include, but are not limited to: silicon nitride, silicon oxide, titanium oxide, SiNx:H, hydrogenated amorphous silicon nitride, and silicon oxide/titanium oxide film. The insulating film may be formed by PECVD, CVD, and/or other techniques known to one of skill in the art. In an embodiment in which the insulating film is silicon nithde,the silicon nitride film may be formed by a plasma enhanced chemical vapor deposition (PECVD), thermal CVD process, or physical vapor deposition (PVD). In an embodiment in which the insulating film is silicon oxide,the silicon oxide film may be formed by thermal oxidation, thermal CVD , plasma CVD, or PVD. The insulating film (or layer) may also be termed the anti-reflective coating (ARC).
Compositions described herein may be applied to the ARC-coated semiconductor substrate by a variety of methods known to one of skill in the art, including, but not limited to, screen-printing, ink-jet, coextrusion, syringe dispense, direct writing, and aerosol ink jet. The composition may be applied in a pattern. The composition may be applied in a predetermined shape and at a predetermined position. In an embodiment, the composition may be used to form both the conductive fingers and busbars of the front-side electrode. In an embodiment, the width of the lines of the conductive fingers may be 20 to 200 microns; 40 to 150 microns; or 60 to 100 microns. In an embodiment, the thickness of the lines of the conductive fingers may be 5 to 50 microns; 10 to 35 microns; or 15 to 30 microns.
In a further embodiment, the composition may be used to form the conductive, Si contacting fingers.
The composition coated on the ARC-coated semiconductor substrate may be dried as recognized by one of skill in the art, for example, for 0.5 to 10 minutes, and then fired. In an embodiment, volatile solvents and organics may be removed during the drying process. Firing conditions will be recognized by one of skill in the art. In exemplary, non-limiting, firing conditions the silicon wafer substrate is heated to maximum temperature of between 600 and 900 0C for a duration of 1 second to 2 minutes. In an embodiment, the maximum silicon wafer temperature reached during firing ranges from 650 to 800C for a duration of 1 to 10 seconds. In a further embodiment, the electrode formed from the conductive thick film composition(s) may be fired in an atmosphere composed of a mixed gas of oxygen and nitrogen. This firing process removes the organic medium and sinters the glass frit with the Ag powder in the conductive thick film composition. In a further embodiment, the electrode formed from the conductive thick film composition(s) may be fired above the organic medium removal temperature in an inert atmosphere not containing oxygen. This firing process sinters or melts base metal conductive materials such as copper in the thick film composition.
In an embodiment, during firing, the fired electrode (preferably the fingers) may react with and penetrate the insulating film, forming electrical contact with the silicon substrate.
In a further embodiment, prior to firing, other conductive and device enhancing materials are applied to the opposite type region of the semiconductor device and cofired or sequentially fired with the compositions described herein. The opposite type region of the device is on the opposite side of the device. The materials serve as electrical contacts, passivating layers, and solderable tabbing areas.
In an embodiment, the opposite type region may be on the non- illuminated (back) side of the device. In an aspect of this embodiment, the back-side conductive material may contain aluminum. Exemplary backside aluminum-containing compositions and methods of applying are described, for example, in US 2006/0272700, which is hereby incorporated herein by reference.
In a further aspect, the solderable tabbing material may contain aluminum and silver. Exemplary tabbing compositions containing aluminum and silver are described, for example in US 2006/0231803, which is hereby incorporated herein by reference.
In a further embodiment the materials applied to the opposite type region of the device are adjacent to the materials described herein due to the p and n region being formed side by side. Such devices place all metal contact materials on the non illuminated (back) side of the device to maximize incident lignt on the illuminated (front) side.
The semiconductor device may be manufactured by the following method from a structural element composed of a junction-bearing semiconductor substrate and a silicon nitride insulating film formed on a main surface thereof. The method of manufacture of a semiconductor device includes the steps of applying (such as coating and printing) onto the insulating film, in a predetermined shape and at a predetermined position, the conductive thick film composition having the ability to penetrate the insulating film, then firing so that the conductive thick film composition melts and passes through the insulating film, effecting electrical contact with the silicon substrate. The electrically conductive thick film composition is a thick-film paste composition, as described herein, which is made of a silver powder, Zn-containing additive, a glass or glass powder mixture having a softening point of 300 to 6000C, dispersed in an organic vehicle and optionally, additional metal/metal oxide additive(s).
An embodiment of the invention relates to a semiconductor device manufactured from the methods described herein. Devices containing the compositions described herein may contain zinc-silicates, as described above.
An embodiment of the invention relates to a semiconductor device manufactured from the method described above.
Additional substrates, devices, methods of manufacture, and the like, which may be utilized with the thick film compositions described herein are described in US patent application publication numbers US 2006/0231801 , US 2006/0231804, and US 2006/0231800, which are hereby incorporated herein by reference in their entireties.
EXAMPLES
Glass Property Measurement
The glass frit compositions outlined in Table I will be characterized to determine density, softening point, TMA shrinkage, diaphaneity, and crystal unity.
Paste Preparation Paste preparations, in general, will be prepared using the following procedure: The appropriate amount of solvent, medium and surfactant will be weighed and mixed in a mixing can for 15 minutes, then glass frits described herein, and optionally metal additives, will be added and mixed for another 15 minutes. Since Ag is the major part of the solids, it will be added incrementally to ensure better wetting. When well mixed, the paste will be repeatedly passed through a 3-roll mill at progressively increasing pressures from 0 to 300 psi. The gap of the rolls will be set to 1 mil. The degree of dispersion will be measured by fineness of grind (FOG). A typical FOG value for a paste is less than 20 microns for the fourth longest, continuous scratch and less than 10 microns for the point at which 50% of the paste is scratched.
Test Procedure-Efficiency
The solar cells which will be built according to the method described herein will be tested for conversion efficiency. An exemplary method of testing efficiency is provided below.
In an embodiment, the solar cells which will be built according to the method described herein will be placed in a commercial I-V tester for measuring efficiencies (ST-1000). The Xe Arc lamp in the I-V tester will simulate the sunlight with a known intensity and irradiated the front surface of the cell. The tester uses a multi-point contact method to measure current (I) and voltage (V) at approximately 400 load resistance settings to determine the cell's I-V curve. Both fill factor (FF) and efficiency (EfT) will be calculated from the I-V curve.
Paste efficiency and fill factor values will be normalized to corresponding values obtained with cells contacted with industry standards.
The above efficiency test is exemplary. Other equipment and procedures for testing efficiencies will be recognized by one of ordinary skill in the art.
Table I: Glass Compositions in Weight Percent
Figure imgf000019_0001

