WO2010121586A2 - Windenergieanlagenantriebsstrang, windenergieanlagenmaschinenhaus, windenergieanlage und windenergieanlagenpark sowie standardcontainer - Google Patents

Windenergieanlagenantriebsstrang, windenergieanlagenmaschinenhaus, windenergieanlage und windenergieanlagenpark sowie standardcontainer Download PDF

Info

Publication number
WO2010121586A2
WO2010121586A2 PCT/DE2010/000340 DE2010000340W WO2010121586A2 WO 2010121586 A2 WO2010121586 A2 WO 2010121586A2 DE 2010000340 W DE2010000340 W DE 2010000340W WO 2010121586 A2 WO2010121586 A2 WO 2010121586A2
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
rotor
drive train
planetary gear
rotors
Prior art date
Application number
PCT/DE2010/000340
Other languages
English (en)
French (fr)
Other versions
WO2010121586A3 (de
Inventor
Alexander Jeschke
Original Assignee
Innovative Windpower Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovative Windpower Ag filed Critical Innovative Windpower Ag
Publication of WO2010121586A2 publication Critical patent/WO2010121586A2/de
Publication of WO2010121586A3 publication Critical patent/WO2010121586A3/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/14Casings, housings, nacelles, gondels or the like, protecting or supporting assemblies there within
    • F05B2240/142Casings, housings, nacelles, gondels or the like, protecting or supporting assemblies there within in the form of a standard ISO container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • Wind turbine drive train Wind turbine engine house, wind turbine and wind turbine park as well as standard containers
  • the invention relates to a wind turbine drive train, which has a planetary gear and a generator, planetary gear and generator are flanged to each other and the generator has a first rotor, in and / or at which a first magnet is located, and a first stator , wherein on the stator a conductor winding is located.
  • a Windenergyanlagenantriebs- strand which has a planetary gear and a generator, wherein the planetary gear and the generator are flanged to each other and the generator has a first rotor, in and / or at which a first magnet is located, and a first stator, wherein on the first stator a conductor winding is located, wherein the generator has at least one second rotor, in and / or at which a second magnet is located.
  • the planetary gear and the generator When the planetary gear and the generator are flanged together, the planetary gear and the generator have a non-rotatable connection, in particular the housings of the planetary gear and of the generator are connected to each other so that movement of the generator housing affects the planetary gear housing and vice versa Generator housing and planetary gear housing quasi a wind energy plant drive train housing.
  • Magnetics as used herein include permanent magnets and conductor loops in which a magnetic field is induced.
  • the "conductor winding”, which comprises the stator can also consist of a plurality of conductor windings.This conductor winding is in particular designed so that, upon rotation of the rotor in the conductor winding of the stator, a voltage with associated current flow is induced.
  • the planetary gear can have a ring gear, a first planetary gear, a hollow sun gear and a second planetary gear, and fix the planetary gear be connected via a planetary gear housing with a generator housing, wherein the second planetary gear may be connected to the ring gear and the ring gear meshing into the first planetary gear, meshing the first planet meshing into the hollow sun gear and the hollow sun gear meshes with the planet.
  • the first planetary gear can occur multiple times. This also applies to the second planetary gear.
  • the number of power split and / or the ratio can be varied.
  • generator housing may in particular also be firmly connected to the stator
  • the "stationary" connection between the first planetary gear and the planetary gear housing and thus with the generator housing results in the first planetary gear being able to perform a rotation essentially about its axis of rotation
  • the first planet and / or the second planetary be flexibly mounted by means of flex pin.
  • the generator may comprise further rotors with further located magnets.
  • the other rotors can advantageously contribute to the generation of voltage.
  • the shaft may have a shaft rotation axis substantially identical to a rotation axis of the ring gear, to a rotation axis of the hollow sun, to a rotation axis of the first rotor, to a rotation axis of the ring gear second rotor and to a rotation axis of the other rotors.
  • the diameter is determined radially to the shaft rotation axis.
  • the diameter of the first rotor of the generator can have similar values to the diameter of the ring gear of the planetary gear.
  • the first rotor and / or the second rotor and / or the other rotors can be connected in a rotationally fixed manner to the shaft.
  • the individual rotors can contribute to the voltage generation, wherein the rotation is transmitted via a shaft from the planetary gear to the generator.
  • the magnets of the second rotor and / or the further rotors may have a different radial distance to the shaft of the axis of rotation than the magnets of the first rotor.
  • the space between the first rotor and the shaft can be used for voltage generation.
  • the magnets of the further rotors may have a different radial distance to the shaft rotation axis than the first and the second rotor.
  • the rotors can be coupled separately to the shaft.
  • Way generators are upgraded. This means that, for example, a generator which previously had 1.25 MW of power can then be converted into a generator which then has a power of, for example, 2 or 2.5 MW.
  • the first rotor and / or the second rotor and / or some of the further rotors may form an overall rotor.
  • a set of additional rotors can be arranged offset in a rotationally fixed manner on the shaft and these additional rotors have the same radial spacing from the shaft as the first and / or second and / or the further rotors.
  • several rotors can be mounted one behind the other on the shaft.
  • the second rotor and / or the further rotors can be mechanically coupled to the shaft by means of a circuit in a rotationally fixed manner.