Claims

CLAIMSWhat is claimed is:
1. A composition comprising:
(a) one or more conductive materials; (b) one or more glass frits, wherein at least one of the glass frits comprises, based on the wt % of the glass composition: 20-22 wt % SiO2, 5-5.5 wt % ZrO2, 3.5-4 wt % B2O3, 2-2.5 wt % Li2O,
2-2.5 wt % Na2O, 55-60 elemental wt % Bi; and
(c) organic vehicle.
2. The composition of claim 1 , wherein the Bi is Bi2O3, and the Bi2O3 is 64-67 wt %, based on the weight % of the glass composition.
3. The composition of claim 1 , wherein said at least one glass frit comprises, based on the wt % of the glass composition, 21 wt % SiO2, 5.2 wt % ZrO2, 3.7 wt % B2O3, 2.3 wt % Li2O, 2.3 wt % Na2O, wherein the Bi is Bi2O3, and the Bi2O3 is 65.5 wt %, based on the weight % of the glass composition.
4. The composition of claim 1 , wherein the conductive material comprises Ag.
5. The composition of claim 4, wherein the Ag is 90 to 99 wt % of the solids in the composition.
6. A method of manufacturing a semiconductor device comprising the steps of:
(a) providing a semiconductor substrate, one or more insulating films, and the thick film composition of any of claims 1 -3; (b) applying the insulating film to the semiconductor substrate,
(c) applying the thick film composition to the insulating film on the semiconductor substrate, and
(d) firing the semiconductor, insulating film and thick film composition.
7. A semiconductor device made by the method of claim 6.
8. A semiconductor device comprising an electrode, wherein the electrode, prior to firing, comprises the composition of any of claims 1 -3.
9. A solar cell comprising the semiconductor device of claim 8.
PCT/US2010/031851 2009-04-22 2010-04-21 Glass compositions used in conductors for photovoltaic cells WO2010123967A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17158709P 2009-04-22 2009-04-22
US61/171,587 2009-04-22

Publications (2)

Publication Number Publication Date
WO2010123967A2 true WO2010123967A2 (en) 2010-10-28
WO2010123967A3 WO2010123967A3 (en) 2011-03-24

Family

ID=43011732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/031851 WO2010123967A2 (en) 2009-04-22 2010-04-21 Glass compositions used in conductors for photovoltaic cells

Country Status (1)

Country Link
WO (1) WO2010123967A2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012116052A1 (en) 2011-02-22 2012-08-30 E. I. Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
WO2012129554A2 (en) 2011-03-24 2012-09-27 E. I. Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
EP2315728B1 (en) * 2008-06-26 2013-04-24 E. I. du Pont de Nemours and Company Glass compositions used in conductors for photovoltaic cells
US8497420B2 (en) 2010-05-04 2013-07-30 E I Du Pont De Nemours And Company Thick-film pastes containing lead- and tellurium-oxides, and their use in the manufacture of semiconductor devices
WO2014039464A1 (en) 2012-09-06 2014-03-13 E. I. Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
WO2014039462A2 (en) * 2012-09-06 2014-03-13 E. I. Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US9039942B2 (en) 2011-12-21 2015-05-26 E I Du Pont De Nemours And Company Lead-free conductive paste composition and semiconductor devices made therewith
US9722102B2 (en) 2014-02-26 2017-08-01 Heraeus Precious Metals North America Conshohocken Llc Glass comprising molybdenum and lead in a solar cell paste
DE102017003604A1 (en) 2016-04-13 2017-10-19 E.I. Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
DE102017009811A1 (en) 2016-10-21 2018-04-26 E. I. Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US10134925B2 (en) 2016-04-13 2018-11-20 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US10403770B2 (en) 2015-02-04 2019-09-03 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US10658528B2 (en) 2017-04-18 2020-05-19 Dupont Electronics, Inc. Conductive paste composition and semiconductor devices made therewith
US10741300B2 (en) 2016-10-07 2020-08-11 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US10784383B2 (en) 2015-08-07 2020-09-22 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090733A (en) * 1998-09-14 2000-03-31 Murata Mfg Co Ltd Conductive paste, and solar battery using it
US20080314444A1 (en) * 2006-03-07 2008-12-25 Murata Manufacturing Co., Ltd. Electrically conductive paste and solar cell
US20090044858A1 (en) * 2005-04-14 2009-02-19 Wang Yueli Y Method of Manufacture of Semiconductor Device and Conductive Compositions Used Therein

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329072A (en) * 1998-05-13 1999-11-30 Murata Mfg Co Ltd Conductive paste and solar battery using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090733A (en) * 1998-09-14 2000-03-31 Murata Mfg Co Ltd Conductive paste, and solar battery using it
US20090044858A1 (en) * 2005-04-14 2009-02-19 Wang Yueli Y Method of Manufacture of Semiconductor Device and Conductive Compositions Used Therein
US20080314444A1 (en) * 2006-03-07 2008-12-25 Murata Manufacturing Co., Ltd. Electrically conductive paste and solar cell