  • the object may be achieved by a wind turbine engine house having a wind turbine power train as described above.
  • a wind turbine engine house having a wind turbine power train as described above.
  • the wind turbine engine house can be designed such that it can be transported in a standard container.
  • the wind turbine engine house can be completely assembled with wind turbine drive train in the factory and assembled, so that at the site of the construction of a wind turbine little additional work.
  • the object is achieved by a wind turbine having a wind turbine engine house as described above.
  • the transport costs for a wind turbine can be minimized in an advantageous manner.
  • the object can be achieved by a wind turbine park having a Windenergy Anläge, as previously described.
  • Wind turbine parks are characterized by the fact that several wind turbines are installed in a limited location and that they influence each other. Such an influence can take place in particular by wind shading.
  • the object can be achieved by a standard container which has a wind turbine engine house as previously described in its interior.
  • the wind turbine engine house can advantageously be brought, for example via lorries, to the place of installation of the wind energy plant.
  • FIG. 1 a shows a schematic section through a wind power plant drive train with generator and planetary gear, wherein a hub is flanged onto the planetary gear.
  • Figure 1 b shows a schematic section through the head part of a wind turbine, in which the drive train of Figure 1 a is located.
  • FIG. 2 a shows a schematic section through a wind power plant drive train, wherein additionally an offset rotor is shown in the generator.
  • Figure 2 b shows a schematic section through the head part of a wind turbine, in which the drive train of Figure 2 a is located.
  • the axis 100 in FIGS. 1 a and 2 a is both a rotational symmetry axis and the shaft rotation axis as well as rotation axis for the ring gear 134, for the hollow sun gear 138 and for the rotor 106.
  • the planetary gear 160 is non-rotatably coupled to the generator 150 via the flange plate 126.
  • the planetary gear housing 132 are flanged to the generator housing (not shown) to each other.
  • the hub 144 receives the rotor blades of the wind turbine.
  • the hub 144 is rotatably connected to the ring gear 134 of the planetary gear 160.
  • the ring gear 134 is mounted in the planetary gear housing 132 via the bearings 130.
  • the ring gear 134 is in meshing engagement with the first planet gear 136.
  • the first planetary gear 136 is mounted by means of a flex pin 180, wherein the bearing of the first planetary gear 136 takes place on the planetary gear housing 132, as a result of which the first planetary gear 136 is stationary.
  • the first planet gear 136 meshes with the hollow sun 138.
  • the hollow sun 138 meshes with the second planetary gear 190.
  • the second planetary gear 190 is also mounted by means of flex pin 140.
  • the bearing of the second planetary gear 190 is performed so that a rotation of the ring gear 134 is transmitted to the second planetary gear 190.
  • a power sharing occurs.
  • the second planetary gear 190 meshes with the gears 142 of the shaft 104.
  • the shaft 104 is supported by the bearings 102 and 103.
  • bearings can be omitted.
  • the rotor 106 is flanged to the shaft 104 by means of a sliding coupling 120.
  • the rotor 106 has a first rotor 107, a second rotor 110 and a further rotor 108.
  • Each of the rotors 107, 108, 110 has permanent magnets 112.
  • Each of the permanent magnets 112 are associated with conductor windings 114. These conductor windings 114 are fixedly connected to the stator 122.
  • the wind turbine drive train In order to temper or cool the generator and / or the planetary gear, the wind turbine drive train has a cooling 118 with a cooling circuit 116.
  • the operation is as follows.
  • the rotor blades transmit a rotation via the hub 144 to the ring gear 134. These rotations usually have speeds of 15 U / min to 35 U / min.
  • Via the shaft 104, this rotation is transmitted to the rotor 106.
  • the rotating permanent magnet 112 induces a voltage in the conductor windings 114.
  • the rotational speed of the shaft 104 is designed via the transmission so that the maximum diameter of the rotor 106 and the comprehensive Send generator housing corresponds approximately to the extent of the planetary gear housing. Deviations of up to 40% are possible.
  • a further rotor 206 with individual rotors is flanged onto the shaft 104 in FIG. 2 a.
  • This further rotor 206 thus forms a set of additional rotors, which is offset in rotation on the shaft 104 located.
  • the set of rotors 206 may also be subsequently flanged onto the shaft 104, thereby doubling the generatable power of the generator.
  • FIG. 1 b the head part of a wind power plant with a wind turbine engine house 203 of a hub shroud 205, rotor blades 207 and a tower 201 is shown around the wind turbine drive train from FIG. 1 a.
  • the nacelle 203 and the hub shroud 205 have a diameter that allows the nacelle including the wind turbine drive train and hub shroud 205 to be transported in a standard container.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Maschinenhäuser von Windenergieanlagen werden heutzutage nur bis zu einer bestimmten Größe mittels Standardcontainer transportiert. Insbesondere bei Anlagen über 1,25 MW wachsen die Dimensionen des Maschinenhauses so weit, dass das Maschinenhaus nicht mehr mittels eines Standardcontainers transportiert werden kann. Die Erfindung stellt einen Windenergieanlagenantriebsstrang zur Verfügung, mit dem es möglich ist, Windenergieanlagen über 1,25 MW mittels Standardcontainer zu transportieren. Somit betrifft die Erfindung einen Windenergieanlagenantriebsstrang, welcher ein Planetengetriebe und einen Generator aufweist, wobei Planetengetriebe und Generator aneinander angeflanscht sind und der Generator einen ersten Rotor, in und/oder an welchem ein erster Magnet verortet ist und einen ersten Stator aufweist und der Stator eine Leiterwicklung aufweist, wobei der Generator wenigstens einen zweiten Rotor aufweist, in und/oder an welchem ein zweiter Magnet verortet ist.

Description

Windenergieanlagenantriebsstrang, Windenergieanlagenmaschinenhaus, Windenergieanlage und Windenergieanlagenpark sowie Standardcontainer
[01] Die Erfindung betrifft einen Windenergieanlagenantriebsstrang, welcher ein Planetengetriebe und einen Generator aufweist, wobei Planetenge- triebe und Generator aneinander angeflanscht sind und der Generator einen ersten Rotor, in und/oder an welchem ein erster Magnet verortet ist, und einen ersten Stator aufweist, wobei an dem Stator eine Leiterwicklung verortet ist.
[02] Heutzutage werden Windenergieanlagen weltweit errichtet. Das hat dazu geführt, dass die Kosten für die Logistik enorm gestiegen sind. Dies liegt unter anderem daran, dass die Bestandteile einer Windenergieanlage meist an einigen wenigen Produktionsstandorten hergestellt und zu den Orten der Errichtung der Windenergieanlage transportiert werden.
[03] Es hat sich insbesondere als vorteilhaft herausgestellt, dass mög- liehst viele Bestandteile einer Windenergieanlage mittels Standardcontainer zu transportieren. Leider können Maschinenhäuser nur bis zu einer Leistungsklasse von ca. 1,25 MW mittels Standardcontainer transportiert werden. Sobald die Leistung der Windenergieanlage steigt, wachsen auch die Dimensionen des Maschinenhauses. Somit ist ein Transport des Ma- schinenhauses als Ganzes für solche Windenergieanlagen nicht mehr möglich. [04] Aufgabe der Erfindung ist es, den Stand der Technik zu verbessern.
[05] Gelöst wird die Aufgabe durch einen Windenergieanlagenantriebs- strang, welcher ein Planetengetriebe und einen Generator aufweist, wobei das Planetengetriebe und der Generator aneinander angeflanscht sind und der Generator einen ersten Rotor, in und/oder an welchem ein erster Magnet verortet ist, und einen ersten Stator aufweist, wobei an dem ersten Stator eine Leiterwicklung verortet ist, wobei der Generator wenigstens einen zweiten Rotor aufweist, in und/oder an welchem ein zweiter Magnet verortet ist.
[06] Dadurch kann vorteilhafter Weise ein Windenergieanlagenantriebs- strang bereitgestellt werden, welcher über eine äußerst kompakte Bauweise verfügt.
[07] Zunächst sei folgendes begrifflich geklärt:
[08] Beim „Anflanschen" von Planetengetriebe und Generator aneinander weisen Planetengetriebe und Generator eine drehfeste Verbindung auf. Insbesondere sind dabei die Gehäuse des Planetengetriebes und des Generators miteinander verbunden, so dass eine Bewegung des Generatorgehäuses sich auf das Planetengetriebegehäuse und umgekehrt auswirkt. Somit bilden Generatorgehäuse und Planetengetriebegehäuse quasi ein Wind- energieanlagenantriebsstranggehäuse.
[09] „Magnete" der hier verwendeten Art umfassen Permanentmagnete und Leiterschleifen in denen ein Magnetfeld induziert wird. [10] Die „Leiterwicklung", welche der Stator aufweist, kann auch aus mehreren Leiterwicklungen bestehen. Diese Leiterwicklung ist insbesondere so ausgestaltet, dass bei einer Rotation des Rotors in der Leiterwicklung des Stators eine Spannung mit zugehörigem Stromfluss induziert wird.
[11] Um einen Windenergieanlagenantriebsstrang bereitzustellen, bei dem der Rotor des Generators mit einer Drehzahl zwischen 150 U/min und 600 U/min rotiert, kann das Planetengetriebe ein Hohlrad, ein erstes Planetenrad, ein Hohlsonnenrad und ein zweites Planetenrad aufweisen und das Planetenrad ortsfest über ein Planetengetriebegehäuse mit einem Generatorgehäuse verbunden sein, wobei das zweite Planetenrad mit dem Hohlrad verbunden sein kann und das Hohlrad kämmend in das erste Planetenrad, das erste Planetenrad kämmend in das Hohlsonnenrad und das Hohlsonnenrad kämmend in das Planetenrad greift.