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2315728B1 (en) * 2008-06-26 2013-04-24 E. I. du Pont de Nemours and Company Glass compositions used in conductors for photovoltaic cells
US11043605B2 (en) 2010-05-04 2021-06-22 E I Du Pont De Nemours And Company Thick-film pastes containing lead- and tellurium-oxides, and their use in the manufacture of semiconductor devices
US8497420B2 (en) 2010-05-04 2013-07-30 E I Du Pont De Nemours And Company Thick-film pastes containing lead- and tellurium-oxides, and their use in the manufacture of semiconductor devices
US10559703B2 (en) 2010-05-04 2020-02-11 Dupont Electronics, Inc. Thick-film pastes containing lead-tellurium-boron-oxides, and their use in the manufacture of semiconductor devices
US10468542B2 (en) 2010-05-04 2019-11-05 Dupont Electronics, Inc. Thick-film pastes containing lead-tellurium-lithium-oxides, and their use in the manufacture of semiconductor devices
US10069020B2 (en) 2010-05-04 2018-09-04 E I Du Pont De Nemours And Company Thick-film pastes containing lead- and tellurium-oxides, and their use in the manufacture of semiconductor devices
US8889979B2 (en) 2010-05-04 2014-11-18 E I Du Pont De Nemours And Company Thick-film pastes containing lead—tellurium—lithium—titanium—oxides, and their use in the manufacture of semiconductor devices
US8889980B2 (en) 2010-05-04 2014-11-18 E I Du Pont De Nemours And Company Thick-film pastes containing lead—tellurium—lithium—oxides, and their use in the manufacture of semiconductor devices
US8895843B2 (en) 2010-05-04 2014-11-25 E I Du Pont De Nemours And Company Thick-film pastes containing lead-tellurium-boron-oxides, and their use in the manufacture of semiconductor devices
US9722100B2 (en) 2010-05-04 2017-08-01 E I Du Pont De Nemours And Company Thick-film pastes containing lead-tellurium-lithium-oxides, and their use in the manufacture of semiconductor devices
WO2012116052A1 (en) 2011-02-22 2012-08-30 E. I. Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US9640675B2 (en) 2011-03-24 2017-05-02 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therefrom
US8900487B2 (en) 2011-03-24 2014-12-02 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therefrom
WO2012129554A2 (en) 2011-03-24 2012-09-27 E. I. Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US10109750B2 (en) 2011-12-21 2018-10-23 E I Du Pont De Nemours And Company Lead-free conductive paste composition and semiconductor devices made therewith
US9039942B2 (en) 2011-12-21 2015-05-26 E I Du Pont De Nemours And Company Lead-free conductive paste composition and semiconductor devices made therewith
WO2014039464A1 (en) 2012-09-06 2014-03-13 E. I. Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US8900488B2 (en) 2012-09-06 2014-12-02 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US9236161B2 (en) 2012-09-06 2016-01-12 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
CN104756198A (en) * 2012-09-06 2015-07-01 E.I.内穆尔杜邦公司 Conductive paste composition and semiconductor devices made therewith
WO2014039462A3 (en) * 2012-09-06 2014-05-01 E. I. Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US9284459B2 (en) 2012-09-06 2016-03-15 E I Du Pont De Nemours And Company Process for forming an electrically conductive structure on a substrate
WO2014039462A2 (en) * 2012-09-06 2014-03-13 E. I. Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US9722102B2 (en) 2014-02-26 2017-08-01 Heraeus Precious Metals North America Conshohocken Llc Glass comprising molybdenum and lead in a solar cell paste
US10403770B2 (en) 2015-02-04 2019-09-03 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US10784383B2 (en) 2015-08-07 2020-09-22 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US10134925B2 (en) 2016-04-13 2018-11-20 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US10861985B2 (en) 2016-04-13 2020-12-08 Dupont Electronics, Inc. Conductive paste composition and semiconductor devices made therewith
DE102017003604A1 (en) 2016-04-13 2017-10-19 E.I. Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US10741300B2 (en) 2016-10-07 2020-08-11 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US10593439B2 (en) 2016-10-21 2020-03-17 Dupont Electronics, Inc. Conductive paste composition and semiconductor devices made therewith
DE102017009811A1 (en) 2016-10-21 2018-04-26 E. I. Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US10825575B2 (en) 2016-10-21 2020-11-03 Dupont Electronics, Inc. Conductive paste composition and semiconductor devices made therewith
US10658528B2 (en) 2017-04-18 2020-05-19 Dupont Electronics, Inc. Conductive paste composition and semiconductor devices made therewith

Also Published As

Publication number Publication date
WO2010123967A3 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
US20100258184A1 (en) Glass compositions used in conductors for photovoltaic cells
US8252204B2 (en) Glass compositions used in conductors for photovoltaic cells
US20100258165A1 (en) Glass compositions used in conductors for photovoltaic cells
US8262944B2 (en) Glass compositions used in conductors for photovoltaic cells
WO2010123967A2 (en) Glass compositions used in conductors for photovoltaic cells
US20100258166A1 (en) Glass compositions used in conductors for photovoltaic cells
US20110048527A1 (en) Silver thick film paste compositions and their use in conductors for photovoltaic cells
KR20130016345A (en) Thick-film pastes containing lead-tellurium-lithium-oxides, and their use in the manufacture of semiconductor devices
KR20140018072A (en) Thick-film paste containing lead-vanadium-based oxide and its use in the manufacture of semiconductor devices
US8748304B2 (en) Devices containing silver compositions deposited by micro-deposition direct writing silver conductor lines
US20110315210A1 (en) Glass compositions used in conductors for photovoltaic cells
US8128846B2 (en) Silver composition for micro-deposition direct writing silver conductor lines on photovoltaic wafers
US20110057314A1 (en) Conductors for photovoltaic cells
WO2009146354A1 (en) Methods using compositions containing submicron particles used in conductors for photovoltaic cells
US8008179B2 (en) Methods using silver compositions for micro-deposition direct writing silver conductor lines on photovoltaic wafers
WO2009146356A1 (en) Conductors for photovoltaic cells: compositions containing submicron particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10767684

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10767684

Country of ref document: EP

Kind code of ref document: A2