[12] Dabei sei folgendes begrifflich erläutert: Das erste Planetenrad kann dabei mehrfach vorkommen. Dies gilt ebenfalls für das zweite Planetenrad. Über die Anzahl kann die Leistungsverzweigung und/oder die Übersetzung variiert werden.
[13] „Generatorgehäuse" kann insbesondere auch fest mit dem Stator ver- bunden sein. Die „ortsfeste" Verbindung zwischen ersten Planetenrad mit dem Planetengetriebegehäuse und somit mit dem Generatorgehäuse führt dazu, dass das erste Planetenrad eine Rotation im Wesentlichen um seine Rotationsachse durchführen kann. [14] In einer Ausgestaltung der Erfindung können das erste Planetenrad und/oder das zweite Planetenrad flexibel mittels Flex-Pin gelagert sein. Dadurch können vorteilhafterweise Störkräfte, welche auf das jeweilige Planetenrad wirken, in unschädliche Verschiebung des Planetenrads über- führt werden.
[15] Um die transformierte Drehzahl des Planetengetriebes an den Generator zu übertragen, kann das zweite Planetenrad kämmend in eine Welle greifen.
[16] In einer weiteren Ausgestaltung der Erfindung kann der Generator weitere Rotoren mit weiteren verorteten Magneten aufweisen. Dadurch können vorteilhafterweise die weiteren Rotoren zur Spannungserzeugung beitragen.
[17] Um ein Planetengetriebe und einen Generator mit ähnlichem Durchmesser bereitzustellen, kann die Welle eine Wellenrotationsachse aufwei- sen, welche im Wesentlichen identisch zu einer Rotationsachse des Hohlrades, zu einer Rotationsachse der Hohlsonne, zu einer Rotationsachse des ersten Rotors, zu einer Rotationsachse des zweiten Rotors und zu einer Rotationsachse der weiteren Rotoren ist. Der Durchmesser wird dazu radial zur Wellenrotationsachse bestimmt. Dabei kann der Durchmesser des ers- ten Rotors des Generators ähnliche Werte aufweisen wie der Durchmesser des Hohlrades des Planetengetriebes. [18] In einer weiteren Ausgestaltung der Erfindung können der erste Rotor und/oder der zweite Rotor und/oder die weiteren Rotoren drehfest mit der Welle verbunden sein. Somit können in vorteilhafter Weise die einzelnen Rotoren zu der Spannungserzeugung beitragen, wobei die Rotation über eine Welle von dem Planetengetriebe an den Generator übertragen wird.
[19] Um einen hochkompakten Generator für den Windenergieanlagen- antriebsstrang bereitzustellen, können die Magnete des zweiten Rotors und/oder der weiteren Rotoren einen anderen Radialabstand zu der Welle der Rotationsachse aufweisen als die Magnete des ersten Rotors. Somit kann vorteilhafterweise der Raum zwischen dem ersten Rotor und der Welle zur Spannungserzeugung genutzt werden.
[20] An dieser Stelle sei angemerkt, dass zu dem zweiten Rotor und den weiteren Rotoren weitere Statoren mit Leiterschleifen vorgesehen sein können.
[21] Um den Raum zwischen dem zweiten Rotor und der Welle zur Spannungserzeugung zu nutzen, können die Magnete der weiteren Rotoren einen anderen Radialabstand zur Wellenrotationsachse aufweisen, als der erste und der zweite Rotor.
[22] In einer weiteren Ausgestaltung der Erfindung können die Rotoren separat an die Welle gekoppelt sein. Somit kann vorteilhafterweise ein modularer Aufbau realisiert werden. Zusätzlich können in vorteilhafter Weise Generatoren aufgerüstet werden. Das soll heißen, dass beispielsweise ein Generator, welcher zuvor 1,25 MW Leistung aufwies, dann zu einem Generator umfunktioniert werden kann, der dann eine Leistung von beispielsweise 2 oder 2,5 MW aufweist.
[23] Um Anflanschverbindungen der Rotoren mit der Welle zu verringern, können der erste Rotor und/oder der zweite Rotor und/oder einige der weiteren Rotoren einen Gesamtrotor bilden.
[24] In einer weiteren Ausgestaltung der Erfindung kann ein Satz zusätzlicher Rotoren versetzt drehfest auf der Welle verortet sein und diese zu- sätzlichen Rotoren, die gleiche radiale Beabstandung von der Welle aufweisen wie der erste und/oder zweite und/oder die weiteren Rotoren. Somit können mehrere Rotoren hintereinander auf der Welle angebracht werden.
[25] Um die abgegebene Leistung des Generators zu variieren, können der zweite Rotor und/oder die weiteren Rotoren mechanisch mittels Schal- tung an die Welle drehfest koppelbar sein.
[26] In einem weiteren Aspekt der Erfindung kann die Aufgabe gelöst werden, durch ein Windenergieanlagenmaschinenhaus, welches einen Windenergieanlagenantriebsstrang aufweist, wie er zuvor beschrieben wurde. Dadurch kann vorteilhafterweise ein Maschinenhaus bereitgestellt werden, in dem ein kompakter Windenergieanlagenantriebsstrang verortet ist. [27] Um die Transportkosten gering zu halten, kann in dem zuvor beschriebenen Windenergieanlagenmaschinenhaus das Windenergieanla- genmaschinenhaus so ausgestaltet sein, dass es in einem Standardcontainer transportierbar ist. Somit kann das Windenergieanlagenmaschinenhaus komplett mit Windenergieanlagenantriebsstrang im Werk montiert und zusammengestellt werden, so dass am Ort der Errichtung einer Windenergieanlage wenig zusätzliche Arbeit anfällt.
[28] In einem weiteren Aspekt der Erfindung wird die Aufgabe gelöst, durch eine Windenergieanlage, welche ein Windenergieanlagenmaschi- nenhaus wie es zuvor beschrieben wurde aufweist. Dadurch können in vorteilhafter Weise die Transportkosten für eine Windenergieanlage minimiert werden.
[29] In einem weiteren Aspekt der Erfindung kann die Aufgabe gelöst werden, durch einen Windenergieanlagenpark, welcher eine Windenergie- anläge aufweist, wie sie zuvor beschrieben wurde.
[30] Dadurch können in vorteilhafter Weise die Transportkosten für einen Windenergieanlagenpark reduziert werden. Windenergieanlagenparks zeichnen sich dadurch aus, dass mehrere Windenergieanlagen an einem begrenzten Ort aufgestellt werden, und dass diese sich gegenseitig beein- flussen. Eine solche Beeinflussung kann insbesondere durch Windabschat- tung erfolgen. [31] In einem weiteren Aspekt der Erfindung kann die Aufgabe gelöst werden, durch einen Standardcontainer, welcher ein Windenergieanlagen- maschinenhaus wie es zuvor beschrieben wurde in seinem Inneren aufweist. Dadurch kann vorteilhafterweise das Windenergieanlagenmaschi- nenhaus beispielsweise über Lastkraftwagen an den Ort der Errichtung der Windenergieanlage gebracht werden.
[32] Im Weiteren wird die Erfindung anhand von Ausführungsbeispielen erläutert. Dabei zeigt:
Figur 1 a einen schematischen Schnitt durch einen Windenergieanla- genantriebsstrang mit Generator und Planetengetriebe, wobei an das Planetengetriebe eine Nabe angeflanscht ist.
Figur 1 b einen schematischen Schnitt durch das Kopfteil einer Windenergieanlage, in welcher der Antriebsstrang aus Figur 1 a verortet ist.
Figur 2 a einen schematischen Schnitt durch einen Windenergieanla- genantriebsstrang, wobei zusätzlich ein versetzter Rotor im Generator dargestellt ist.
Figur 2 b einen schematischen Schnitt durch das Kopfteil einer Windenergieanlage, in welcher der Antriebsstrang aus Figur 2 a verortet ist. Die Achse 100 in den Figuren Ia und 2a ist sowohl eine Rotationssymmetrieachse als auch die Wellenrotationsachse als auch Rotationsachse für das Hohlrad 134, für das Hohlsonnenrad 138 und für den Rotor 106.
In Fig. 1 ist das Planetengetriebe 160 an den Generator 150 über die An- flanschplatte 126 drehfest gekoppelt. Dadurch sind das Planetengetriebegehäuse 132 an das Generatorgehäuse (nicht dargestellt) aneinander geflanscht.
Die Nabe 144 nimmt die Rotorblätter der Windenergieanlage auf. Die Nabe 144 ist mit dem Hohlrad 134 des Planetengetriebes 160 drehfest ver- bunden. Das Hohlrad 134 ist im Planetengetriebegehäuse 132 über die Lager 130 gelagert. Das Hohlrad 134 steht im kämmenden Eingriff mit dem ersten Planetenrad 136.
Das erste Planetenrad 136 ist mittels Flex-Pin 180 gelagert, wobei die Lagerung des ersten Planetenrades 136 am Planetengetriebegehäuse 132 er- folgt, wodurch das erste Planetenrad 136 ortsfest verortet ist.
Das erste Planetenrad 136 greift kämmend in die Hohlsonne 138 ein. Die Hohlsonne 138 greift kämmend in das zweite Planetenrad 190 ein.
Das zweite Planetenrad 190 ist ebenfalls mittels Flex-Pin 140 gelagert. Die Lagerung des zweiten Planetenrades 190 erfolgt so, dass eine Rotation des Hohlrades 134 an das zweite Planetenrad 190 übertragen wird. Somit erfolgt eine Leistungsaufteilung. Das zweite Planetenrad 190 greift kämmend in die Zahnräder 142 der Welle 104 ein. Die Welle 104 wird durch die Lager 102 und 103 gelagert.
An dieser Stelle sei angemerkt, dass eines der Lager entfallen kann.
Der Rotor 106 ist mittels Rutschkupplung 120 an die Welle 104 ange- flanscht. Der Rotor 106 weist einen ersten Rotor 107, einen zweiten Rotor 110 und einen weiteren Rotor 108 auf. Jeder der Rotoren 107, 108, 110 weist Permanentmagnete 112 auf. Jedem der Permanentmagnete 112 sind Leiterwicklungen 114 zugeordnet. Diese Leiterwicklungen 114 sind fest mit dem Stator 122 verbunden.
Um den Generator und/oder das Planetengetriebe zu temperieren oder zu kühlen, weist der Windenergieanlagenantriebsstrang eine Kühlung 118 mit Kühlkreislauf 116 auf.
Die Funktionsweise stellt sich wie folgt dar. Die Rotorblätter übertragen eine Rotation über die Nabe 144 auf das Hohlrad 134. Diese Rotationen weisen üblicherweise Drehzahlen von 15 U/min bis 35 U/min auf. Über das erste Planetenrad 136, das Hohlsonnenrad 138 und das zweite Planetenrad 190 wird diese Drehzahl in eine höhere Drehzahl zwischen 150 U/min und 600 U/min überführt. Über die Welle 104 wird diese Umdrehung an den Rotor 106 übertragen. Durch die rotierenden Permanentmag- nete 112 wird eine Spannung in die Leiterwicklungen 114 induziert.
Die Rotationsgeschwindigkeit der Welle 104 wird über das Getriebe so ausgelegt, dass der Maximaldurchmesser des Rotors 106 und das umfas- sende Generatorgehäuse ungefähr das Ausmaß des Planetengetriebegehäuses entspricht. Dabei sind Abweichungen von bis zu 40 % möglich.
Die Bezugszeichen für die Figur 2 a sind identisch verwendet zu Figur 1 a. Somit ergibt sich im Wesentlichen die gleiche Funktionsweise wie in Figur I a.
Im Gegensatz zu Figur 1 a ist in Figur 2 a ein weiterer Rotor 206 mit Einzelrotoren an die Welle 104 angeflanscht. Dieser weitere Rotor 206 bildet somit einen Satz zusätzlicher Rotoren, welcher versetzt drehfest auf der Welle 104 verortet ist. Der Satz von Rotoren 206 kann auch nachträglich auf die Welle 104 geflanscht werden, wodurch sich die erzeugbare Leistung des Generators verdoppelt.
In Figur 1 b ist um den Windenergieanlagenantriebsstrang aus Figur 1 a der Kopfteil einer Windenergieanlage mit einem Windenergieanlagenma- schinenhaus 203 einer Nabenverkleidung 205, Rotorblättern 207 und einen Turm 201 dargestellt. Das Maschinenhaus 203 und die Nabenverkleidung 205 haben einen Durchmesser, der es ermöglicht, das Maschinenhaus inkl. Windenergieanlagenantriebsstrang und Nabenverkleidung 205 in einem Standardcontainer zu transportieren.
In Figur 2 b ist das gleiche für den Windenergieanlagenantriebsstrang aus Figur 2 a dargestellt.

Claims

Patentansprüche:
1. Windenergieanlagenantriebsstrang, welcher ein Planetengetriebe (160) und einen Generator (150) aufweist, wobei Planetengetriebe und Generator aneinander angeflanscht sind und der Generator einen ersten Rotor, in und/oder an welchen ein erster Magnet (112) verortet ist, und einen ersten Stator mit einer Leiterwicklung (114) aufweist, dadurch gekennzeichnet, dass der Generator wenigstens einen zweiten Rotor (110) aufweist, in und/oder an welchem ein zweiter Magnet verortet ist.
2. Windenergieanlagenantriebsstrang nach Anspruch 1, wobei das Planetengetriebe ein Hohlrad (134), ein erstes Planetenrad (136), ein Hohlsonnenrad (138) und ein zweites Planetenrad (190) aufweist und ortsfest über ein Planetengetriebegehäuse (132) mit einem Generatorgehäuse verbunden ist, wobei das zweite Planetenrad mit dem Hohlrad verbunden ist und das Hohlrad kämmend in das erste Planetenrad, das erste Planetenrad kämmend in das Hohlsonnenrad und das Hohlsonnenrad kämmend in das zweite Planetenrad greift.
3. Windenergieanlagenantriebsstrang nach Anspruch 2, wobei das erste Planetenrad und/oder das zweite Planetenrad flexibel mittels eines Flex-Pins gelagert sind.
4. Windenergieanlagenantriebsstrang nach einem der Ansprüche 2 oder 3, wobei das zweite Planetenrad kämmend in eine Welle (104) greift.
5. Windenergieanlagenantriebsstrang nach einem der vorhergehenden Ansprüche, wobei der Generator weitere Rotoren mit weiteren verorteten Magneten aufweist.
6. Windenergieanlagenantriebsstrang nach Anspruch 4 oder 5, wobei die Welle eine Wellenrotationsachse (100) aufweist, welche im wesentlichen identisch zu einer Rotationsachse des Hohlrades, zu einer Rotationsachse der Hohlsonne, zu einer Rotationsachse des ersten
Rotors, zu einer Rotationsachse des zweiten Rotors und/oder zu einer Rotationsachse der weiteren Rotoren ist.
7. Windenergieanlagenantriebsstrang nach einem der vorhergehenden Ansprüche, wobei der erste Rotor und/oder der zweite Rotor und/oder die weiteren Rotoren drehfest mit der Welle verbunden sind.
8. Windenergieanlagenantriebsstrang nach einem der vorhergehenden Ansprüche, wobei die Magnete des zweiten Rotors und/oder der weiteren Rotoren einen anderen Radialabstand zu der Wellenrotati- onsachse aufweisen als die Magnete des ersten Rotors.
9. Windenergieanlagenantriebsstrang nach einem der vorhergehenden Ansprüche, wobei die Magnete der weiteren Rotoren einen anderen Radialabstand zur Wellenrotationsachse aufweisen als der erste Rotor und der zweite Rotor.
10. Windenergieanlagenantriebsstrang nach einem der vorhergehenden Ansprüche, wobei wenigstens zwei Rotoren separat an die Welle gekoppelt sind.
11. Windenergieanlagenantriebsstrang nach einem der vorhergehenden Ansprüche, wobei der erste Rotor und/oder der zweite Rotor und/oder einige der weiteren Rotoren einen Gesamtrotor (106) bilden.
12. Windenergieanlagenantriebsstrang nach einem der vorhergehenden Ansprüche, wobei ein Satz zusätzlicher Rotoren (206) versetzt drehfest auf der Welle verortet ist und der Satz zusätzlicher Rotoren die gleiche radiale Beabstandung von der Welle aufweist wie der erste und/oder der zweite und/oder die weiteren Rotoren.
13. Windenergieanlagenantriebsstrang nach einem der vorhergehenden Ansprüche, wobei der zweite Rotor und/oder die weiteren Rotoren mechanisch mittels Schaltung an die Welle drehfest koppelbar sind.
14. Windenergieanlagenmaschinenhaus, welches einen Windenergiean- lagenantriebsstrang nach einem der vorhergehenden Ansprüche auf- weist.
15. Windenergieanlagenmaschinenhaus nach Ansprach 14, wobei das
Windenergieanlagenmaschinenhaus so dimensioniert ist, dass das
Windenergieanlagenmaschinenhaus in einem Standardcontainer transportierbar ist.
16. Windenergieanlage, welche ein Windenergieanlagenmaschinenhaus nach einem der Ansprüche 14 oder 15 aufweist.
17. Windenergieanlagenpark, welcher wenigstens eine Windenergieanlage nach Ansprach 16 aufweist.
18. Standardcontainer, welcher ein Windenergieanlagenmaschinenhaus nach Ansprach 14 oder 15 in seinem Inneren aufweist.
PCT/DE2010/000340 2009-04-22 2010-03-29 Windenergieanlagenantriebsstrang, windenergieanlagenmaschinenhaus, windenergieanlage und windenergieanlagenpark sowie standardcontainer WO2010121586A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009018194.6 2009-04-22
DE102009018194A DE102009018194A1 (de) 2009-04-22 2009-04-22 Windenergieanlagenantriebsstrang, Windenergieanlagenmaschinenhaus, Windenergieanlage und Windenergieanlagenpark sowie Standardcontainer

Publications (2)

Publication Number Publication Date
WO2010121586A2 true WO2010121586A2 (de) 2010-10-28
WO2010121586A3 WO2010121586A3 (de) 2011-07-21

Family

ID=42779610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2010/000340 WO2010121586A2 (de) 2009-04-22 2010-03-29 Windenergieanlagenantriebsstrang, windenergieanlagenmaschinenhaus, windenergieanlage und windenergieanlagenpark sowie standardcontainer

Country Status (2)

Country Link
DE (1) DE102009018194A1 (de)
WO (1) WO2010121586A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466011A (zh) * 2010-11-15 2012-05-23 高则行 联结器组件和动力传递***以及风力机和风力发电机
EP2126354B1 (de) * 2007-02-27 2012-10-17 Urs Giger Windkraftanlage und getriebe hierfür
EP3599393A1 (de) * 2018-07-23 2020-01-29 Flender GmbH Koppelgetriebe für windkraftanlagen und industrie-applikationen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006040929B4 (de) * 2006-08-31 2009-11-19 Nordex Energy Gmbh Verfahren zum Betrieb einer Windenergieanlage mit einem Synchrongenerator und einem Überlagerungsgetriebe
DE102007047317A1 (de) * 2007-10-02 2009-04-09 Innovative Windpower Ag Entkopplung der Antriebswelle von der Abtriebswelle durch ein zweistufiges Getriebe bei einer Windkraftanlage
GB0905033D0 (en) * 2009-03-24 2009-05-06 Nexxtdrive Ltd Transmission systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2126354B1 (de) * 2007-02-27 2012-10-17 Urs Giger Windkraftanlage und getriebe hierfür
CN102466011A (zh) * 2010-11-15 2012-05-23 高则行 联结器组件和动力传递***以及风力机和风力发电机
WO2012065539A1 (zh) * 2010-11-15 2012-05-24 Gao Zehang 联结器组件和动力传递***以及风力机和风力发电机
EP3599393A1 (de) * 2018-07-23 2020-01-29 Flender GmbH Koppelgetriebe für windkraftanlagen und industrie-applikationen

Also Published As

Publication number Publication date
WO2010121586A3 (de) 2011-07-21
DE102009018194A1 (de) 2010-10-28

Similar Documents

Publication Publication Date Title
EP2467600B1 (de) Windkraftanlage und verfahren zur betriebssteuerung einer windkraftanlage
EP2419630B1 (de) Windenergieanlage und antriebseinrichtung zur verstellung eines rotorblatts
EP2207984A2 (de) Entkopplung der antriebswelle von der abtriebswelle durch ein zweistufiges getriebe bei einer windkraftanlage
EP2379879B1 (de) Generatoranordnung für eine windenergieanlage
WO2013045199A2 (de) Antriebssystem für eine windkraftanlage
DE102012002347A1 (de) Elektrische Maschine für eine Windenergieanlage
DE102011008029A1 (de) Windenergieanlage
DE102004005543A1 (de) Windkraftanlage
DE102007050496A1 (de) Generator mit Multistator und Multirotor
DE102009017027A1 (de) Windenergieanlage und Energieübertragungseinrichtung für eine Windenergieanlage
DE102011106535A1 (de) Antriebsstrang einer Strömungskraftanlage
WO2010121586A2 (de) Windenergieanlagenantriebsstrang, windenergieanlagenmaschinenhaus, windenergieanlage und windenergieanlagenpark sowie standardcontainer
WO2018041667A1 (de) Rotorblattnabe für eine windenergieanlage, und windenergieanlage mit selbiger
EP2379882A2 (de) Strömungskraftanlage
DE102011113937A1 (de) Getriebe, aufweisend ein Planetengetriebe
DE102010020426A1 (de) Elektrische Maschine, insbesondere für eine Windkraftanlage
DE102008063874A1 (de) Windenergieanlage
WO2019030300A1 (de) Generator für eine windenergieanlage und windenergieanlage mit selbigem
DE102019119473A1 (de) Triebstranganordnung
WO2012119171A1 (de) Energiegewinnungsanlage
DE102011008061A1 (de) Drehzahlstabilisierung einer Windkraftanlage
DE102011122431A1 (de) Elektronische Maschine für eine Windenergieanlage
EP3762604A1 (de) Windenergieanlage mit mehrstufigem magnetgetriebe
DE102022211702A1 (de) Synchronmaschine und Fahrzeug
DE202011108619U1 (de) Einrichtung zur Stromerzeugung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10718441

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 1120100017263

Country of ref document: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: FESTSTELLUNG EINES RECHTSVERLUSTS NACH REGEL 112(1) EPUE (EPA FORM 1205A VOM 28.03.2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10718441

Country of ref document: EP

Kind code of ref document: A2